

Wissenschaftliches Rechnen I

Wintersemester 2012 / 2013 Prof. Dr. Carsten Burstedde Peter Zaspel

Übungsblatt 5.

Abgabe am **19.11.2012**.

Aufgabe 12. (Finite Differenzen auf nicht-äquidistanten Gittern)

Auf [0,1] führe man das Gitter $\bar{\Omega}_h = \Omega_h \cup \Gamma_h$ mit $\bar{\Omega}_h = \{x_0 = 0, x_1, \dots, x_{n-1}, x_n = 1\}$ ein, wobei $x_{i+1} - x_i \neq x_{j+1} - x_j$ für $i \neq j$ und $0 \leq i, j \leq n-1$ gilt. Damit ist $\bar{\Omega}_h$ ein nicht-äquidistantes Gitter, für das keine eindeutige Maschenweite h existiert.

- a) Berechnen Sie über den Ansatz $\bar{\delta}f = \alpha f(x_{i-1}) + \beta f(x_i) + \gamma f(x_{i+1})$ eine Diskretisierung für die zweite Ableitung und geben Sie die Diskretisierungsordnung an.
- b) Zeigen Sie, dass sich die Diskretisierungsordnung ändert, wenn man $\bar{\delta}f$ bei einem äquidistanten Gitter anwendet. Welche Formel erhält man in diesem Fall für die Diskretisierung der zweiten Ableitung?

Bemerkung: Formeln dieser Art benötigt man, wenn man krummlinige Gebiete behandeln will, wo man i.A. kein äquidistantes Gitter einführen kann (z.B. Diskretisierung der Laplace-Gleichung auf einer Kreisscheibe).

Aufgabe 13. (Schwache Ableitung der Betragsfunktion)

- a) Bestimmen Sie die schwache Ableitung der Betragsfunktion f(x) = |x| auf $\Omega = (-1, 1)$.
- b) Zeigen Sie, dass es keine zweite schwache Ableitung der Betragsfunktion gibt.

(5 Punkte)

Aufgabe 14. (Eigenschaften schwacher Ableitungen)

- a) Wenn u eine schwache Ableitung D^{α} in Ω besitzt, so ist u auch schwach differenzierbar in jedem Gebiet $\Omega_0 \subset \Omega$ mit gleicher Ableitung.
- b) Wenn $D^{\alpha}u$ eine schwache Ableitung $D^{\beta}(D^{\alpha}u)$ besitzt, so existiert die Ableitung $D^{\alpha+\beta}u$ ebenfalls und $D^{\alpha+\beta}u=D^{\beta}(D^{\alpha}u)$.

(5 Punkte)