Lecture Outline Strengthening Induction Hypothesis. #### Lecture Outline Strengthening Induction Hypothesis. Strong Induction #### Lecture Outline Strengthening Induction Hypothesis. Strong Induction Well ordered principle. - 1. (Ideally) You work on homework and solve (most of) it. - 2. You do not need to write-up or turn in. - 3. You read and understand homework solutions. - 4. You see a tutor, who gives you a short oral quiz. - 4.1 If you do well. - 1. (Ideally) You work on homework and solve (most of) it. - 2. You do not need to write-up or turn in. - 3. You read and understand homework solutions. - 4. You see a tutor, who gives you a short oral quiz. - 4.1 If you do well. Full points. - 1. (Ideally) You work on homework and solve (most of) it. - 2. You do not need to write-up or turn in. - 3. You read and understand homework solutions. - 4. You see a tutor, who gives you a short oral quiz. - 4.1 If you do well. Full points. - 4.2 Decent effort. - 1. (Ideally) You work on homework and solve (most of) it. - 2. You do not need to write-up or turn in. - 3. You read and understand homework solutions. - 4. You see a tutor, who gives you a short oral quiz. - 4.1 If you do well. Full points. - 4.2 Decent effort. Less than full points. - 1. (Ideally) You work on homework and solve (most of) it. - 2. You do not need to write-up or turn in. - 3. You read and understand homework solutions. - 4. You see a tutor, who gives you a short oral quiz. - 4.1 If you do well. Full points. - 4.2 Decent effort. Less than full points. - 4.3 Didn't understand HW solutions. - 1. (Ideally) You work on homework and solve (most of) it. - 2. You do not need to write-up or turn in. - 3. You read and understand homework solutions. - 4. You see a tutor, who gives you a short oral quiz. - 4.1 If you do well. Full points. - 4.2 Decent effort. Less than full points. - 4.3 Didn't understand HW solutions. Uh oh. - 1. (Ideally) You work on homework and solve (most of) it. - 2. You do not need to write-up or turn in. - 3. You read and understand homework solutions. - 4. You see a tutor, who gives you a short oral quiz. - 4.1 If you do well. Full points. - 4.2 Decent effort. Less than full points. - 4.3 Didn't understand HW solutions. Uh oh. - 4.4 Can try again. - 1. (Ideally) You work on homework and solve (most of) it. - 2. You do not need to write-up or turn in. - 3. You read and understand homework solutions. - 4. You see a tutor, who gives you a short oral quiz. - 4.1 If you do well. Full points. - 4.2 Decent effort. Less than full points. - 4.3 Didn't understand HW solutions. Uh oh. - 4.4 Can try again. Limit: 2 on average. - 1. (Ideally) You work on homework and solve (most of) it. - 2. You do not need to write-up or turn in. - 3. You read and understand homework solutions. - 4. You see a tutor, who gives you a short oral quiz. - 4.1 If you do well. Full points. - 4.2 Decent effort. Less than full points. - 4.3 Didn't understand HW solutions. Uh oh. - 4.4 Can try again. Limit: 2 on average. - 5. Begins for second homework. #### How does tutoring work? - 1. (Ideally) You work on homework and solve (most of) it. - 2. You do not need to write-up or turn in. - 3. You read and understand homework solutions. - 4. You see a tutor, who gives you a short oral quiz. - 4.1 If you do well. Full points. - 4.2 Decent effort. Less than full points. - 4.3 Didn't understand HW solutions. Uh oh. - 4.4 Can try again. Limit: 2 on average. - Begins for second homework. #### Questions? ## Strenthening Induction Hypothesis. **Theorem:** The sum of the first *n* odd numbers is a perfect square. **Theorem:** The sum of the first n odd numbers is k^2 . kth odd number is 2(k-1)+1. Base Case 1 (1th odd number) is 1². Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$. - Induction Step 1. The (k+1)st odd number is 2k+1. - 2. Sum of the first k+1 odds is $a^2 + 2k + 1 = k^2 + 2k + 1$ - 3. $k^2 + 2k + 1 = (k+1)^2$... P(k+1)! To Tile this 4×4 courtyard. **Alright!** To Tile this 4×4 courtyard. Alright! Tiled 4×4 square with 2×2 *L*-tiles. with a center hole. To Tile this 4×4 courtyard. Alright! Tiled 4×4 square with 2×2 L-tiles. with a center hole. Can we tile any $2^n \times 2^n$ with *L*-tiles (with a hole) To Tile this 4×4 courtyard. Can we tile any $2^n \times 2^n$ with *L*-tiles (with a hole) for every n! **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer a. $2^{2(k+1)}$ **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ $$2^{2(k+1)} = 2^{2k} * 2^2$$ **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ $$2^{2(k+1)} = 2^{2k} * 2^2$$ $$= 4 * 2^{2k}$$ **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ $$2^{2(k+1)} = 2^{2k} * 2^2$$ = $4 * 2^{2k}$ = $4 * (3a+1)$ **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ $$2^{2(k+1)} = 2^{2k} * 2^{2}$$ $$= 4 * 2^{2k}$$ $$= 4 * (3a+1)$$ $$= 12a+3+1$$ **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer a. $$2^{2(k+1)} = 2^{2k} * 2^{2}$$ $$= 4 * 2^{2k}$$ $$= 4 * (3a+1)$$ $$= 12a+3+1$$ $$= 3(4a+1)+1$$ **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer a. $$2^{2(k+1)} = 2^{2k} * 2^{2}$$ $$= 4 * 2^{2k}$$ $$= 4 * (3a+1)$$ $$= 12a+3+1$$ $$= 3(4a+1)+1$$ a integer **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer a. $$2^{2(k+1)} = 2^{2k} * 2^{2}$$ $$= 4 * 2^{2k}$$ $$= 4 * (3a+1)$$ $$= 12a+3+1$$ $$= 3(4a+1)+1$$ a integer \implies (4a+1) is an integer. **Theorem:** Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer a. $$2^{2(k+1)} = 2^{2k} * 2^{2}$$ $$= 4 * 2^{2k}$$ $$= 4 * (3a+1)$$ $$= 12a+3+1$$ $$= 3(4a+1)+1$$ a integer \implies (4a+1) is an integer. **Theorem:** Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center. **Proof:** **Theorem:** Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center. **Proof:** Base case: A single tile works fine. **Theorem:** Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center. Proof: Base case: A single tile works fine. The hole is adjacent to the center of the 2×2 square. **Theorem:** Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center. **Proof:** Base case: A single tile works fine. The hole is adjacent to the center of the 2×2 square. Induction Hypothesis: **Theorem:** Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center. #### **Proof:** Base case: A single tile works fine. The hole is adjacent to the center of the 2×2 square. Induction Hypothesis: Any $2^n \times 2^n$ square can be tiled with a hole at the center. **Theorem:** Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center. #### **Proof:** Base case: A single tile works fine. The hole is adjacent to the center of the 2×2 square. Induction Hypothesis: Any $2^n \times 2^n$ square can be tiled with a hole at the center. $$2^{n+1}$$ **Theorem:** Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center. #### **Proof:** Base case: A single tile works fine. The hole is adjacent to the center of the 2×2 square. Induction Hypothesis: Any $2^n \times 2^n$ square can be tiled with a hole at the center. $$2^{n+1}$$ **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem ...better induction hypothesis! **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem ...better induction hypothesis! Base case: Sure. A tile is fine. **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem ...better induction hypothesis! Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere. **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem ...better induction hypothesis! Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere. Induction Hypothesis: **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem ...better induction hypothesis! Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere. Induction Hypothesis: **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere.* Better theorem ...better induction hypothesis! Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere. Induction Hypothesis: **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem ...better induction hypothesis! Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere. Induction Hypothesis: **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem ...better induction hypothesis! Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere. Induction Hypothesis: **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem ...better induction hypothesis! Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere. Induction Hypothesis: "Any $2^n \times 2^n$ square can be tiled with a hole **anywhere.**" Consider $2^{n+1} \times 2^{n+1}$ square. Use L-tile and ... **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem ...better induction hypothesis! Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere. Induction Hypothesis: "Any $2^n \times 2^n$ square can be tiled with a hole **anywhere.**" Consider $2^{n+1} \times 2^{n+1}$ square. Use L-tile and ... we are done. **Theorem:** Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem ...better induction hypothesis! Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere. Induction Hypothesis: "Any $2^n \times 2^n$ square can be tiled with a hole **anywhere.**" Consider $2^{n+1} \times 2^{n+1}$ square. Use induction hypothesis in each. Use L-tile and ... we are done. **Theorem:** Every natural number n > 1 can be written as a product of primes. **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. **Base Case:** n = 2. **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. Base Case: n = 2. Induction Step: **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. **Base Case:** n = 2. Induction Step: P(n) ="n can be written as a product of primes. " **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. **Base Case:** n = 2. Induction Step: P(n) ="n can be written as a product of primes. " Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1. **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. **Base Case:** n = 2. Induction Step: P(n) = "n can be written as a product of primes." Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1. P(n) says nothing about a, b! **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. **Base Case:** n = 2. Induction Step: P(n) = "n can be written as a product of primes." Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1. P(n) says nothing about a, b! Strong Induction Principle: If P(0) and $$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \implies P(k+1)),$$ then $(\forall k \in N)(P(k))$. **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. **Base Case:** n = 2. Induction Step: P(n) ="n can be written as a product of primes. " Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1. P(n) says nothing about a, b! Strong Induction Principle: If P(0) and $$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \implies P(k+1)),$$ then $(\forall k \in N)(P(k))$. $$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$ **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. **Base Case:** n = 2. Induction Step: P(n) ="n can be written as a product of primes. " Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1. P(n) says nothing about a, b! Strong Induction Principle: If P(0) and $$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \implies P(k+1)),$$ then $(\forall k \in N)(P(k))$. $$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$ Strong induction hypothesis: "a and b are products of primes" **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. **Base Case:** n = 2. Induction Step: P(n) ="n can be written as a product of primes. " Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1. P(n) says nothing about a, b! Strong Induction Principle: If P(0) and $$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \implies P(k+1)),$$ then $(\forall k \in N)(P(k))$. $$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$ Strong induction hypothesis: "a and b are products of primes" $$\implies$$ " $n+1=a\cdot b$ **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. **Base Case:** n = 2. Induction Step: P(n) ="n can be written as a product of primes. " Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1. P(n) says nothing about a, b! #### Strong Induction Principle: If P(0) and $$(\forall k \in N)((P(0) \land \dots \land P(k)) \implies P(k+1)),$$ then $(\forall k \in N)(P(k))$. $$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$ Strong induction hypothesis: "a and b are products of primes" \implies " $n+1 = a \cdot b =$ (factorization of a)(factorization of b)" n+1 can be written as the product of the prime factors! ### Strong Induction. **Theorem:** Every natural number n > 1 can be written as a product of primes. Fact: A prime n has exactly 2 factors 1 and n. **Base Case:** n = 2. Induction Step: P(n) = "n can be written as a product of primes." Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1. P(n) says nothing about a, b! Strong Induction Principle: If P(0) and $$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \implies P(k+1)),$$ then $(\forall k \in N)(P(k))$. $$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$ Strong induction hypothesis: "a and b are products of primes" \implies " $n+1 = a \cdot b =$ (factorization of a)(factorization of b)" n+1 can be written as the product of the prime factors! Let $Q(k) = P(0) \wedge P(1) \cdots P(k)$. Let $Q(k) = P(0) \land P(1) \cdots P(k)$. By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Let $Q(k) = P(0) \wedge P(1) \cdots P(k)$. By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Also, $Q(0) \equiv P(0)$, and Let $Q(k) = P(0) \wedge P(1) \cdots P(k)$. By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$ ``` Let Q(k) = P(0) \land P(1) \cdots P(k). By the induction principle: "If Q(0), and (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) then (\forall k \in N)(Q(k))" Also, Q(0) \equiv P(0), and (\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k)) (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) \equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1))) ``` ``` Let Q(k) = P(0) \land P(1) \cdots P(k). By the induction principle: "If Q(0), and (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) then (\forall k \in N)(Q(k))" Also, Q(0) \equiv P(0), and (\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k)) (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) \equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1))) ``` ``` Let Q(k) = P(0) \land P(1) \cdots P(k). By the induction principle: "If Q(0), and (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) then (\forall k \in N)(Q(k))" Also, Q(0) \equiv P(0), and (\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k)) (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) \equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1))) \equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1)) ``` ``` Let Q(k) = P(0) \land P(1) \cdots P(k). By the induction principle: "If Q(0), and (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) then (\forall k \in N)(Q(k))" Also, Q(0) \equiv P(0), and (\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k)) (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) \equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1))) \equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1)) ``` ``` Let Q(k) = P(0) \land P(1) \cdots P(k). By the induction principle: "If Q(0), and (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) then (\forall k \in N)(Q(k))" Also, Q(0) \equiv P(0), and (\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k)) (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) \equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1))) \equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1)) ``` Let $$Q(k) = P(0) \land P(1) \cdots P(k)$$. By the induction principle: "If $Q(0)$, and $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$ $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1)))$ $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1))$ Strong Induction Principle: If $P(0)$ and $(\forall k \in N)((P(0) \land \dots \land P(k)) \Longrightarrow P(k+1))$, then $(\forall k \in N)(P(k))$. Let $$Q(k) = P(0) \land P(1) \cdots P(k)$$. By the induction principle: "If $Q(0)$, and $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$ $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1)))$ $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1))$ Strong Induction Principle: If $P(0)$ and $(\forall k \in N)((P(0) \land \dots \land P(k)) \Longrightarrow P(k+1))$, then $(\forall k \in N)(P(k))$. If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest m, with $\neg P(m)$, If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest m, with $\neg P(m)$, $P(m-1) \Longrightarrow P(m)$ must be false (assuming P(0) holds.) If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest m, with $\neg P(m)$, $$P(m-1) \Longrightarrow P(m)$$ must be false (assuming $P(0)$ holds.) This is a proof of the induction principle! I.e., $$(\neg \forall n) P(n) \Longrightarrow ((\exists n) \neg (P(n-1) \Longrightarrow P(n)).$$ If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest m, with $\neg P(m)$, $$P(m-1) \Longrightarrow P(m)$$ must be false (assuming $P(0)$ holds.) This is a proof of the induction principle! I.e., $$(\neg \forall n)P(n) \Longrightarrow ((\exists n)\neg (P(n-1) \Longrightarrow P(n)).$$ (Contrapositive of Induction principle (assuming P(0)) If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest m, with $\neg P(m)$, $$P(m-1) \Longrightarrow P(m)$$ must be false (assuming $P(0)$ holds.) This is a proof of the induction principle! I.e., $$(\neg \forall n)P(n) \Longrightarrow ((\exists n)\neg (P(n-1) \Longrightarrow P(n)).$$ (Contrapositive of Induction principle (assuming P(0)) It assumes that there is a smallest m where P(m) does not hold. If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest m, with $\neg P(m)$, $$P(m-1) \implies P(m)$$ must be false (assuming $P(0)$ holds.) This is a proof of the induction principle! I.e., $$(\neg \forall n)P(n) \Longrightarrow ((\exists n)\neg (P(n-1) \Longrightarrow P(n)).$$ (Contrapositive of Induction principle (assuming P(0)) It assumes that there is a smallest m where P(m) does not hold. The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element. If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest m, with $\neg P(m)$, $$P(m-1) \Longrightarrow P(m)$$ must be false (assuming $P(0)$ holds.) This is a proof of the induction principle! I.e., $$(\neg \forall n)P(n) \Longrightarrow ((\exists n)\neg (P(n-1) \Longrightarrow P(n)).$$ (Contrapositive of Induction principle (assuming P(0)) It assumes that there is a smallest m where P(m) does not hold. The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element. Smallest may not be what you expect: the well ordering principal holds for rationals but with different ordering!! If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest m, with $\neg P(m)$, $$P(m-1) \implies P(m)$$ must be false (assuming $P(0)$ holds.) This is a proof of the induction principle! I.e., $$(\neg \forall n)P(n) \Longrightarrow ((\exists n)\neg (P(n-1) \Longrightarrow P(n)).$$ (Contrapositive of Induction principle (assuming P(0)) It assumes that there is a smallest m where P(m) does not hold. The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element. Smallest may not be what you expect: the well ordering principal holds for rationals but with different ordering!! E.g. Reduced form is "smallest" representation of the representations a/b that represent a single quotient. **Def:** A **round robin tournament on** *n* **players**: every player *p* plays every other player *q*, and either $p \rightarrow q$ (p beats q) or $q \rightarrow q$ (q beats q.) **Def:** A round robin tournament on n players: every player p plays every other player q, and either $p \to q$ (p beats q) or $q \to q$ (q beats q.) **Def:** A **cycle**: a sequence of $p_1, ..., p_k, p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$. **Def:** A round robin tournament on n players: every player p plays every other player q, and either $p \to q$ (p beats q) or $q \to q$ (q beats q.) **Def:** A cycle: a sequence of $p_1, ..., p_k, p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$. **Def:** A round robin tournament on n players: every player p plays every other player q, and either $p \to q$ (p beats q) or $q \to q$ (q beats q.) **Def:** A cycle: a sequence of $p_1, ..., p_k, p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$. **Def:** A round robin tournament on n players: every player p plays every other player q, and either $p \to q$ (p beats q) or $q \to q$ (q beats q.) **Def:** A **cycle**: a sequence of $p_1, ..., p_k, p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$. **Def:** A round robin tournament on n players: every player p plays every other player q, and either $p \to q$ (p beats q) or $q \to q$ (q beats q.) **Def:** A **cycle**: a sequence of $p_1, ..., p_k, p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$. **Def:** A round robin tournament on n players: every player p plays every other player q, and either $p \to q$ (p beats q) or $q \to q$ (q beats q.) **Def:** A **cycle**: a sequence of $p_1, ..., p_k, p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$. Assume the the **smallest cycle** is of length k. Assume the the **smallest cycle** is of length k. Case 1: Of length 3. Done. Assume the the **smallest cycle** is of length k. Case 1: Of length 3. Done. Case 2: Of length larger than 3. Assume the the **smallest cycle** is of length *k*. Case 1: Of length 3. Done. Case 2: Of length larger than 3. Assume the the **smallest cycle** is of length k. Case 1: Of length 3. Done. Case 2: Of length larger than 3. #### Horses of the same color... Theorem: All horses have the same color. #### Horses of the same color... Theorem: All horses have the same color. Base Case: P(1) - trivially true. **Theorem:** All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. **Theorem:** All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? **Theorem:** All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). 1,2,3,...,k,k+1 Theorem: All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). 1,2,3,...,k,k + 1 Second k have same color by P(k). 1,2,3,...,k,k + 1 Theorem: All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). 1,2,3,...,k,k + 1 Second k have same color by P(k). 1,2,3,...,k,k+1 A horse in the middle in common! 1,2,3,...,k,k+1 Theorem: All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). 1,2,3,...,k,k+1 Second k have same color by P(k). 1,2,3,...,k,k+1 A horse in the middle in common! 1,2,3,...,k,k+1 A norse in the middle in common: 1,2,3,...,K,K+1 All k must have the same color. 1, 2, 3, ..., k, k+1 Theorem: All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). Second k have same color by P(k). A horse in the middle in common! Theorem: All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). Second k have same color by P(k). A horse in the middle in common! Theorem: All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). 1,2 Second k have same color by P(k). A horse in the middle in common! Theorem: All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). 1,2 Second k have same color by P(k). 1,2 A horse in the middle in common! **Theorem:** All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). 1,2 Second k have same color by P(k). 1,2 A horse in the middle in common! 1,2 No horse in common! **Theorem:** All horses have the same color. Base Case: P(1) - trivially true. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). 1,2 Second k have same color by P(k). 1,2 A horse in the middle in common! 1,2 No horse in common! **Theorem:** All horses have the same color. Base Case: P(1) - trivially true. New Base Case: P(2): there are two horses with same color. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). Second k have same color by P(k). A horse in the middle in common! Fix base case. **Theorem:** All horses have the same color. Base Case: P(1) - trivially true. New Base Case: P(2): there are two horses with same color. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). Second k have same color by P(k). A horse in the middle in common! Fix base case. ...Still doesn't work!! **Theorem:** All horses have the same color. Base Case: P(1) - trivially true. New Base Case: P(2): there are two horses with same color. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). Second k have same color by P(k). A horse in the middle in common! Fix base case. ...Still doesn't work!! (There are two horses is \neq For all two horses!!!) **Theorem:** All horses have the same color. Base Case: P(1) - trivially true. New Base Case: P(2): there are two horses with same color. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). Second k have same color by P(k). A horse in the middle in common! Fix base case. ...Still doesn't work!! (There are two horses is $\not\equiv$ For all two horses!!!) Of course it doesn't work. **Theorem:** All horses have the same color. Base Case: P(1) - trivially true. New Base Case: P(2): there are two horses with same color. Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). Second k have same color by P(k). A horse in the middle in common! Fix base case. ...Still doesn't work!! (There are two horses is \neq For all two horses!!!) Of course it doesn't work. As we will see, it is more subtle to catch errors in proofs of correct theorems!! Thm: For every natural number $n \ge 12$, n = 4x + 5y. Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! ``` def find-x-y(n): if (n==12) return (3,0) elif (n==13): return(2,1) elif (n==14): return(1,2) elif (n==15): return(0,3) else: (x',y') = find-x-y(n-4) return(x'+1,y') ``` Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! ``` def find-x-y(n): if (n==12) return (3,0) elif (n==13): return(2,1) elif (n==14): return(1,2) elif (n==15): return(0,3) else: (x',y') = find-x-y(n-4) return(x'+1,y') ``` #### Base cases: Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! ``` def find-x-y(n): if (n==12) return (3,0) elif (n==13): return(2,1) elif (n==14): return(1,2) elif (n==15): return(0,3) else: (x',y') = find-x-y(n-4) return(x'+1,y') ``` Base cases: P(12) Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! ``` def find-x-y(n): if (n==12) return (3,0) elif (n==13): return(2,1) elif (n==14): return(1,2) elif (n==15): return(0,3) else: (x',y') = find-x-y(n-4) return(x'+1,y') ``` Base cases: P(12) , P(13) Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! ``` def find-x-y(n): if (n==12) return (3,0) elif (n==13): return(2,1) elif (n==14): return(1,2) elif (n==15): return(0,3) else: (x',y') = find-x-y(n-4) return(x'+1,y') ``` Base cases: P(12), P(13) P(14) Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! ``` def find-x-y(n): if (n==12) return (3,0) elif (n==13): return(2,1) elif (n==14): return(1,2) elif (n==15): return(0,3) else: (x',y') = find-x-y(n-4) return(x'+1,y') ``` Base cases: P(12) , P(13) P(14) P(15). Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! ``` def find-x-y(n): if (n==12) return (3,0) elif (n==13): return(2,1) elif (n==14): return(1,2) elif (n==15): return(0,3) else: (x',y') = find-x-y(n-4) return(x'+1,y') ``` Base cases: P(12) , P(13) P(14) P(15). Yes. Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! ``` def find-x-y(n): if (n==12) return (3,0) elif (n==13): return(2,1) elif (n==14): return(1,2) elif (n==15): return(0,3) else: (x',y') = find-x-y(n-4) return(x'+1,y') ``` Base cases: P(12) , P(13) P(14) P(15). Yes. Strong Induction step: Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! ``` def find-x-y(n): if (n==12) return (3,0) elif (n==13): return(2,1) elif (n==14): return(1,2) elif (n==15): return(0,3) else: (x',y') = find-x-y(n-4) return(x'+1,y') ``` Base cases: P(12) , P(13) P(14) P(15). Yes. Strong Induction step: Recursive call is correct: P(n-4) Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! ``` def find-x-y(n): if (n==12) return (3,0) elif (n==13): return(2,1) elif (n==14): return(1,2) elif (n==15): return(0,3) else: (x',y') = find-x-y(n-4) return(x'+1,y') ``` Base cases: P(12) , P(13) P(14) P(15). Yes. Strong Induction step: Recursive call is correct: $P(n-4) \implies P(n)$. Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code! ``` def find-x-y(n): if (n==12) return (3,0) elif (n==13): return(2,1) elif (n==14): return(1,2) elif (n==15): return(0,3) else: (x',y') = find-x-y(n-4) return(x'+1,y') ``` Base cases: P(12), P(13) P(14) P(15). Yes. Strong Induction step: Recursive call is correct: $P(n-4) \implies P(n)$. Slight differences: showed for all $n \ge 16$ that $\bigwedge_{i=4}^{n-1} P(i) \Longrightarrow P(n)$. Today: More induction. Today: More induction. (P(0)) Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \implies P(k+1))))$$ Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$. Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$. Statement is proven! Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$. Statement is proven! Strong Induction: Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$. Statement is proven! Strong Induction: $$(P(0) \land ((\forall n \in N)(P(n)) \implies P(n+1))))$$ Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$. Statement is proven! Strong Induction: $$(P(0) \land ((\forall n \in N)(P(n)) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$. Statement is proven! Strong Induction: $$(P(0) \land ((\forall n \in N)(P(n)) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Also Today: strengthened induction hypothesis. Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$. Statement is proven! Strong Induction: $$(P(0) \land ((\forall n \in N)(P(n)) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Also Today: strengthened induction hypothesis. Strengthen theorem statement. Sum of first n odds is n^2 . Hole anywhere. Not same as strong induction. Today: More induction. $$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$. Statement is proven! Strong Induction: $$(P(0) \wedge ((\forall n \in N)(P(n)) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$$ Also Today: strengthened induction hypothesis. Strengthen theorem statement. Sum of first n odds is n^2 . Hole anywhere. Not same as strong induction. Induction \equiv Recursion.