Conference Paper

AN OPERATIONAL INTERVAL ARITHMETIC

R. E. Boche
Lockheed Missiles & Space Company
Palo Alto, Calif.

Submitted in abstract or outline form only to the IEEE Computing
Devices Committee .for presentation at the IEEE-Illinois Institute
of Technology-Northwestern University-University of Illinois Na-
tional Electronics Conference, Chicago, Ill., October 28-30, 1963.
Manuscript submitted August 1, 1963; made available for printing
August 8, 1963.

All Rights Reserved by

Price: § .60 To Members The Institute of Electrical and Electronics Engineers,

$1.00 To Nonmembers Inc.,
. .) P. O. Box A,
(10¢ per copy additional if Lenox Hill Station,
first class mailing desired) : New York 21, N. Y.~

(Minimum Mail Order $1.00) Litho in USA

Paper No. CP Interval Arithmetic, Error Analysis, Digital Computer, Paper No. CP
Programming, Numerical Methods » Number System,
63- 1431 Numbers, Differential Equations, Matrix, Marco, In- 63-1431
put, Output.
CD-1 CD-1

AN OPERATICNAL INTSRVAL ARITHMETIC

Ro. E. BOChe*

A scheme to perform automatic error analysis in digital computation has been
described by R. E. Moore.1s2 The basis of the scheme is a method for performing
computations with intervals of real numbers. The computations may be performed on a
digital computer in a manner that guarantees the containment of an infinite precision real
number result in the computed interval.

We will first describe the arithmetic and present some results of numerical
opverations with it. We will then consider the implementation of the arithmetic itself on
digital computers and finally discuss programning procedures developed and in development
for interval analysise.

Interval Arithmetic

We will first describe an exact interval arithmetic. Later we will discuss the
implementation of interval arithmetic on a digital computer to contain exact, or infinite
orecision, interval arithmetic and in turn infinite precision real arithmetic. We state
in advance that the computations to be performed are such that the infinite precision
interval is a subset of the computed interval.

We dencte by [a,b] the closed interval of real numbers x such that asxeb.
Thus any real number element x to be employed in computation may be represented by an
“interval whose end points are rational numbers of limited precision. We state the
following definitions for interval operations restricting only to intervals whose end
points are real.

For the interval numbers [a,b] and fc,d] we have:
Bl * [end]
[a,®] - [esd]
[a;] * [c,d]
and if the closed interval [c,d] does not contain O,
[a,b] / [c,d] = [a,b] . [l/d, l/cJ

The properties of interval numbers have been investigafed extensively by Moore 122
We state a few here for use in the following discussions.

e+c,b+d]

[a-d,b-c]

[MIN (aC, ad, bc, bd), MA.X (aC, ad, bc’ bd)]

[2s®] = [b,d] if and only if a = ¢ and b = d.
[2st] < [e,d] iff b<ec
Ca,b] > [c,d] iff a > d

*Lockheed Missiles and Space Company, Palo Alto, California

2=

ERY e [csd] is a notation used here to denote that the intersection of
the intervals [a,b] and [c,d] is non-null,

Interval arithmetic contains real arithmetic since for intervals of the form
[2,2] we have

=, a] + [b: b]
[2sa] - [b,b]
[8-: aJ * [b, bJ

[a+b, a+b]

[2a-D, a-D]

-_—

[ab , ab]

ard if b # 0

[,a] / [bsb] [a/b 5 a/b]

The intervals [0,0] and [1,1] serve as additive and multiplicative identities
respectively. ’

Comput;gg_with Interval Arithmetic

The description of the arithmetic and statement of its purpose immediately suggest
some possible applications. The most obvious of these potential applications is the
analysis of error in numerical computations involving large numbers of arithmetic
overations on a computer to reach a result which with an infinite precision computation
would be exact. Matrix operations performed with exact methods are in this category.

In general any set of arithmetic operations for whatever purnose desired may be performed
in interval iarithmetic to determine the amount of error due to round-off or truncation
and its growth. Such computations might apply to numerical approximations which are not:
exacte In such cases there is no intention to bound an infinite precision real result
‘with a computed interval but only to analyse the contribution of computing errcr to result
error.,

The availability of interval arithmetic has led to the investigaticn of numerical
methods developed specifically for computation with intervals. Two examoles of such
methods for the numerical solution of differential equaticns and the integration of
functions are used in sample results to follow.

Another important area of usefulness is to reflect into a numsrical computation a
degree of uncertainty in the input data. Such an uncertainty might result from.-
inaccuracies in experimental observation or even from data fermating alone as in analog
to digital conversicn of data.

Examples and Results

Programs for numerical solution of differential equaticns using interval arithmetic
have been prepared. The method used is derived from a truncated Taylor's series with
remainder. The remainder is itself bounded by interval arithmetic computations,

For the equation

%}Z{ = y2 with initial condition y(0) = 1
the exact solution is y(x) = T 1 =

1.
Ax=3,y3) = ==/

The fleating pointvoctal representation of /3 on the computer used is
201 525252525, The interval endpoints computed by the program using 12 terms and
remainder are
y(%) = [201 52525252l, 201 525252530] . (The 201 is a biased exponent.)

Thus, the computed interval has width L in the ninth significant octal place and bounds
the exact solution.

The following 7th order system of differential equations was treated using the
first nine terms of the Taylor's series with remainder.

2
- aux/(x% + 32 + 52) 3/

- y/(x2 + §2 + 32) 3/2
(13 -ﬂz/(xz + yz + 22) 3/2

=1 A= 0,98

ISHEL] o
" i]

cteo

Programs were prepared in parallel using machine single precision floating point
arithmetic and interval arithmetic. The results obtained from both programs after
approximately one fourth of an orbit and the initial conditions used are given as
Table II.

Twelve steps of uniform Size were taken tc reach the quarter orbit pointe The
interval arithmetic program ran at a rate of abcut L seconds per point while the machine
arithmetic program took 2 seconds per pointe

The above examples invelve the use of a numerical method designed for computing
with intervals. The following computations will serve to illustrate an interval method
and result.

a .
2 1
- [~ ER—

Using the trapezoidal rule with one step we evaluati the function at 1 and 2 and get
3+ %)/2, or the result 2. By an interval methodl we evaluate the function over the
interval [1,2] as follows:

(g - [1.5,1.53)2= [0.50.5]2 = [0

The interval result again contains the exact solution. The point here is only to
suggest what an interval method might be like. IMoore has developed rigorously this and
many others.

1
The determinant of the matrix aij = TFy=T vas computed using the pivot method

with no pivotal element searching. The use of this particular matrix serves as an
illustration cf uncertainty in input data. The element 1/3 must be entered as the
interval [0.33333333, 0.3333333Lk] . The interval results for the cases:

3 by 3 [o.L62962L9 x 1073, 0.1:6296368 x 1073]

-
L by L [0:1653:366 x 1078, 0.1653617L x 1076]
5by 5 [0.30721218 x 10-12,0,31768L88 x 10-12]

Considering the degree of uncertainty in the input elements, the number of comwputations
performed, and the lack of refinement in the method, the resulting interval widths seem
reasonable, :

An interval matrix inversion program has been completed and run for a limited
number of cases using the Crout method with pivot searchinge. The tri-diagonal matrix
with aj; = 1, aj3 = 2, aj-1,i = - 1= 23, i-1 9 1 = 25350ee,Ne All other elements
zero was inverted for the cases 3 by 3 and 10 by 10, In both cases the results were
exact to the eight decimal places printed. The inverse is the matrix with elements
ajj = N - MAX (i, j) + 1. The 3 by 3 inverse matrix was re-inverted. The computed

inverse elements had a median width of 3 in the last of the 8 decimal places printed and
a maximum width of 11,

Comments and Conclusions

At this stage it should be pointed out that interval width does not necessarily
grow with repeated computation. For verification of this see Moore s Pge. 13, where an
iterative square root process is shown to converge with simultaneously decreasing
interval width. The following computation which ccnverges to an interval of width zero
also illustrates this point:

I, =[o,1]

Iy = Iy (%’%J

The propagation and growth of interval width in some problems may prove so great
as to give an interval f rom which no ccnclusion of meaningful impact may be drawn. Such
a result certainly may not be taken to mean that the single precision result which is
always contained in the interval is not valid. However, the opposite case presents a-
very useful result by assuring that a single precision result contained in a relatively
narrow interval is indeed accurate to the number of places indicated.

Inapplicability to particular problems should not preclude the availability of
interval arithmetic as a working and useful computation center tool. There exist classes
of problems to which interval arithmetic gives a valid and useful bound. ~

Interval Arithmetic Programs

The remainder of this report will be devoted to our experience in attempting to
implement interval arithmetic as a general purpose computation center problem analysis
tools To begin with, a set of interval arithmetic routines had been prepared by
D. Thoe for the IBi 709 computer. These routines served as an excellent starting point
and were extensively modifisd and augmentede The four basic arithmetic operations were
available from the earlier programming efforts as were some of the logical instructions.
An instruction repertoire is given as Appendix I. .

A macro programning technijue was employed using the "FAP" assewbly program
language.3 An example and illustration of the macro form and its use is included as
Appendix II. Although the use of the macro is not an esséntial concept, its usefulness
and convenience warrants its prominence in the programming descriptionse

-5-

The underlying principle on which the interval arithmetic programs are based is
that the computed interval must contain the infinite precision real number result. In
order to be useful, this assurance must be given without undue sacrifice of interval
width. Given two intervals whose end points are machine representable floating point
single precision numbers, and given that we wish to operate on two real numbers, each
contained in their respective intervals, we may operate on the end points$ of the
intervals in the manner dictated by the operation to be performed and the definition for
such an interval operation stated earlier. If we do so using single precision
arithmetic unrounded we may assure containment of the infinite precision result by
"extending up" the upper end of the result interval and "extending down" the lower end
of the result interval., Although this process will provide our vital guarantee of
containment, it will result in undue growth of interval width in a great number of
casese Therefore, we must refine our rules of procedure to minimize the growth of
interval width without sacrificing containment.

We will consider a machine employing the binary number system and refer to bits
in extending up or down. Clearly, rounding is not adequate because if, for example, the
next two most significant bits beyond the single precision word length of the positive
upper end of an interval are O, 1 rounding would not take place and contaimment may
fail. Thus, we speak of the process of adding (or subtracting) a low order bit to an
interval end point as extension. Note also that automatic rounding by the computer if
not suppressable by the programmer is a hindrance rather than a help. To implement
floating point interval arithmetic we must make use of machine "left overs". Such "left
overs" are the result of shifting operations performed automatically by the floating
point hardware to arrive at compatible scaling, or of arithmetic cperations that generate
more bits than can be contained in the single precision word, e.ge., multiply and divide.
Fortunately, the leftovers are accessible to the programmer of many digital computers.

Now, getting back to interval widths and their growth, we may see that undue growth
would result from extending downward a positive lower end point of a computed interval
or extending upward a negative upper end point. Thus seperation by sign must be
employed. Also note that on most digital computers, bumping the low order bit by one
bit may-result in a carry into the exponent field or an overflow. Therefore, the
extension of intervals must be approached carefully.

In a typical digital computer floating point operation a single precision
operation leaves a single precision result in one register and a less significant

single precision result in another register. In many cases the mantissa of the low
order result may be zero and may indicate that all bits of significance are contained in
the high order single precision result. In such cases we have the required containment
without interval extension. In that case extension would cause wnnecessary interval
width growthe But, testing for zero in the mantissa may not be enough. If the mantissa
of the low order portion is not zero, extension may be warranted, depending on the signe
If extension is warranted by sign and the mantissa of the low order portion is zero,
extension may be necessary anyway. If the scaling of the two interval end pcint
nurbers prior to the interval operation was different by scme amount (a function of com=
outer word length and other hardware characteristics) the smaller end point may have
been shifted off the low order end of the low order result register. If this possi-
bility arises, then there is no recourse but to separate the exponent portions of the
intervals as they appeared before operation and check to see if extension should occure

The above considerations are characteristic of a finite word length digital
computer interval arithmetic. The rigorous containment required along with the
conservation of interval width results in unfortunately slow program speeds when
compared with an arithmetic performed by the hardware. This is not too surprising as

-6~

the same may be said of other non-hardware arithmetics. Double precision before its
implementation by hardware was also a slow painful process as are present day N-precision
arithmetic programs.

There are some additional techniques which in certain circumstances may be
employed to further conserve interval width without sacrificing containment.

A particular case resulted in the provision of the instruction "SQR" in the
instruction repertoire. This instruction squares an interval number rather than multi-
plying the number times itself. If A is the interval number [A' A"] then using the
"SQRM :Lnstructlon,

=[y]y=x%, A'éxSA"]
is the square of A. If this computation is performed by multiplication,
A XA= [yly =Xz , A'SX®A", A'széA"J

which may result in a wider interval than necessary if A spans zero. Thus for computed
inter‘V'als ’

2%c 4 x A,

The sequence in which computations are performed also influence the resulting
interval widths just as it influences accuracy in finite precision real arithmetic.
For example:

1 1 N
3, 3] [0, 2]
"will result in a narrower interval if [O, ZJN is computed first and then multiplied
by [Another example is:
3, 3

[o, 1] - ([1, 2] + [1, o]) '[o, 1] :[o, 2] = o, 9
1] [, 2] + [o,2]-[-1,0] = [o,2] + [~1,0 = [-1,2)

[o,2] <« [, 2]

The testing of relative sizes of range numbers is not adaptable to a single-
absolute rule of procedurs. However, the user has available a number of instructions
and alternative rules and procedures which should prove adequate for implementing his
definition of size.

where

To be absolutely rigorous you may say: A > Biff xe A, ye€ B = x>y .
This definition is readily applied by use of the single range instruction "CAS", but
the separation is not exhaustive when A) B is non-null. Then, in order to preserve -
the infinite precision result, you must fail to arrive at a result in a number of cases.

If instead we consider A > B to mean JxeA y€B = x> y , then the
division of cases is exhaustive and may be accomplished by successive application of
range instructions CAS, MEET, and SUBINT.

-7=

The latter definition is not completely defensible as, for example, [0, IOOQJ
is taken as being greater than [999.9, 999.9] o Although it is true that based on
the interval computation, the first interval may indeed contain the greater real number,
it is not intuitively appealing if the spread actually characterises the degree of
uncertainty. In such a circumstance, the mid-point of the interval may be a better
measure. In such a case as searching for Pivotal elements in a matrix, it may prove
adequate to examine only the upper ends of the absolute values of the interval elementse

The Input/Output Problem

In order to provide a complete interval arithmetic programming system, it will be
necessary to provide a set of interval input and output programs. Many different input
and output programs already exist. The mechanics of such programs are not of interest
here. The.decimal-octal conversion is an important problem. The arithmetic uses
internally octal numbers in floating point format. We could therefore, make use of an
existing program to input in floating octal format both the end points of an interval.
Since our number system is decimal, the eonversion by hand to octal would be inconven-
ient. If instead, we make use of a standard program and input the interval end points
in floating decimal format, the conversion from decimal to octal may of necessity be an
approximate one and containment may fail. We must, therefore, convert from a floating
decimal input to a floating octal machine representable number and then determine
whether or not interval extension is necessary. Care will still be required to assure
that the floating decimal interval entered contains the infinite precision real number..

An additional problem may arise. If a floating decimal number tc be input
contains more digits of significance than can be accomodated by the input program, then
that floating decimal number must be represented by an interval in which the least
significant figures of the end points differ by one. The resulting conversions to octal
and the necessary extensions may result in an octal representation of the interval
differing by more than one in its least significant figure.

A better procedure would seem te be the inputting of the floating decimal number

to a larger number of significant figures than may be retained. This could be
followed by truncation of the end point of least absolute value and extension of the
other end point to form an interval when the truncated portion is not zero. The result
would be an interval of width no greater than one in its least significant figure.
However, the number of significant figures which must be entered to assure containment
for a computer of some particular word length is not determined., If this proves to be
a large number (perhaps infinite) the procedure must be rejected.

In any event, the interval irput program must allow for input of intervals to
reflect a degree of uncertainty in the data by the user. For convenience, provision
sinould be made for input of a single number with automatic conversion and formation of

an octal interval.

The output problem is much less -difficult. The interval end points to be output
are floating octal numbers of fixed length. The conversion from octal to decimal may
generate more decimal digits than provided for by the output formats. Extension must
then be performed on the binary representations of the decimal digits to be output in
much the same manner as described for the arithmetic extensions. The procedure, though
tedious, is straight forward.

Execution Time

Table I gives execution times for interval instructions in cycles for the IBM 700
series computers. The times vary depending on the different extension procedures

-8-

nécessary as described previously. The zerc cases are not inéludéd, but in this
particular set of programs, such cases are treated separately and much more rapidly.

As in most programming efforts, there is room for improvement. A set of arithmetic
programs is under development which on final checkout should be significantly faster.
For compatibility, the machine instruction repertcire has been restricted to that of the
IBM 709. Additional savings of cycles may be realized with the expanded instruction
repertcire of the IBM 7094. Cycle times in microseconds are;

Model IBM , 709 |709o , 7094

Microseconds | 12 | 28 | 2

The elapsed time for the IBM 709L reflects the machine's instruction look ahead
feature. This feature may contribute a saving of up to a single cycle for each machine
instruction executed. ‘

We arrive at an over-all timing ratio for interval versus machire flecating point
instructions of around I or 5 tc one. This is with the presently far from perfect version
of the interval programs. We conjecture a minimum ratio of around two to one since we
must, of course, perform the specified arithmetic operation on both interval end- points.
It is realistic to assume that in a great majority of computation center oroblems to
which interval arithmetic might prove applicable, the proportion of total program running
time which is deveted to actual arithmetic ccmputation is quite low. Even if we
conjecture a proportion of as much as one half total run time for arithmetic, we arrive
at program run time ratios of approximately two to one., This seems a reascnable price
to pay fer a result which may be unattainable with other methods. '

Programming Procedures

The above discussion has dealt primarily with considerations and characteristics
inherent to the design of the arithmetic itself. We now wish to consider the preparation
of programs employing the arithmetic. It Kill be necessary to make reference to the
particular programming language involved3sU in order to adequately describe these
procedures.

In preparing these interval arithmetic programs an important underlying philosophy
was to place as few restrictions as possible or reasonable on the user and, further, to
attempt to document alternatives and changes which the user could make to suit his
particular objectives. This seemed particularly important since we feel that the surface -
has been barely scratched in finding problem areas to which interval arithmetic may be
meaningfully applied. However, there is nothing sc sure to disccurage a potential user
as a huge document of alternatives from whick he must select, with inadequate knowledge,
to guide his selection. In order to provide a workable approach it was necessary to
document a single selected version of the programs and usage techniques. It is recog-
nised and noted that considerable efficiency may be gained by modification of technique
in some particular direction for a particular applicatiocn. But, the user may still
follow a set of step by step instructions to convert his normal assembly program code to
an interval arithmetic code by substituting the appropriate macro instructions for the
normal floating arithmetic and transmissive instructions in the ccmputational segments
of his progranm. :

This procedure has proven to be a very useful one., A number of existing FCRTRAN
programs were selected from the computation center. In advance of the selection, a small
deck was prepared which contained the macro definitions to be emplcyed and the binary
decks of interval arithmetic, The FCRTRAN source programs were next obtained and

-9

examinede A set of rules of procedure (also prepared in advance) was applied. The
following steps were taken:

1.) The FORTRAN program contained a dimensioned arraye Two choices were indicated;
either write the dimension statement to correspond with those selected in the macros

or change a few cards in the macros to conform to the required array sizeés. The second
of these is warranted only under extremes of storage limited programs. The dimension
statement was changed.

2.) A "COMMON" storage specification card was added to provide working area for the
arithmetic and arrange storage allocation for interval numbers.

3.) The program was recompiled to obtain an assembly program listing of the compiled
programe

L4e) The resulting listing was examined to find the sections of the code where computa-
tion was actually performed. In all the cases selected, this portion of the code was
quite small relative to the indexing, book-keeping and other portions. The computation
region was lined out and translated to coding sheets in a line by line translation
process. This process had been thoroughly described in advance. The operation codes
were the only parts of each instruction requiring alteration in order to perform an
interval operation as opposed to the indicated single precision machine operation. It is
of great significance that no changes in either the address or index designating portion
of the instructions were required. (The only exception to this was to make any numerical
constants emplcyed interval numbers.)

5.) The storage map of the compilation was then consultede "Variables not appearing

in common or dimension statements" were listed on the coding sheets to allocate storage
of two cells for each. A list of "symbols not appearing in source program" must also be
compared against the assembly listing and storage allocated to any that do not appear in
the listing. '

6.) The Ytranslated coding and the augmenting storage allocation was keypunched. The
entire listing with translated segments lined out was then keypunched. '

7.) The resulting decks were merged and the macro definition deck was added. The
resulting program was assembled and run with the binary decks of the previously assembled
interval arithmetic.

A number of comments on the results of such a procedure are in order. The first
and foremost comment is that a useful and usable program may be created in this fashiore
In order to gain perspective with regard to the resulting effectiveness of the process
a particular program will be referenced. The Scientific Computation Center was requested
to provide a program for matrix inversion. The program received used the Crout method
with pivot searchinge.

The program was in subroutine form. Steps one through seven as detailed above
were followed by the author. The total time spent, exclusive of keypunching, was one
heur and fifteen minutes. The result is a working matrix inversion program employing
interval arithmetic. The program listing as generated by the ccmpiler consisted of 637
lines of code. Of these, only 56 were arithmetic instructions requiring translation.
The translated instructions employing macros result in an expansion in ratio of about
five to one of the original arithmetic instructions after assembling. In addition, 49
lines of storage allocation code were written. - The resulting program is about 920 lines
of assembly coding,

«10-

It may be argued that the resulting code is inefficient. To a point, this is true.
However, it must be argued that the resulting code is proportionately less inefficient
than the initial FCRTRAN code. The effect on computer running time of the inherent
inefficiencies of the compiler language is retained but its contribution to over-all
program running time is decreased in proportion as the running time for essential compu-
tation increases because of the slower arithmetic. Thus, we may say that the resulting
interval arithmetic program is in a sense more efficient than the original FORTRAN
program.

This suggests that programs to be coded in interval arithmetic may be coded first
in FORTRAN and then converted to interval arithmetic. Such a procedure should appeal to
a computation center aware of the disparate amount of time required for coding in a
compiler language as opposed to an assembly language, and further, the level of
experience required for the translation process is much less than that required for
direct programming.

The next and inevitable step for an operational interval arithmetic is to automate
the translation process. If, indeed, it may be performed as readily as described above,
it should prove adaptable to an interpretive programming process, and it does. At the
time of this writing, the automatic translation process for interval arithmetic coding
is not yet operational, but work is progressing most promisingly.

APPENDIX I

Instruction Repertoir

In the following list A = [A!', Ar] will represent the intsrval number contained
in the interval accumulator. I = [I', I"] will denote the interval number specified
by the instruction address. 2 = [Z', 2"] will denote the interval number zero, i.e.
Z' = Z" = 0. The symbol @ will denote the null set. NI refers to the next sequential
instruction in the program. The standard set theory notation for unicns, intersections,
and subsets is employed. Additionally, the symbol, = , will be used as follows:

A = T implies that the intersection of A and I is non-null, i.zce AN I # @. The
symbol "=—=3 " may be read as "replaces'.

ADD A+I —> A

SUB A-I —s A

MULT AxI — A

DIV IfINz=¢g, A/I — A
If I/)Z # £, error stop occurs

LOAD I — A

STO A— 1

NLCAD -I— A

NSTO A — I

SQR I2e— A

ABS |1l — A

s [1,] /I —a

CAP IEANIF B ANI —>A, take NI + 1
If ANI=§, take NI

CUP IfANIFP AUI —» A, take NI + 1
If ANI=f, take NI

~11-
CAS I, take NI
I, take NI + 1
I, take NI + 2

Ll

MEET A, take NI .
A, take NI + 1
I, take NI + 2

I# @ and none

:..DHH
D22Aw N AQ vV

-

SUBINT ", take NI

= -

s take NI + 3

]
AV Db nAA g

(o)

O HR

SQRT , YT — 2

BE BEEEER BREEEE EBEH

HH =8k HE >

o

APPENDIY TT

Saﬁple Macro Definitions .

< I" < A", take NI +
< A" < IM, take NI +

of above is true, take NI + 3

I= ¢, error stop occurs

1
2

above is true, error stop occurs
= f, error stop occurs

, error stop occurs

Common storage of an-interval array of dimension 50 by 50 is assﬁmed.

RNG MACRO Y,T,0P
SXA *+6,]
CLa Y,T
STO OPER
CLA Y-2500,T
STO OPER+1
TSX $r0P1,)
AXT el
RNG END
10AD MACRO Y,T
cLa Y,T
STO ACC
CLa Y-2500,T
STO ACC+1
LOAD END
STOR MACRO Y,T
cla ACC
STO Y,T
CLA ACC+1
STO Y-2500,T
STOR END

Common storage of four locations for interval

OPER is also required.

arithmetic pseudo registers, ACC and

-]2=

Sample Line by Line Translation

Assembly listing of Translated program to

FORTRAN program use interval arithmetic

® []

SXD C)102,4 SXD €)102,4

IXD C)105,2 LXD €)105,2

1LXD 11,1 LXD 11,1

1DQ A+1,1 LOAD A+1,]

Fi A+1,2 RNG A+1,2,MULT

FAD A+LL RNG A+1,l,ADD

STO A+1, L . STOR A+l,L

TXI #+1,1,50 TXI #+1,1,50

TXI #+1,2,1 TXI #1,2,1

TXL 314,2 TXL 314,2
ACKNOWLEDGMENTS

R. E. Moore aided and supported this work in all stages of its development. An
earlier arithmetic program by Dale Thoe, a differential equations-program by Ann Davison,
and suggestions from S. Shayer and W. Lowney have been of great assistance.

REFERENCES
1. Interval Arithmetic and Automatic Error Analysis in Digital Computing, R. E. Moore.
Technical Report No. 25, Applied Mathematics and Statistics Laboratory, Stanford
University, Stanford, Calif., 15 Nov. 1962.

2. Automatic Error Analysis in Digital Computation, R. E. Moore. Technical Report
No. 48421, Lockheed Missiles and Space Co., Sunnyvale, Calif., 28 Jan. 1959.

3. IBM 709/7090 Programming Systems: FORTRAN Assembly Program (FAP). Reference Manual,
Form C28-6235, IBM Corp., Poughkeepsie, N. Y., September 1962.

L. IBM 709/7090 FORTRAN Programming System. Reference Manual, Form €28-6054-2, -IBM Corp.,
Poughkeepsie, Ne Yo, January 1961.

ARITHMETIC

TABLE I. TIMING
Interval Instruction Add & Sub. Mult,. Div,
Cycles, single precision, IBM 709 & 7090 6 - 15 2 - 13 3 -13
Cycles, interval, IBM 709 & 7090 82 - 104 51 -85 L2 -7
Cycles, single precision, IBM 7094 2 -12 2-5 3-9
Cycles, interval, IBM 709) 7h - 98 51 -69 L2 - 66
Number of machine instructions in interval Ll 30 24
program
Elapsed time in cycles for IBM 709} interval 30 - 5L 21 - 39 18 - 42
program
Approximate times in microseconds:
Single precision IBM 709 180 156 156
Single precision IBM 7090 33 28 - 28
Single precision IBM 709 22 8 16
Interval IBM 7094 . 8L 60 60
Approximate ratio, Int./S. P. L to 1 7Ttol L tol

TABLE II. DIFF:RENTIAL EQUATIONS EXAMPLE

After 1/l Orbit

" Variable £(0) flachine Arithmetic

Interval Arithmetic

X 0.0l 3.7193 x 103

Y 0 3.9097 x 10-2

z 0

X 0 - L. 9775 1

% L9 3.7350 x 10~
0 0

t 0 1.1891 x 10~2

J7173 x 10‘3 3.7212 x 10-3]
.9096 x 102, 3.9099 x %0-2}
0
E L. 9777, & .9773]
B.7312 x 1071,73.7388 x 10-1]
[0 0
[1.1890 x 10-2 1.1891 x 10-2J

	
	
	
	
	
	
	
	
	
	
	
	
	
	

