
InK: Reactive Kernel for Tiny Batteryless Sensors

Kasım Sinan Yıldırım
∗

Ege University

Izmir, Turkey

sinan.yildirim@ege.edu.tr

Amjad Yousef Majid

Delft University of Technology

Delft, The Netherlands

a.y.majid@tudelft.nl

Dimitris Patoukas
†

Delft University of Technology

Delft, The Netherlands

d.patoukas@student.tudelft.nl

Koen Schaper
‡

Delft University of Technology

Delft, The Netherlands

k.p.schaper@student.tudelft.nl

Przemysław Pawełczak

Delft University of Technology

Delft, The Netherlands

p.pawelczak@tudelft.nl

Josiah Hester

Northwestern University

Evanston, IL, USA

josiah@northwestern.edu

ABSTRACT
Tiny energy harvesting battery-free devices promise maintenance

free operation for decades, providing swarm scale intelligence in

applications from healthcare to building monitoring. These devices

operate intermittently because of unpredictable, dynamic energy

harvesting environments, failing when energy is scarce. Despite

this dynamic operation, current programming models are static;

they ignore the event-driven and time-sensitive nature of sens-

ing applications, focusing only on preserving forward progress

while maintaining performance. This paper proposes InK; the first

reactive kernel that provides a novel way to program these tiny

energy harvesting devices that focuses on their main application

of event-driven sensing. InK brings an event-driven paradigm shift

for batteryless applications, introducing building blocks and ab-

stractions that enable reacting to changes in available energy and

variations in sensing data, alongside task scheduling, while main-

taining a consistent memory and sense of time. We implemented

several event-driven applications for InK, conducted a user study,

and benchmarked InK against the state-of-the-art; InK provides up

to 14 times more responsiveness and was easier to use. We show

that InK enables never before seen batteryless applications, and

facilitates more sophisticated batteryless programs.

CCS CONCEPTS
• Computer systems organization → Embedded software; •
Hardware → Analysis and design of emerging devices and
systems; • Software and its engineering → Embedded soft-
ware;

∗
K. S. Yıldırım is also affiliated with Delft University of Technology, The Netherlands.

†
D. Patoukas can be also contacted via patoukas@gmail.com.

‡
K. Schaper can be also contacted via kpschaper@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SenSys ’18, November 4–7, 2018, Shenzhen, China
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5952-8/18/11. . . $15.00

https://doi.org/10.1145/3274783.3274837

Sense Features

Sample
Temp

5

32signal(Accel)
Motion overthreshold.

energy(HIGH)
High energy available.

timer(5s)
Timer elapsed.

High

Low

Priority

Event Task Thread TH1: Send

TH2: Activity

TH3: Temperature

Sleep

Sleep
7

Sleep
7

7

Classify

EWMA

Transmit State

6

4

1

1
6 12

3 4 5
7 7 7

Figure 1: An InK sensing application that measures and sends data
depending on available energy, motion triggers, and the output of
a power failure-resistant timekeeper. The simulated task execution
trace is shown. InK is the first event-driven runtime for batteryless,
energy harvesting sensor networks. InK fairly schedules concurrent
task threads that span power failures and respond to events—like
high energy availability, hardware interrupts, and elapsed time.

KEYWORDS
Kernel, Reactive, Batteryless, Intermittent, Energy Harvesting

ACM Reference Format:
Kasım Sinan Yıldırım, Amjad YousefMajid, Dimitris Patoukas, Koen Schaper,

Przemysław Pawełczak, and Josiah Hester. 2018. InK: Reactive Kernel for

Tiny Batteryless Sensors. In The 16th ACM Conference on Embedded Net-
worked Sensor Systems (SenSys ’18), November 4–7, 2018, Shenzhen, China.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3274783.3274837

1 INTRODUCTION
Advances in computational power, decreases in device size, and

progress in communication and energy harvesting circuits are en-

abling stand-alone and sustainable applications for the Internet

of Things (IoT) [38]. Soon trillions of tiny sensors collecting, pro-

cessing, and communicating data will fundamentally change how

we view healthcare [10], water infrastructure [48], energy-efficient

buildings [4, 15], and our interactions with the natural world [37].

To make this vision feasible energy harvesting must be leveraged

https://doi.org/10.1145/3274783.3274837
https://doi.org/10.1145/3274783.3274837

SenSys ’18, November 4–7, 2018, Shenzhen, China K. S. Yıldırım et al.

and batteries must be left behind, allowing near permanent sensing

at low cost and size with reduced ecological impact.

Batteryless sensing devices like Flicker [20] or WISP [45] harvest

energy opportunistically from the environment (via solar cells, RF

scavenging, thermal or kinetic conversion) and store the energy in

small capacitors. Computation, sensing, and communication tasks

proceed when enough energy is available to turn on the processor,

at which point execution continues until energy is exhausted and

the device abruptly fails: leading to an intermittent execution. These
often frequent (up-to 10 times per second [39]) power failures reset

the processor’s volatile state, zeroing memory and register contents,

clock cycle counts, and rendering timestamps and timers useless.

Therefore, programsmust store volatile state to non-volatile memory
(FRAM [50]) before power failures.

While the most successful wireless sensor network operating

systems, e.g. TinyOS [31] and Contiki [17] are event-driven and

dynamic, recent work in intermittent computing is neither. Current

approaches preserve forward progress using checkpoints automat-

ically inserted at compile time [5, 7, 28, 39], or require program

refactoring into task based models [12, 22, 34]. These program-

ming models are static; they cannot respond or adapt to a changing

environment or hardware interrupts, and polling-based; meaning

they waste energy actively looking for changes, instead of pas-

sively waiting for an interrupt. Sensor networks are inherently

event-driven: responding to changes in the environment, timer and

hardware interrupts, and communications to determine the next

task to complete, or the data to collect. Besides, modifying existing

event-driven kernels, e.g. TinyOS and Contiki, or programming

models, by inserting checkpoints to handle intermittent execu-

tion is by no means useful. Power failures, in particular during

interrupt handling, can leave non-volatile state partially updated,

leading volatile state to be inconsistent with non-volatile state.

These inconsistencies cause intermittent execution to deviate from

continuously-powered behavior, potentially leading to unrecover-

able application failures [32].

In this paper we introduce the Intermittently-Powered Kernel
(InK), the first reactive task-based run-time system for batteryless,

energy harvesting sensors. InK eschews the static task execution

model, and instead enables energy-adaptive, event-driven, and time

sensitive applications for batteryless sensing devices. Compared to

existing kernels for embedded systems, InK exhibits new proper-

ties dedicated to batteryless systems. In particular, InK (i) ensures

forward progress of computation by executing restartable atomic

tasks encapsulated by task threads each with unique priority; (ii) en-

sures time constraints of task threads by employing preemptive and

power failure-immune scheduling and building a timer subsystem

composed of persistent timers; (iii) ensures memory consistency dur-

ing event handling, as interrupt handlers are not inherently atomic

and power failures during their execution might lead to memory

inconsistencies. An example application with multiple threads is

shown in Figure 1. This figure shows how InK is the first intermit-

tent computing system that allows developers to create programs

composed of multiple distinct prioritized threads comprising sens-

ing, computing, and communication; to schedule periodic sensing

tasks, respond to events in the environment, and adapt to changes
in energy harvesting availability—all while managing intermittent

power failures, memory consistency, and timekeeping duties be-

hind the scenes with low overhead. InK is generic, enabling reactive

sensing applications despite intermittent failures, on a multitude of

hardware.

Contributions: Wemake the following contributions in this paper

supporting the InK reactive runtime:

(1) Event-Driven Programming: we introduce a new pro-

gramming model and several new abstractions for inter-

mittent computing; comprised of task threads with different

priorities, inter- and intra-thread control flow declarations,

inter-thread communication interfaces, event notification

and handling mechanisms, and time management.

(2) Reactive InK Runtime: we design and implement a reac-

tive runtime featuring apreemptive scheduling policy; en-

abling several (in)dependent task threads and applications

with different priorities to run in an interleaved manner, re-

sponding to energy, time, and sensing events, and ensuring

power failure resilience, memory consistency, and correct

control flow.

(3) Performance Comparison and Reactive Applications:
we evaluate InK against state-of-the art systems and find

our approach is up to 14 times more responsive to events

in realistic intermittent power condition. We develop, for

the first time, event-driven and reactive applications for bat-

teryless sensors and tested them on different platforms like

an intermittently-powered small batteryless robot. We also

conduct a user study that demonstrates usefulness of InK.

(4) Open Source Release:we release InK [1]
1
as a open-source

resource to the community; with example applications to

increase the impact of this work and batteryless sensor net-

works.

2 BACKGROUND AND RELATEDWORK
The vision of sustainable, and ubiquitous computing in the IoT [43]

will likely require sensor networks to leave their batteries behind

and scavenge energy from the ambient [18, 44, 46]. Long lifetimes,

low maintenance, and lower ecological impact make batteryless de-
vices a promising alternative to the battery-powered devices used

today. However, unpredictable energy availability leads to inter-

mittent computation from frequent power failures. Despite new

hardware platforms and energy management strategies [20], and

an array of approaches for application development (see Table 1),

creating batteryless sensing applications is difficult, as evidenced

by the lack of widespread deployment, and our own studies of

developer adoption (Section 4.5).

2.1 State of the Art
We detail related work below and in Table 1.

Computational RFID Runtimes. Dewdrop [9] was the first run-

time to use unstable harvested energy in order to run tasks. A task

is considered a short computation which should complete without

any interruption. Unfortunately, Dewdrop is not power failure-

immune since the program and the computation state is lost after a

1
We invite the reader to explore the source, documentation, and resources for InK:

https://github.com/TUDSSL/InK.

https://github.com/TUDSSL/InK

InK: Reactive Kernel for Tiny Batteryless Sensors SenSys ’18, November 4–7, 2018, Shenzhen, China

Model Control flow Mem. type Journaled Data No Dedicated HW ISR interaction Concurrent Apps. C1 C2 C3 C4

TinyOS [31], Contiki [17] Task-based DRAM + Flash None ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dewdrop [9] Task-based + Scheduler SRAM + FRAM None ✓ ✗ ✗ ✓ ✗ ✓ ✗

Mementos [39] Instruction-based SRAM + FRAM Reg. + SRAM ✓ ✗ ✗ ✓ ✗ ✓ ✗

DINO [32] Instruction-based SRAM + FRAM Reg. + SRAM + NV vars. ✓ ✗ ✗ ✓ ✗ ✓ ✗

Hibernius++ [5] Instruction-based SRAM + FRAM Reg. + SRAM ✗ ✗ ✗ ✓ ✗ ✓ ✗

QuickRecall [28] Instruction-based FRAM Reg. ✗ ✗ ✗ ✓ ✗ ✓ ✗

Ratchet [52] Instruction-based FRAM Reg. ✓ ✓ ✗ ✓ ✗ ✓ ✗

Clank [24] Instruction-based FRAM Reg. ✗ ✗ ✗ ✓ ✗ ✓ ✗

HarvOS [7] Instruction-based SRAM + FRAM Reg. + SRAM ✓ ✓ ✗ ✓ ✗ ✓ ✗

Chain [12] Task-based SRAM + FRAM PC + Channel data ✓ ✗ ✗ ✗ ✗ ✗ ✗

Alpaca [34] Task-based SRAM + FRAM PC + NV vars. ✓ ✗ ✗ ✗ ✗ ✗ ✗

Mayfly [22] Task-based + Scheduler SRAM + FRAM PC + Edge data ✓ ✗ ✗ ✗ ✓ ✗ ✗

InK (this work) Task-based + Scheduler SRAM + FRAM PC + NV vars. ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: A comparison of relevant models to program embedded devices. Among them, InK is the only one that overcomes challenges C1–C4
(Section 2.2); NV vars.: variables in non-volatile memory , ISR: interrupt service routine, Mem.:memory, PC: program counter, Reg.: registers.

power failure. On the contrary, InK preserves the progress of the

computation despite power failures.

Non-Volatile Processors. Integration of non-volatile memory to

the processor architecture ensures immunity to power loss [33],

which removes the burden of explicit checkpointing and recovery

with software. Such processors, e.g. [49], are emerging especially for

energy-harvesting scenarios in which the available power supply

is unstable. However, these processors are still in the experimental

stage [5]. Therefore, InK targets conventional off-the-shelf proces-

sors that have both volatile and non-volatile memory.

Existing Programming Models: There is an ample body of re-

cent work aimed at programming batteryless devices by ensur-

ing power failure resilience and memory consistency. Checkpoint-
ing-based systems Mementos [39], Hibernus [6], Hibernus++ [5],

Quick-Recall [28], DINO [32], Ratchet [52], Clank [24] and Har-

vOS [7] journal the processor’s volatile state in persistent memory.

As an example, HarvOS operates at compile time using the control-

flow graph of the program to place trigger calls that will measure

the voltage level in order to decide checkpoint placement. On the

other hand, compiler-based approaches like Ratchet analyze the

program code in order to extract idempotent code sections. The

Ratchet compiler places checkpoints at the beginning of these sec-

tions. However, all of the aforementioned checkpointing-based

systems: (i) are not scalable [7, 32, 39], time and energy costs of

checkpointing grows with the size of the volatile memory, increas-

ing the possibility of exceeding the device’s energy budget; or (ii)

can only be applied to batteryless devices where all memory is non-

volatile [24, 28, 52]. Task-based systems Chain [12], Alpaca [34]

and Mayfly [22] introduce considerably less overhead by using a

static task model: (i) the programmer decomposes a program into

a collection of tasks at compile time and implements a task-based
control flow; (ii) the runtime keeps track of the active task, restarts

it upon recovery from intermittent power failures, guarantees its

atomic completion then switches to the next task in the control flow.

As an example, Chain proposes a programming model that requires

programmers to structure their software into idempotent tasks and

provides access to the non-volatile memory through input-output

channel abstractions among the tasks.

Existing Operating Systems for IoT. The most relevant operat-

ing systems to InK in the IoT are TinyOS [31] and Contiki [17],

both designed for event-drivenwireless sensor network applications.
Both lack a power failure-immune resource management function-

ality. For instance, TinyOS is designed with the assumption of no

battery depletion in the short term. Therefore, its CPU scheduling

and interrupt management services are not useful in the transiently-

powered domain. Taking their code as a foundation and inserting

checkpoints is not sufficient to enable batteryless applications due

to several inconsistencies that occur during interrupt handling. For

instance, when a timer event is fired and checkpointed just before

a power failure, recovery by re-execution of the interrupt handler

is not valid any more since the contents of timer registers are lost.

Thus, it is not easy to make these operating systems power failure

immune [11].

Need for Event-Driven Paradigm Shift: Traditional wireless
sensors use batteries that provide reliable power. In TinyOS [31]

and Contiki [17] nodes sleep until woken by hardware interrupts

or timers to service events. In contrast, intermittently powered de-

vices do not know if energy will be available in the future, so they

greedily consume available energy at the cost of missing events or

data of interest to the application (Figure 2). These missed events

are missed opportunities for higher quality sensing outcomes; de-

velopers want control of their application despite the intermittency,

and bringing the event-driven paradigm to batteryless sensing will

enable this control. State-of-the-art batteryless sensor programming

models fail to support event-driven applications since they mask

first-class features of wireless sensor operation like external event

handling, timekeeping, and energy management. Without these

features, developers are unable to schedule tasks or perform peri-

odic sensing. Moreover, these models are rigid, and do not allow for

in-situ adaptation based on changing energy availability or data.

Event-driven sensing is the next step for batteryless operation, but

significant challenges exist.

2.2 Event-driven Sensing Challenges
We now discuss the challenges associated with using state-of-the-

art programming models: Chain [12], Alpaca [34] or Mayfly [22], to

implement event-driven application with three threads of execution

SenSys ’18, November 4–7, 2018, Shenzhen, China K. S. Yıldırım et al.

UsefulWasted EnergyMissed Useful

Time (s)

G
at

he
re

d
Sa

m
pl

es

Missed Motion Events – execution trace

A
ct

ua
l

D
at

a

Figure 2: State of the art Intermittent programs, based on e.g.
Chain [12], Alpaca [34], Mayfly [22], opportunistically gather data,
missing important events or wasting scarce energy.

listed in Figure 1: TH1–TH3. Unfortunately, this application is not

feasibly implemented without missing events, wasting energy, and

reducing application quality.

C1–Responding to Events:With Chain, Alpaca and Mayfly these
three task threads cannot operate concurrently. To enable event re-
sponse, another task that constantly polls the energy level (TH1),
the motion (TH2), and the elapsed time (TH3) has to be inserted that
could trigger the threads. However, as shown in Figure 2 where an

application samples an accelerometer, events can be missed and

energy wasted. Task based and checkpointing-based programming

models for intermittent computing are rigid in their specification

and inherently non-reactive. To approximate event-driven sensing,

tasks check shared global variables in order to change the con-

trol flow upon events. Such polling-based decision making puts

extra effort on the programmer, wastes considerable amounts of en-

ergy, might intercept timely responses and also breaks the memory

model—see C3. In order to respond to events in a timely manner,

batteryless systems require a dynamic scheduling mechanism that

can switch between different threads at runtime. However, this is

not an easy task since the scheduler itself should work correctly

despite power failures, ensure forward progress of computation,

and maintain memory consistency of the running threads—a crucial

difference as compared to the existing schedulers.

C2–SchedulingTasks:Aforementioned programmingmodels can-
not schedule events in the future, or perform periodic sensing tasks
as in TH3. Scheduling tasks using one-shot or periodic timers is

a common action in battery powered sensors with a reliable no-

tion of time and persistent power. Again, shared global variables

need to be polled continuously by tasks in order to detect periodic

events. Scheduling events, like sampling an accelerometer, are a

way for a developer to gather information or perform a task at the

exact moment it is necessary. Without this ability, intermittent pro-

grams are doomed to oversample at the wrong time, miss important

events or actions in the environment, and waste precious energy

and compute resources. Keeping track of time is challenging as

compared to general purpose embedded systems. To schedule tasks,

batteryless systems need a power failure resilient timer subsystem

that will not lose track of time despite intermittent power. Schedul-

ing mechanisms can leverage this subsystem to make scheduling

decisions.

C3–Handling Interrupts: The memory model of Chain, Alpaca

and Mayfly allow tasks to access internal non-volatile memory via

input/output abstractions (e.g. channels in Chain). Global memory

Application Layer

Kernel Layer

Physical Layer

TH1

Scheduler

THN

Charge
Circuitry

CPU
(MSP430)

InK Libraries…TH2

Sleep
Ctrl

Interrupt Ctrl

RTC

EnergyHWTime

Interrupt/Data/Control Signals

…
tasks tasks tasks

Mem
Mgmt

Figure 3: InK system overview; developers define task threads com-
prised of multiple tasks that are compiled with user and InK li-
braries in the application layer. The kernel layer interfaces with
hardware to gather events, schedule task threads,manage time, and
connect events to application level event handlers.

is not accessible to tasks: each task can only read the outputs of pre-

decessor tasks and write to the inputs of the successor tasks. By this

means, memory consistency issues are avoided. As a consequence,

sharing global variables among tasks and interrupt service routines

(and polling) breaks existing memory models—making event-driven

applications infeasible and continuous sensing to be the only ap-

proach. To support event-driven applications, interrupt service

routines (ISRs) should be able to activate tasks. A reactive scheduler

is required that eliminates polling and abstractions are needed to

let tasks receive data from ISRs without data races and breaking

memory consistency. All these issues, in particular memory in-

consistencies arising from the fact that ISRs are not atomic and in

turn re-executable, are unique challenges belonging to intermittent

systems.

C4–Adaptation: With Alpaca, Chain, and Mayfly tasks run a high
risk of starvation as control flow cannot be interrupted or changed

based on the changing external environment, or programmer in-

sights. Tasks in intermittent computing applications always run the

risk of starvation; sometimes there is not enough energy in the envi-

ronment to power any computation, but the rigid task models of the

state-of-the-art make this more likely. If a single link in the chain

of tasks is never able to complete, either because of low energy or a

programmer error, then all subsequent tasks starve. Consider that

sometimes applications have multiple actions that can be done at

any given time: with current programming models, these actions

must be put in a sequence with rigid control flow. Developers have

few avenues to respond to this; they cannot bake in runtime logic

to handle changing and unpredictable energy situations or new

application requirements.

3 INK: THE REACTIVE KERNEL
We built the InK kernel and programming model to enable de-

velopment of reactive, timely, and event-driven applications for

intermittently-powered batteryless sensing devices. This section

describes the design and implementation. InK is designed to simplify

or eliminate the event management and intermittent programming

challenges described in Section 2 in three key ways:

InK: Reactive Kernel for Tiny Batteryless Sensors SenSys ’18, November 4–7, 2018, Shenzhen, China

(1) Event classification:We classify three categories of events

that are encountered in energy harvesting sensors that could

lead to longer periods of failure, task starvation, and inability

to precisely schedule or time execution of a task.

(2) Task threads Abstraction: To respond to events, we intro-
duce a novel concept, task threads, that have unique priority

and encapsulate multiple restartable atomic tasks dedicated

to a particular job.

(3) InK Kernel: We design a scheduler and kernel that effi-

cientlymanagesmultiple task threads, handles forward progress

of computation, ensures memory consistency, and keeps

track of time. InK kernel provides a new programming model

and language structures to develop event-driven battery-less

programs including services for inter-task thread communi-

cation, event notification and handling, and timekeeping.

The Intermittent Kernel (InK) (shown in Figure 3) enables

developers to write adaptive programs, reduces task starvation, and

allows periodic sensing and timely response to externally generated

events
2
.

3.1 Intermittent Computing Events
Development of InK is motivated by the lack of event handling

in intermittent computing literature. Certain types of event can

cause problems if not handled differently in the context of intermit-

tent computing versus a traditional continuously powered (battery

laden) device. Handling each of these events requires a new pro-

gramming model and a more dynamic runtime operation beyond

the static task based models and the rigid and inflexible time fo-

cused models in the state-of-the-art. We integrate handling of each

of the following event types in InK.

Energy Thresholds: Energy harvesting batteryless devices only

store small amounts of energy and expend it quickly. The amount

of energy available for any period is not constant; it changes based

on the time of day (for example in outdoor solar environments),

the weather, and the location (if mobile). Static task models are not

robust to this energy irregularity; if a high energy radio broadcast

is set to execute in a low energy situation, that task will never

complete. Moreover, if a low energy reading on an accelerometer

executes in a high energy situation, excess energy is wasted. Recent

hardware designs like UFoP [21], Flicker [20], and Capybara [13]

can capture this energy thresholding phenomenon, however cur-

rent programming models do not associate tasks with their energy

requirement, potentially exposing them to starvation.

Timers: Scheduling events in the future is difficult with intermit-

tently powered devices because maintaining time through power

failures is not trivial. When the MCU loses power, an external de-

vice powered by a small capacitor can support timekeeping until

the MCU turns back on. A notion of time beyond timestamps and

data expiration like in Mayfly [22] can provide useful scheduling

mechanisms for periodic or single shot tasks.

Hardware Interrupts: Nearly all sensing devices generate inter-

rupts of some kind. Sensors like accelerometers, gyros, and magne-

tometers can gather data without any involvement from the MCU,

2
Find source code, documentation, and tutorials at our website [1].

storing this in a buffer and then alerting the MCU via an inter-

rupt pin when the buffer is full. Analog sensors have thresholding

circuitry that will wake a MCU when a point is reached. These

hardware interrupts are not captured by current programming

models, but are incredibly valuable to battery powered sensors for

extending battery life and will be valuable to batteryless sensors by

increasing MCU responsiveness (by allowing the MCU to sleep).

3.2 InK Design Space
Before proceeding with the design and implementation details of

InK, we outline trade-offs in the design space for intermittent pro-

gramming models and clarify some of our high level design deci-

sions.

Task-based versus Checkpointing. Two programming models

dominate intermittent computing; task-based and checkpoint based

(see Table 1). In our view, a task-based system provides language

scaffolding that enables reactivity without high runtime cost or

extensive static analysis. Tasks have traditionally been seen as a

useful abstraction to implement scheduling and to enable concur-

rent applications. Moreover, task-based systems handle forward

progress and memory consistency with less overhead. However, the

task abstraction puts a burden on the programmer to decompose

the program code into tasks (or task threads composed of several

tasks, in the case of InK) and define the control flow. This also re-

quires explicit data handing to ensure memory consistency which

is seen in other task-based systems [12, 34]. An alternative method

using automatic checkpoints can be imagined to implement a reac-

tive system. This requires the programmer, compiler, or runtime to

place checkpoints correctly while respecting memory consistency

during event handling. Novel checkpoint placement policies to en-

sure a correct and consistent system execution would be required.

Tasks, instead of checkpointing, lend themselves more naturally

to scheduling unique threads of execution and provide scaffolding

for dynamic execution to overcome starvation and ensure timely

execution.

Dynamic versus Static Scheduling. In batteryless systems tasks

should only start execution when sufficient energy is available. On

the other hand, tasks that do not require much energy that are

executed frequently will starve high energy tasks. For program-

ming models with static tasks this starvation possibility depends

on how the programmer defines the task graph and the size of

tasks. Once deployed this static schedule cannot react to changing

energy conditions. A dynamic scheduling method can solve this

at the expense of higher computational overhead. We take a dy-

namic approach with energy level-driven scheduling enabled by

priorities that identify energy requirements as well as criticality

of the task. This introduces a higher programmer burden as pri-

orities are decided by the programmer. The tension then becomes

managing programmer burden, complexity of dynamic scheduling,

and starvation. Our choice of scheduling algorithm matches the

requirements of most applications with an implementation which

introduces reasonable overhead. We provide details in following

sections.

SenSys ’18, November 4–7, 2018, Shenzhen, China K. S. Yıldırım et al.

Listing 1: Task thread code for TH2 and Energy ISR.

// task -shared persistent variables.
__shared(int data [10]; int i;);

// the entry task of the thread
ENTRY(Sense){

// sample sensor
int read = __sample_acc ();
// data[i] = read
__SET(data[__GET(i)],read);
...
NEXT(Features); // next task is sample

}
...
TASK(Classify){

...
//write pipe
__WRITE_PIPE(TH2 ,TH1 ,value);
...
NEXT(null); // thread finishes

}
...
_interrupt(HIGH_energy)
{

...
event.data = dataptr; // data pointer
event.size = datasize; // data size
event.timestamp = __getTime ();
// post to TH1's event queue
__SIGNAL _EVENT(TH1 ,& _event);
...
/* turn on CPU */
__bic_SR_register_on_exit(LPM3_bits);

}

Sense Features Sleep

HIGH
Energy …

signal
event

ISR

Event Queue

int data[10];
int i;

Shared Buffer __GET(…)

Sleep int send[10];

Shared Buffer

Transmit State

TH2: Activity

TH1: Send

int buf[10];
int timestamp;

PIPE

__SET(…)

__WRITE_PIPE(TH2,TH1)

__READ_PIPE(…)

__SIGNAL_EVENT(TH1)

Classify

Figure 4: Overview of InK execution/memory model and task
threads/ISRs interaction. Arrows indicate API calls of InK services.

Preemption. Dynamic scheduling requires some concept of pre-

emption to provide flexibility in the face of changing energy avail-

ability. The design trade-off comes from the coarseness of the

preemption strategy. InK scheduler preempts task-threads on the

boundary of individual tasks. This task level coarseness of preemp-

tion ensures reactivity with less switching overhead (if for example

the level of preemption was at the instruction level) while maintain-

ing task atomicity and avoiding concurrency errors. This comes

with the price of less reactivity since control flow is changed only

after the execution of the active task is finished. Alternatively, the

scheduler could preempt tasks at any point during their execution.

However this requires checkpointing that introduces extra mem-

ory and compute overhead as well as the possibility of memory

inconsistencies.

3.3 InK Execution Model and Task threads
Taking into account these event types and design trade-offs we

discuss the implementation of InK. InK handles the previously men-

tioned events by introducing power failure proof task threads. These
task threads are the main building blocks of an InK program. A

task thread responds to events and ISRs that triggers corresponding

event-handling. An example implementation of [TH2: Activity]

as described in Figure 1 is presented in Listing 1 and the corre-

sponding execution and memory model is presented in Figure 4. A

summary of InK language constructs are given in Table 2.

Task Threads: A task thread is a lightweight and stack-less thread-

like structure with a single entry point that encapsulates zero or

more successive tasks. These tasks can do computation, sensing, or

other actions, are idempotent, atomic, and have access to shared

memory. Each task thread has a unique priority and accomplishes a

single objective, e.g. periodic sensing of accelerometer. In order to

preserve the progress and timeliness of computation despite power

failures, InK kernel keeps track of each task thread by maintaining

a task thread control block (TTCB) in non-volatile memory
3
. TTCB

holds the state and the priority of the task thread, pointers to its

entry task, to the next task in the control flow and to buffers in
non-volatile memory that holds task-shared variables.

Task Thread Scheduling: The InK kernel implements preemp-
tive and static priority-based scheduling of task threads: the InK

scheduler always executes the next task in the control flow of the

highest-priority task thread. Upon successful completion of this

task, the pointer in the corresponding TTCB is updated so that

it points to the next task in the control flow. In InK, tasks run to
completion and can be preempted only by interrupts. Therefore, task

thread preemption may only happen at tasks boundaries. When an

ISR preempts the current task, it might activate other task threads

of high-priority that are waiting for the corresponding event. Then,

InK does not switch control to the higher priority task thread im-

mediately; it waits for the atomic completion of the current task.

3.4 InK Memory Model
Tasks inside a task thread communicate with each other by manip-

ulating task-shared variables. InK adheres to the data encapsulation
principle by limiting the scope of these variables to the tasks of

the corresponding task thread. Therefore task-shared variables

are bound to the tasks that manipulate them and they are kept

safe from misuse and interference by other task threads. InK al-

locates these variables in the non-volatile memory and they are

double-buffered [32] to preserve data consistency across power

outages—namely an original buffer holding the original copies and

a privatization buffer holding the task-local copies [34].

Data Privatization: The TTCB of each task thread holds pointers
to these buffers. Before running any task, InK initializes the pri-

vatization buffer by copying the contents from the original buffer.

Tasks can read/modify only the content in the privatization buffer

(via __GET and __SET interfaces). On a successful task completion,

the buffer pointers are swapped so that the outputs of the current

task are committed atomically.

Inter-Thread Communication: InK facilitates inter-thread com-

munication through persistent pipes. A pipe is a unidirectional buffer

in non-volatile memory with a timestamp. Any task inside the pro-

ducer task thread can write to a dedicated pipe so that any task in

the consumer task thread can read and perform computation by

considering the timeliness of the data. Since tasks cannot preempt

3
Commercial off-the-shelf microcontrollers like the MSP430FRxxxx (a common micro-

controller for intermittent computing) have volatile SRAM and non-volatile FRAM

memory segments. The MSP430FR5969 has only 2KB of SRAM and 64KB of FRAM.

InK: Reactive Kernel for Tiny Batteryless Sensors SenSys ’18, November 4–7, 2018, Shenzhen, China

InK Language Construct Explanation

__shared(...) Declares task-shared protected variables

TASK(name) Declares an atomic task with given name
ENTRY_TASK(name) Declares a task that will be the entry point of a task thread

NEXT(name) Delivers control flow to the task with a given name
__EVENT_DATA Holds the pointer to the event data in the event queue of a task thread that should be accessed by the entry task

__EVENT_TIME Holds the timestamp of the current event in the event queue of a task thread

__GET(x) Returns the value of the task-shared variable X
__SET(x,val) Sets the value of the task-shared variable X to val
_CREATE(priority,entry) Declares a task thread with a given entry task entry and priority
_SIGNAL(priority) Activates the task thread with given priority within the context of a task thread

_STOP(priority) Stops the task thread with given priority within the context of a task thread

_interrupt(signame) Defines an interrupt handler with given service point signame
__SIGNAL_EVENT(priority,event) Pushes event data event to the event queue of the task thread with given priority and activates it from ISR

__CREATE_PIPE(src,dst,size) Creates a pipe structure of given size between task threads src and dst in order to share data between them

__GET_PIPE_DATAPTR(src,dst) Returns the pointer to the data stored in the pipe between task threads src and dst
__SET_PIPE_TIMESTAMP(src,dst,x) Sets the timestamp of the pipe between task threads src and dst to the given value x
__GET_PIPE_TIMESTAMP(src,dst) Returns the timestamp of the pipe between task threads src and dst

Table 2: Summary of InK Language Constructs. The system API includes necessary calls for task and task thread declaration, memory consis-
tency and control flow handling, event and interrupt management, as well as inter-task thread communication. ,

thread = getHighestPrio();
task = getNextTask(thread);

READY

init(task);
event = lock_event();
run(task);

ENTRY

release(event);

RELEASE-EVENT

init(task);
run(task);

non-entry task

NON-ENTRY

commit()

COMMIT

stop(thread)

SUSPEND

SLEEP

no active
thread entry task

wake-up

no remaining tasks
or events

remaining tasks
or events

Figure 5: The InK scheduler state machine that selects the next task
in the control flowof the thread of highest priority, ensures forward
progress and puts the CPU in sleep mode when possible.

each other and also pipes are unidirectional, pipe access do not lead

to data races even upon power failures.

For the sake of efficiency and simplicity, we did not provide

extra protection over the persistent pipes that enable data sharing

among task thread—the consistency of these shared memory re-

gions should be explicitly handled by the programmer. Alternatively,

this protection could be handled by InK, however, this increases

the implementation complexity and overhead of our system.

3.5 Reactive Execution
In order to ensure reactivity and adaptability, InK implements the

state machine depicted in Figure 5 and maintains a scheduler-state
variable in non-volatile memory in order to ensure forward progress

despite power failures.

The Scheduler Loop: At each loop iteration, the scheduler selects

the task thread of highest priority and executes the next task in

the control flow of the selected thread. During task execution, the

scheduler (i) initializes the task privatization buffer via init; (ii)
for the entry tasks, it locks the event data that triggered thread

execution via lock_event (to eliminate data races between ISRs

and tasks—see following sections), (iii) it executes the task via run,
(iv) for the entry tasks it releases the event via release, (v) it
commits the tasks modifications by swapping buffer pointers, (vi)

it suspends the thread if there are no dedicated events or remaining

tasks. If there is no thread in ready state, the scheduler puts the

micro-controller into low-power mode, saving energy and waiting

for an interrupt for activation. The state machine enables progress

of computation since it continues from the state it is interrupted.

Reducing Starvation: Tasks inside task threads and ISRs can ac-

tivate and deactivate other task threads and change control flow

dynamically. In existing run-times, e.g. Mayfly and Alpaca, control

flow is static, in the sense that all subsequent tasks in the chain

should wait for the completion of predecessor tasks. This leads to

the problem of priority inversion since high-priority tasks can be

blocked due to the lower-priority tasks holding the CPU. On the

contrary, since the InK scheduler alternates between the aforemen-

tioned states, it can switch execution to the high-priority thread:

first, the kernel awaits the completion of the interrupted current

task inside the lower priority thread; then it starts executing the

entry task of the high-priority thread.

Responding to Events: Each task thread in InK has a dedicated

non-volatile event queue that holds the events generated by ISRs.

When any event is generated, the corresponding task thread is

activated so that the thread execution will start from its entry task.
In InK execution model, the event data is only accessible by the

entry task of the task thread: the entry task locks the event data (see
lock_event in Figure 5) to eliminate data races between ISRs and

tasks. The entry task reads the event data and modifies necessary

task-shared variables and then the event lock is released so that the

event data will be removed from the event queue.

Event Handling: Circular buffers hold the data to be shared be-

tween an ISR and a task thread to prevent data races. The buffer

handling introduces additional implementation and execution over-

head but eliminates the need for the programmer to be involved

in this process. As an alternative, unbounded buffers could be im-

plemented, however management of a dynamically growing buffer

SenSys ’18, November 4–7, 2018, Shenzhen, China K. S. Yıldırım et al.

introduces extra overhead at run-time for already memory con-

strained devices
3
.

Interrupt Management: The pre-processing of an interrupt is per-

formed by the corresponding ISR. Then, the rest of the computation

is done by a task thread. When an interrupt is generated, the corre-

sponding ISR delivers the received or generated data to the upper

layers of the system and notifies task thread. Event queues are ring
buffers dedicated for each task thread. They form an intermediate

layer that prevents race conditions and preserves the event data

consistency by eliminating ISRs from modifying task-shared data

directly. When the event queue is full InK removes the event that

has the oldest timestamp from the event-queue to increase the prob-

ability of having fresh data. Once an interrupt is generated, the task

threads is notified by creating an event holding a pointer to the

ISR data and its size, and a timestamp indicating the time at which

interrupt is fired. The corresponding task thread is notified (via

__SIGNAL_EVENT) by passing the pointer event structure so that

the event will be placed in the event queue of the given task thread

atomically.

3.6 Scheduling Events and Timers
InK builds a timer sub-system using an external persistent time-
keeper [23] that keeps track of time across power failures: (i) when

the MCU is running, its internal timers are used to measure elapsed

time; (ii) upon a power failure, the external timekeeper keeps run-

ning and provides elapsed time until recovery. The timer system

implements a timer wheel algorithm to provide two types of timers

for the task threads: expiration timers and one-shot/periodic timers.

Expiration Timers: Task threads set expiration timers in order

to enable timely execution of task threads and stop unnecessary

and outdated computation if necessary; analogous to Mayfly [22]

concepts of expiration. As an example, data read from a sensor

should be processed within a time constraint and if computation ex-

ceeds the required deadline the outputs of the computation are not

useful any more. When an expiration timer fires, the corresponding

task thread is evicted so that it does not consume systems resources,

e.g. CPU, anymore.

One-Shot/Periodic Timers: One-shot and periodic timers are

used in order to schedule events in the future and generate pe-

riodic events, e.g. activating task thread at a given frequency. Since

most of the sensing applications are periodic, these timers are the

foundations of task threads that perform periodic sensing, these

timers build on the persistent timekeeper to keep time across power

failures.

4 EVALUATION OF INK
We proceed with the experimental evaluation of InK. We compare

InK against its counterparts by implementing sensing applications

that require timely response to various events. In our evaluation

we measure several metrics to observe the reactiveness as well

as overhead in terms of time, energy and system resources. Con-

sidering these metrics, we show that InK improves the reactivity

of batteryless sensing applications up to 14 times as compared

to its counterparts, by introducing a reasonable system overhead.

Moreover, our user studies demonstrate that InK is the preferred

language for new generation event-driven applications for battery-

less systems. Finally, our case studies show that InK enables new,

never before seen sensing applications. We aim to help developers

in learning and contributing to InK by providing resources to the

community with a dedicated website [1].

4.1 Experimental Setup
We describe the experimental setup used in assessing the perfor-

mance of InK against existing state-of-the-art runtimes and as a

stand-alone system. Our setup considers replicability of results and

varying types of energy supply.

Target Embedded Platform: The experiments were conducted

using TI MSP-EXPFR5969 evaluation boards [26]. This platforms

uses 16MHz MSP430FR5969 MCU with 64 kB and 2 kB of of non-

volatile (FRAM) and volatile memory (SRAM), respectively. We

set the micro-controller frequency to 1MHz during our experi-

ments. Whenever necessary, InK sensing system interacted with

low-power accelerometer [47], low-power microphone [3] and in-

frared transmitter (Vishay Semiconductor TSOP38238)/receiver

(generic 950 nm infrared LED) pair.

Runtimes for Intermittently-Powered Devices: InK was com-

pared against two state-of-the-art runtimes: MayFly [22] and Al-

paca [34]. For each runtime we have prepared the same application

introduced in the subsequent sections and composed of the same

set of tasks and control flow.

Measurement Equipment:Weused the Saleae logic analyzer [41]

to measure the performance metrics of all applications that were

implemented during experiments. Data was parsed with dedicated,

on-line accessible [1], Python scripts.

Intermittent Power Supply: We used two setups to provide re-

peatable experimentation: a real wireless power supply (used in

InK case studies) and emulated power (for repeatability and replica-

bility of comparative measurements). Real wireless power supply: To
power MSP430 evaluation boards, we used Powercast [14] TX91501-

3W transmitter emitting RF signal at 915MHz center frequency to

P2110-EVB receiver [14] (one per each MSP430 board) co-supplied

6.1 dBi patch antenna. Controlled-power supply: we considered two

approaches per different experiments. Approach (1) used the Ekho

platform [19] that replays a realistic and repeatable (recorded from

real harvesters) I-V surface to the MSP430 evaluation board. Ap-

proach (2) is based on a dedicated MSP430 evaluation board that

interrupts the power supply of the other board by controlling the

RST pin [51, Sec. 5.12.2], with a uniformly distributed interrupt

period in the interval of [0, 0.5] seconds.

4.2 Reactive Application Performance
We start with demonstrating the main strength of InK: fastest reac-

tivity of programs for transiently-powered devices.

Implementation:We implement a batteryless conditionmonitoring
application in InK. Two threads are considered: one (first priority)

that detects whether a new event happens (like arrival of a new item

to a CNC router), and a (second priority) event which detects the

condition of a device (like specific vibration of a machine). The first

thread is triggered by a sound overthreshold and implements an

InK: Reactive Kernel for Tiny Batteryless Sensors SenSys ’18, November 4–7, 2018, Shenzhen, China

Ekho (Solar) Ekho (RFID) Cont. power
0

0.5

1

S
u

c
c
e
s
s
 r

a
te

InK Alpaca MayFly

Ekho (Solar) Ekho (RFID) Cont. power
0

0.5

1

M
is

s
e
d

 e
v
e
n

t
ra

te

InK Alpaca MayFly

Ekho (Solar) Ekho (RFID) Cont. power
0

10

20

30

M
a
x
 P

o
w

e
r

O
n

 t
im

e
 (

s
)

InK Alpaca MayFly

Ekho (Solar)Ekho (RFID)Cont. power
0

500

1000

D
e
a
th

 c
o

u
n

t
InK Alpaca MayFly

Figure 6: Performance metrics of reactive sensing application, im-
plemented using InK, MayFly and Alpaca. Performance of all run-
times is compared to the continuous power case. InK improves the
reactive application performance by orders of magnitude for all
metrics.

FFT (analyzing data from a microphone), while the second samples

and records data from the accelerometer periodically. This appli-

cation was also implemented using MayFly [22] and Alpaca [34]

runtimes for comparison. Since Mayfly and Alpaca are not event-

driven and they do not allow interaction with interrupts, the only

way to implement this application was to use a control flow that

implements a polling loop: the microphone is checked to catch the

sound overthreshold and perform FFT if required; and then reading

the accelerometer and performing sensor data related computations

continuously. Since Alpaca has no notion of time (contrary to InK

and MayFly) we could not consider timeouts. Also, Alpaca makes

it impossible to use external libraries, e.g. accelerated FFT library

for TI MSP430 MCU. Therefore, in the comparison we mimic the

FFT operation by a constant delay loop.

For the replicability of power failures from energy harvesting an

Ekho [19] emulator powered the target embedded platform. Ekho

repeats, in an infinite loop, a pre-recorded one minute (i.e. a max-

imum length Ekho can support) I-V curve recorded from one of

two energy harvesting sources: (i) 22×7mm IXYS Solarbit solar

panel [27] which was relocated from indoor to cloudy outdoor

sunlight—representing the trace with long periods of energy avail-

ability; and (ii) a WISP harvester powered by Impinj Speedway 420

RFID reader [25] with readers’ antenna at initial 25 cm distance

fromWISP was relocated to 10 cm and again to 25 cm—representing

trace with very high power intermittency rate. Data from the con-

dition monitoring application was collected for five minutes of

continuous operation, for five runs with each runtime.

Metrics: We have measured the following reactivity metrics for

each runtime: Success Rate—the rate of successfully executed highest
priority events; Missed event rate—how many high priority events

are missed due to either power failures or on-going low-priority

computation; Maximum ‘Power On’ Time—the longest duration

that the device was alive (at intermittent power); and Death Rate—
the number of power failures (at intermittent power) during the

experiment.

Power Power Failures Motion over Threshold Catch Rate IR Trans.

Continous 0 8 1 6

RF 36 6 0.66 1

Table 3: The response to the activity event of the batteryless voice-
controlled activity recognition application.

Results: The result is presented in Figure 6. We observe that InK is

the most reactive runtime of all, improving over the success rate
of Alpaca and Mayfly by 14 and 13 times, respectively (for the

solar power case). Naturally, InK cannot obtain a perfect success

rate, simply because of death during the interrupt arrival. Also, InK

misses the least number of priority threads (Figure 6 (top, right))

compared to other runtimes. Mayfly is less reactive compared to

Alpaca, as it must check the timing constraints of every single task

in between actual task execution; for sophisticated programs with

more than ten tasks this reduces the percentage of time Mayfly

can poll for events. We note that Mayfly died fewer times in our

experiments, due to implementation differences in startup where

Mayfly stores energy to enable timekeeping, however, we note that

this reduced death count did not increase reactivity as Mayfly was

unavailable for compute during this startup period. InK had the

highest effective ‘power on’ time and the lowest death count among

all runtimes: Figure 6 (bottom left and right).

4.3 Real-World Event-Driven Applications
We demonstrate several never before seen batteryless applications

enabled with the event-driven programming supported by the InK

kernel. The development of these applications is not feasible with

existing runtimes like Alpaca or Mayfly due to the challenges C1–
C4 listed in Section 2.

4.3.1 Batteryless Event-Driven Sensing. We start with the first case

study: voice-controlled batteryless activity recognition.

ApplicationChallenges:Weused a low-power accelerometer [47]

for the classification of activity and amicrophone [3] for voice recog-

nition connected to TIMSP430 board. Initially the system is sleeping

and a voice recognition task thread is waiting to respond to the

accelerometer interrupt to detect motion over a threshold (require-
ment for C1 and C3). When this event is detected, the voice recog-

nition task thread starts responding to the interrupts generated by

the microphone and recognizes the ‘start’ command (requirement
for C1 and C3). After the start command is detected, the activity

recognition task thread is activated to periodically sense and clas-

sify ongoing activities (requirement for C2). When the available

energy is over 2.5 V the comparator COMP_E of MSP430fr5969 is

programmed to generate an interrupt. When this energy threshold

interrupt is generated (requirement for C4), the control is switched
to task thread that sends the classification results using an infrared

transmitter via simple OOK modulation.

Results: We collected the success rate of activity recognition dur-

ing five minutes. The system is powered continuously (to use as

a reference for comparison) and by using Powercast transmitter.

Table 3 shows our measurement results. With continuous power,

8 motion threshold interrupts were detected and all of them were

processed on time. Among them, energy levels allowed to perform 6

SenSys ’18, November 4–7, 2018, Shenzhen, China K. S. Yıldırım et al.

Energy
Harvester

Super
Capacitor

Solar
Cell

MCU
Proximity

Sensor Gyroscope

Geared
DC Motor

Geared
DC Motor

206-11 DC motor
Precision Microdrives

BQ25570
energy harvester

IXYS SLMD121H04L-ND
solar cell

Maxim Integrated
MAX44000

proximity sensor

Bosch Sensortec
BMG250 low power
triaxial gyroscope

TI DRV8836
dual H-bridge

WISP

H-Bridge

Energy

Energy

Control

Energy

Energy
i2c

22 mF - 4.5 V AVX
supercapactor

Figure 7: Batteryless small autonomous robot: top figure—block di-
agram; bottom left—robot PCB design (front side): harvester (U1),
gyroscope (U2) andH-bridge (U3); bottomcenter–robot PCBdesign
(back side): super-capacitor), bottom right—complete robot.

Design Motion Speed Size Weight Storage Time to Recharge
(cm/s) (mm) (g) (mAh) recharge method

Roverables [16] wheel N/A 40×26 36 100 45 min inductive

Zooids [30] wheel 50 26×26 12 100 1 h manual

mROBerTO [29] shaft 15 16×16 10 120 1.5 h manual

GRITSBot [36] wheel 25 31×30 60 150 1 h contact

Kilobot [40] vibration 1 33×33 17.6 160 3 h manual

HAMR-VP [8] legged 44 44×44 2.3 8 3 min manual

This robot wheel 25 35×40 22 0.006 <5 s solar

Table 4: Comparison of our batteryless harvesting robot against
state-of-the-art small robotic platforms.

IR transmissions after activity classification. With RF power, power

failures were observed 36 times, 6 motions above thresholds were

detected and almost 4 of them processed on time. Energy levels

allowed to perform only 1 IR transmission in this case.

4.3.2 Batteryless Intermittent Actuation. We continue with the

second case study: a tiny batteryless robot designed to perform

autonomous reconnaissance sensing tasks. Using this robot, we

demonstrate that InK enables reactive control of batteryless energy-

harvesting actuators.

Batteryless Robot Motivation: Referring to Table 4, state-of-the-
art robotic platforms are battery-dependent and require physi-

cal/proximity contact to recharge. Our idea is to remove these obsta-

cles by providing power directly from the harvesting source (solar

panel) to the environmentally-friendly storage (super-capacitor).

The consequence is the intermittent movement of a robot. Move-

ment stops after short move duration (in the order of seconds).

Robot Design: Figure 7 provides our robot design overview. The

robot is designed around aWISP 5 [35] which allows the observer to

send controlmessages from the RFID reader.WISP’s TIMSP430FR5969

MCU serves as the main robot control system. DCmotors were used

as actuators. Two motors are mounted diagonally opposite from

each other in a 3D-printed frame. Small plastic wheels with rubber

tires are mounted directly on each of the motor shafts. Behind the

motors a free running caster wheel is mounted to the frame. PWM

controls the robot’s speed and is used to reduce the average current

80 90 100 110 120 130 140 150

Distance (cm)

20

40

60

C
o

m
p

le
ti

o
n

 t
im

e
 (

s
)

80 90 100 110 120 130 140 150

Distance (cm)

0

2000

4000

6000

N
o

.
re

s
e

ts

Master

Slave

Figure 8: Intermittent communication experiment result: two
MSP430 boards are connected together using UART RX/TX ports
exchanging messages in an infinite loop, also connected to Power-
cast receiver boards and powered by the RF. Left figure: completion
time, right figure: the number of resets at different distances to the
transmitter.

consumed by the motor. A large bulk capacitor supplies short high

current demand from the motors.
4

Robot Control:We implemented a simple PID controller feedback

loop to drive the robot. Our transiently-powered robot can make

one movement, which requires multiple power cycles to complete.

To finish the required move upon power failures and to capture

the progress towards the movement target, several InK services

are used. The PID control loop is implemented as a task thread

that is scheduled to execute every time a robot is powered. At

each periodic activation, the thread samples the yaw-rate using

the gyroscope and executes the tasks of the control algorithm to

update the motor parameters.

4.3.3 Batteryless Intermittent Communication. We conclude with

the final case study. We demonstrate that InK enables a basic dis-

tributed processing system via communication over the serial port.

Batteryless Communication Challenges: Twomaster and slave

TI MSP430 boards are powered using independent intermittent en-

ergy harvesting sources (one Powercast receiver per MSP430 board

and placed at several distances to the RF Powercast transmitter—

one per receiver). The master board implemented two task threads

(requirement for C1): the main thread generates a random signal

composed of 16 floating point values, transmits the signal to the

slave board and computes the DFT of this signal; meanwhile an-

other thread waits UART RX events (requirement for C1 and C3),
receives the DFT result of the slave node composed of 16 floating

point values and pushes the result to the pipe of the main thread

and activates it (requirement for C1); then the main thread compares

its results with the one in the pipe and toggles an output port if

they are equal. The slave board implemented one task thread that

waits for UART RX interrupt to receive the random signal from

the master node (requirement for C1 and C3), computes the DFT of

the received signal, sends the result to the master node. In order

to keep track of the delivered packets, the sender side sets a one-

shot timer (requirement for C2 and C3) and awaits acknowledgment

(ACK) from the receiver side. If ACK is not received, the packet is

re-transmitted.

Results: We monitored the output ports of the boards for 15 min-

utes per each Powercast transmitter/receiver distance. Figure 8

4
In-depth information about the robot hardware and software and InK implementation

of robot control algorithm is provided in [2, 42] and InK repository [1], respectively.

InK: Reactive Kernel for Tiny Batteryless Sensors SenSys ’18, November 4–7, 2018, Shenzhen, China

InK Alpaca MayFly

Time (ms)

Memory (B)

Time (ms)

Memory (B)

Time (ms)

Memory (B)

.text .data .text .data .text .data

AR 4151 3442 4459 8361 7970 724 4464 8700 2496

BC 546 2922 4433 912 6290 818 1019 8066 846

CF 495 2648 4693 199 8494 2352 — — —

Table 5: Execution time and memory consumption for three bench-
mark applications written in InK, Alpaca and MayFly. Since it was
not feasible with Mayfly to develop CF application, its correspond-
ing values are shown with —. Overall results show that InK’s over-
head is comparable with its counterparts.

present our measurement results. During the execution of the ap-

plication, not only the computation but also the communication

is interrupted frequently, especially at distances 80–120 cm—since

time to charge is longer at further distances, this led to the longer

duty-cycles, less power failures and number of completions. We

observed that the applications on both master and slave nodes are

always completed successfully despite frequent power losses.

4.4 InK System Overhead
We continue with assessing the overhead of InK by implementing

common computation-based benchmarking applications and com-

paring their execution time, code size and memory requirements.

Implementation: The complete suite of benchmarking is com-

posed of: (a) Activity Recognition (AR): machine-learning enabled

physical activity classification using locally generated accelerome-

ter data, (b) Bitcount (BC): bit counting in a random string based on

sever different methods, cross-verifying correctness, and (c) Cuckoo
Filtering (CF): runs a cuckoo filter over a set of pseudo-random

numbers and performs the sequence recovery using the same fil-

ter. We implemented these applications in InK, Alpaca and Mayfly

using the same task partitioning and control flow. Unfortunately,

loops are not allowed in a Mayfly task graph as the data and con-

trol flow are the same (leading to infinite data growth). Therefore,

non-sensing applications like CF cannot be implemented in Mayfly

because of the multi-level loops and control flow disassociation

from data flow.

Results: For the fairness of the comparison, we run the afore-

mentioned benchmarking applications on continuous power. To

measure the execution time, we sampled the output port of the

MCU using the logic analyzer that is toggled after the program

completed its execution successfully and the results are correct.

Table 5 presents the summary of evaluation. We conclude that

InK is always faster than MayFly and only slower than Alpaca for

CF. Additionally, we measured the memory overhead and code size

for all runtimes. The increased memory and execution overhead in

selected applications is due to the fact that InK maintains queues

and data structures in order to manage/schedule task threads and

makes scheduling decisions at runtime for the sake of reactivity.

Our results show that InK enables event-driven paradigm shift for

batteryless devices while introducing a reasonable overhead as

compared to Alpaca and Mayfly.

Point to Point Overheads: Table 6 presents detailed overhead of

the InK runtime operations. When InK runs for the first time, all of

Operations ≈Overhead (in µsec)

Initial Boot 7900

Reboot 70

Scheduling and Selecting Next Thread 89

Task Init (10 B/1 KB shared data, resp.) 121/315

Task Commit 42

Activating Thread 75

Event Register 778

Table 6: Approximate overhead of the initialization and scheduler
overhead.

the internal non-volatile state variables are initialized (denoted as

the Initial Boot overhead). After the first boot, each Reboot requires
only the initialization procedures of the MCU, peripherals and the

recovery operations of the InK scheduler. The Scheduling overhead

is introduced to select the thread of highest priority and execute

the next task. Task Init and Task Commit overheads are introduced
to prepare the privatization buffer and commit the modifications

on this buffer to the original buffer atomically, respectively. The

time spent for Activating Thread is required to change the state of

the corresponding task thread to ready so that the scheduler will

consider to run it later. Event Register is the overhead of committing

an event in the event queue.

4.5 User Study
We have performed an on-line user study to assess the usability

of InK in programming intermittently-powered devices. The study

is approved by the Human Research Ethics Committee of Delft

University of Technology. The study suggests that (i) InK is intu-
itive and applicable to a varying set of sensing applications, and

(ii) InK provides the necessary constructs to write periodic sensing
applications.

Methodology: Participants were provided a link to the on-line

survey (questionnaire and detailed answers in [1]) via a personal in-

vitation. Survey was accompanied by a short document introducing

the concept of intermittently-powered devices and the issues asso-

ciated with programming such devices. Then, participants assessed

three programs implementing non-ISR [sense]→ [compute]→
[transmit] loop written in InK, Aplaca and MayFly languages,

after which a set of questions were asked. Additionally, participants

had to assess the same program written only in InK, but imple-

mented using interrupt service routines. Finally the participants

were asked to write a simple InK program themselves (submitted

to us for inspection), and again assess InK usability. An answer to

each question was one from a five-level Likert-type scale (From

Strongly disagree to Strongly agree). There was no time limit on the

assignment and the survey could have been performed at the most

convenient location and time for each participant.

User Pool: We have collected 22 responses in total from a pool of

graduate (MSc/PhD level) students studying embedded systems,

computer science and experienced scientific developers. 63% of

the participants had more than five years of formal computing

education. 82% of the participants had more than five years of pro-

gramming experience. C was considered the language of choice for

majority of participants, while 68% of them considered their knowl-

edge of C as average and above average. Also, 42% self-assessed

SenSys ’18, November 4–7, 2018, Shenzhen, China K. S. Yıldırım et al.

themselves with above-average knowledge of embedded systems

(compared to others with similar background, age and education).

73% of them considered their knowledge of intermittently powered

embedded devices as low and very low. Participants were located

in at least four different countries in Europe and North America.

Results and Discussion: Participants assessed the ease and intu-

itiveness of using all three languages in writing generic applications

for intermittent devices: Alpaca being the easiest (18 strongly agreed

or agreed), followed by InK (13 respective answers) and MayFly

(only 8 respective answers). The same order applied to questions

on the programming model flexibility. All thee codes were assessed

equally in terms of programming mode completeness. All of them

were assessed as the language that could be used for a variety of

sensing applications(InK being the most selected one for this task).

Considering the task of assessing the reactive programming

difficulty with InK, all responders provided their example InK code.

59% of the participants agreed that it was easy to understand how

InK handled interrupts for intermittently-powered systems, while

57% agreed that it would be harder to understand if the code was

written in plain C. 76% of respondents strongly agreed or agreed

that InK provides the necessary constructs to write periodic sensing

applications, with only 38% and 30% respondents for Alpaca and

Mayfly, respectively. Only 23% agreed that it was hard to write InK

program.

We acknowledge that our study is limited due to small sample

size and difficulty in preparing the comparable program in three

programming languages. Nonetheless, survey results indicate that

InK is the right tool for reactive programming of intermittently-

powered devices.

5 DISCUSSION AND FUTUREWORK

InKCommunityBuilding: InK is available online via [1]. Through

this website we aim to help developers learn InK fast. Code of InK

is open-source, with datasets accompanying this paper available

for inspection as well. In the course of time we will be providing

a new set of example programs and tutorials easing the learning

process of reactive-based programming for intermittent devices.

InK application developer effort: An InK programmer does not

need to reason about power failures or memory inconsistency—

which confuse and frustrate even experienced developers—but

needs to follow a new programming model that is different from

existing ones targeted for continuously-powered systems. In par-

ticular, the programmer needs to (i) identify task-shared variables;

(ii) provide a task-division and annotate task boundaries/inter-task

dependencies; and (iii) define an explicit control flow. Future work

can address removing this burden from the programmer: for exam-

ple with a guided compilation tool that translates programs into

InK, or with additions of features like module reuse.

Limits of reactivity: Although InK’s goal is to enable reactivity

for systems powered intermittently, it will never be able to pro-

vide the same reactivity as battery-powered or tethered devices.

Simply, with no control over available power there is no feasible

way to make a sensing system reacting immediately to stimuli. The

question remains how big is the set of applications that can ac-

cept reduction of system responsiveness, while not compromising

the quality of service. Using our transiently-powered robot as an

example: what is the acceptable number of stops (and their dura-

tion) in-between consecutive moves that would make robot still

considered reactive? Future work could investigate networked ap-

proaches to this problem, with higher density of cheap batteryless

sensing devices, overall coverage increases. Multiple challenges in

networking and synchronization must be resolved to make this a

reality.

Dealing with peripheral I/O: Sensing systems must manage pe-

ripherals (sensors, memorys, radio) that have volatile state. On

power failure, this state is lost and peripherals must be reinitialized.

InK, nor any other runtime maintains peripheral state consistency,

leaving this as a programmer burden. A common solution is to

split input operations into two tasks: one task reads the sensor

value and another task consumes it accordingly. This guarantees

consuming the value once since tasks run in order and cannot pre-

empt each other: the consumer task can be re-executed safely since

its output is produced by the former task. However, to re-execute

output operations safely at intermittent power, e.g. blink an LED

exactly once, hardware assistance is required. Future work could

leverage emerging non-volatile sensors, or build software models

for handling of failure in peripherals.

Starvation, fairness, multi-tenancy: task threads shows the po-

tential for multi-tenancy on batteryless, energy harvesting devices.

However, multiple issues surround the practical use case where

third party applications coexist peacefully on a single intermittently

powered device.

6 CONCLUSIONS
We have shown that state-of-the-art programming models and

runtimes for intermittently-powered systems are inadequate for

developing real-world sensing applications: they do not respond to

events in a timely manner, they do not react or adapt to changes in

available energy, they do not schedule events to perform periodic

sensing, and they do not handle interrupts while preserving mem-

ory consistency. To address these limitations, we introduced InK:

the first reactive task thread scheduling kernel that facilitates event-

driven applications for transiently-powered systems. We evaluated

InK based on software benchmarks and compared its performance

against InK counterparts using real hardware and real energy har-

vesting traces. Our results showed that InK significantly improves

the reactivity of batteryless sensing applications by up to 14 times,

introducing a reasonable overhead. We also demonstrated that InK

enables never before seen sensing applications such as the first

transiently powered robot.

ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers and our shep-

herd for their constructive criticism. We express our gratitude to

Carlo Delle Donne for technical support during the project and

to Brandon Lucia’s Abstract Research Group at Carnegie Mellon

University for numerous discussions. This research is supported by

the Netherlands Organisation for Scientific Research, partly funded

by the Dutch Ministry of Economic Affairs, under TTW Perspectief

program ZERO (P15-06) within Project P4.

InK: Reactive Kernel for Tiny Batteryless Sensors SenSys ’18, November 4–7, 2018, Shenzhen, China

REFERENCES
[1] 2018. InK Website. https://github.com/tudssl/ink. Last accessed: Sep. 20, 2018.

[2] 2018. Intermittently-Powered Robot Website. https://github.com/tudssl/iprobot.

Last accessed: Sep. 20, 2018.

[3] Adafruit. 2016. Silicon SPW2430HR5H-B MEMS Microphone Breakout Board

(SPW2430). https://www.adafruit.com/product/2716. Last accessed: Apr. 1,

2018.

[4] Omid Ardakanian, Arka Bhattacharya, and David Culler. 2016. Non-Intrusive

Techniques for Establishing Occupancy Related Energy Savings in Commercial

Buildings. In Proc. BuildSys. ACM, Palo Alto, CA, USA.

[5] Domenico Balsamo, Alex S. Weddell, Anup Das, Alberto Rodriguez Arreola,

Davide Brunelli, Bashir M. Al-Hashimi, Geoff V. Merrett, and Luca Benini. 2016.

Hibernus++: a Self-calibrating and Adaptive System for Transiently-powered

Embedded Devices. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 35, 12
(Dec. 2016).

[6] Domenico Balsamo, Alex S. Weddell, Geoff V. Merrett, Bashir M. Al-Hashimi,

Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining Computation

During Intermittent Supply for Energy-harvesting Systems. IEEE Embedded Syst.
Lett. 7, 1 (March 2015).

[7] Naveed Bhatti and Luca Mottola. 2017. HarvOS: Efficient Code Instrumentation

for Transiently-powered Embedded Devices. In Proc. IPSN. ACM/IEEE, Pittsburgh,

PA, USA.

[8] Remo Brühwiler, Benjamin Goldberg, Neel Doshi, Onur Ozcan, Noah Jafferis,

Michael Karpelson, and Robert J. Wood. 2015. Feedback Control of a Legged

Microrobot with On-board Sensing. In Proc. IROS. IEEE, Hamburg, Germany.

[9] Michael Buettner, Ben Greenstein, and David Wetherall. 2011. Dewdrop: an

Energy-aware Runtime for Computational RFID. In Proc. NSDI. USENIX, Boston,
MA, USA.

[10] Gregory Chen, Hassan Ghaed, Razi M. Haque, Michael Wieckowski, Yejoong

Kim, Gyouho Kim, David Fick, Daeyeon Kim, Mingoo Seok, Kensall Wise, David

Blaauw, and Dennis Sylvester. 2011. A Cubic-Millimeter Energy-Autonomous

Wireless Intraocular Pressure Monitor. In Proc. ISSCC. IEEE, San Francisco, CA,

USA.

[11] Yang Chen, Omprakash Gnawali, Maria Kazandjieva, Philip Levis, and John

Regehr. 2009. Surviving Sensor Network Software Faults. In Proc. SOSP. ACM,

Big Sky, MT, USA.

[12] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable

Intermittent Programs. In Proc. OOPSLA. ACM, Amsterdam, Netherlands.

[13] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfigurable En-

ergy Storage Architecture for Energy-harvesting Devices. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 767–

781. https://doi.org/10.1145/3173162.3173210
[14] Powercast Corp. 2014. Powercast Hardware. http://www.powercastco.com. Last

accessed: Mar. 30, 2018.

[15] Samuel DeBruin, Bradford Campbell, and Prabal Dutta. 2013. Monjolo: An

Energy-harvesting Energy Meter Architecture. In Proc. SenSys. ACM, Rome,

Italy.

[16] Artem Dementyev, Hsin-Liu Cindy Kao, Inrak Choi, Deborah Ajilo, Maggie Xu,

Joseph A Paradiso, Chris Schmandt, and Sean Follmer. 2016. Rovables: Miniature

On-Body Robots as Mobile Wearables. In Proc. UIST. ACM, Tokyo, Japan.

[17] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. 2004. Contiki - a Lightweight

and Flexible Operating System for Tiny Networked Sensors. In Proc. LCN. IEEE,
Tampa, FL, USA.

[18] Shyamnath Gollakota, Matthew Reynolds, Joshua Smith, and David Wetherall.

2014. The Emergence of RF-Powered Computing. Computer 47, 1 (Jan. 2014).
[19] Josiah Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: Realistic and Repeat-

able Experimentation for Tiny Energy-Harvesting Sensors. In Proc. SenSys. ACM,

Memphis, TN, USA.

[20] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Battery-

less Internet-of-Things. In Proc. SenSys. ACM, Delft, The Netherlands.

[21] Josiah Hester and Lanny Sitanayah Jacob Sorber. 2015. Tragedy of the Coulombs:

Federating Energy Storage for Tiny, Intermittently-Powered Sensors. In Proc.
SenSys. ACM, Seoul, South Korea.

[22] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution on Intermit-

tently Powered Batteryless Sensors. In Proc. SenSys. ACM, Delft, The Netherlands.

[23] Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel Holcomb,

Kevin Fu, Wayne P. Burleson, and Jacob Sorber. 2016. Persistent Clocks for

Batteryless Sensing Devices. ACM Trans. Emb. Comput. Syst. 15, 4 (Aug. 2016).
[24] MatthewHicks. 2017. Clank: Architectural Support for Intermittent Computation.

In Proc. ISCA. ACM, Toronto, ON, Canada.

[25] Impinj Inc. 2018. Impinj Speedway R420 RFID Reader Product Information.

https://www.impinj.com/platform/connectivity/speedway-r420/. Last accessed:

Apr. 8, 2018.

[26] Texas Instruments. 2015. MSP430FR5969 LaunchPad Development Kit. http:

//www.ti.com/tool/msp-exp430fr5969. Last accessed: Apr. 30, 2018.

[27] IXYS. 2011. IXOLAR High Efficiency SolarBIT Solar Panel. http://www.ti.com/

lit/ug/tidu383/tidu383.pdf. Last accessed: Apr. 2, 2018.
[28] Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay Raghunathan. 2015.

Quickrecall: A HW/SW Approach for Computing Across Power Cycles in Tran-

siently Powered Computers. ACM J. Emerg. Technol. Comput. Syst. 12, 1 (July
2015).

[29] Justin Y. Kim, Tyler Colaco, Zendai Kashino, Goldie Nejat, and Beno Benhabib.

2016. mROBerTO: A Modular Millirobot for Swarm-behavior studies. In Proc.
IROS. IEEE, Daejeon, Korea.

[30] Mathieu Le Goc, Lawrence H. Kim, Ali Parsaei, Jean-Daniel Fekete, Pierre Drag-

icevic, and Sean Follmer. 2016. Zooids: Building Blocks for Swarm User Interfaces.

In Proc. UIST. ACM, Tokyo, Japan.

[31] Philip Levis, Sam Madden, Joseph Polastre, Rober Szewczyk, Kamin Whitehouse,

Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler.

2005. TinyOS: An Operating System for Sensor Networks. In Ambient intelligence,
Werner Weber, Jan M. Rabaey, and Emile Aarts (Eds.). Springer, Berlin, Germany.

[32] Brandon Lucia and Benjamin Ransford. 2015. A simpler, Safer Programming and

Execution Model for Intermittent Systems. In Proc. PLDI. ACM, Portland, OR,

USA.

[33] Kaisheng Ma, Xueqing Li, Karthik Swaminathan, Yang Zheng, Shuangchen Li,

Yongpan Liu, Yuan Xie, John Jack Sampson, and Vijaykrishnan Narayanan. 2016.

Nonvolatile Processor Architectures: Efficient, Reliable Progress with Unstable

Power. IEEE Micro 36, 3 (May–Jun. 2016).

[34] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent

Execution without Checkpoints. In Proc. OOPSLA. ACM, Vancouver, BC, Canada.

[35] University of Washington. 2014. WISP 5.0 Wiki. http://wisp5.wikispaces.com.

Last accessed: Mar. 30, 2018.

[36] Daniel Pickem, Myron Lee, and Magnus Egerstedt. 2015. The GRITSBot in its

Natural Habitat - A Multi-robot Testbed. In Proc. ICRA. IEEE, Seattle, WA, USA.

[37] Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, and John

Anderson. 2004. Analysis of Wireless Sensor Networks for Habitat Monitoring.

InWireless Sensor Networks, C. S. Raghavendra, Krishna M. Sivalingam, and Taieb

Znati (Eds.). Springer, Boston, MA, USA.

[38] R. Venkatesha Prasad, Shruti Devasenapathy, Vijay S. Rao, and Javad Vazife-

hdan. 2014. Reincarnation in the Ambiance: Devices and Networks with Energy

Harvesting. IEEE Commun. Surveys Tuts. 11, 1 (First Quarter 2014).
[39] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System Support

for Long-running Computation on RFID-scale Devices. In Proc. ASPLOS. ACM,

Newport Beach, CA, USA.

[40] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. 2012. Kilobot: A Low

Cost Scalable Robot System for Collective Behaviors. In Proc. ICRA. IEEE, Saint
Paul, MN, USA.

[41] Saleae. 2017. Saleae Logic Pro 16 Analyzer. http://downloads.saleae.com/specs/

Logic+Pro+16+Data+Sheet.pdf. Last accessed: Mar. 30, 2018.

[42] Koen Schaper. 2017. Transiently-powered Battery-free Robot. Master Thesis. Delft

University of Technology, Delft, The Netherlands.

[43] Faisal Karim Shaikh, Sherali Zeadally, and Ernesto Exposito. 2017. Enabling

Technologies for Green Internet of Things. IEEE Syst. J. 11, 2 (June 2017).
[44] Joshua R. Smith. 2013. Wirelessly Powered Sensor Networks and Computational

RFID. Springer Verlag, New York, NY, USA.

[45] Joshua R. Smith, Alanson P. Sample, Pauline S. Powledge, Sumit Roy, and Alexan-

der Mamishev. 2006. A Wirelessly-Powered Platform for Sensing and Computa-

tion. In Proc. UbiComp. ACM, Orange County, CA, USA.

[46] Tolga Soyata, Lucian Copeland, and Wendi Heinzelman. 2016. RF Energy Har-

vesting for Embedded Systems: A Survey of Tradeoffs and Methodology. IEEE
Circuits Syst. Mag. 16, 1 (First Quarter 2016).

[47] Sparkfun. 2009. Analog Devices ADXL345 Breakout Board. https://

www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL345.pdf. Last

accessed: Apr. 1, 2018.

[48] Ivan Stoianov, Lama Nachman, Sam Madden, and Timur Tokmouline. 2007.

PIPENET: A Sireless Sensor Network for Pipeline Monitoring. In Proc. IPSN.
ACM/IEEE, Cambridge, MA, USA.

[49] Fang Su, Yongpan Liu, Yiqun Wang, and Huazhong Yang. 2017. A Ferroelectric

Nonvolatile Processor with 46µs System-Level Wake-up Time and 14µs Sleep
Time for Energy Harvesting Applications. IEEE Trans. Circuits Syst. I 64, 3 (March

2017).

[50] Texas Instruments, Inc. 2014. FRAM FAQs. http://www.ti.com/lit/ml/slat151/

slat151.pdf. Last accessed: Mar. 30, 2018.

[51] Texas Instruments Inc. 2017. MSP430FR59xx Mixed-Signal Microcontrollers (Rev.

F). http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf. Last accessed: Aug. 30,
2018.

[52] Joel VanDerWoude andMatthewHicks. 2016. Intermittent ComputationWithout

Hardware Support or Programmer Intervention. In Proc. OSDI. ACM, Savannah,

GA, USA.

https://github.com/tudssl/ink
https://github.com/tudssl/iprobot
https://www.adafruit.com/product/2716
https://doi.org/10.1145/3173162.3173210
http://www.powercastco.com
https://www.impinj.com/platform/connectivity/speedway-r420/
http://www.ti.com/tool/msp-exp430fr5969
http://www.ti.com/tool/msp-exp430fr5969
http://www.ti.com/lit/ug/tidu383/tidu383.pdf
http://www.ti.com/lit/ug/tidu383/tidu383.pdf
http://wisp5.wikispaces.com
http://downloads.saleae.com/specs/Logic+Pro+16+Data+Sheet.pdf
http://downloads.saleae.com/specs/Logic+Pro+16+Data+Sheet.pdf
https://www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL345.pdf
https://www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL345.pdf
http://www.ti.com/lit/ml/slat151/slat151.pdf
http://www.ti.com/lit/ml/slat151/slat151.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 State of the Art
	2.2 Event-driven Sensing Challenges

	3 InK: The Reactive Kernel
	3.1 Intermittent Computing Events
	3.2 InK Design Space
	3.3 InK Execution Model and Task threads
	3.4 InK Memory Model
	3.5 Reactive Execution
	3.6 Scheduling Events and Timers

	4 Evaluation of InK
	4.1 Experimental Setup
	4.2 Reactive Application Performance
	4.3 Real-World Event-Driven Applications
	4.4 InK System Overhead
	4.5 User Study

	5 Discussion and Future Work
	6 Conclusions
	References

