KISTLE

RoaDyn® \$530

Messnabe für Reifenprüfstände

Die RoaDyn S530 Messnabe ist das ideale Messinstrument zum Erfassen von Radkräften und -momenten an Reifenprüfständen im Labor und auf mobilen Prüfwagen. Das System misst die drei orthogonalen Kräfte Fx, Fy, und Fz sowie die Drehmomente M_x, M_y und M_z an Reifenaufstandsfläche bzw. Latsch. Die Messnabe ist mit qualitativ hochwertigen Dehnmessstreifen bestückt und eignet sich auch für die Prüfstandskontrolle (Regelung mit geschlossenem Regelkreis) und Langzeitmessungen, z. B. Dauertests.

- Höchste Messgenauigkeit bei statischen und dynamischen
- Passt für Räder mit Felgendurchmesser ab 13 Zoll und grösser, kleinere Felgen können mit einem entsprechenden Adapter ebenfalls montiert werden
- Anpassung an Standardfelgen mit austauschbaren Adaptern, keine Sonderfelgen notwendig
- Lager mit Ölschmierung und -kühlung für Drehzahlen bis 3 000 min⁻¹ bei Volllast
- Alternative Fettschmierung für Drehzahlen bis 2 000 min⁻¹ und kurze Testzyklen verfügbar

Beschreibung

Die RoaDyn S530 Messnabe ist ein robustes mit Dehnmessstreifen bestücktes Messgerät. Die Messnabe selbst ist stationär befestigt. Vier 3-Komponenten-Kraftsensoren sind zwischen einer Ober- und einer Unterplatte montiert. Darin befindet sich eine Welle mit den Lagern, die das montierte

Die Kraftkomponenten werden praktisch wegunabhängig gemessen. Dies ergibt ein minimales Übersprechen zwischen den Komponenten sowie eine sehr hohe Eigenfrequenz des gesamten Messsystems.

Das Wellenende ist auf der Rückseite des Dynamometers herausgeführt und für die Installation verschiedener zusätzlicher Ausrüstungsteile vorbereitet.

Es ist ein Ölkreislauf zum Schmieren und Kühlen der Lager vorgesehen, so dass selbst bei grossen Lasten konstante Wärmebedingungen erzielt werden können; Lager- und Dichtungsabrieb werden auf ein Minimum reduziert.

Typ 9289A013A...

Die verschiedenen mechanischen Schnittstellen auf der Vorderseite der Welle erlauben eine direkte Montage von Testrädern – auch mit verschiedenen Lochbildern (bei Verwendung eines Zwischenadapters). Die Messnabe ist beständig gegen Korrosion, Spritzwasser und Staub.

Anwendung

- Messung von Kräften und Momenten infolge von Ungleichförmigkeiten der Reifen, selbst bei hohen Geschwindigkeiten
- Langzeit-Dauertests
- Reifenverschleissprüfung
- Statische und dynamische und Messungen von Reifenkenndaten
- Vibrationsmessungen an Reifen
- Universalmessinstrument für Labor-Reifenprüfmaschinen in der Forschung, Entwicklung und in der Qualitätskontrolle

measure. analyze. innovate.

Technische Daten

Messbereich	ЕЕ	kN	-20 20
Messpereich	F _x , F _y		
	Fz	kN	0 30
	M _x	kN∙m	-7,86 7,86
	My	kN∙m	-3,00 3,00
	M_z	kN∙m	-3,00 3,00
Max. Last	F _x , F _y	kN	-20 20
	Fz	kN	0 30
Kalibrierter Bereich	F _x	kN	0 –20
	Fy	kN	0 20
	Fz	kN	0 30
	M _x	kN∙m	0 6
	My	kN∙m	0 1,5
	Mz	kN⋅m	0 –3
Kraftangriffspunkt	R (Reifenradius)	mm	300
Kraft Kalibrierung	e (Einpresstiefe)	mm	38
	e _D (Offset)	mm	62
Messzellenradius	R	mm	115,97
Linearität 1)	F _x , F _y , F _z	%FSO	≤±0,5 (≤±0,1)
Übersprechen ²⁾	F _x -> F _y , F _z	%	≤±0,5
	$F_y \rightarrow F_x$, F_z	%	≤±0,5
	$F_z \rightarrow F_x$, F_y	%	≤±0,5
Eigenfrequenz, frei			
aufgehängt	f ₀ (x, y, z)	Hz	≈1 800

Drehzahl		
bei Fettschmierung	min ⁻¹	≤2 000
bei Ölschmierung	min ⁻¹	≤3 000
Betriebstemperaturbereich	°C	-20 80
Schutzart (Kabel montiert)		IP65
		(EN60529)
Ausgang Flanschdose		Fischer, 104
(masseisoliert)		27-pol. neg.
Grösse		siehe Bild 1
Gewicht	kg	63

Anforderung an Ölschmierung

Annotaciang an Obscining	w6		
Zuleitung		Anzahl	2
Schlauchdurchmesser	di/da	mm	6/8
Öldruck 3)	р	bar	≤0,5
Durchfluss,	Ÿ		0,5 1
je Zuleitung			
Durchfluss, gesamt	Ÿ		1 2
Kinematische Viskosität	ν		20 25
Rückleitung		Anzahl	2
Schlauchdurchmesser	di/da	mm	8/12
Öldruck	р	bar	druckfrei

¹⁾ typische Werte in Klammern

Abmessungen

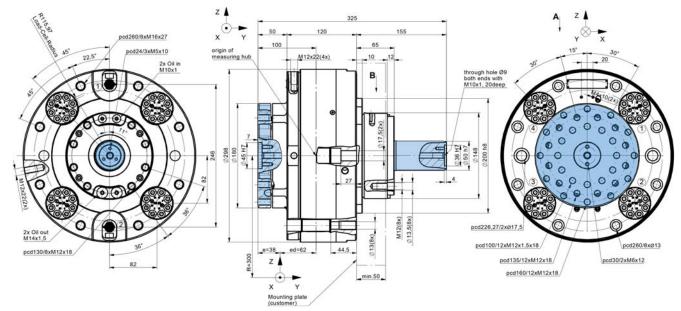


Bild 1: Abmessungen RoaDyn® S530, Typ 9289A013A; rotierende Teile sind blau hinterlegt

Seite 2/5

²⁾ mit implementierten Kalibrierfaktoren

³⁾ Druckbegrenzungsventil wird empfohlen

measure. analyze. innovate.

Anbindung am Prüfstand

Messnaben vom Typ 9289A013A können entweder von vorne mittels 2xM16 und 8xM12 Schrauben oder von hinten mit 8xM16 Schrauben am Prüfstand befestigt werden (Lieferumfang). Die entsprechenden Geometrien sind der nachfolgenden Abbildung (Bild 3) zu entnehmen.

Wird das Kabel mit 90° Winkelstecker verwendet, muss zusätzlich eine Nut (Breite 25 mm, Tiefe 25 mm, Länge >80 mm) gefräst werden.

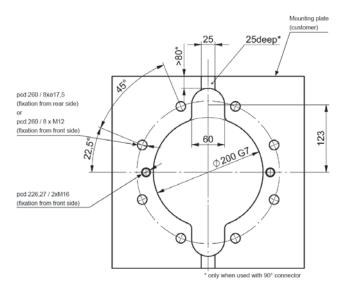


Bild 3: Abmessungen Prüfstandsanbindung

Montage des Prüflings

Der Prüfling kann entweder direkt oder über einen entsprechenden Zwischenadapter an der Wellenvorderseite montiert werden. Die dafür vorgesehenen Lochbilder liegen auf den Teilkreisdurchmessern 100, 135 und 160 mm.

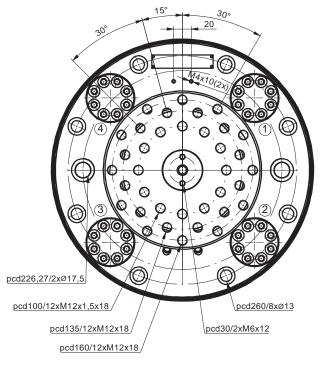


Bild 3: Abmessungen Prüflingsmontage

measure. analyze. innovate.

Radzentrierung

Wird der Prüfling direkt auf die Welle montiert, kann an der Wellenvorderseite (ø45 H7, 2xM6) ein entsprechender Zentrierzapfen montiert werden. Diese Geometrie kann auch zur Zentrierung eines Zwischenadapters verwendet werden (siehe Bild 4).

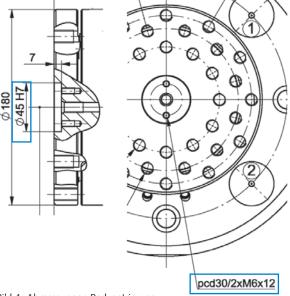


Bild 4: Abmessungen Radzentrierung

Anbau einer Bremse

Für den Anbau einer Bremse stehen auf der Rückseite der Messnabe 8xM12 auf einem Teilkreis 130 mm zur Verfügung (Bild 5)

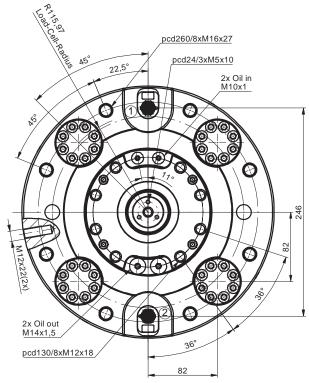
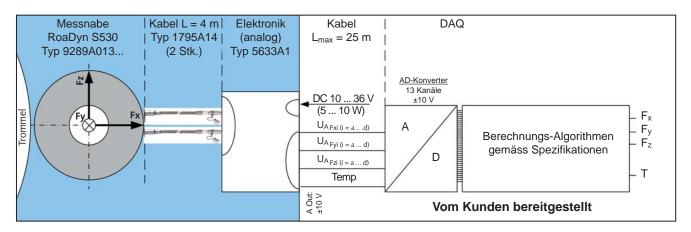


Bild 5: Abmessungen Bremsenanbau


Weitere Schnittstellen

Die Welle ist mit einer durchgehenden Bohrung ausgeführt (M10x1 an den Enden), welche für die Durchführung von Kabel oder Druckluft verwendet werden kann (s. Bild 2). An der Rückseite der Welle (Zentrierung Ø36 H7, 3xM5 pcd 24 mm) besteht die Möglichkeit einen Drehwinkelgeber oder einen Schleifring (für Druckluft oder zusätzliche Signale) zu montieren (s. Bild 2).

Seite 4/5

Messkette

Mitgeliefertes Zubehör	Bestellnr.
 Ringschrauben, 2 Stk., M12 	65013149
• Ölanschlussadapter, 2 Stk., M10x1 / G 1/8	65003244*
• Ölanschlussadapter, 2 Stk., M14x1,5 / G ¹ / ₄	65003245*
 Dichtring, 2 Stk., 10,2/15,9x1 	65007701*
 Dichtring, 2 Stk., 14,5/17,9x1,5 	65007703*
Hebeklotz, 1 Stk.	55144802
• ISK-Schraube für Hebeklotz, 1 Stk., M12x45	65012849
Befestigungsschrauben, 8 Stk., M16x70	65012819
• Befestigungsschrauben, 4 Stk., M12x60	65012870

^{*} nur für 9289A013A1

Zubehör (Optional)	Bestellnr.
 Anschlusskabel, niederohmig 	1795A14
L = 4 m (gerader Stecker)	
 Anschlusskabel, niederohmig 	1795A24
L = 4 m (90° Stecker)	
Analoge Elektronik, 24 Kanäle	5633A1

Ölschmier- und DAQ-System sind nicht im Lieferumfang enthalten.

Weitere Kistler Produkte für diese Anwendung	Bestellnr.
RoaDyn P530 Messnabe für	9295B
hochdynamische Messungen	
an Pkw-Reifen auf Prüfständen	
RoaDyn S220 Messnabe für	9289A103
Rollwiderstandsmessungen	
an Pkw-Reifen auf Prüfständen	
 RoaDyn S260 Messnabe für 	9289A113
Rollwiderstandsmessungen	
an Lkw-Reifen auf Prüfständen	
 RoaDyn S5ST (60 kN) Messnabe für 	9289A253
Reifencharakteristikmessungen	
an Lkw-Reifen auf Prüfständen	
 RoaDyn S5MT (100 kN) Messnabe für 	9289A263
Reifencharakteristikmessungen	
an Lkw-Reifen auf Prüfständen	

Bestellschlüssel

	Typ 9289A013A	
RoaDyn S530, ölgeschmiert	1	
RoaDyn S530, fettgeschmiert	2	

Bestellbeispiel

Typ 9289A013A1

RoaDyn S530 Messnabe, ölgeschmiert

Seite 5/5