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IO proposal for ITER re-baseline
• Three scenarios were explored of which one (B) was selected by IO and proposed 

to the ITER Council
• This new scenario was further elaborated and will be presented to the STAC this 

week and at the November Council meeting
• Final decision on the new baseline including schedule and cost expected end of 

2024
• Main features of the new scenario :

• Augmented First Plasma Phase with partially inertially cooled first wall and plasma 
operation up to 15 MA

• Two main DT phases with multiple campaigns
• Change of first wall material from beryllium to tungsten
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 Operation up to 15 MA / 5.3T
 40 MW EC heating
 5 MW IC Wall Conditioning
 PCS and DMS commissioning

Engineering,
Fabrication of 
System 

Pre-First Plasma 
Assembly
(Pre-FPA)

Integrated 
Comm. I

Augmented 
First Plasma 
(A-FP) Phase

Post-First Plasma 
Assembly
(Post-FPA)

Integrated 
Comm. II FPO-

1
FPO-

2
FPO-

3
FPO-

4
FPO-5

FP

FPO-x (…) FPO-y

DT-1 DT-2

DT plasma

 DT operation with limited neutron 
fluence (nuclear licence I)

 67 MW EC heating
 33 MW NBI
 20 MW ICRH (if W contamination 

and coupling acceptable in AFP)

 DT operation with full neutron 
fluence (nuclear licence II)

 Possible NBI upgrade to 50 MW

Start nuclear phase
(DD plasma)

Opportunities
 Avoid Be handling and assembly difficulties
 FW more resilient to transient heat loads (PCS, 

DMS and ELM-control commissioning in AFP)
 Reactor relevant FW (change to W anticipated)
 Merge of FP with first experimental campaign

Challenges
 Plasma start up difficult with W
 Boronization is mandatory and needs to be 

implemented in ITER
 B layers retain T  fuel removal scheme required
 Risk for Q=10 due to enhanced radiation losses

IO proposal for ITER re-baseline
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AFP: 40 MW  H-mode at 5-7.5 MA/2.65T* 
test W transport and ELM control

FPO: 100 MW  H-mode up to 12.5 MA

FPO: Paux = 100 MW 
 H-mode operation up to 15 MA for 10-50% 

100% D D+10-30%T 50%D+50%T
P t

ot
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W
)

AFP

Heating requirement
• H-mode operational space (W wall): 0.25 ≤ Prad

core/Ptot ≤ 0.5 and Psep ≥ 1.5 PLH

* ECH H-mode operation in DD at low Ip is robust and has low reactivity (Ti < 1/3 Te)    1015-1016 n/s at 5 MA (x 6 for 7.5 MA) 
Note: 50% nGW gives optimum access to H-mode

P t
ot
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W

)

[A. Loarte et al 2021 Nucl. Fusion 61 076012]
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W sources
• WallDYN simulation of the W source in Q = 10 plasmas
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Summary of WallDYN calculated gross W source from sputtering by Ne ions, CXN and
W self-sputtering for the ITER Q = 10 plasma backgrounds

Combines EIRENE and 
DOUBLE-MC spectra to 
reflect the role of  sputtering by 
neutrals in the energetic tail of  
the CXN distribution, as well as 
the energy and angular 
dependent W sputtering yield.

[K. Schmid, ISFN Fellow, IPP Garching]

Outer midplane ne and Te profiles including 
the far-SOL plasma extrapolations for ITER 
Q = 10, PSOL = 100 MW, pn = 6.3 Pa, 1.8% 
Ne seeded D plasma. Square edges: high far-
SOL ne (v⊥ = 100 m/s) and low Te. Filled 
squares: low far-SOL ne (v⊥ = 30 m/s) and 
high Te.

OSM far-SOL
extrap.

SOLPS

~1.8% Ne



7Updates on the ITER project
EUROfusion WP PWIE Midterm Meeting - September 2023

Tom Wauters

• Low-medium risk to Q = 10

Impact of W on Q = 10
• JINTRAC simulations show Q = 10 can 

be maintained for max W influx 

• Higher flux  more heating  lower Q

• Max gross erosion of 2.6x1021

atoms/s obtained by WallDYN
with background plasmas with 
1.8% Ne

• Main SOL M// = 0 & 0.5
• Far SOL Te = 10 & 20 eV (Ti = 2xTe)
• Far-SOL vperp = 30 & 100 & m/s
• 60 and 90oC impact
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Development of O concentrations during the unboronized, 
full-W ASDEX Upgrade campaign and after boronization, 
from x-ray lines measured by a Bragg crystal spectrometer 
(ne > 4.5 × 1019 m−3). [Kallenbach NF 2009]

Oxygen radiation 
before and after 
the first, second 
and third 
boronizations
performed on 
WEST [Bucalossi
NF 2022]

ASDEX upgrade WEST

Boronization to ease plasma start-up with a W wall
• The reduction of the oxygen impurity concentration achieved through the application of 

boronization is equivalent to that of Be gettering
• Without boronization, ASDEX Upgrade, WEST, EAST [Liu PPCF 2007] (and ITER simulations) 

show narrow operational space for start-up on high-Z limiters due to sputtering by impurities

[Winter 1990 (& seminar at IO 21/09/2023)] 
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Blue means: boron still 
remains after 10,000 s

Lifetime in sec

[K. Schmid, ISFN Fellow, IPP Garching]

• B in “remote areas” lasts 10,000 s for “worst” Q = 10 
plasmas (widest far-SOL, near DN)

• 2 weeks of operation = 10,000 s of heated flat top (65 s)

WallDYN3D

Layer lifetime : plasma erosion and oxygen ingress
1. Boron erosion by plasma depends on the location of PFC 

• Boronization cycle of 2 weeks (during STM) considered as reference for maximum average 
frequency over long operating periods

2. Layer capacity for O gettering
• 50 nm of boron layer: 1-5 x 1020 O/m2

• 10% of effective O-gettering surface due to erosion

• Conservative O outgassing and leak rate from ITER 
Vacuum handbook

 Capacity for storing 2.5 to 12.5 weeks of O ingress
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[Bortolon, Nuclear Materials and Energy
Volume 19, May 2019, Pages 384-389]

B powder in ASDEX Upgrade
Boron powder dropper
• Impurity Powder Droppers (IPDs) have been installed on ASDEX-U, DIII-D, 

EAST, LHD, KSTAR and WEST as well as a modified horizontal injector 
deployed on W7-X.

• IPD introduces sub-mm particulate material by resonant piezo-electric 
vibration and gravitation In present devices IPD provides an actuator for 
controlling intrinsic impurities and density control.

• In ITER, the IPD is proposed as an actuator to increase performance 
of a limited number of pulses, e.g. Q = 10, by providing a temporary 
low-Z main chamber wall
 with less W, less radiation, less heating, higher Q
 Requires tens of grams of B powder / pulse

• Complements GDC-boronization in ITER: 
• Coating of plasma wetted surfaces disappears quickly, likely before 

restart after STM reaches full power
• A preliminary assessment by the IO and PPPL experts found no 

showstoppers to integrating a B IPD in ITER

( vs. 86 g-B / 2 weeks in 
GDC boronization ) 
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ICWC for tritium recovery in ITER
• Uniform discharge produced by collisional absorption of ICH waves
• Requires 2.0-2.5 MW coupled to plasma at 40-50% efficiency
• Accesses main chamber recessed areas by charge exchange neutrals

• B: removal in implantation range only (10’s nm)  requires energetic neutrals 300 eV

• W: removal by diffusion, trapping / detrapping from traps with multiple occupancy (~1 µm)
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B2H6 injected at red diamonds ◊
6 anodes located at green squares ■

Normalised decomposition counts

Optimal anode and diborane injection configuration for uniform coating

• Obtained by Monte Carlo modelling of the ITER 
boronization GDC, based on 
• Previously obtained H2 and He GDC plasma 

backgrounds [Hagelaar 2014]
• Elementary collisional processes of diborane. 

• Example possible equatorial configuration on ITER 
• 0.3Pa, 30A / anode, He glow
• 6 midplane anodes ■ (placed in the port plugs, no 

anodes possible in the NBI sectors)
• Multiple injection points ◊ spaced 4 m (HFS) to 6 m 

(LFS) apart
• Additional anodes and injection points need to be 

considered in the upper vessel part

• Increase of present 7 anodes to 11
• Addition of 21 diborane injection points
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Comparison of He and H2 as diborane carrier gas
• Model input

Density Temperature

H2-GDC

He-GDC

21016

102.1015

Normalised decomposition counts 
B2H6 injected at red diamonds ◊

• B2H6 decomposes 
• in anode glow in H2-GDC
• near injection points in

case of He-GDC

• While He-GDC may cause 
bubble formation and He/H 
retention, the use He+B2H6
and uniform fuelling will 
allow for best uniform 
deposition layers, and to 
avoid coating in anode port

(8 anodes in eq. plane)

Density Temperature

• Simulation result • Conclusion
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J. Artola

Disruptions
• Disruptive plasmas (or plasmas for DMS commissioning) in AFP must deposit 

energy (and REs) on inertially cooled wall to avoid W divertor damage
• FWP melting during CQ can cause bridging of gaps between fingers leading to 

high forces in subsequent disruptions from eddy currents
Melting occurs on FWP #8 and #9 

during upward moving CQ

J. Coburn, R.A. Pitts, NF 2022

Gap bridging in JET with Be tiles

I. Jepu, NF 2019
Be
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Forces on FWP #8 not much enhanced by gap bridging (lower jxB)

Beryllium
 Large melting area
 High moments on fingers 

(beyond limits)

Tungsten
 Very small melting area
 Moments stay low
 Gap bridging less likely 

(experience at AUG)

First wall panel #9Disruptions
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SMITER-GEANT4-MEMOS-U workflow

L. Chen, R. Pitts

Threshold for cooling channel integrity with 8 mm W (T ≈ 800°C):
~70 kJ / roof  toroidal wetting 30%  IRE ∼ 0.5 MA (100 ms impact, 100% Emag conversion)

λr = 4 mm / ∆t = 100 ms

Runaway electrons
• W has higher stopping power  more localized loads
• Higher heating at cooling interface for W  RE mitigation must be developed with 

inertially cooled W PFCs (AFP)
• Thickening of the W layer is considered to mitigate higher RE loads on W
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Futher research
• Laboratory / analysis

• Hydrogen retention in boron layers / mixed layers 
• Analysis of hydrogen retention in boron layers / scaling law 
• Gettering and release of O on B layers, W, stainless steel
• Boron layer flaking 
• Steam event, impact of water ingress on tritium release, oxidation, and dust generation in 

boron : Chemical reaction rates of boron with water, air, …
• Study of GDC-boronization and ICWC with sample exposures in magnetized torus, 

demonstration of O and D removal from B
• LID-QMS and LIBS on boron layers
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Futher research
• Modelling 

• GDC boronization
• Boron erosion and migration by WallDYN-3D
• Boron erosion and migration into remote areas (mirrors) by ERO2.0 
• Powder dropper simulations with EMC3-EIRENE and DIS dust injection simulator
• Fuel retention and removal simulations
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Further research
Defined actions in STAC report: IC/STAC-29/3.3. Boronization system
• Detailed modelling using expertise with vapour deposition mechanisms to help confirm the design (#2)

• Boronization/Glow Discharge parametric studies with SWIP (#8)

• ITER GDC electrode testing at EAST (#14)

• Continue to study design solutions to incorporate boron dropper option at ITER (#15)

• Laboratory testing of ICWC, GDC and baking to remove Q2 isotopes from boron layers (#16)

• Characterisation of boron dust and detachment of boron flakes from surfaces (#17)

• Conduct modelling based on results from Actions 17/18 to extrapolate to ITER scale (#18)

• Modelling of boron erosion and migration should be performed to confirm how often cleaning is required (#19)

ITPA open issues in the new ITER baseline with a W wall that require experimental assessment
• Need for boronization with high Z plasma facing components (PFCs)

• Optimum application of boronization

• Formation of boron deposits and fuel retention
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