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The dreadful legal stuff: FeynArts is free software, but is not in the public domain. Instead it is covered by the GNU library general

public license. In plain English this means:

1) We don’t promise that this software works. (But if you find any bugs, please let us know!)

2) You can use this software for whatever you want. You don’t have to pay us.

3) You may not pretend that you wrote this software. If you use it in a program, you must acknowledge somewhere in your

documentation that you’ve used our code.

If you’re a lawyer, you will rejoice at the exact wording of the license at http://www.fsf.org/copyleft/lgpl.html .

FeynArts is available from http://feynarts.de. If you make this software available to others, please provide them with this

manual, too.

If you find any bugs, or want to make suggestions, or just write fan mail, address it to:

Thomas Hahn

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

Föhringer Ring 6

D–80805 Munich, Germany

e-mail: hahn@feynarts.de
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1 Getting Started

FeynArts is a Mathematica package for the generation and visualization of Feynman dia-

grams and amplitudes. It started out in 1990 as a Macsyma code written by Hagen Eck

and Sepp Küblbeck which could produce tree-level and one-loop diagrams in the Stan-

dard Model [Kü90], but soon got ported to the Mathematica platform. In 1995, Hagen

Eck designed the second version to be a fully general diagram generator. To achieve

this, he implemented some decisive new ideas [Eck95], the most important one being

the generation of diagrams in three levels. The program was taken up again in 1998 by

Thomas Hahn who developed version 2.2. The well-designed conceptual framework

was kept, but the actual code was reprogrammed almost entirely to make it more effi-

cient and a user-friendly topology editor was added. The current version 3 features a

completely new rendering engine for PostScript and LATEX, together with full support of

the Mathematica Frontend’s graphical capabilities. It is also no longer dependent on the

X platform for topology editing.

The main features of FeynArts are:

• The generation of diagrams is possible at three levels: generic fields, classes of

fields, or specific particles.

• The model information is contained in two special files: The generic model file de-

fines the representation of the kinematical quantities like spinors or vector fields.

The classes model file sets up the particle content and specifies the actual couplings.

Since users can create their own model files, the applicability of FeynArts is virtu-

ally unlimited within perturbative quantum field theory. As a generic model the

Lorentz formalism (Lorentz.gen) and as classes model the electroweak Standard

Model in several variations (SM.mod, SMQCD.mod, SMbgf.mod), the Minimal Super-

symmetric Standard Model (MSSM.mod, MSSMQCD.mod), and the Two-Higgs-Doublet

Model (THDM.mod) are supplied.

• In addition to ordinary diagrams, FeynArts can generate counter-term diagrams

and diagrams with placeholders for one-particle irreducible vertex functions

(skeleton diagrams).

• FeynArts employs the so-called “flipping-rule” algorithm [De92] to concatenate

fermion chains. This algorithm is unique in that it works also for Majorana
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fermions and the fermion-number-violating couplings they entail (e.g. quark–

squark–gluino) and hence allows supersymmetric models to be implemented.

• Restrictions of the type “field X is not allowed in loops” can be applied. This is

necessary e.g. for the background-field formulation of a field theory.

• Vertices of arbitrary adjacency, required for effective theories, are allowed.

• Mixing propagators, such as appear in non-Rξ -gauges, are supported.

• FeynArts produces publication-quality Feynman diagrams in PostScript or LATEX

in a format that allows easy customization.

These features have been introduced in version 2 but some parts received consider-

able improvements in version 3. The user interface, on the other hand, has through all

versions suffered only minor and mostly backward-compatible changes, and the major

functions can still be used in essentially the same way as in version 1.

Installation

FeynArts requires Mathematica 3.0 or above. In Mathematica versions before 5.0, a Java

VM and the J/Link package are needed for the topology editor. Both ingredients can be

obtained free of charge from

http://www.wolfram.com/solutions/mathlink/jlink (J/Link),

http://java.sun.com/j2se (Java).

Note that many systems (e.g. Windows) have a Java VM pre-installed. Follow the in-

structions that come with J/Link for installation on the various platforms.

FeynArts comes in a compressed tar archive FeynArts-n.m.tar.gz which merely needs

to be unpacked, no further installation is necessary:

gunzip -c FeynArts-n.m.tar.gz | tar xvf -

Unpacking the archive creates a subdirectory FeynArts-n.m which contains
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FeynArts.m the main program

Setup.m initialization file

FeynArts/ directory containing the FeynArts code

Models/ directory containing the model files

ShapeData/ directory containing the shapes of topologies

README additional information about this release

HISTORY general blurb about the evolution of FeynArts

Convert2to3.m conversion program for FeynArts 2 GraphInfo files

Convert3to31.m conversion program for FeynArts 3 GraphInfo files

Convert31to32.m conversion program for FeynArts 3.1 GraphInfo files

Permanent changes of parameters, options, etc. should be placed in Setup.m. Patching

the FeynArts code directly is not recommended since it is inherently unportable.

Several FeynArts functions have options that take a list of objects. Except in the case of

level specifications (see Sect. 4.1), the list may be omitted if it contains only one element,

e.g. ExcludeTopologies -> Tadpoles instead of ExcludeTopologies -> {Tadpoles}.

Some FeynArts functions write messages to the screen to indicate their progress. These

messages can be partially or completely suppressed by setting $FAVerbose to 0 (no mes-

sages) or 1 (summary messages only). The default is 2 (all messages).
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2 Roadmap of FeynArts

Inputs:

Process

ext. fields

# of loops

Model

adjacencies

fields

couplings

Find all distinct ways of connect-
ing incoming and outgoing lines

CreateTopologies

Topologies

Determine all possible
combinations of fields

InsertFields

Draw the results

Paint

Diagrams

Apply the Feynman rules

CreateFeynAmp

Amplitudes
further

processing
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3 Creating the Topologies

3.1 Topological Objects

For the purposes of FeynArts, a topology is a set of lines (propagators) connecting a set

of points (vertices). Furthermore, topologies in FeynArts are restricted to be connected

topologies, where every part of the topology is connected to the rest with at least one

propagator.

A vertex is characterized by two numbers: its adjacency and its counter-term order. The

adjacency is the number of propagators that run into the vertex.

Vertex[adj][n] vertex with adjacency adj, counter-term order 0,

and number n

Vertex[adj, cto][n] vertex with adjacency adj, counter-term order cto,

and number n

A propagator connects two vertices, possibly carrying a field.

Propagator[t][from, to] propagator of type t running from from to to

Propagator[t][from, to, field] propagator of type t running from from to to

carrying field field

possible types of propagators:

Incoming, Outgoing external propagator flowing in or out

External undirected external propagator

Internal internal propagator which is not part of a loop

Loop[n] internal propagator on loop n∗

The propagators, then, are collected into topologies.

Topology[p1, p2, ...] representation of a topology with propagators pi

Topology[s][...] the same with combinatorial factor 1/s

TopologyList[t1, t2, ...] a list of topologies ti

TopologyList[info][...] the same with an additional information field

∗The n in Loop[n] is not the actual number of the loop—which in general cannot be determined

unambiguously—but the number of the one-particle irreducible conglomerate of loops.
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3.2 CreateTopologies

The basic function to generate topologies is CreateTopologies. It creates topologies

based on how many loops and external legs they have.

CreateTopologies[l, i -> o] create topologies with l loops, i incoming, and o

outgoing legs

CreateTopologies[l, e] create topologies with l loops and e external legs

Load FeynArts. In[1]:= << FeynArts‘

FeynArts 3.9

by Hagen Eck, Sepp Kueblbeck, and Thomas Hahn

last revised 32 Dec 15

Create all topologies with

one loop, one incoming,

and one outgoing line.

The results are collected

in a TopologyList.

In[2]:= CreateTopologies[1, 1 -> 1]

Out[2]= TopologyList[

Topology[2][

Propagator[Incoming][Vertex[1][1], Vertex[4][3]],

Propagator[Outgoing][Vertex[1][2], Vertex[4][3]],

Propagator[Loop[1]][Vertex[4][3], Vertex[4][3]] ]

Topology[2][

Propagator[Incoming][Vertex[1][1], Vertex[3][3]],

Propagator[Outgoing][Vertex[1][2], Vertex[3][3]],

Propagator[Internal][Vertex[3][3], Vertex[3][4]],

Propagator[Loop[1]][Vertex[3][4], Vertex[3][4]] ],

Topology[2][

Propagator[Incoming][Vertex[1][1], Vertex[3][3]],

Propagator[Outgoing][Vertex[1][2], Vertex[3][4]],

Propagator[Loop[1]][Vertex[3][3], Vertex[3][4]],

Propagator[Loop[1]][Vertex[3][3], Vertex[3][4]] ] ]

The painted version of

these topologies is much

easier to understand than

the list form.

In[3]:= Paint[%]

1 → 1

T1 T2 T3
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CreateTopologies uses a recursive algorithm that generates topologies with n legs from

topologies with n − 1 legs [Kü90]. The recursion iterates down to zero external legs

where it is stopped by a pre-defined set of starting topologies.

Several options influence the behaviour of CreateTopologies:

option default value

Adjacencies {3, 4} allowed adjacencies of the vertices

CTOrder 0 counter-term order of the topologies

ExcludeTopologies {} list of filters for excluding topologies

StartingTopologies All list to starting topologies to use

Adjacencies gives the allowed adjacencies the vertices may have. For example,

Adjacencies -> 4 generates only topologies with 4-vertices. In renormalizable quan-

tum field theories, 3 and 4 are the only possible adjacencies.

CTOrder specifies at which counter-term order topologies are generated. Note that

CreateTopologies creates counter-term topologies for exactly the given counter-term

order.

3.3 Creating Counter-term Topologies

Beyond one loop, one generally needs counter-terms of more than one order, e.g.

in a two-loop calculation the second-order counter-terms on tree topologies as well

as the first-order counter-terms on one-loop topologies are needed. This more com-

prehensive task is handled by CreateCTTopologies. Its options are the same as for

CreateTopologies except that CTOrder is ignored.

CreateCTTopologies[l, i -> o] create all counter-term topologies up to order l

with i incoming and o outgoing legs

CreateCTTopologies[l, e] create all counter-term topologies up to order l

with e external legs

Once again: use CreateTopologies to generate topologies with l loops and counter-term

order cto; use CreateCTTopologies to generate counter-term topologies for calculations

of order l. Specifically, CreateCTTopologies[l, i -> o] creates all counter-term topolo-

gies needed for the topologies created by CreateTopologies[l, i -> o].
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Create all 2-loop

counter-term topologies

including the one-loop

subrenormalization.

In[4]:= CreateCTTopologies[2, 1 -> 1];

In[5]:= Paint[%]

1 → 1

T1 T2 T3

T4 T5 T6

3.4 Creating Topologies with generic Vertex Functions

Topologies can also be created with “placeholders” for one-particle irreducible (1PI)

vertex functions. Such topologies are sometimes also called skeleton diagrams. The

vertex-function placeholders are represented graphically by a grey bubble, e.g.

The idea is to reduce the number of diagrams by calculating the vertex functions sep-

arately and inserting the final expression into tree diagrams at the proper places. For

example, in a 2 → 2 process, the self-energy diagrams are generated once for the s-

channel, once for the t-channel, and once for the u-channel. It would of course be much

more economic to calculate the necessary 1PI two-point vertex functions only once, and

insert them at the proper places in the s-, t-, and u-channel tree diagrams. The prob-

lem may not be particularly acute in this example at one loop, but it can easily become

significant for higher loop order or more external legs.

Topologies with vertex-function placeholders are generated by CreateVFTopologies.

Note that there is always a loop order associated with the vertex function, hence one

has to specify a loop order also for these “VF” topologies.
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CreateVFTopologies[l, i -> o] create topologies with placeholders for 1PI vertex

functions of order l with i incoming and o

outgoing legs

CreateVFTopologies[l, e] create topologies containing generic 1PI

vertex-function insertions of order l with e

external legs

The creation of “VF” topologies and of counter-term topologies is essentially the same.

In fact, the place where the vertex function must later be inserted is given precisely by

the location of the cross on the counter-term diagram of the corresponding order.

CreateFeynAmp translates the vertex-function placeholders into generic objects of the

form VertexFunction[o][f1, f2,...] which represent the 1PI vertex function Γ
(o)
f1f2...,

where o is the loop order and f1, f2, . . . are the adjoining fields (direction: all incoming),

complete with their momenta and kinematic indices. The conventions are such that a

VertexFunction consists directly of the corresponding 1PI diagrams (as generated by

FeynArts) without further prefactors.

Internally, the tricky part is to decide which vertex functions are allowed and which

are not. Unlike in the case of ordinary counter-terms, InsertFields cannot simply look

up which vertices are present in the model since there are exceptions: for instance in

the electroweak Standard Model the γγH vertex has neither a counter-term nor even a

tree-level vertex. Nevertheless, loop diagrams for this vertex exist.

Therefore, different constraints have to be used: only such vertex functions are gener-

ated for which there exists a corresponding generic vertex, and which do not violate

conservation of quantum numbers. The quantum numbers of the fields are defined in

the classes model file (see Sect. 7.2).

3.5 Excluding Topologies

The ExcludeTopologies option specifies topology exclusion filters. Such a filter is a

special function whose outcome when applied to a topology—True or not—determines

whether the topology is kept or discarded. Some filters are supplied with FeynArts,

others can be defined. The pre-defined filters work on topologies of any loop number.
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exclude topology if it contains. . .

Loops[patt]

CTs[patt]

loops

counter-terms
of adjacency patt

Tadpoles

TadpoleCTs

loops

counter-terms
of adjacency 1

SelfEnergies

SelfEnergyCTs

loops

counter-terms
of adjacency 2

Triangles

TriangleCTs

loops

counter-terms
of adjacency 3

Boxes

BoxCTs

loops

counter-terms
of adjacency 4

Pentagons

PentagonCTs

loops

counter-terms
of adjacency 5

Hexagons

HexagonCTs

loops

counter-terms
of adjacency 6

AllBoxes

AllBoxCTs

loops

counter-terms
of adjacency > 4

WFCorrections

WFCorrectionCTs
self-energy or tadpole

loops

counter-terms
on ext. legs

WFCorrections[patt]

WFCorrectionCTs[patt]
ditto only on ext. legs matching patt

Internal propagators of type Internal, i.e. if the topology

is one-particle reducible

Because the generation of counter-term topologies and topologies with vertex-function

insertions (see Sect. 3.4) is so similar, there are no special exclusion filters for the latter—

one simply uses the filters for counter-terms.
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Create all 1 → 2

topologies.

In[6]:= CreateTopologies[1, 1 -> 2];

In[7]:= Paint[%, ColumnsXRows -> 4]

1 → 2

T1 T2 T3 T4

T5 T6 T7 T8

T9 T10 T11 T12

T13 T14

Now the same for

irreducible topologies.

In[8]:= CreateTopologies[1, 1 -> 2,

ExcludeTopologies -> Internal];

In[9]:= Paint[%, ColumnsXRows -> 4]

1 → 2

T1 T2 T3 T4
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For convenience, common choices of the ExcludeTopologies option have a short-cut:

same as. . .

TadpolesOnly ExcludeTopologies -> Loops[Except[1]]

TadpoleCTsOnly ExcludeTopologies -> CTs[Except[1]]

SelfEnergiesOnly ExcludeTopologies -> {Loops[Except[2]],

WFCorrections}

SelfEnergyCTsOnly ExcludeTopologies -> {CTs[Except[2]],

WFCorrectionCTs}

TrianglesOnly ExcludeTopologies -> Loops[Except[3]]

TriangleCTsOnly ExcludeTopologies -> CTs[Except[3]]

BoxesOnly ExcludeTopologies -> Loops[Except[4]]

BoxCTsOnly ExcludeTopologies -> CTs[Except[4]]

PentagonsOnly ExcludeTopologies -> Loops[Except[5]]

PentagonCTsOnly ExcludeTopologies -> CTs[Except[5]]

HexagonsOnly ExcludeTopologies -> Loops[Except[6]]

HexagonCTsOnly ExcludeTopologies -> CTs[Except[6]]

To extend the filtering capabilities, you may define your own filter functions. Here is

how the Triangles filter is defined:

$ExcludeTopologies[ Triangles ] = FreeQ[ToTree[#], Centre[3]]&

The filter function must be defined as a pure function (foo[#]&) since it will be grouped

together with other filter functions by CreateTopologies. The function will be passed

a topology as its argument. This is important to know for structural operations, e.g. the

following filter excludes topologies with 4-vertices on external legs:

$ExcludeTopologies[ V4onExt ] =

FreeQ[ Cases[#, Propagator[External][__]], Vertex[4] ]&
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$ExcludeTopologies[name] = func[#]&

defines the filter name

ToTree[top] returns the topology top with each loop shrunk to

a point named Centre[adj][n] where adj is the

adjacency of loop n

Centre[adj][n] represents the remains of loop n with adjacency

adj after it has been shrunk to a point by ToTree

3.6 Selecting Starting Topologies

Using the option StartingTopologies to select particular starting topologies may sig-

nificantly speed up CreateTopologies, especially for higher-loop topologies. For exam-

ple, it is much faster to start without the reducible three-loop starting topologies than

to exclude the reducible topologies afterwards. The default setting All evaluates to all

starting topologies for the given loop number and counter-term order. It is allowed to

use patterns, e.g. StartingTopologies -> Three[_] selects only the irreducible three-

loop starting topologies.

Theta, Eight, Bicycle two-loop starting topologies

Three[1...8] irreducible three-loop starting topologies

ThreeRed[1...7] reducible three-loop starting topologies

CT[l, cto][n] counter-term starting topologies, currently

defined for loop number and counter-term order

(l, cto) = (0, 2), (0, 3), (1, 1), (1, 2), and (2, 1)

StartTop[l, cto] the starting topologies for loop number l and

counter-term order cto

SymmetryFactor[t] find the combinatorial factor of the starting

topology t



18 3 CREATING THE TOPOLOGIES

You can also draw the

starting topologies. The

cross marks a first-order

and the circled cross a

second-order

counter-term.

In[10]:= Paint[StartTop[1, 2]]

0 → 0

T1 T2 T3

T4 T5 T6

T7 T8 T9

Up to three loops all starting topologies including the counter-terms are supplied with

FeynArts. If you need others, you must enter them yourself: Edit Topology.m and locate

the definition of StartTop. There more starting topologies can be appended. Since

entering starting topologies is not an everyday job, some restrictions have been imposed

that enable FeynArts to work with much faster algorithms.

1) There is an important distinction between positive and negative vertex identifiers

(the v in Vertex[e][v]). Vertices with negative identifiers are so-called permutable

vertices. They are used for weeding out topologically equivalent topologies. The

algorithm is roughly the following: The topologies are sorted into some canonical

order, and then compared. This simple method, however, fails whenever a graph

has a symmetry. In that case, the indices of the symmetrical vertices have to be

permuted to give all topologically equivalent versions. It is this “power set” of

each topology that is actually compared. If you’re not sure which vertices should

be permutables, make them all permutables. This will be slower, but safer.
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2) For the correct functioning of the ExcludeTopologies filters it is essential that the

propagators on an irreducible conglomerate of loops have the same loop number

(the n in Loop[n]), no matter how many loops there actually are. For example, the

two-loop starting topology Theta has only Loop[1] propagators.

3) Vertex identifiers must always be unique, e.g. having both a Vertex[3][1] and a

Vertex[4][1] within the same topology is forbidden.

4) To give the starting topology a name which can be used with StartingTopologies,

define it with define[name] = Topology[s][...]. To make name accessible out-

side of Topology.m it must either be declared in FeynArts.m via name::usage or

else live in the Global‘ context (i.e. define[Global‘name] = ...). If there is only

one starting topology, or one always wants to use all of the starting topologies, the

define[...] can be omitted.

5) To determine the (inverse) symmetry factor (the s in Topology[s][...]), enter

the topology with an arbitrary factor first (e.g. Topology[1][...]), then apply

SymmetryFactor to find the right symmetry factor, and with it supplement the

initial definition.

For example, the two-loop starting topologies are defined as

StartTop[2, 0] = TopologyList[

define[Theta] = Topology[12][

Propagator[Loop[1]][Vertex[3][-2], Vertex[3][-1]],

Propagator[Loop[1]][Vertex[3][-2], Vertex[3][-1]],

Propagator[Loop[1]][Vertex[3][-2], Vertex[3][-1]] ],

define[Eight] = Topology[8][

Propagator[Loop[1]][Vertex[4][1], Vertex[4][1]],

Propagator[Loop[1]][Vertex[4][1], Vertex[4][1]] ],

define[Bicycle] = Topology[8][

Propagator[Internal][Vertex[3][-2], Vertex[3][-1]],

Propagator[Loop[1]][Vertex[3][-2], Vertex[3][-2]],

Propagator[Loop[2]][Vertex[3][-1], Vertex[3][-1]] ]

]
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4 Inserting Fields into Topologies

4.1 The Three-Level Fields Concept

FeynArts distinguishes three different levels of fields, generic fields, classes of fields, and

specific particles. Field information becomes more and more specific with these levels.

Generic, Classes, Particles field levels in FeynArts

Generic fields are the abstract field types.

F, S, V, U, T basic field types: fermion, scalar, vector, ghost,

and tensor fields

Mix[g1, g2] g1–g2 mixing field

Classes fields represent sets of fields with common properties such as behaviour under

charge conjugation. A class is a generic field type with a class number, e.g. F[1]. The

class specifies which further indices (if any) the class members possess and the range of

these indices.

Particles fields are then class members with definite indices, e.g. F[1, {1, 2}] if the class

F[1] has two indices. For classes fields without further indices, classes and particles

fields are the same.

Antiparticles (charge-conjugate fields) are denoted by a minus sign in front of the field,

e.g. if F[2, {1}] is the electron, -F[2, {1}] is the positron.

Apart from simple fields, FeynArts can also handle mixing fields. A mixing field prop-

agates like any other field but has no couplings of its own. Instead, it couples like one

simple field on the left side and like another simple field on the right side, e.g. if the

scalar–vector mixing field Mix[S, V][3] has the mixing partners {S[3], V[3]}, it cou-

ples as if it were an S[3] on the left and a V[3] on the right.

Whereas simple fields can have at most two states, the field and its antifield, a mixing

field can occur in four states, the mixing field, its antifield, the reversed mixing field, and

its antifield. Unlike for simple fields, the antifield of Mix[S, V][3] is -2 Mix[S, V][3]

and the antifield of -Mix[S, V][3] is 2 Mix[S, V][3]. Self-conjugate fields cannot have

negative coefficients, i.e. in that case the two possibilities in the bottom row are absent:
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Mix[S, V][3]

-Mix[S, V][3]

2 Mix[S, V][3]

-2 Mix[S, V][3]

Mixing of generic fields is a special case because it requires different handling internally

already at generic level. It is disabled by default.

$GenericMixing = True enable mixing of generic fields

(must be set before the model is initialized)

At generic level there are no antiparticles and reversed mixing propagators are denoted

by Rev[g1, g2]. For compatibility with old versions, FeynArts replaces SV = Mix[S, V].

F generic fermion field

F[n] fermion class n,

e.g. F[2] is the class of leptons in SM.mod

F[n, {i, ...}] member of fermion class n,

e.g. F[2, {1}] is the electron in SM.mod

-field charge-conjugate of field

2 mixingfield mixingfield with left and right partner reversed

Using different levels of fields is a natural concept in perturbative field theory. The

kinematical structure of a coupling is determined at the generic level. Consider the

scalar–fermion–fermion coupling in the Lorentz formalism. Its kinematical structure is

CFFS = G
ω−
FFS ω− + G

ω+
FFS ω+

(ω± being the chirality projectors). Gω−
FFS and Gω+

FFS are generic coupling constants which

carry two kinds of indices: the fields they belong to and the kinematical object they

appear with. At classes level, the coupling constants are resolved but not the indices.

E.g. for the Hℓiℓ j coupling in the electroweak Standard Model (Higgs–lepton–lepton

with generation indices i and j, i.e. ℓ1 = e, ℓ2 = µ, ℓ3 = τ) they happen to be identical:

Gω−
Hℓiℓ j

= Gω+
Hℓiℓ j

= −
ie

2 sinθW MW
δi jmℓi
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Finally, at particles level, the generation indices i and j are resolved, so for instance the

Heµ coupling is zero because of the δi j.

The FeynArts functions InsertFields, CreateFeynAmp, and Paint can operate at dif-

ferent field levels. The level specification is analogous to the usual Mathematica level

specifications with e.g. {3} vs. 3. If, for example, InsertFields is used with the op-

tion InsertionLevel -> {Particles}, the result will contain insertions only at par-

ticles level. In contrast, InsertionLevel -> Particles (no braces) will produce in-

sertions down to particles level. More than one level may be specified, for instance,

{Generic, Particles} skips the classes level.

4.2 InsertFields

The computer-algebraic generation of Feynman diagrams corresponds to the distribu-

tion of fields over topologies in such a way that the resulting diagrams contain only

couplings allowed by the model. The function for this is InsertFields.

InsertFields[t, {i1, i2, ...} -> {o1, o2, ...}]

insert fields into the TopologyList t where the

incoming fields are i1, i2, . . . and the outgoing

fields are o1, o2, . . .

Create irreducible 1 → 2

topologies.

In[11]:= t12 = CreateTopologies[1, 1 -> 2,

ExcludeTopologies -> Internal];



4.2 InsertFields 23

Insert Z → bb. In[12]:= InsertFields[ t12,

V[2] -> {F[4, {3}], -F[4, {3}]} ];

loading generic model file Models/Lorentz.gen

> $GenericMixing is OFF

generic model Lorentz initialized

loading classes model file Models/SM.mod

> 46 particles (incl. antiparticles) in 16 classes

> $CounterTerms are ON

> 88 vertices

> 108 counter terms of order 1

> 1 counter terms of order 2

classes model SM initialized

inserting at level(s) {Generic, Classes}

> Top. 1: 6 Generic, 14 Classes insertions

> Top. 2: 0 Generic, 0 Classes insertions

> Top. 3: 0 Generic, 0 Classes insertions

> Top. 4: 0 Generic, 0 Classes insertions

in total: 6 Generic, 14 Classes insertions
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Paint works also with

inserted topologies.

In[13] := Paint[%, ColumnsXRows -> 4,

PaintLevel -> {Classes}]
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InsertFields accepts the following options.

option default value

InsertionLevel Classes level specification (see end of Sect. 4.1)

GenericModel "Lorentz" generic model to use

Model "SM" classes model to use

ExcludeFieldPoints {} couplings to exclude

ExcludeParticles {} fields to exclude

Restrictions {} restrictions for diagram generation

LastSelections {} field patterns which must or must not

appear in the final output

GenericModel specifies the model file containing the generic propagators and couplings

(the extension .gen is always added to the file name). Model specifies the classes model
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file containing the classes definitions and couplings (extension .mod). The model name

is a string but may be given as a symbol if this is possible (e.g. a name like 2HD cannot

be represented by a symbol because it starts with a digit).

4.3 Model Files

FeynArts distinguishes basic model files and add-on (or partial) model files. Most com-

monly, only the basic model files are used, as in

InsertFields[..., Model -> "MSSM"]

In contrast, the add-on model files do not supply a complete model. They just modify

the particle descriptions and coupling tables of another model file and can therefore

only be used “on top” of a basic model file. It produces an error to load an add-on

model file without a basic one. An add-on model file might, for example, change a

particular coupling, modify the mass of a particle, etc. One case given in [HaI06] is

the enhancement (resummation) of the H–b–b̄ coupling in the MSSM. Such an add-on

model file is used like

InsertFields[..., Model -> {"MSSM", "EnhHbb"}]

The model files that come with FeynArts are located in the Models subdirectory of the

FeynArts tree. The major model files Standard Model, MSSM, and Two-Higgs-doublet

Model are described in Appendices B, C, and D, respectively.

A classes or generic model file can also be initialized explicitly with InitializeModel.

This can be useful e.g. when writing and debugging model files.

InitializeModel[] initialize just the generic model file

InitializeModel[modname] initialize the generic model file and the classes

model file modname.mod
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option default value

GenericModel "Lorentz" generic model to use

Reinitialize True whether to initialize the model, even

if it is the current one

TagCouplings False whether to add a tag to each coupling

(see Sect. 7.4 on debugging)

ModelEdit Null code that will be executed directly

after loading the model

GenericModel specifies the model file containing the generic propagators and couplings

(the extension .gen is always added to the file name). The same conventions for the

model name as in the Model option of InsertFields apply here. Reinitialize specifies

whether the model file is initialized when it is already the current model file.

ModelEdit provides a way to apply small changes to the model file, much as in the

add-on model files described above. It provides code that is executed just after loading

the model file, but before any initialization takes place. One example use could be the

replacement of the ‘ordinary’ Z-boson mass by a complex one, which would include the

width of the Z-boson. This could be done with

SetOptions[InitializeModel, ModelEdit :>

(M$ClassesDescription = M$ClassesDescription /. MZ -> MZc)]

Note that the ModelEdit option uses :> (RuleDelayed) rather than -> (Rule), otherwise

the code would be executed immediately. For the description of the model-file contents,

such as M$ClassesDescription, see Sect. 7.

4.4 Imposing Restrictions

It is often necessary to restrict the number of diagrams generated by InsertFields. This

can be done in several ways.

ExcludeParticles -> {fields} excludes insertions containing fields. Patterns are per-

mitted in fields, e.g. ExcludeParticles -> F[_, {2 | 3}] excludes all second and third

generation fermion fields. Note that excluding a field at a particular level automati-

cally excludes derived fields at lower levels including their antiparticles. Excluding e.g.

the classes field F[1] will also exclude -F[1], F[1, {1}], -F[1, {1}], . . . Furthermore,
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ExcludeParticles has no effect on the external particles. (After all, it would be rather

pointless to specify certain external fields and exclude them in the same line.)

ExcludeFieldPoints -> {couplings} excludes insertions containing couplings. A cou-

pling of counter-term order cto is specified as FieldPoint[cto][fields]. Patterns are al-

lowed, e.g. FieldPoint[_][-F[2, {1}], F[1, {1}], S[3]]. Here, too, the exclusion of

a field point entails the exclusion of more specific ones derived from it.

Restrictions -> {exclp, exclfp} is a convenient way of specifying abbreviations for

ExcludeParticles and ExcludeFieldPoints statements. For example, SM.mod defines

NoElectronHCoupling =

ExcludeFieldPoints -> {

FieldPoint[0][-F[2, {1}], F[1, {1}], S[3]],

FieldPoint[0][-F[2, {1}], F[2, {1}], S[1]],

FieldPoint[0][-F[2, {1}], F[2, {1}], S[2]] }

as a short-hand to exclude the electron–Higgs couplings. In InsertFields it is used as

Restrictions -> NoElectronHCoupling.

LastSelections is an alternative method to specify field patterns that must or must

not appear in the insertions. For example, LastSelections -> {S, !F[_, {2}]} forces

that the insertions must contain a scalar field and must not contain fermions of the

second generation. Like ExcludeParticles, LastSelections does not affect the external

fields. The individual criteria are combined with the logical ‘and’, i.e. an insertion is

only permitted if it fulfills all criteria simultaneously.

While LastSelections may seem more general, it works by first generating all dia-

grams and afterwards selecting those that match the given criteria (hence the name).

In contrast, ExcludeParticles and ExcludeFieldPoints work by eliminating particles

and couplings before starting the insertion process and can thus be significantly faster.

They can, on the other hand, only exclude but not force the presence of fields or field

points.
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Here is the Z → bb

example again. Now we

select only diagrams in

which a W boson occurs.

In[14]:= InsertFields[ t12,

V[2] -> {F[4, {3}], -F[4, {3}]},

InsertionLevel -> {Classes},

LastSelections -> V[3] ];

inserting at level(s) {Classes}

> Top. 1: 4 Classes insertions

> Top. 2: 0 Classes insertions

> Top. 3: 0 Classes insertions

> Top. 4: 0 Classes insertions

in total: 4 Classes insertions

In[15] := Paint[%, ColumnsXRows -> 4]
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4.5 Selecting Insertions

One further way to pick a selected set of diagrams is to use the function DiagramSelect.

DiagramSelect[d, crit] select the diagrams from d for which crit gives

True

This function works much like the usual Select of Mathematica, i.e. it applies a test

function to every diagram, and returns only those for which the result is True. The test

function can of course be any Mathematica expression, but the most common usage is

something like

DiagramSelect[ diags, FreeQ[#, Field[5] -> S]& ]

which eliminates all diagrams with a scalar particle on the fifth propagator. Such a

statement would not be very useful were it not for the fact that FeynArts orders its prop-

agators in a very systematic way. This is best exploited if the topologies are grouped

into categories like self-energies, vertices, or boxes. For example, in a 2 → 2 vertex-

correction diagram the first four propagators are those of the external particles, the fifth

is the propagator of the tree part, and the rest are the loop propagators, e.g.
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The important thing to note here is that the same “parts” of a diagram (say, the loop)

in general get the same propagator numbers. Nevertheless, the number of a certain

propagator is not fixed a priori, so the only reliable way to find the propagator numbers

is to paint the bare topologies with the option FieldNumbers -> True (see Sect. 5).

The test function actually receives three arguments: the list of field substitution rules for

the graph of the form FeynmanGraph[Field[1] -> f1, Field[2] -> f2, ...], the topol-

ogy belonging to the graph, and the head of the surrounding topology list.

See Sect. 4.7 for auxiliary functions to use with DiagramSelect.

4.6 Grouping Insertions

The function DiagramGrouping groups insertions according to the output of a function.

DiagramGrouping[tops, foo] return a list of parts of the inserted topologies

tops, grouped according to the output of foo

The user function foo is applied to all insertions. Groups are introduced for all dif-

ferent return values of this function. The output of DiagramGrouping is a list of pairs

(return value of foo) -> (inserted topologies).

The user function is invoked with the same three arguments as the test function

of DiagramSelect: the list of field substitution rules for the graph of the form

FeynmanGraph[Field[1] -> f1, Field[2] -> f2, ...], the topology belonging to the

graph, and the head of the surrounding topology list.

See Sect. 4.7 for auxiliary functions to use with DiagramGrouping.

4.7 Auxiliary Functions

Several functions aid the selection of diagrams with DiagramSelect or their grouping

with DiagramGrouping.
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LoopFields[top] return a list of the fields that are part of any loop

in the topology top

WFCorrectionFields[top] extract the fields external to any wave-function

correction from topology top

WFCorrectionCTFields[top] extract the fields external to any

wave-function-correction counter-term from

topology top

LoopFields[rul, top]

WFCorrectionFields[rul, top]

WFCorrectionCTFields[rul, top]

substitute the insertion rules rul into the bare

topology top, then proceed as above

LoopFields identifies the fields running in the loop of a diagram. It is commonly used

as in

DiagramSelect[ diags, FreeQ[LoopFields[##], V[1]]& ]

WFCorrection(CT)Fields typically returns a list of two fields, such as {S[1], S[3]}.

These are the fields external to the wave-function correction (or its counter-term), i.e.

the diagram contains a self-energy insertion S[1] → S[3] on an external leg. If the

diagram contains no wave-function correction, the list is empty.

This filter is usually used to eliminate wave-function corrections with identical external

legs, i.e. remove corrections of the type a → a but keep a → b. This can be done with a

construction like

DiagramSelect[ diags, UnsameQ@@ WFCorrectionFields[##] & ]

Vertices[top] return the vertices contained in the topology top

FieldPoints[top] return the field points contained in the topology

top

FieldPoints[rul, top] substitute the insertion rules rul into the bare

topology top, then proceed as above

Vertices returns the vertices contained in a topology, not counting the external legs

(even though they are internally represented as Vertex[1][n]).
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FieldPoints returns the field content for each vertex of a topology, i.e. a list of objects

of the form FieldPoint[cto][fields], where cto is the counter-term order.

The following functions further facilitate matching of fields and field points.

FieldMatchQ[f, f ′] True if the field f matches the pattern f ′

FieldMemberQ[flist, f ′] True if an element of flist matches the field

pattern f ′

FieldPointMatchQ[fp, fp′] True if the field point fp matches the pattern fp′

FieldPointMemberQ[fplist, fp′] True if an element of fplist matches the field-point

pattern fp′

FieldMatchQ works like MatchQ but takes into account field levels, e.g. F[1] matches F.

FieldPointMemberQ similarly works like MemberQ except that the field matching is done

with FieldMatchQ.

FieldPointMatchQ and FieldPointMemberQ are to field points what FieldMatchQ and

FieldMemberQ are to fields, respectively.

FermionRouting[top] find out the permutation of external fermions as

routed through the inserted topology top

FermionRouting[rul, top] substitute the insertion rules rul into the bare

topology top, then proceed as above

FermionRouting returns a list of integers of which every successive two denote the end-

points of a fermion line in the diagram. This function is typically used as a filter for

DiagramSelect, as in

DiagramSelect[ diags, FermionRouting[##] == {1, 4, 2, 3} & ]

or as

DiagramGrouping[ diags, FermionRouting ]

which returns a list of fermion-flow-ordered diagrams.

The function FeynAmpCases works like a Cases statement on the amplitude correspond-

ing to a graph. That is, FeynAmpCases invokes CreateFeynAmp on each graph and from

the resulting amplitude selects the parts matching a pattern.
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FeynAmpCases[patt][g, t, h] create an amplitude from g, t, h (same three

arguments as for user function above) and select

all parts matching patt from that

FeynAmpCases[patt][amp] select all parts matching patt from the amplitude

amp

This function is typically used as a filter for DiagramSelect or DiagramGrouping, as in

DiagramGrouping[ diags,

FeynAmpCases[_[Index[Colour | Gluon, _], ___]] ]

4.8 Extracting and Deleting Insertions by Number

If the various ways of restricting InsertFields are not sufficient to select the desired

diagrams, the user may extract or delete diagrams by number. The functions for this are

DiagramExtract and DiagramDelete.

DiagramExtract[t, sel] extract the diagrams with numbers sel from the

list of inserted topologies t

DiagramDelete[t, sel] delete the diagrams with numbers sel from the

list of inserted topologies t

sel can be e.g. 5, 10...12, 20 which refers to

diagrams 5, 10, 11, 12, and 20

The numbers referred to are the sequential numbers of the diagrams as given by Paint.

If Paint is used with a PaintLevel different from the InsertionLevel, the numbering

will not be useful for DiagramExtract and DiagramDelete.

If a diagram is discarded at a particular level, derived diagrams at deeper levels are

removed, too. Conversely, choosing a diagram at a particular level requires that the

lower levels of that diagram (the ‘parent’ diagrams) are kept. The end result may thus

contain less (or more) diagrams than asked for.

For other kinds of objects, DiagramExtract (DiagramDelete) works like an extended ver-

sion of Extract (Delete), e.g. DiagramDelete[{a, b, c, d, e}, 2...4] results in {a, e}.

Consider that selecting diagrams by number is typically not as robust as selecting them

through other criteria. This is because the numbering generally changes whenever the

CreateTopologies and/or InsertFields invocations are modified. For example, the
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diagrams corresponding to a certain set of numbers in the Standard Model and in the

MSSM will in general not be the same.

DiagramComplement returns the complement of a list of diagrams.

DiagramComplement[tall, t1, t2, ...]

the diagrams in tall which are not in any of the ti

4.9 Modifying Insertions

Diagrams can also be modified by mapping a function over the diagrams with

DiagramMap.

DiagramMap[foo, tops] map foo over each diagram in the inserted

topologies tops

The user function foo is applied to all insertions. It is invoked with the same three ar-

guments as the test function of DiagramSelect: the list of field substitution rules for the

graph of the form FeynmanGraph[Field[1] -> f1, Field[2] -> f2, ...], the topology

belonging to the graph, and the head of the surrounding topology list. It must return

the modified first argument (the FeynmanGraph object).

4.10 Structure of the Inserted Topologies

If one wants to perform more advanced operations on inserted topologies it is necessary

to know their structure. Essentially, a topology gets enclosed in a hierarchy of rules with

particles insertions nested inside classes insertions nested inside generic insertions. It is

possible to select specific levels out of this hierarchy with PickLevel (see Sect. 6.4).

TopologyList[info][

Topology[s][props] ->

Insertions[Generic][

FeynmanGraph[sg1
, Generic == 1][Field[1] -> F, ...] ->

Insertions[Classes][

FeynmanGraph[sc1
, Classes == 1][Field[1] -> F[1], ...] ->

Insertions[Particles][

FeynmanGraph[sp1
, Particles == 1][Field[1] -> F[1, {1}], ...],
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FeynmanGraph[sp2
, Particles == 2][Field[1] -> F[1, {2}], ...],

more particles insertions

],

FeynmanGraph[sc2
, Classes == 2][Field[1] -> F[2], ...] -> ...,

more classes insertions

],

FeynmanGraph[sg2
, Generic == 2][Field[1] -> V, ...] -> ...,

more generic insertions

],

more topologies

]
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5 Drawing Feynman Graphs

The drawing routine Paint has already been used several times to illustrate the exam-

ples in this manual.

Paint[t] paint the (bare or inserted) topologies t

Paint accepts either a TopologyList or a Topology as argument. Note however that

InsertFields adds an information field to TopologyList which is used by Paint. Thus,

if you want to paint a single inserted topology, it is better to paint a topology list with

one element (viz. Take[toplist, {1}]) than a single topology (viz. toplist[[1]]) in order

to preserve that information field.

option default value

PaintLevel InsertionLevel level specification (see end of Sect. 4.1)

ColumnsXRows 3 number of diagrams per column/row,

may also be given as a list {nc, nr}

SheetHeader Automatic title for each sheet of graphics

Numbering Full what type of numbering to display

underneath each diagram

FieldNumbers False whether to label the propagators of a

bare topology with the field numbers

AutoEdit True whether to call the topology editor

when encountering an unshaped

topology

DisplayFunction $DisplayFunction which function to apply to the final

graphics object in order to display it

PaintLevel specifies the level at which diagrams are painted. The default is to use

the level the topologies were inserted at (for inserted topologies). For bare topologies

PaintLevel is not relevant. Note that for the numbering of the diagrams to be appro-

priate for discarding insertions (see Sect. 4.8), the PaintLevel has to be the same as the

InsertionLevel.

ColumnsXRows specifies the number of diagrams displayed in each column and row of a

sheet. It may be given as a single integer, e.g. ColumnsXRows -> 4 which means 4 rows
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of 4 diagrams each on a sheet, or as a list of two integers, e.g. ColumnsXRows -> {3, 5}

which means 5 rows of 3 diagrams each.

SheetHeader specifies the title of each sheet of diagrams. With Automatic or True the

default header is used (“particlesin → particlesout” for inserted or “nin → nout” for

bare topologies), False disables the header, and everything else is taken literally as a

header, e.g. SheetHeader -> "Self-energy diagrams".

Numbering -> None omits the default numbering of the diagrams. The default setting

of Numbering -> Full places diagram numbers of the form T1 C8 N15 (= topology 1,

classes insertion 8, running number 15) underneath the diagram. A simple numbering

which is useful in publications is Numbering -> Simple in which case just the running

number is used.

The propagators of a bare topology are usually unlabelled. With FieldNumbers -> True

Paint uses the field numbers (the n in Field[n]) as labels. This is useful when selecting

diagrams with DiagramSelect (see Sect. 4.5).

AutoEdit determines whether Shape is called when an unshaped topology is found.

This option is useful if your diagrams involve lots of unshaped topologies (e.g. try paint-

ing 2-loop, 2 → 4 diagrams) and you want a quick (pre)view of the diagrams without

going through the effort of shaping them at that moment. FeynArts uses a rather sophis-

ticated autoshaping algorithm, but one should not expect too much: autoshaping offers

a reasonable starting point, but for publishing-quality diagrams it is usually necessary

to refine the shapes by hand.

DisplayFunction determines how the output of Paint is rendered. The default is to

show the graphics on screen. Popular choices are DisplayFunction -> Identity which

does not render the graphics at all, or DisplayFunction -> (Display["file.ps", #]&)

which saves it in a file.

When running in the standalone Mathematica Kernel, Paint automatically animates the

screen graphics, with the sheets of output acting as the frames of the animation. This is

to inhibit the cluttering of the screen with too many windows. The speed at which the

frames are displayed by default is rather high, more appropriate for a movie than for

viewing sheets of graphics. The frame rate can be adjusted in the “Animation Controls”

menu, which also allows to view single frames. Under Unix, the initial frame rate can

be set with the X resource Motifps*frameTime, e.g. in .Xdefaults:

Motifps*frameTime: 1000
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5.1 Things to do with the Paint Output

The output of Paint is a FeynArtsGraphics object whose arguments represent the sheets

of the output. Each of these sheets is represented by a matrix which determines the

layout of the diagrams, i.e.

FeynArtsGraphics[title][

{ {g11, g12, ...},

{g21, g22, ...},







sheet 1

... },

...

]

These FeynArtsGraphics objects can be rendered with the usual Mathematica rendering

functions Export, Display, and Show. Export and Display allow the image size to be

changed with the ImageSize option whose default value is 72*{6, 7} (6 × 7 inches) for

a FeynArtsGraphics object.

In addition to the standard formats understood by Mathematica, the rendering functions

accept two more output formats, "PS" and "TeX". To run output produced with the

"TeX" format through LATEX, the feynarts.sty style file is required; it is located in the

FeynArts directory.

One particular feature of the "TeX" output is that it can be touched up quite easily.

This is useful for publications, e.g. when grouping together diagrams. To start with,

the generated LATEX code doesn’t look too scary, for instance a single diagram might be

drawn by

\FADiagram{T1 C1 N2}

\FAProp(0.,15.)(6.,10.)(0.,){Sine}{0}

\FALabel(2.48771,11.7893)[tr]{$Z$}

\FAProp(0.,5.)(6.,10.)(0.,){Sine}{0}

\FALabel(3.51229,6.78926)[tl]{$Z$}

\FAProp(20.,15.)(14.,10.)(0.,){Sine}{0}

\FALabel(16.4877,13.2107)[br]{$Z$}

\FAProp(20.,5.)(14.,10.)(0.,){Sine}{0}

\FALabel(17.5123,8.21074)[bl]{$Z$}

\FAProp(6.,10.)(14.,10.)(0.,){ScalarDash}{0}
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\FALabel(10.,9.18)[t]{$H$}

\FAVert(6.,10.){0}

\FAVert(14.,10.){0}

With this representation, it is pretty straightforward to move diagrams around as they

always start with \FADiagram. (Incidentally, the PostScript files generated by FeynArts

have a very similar markup.)

The feynarts.sty introduces the following new LATEX commands:

\begin{feynartspicture}

\end{feynartspicture} delimit a sheet of diagrams

\FADiagram{t} advance to the next diagram, which has title t

\FAProp(f)(t)(c){g}{a} draw a propagator from point f to point t with

curvature c using graphical representation g and

arrow a

\FAVert(p){cto} draw a vertex of counter-term order cto at point p

\FALabel(p)[align]{text} write text at point p with alignment align

Do not be confused by the multitude of parameters: The only command likely to be

edited is \FALabel. Suffice it to say that each diagram is drawn on a 20× 20 grid with the

origin in the lower left corner and the positive axes extending to the right and upward,

and that the alignment is specified in the standard TEX manner, i.e. with combinations

of t, b, l, and r for top, bottom, left, and right alignment, respectively. The exact details

of all LATEX commands defined by feynarts.sty can be found in Appendix E.

5.2 Shaping Topologies

A topology does not by itself provide information on how to draw it. While the human

eye is usually quite skilled in figuring out a nice shape for a topology, at least for not

too complex ones, this is a tremendously difficult task for the computer even in sim-

ple cases. Indeed, the autoshaping routine is the longest single function in the whole

program.

Whenever Paint encounters a topology for which is does not yet know the shape, it

first does its best to autoshape the topology, and then calls the topology editor (unless

AutoEdit -> False is set) so that the user can refine the shape. This shaping function
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can also be invoked directly.

Shape[t] invoke the topology editor to shape the topology

or topology list t

The topology editor pops up a window which looks like

The red squares mark the vertices. Click and drag a red square with the left mouse button

to move the respective vertex.

The blue squares mark the propagators. Click and drag a blue square with the left mouse

button to change the respective propagator’s curvature. Click on it with the middle

mouse button to make the propagator straight again. Click on it with the right mouse

button to reverse the curvature, i.e. to make the line curved in the opposite direction.

The green squares mark the label positions (they look like little tags attached to the center

of the propagator). Click and drag a green square with the left mouse button to move

the respective label. Click on it with the middle mouse button to put the label back to its
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default position. Click on it with the right button to flick the label to the opposite side

of the propagator.

The buttons on the right of the window are largely self-explanatory:

The OK button commits the changes and exits.

The CANCEL button discards the changes made to the current diagram and exits the

editor but continues editing more diagrams if a list of topologies is being shaped.

The ABORT button is similar to CANCEL, but aborts the editing process altogether, i.e.

it returns to the Mathematica prompt immediately, even if there are more topologies in

line to be edited.

The REVERT button reverts to the initial layout of the topology.

Choosing GRID POSITION allows dragging of the squares only onto grid points. Con-

versely, ANY POSITION allows a square to be dragged to an arbitrary position.

The topologies need to be shaped only once. The shapes changed during a Mathematica

session are saved in the directory specified by the variable $ShapeDataDir, which by

default is the ShapeData directory in the FeynArts home directory.

The actual topology editor is a program written in Java, TopologyEditor.java, that

communicates with Mathematica through the J/Link program. See Sect. 1 for setting up

Java and J/Link.
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6 Creating the Analytic Expressions

6.1 Representation of Feynman Amplitudes

The basic object for a Feynman amplitude is FeynAmp. Corresponding to the three inser-

tion levels there are also three amplitude levels.

for a single level:

FeynAmp[n, mom, amp] Feynman amplitude with name n, integration

momenta mom, and analytic expression amp

for multiple levels:

FeynAmp[n, mom, amp, ru] Feynman amplitude with name n, integration

momenta mom, and generic analytic expression

amp including replacement rules ru to obtain the

other levels

FeynAmpList[info][amps] list of FeynAmps

GraphID[id] identifier of an amplitude

Integral[q1, q2, ...] representation of the integration momenta

A FeynAmp containing a single level has only a single analytic expression amp: the am-

plitude at that level. In case more than one level is present, amp is the generic-level

amplitude, which can be transformed into the individual amplitudes of the deeper lev-

els by applying the replacement rules ru with PickLevel (see Sect. 6.4).

FeynArts always produces purely symbolic expressions for Feynman amplitudes, e.g.

PropagatorDenominator[p, m] is used to denote 1/(p2 − m2), simply to prevent Math-

ematica from performing any automatic simplification on it. In fact, FeynArts does not

attempt to simplify anything in the amplitude (e.g. evaluate traces) because this would

limit its applicability to a certain class of theories.

Apart from the relatively few symbols FeynArts uses by itself in amplitudes, all symbols

defined by the model can of course appear in the amplitude.
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Mass[f] mass of field f

GaugeXi[f] gauge parameter of field f

G[+-1][cto][f][kin] symmetric (+1) or antisymmetric (−1) generic

coupling of counter-term order cto involving the

fields f and corresponding to the kinematical

object kin of the coupling vector (see Sect. 7 for

details)

FourMomentum[t, n] nth momentum of type t (Incoming, Outgoing, or

Internal)

PropagatorDenominator[p, m]

symbolic expression for 1/(p2 − m2) where p is

the momentum and m the mass of the propagator

FeynAmpDenominator[...] collection of PropagatorDenominators belonging

to loops

MatrixTrace[o1, o2, ...] closed fermion chain involving the

noncommuting objects o1, o2, . . .

FermionChain[o1, o2, ...] open fermion chain involving the noncommuting

objects o1, o2, . . .

VertexFunction[o][f] generic vertex function of loop order o with

adjoining fields f

SumOver[i, r, ext] indicates that the amplitude it is multiplied with

is to be summed in the index i over the range r; if

r is an integer, it represents the range 1. . . r. ext is

the symbol External if the summation is over an

index belonging to an external particle†

IndexSum[expr, {i, range}] the sum of expr over the index i; IndexSum has the

same syntax as Sum, but remains unevaluated

†It is necessary to distinguish sums over internal and external indices. For example, a squared diagram

is calculated by squaring the diagram and then summing over the external indices. On the other hand,

an internal index summation (say, for a quark loop) must be done for each diagram before squaring.
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6.2 CreateFeynAmp

Once the possible combinations of fields have been determined by InsertFields, the

Feynman rules must be applied to produce the actual amplitudes. The function for this

is CreateFeynAmp.

CreateFeynAmp[i] translate the inserted topologies i into Feynman

amplitudes

option default value

AmplitudeLevel InsertionLevel level specification (see end of Sect. 4.1)

PreFactor -I (2 Pi)^

(-4 LoopNumber)

overall factor of the amplitude

Truncated False whether to remove external wave

functions

GaugeRules _GaugeXi -> 1 rules to enforce a particular choice of

gauge

MomentumConservation True whether to enforce momentum

conservation at each vertex

GraphInfoFunction (1 &) a function for adding graph

information to the amplitude

The default for AmplitudeLevel is to use the same level the topologies were inserted at.

PreFactor specifies the overall factor every diagram is multiplied with. It may contain

the symbol LoopNumber which is substituted by the actual number of loops of a topology.

If Truncated -> True is set, CreateFeynAmp applies the truncation rules defined in the

model file (M$TruncationRules) to the final result. These rules should discard external

wave functions, typically spinors or polarization vectors.

To be able to produce amplitudes in an arbitrary gauge, the model file must of course

contain the full gauge dependence of the propagators and couplings. For example,

Lorentz.gen and SM.mod contain the gauge-dependent propagators (V, S, U) and cou-

plings (SUU) for an arbitrary Rξ -gauge. Most people prefer to work in the Feynman

gauge, which is the most convenient one for calculating radiative corrections, there-

fore the default GaugeRules set all gauge parameters to unity. On the other hand, if

one wants to check e.g. gauge independence of an expression, GaugeRules -> {} will
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keep the gauge parameters untouched. Take care that the choices 0 (Landau gauge) and

Infinity (unitary gauge) actually imply a limit which is in general not correctly taken

with the naive GaugeRules substitution. In such a case the gauge parameters should

remain in the amplitude until after simplification, and then substituted. For the unitary

gauge there is a workaround in UnitaryLorentz.gen and UnitarySM.mod.

It is possible to add information about the underlying graph to the amplitude by giv-

ing a GraphInfoFunction. This function receives the same three arguments as the test

functions of DiagramSelect and DiagramGrouping: the list of field substitution rules for

the graph of the form FeynmanGraph[Field[1] -> f1, Field[2] -> f2, ...], the topol-

ogy belonging to the graph, and the head of the surrounding topology list. See Sect. 4.7

for auxiliary functions to use with these arguments.

Create one diagram from

the photon self-energy:

γ

γ

G

G

In[16]:= t11 = CreateTopologies[1, 1 -> 1][[3]];

In[17]:= AA = InsertFields[t11, V[1] -> V[1],

ExcludeParticles -> {F, V, U}];

Excluding 3 Generic, 20 Classes, and 36 Particles fields

inserting at level(s) {Generic, Classes}

> Top. 1: 1 Generic, 1 Classes insertions

in total: 1 Generic, 1 Classes insertions

Restoring 3 Generic, 20 Classes, and 36 Particles fields
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Generate the amplitudes. In[18]:= CreateFeynAmp[AA]

creating amplitudes at level(s) {Generic, Classes}

> Top. 1: 1 Generic, 1 Classes amplitudes

in total: 1 Generic, 1 Classes amplitudes

Out[18]= FeynAmpList[

Model -> SM, GenericModel -> Lorentz,

InsertionLevel -> Classes, Restrictions -> {},

ExcludeParticles -> {F, V, U},

ExcludeFieldPoints -> {}, LastSelections -> {},

Process -> {{V[1], p1, 0}} -> {{V[1], k1, 0}}][

FeynAmp[

GraphID[Topology == 1, Generic == 1],

Integral[q1],

(
I

32
RelativeCF

FeynAmpDenominator[
1

q12 - Mass[S[Gen3]]2
,

1

(-p1 + q1)2 - Mass[S[Gen4]]2
]

(p1 - 2 q1)[Lor1] (-p1 + 2 q1)[Lor2]

ep[V[1], p1, Lor1] ep*[V[1], k1, Lor2]

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]]

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]]) / Pi4,

{Mass[S[Gen3]], Mass[S[Gen4]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]], RelativeCF} ->

Insertions[Classes][{MW, MW, I EL, -I EL, 2}] ] ]
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The CreateFeynAmp

output is by default

displayed on the screen in

a special human-readable

format. Its full internal

representation is shown

here.

In[19]:= InputForm[%]

Out[19]//InputForm=

FeynAmpList[Model -> "SM", GenericModel -> "Lorentz",

InsertionLevel -> Classes, Restrictions -> {},

ExcludeParticles -> {F, V, U},

ExcludeFieldPoints -> {}, LastSelections -> {},

Process -> {{V[1], FourMomentum[Incoming, 1], 0}} ->

{{V[1], FourMomentum[Outgoing, 1], 0}}][

FeynAmp[

GraphID[Topology == 1, Generic == 1],

Integral[FourMomentum[Internal, 1]],

(I/32*RelativeCF*

FeynAmpDenominator[

PropagatorDenominator[FourMomentum[Internal, 1],

Mass[S[Index[Generic, 3]]]],

PropagatorDenominator[-FourMomentum[Incoming, 1] +

FourMomentum[Internal, 1],

Mass[S[Index[Generic, 4]]]] ]*

FourVector[FourMomentum[Incoming, 1] -

2*FourMomentum[Internal, 1], Index[Lorentz, 1]]*

FourVector[-FourMomentum[Incoming, 1] +

2*FourMomentum[Internal, 1], Index[Lorentz, 2]]*

PolarizationVector[V[1],

FourMomentum[Incoming, 1], Index[Lorentz, 1]]*

Conjugate[PolarizationVector][V[1],

FourMomentum[Outgoing, 1], Index[Lorentz, 2]]*

G[-1][0][-S[Index[Generic, 3]],

-S[Index[Generic, 4]], V[1]][

FourVector[Mom[1] - Mom[2], KI1[3]]]*

G[-1][0][S[Index[Generic, 3]],

S[Index[Generic, 4]], V[1]][

FourVector[Mom[1] - Mom[2], KI1[3]]])/Pi^4,

{Mass[S[Index[Generic, 3]]],

Mass[S[Index[Generic, 4]]],

G[-1][0][-S[Index[Generic, 3]],

-S[Index[Generic, 4]], V[1]][

FourVector[Mom[1] - Mom[2], KI1[3]]],

G[-1][0][S[Index[Generic, 3]],

S[Index[Generic, 4]], V[1]][

FourVector[Mom[1] - Mom[2], KI1[3]]],

RelativeCF} ->

Insertions[Classes][{MW, MW, I*EL, -I*EL, 2}] ] ]
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6.3 Interpreting the Results

Although the analytical expression of an amplitude (the third element of a FeynAmp) may

look complicated as a whole, the origin of the individual parts can easily be recounted.

In the preceding example the respective terms have the following meaning:

I/32 and Pi-4 together are the product of all scalar factors from the (generic) couplings

and propagators including the prefactor of the diagram. The fact that both terms are

displayed apart in the output is a peculiarity of Mathematica.

The symbol RelativeCF stands for the relative combinatorical f actor of a classes or par-

ticles amplitude with respect to the generic amplitude. It is inserted by the replacement

rules for the deeper levels.

FeynAmpDenominator collects all denominators belonging to a loop, i.e. those whose mo-

mentum is not fixed by conservation of the external momenta. If the structure of the

propagators is more intricate (e.g. gauge-boson propagators in a general gauge), a sum

of several FeynAmpDenominators can appear in one amplitude.

(p1 - 2 q1)[Lor1] and (-p1 + 2 q1)[Lor2] are the kinematical objects—four-vectors

in this case—that come from the generic coupling structure, the first from the left and the

second from the right vertex. Lor1 and Lor2 are Lorentz indices. The external momenta

are assigned such that the total momentum flows in through the incoming particles, and

out through the outgoing particles, i.e. ∑
in

pi − ∑
out

pi = 0, not ∑
all

pi = 0.

ep[V[1], p1, Lor1] and ep*[V[1], k1, Lor1] are the polarization vectors of the in-

coming and outgoing photon, the latter of which is complex conjugated.

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]] is the generic coupling constant of the scalar–scalar–

vector coupling associated with the kinematical object (Mom[1] - Mom[2])[KI1[3]], a

four-vector. (The SSV coupling happens to be proportional to only one kinematical ob-

ject.) The superscript (0) refers to counter-term order 0. The two G’s (one for the left

and one for the right vertex) look identical but are not the same internally because in

the human-readable output format some indices are suppressed.

The replacement rules (the fourth element of a FeynAmp) particularize the unspecified

quantities in the generic expression. For the single classes insertion of the example in

the last section the following substitutions are made. (The full form of the generic ex-

pressions is written out below in small print to show that all substitutions are distinct.)

Mass[S[Gen3]] -> MW
full: Mass[S[Index[Generic, 3]]]
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Mass[S[Gen4]] -> MW
full: Mass[S[Index[Generic, 4]]]

G(0)SSV[(Mom[1]- Mom[2])[KI1[3]]] -> I*EL
full: G[-1][0][-S[Index[Generic, 3]], -S[Index[Generic, 4]], V[1]][FourVector[Mom[1]- Mom[2], KI1[3]]]

G(0)SSV[(Mom[1]- Mom[2])[KI1[3]]] -> -I*EL
full: G[-1][0][S[Index[Generic, 3]], S[Index[Generic, 4]], V[1]][FourVector[Mom[1]- Mom[2], KI1[3]]]

RelativeCF -> 2

6.4 Picking Levels

The replacement rules are not of a form which can directly be applied with expr /. rules.

Instead, PickLevel has to be used to select a particular level.

PickLevel[lev][amp] pick level lev from the amplitude amp

PickLevel[levs][toplist] pick level(s) levs from the list of inserted

topologies toplist

For the case of an amplitude, only one level may be specified. PickLevel replaces the

generic amplitude and the rules with the amplitude at the selected level (i.e. the FeynAmp

contains only three elements after PickLevel) and adds a running number of the form

Number == n to the GraphID. Once a particular level has been selected, it is no longer

possible to choose other levels (even deeper ones), e.g. it is not possible to first select

classes level and subsequently particles level from a FeynAmpList.

With inserted topologies, PickLevel works somewhat differently. First, it preserves the

structure of the inserted topologies. While in a FeynAmp the fourth element (the replace-

ment rules) is deleted, an inserted topology is still of the form topology -> insertions

after PickLevel. Second, more than one level may be picked, with one exception: the

generic level cannot be removed because it is needed to create the generic amplitudes.

However, the syntax differs from the usual level specification: PickLevel[lev][t] se-

lects only level lev from t (apart from the generic level); PickLevel[{leva, levb}] selects

levels leva and levb.

If CreateFeynAmp finds that amplitudes at only one level are requested (either directly

by AmplitudeLevel, or if the topologies were inserted at only one level), it automatically

calls PickLevel so that the output will contain only the amplitudes at the requested level

and no replacement rules.
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6.5 General Structure of the Amplitudes

The three-level concept has a big advantage when simplifying the amplitudes. Since

the kinematical structure is already determined at the generic level, certain algebraic

simplifications can be performed for the generic amplitude only and need not be done

over and over for every insertion. For example, a fermionic trace needs to be calculated

only for the generic amplitude, from which the expressions for the individual fermion

classes or particles are then obtained by applying respectively the classes- or particles-

level replacement rules.

Owing to fast computers and powerful software for evaluating amplitudes at one-loop

level, however, this conceptually superior technique has not been used much so far.

Nevertheless, for higher-loop calculations it will likely become an inevitable modus

operandi given the number of diagrams already a two-loop calculation typically in-

volves.

To be able to simplify the amplitudes at different levels it is essential to understand

how they are structured. The structure is similar to that of inserted topologies, i.e. an

expression embedded in a hierarchical list of insertion rules. The main difference is that

the basic ingredient is not a topology but the generic amplitude.

Note that only amplitudes containing more than one level are structured in this way.

If only one level is selected in CreateFeynAmp or with PickLevel, the FeynAmps contain

only the analytic expression of the amplitude at the chosen level and no rules.

FeynAmpList[info][

FeynAmp[gname, mom, generic amp,

{Mass[F[Index[Generic, 1]]], ...} ->

Insertions[Classes][

{MLE, ...} ->

Insertions[Particles][

{MLE[1], ...}, {MLE[2], ...}, more particles insertions

],

{MQU, ...} -> ...,

more classes insertions

],

],

more amplitudes

]
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6.6 On Fermion Chains and Signs

One of the most asked-for details of amplitude generation is how the signs of fermionic

diagrams are determined.

FeynArts generally uses the methods from [De92]. That is basically, the fermion flow is

fixed at generic level and so-called flip rules are applied if it turns out that in the classes

or particles insertion the flow is reversed. Open fermion chains—the ones terminating

on external fermions—are ordered opposite to the fermion flow, i.e. the leftmost field in

the chain is an antifermion, -F.

For amplitudes containing anticommuting fields (fermions or ghosts) the following

signs are added:

• a minus for every closed fermion or ghost loop and

• the signature of the permutation that brings the ordinal numbers of the external

fermions as connected by the fermion chains into descending order (descending

because the fermion chains are ordered opposite to the fermion flow).

Consider these diagrams:

e

e

e

eγ

e

e

e

e

γ

1

2

3

4

1

2

3

4

Following the fermion chains opposite to the arrows, the external particles are con-

nected as {2–1, 3–4} in the left diagram, and as {3–1, 2–4} in the right diagram. The

number of permutations needed to bring {2 1 3 4} into descending order {4 3 2 1} is

odd, but even for {3 1 2 4}. Hence the s-channel diagram gets an additional minus

sign.

Note that the signature of the permutation is invariant under interchange of any

two whole fermion chains because each fermion chain contributes an even number

(two) of external fermions.

In renormalizable theories at most two fermion fields can appear at a vertex, and there-

fore the construction of the fermion chains is totally unambiguous. This is not so in

other, non-renormalizable theories, for instance in the Fermi model. FeynArts cannot

correctly build the fermion chains if vertices involving more than two fermions ap-

pear because this information is simply not available from the Feynman rules. In such
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a case $FermionLines = False must be set and the fermion fields must carry an ad-

ditional kinematic index (e.g. a Dirac index) with which it is afterwards possible (i.e.

FeynArts does not do this) to find the right concatenation. Also, the above mentioned

signs are not resolved in this case.

6.7 Specifying Momenta

CreateFeynAmp can be made to use a certain momentum on a certain propagator. This is

done by editing the inserted topologies and appending a fourth argument to the propa-

gators whose momenta one wants to fix. (A convenient way to do so is to assign the in-

serted topologies to a variable and use the Mathematica function EditDefinition[var].)

This fourth argument will become the momentum’s name. For example, the momentum

assigned to the propagator

Propagator[Internal][Vertex[3][101], Vertex[3][100], Field[4], Q1]

will be FourMomentum[Internal, Q1]. There are two rules to observe: Do not use an

integer as a name to avoid conflict with the automatically-generated momenta, and do

not change the direction of the propagator! If you need the momentum flowing opposite

to the direction of the propagator, give it a minus sign, e.g. -Q1.

While CreateFeynAmp takes care to eliminate automatically-generated momenta before

user-specified ones when working through momentum conservation, one can prohibit

the elimination of any momentum with the option MomentumConservation -> False.

6.8 Compatibility with FeynArts 1

Many programs based on FeynArts still use the simpler conventions of version 1. For

them to work with FeynArts 2.2, a function is provided to translate the CreateFeynAmp

output into the old format.

ToFA1Conventions[expr] convert expr into the conventions of FeynArts 1

Note that ToFA1Conventions only renames some symbols. The results may thus not be

100% FeynArts 1 compatible since certain kinds of expressions could not be generated

with FeynArts 1 at all. (That, after all, is why the conventions had to be changed.) In

particular, amplitudes containing more than one level will probably not be very useful

in programs made for processing FeynArts 1 output.
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7 Definition of a New Model

7.1 The Generic Model

In the generic model file the following items are defined:

• the kinematic indices of the fields (KinematicIndices),

• the generic propagators (M$GenericPropagators),

• the generic coupling vectors (M$GenericCouplings),

• the fermion flipping rules (M$FlippingRules),

• the truncation rules (M$TruncationRules),

• some optional “final-touch” rules (M$LastGenericRules).

Apart from these required definitions, the generic model file is a perfectly ordinary

Mathematica input file and may contain any number of additional statements. For ex-

ample, Lorentz.gen includes Format directives with which the objects it introduces are

displayed in a nicer form in the output.

Probably the best way to learn how to set up a generic model file is by going through

one of the provided generic models, Lorentz.gen or QED.gen.

Kinematic Indices

A kinematic index is an index transported along a propagator. Due to the special prop-

erty of renormalizable theories to possess vertices which join at most two fermion fields,

spinor indices are not necessary because FeynArts can construct the fermion chains itself

(cf. Sect. 6.6).

KinematicIndices[f] = {i} definition of the kinematic indices for field f

For example, in the usual representation of the Poincaré group, only the vector bosons

carry a Lorentz index. Lorentz.gen thus defines the following kinematic indices.
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KinematicIndices[ F ] = {};

KinematicIndices[ V ] = {Lorentz};

KinematicIndices[ S ] = {};

KinematicIndices[ SV ] = {Lorentz};

KinematicIndices[ U ] = {}

There seems to be a mismatch for the scalar–vector mixing field SV (= Mix[S, V]): it

is declared to have a Lorentz index even though the scalar half has no index at all.

However, CreateFeynAmp knows about this special case and discards the index on the

scalar side when resolving a coupling.

Generic Propagators

A generic propagator defines the kinematical structure of a propagator. In the generic

model file the generic propagators are contained in the list M$GenericPropagators. In-

side this list each propagator is declared by an equation for AnalyticalPropagator.

M$GenericPropagators name of the list of generic propagators

AnalyticalPropagator[t][f] == expr

definition of the propagator of type t (Internal

or External) for field f

The nomenclature perhaps needs explanation: An External “propagator” is what is

traditionally called external wave function, e.g. a spinor in the case of a fermion field.

Internal propagators are the propagators in the usual sense connecting two internal

field points.

The simplest case are scalar fields which have no external wave function, and propaga-

tor

〈Si(k) |Si(k)〉 =
i

k2 −ξSi
M2

Si

.

The corresponding statements in Lorentz.gen are

AnalyticalPropagator[External][ s S[i, mom] ] == 1,

AnalyticalPropagator[Internal][ s S[i, mom] ] ==

I PropagatorDenominator[mom, Sqrt[GaugeXi[S[i]]] Mass[S[i]]]

When initializing the generic model, FeynArts transforms these equations into defini-

tions and for this purpose augments the symbols like s, i, and mom by patterns. It is
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important to realize that CreateFeynAmp appends the momentum and kinematic indices

to the field while resolving the propagators and couplings. These additional elements

do not appear in the final output, but must be taken into account in the definition of

AnalyticalPropagator.

f[i,mom, {µ1, ...} -> {ν1, ...}]

maximal internal pattern layout of field f with

classes and particles indices summarized in i,

momentum mom, and kinematic indices µ1, . . . on

the left and ν1, . . . on the right side of the

propagator

For instance, a vector field V[1] might intermediately be extended by CreateFeynAmp to

V[1, FourMomentum[Internal, 1], {Index[Lorentz, 1]} -> {Index[Lorentz, 5]}].

The vector-boson propagator is defined accordingly:

AnalyticalPropagator[External][ s V[i, mom, {li2}] ] ==

PolarizationVector[V[i], mom, li2],

AnalyticalPropagator[Internal][ s V[i, mom, {li1} -> {li2}] ] ==

-I PropagatorDenominator[mom, Mass[V[i]]] *

(MetricTensor[li1, li2] - (1 - GaugeXi[V[i]]) *

FourVector[mom, li1] FourVector[mom, li2] *

PropagatorDenominator[mom, Sqrt[GaugeXi[V[i]]] Mass[V[i]]])

The s stands for a possible prefactor (a sign for antiparticles or ±2 for mixing fields), and

is transformed to the pattern s_. in the final definition. i summarizes the class index

and all possible particles indices (final pattern: i__) and mom stands for the momentum

(final pattern: mom_). For an internal propagator, li1 and li2 are the kinematic indices

on the left and right side of the propagator, respectively (final patterns: li1_ and li2_),

and an external propagator uses only one set of kinematic indices, li1. The names of

the patterns (s, i, mom, etc.) can of course be freely chosen, but must be unique. The

most common errors in this respect are assignments of i or j prior to employing them

as patterns.

Noncommuting objects appearing in the kinematic vector (typically elements from the

Dirac algebra) must be wrapped in NonCommutative so that their order does not get

destroyed by CreateFeynAmp. This makes sense only for fermion (and perhaps ghost)
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fields since there is no well-defined order for other types of field. The external spinors

are for example noncommutative objects:

AnalyticalPropagator[External][ s F[i, mom] ] ==

NonCommutative[

If[SelfConjugate[F[i]], MajoranaSpinor, DiracSpinor][

-mom, Mass[F[i]] ] ]

Generic Couplings

Analogous to a generic propagator, a generic coupling defines the kinematical structure

of a coupling. The generic couplings are contained in the generic model file in the

list M$GenericCouplings. Inside this list each coupling is declared by an equation for

AnalyticalCoupling. By convention, all fields in AnalyticalCoupling are incoming.

M$GenericCouplings name of the list of generic couplings

AnalyticalCoupling[f1, f2, ...] == G[s][f1, f2, ...] . {k1, k2, ...}

definition of the coupling of fields f1, f2, . . . with

coupling-constant vector G[s][f1, f2, ...] and

kinematic vector {k1, k2, ...}

G[+-1][f1, f2, ...] generic coupling-constant vector, symmetric for

+1 and antisymmetric for −1

The kinematically extended field structure of the fields must be taken into account sim-

ilar to the case of generic propagators. Whereas however a field on an internal propa-

gator has two sets of kinematic indices {li1} -> {li2} for the left and right side each

(provided the field carries kinematic indices at all), a field involved in a coupling obvi-

ously needs at most one set of indices.

For example, the quartic gauge-boson coupling is defined in Lorentz.gen as

AnalyticalCoupling[ s1 V[i, mom1, {li1}], s2 V[j, mom2, {li2}],

s3 V[k, mom3, {li3}], s4 V[l, mom4, {li4}] ] ==

G[1][s1 V[i], s2 V[j], s3 V[k], s4 V[l]] .

{ MetricTensor[li1, li2] MetricTensor[li3, li4],

MetricTensor[li1, li3] MetricTensor[li2, li4],

MetricTensor[li1, li4] MetricTensor[li3, li2] }
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The generic coupling “constant” G refers actually to a vector of coupling constants, one

for each element of the kinematic vector. The VVVV coupling would appear in a textbook

as

C
(

Vi
µ(p1), V

j
ν (p2), Vk

ρ (p3), Vℓ
σ (p4)

)

= G
(1)
ViVjVkVℓ

gµνgρσ + G
(2)
ViVjVkVℓ

gµρgνσ + G
(3)
ViVjVkVℓ

gµσgρν

= ~GViVjVkVℓ ·







gµνgρσ

gµρgνσ

gµσgρν







.

When looking up a coupling, the fields of a vertex in general have to be permuted to fit

the definition in the model file. For this to work it is necessary that the kinematic vector

closes under permutations of fields of one type. In the example above this means that

for any permutation of {µ,ν,ρ,σ} (all four fields are of the same type here) one must

end up with another (or the same) element of the kinematic vector, which is indeed the

case.

There is one exception from this closure requirement: if a permutation of the fields

yields either an element of the kinematic vector or the negative of an element of the

kinematic vector, the coupling is said to be antisymmetric and specified as G[-1]. An

example of this is the triple gauge-boson coupling in Lorentz.gen.

AnalyticalCoupling[ s1 V[i, mom1, {li1}], s2 V[j, mom2, {li2}],

s3 V[k, mom3, {li3}] ] ==

G[-1][s1 V[i], s2 V[j], s3 V[k]] .

{ MetricTensor[li1, li2] FourVector[mom2 - mom1, li3] +

MetricTensor[li2, li3] FourVector[mom3 - mom2, li1] +

MetricTensor[li3, li1] FourVector[mom1 - mom3, li2] }

The kinematic vector has in this case only one element,

C
(

Vi
µ(p1), V

j
ν (p2), Vk

ρ (p3)
)

= GViVjVk
(gµν(p2 − p1)ρ + gνρ(p3 − p2)µ + gρµ(p1 − p3)ν) .

Because the kinematic vector contains the differences of the momenta, a permutation of

{(p1,µ), (p2 ,ν), (p3,ρ)} will produce either the kinematic vector itself or its negative.

Fermion Flipping Rules

Matters are more complicated for fermionic couplings. When two fermion fields are

not in the order in which the coupling is defined in the model file, simple permutation
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of the fields does not suffice, but in addition an operation called “flipping of fermionic

couplings” has to be performed on the kinematic vector.

The algorithm behind this was developed in [De92] and its main advantage is that it

can deal with fermion-number-violating vertices, such as appear in supersymmetric

models. The idea is that instead of ordering the fermion propagators according to the

given fermion flow, one chooses a direction for the fermion lines. (Obviously one cannot

define the fermion flow properly as soon as fermion-number violating couplings are

present, which is why the standard method breaks down in that case.) If later it turns

out that the chosen direction is opposite to the actual fermion flow, one has to apply a

so-called flipping rule. The flipping rule is nothing but a charge conjugation, i.e.

Γ
flip
−→ CΓ TC−1

where Γ is some product of Dirac matrices and C is the charge-conjugation matrix. The

flipping rules for all possible objects that can appear in Γ have been worked out in

[De92] and the only necessary substitution is

γµω±
flip
−→ −γµω∓

where ω± = (1l ± γ5)/2 are the chirality projectors. This is more than just flipping the

sign of the whole expression (which could be effected with G[-1]) since also the other

chirality projector has to be taken.

A case where γµω± occurs is the FFV coupling in Lorentz.gen:

AnalyticalCoupling[ s1 F[i, mom1], s2 F[j, mom2],

s3 V[k, mom3, {li3}] ] ==

G[-1][s1 F[i], s2 F[j], s3 V[k]] .

{ NonCommutative[DiracMatrix[li3], ChiralityProjector[-1]],

NonCommutative[DiracMatrix[li3], ChiralityProjector[+1]] }

FeynArts expects the generic model file to define M$FlippingRules. These rules are

applied when FeynArts needs to match a fermionic coupling but finds only the other

fermion permutation in the model file. For example, in Lorentz.gen the following flip

rules are defined:

M$FlippingRules =

NonCommutative[dm:_DiracMatrix | _DiracSlash,

ChiralityProjector[pm_]] ->

-NonCommutative[dm, ChiralityProjector[-pm]]
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Truncation Rules

Truncation rules are needed for removing external wave functions when the option

Truncated -> True is used in CreateFeynAmp. The rules depend of course on the sym-

bols that are used for the external wave functions and must hence be defined in the

generic model file.

In Lorentz.gen there are spinors and polarization vectors to be dealt with since scalar

particles have no external wave functions. The truncation rules are then

M$TruncationRules = {

_PolarizationVector -> 1,

_DiracSpinor -> 1,

_MajoranaSpinor -> 1

}

“Final-Touch” Rules

The last operation CreateFeynAmp performs on a generic amplitude is to apply the

model-dependent M$LastGenericRules. These rules are optional and have no partic-

ular purpose. In Lorentz.gen, for example, they complex-conjugate the outgoing po-

larization vectors.

M$LastGenericRules = {

(* outgoing vector bosons: throw away signs of momenta *)

PolarizationVector[p_, _. k:FourMomentum[Outgoing, _], li_] :>

Conjugate[PolarizationVector][p, k, li]

}

This rule has an interesting side-aspect: note that only the head PolarizationVector is

wrapped in Conjugate. This is because the M$LastGenericRules are applied with //.

(replace repeatedly until the expression no longer changes). If the whole polarization

vector (including arguments) were wrapped in Conjugate, the rules would apply anew

in every pass and lead to an endless loop.
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7.2 The Classes Model

All particles of a model are arranged in classes. A class is conceptually similar, but not

identical, to a multiplet (the fields in one class need not belong to a representation of

some group). For single-particle model definitions each particle lives in its own class.

The classes model defines the actual classes of fields in a particular model. It should

not define or rely on any kinematic objects so that it can be used with different generic

model files.

In the classes model file the following items are defined:

• the index range of all possible particles indices (IndexRange),

• a function that detects if a vertex violates quantum number conservation

(ViolatesQ),

• the classes and their attributes (M$ClassesDescription),

• the classes coupling vectors (M$CouplingMatrices),

• some optional “final-touch” rules (M$LastModelRules).

Just as the generic model file, the classes model file is an ordinary Mathematica input

file apart from the three required items and may contain additional definitions. For ex-

ample, the abbreviations for the Restrictions option of InsertFields which typically

depend on classes fields are usually defined in the classes model file.

Range of Particles Indices

It is necessary to declare the index range of every particles index.

IndexRange[Index[t]] = {p} declares the index of type t to have the values p

For example, the Generation index in SM.mod which counts the fermion generations has

the range

IndexRange[ Index[Generation] ] = {1, 2, 3}

If a particular index should not be “unfolded” at particles level (i.e. FeynArts should

not generate an extra diagram for every value the index can take on), its range may be
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wrapped in NoUnfold. For instance, one usually does not want eight diagrams gener-

ated and drawn for every gluon propagating; this can be effected with

IndexRange[ Index[Gluon] ] = NoUnfold[ Range[8] ]

As a consequence, fields with specific values for such indices have no effect in places

like ExcludeParticles. This means that it is possible to exclude either all gluons or

none, but not only the gluon with index 5.

Conservation of Quantum Numbers

When FeynArts generates diagrams with vertex-function placeholders (see Sect. 3.4), it

eliminates illegal ones by checking whether the quantum numbers of the fields joining

at the vertex are conserved. To this end, it calls the function ViolatesQ for every possi-

ble 1PI vertex function. ViolatesQ receives as arguments the quantum numbers of the

involved fields (times −1 for antiparticles) and must return True if the vertex violates

the conservation of those quantum numbers. In the most common case of charge-like

(additive) quantum numbers, the condition is that the sum of all quantum numbers

does not vanish at the vertex, which can be coded simply as

ViolatesQ[ q__ ] := Plus[q] =!= 0

However, this is not true for all kinds of quantum numbers (R-parity for example),

which is why the definition of ViolatesQ is given in the model file.

Note the logic: all vertices for which ViolatesQ does not explicitly return True are ac-

cepted. It is no error if there is no definition for ViolatesQ since that simply means that

all 1PI vertex functions are allowed.

Classes Attributes

The attributes of each class is defined by an equation in the list M$ClassesDescription.

M$ClassesDescription name of the list of classes descriptors

class == {a1 -> s1, ...} descriptor for a class whose attribute a1 is s1, . . .

Consider the up-type quark class in SM.mod.
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F[3] == {

SelfConjugate -> False,

Indices -> {Index[Generation]},

Mass -> MQU,

QuantumNumbers -> 2/3 Charge,

MatrixTraceFactor -> 3,

PropagatorLabel -> ComposedChar["u", Index[Generation]],

PropagatorType -> Straight,

PropagatorArrow -> Forward }

The first two fields in the descriptor are necessary: SelfConjugate and Indices. The

others are optional and have default values.

option default value

SelfConjugate (required) how the field behaves under charge

conjugation

Indices (required) list of indices the class carries

MixingPartners {field, field} for mixing propagators: left and right

partners, e.g. {S[3], V[3]}

Mass Mass[field] symbol to denote the mass of the class

members

Mixture field linear combination the field is

composed of

QuantumNumbers {} quantum numbers the field carries

MatrixTraceFactor 1 for fermions: factor with which closed

fermion loops will be multiplied

InsertOnly All types of propagators on which the

field may be inserted

PropagatorLabel "field" label for the propagator

PropagatorType Straight line type for the propagator

PropagatorArrow None Forward, Backward, or None

An ordinary field also has default “mixing” partners, though trivial ones; e.g. V[2] has

mixing partners {V[2], V[2]}.
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Mass -> cmass specifies a symbol for the mass of the class. It is possible to distinguish

masses for different types of propagators – External, Internal, and Loop – by adding

the propagator type as in

Mass[Loop] -> Mloop

Several such mass definitions can be given, where Mass alone acts as the default. If omit-

ted, the expression Mass[field, propagatortype] remains in the output of CreateFeynAmp.

The masses of particles-level fields will appear as cmass[indices] unless specific sym-

bols are declared with the function TheMass. SM.mod for instance declares the following

symbols for the individual up-type quark masses (which would otherwise be MQU[1],

MQU[2], and MQU[3]):

TheMass[ F[3, {1}] ] = MU;

TheMass[ F[3, {2}] ] = MC;

TheMass[ F[3, {3}] ] = MT

Mixture gives the field’s composition as a linear combination of fields. Only mixtures

with fields of the same type are allowed, e.g. scalars can only be composed of other

scalars. An antiparticle has to be wrapped in Field, so that the minus sign is not

taken as part of the coefficient in the linear combination. Using this method one can

e.g. specify the couplings in terms of interaction eigenstates and linear-combine them

to mass eigenstates. Unless the original (“interaction”) fields are themselves added to

M$ClassesDescription, they disappear completely from the model after initialization.

An application where it useful to keep original fields (including all vertices mixing orig-

inal and rotated fields) is a rotation of higher order, with the rotated fields running on

tree-level propagators and the unrotated ones in the loops.

QuantumNumbers specifies which quantum numbers the field carries. In principle, any

Mathematica expression can be used as a quantum number, though the more common

choices are multiples of a symbol, e.g. 2/3 Charge. An important point is that the quan-

tum number of the antiparticle is minus the quantum number of the particle. This is

just what one wants in the case of additive quantum numbers like charge, since indeed

if the up-quark has 2/3 Charge, the anti-up-quark has -2/3 Charge. However, it is for

instance not true that if a particle has R-parity 1, its antiparticle has R-parity −1. In that

case, one has to choose RParity[+-1] instead of +-RParity and supply an appropriate

ViolatesQ function.
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MatrixTraceFactor is a way to compensate for traces over indices which are not ex-

plicitly specified. For example, in the electroweak Standard Model (without QCD) the

interactions are colour-diagonal and hence the quarks need no colour index. Still, when

computing the trace over a quark loop, colour accounts for a factor 3 which is provided

by MatrixTraceFactor -> 3 in the quark class descriptors. CreateFeynAmp will com-

plain if fields with different MatrixTraceFactors appear in the same loop.

InsertOnly specifies on which propagator types the field may be inserted, e.g. for a

background field InsertOnly -> {Internal, External} is needed since it is not al-

lowed in loops.

The line of a propagator is in general part of a circle. This includes straight lines which

can be regarded as the degenerate case of infinite radius. The line type is given with

PropagatorType which can take the values Straight, Sine (photon-like), Cycles (gluon-

like), ScalarDash, or GhostDash.

The PropagatorLabel may contain a letter (e.g. "Z"), a LATEX symbol (e.g. "\\gamma"), or

a composite character (e.g. ComposedChar["u", "-"]). The double backslash is really a

single character for Mathematica since the first \ is needed to escape the second \. Inside

the quotes only one character or LATEX symbol may appear. Multiple characters must be

put in a list, e.g. {"\\gamma", "Z"}.

ComposedChar[t, sub, sup, bar] composite label t with subscript sub, superscript

sup, and accent bar; the arguments sub, sup, and

bar are optional but their position is significant,

e.g. ComposedChar[t, Null, sup] corresponds to a

label with a superscript only

For example, ComposedChar["\\phi", "i", "*", "\\bar"] will produce the label φ̄∗
i

(LATEX representation \bar\phi_i^*). As for Mass, it is possible to define labels specific

to a particular propator type (External, Internal, Loop), e.g.

PropagatorLabel[Loop] -> "X"

Indices can be used in a label in the form Index[t] where t is the type of the index, like in

ComposedChar["\\nu", Index[Generation]]. The rendering of indices in the graphical

output is subject to the function Appearance, if that is defined for the particular type of

index. By default, the number of the index is displayed.
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Appearance[Index[t, n_Integer]] := a

definition of the graphical appearance for indices

of type t

Alph[n] the nth lowercase latin letter

UCAlph[n] the nth uppercase latin letter

Greek[n] the nth lowercase greek letter

UCGreek[n] the nth uppercase greek letter

The functions Alph, UCAlph, Greek, and UCGreek are useful for converting the index

numbers into Latin or Greek letters, if this is desired. For example, the following line in

SM.mod makes the fermion generation indices appear as i, j, . . .

Appearance[ Index[Generation, i_Integer] ] := Alph[i + 8]

Similarly, Lorentz.gen adds this definition to render Lorentz indices as µ, ν, . . .

Appearance[ Index[Lorentz, i_Integer] ] := Greek[i + 11]

Particular labels for the fields at particles level can be given by assigning values to the

function TheLabel. If no specific label is defined for a particles-level field, the label of

the associated class is used. E.g. the labels of the individual up-type quarks are declared

in SM.mod by

TheLabel[ F[3, {1}] ] = "u";

TheLabel[ F[3, {2}] ] = "c";

TheLabel[ F[3, {3}] ] = "t"

Without these definitions, the up, charm, and top quarks would be labelled according

to their classes label: u1, u2, and u3.

In the case of a mixing field, PropagatorLabel and PropagatorType may be set to a

list of two items, one for the left half and one for the right half. For example, SM.mod

contains the class for a γ–Z mixing field (it is commented out by default).

V[4] == {

SelfConjugate -> True,

Indices -> {},
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Mass -> MAZ,

MixingPartners -> {V[1], V[2]},

PropagatorLabel -> {"\\gamma", "Z"},

PropagatorType -> Sine,

PropagatorArrow -> None }

Classes Coupling Vectors

By far the most diligent task is to enter the actual coupling vectors of the model, in

particular if one endeavours to enter also the counter terms.

The coupling vectors are contained in a list M$CouplingMatrices. Each coupling vector

is defined by an equation. The convention is that all fields at a coupling are incoming,

as in the generic model file.

M$CouplingMatrices name of the list of coupling vectors

C[f1, f2, ...] == {{c
(1)
0 , c

(1)
1 , ...}, {c

(2)
0 , c

(2)
1 , ...}, ...}

definition of the coupling for the classes-level

fields f1, f2, . . . where the lower index of the c’s

refers to the counter-term order and the upper

index to the component of the kinematic vector

CC[f1, f2, ...] == ... the same, except that simultaneously the

charge-conjugated vertex is defined

ConjugateCoupling[f][c] defines how the charge-conjugate of the

expression c is derived for the coupling of the

fields f

The name M$CouplingMatrices is justified because the equations assign to each cou-

pling a list of lists, or matrix (a coupling constant for each counter-term order for each

component of the kinematic vector).

The coupling vector must of course have as many entries as in the kinematic vector

it corresponds to. Recall the example of the quartic gauge-boson coupling from the

last section. It has a kinematic vector with three entries, (gµνgρσ , gµρgνσ , gµσgρν), so

accordingly the coupling vector must also have three entries. An actual classes-level

quartic gauge-boson coupling then looks like
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C[ -V[3], V[3], V[1], V[1] ] == -I EL^2 *

{ {2, 4 dZe1 + 2 dZW1 + 2 dZAA1 - 2 CW/SW dZZA1},

{-1, -2 dZe1 - dZW1 - dZAA1 + CW/SW dZZA1},

{-1, -2 dZe1 - dZW1 - dZAA1 + CW/SW dZZA1} }

This is the W+W−γγ coupling in SM.mod. On the right side there is a list with three en-

tries corresponding to the three entries in the kinematic vector. Each component is again

a list where the first element is the usual (counter-term order 0, or tree-level) coupling,

the second the counter-term order 1 coupling, and so on. The overall constant -I EL^2

has been pulled out for clarity. (Mathematica automatically threads multiplications over

lists, e.g. x*{a, b} becomes {x*a, x*b}.)

It is possible to enter counter-terms only for a subset of couplings. The components of

the coupling vector must however always be filled up to the same counter-term order.

In the special case where the kinematic vector has only one element, one level of lists

may be omitted, so for example

C[ S[2], S[2], V[3], -V[3] ] == I EL^2/(2 SW^2) *

{ {1, 2 dZe1 - 2 dSW1/SW + dZW1 + dZchi1} }

is equivalent to

C[ S[2], S[2], V[3], -V[3] ] == I EL^2/(2 SW^2) *

{1, 2 dZe1 - 2 dSW1/SW + dZW1 + dZchi1}

The classes fields in C[f1, f2, ...] must be in the same generic order as the correspond-

ing AnalyticalCoupling defined in the generic model file. This means that if an analyt-

ical coupling is defined in the order FFS, the classes coupling may not be given in the

order SFF.

Fields with particles indices must include a pattern for every index in the coupling

definition. For example, the ν j1
e j2

W+ coupling is defined as

C[ -F[1, {j1}], F[2, {j2}], -V[3] ] ==

I EL/(Sqrt[2] SW) IndexDelta[j1, j2] *

{ {1, dZe1 - dSW1/SW + dZW1/2 +

Conjugate[dZfL1[1, j1, j1]]/2 + dZfL1[2, j1, j1]/2},

{0, 0} }



7.2 The Classes Model 67

j1 and j2 stand for one index each (they are transformed to the patterns j1_ and j2_ in-

ternally during model initialization). For each index a class possesses a separate pattern

has to be specified.

Index-diagonal terms are multiplied with IndexDelta[j1, j2]. If the whole coupling is

proportional to IndexDelta as in the last example, InsertFields will use this infor-

mation to fix indices as far as possible already in the insertion process. In contrast,

InsertFields cannot constrain other indices if only part of the coupling is diagonal,

such as in the first-order counter-term of the ν j1
ν j2

Z coupling.

C[ -F[1, {j1}], F[1, {j2}], V[2] ] == I EL *

{ {gL[1] IndexDelta[j1, j2],

IndexDelta[j1, j2] (gL[1] dZZZ1/2 + dgL[1]) +

gL[1] dZfL1cc[1, j1, j2]},

{0, 0} }

The full index diagonality of the tree-level coupling in this case is of course respected as

usual.

The conjugated coupling (the part of the Lagrangian usually abbreviated as “+ h.c.” in

textbooks) can either be entered directly, or by using CC instead of C in the definition of

the coupling; e.g. in the Standard Model one could define both the ūdW+ and the d̄uW−

vertex, or define either one using CC. However, when using the CC method, one has to

specify how the coupling vector of the conjugated coupling is derived from the original

one. This is done by defining the function ConjugateCoupling. ConjugateCoupling is

applied to all elements of the coupling vector and is in general different from a plain

Conjugate, for instance the i from the exponent of the path integral (i.e. i
∫

d4xL) must

not be conjugated. The conjugation procedure can depend on the kinematic structure of

the vertex, e.g. couplings involving a ∂µ in configuration space usually get an additional

minus which comes from the Fourier transformation. Using the available field informa-

tion, i.e. the f in ConjugateCoupling[f][c], the kinematic vector can be obtained with

KinematicVector[ToGeneric[f]].

A drawback is that ConjugateCoupling is a rather dumb function which has to be taught

how to conjugate every symbol, so it is probably less work to enter the conjugated cou-

plings directly if only a few are affected. Giving no definition for ConjugateCoupling is

not an error: the amplitudes will then simply contain the symbol ConjugateCoupling.
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“Final-Touch” Rules

Analogous to the M$LastGenericRules in the generic model, the classes model file al-

lows to define optional M$LastModelRules. These rules are applied as the last operation

before CreateFeynAmp returns its result. To avoid endless loops it must be kept in mind

that the M$LastModelRules are applied with //. (replace repeatedly until expression no

longer changes).

SM.mod currently does not define any M$LastModelRules.

7.3 Add-on Model Files

Add-on model files can be used with both generic and classes models. An add-on

model file is different in that it does not define (overwrite) all model-file ingredients, but

modifies them only. As an example, consider that one wants to introduce a resummed

Yukawa coupling. This is most simply achieved by substituting the quark mass in the

numerator of the coupling by a resummed quark mass, which could be achieved with

the following add-one model file:

ResumCoup[ (c:C[_. _F, _. _F, _. _S] == rhs_ ] :=

c == (rhs /. Mass[F[t_, {g_, ___}]] -> MfResummed[t, g]);

ResumCoup[ other_ ] = other;

M$CouplingMatrices = ResumCoup/@ M$CouplingMatrices

One can similarly build up a basic model file by loading an existing model file explicitly

and then modifying the ingredients as above. This has the advantage that the user has

to specify only the resulting model file’s name, not the combination of basic and add-on

model file. The above add-on model file could thus be turned into a basic model file

with

LoadModel["SM"];

ResumCoup[ (c:C[_. _F, _. _F, _. _S] == rhs_ ] :=

c == (rhs /. Mass[F[t_, {g_, ___}]] -> MfResummed[t, g]);

ResumCoup[ other_ ] = other;

M$CouplingMatrices = ResumCoup/@ M$CouplingMatrices

LoadModel[modname] load the model file modname.mod

LoadModel[modname, ext] load the model file modname.ext
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Finally, it is possible to save the model file presently in memory with the function

DumpModel. This is useful, for example, if the modification of the basic model file by

the add-on model files takes a lot of time, in which case one can dump the resulting

model-file contents in a new model file which then loads faster. For example:

LoadModel[{"MSSMQCD", "FV", "EnhYuk", "HMix"}];

DumpModel["FullMSSM.mod"]

DumpModel[file] save the classes-model-file variables presently in

memory in the classes model file file

DumpModel[file, s . . .] include the symbols s in the variables to be saved

in file

DumpGenericModel[file] save the generic-model-file variables presently in

memory in the generic model file file

DumpGenericModel[file, s . . .] include the symbols s in the variables to be saved

in file

7.4 Debugging

There are several ways to trace or inspect the application of the Feynman rules.

For problems involving unresolved couplings there are two inspection functions which

may be defined to print out information.

VertexDebug[info] a function called when resolving a vertex fails,

where info contains various information on that

coupling

VertexMonitor[info] a function invoked whenever a vertex is resolved

The typical procedure is to define either as e.g. Print.

Problems concerning the origin of parts of the amplitude can be narrowed down by

tagging the couplings of a model file. This is effected with

SetOptions[InitializeModel, TagCouplings -> True]

(before model initialization, of course). Each coupling will be tagged by Coupling[i]

then, where i is that coupling’s position in M$CouplingMatrices.
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For easier debugging of add-on model files, FeynArts can list the couplings which have

changed or were added/deleted. Once can either wrap the model to be debugged in

ModelDebug in the model specification or set the global variable $ModelDebug.

ModelDebug[mod] report changes when initializing add-on model

file mod

variable default value

$ModelDebug False whether changes introduced by

add-on model files will be reported as

a model is initialized

$ModelDebugForm Short[#, 5]& the output form for debugging output

when model debugging is enabled

The global variable $ModelDebug determines whether changes introduced by add-on

model files will be reported as a model is initialized. It can be set to True, in which case

debugging output will be generated for all add-on model files, or to the name (or list of

names) of the add-on model file(s) to be debugged. Alternately, debugging is turned on

for all models wrapped in ModelDebug in the model specification.

7.5 Model-file Generation

FeynArts includes an add-on package called ModelMaker which can generate the Feyn-

man rules for the classes model file from the Lagrangian. While entering the Lagrangian

requires an effort comparable to typing in the Feynman rules directly, it is often nicer

to have the Lagrangian available rather than only the Feynman rules. For example, in

situations where particles mix to form mass eigenstates, the Lagrangian can be entered

in terms of the gauge eigenstates, which is usually much simpler. It is straightforward

in Mathematica to replace each gauge eigenstate with the appropriate linear combination

of mass eigenstates and then derive the Feynman rules from the resulting expression.

Generating a model file with ModelMaker requires two things:

• A template model file must be made which contains everything except the Feyn-

man rules, i.e. the definition of M$CouplingMatrices (see Sect. 7.2). ModelMaker

reads the template model file (extension .mmod), inserts the M$CouplingMatrices

definition, and writes out the .mod classes model file.
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• The Lagrangian must be entered in a format where the fields are specially marked

and the conventions of the generic model file are used for the kinematic quantities.

Assuming that the template model file is called MODEL.mmod, the procedure to generate

MODEL.mod is the following:

<< Models‘ModelMaker‘

Lagrangian = (put definition of Lagrangian here);

frules = FeynmanRules[Lagrangian];

WriteModelFile[CouplingVector[frules], "MODEL.mmod"]

The ModelMaker functions used above are

FeynmanRules[L] derives the Feynman rules from the Lagrangian

L

CouplingVector[r] extracts the coupling vector of each Feynman

rule in r according to the corresponding

kinematic vector in the currently initialized

generic model file

WriteModelFile[r, "t.mmod"] splices the Feynman rules generated with

FeynmanRules and CouplingVector into the

template model file t.mmod, writing the results to

t.mod

The format for entering the Lagrangian is as follows: Fields are marked by the function

Field whose first entry is the field name in the form in which it appears in the classes

model file, e.g. F[3, {g}]. Only internal indices (i.e. particle-level indices) may appear

in the field name itself. If it becomes necessary to refer to the momentum or kinematic

indices of a field in the kinematic part of the coupling, two optional entries can be added

to Field in the form Field[f,mom, {µ,...}]. For example, the term in the Lagrangian

corresponding to the electron–positron–photon vertex could be defined by

EL Field[-F[2, {g1}]] . DiracMatrix[mu] . Field[F[2, {g2}]] *

Field[V[1], {mu}]

Note the dot product which joins the noncommuting objects. Names for the indices

and momenta, such as g1, g2, and mu in the example above, can be chosen freely since

they will not appear in the final Feynman rule (internal indices are eliminated via the
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functional derivative and kinematic quantities are replaced by generic objects for easier

matching).

The kinematic quantities appearing in the coupling must be entered as in the generic

model file. Two exceptions are allowed: a lone DiracMatrix[µ] is automatically split

into γµω++γµω−, and mom[µ] may be used as a short-hand for FourVector[mom,µ].

As ModelMaker must know the kinematical quantities it might encounter, some of the

conventions of Lorentz.gen have been hard-coded into ModelMaker. ModelMaker there-

fore may not work with generic model files other than Lorentz.gen.

The template model file is the same as the complete model file except that it does

not contain the Feynman rules, i.e. it declares IndexRange, M$ClassesDescription,

and M$LastModelRules, but not M$CouplingMatrices (see Sect. 7.2). The definition of

M$CouplingMatrices, which in the complete model file contains the Feynman rules, in-

stead has the form

M$CouplingMatrices = <* M$CouplingMatrices *>

When the template model file is processed by WriteModelFile, the text enclosed be-

tween <* and *> is scanned as Mathematica input and replaced by the resulting output,

thereby inserting the Feynman rules. The output is written to a file with the first “m”

stripped from the extension (MODEL.mmod → MODEL.mod), so the template model file is

not overwritten or deleted.
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A The Lorentz Formalism

Lorentz.gen contains the definitions of the generic propagators and couplings for a

relativistic field theory with scalar, spinor, and vector fields transforming according to

the usual representation of the Poincaré group in Minkowski space. It introduces the

following symbols.

MetricTensor[µ, ν] the metric tensor gµν

DiracSpinor[p, m, i] the spinor of a Dirac fermion with momentum p,

mass m, and particles indices i

MajoranaSpinor[p, m, i] the spinor of a Majorana fermion with

momentum p, mass m, and particles indices i

PolarizationVector[v, p,µ] the polarization vector of the vector boson v with

Lorentz index µ associated with momentum p

DiracMatrix[µ] the Dirac matrix γµ

DiracSlash[p] γµpµ

ChiralityProjector[+-1] the chirality projectors ω± = (1 ± γ5)/2

FourVector[p,µ] the four-vector pµ

The four spinor states can actually all be represented by just one symbol depending on

its position in a FermionChain and type of momentum:

FermionChain[ spinor[FourMomentum[Incoming, n],m, i], ... ] = v · . . .

FermionChain[ spinor[FourMomentum[Outgoing, n],m, i], ... ] = u · . . .

FermionChain[ ..., spinor[FourMomentum[Incoming, n],m, i] ] = . . . · u

FermionChain[ ..., spinor[FourMomentum[Outgoing, n],m, i] ] = . . . · v

where spinor is either DiracSpinor or MajoranaSpinor. Majorana spinors are used for

fermions with attribute SelfConjugate -> True.

Polarization vectors associated with outgoing momenta are brought into the form

Conjugate[PolarizationVector][v, p,µ] by the M$LastGenericRules.

The symbol FourVector defined by Lorentz.gen should not be confused with the Feyn-

Arts symbol FourMomentum. The latter represents a momentum flowing along propaga-

tor lines, and it is very likely that using it for different purposes would upset the internal

routines. In contrast, FourVector is not modified by FeynArts.
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The following generic couplings are defined in Lorentz.gen. Antisymmetric couplings

are labelled by a subscript −, symmetric ones by a subscript +.

C
(

Vµ , Vν , Vρ, Vσ

)

= ~GVVVV ·





gµνgρσ
gµρgνσ
gµσgνρ





+

(VVVV)

C
(

Vµ(k1), Vν(k2), Vρ(k3)
)

= ~GVVV ·
(

gµν(k2 − k1)ρ + gνρ(k3 − k2)µ + gρµ(k1 − k3)ν
)

−

(VVV)

C
(

S, S, S, S
)

= ~GSSSS ·
(

1
)

+
(SSSS)

C
(

S, S, S
)

= ~GSSS ·
(

1
)

+
(SSS)

C
(

S, S, Vµ , Vν

)

= ~GSSVV ·
(

gµν
)

+
(SSVV)

C
(

S(k1), S(k2), Vµ

)

= ~GSSV ·
(

(k1 − k2)µ
)

−
(SSV)

C
(

S, Vµ , Vν

)

= ~GSVV ·
(

gµν
)

+
(SVV)

C
(

F, F, Vµ

)

= ~GFFV ·

(

γµω−

γµω+

)

+

(FFV)

C
(

F, F, S
)

= ~GFFS ·

(

ω−

ω+

)

+

(FFS)

C
(

U(k1), U(k2), Vµ

)

= ~GUUV ·

(

k1µ

k2µ

)

+

(UUV)

C
(

S, U, U
)

= ~GSUU ·
(

1
)

+
(SUU)

C
(

Vµ(k1), Vν(k2)
)

= ~GVV ·





gµν(k1k2)

gµν
k1µk2ν





+

(VV)

C
(

S(k1), S(k2)
)

= ~GSS ·

(

(k1k2)

1

)

+

(SS)

C
(

F(k1), F(k2)
)

= ~GFF ·











/k1ω−

/k2ω+

ω−

ω+











−

(FF)

C
(

S(k1), Vµ(k2)
)

= ~GSV ·

(

k1µ

k2µ

)

+

(SV)
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B The Electroweak Standard Model

The file SM.mod contains the electroweak Standard Model including all counter-terms of

first order in the conventions of [De93].

coupling constants and masses:

EL electron charge (Thomson limit)

CW, SW cosine and sine of the weak mixing angle

MW, MZ, MH W, Z, Higgs masses

MG0, MGp Goldstone masses

MLE[g] mass of lepton of generation g

ME, MM, ML e, µ, τ masses

MQU[g] mass of up-type quark of generation g

MU, MC, MT up, charm, top quark masses

MQD[g] mass of down-type quark of generation g

MD, MS, MB down, strange, bottom quark masses

CKM[g, g′] quark mixing matrix

GaugeXi[A, W, Z] photon, W, Z gauge parameters

one-loop renormalization constants:

dZe1 electromagnetic charge RC

dSW1, dCW1 mixing angle sine/cosine RC

dZH1, dMHsq1 Higgs field and mass RC

dZW1, dMWsq1 W field and mass RC

dMZsq1 Z mass RC

dZZZ1, dZZA1, dZAZ1, dZAA1 Z and photon field RCs

dZG01, dZGp1 Goldstone field RCs

dMf1[t, g] fermion mass RCs

dZfL1[t, g, g′],

dZfR1[t, g, g′]

left- and right-handed fermion field RCs

dCKM1[g, g′] quark mixing matrix RCs
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The type of a fermion is 1 for neutrinos, 2 for massive leptons, 3 for up-type quarks, and

4 for down-type quarks.

The particle content of SM.mod is summarized in the following table.

class self-conj. indices members mass

F[1] no Generation F[1, {1}] νe 0

(neutrinos) F[1, {2}] νµ 0

F[1, {3}] ντ 0

F[2] no Generation F[2, {1}] e ME

(massive leptons) F[2, {2}] µ MM

F[2, {3}] τ ML

F[3] no Generation F[3, {1,o}] u MU

(up-type quarks) Colour F[3, {2,o}] c MC

F[3, {3,o}] t MT

F[4] no Generation F[4, {1,o}] d MD

(down-type quarks) Colour F[4, {2,o}] s MS

F[4, {3,o}] b MB

V[1] yes V[1] γ 0

V[2] yes V[2] Z MZ

V[3] no V[3] W− MW

V[4] (mixing field)† yes V[4] γ–Z MAZ

S[1] yes S[1] H MH

S[2] yes S[2] G0 MG0

S[3] no S[3] G− MGp

U[1] no U[1] uγ 0

U[2] no U[2] uZ MZ

U[3] no U[3] u− MW

U[4] no U[4] u+ MW

SV[2] (mixing field)‡ yes SV[2] G0–Z MZ

SV[3] (mixing field)‡ no SV[3] G−–W− MW

†Commented out by default in SM.mod.
‡Must be enabled with $SVMixing = True.
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SM.mod defines the following Restrictions:

NoGeneration1 exclude generation-1 fermions (νe, e, u, d)

NoGeneration2 exclude generation-2 fermions (νµ , µ, c, s)

NoGeneration3 exclude generation-3 fermions (ντ , τ , t, b)

NoElectronHCoupling exclude all couplings involving electrons and a

Higgs (e−e+H, e−e+G0, e−νeG−).

NoLightFHCoupling exclude all couplings between light fermions

(all fermions except the top) and Higgs fields

( fi f̄i H, fi f̄iG
0, ℓ−i νiG

−, d̄iuiG
−, fi 6= t, ui 6= t).

NoQuarkMixing exclude all couplings where off-diagonal

elements of the quark mixing matrix appear

(d̄iu jW
−, d̄iu jG

−, i 6= j). Note that the diagonal

elements CKM[i, i] are nevertheless present.

QEDOnly exclude all particles except the massive fermions,

the photon, and the photon ghost.

SMew.mod is a companion model file for SM.mod in which the quarks do not carry colour

indices. It is included for backward compatibility with old versions.

B.1 The QCD Extension

The model file SMQCD.mod adds the QCD Feynman rules to the electroweak part in

SM.mod. In fact, it just loads SM.mod and appends the gluon and its ghost to the ap-

propriate definitions.

Following is the list of additional symbols used in SMQCD.mod.

GS the strong coupling constant

SUNT[a, i, j] the generators of SU(N), (Ta)ij

SUNF[a, b, c] the SU(N) structure constants f abc

SUNF[a, b, c, d] a short-hand for the sum ∑i f abi f icd

The additional particles are the gluon and its ghost. The gluon index is not expanded

out at particles level, i.e. FeynArts does not generate eight diagrams for every gluon.
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class self-conj. indices members mass

V[5] yes Gluon V[5, {i}] gi 0

U[5] no Gluon U[5, {i}] ugi
0

B.2 Background-field Formalism

The model file SMbgf.mod contains the electroweak Standard Model in the background-

field formalism. It is based on [De95], with the exception that the renormalization of the

fermionic fields proceeds as in SM.mod, i.e. with separate renormalization constants for

upper and lower components of the fermion doublet, which in turn means that fermions

do not need an external wave-function renormalization. The larger part of SMbgf.mod is

in fact derived from SM.mod. At present, vertices containing quantum fields other than

fermions do not possess counter-terms, but this is sufficient for one-loop calculations.

To work with SMbgf.mod, one needs to specify Lorentzbgf.gen as the generic model,

which is a slightly generalized version of Lorentz.gen.

The following table lists the background fields and their quantum-field counterparts.

All other fields are the same as in SM.mod.

background field quantum field

V[10] γ̂ V[1] γ

V[20] Ẑ V[2] Z

V[30] Ŵ− V[3] W−

S[10] Ĥ S[1] H

S[20] Ĝ0 S[2] G0

S[30] Ĝ− S[3] G−

SV[20]§ Ĝ0–Ẑ SV[2]§ G0–Z

SV[30]§ Ĝ−–Ŵ− SV[3]§ G−–W−

§Must be enabled with $SVMixing = True.
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C The Minimal Supersymmetric Standard Model

The file MSSMQCD.mod defines the complete (electroweak and strong) MSSM, whereas

MSSM.mod contains only the electroweak subset, defined as everything except the gluon,

its ghost, and the gluino [HaS02]. The four-sfermion couplings appear in MSSM.mod

even though they have both electroweak and strong parts. Both model files follow the

conventions of [Ha85, Gu86, HHG90]. These conventions differ from the ones in SM.mod

by the sign of the SU(2) covariant derivative. Counter-terms are currently not included

in the MSSM model files.

The symbols used for the MSSM parameters are listed in the following table. The

Standard-Model parameters have the same names as in SM.mod, e.g. MW, and are omitted

from this table.

Mh0, MHH, MA0, MG0 the neutral Higgs boson masses

MHp, MGp the charged Higgs boson masses

CB, SB, TB cosβ, sinβ, tanβ

CA, SA cosα, sinα

C2A, S2A, C2B, S2B cos 2α, sin 2α, cos 2β, sin 2β

CAB, SAB, CBA, SBA cos(α +β), sin(α +β), cos(β−α), sin(β−α)

MUE the Higgs-doublet mixing parameter µ

MGl the gluino mass

MNeu[n] the neutralino masses

ZNeu[n, n′] the neutralino mixing matrix

MCha[c] the chargino masses

UCha[c, c′], VCha[c, c′] the chargino mixing matrices

MSf[s, t, g] the sfermion masses

USf[t, g][s, s′] the sfermion mixing matrix

Af[t, g] the (scalar) soft-breaking A-parameters

The sfermion type is denoted by t and is defined similar to the fermion type. The

primed indices appearing in the mixing matrices enumerate the gauge eigenstates,

the unprimed ones mass eigenstates. The following indices are used in MSSM.mod and
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MSSMQCD.mod:

g = Index[Generation] = 1 . . . 3 , s = Index[Sfermion] = 1 . . . 2 ,

o = Index[Colour] = 1 . . . 3 , n = Index[Neutralino] = 1 . . . 4 ,

u = Index[Gluon] = 1 . . . 8 , c = Index[Chargino] = 1 . . . 2 .

The particle content of MSSM.mod and MSSMQCD.mod is given in the next table. The gluon,

its ghost, and the gluino, which are defined only in the latter, are written in grey. “sc” is

short for self-conjugate.

leptons mass sleptons mass

νg F[1, {g}] 0 ν̃g S[11, {g}] MSf

ℓg F[2, {g}] MLE ℓ̃s
g S[12, {s,g}] MSf

quarks squarks

ug F[3, {g,o}] MQU ũs
g S[13, {s,g,o}] MSf

dg F[4, {g,o}] MQD d̃s
g S[14, {s,g,o}] MSf

gauge bosons neutralinos, charginos

γ sc V[1] 0 χ̃0
n sc F[11, {n}] MNeu

Z sc V[2] MZ χ̃−c F[12, {c}] MCha

W− V[3] MW

Higgs bosons ghosts

h0 sc S[1] Mh0 uγ U[1] 0

H0 sc S[2] MHH uZ U[2] MZ

A0 sc S[3] MA0 u+ U[3] MW

G0 sc S[4] MG0 u− U[4] MW

H− S[5] MHp ugi
U[5, {i}] 0

G− S[6] MGp

gluon gluino

gi sc V[5, {i}] 0 g̃i sc F[15, {i}] MGl
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MSSM.mod and MSSMQCD.mod define the following Restrictions:

NoGeneration1 exclude generation-1 fermions (νe, e, u, d)

NoGeneration2 exclude generation-2 fermions (νµ , µ, c, s)

NoGeneration3 exclude generation-3 fermions (ντ , τ , t, b)

NoElectronHCoupling exclude all couplings involving electrons and any

Higgs field

NoLightFHCoupling exclude all couplings between light fermions (all

fermions except the top) and any Higgs field

NoSUSYParticles exclude the particles not present in the SM:

sfermions, charginos, neutralinos, and the Higgs

fields H0, A0, H±

THDMParticles exclude the particles not present in the

Two-Higgs-Doublet Model: the sfermions,

charginos, and neutralinos

The complete list of all couplings defined in MSSM.mod and MSSMQCD.mod is contained in

the files MSSM.ps.gz and MSSMQCD.ps.gz, respectively, which are located in the Models

directory. The “couplings” in these PostScript files are actually the coupling vectors

corresponding to the kinematic vectors defined in Lorentz.gen.

MSSM.mod and MSSMQCD.mod currently do not contain any counter-term vertices, so that

counter-term diagrams cannot be generated automatically yet. This is due to the fact

that, although it is in principle known how to renormalize theories with softly-broken

supersymmetry [Ho00], this is far from trivial for the MSSM and has so far not been

worked out completely. As long as only SM particles appear at tree-level, however, one

can almost directly use the SM counter-terms. Of course the self-energies from which

the renormalization constants are derived now have to be calculated in the MSSM.

The one thing one has to observe when using the SM counter-terms for an MSSM pro-

cess is that, for historical reasons, the SM and MSSM model files differ in the sign of the

SU(2) covariant derivative. Namely,

Dµ = ∂µ +σ ig2Wµ ,

where σ is − in the SM and + in the MSSM model files. There is a simple rule for

translating the two conventions: replace SW by -SW and add an additional minus sign

for each Higgs field that appears in a coupling.
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D The Two-Higgs-Doublet Model

The Two-Higgs-Doublet Model (THDM) possesses a Higgs sector similar to the MSSM

(i.e. 5 physical Higgs fields), but has no supersymmetry and hence no superpartners.

The Feynman rules are mostly the same as for the MSSM with the couplings involving

superpartners omitted, except for the SFF, SSS, and SSSS couplings. Model constants are

given in the following table. Again, the Standard-Model parameters are omitted since

they are the same as in SM.mod.

Mh0, MHH, MA0, MG0 the neutral Higgs boson masses

MHp, MGp the charged Higgs boson masses

CB, SB, TB cosβ, sinβ, tanβ

CA, SA cosα, sinα

C2A, S2A, C2B, S2B cos 2α, sin 2α, cos 2β, sin 2β

CAB, SAB, CBA, SBA cos(α +β), sin(α +β), cos(β−α), sin(β−α)

Yuk1, Yuk2, Yuk3 Yukawa-coupling parameters (see below)

One distinguishes two types of THDM, Type I, where all fermions couple only to the

second Higgs doublet H2, and Type II, where up-type fermions couple to H2 whereas

down-type fermions couple to H1. In the FeynArts implementation of the THDM, this

choice is parameterized by three Yukawa-coupling parameters which take the values

Yuk1 Yuk2 Yuk3

Type-I THDM
cosα

sinβ

sinα

sinβ
− cotβ

Type-II THDM −
sinα

cosβ

cosα

cosβ
tanβ

The following Restrictions are defined in THDM.mod:

NoGenerationn exclude generation-n fermions (n = 1, 2, 3)

NoElectronHCoupling exclude all couplings involving electrons and any

Higgs field

NoLightFHCoupling exclude all couplings between light fermions (all

fermions except the top) and any Higgs field
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E Graphics Primitives in feynarts.sty

The FeynArts style is included in a LATEX 2ε document with

\usepackage{feynarts}

It makes three graphics primitives available with which Feynman diagrams can be

drawn:

• \FAProp draws a propagator,

• \FAVert draws a vertex,

• \FALabel places a label.

In addition, it provides formatting/geometry directives:

• \begin. . .end{feynartspicture} delineates a sheet of Feynman diagrams,

• \FADiagram advances to the next diagram.

Since feynarts.sty emits direct PostScript primitives, the interpretation of which is

non-standard across PostScript renderers, it is guaranteed to work only with dvips.

E.1 Geometry

A single Feynman diagram is always drawn on a 20× 20 canvas. Several such canvasses

are combined into a rectangular sheet which can optionally carry a title. A sheet of

Feynman diagrams is enclosed in a feynartspicture environment in LATEX:

\begin{feynartspicture}(sx,sy)(nx,ny)

...

\end{feynartspicture}

This sheet has a size of sx × sy (in units of LATEX’s \unitlength) with room for nx ×

ny Feynman diagrams. ny need not be an integer and the extra space implied by the

fractional part is allocated at the top for the sheet label.

Note that it is not possible to distort the aspect ratio of a Feynman diagram. If the ratio

nx/⌊ny⌋ is chosen different from the ratio sx/sy, the sheet will fit the smaller dimension

exactly and be centered in the larger dimension.
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The overall geometry of a feynartspicture sheet is thus as follows (shown here for a

2 × 2 sheet):

Title

Diagram 1

(0,0)

(20,20)

Diagram 2

(0,0)

(20,20)

Diagram 3

(0,0)

(20,20)

Diagram 4

(0,0)

(20,20)

Inside the feynartspicture, the macro

\FADiagram{dtitle}

advances to the next diagram, which has the title dtitle. The size of dtitle can be changed

by redefining \FADiagramLabelSize with one of the usual LATEX font-size specifiers, e.g.

\def\FADiagramLabelSize{\scriptsize}

The default size is \small.

E.2 Propagators

All propagators are circular arcs in the FeynArts style. This includes conceptually the

straight line as the infinite-radius limit. Propagators furthermore come in two variants:
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tadpole propagators, where the initial and final vertex coincide, and ‘ordinary’ prop-

agators with distinct initial and final vertex. This distinction is necessary because the

information that has to be stored is different for the two cases. The arguments of the

\FAProp macro and their geometrical meaning are shown below for both variants:

( fx, fy)

(cx, cy)

\FAProp( fx, fy)( fx, fy)(cx,cy){g}{a}

(tx , ty)

( fx , fy)

d

h

κ =
h

d

\FAProp( fx, fy)(tx,ty)(κ,){g}{a}

The latter two arguments, g and a, respectively determine line and arrow style:

g = Straight

g = ScalarDash

g = GhostDash

g = Sine

g = Cycles

a = 0

a = 1

a = −1

E.3 Vertices

Vertices mark the points where propagators join. Each propagator has a counter-term

order associated with it.

\FAVert(x,y){o} o = · · · −3 −2 −1 0 1 2 3 · · ·
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E.4 Labels

Labels are usually associated with propagators, but can in principle be set anywhere.

They are positioned with a pair of coordinates and an alignment, given in the usual

TEX manner, i.e. a code of up to two letters for vertical and horizontal alignment: {t =

top, (empty) = center, b = bottom} ⊗ {l = left, (empty) = center, r = right}, e.g. [t]

or [rb]. The alignment makes it possible to change the label’s text, in particular its

width, without having to reposition the coordinates.

\FALabel(x,y)[align]{text}
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F Incompatible Changes in Version 3.3

From Version 3.2 on, the topology shapes are accessed in a slightly different naming

scheme. This eliminates some problems with large directories in some operating sys-

tems. Shapes from FeynArts 3.1 can be converted as follows: Replace the ShapeData

directory that comes with the current FeynArts with your old (3.1) ShapeData directory.

Then start Mathematica and type << Convert31to32.m. For example,

cd FeynArts-n.m

rm -fr ShapeData

cp -rp ../FeynArts-3.1/ShapeData .

math

<< Convert31to32.m
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[Eck95] H. Eck, Ph.D. thesis, University of Würzburg, 1995, available from

http://feynarts.de.

[HaI06] T. Hahn, J.I. Illana, Nucl. Phys. Proc. Suppl. 160 (2006) 101 [hep-ph/0607049].

[Gu86] J.F. Gunion, H.E. Haber, Nucl. Phys. B272 (1986) 1.

[HHG90] J.F. Gunion, H.E. Haber, G. Kane, S. Dawson, The Higgs Hunter’s Guide,

Frontiers in Physics Vol. 80, Addison-Wesley, 1990.

[Ha85] H.E. Haber, G. Kane, Phys. Rep. 117 (1985) 75.

[HaS02] T. Hahn, C. Schappacher, Comp. Phys. Commun. 143 (2002) 54

[hep-ph/0105349].
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