-
AN <
»
o \J

(
{

== =

A Mechanization of Sorted
Higher-Order Logic Based on

the Resolution Principle

Michael Kohlhase

Published as: Doctoral Thesis, Universitit des Saarlandes, Saar-
briicken, Germany, 1994

A Mechanization of
Sorted Higher-Order Logic
Based on the

Resolution Principle

Der Technischen Fakultéat
der Universitat des Saarlandes
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
vorgelegte Dissertation

von

Dipl. Math. Michael Kohlhase

Abstract

The usage of sorts in first-order automated deduction has brought greater conciseness of
representation and a considerable gain in efficiency by reducing the search spaces involved.
This suggests that sort information can be employed in higher-order theorem proving with
similar results.

This thesis develops a sorted higher-order logic Y’HOL suitable for automatic theorem
proving applications. ¥HOL is based on a sorted A-calculus YA that is obtained by ex-
tending Church’s simply typed A-calculus by a higher-order sort concept including term
declarations and functional base sorts. The term declaration mechanism studied here is
powerful enough to allow convenient formalization of a large body of mathematics, since
it offers natural primitives for domains and codomains of functions, and allows to treat
function restriction. Furthermore, it subsumes most other mechanisms for the declaration
of sort information known from the literature, and can thus serve as a general framework
for the study of sorted higher-order logics. For instance, the term declaration mechanism
of XHOL subsumes the subsorting mechanism as a derived notion, and hence justifies our
special form of subsort inference.

We present sets of transformations for sorted higher-order unification and pre-
unification, and prove the nondeterministic completeness of the algorithm induced by these
transformations. The main technical difficulty of unification in XA is that the analysis of
general bindings is much more involved than in the unsorted case, since in the presence of
term declarations well-sortedness is not a structural property. This difficulty is overcome
by a structure theorem that links the structure of a formula to the structure of its sorting
derivation.

We develop two notions of set-theoretic semantics for Y HOL. General Y-models are
a direct generalization of Henkin’s general models to the sorted setting. Since no known
machine-oriented calculus can adequately mechanize full extensionality, we generalize ge-
neral Y-models further to ¥-model structures, which allow full extensionality to fail. The
notions of Y-model structures and of general -models allows us to prove unifying princi-
ples for these. These model-theoretic variants of Andrews’ unifying principle for type theory
can be used as a powerful tool in completeness proofs of higher-order calculi.

Finally, we use our pre-unification algorithms as a central inference procedure for a
sorted higher-order resolution calculus in the spirit of Huet’s Constrained Resolution. This
calculus is proven sound and complete with respect to our semantics. It differs from Huet’s
calculus by allowing early unification strategies and using variable dependencies. For the
completeness proof we make use of our unifying principle, and prove a strong lifting lemma.

Deutsche Zusammenfassung

Einleitung

Im Bereich der Deduktionssysteme gibt es zwei Grundparadigmen, das der interakti-
ven und das der vollautomatischen Systeme. Die logischen Grundlagen der wollautoma-
tischen Beweiser zeichnen sich durch starke, maschinenorientierte Kalkiile aus, die dann
als heuristische Suchprozeduren implementiert werden. In diesem Teilbereich haben sich
unifikationsbasierte Kalkiile, wie Resolution [Rob65], Tableaux [Smu68, Fit90] oder das
Matings/Konnektions-Verfahren [And81, Bib83] durchgesetzt. Um diese Kalkiile effizient
abarbeiten zu konnen ist es vorteilhaft, wenn die grundlegenden Unterprozesse, wie die
Unifikation, entscheidbar und von relativ geringer Komplexitdt sind. Nicht zuletzt deshalb
beschrdnken sich automatische Beweissysteme meist auf Varianten der Logik erster Stufe.
Obwohl diese Beweiser eine betrichtliche Stirke erreicht haben, wachsen die Suchriume so
schnell, daB es prinzipielle Grenzen fiir die entsprechenden Suchprozeduren gibt.

Interaktive Deduktionsysteme wie zum Beispiel Nuprl [CAB86], HOL [Gor85, GM93],
PVS [ORS92] oder Isabelle [PN90] verlassen sich nicht so sehr auf die volle Automatisierung,
sondern auf den Benutzer, der die Beweissuche im zugrundeliegenden Kalkiil direkt durch
entsprechende Eingriffe steuert. Da bei dieser Vorgehensweise universelle Beweisprozeduren
keine Rolle spielen, wurden sehr ausdrucksméchtige Logiken und Kalkiile entwickelt, die
sich an typischer, menschlicher Argumentation und mathematischer Praxis orientieren.
Allerdings gibt auch hier der Benutzer nicht sdmtliche Finzelschritte genau vor, sondern er
wird durch einen sogenannten Taktikmechanismus unterstiitzt.

Diese Arbeit ist durch den Versuch motiviert, Deduktionsysteme zu entwickeln, die
die Stdrken beider Paradigmen in sich vereinen. Wenn Deduktionssysteme fiir Mathema-
tiker oder in der Software-Verifikation zukiinftig niitzlich sein sollen, dann brauchen sie
einerseits die ausdrucksstarken Formalismen (wie sie zur Zeit in interaktiven Systemen zu
finden sind) und andererseits die starken, universellen Beweismethoden (aus den vollau-
tomatischen Systemen erster Stufe). Sonst wird formale Deduktion zu umsténdlich und
teuer bleiben, um benutzt zu werden. Natiirlich kann die Lésung dieses Problems nicht ein
vollautomatisches Beweissystem in einer expressiven Logik sein, denn es wire noch stérker
der kombinatorischen Explosion des Suchraums unterworfen, aber ein solches System kann
als eine ,, Logikmaschine® in einem interaktiven System eingesetzt werden, das diese genau
dann aufruft, wenn andere Verfahren noch Liicken im Beweis lassen.

Das Ziel dieser Doktorarbeit ist es, eine Mechanisierung einer sehr ausdrucksméchtigen
Logik zu entwickeln, die fiir den Einsatz in der Mathematik geeignet ist. Da sich mathema-
tische Sachverhalte in Logiken erster Stufe nicht addquat formalisieren lassen und sich im
automatischen Beweisen erster Stufe gezeigt hat, daf} sortierte Logiken eine effiziente, auto-
matische Beweissuche erméglichen, haben wir uns fiir eine sortierte Logik hoherer Stufe als
Formalismus entschieden. Um den konkreten Ansatz besser verstehen zu kénnen, werden
wir nun kurz auf die Gebiete des automatischen Beweisens hoherer Stufe und des sortierten
Beweisens erster Stufe eingehen.

In der Mathematik gibt es einfache Objekte, wie Zahlen oder Punkte der euklidischen
Ebene, und es gibt komplexere Objekte, wie Mengen, Funktionen oder Vektorrdume. Die
Logik erster Stufe beschrankt sich darauf, gerade die einfachen Objekte zu beschreiben, in-
dem sie ausschlieBlich Variablen fiir diese zuldt. Um mathematische Sachverhalte natiirlich

und adiquat darstellen zu kénnen, bendtigt man also Logiken hoherer Stufe, in denen
sich alle Objekte beschreiben lassen. Zum Beispiel 148t sich in der Logik erster Stufe
nach dem ersten Godelschen Unvollstandigkeitssatz [G6d31] die Arithmetik der natiirli-
chen Zahlen nicht darstellen. Deswegen entstand bereits unmittelbar nach der Einfiithrung
von unifikationsbasierten Kalkiilen [Rob65] fiir das automatische Beweisen erster Stufe
ein grofles Interesse daran, solche Methoden auch auf Logiken h&herer Stufe zu iiber-
tragen [Rob68, Rob69a]. Mitte der Siebziger Jahre wurden dafiir dann die theoretischen
Grundlagen gelegt [Gou66, And71, Hue72, Hue76, JP72, JP76] und auch die ersten Systeme
gebaut [Dar71, Hue72].

Viele Verfahren, die fiir das Beweisen in Logiken héherer Stufe entwickelt wurden, bau-
en auf dem einfach getypten A-Kalkiil von Church auf [Chu40]. Huet entwickelte dafiir
einen Unifikationsalgorithmus [Hue75] und konnte aufbauend auf einer Arbeit von And-
rews [And71] einen Resolutionskalkiil fiir Logik héherer Stufe angeben [Hue72]. Allerdings
wurden bald auch eine ganze Reihe von Negativresultaten, wie die Unentscheidbarkeit
der Unifikation [Hue72, Luc72, Gol81] oder die Nichtexistenz von allgemeinsten Unifikato-
ren [Gou66] fiir die Mechanisierung von Logiken héherer Stufe, gefunden. Dariiberhinaus
ist die Unifikation héherer Stufe auflerordentlich komplex, so daf§ der Suchbaum im Unifi-
kationsalgorithmus eine sehr hohe Verzweigungsrate hat. Gliicklicherweise konnte Huet das
Unifikationsproblem héherer Stufe auf die sogenannte Prd-Unifikation einschrinken, darin
werden Termpaare, in denen beide Kopfsymbole freie Variablen sind (sogenannte flexible
Paare), als bereits gelost angesehen. Diese Reduktion erlaubt es einen so grofien Teil des
Suchraums nach Unifikatoren abzuschneiden, daf§ das Unifikationsproblem praktisch hand-
habbar wird. Diese Einschrankung erhilt die Losbarkeit der Unifikationsprobleme (flexible
Paare sind immer 16sbar, indem man fiir die Kopfvariablen konstante Funktionen einsetzt,
die ihre Argumente absorbieren) und ist daher fiir Widerlegungskalkiile hoherer Stufe aus-
reichend.

Im Tps-Projekt [AINP90] von Andrews an der Carnegie Mellon University konnte
zwar die generelle Machbarkeit der Mechanisierung von Logiken héherer Stufe gezeigt wer-
den, aber es wurde gleichzeitig auch deutlich, dafl die angewandten Methoden noch zu
schwach fiir den praktischen Einsatz sind. Unserer Meinung nach lassen sich die Schwichen
hauptsichlich darauf zuriickfiihren, dal in Systemen h&herer Stufe viele der Methoden
und Techniken (wie zum Beispiel Spezialbehandlung fiir Sorten und Gleichheit, raffinierte
Suchverfahren oder Implementierungstechniken wie Termindexing), die das automatische
Beweisen erster Stufe praktikabel gemacht haben, noch nicht eingesetzt, beziehungsweise
entwickelt worden sind. Wir greifen uns fiir diese Arbeit die Spezialbehandlung von Sorten
heraus und gehen nun niher auf die Sortenbehandlung in Logiken erster Stufe ein.

Sortierte Logiken [Her30, Sch38, Sch51, Wan52, Obe62] sind logische Systeme, die das
Universum in Klassen (Zahlen, Punkte, Flichen, Fiichse, Wolfe,. . .) einteilen und in denen
logische Konstanten, Variablen und Terme syntaktisch dadurch gekennzeichnet sind, wel-
chen dieser Klassen sie angehoren. Durch Bedingungen an die Wohlgeformtheit (in diesem
Fall also Wohlsortiertheit) von Ausdriicken wird sichergestellt, daB nur semantisch sinn-
volle Objekte durch logische Formeln dargestellt werden kénnen. So darf eine Funktion
der Sorte A — B nur auf einen Term A angewandt werden, wenn dieser auch die Sorte A
besitzt. Aus der Sicht der Mechanisierung ist es besonders wichtig, dafl die Kodierung von
Teilen eines mathematischen Sachverhalts als Sorteninformation es erlaubt, diesen Teil effi-
zienter zu verarbeiten [Wal85, SS89, Coh87, Coh89, Fri90]. Die Verwendung von sortierter

i

Unifikation ist sinnvoll, denn sie stellt sicher, daB die resultierenden Instanzen wohlsor-
tiert und damit semantisch sinnvolle Ausdriicke sind, die etwas zu einem Beweis beitragen
kénnen. Beriicksichtigt man ndmlich die Sorteninformation, so sind viele Termpaare nicht
unifizierbar, die es wiren, wenn man diese Information aufler acht liefe. Da die Resoluti-
onsmoglichkeiten in einer Klauselmenge von der Unifizierbarkeit abhidngen, kann also die
Verwendung von sortierten Logiken und Kalkiilen wie ein Filter auf dem Suchraum wir-
ken und diesen fiir die Beweissuche so drastisch einschrianken, dafl damit Probleme einer
automatischen Behandlung zugéinglich werden, die mit unsortierten Methoden nicht 16sbar
sind.

Eine besonders weit entwickelte und einflulireiche Sortenlogik erster Stufe ist das Sy-
stem von Schmidt-Schaufl [SS89], in dem verschiedene Formen der Deklaration von Sor-
teninformation zu dem konzeptionell einfachen, aber extrem ausdrucksméchtigen Mecha-
nismus der Termdeklarationen verallgemeinert sind. Termdeklarationen sind Paare [A:A]
bestehend aus einem Term A und einer Sorte A, die festlegen, daf} alle Instanzen von
A die Sorte A haben. Hiermit kénnen nicht nur die Sorten von Konstanten und Funk-
tionen ([0:N], [+:N x N — NJ) dargestellt werden, sondern auch Untersortenbeziehungen
[Xg=N] (da alle geraden Zahlen (E) auch natiirliche Zahlen (N) sind) und sogar Informa-
tionen wie die, da} die Verdoppelung von natiirlichen Zahlen immer gerade Zahlen liefert
([AXVN + XN:Z[E]).

Wir verallgemeinern diese Logik zu einem logischem System 3HOL héherer Stufe und
stellen einen sortierten Resolutionskalkiil ¥HR vor, der eine Mechanisierung von ~HOL
mit einem drastisch eingeschrdnkten Suchraum erlaubt. Wie schon in Schmidt-Schaufl Sy-
stem fiir die Logik erster Stufe, benutzt die im Kalkiil verwendete, sortierte Unifikation die
Sorteninformation, um viele unsortiert mégliche Resolutionsschritte als unnétig zuriickzu-
weisen.

Die Entwicklung der Logik ¥HOL 148t sich im wesentlichen in zwei Teile einteilen, die
sich auch im Aufbau der Arbeit widerspiegeln. Im ersten Teil (Kapitel 2 und 3) wird ein
sortierter A-Kalkiil ¥A vorgestellt, in dem sich die algebraischen Eigenschaften der Wohl-
sortiertheit und der sortierten A-Konversion unabhingig vom logischen Gehalt beschreiben
lassen. Wir entwickeln auf dieser Basis sortierte Unifikationsalgorithmen héherer Stufe fiir
YA (Kapitel 4). Im zweiten Teil wird dieser A-Kalkiil dann mit einer logischen Interpre-
tation versehen und wir untersuchen sie dann aufbauend auf den Ergebnissen des ersten
Teils (Kapitel 5). Schlieflich geben wir mit Hilfe dieser Unifikationsalgorithmen eine Me-
chanisierung von ¥HOL in einem Resolutionskalkiil hoherer Stufe an und beweisen dessen
Korrektheit und Vollstdndigkeit (Kapitel 6).

YA: Ein sortierter \-Kalkiil (Kapitel 3)

Ausgehend von Churchs einfach getyptem A-Kalkiil A [Chu40] (vergleiche auch [HS86]
oder [And86]) und Schmidt-Schaul Sortenlogik [SS89] erster Stufe mit Termdeklarationen
werden wir im folgenden die Einfiihrung des sortierten A-Kalkiils 3 A zusammenfassen. XA
entsteht aus A dadurch, dafl wir ein Sortensystem hoherer Stufe hinzufiigen und den Begriff
der Wohlgetyptheit zur Wohlsortiertheit verfeinern.

Da die Begriffe des Typs und der Sorte in der Literatur recht uneinheitlich gebraucht
werden, wollen wir nun die zugrundeliegenden Phinomene etwas genauer betrachten und
die Begriffe fiir diese Arbeit voneinander abgrenzen. Der Begriff des Typs stammt aus

iii

den Logiken hoherer Stufe und wurde erstmals von Russell zur Vermeidung der nach ihm
benannten Antinomien in Logiken héherer Stufe entwickelt und dann in die A-Kalkiile
iibernommen. In A werden Typen durch den Abschlufl unter Funktionstypen a — (
aus einfacheren Typen a und (gebildet, andere A-Kalkiile lassen noch weitere Mecha-
nismen zur Typbildung (zum Beispiel Paartypen) zu. Das jeweilige Typsystem ist fiir
moderne A-Kalkiile ein so wichtiger Bestandteil, dafl diese auch den Namen Typtheorie
tragen. Der Begriff der Sorte wurde bereits in der ersten Hélfte dieses Jahrhunderts ent-
wickelt [Her30, Sch38, Sch51, Wan52, Obe62] und wird heute als fester Bestandteil der
Deduktionssysteme erster Stufe verwendet. Er wird dort als Reprisentationsmechanismus
genutzt, der es erlaubt, Teile einer Axiomatisierung in Form von Sortendeklarationen zu
fassen und dann im Kalkiil besonders effizient zu handhaben. Einfache (trivial geordnete)
Sortensysteme konnen als ein Spezialfall erster Stufe von Churchs Typsystem angesehen
werden, denn sie konnen in getypten Logiken dadurch simuliert werden, dafl neue Basisty-
pen eingefiihrt werden. Modernere Sortensysteme reichern diesen einfachen Mechanismus
allerdings durch einen Subsorten- oder sogar Termdeklarationsmechanismus an, um das
Sortensystem ausdrucksméchtiger zu machen. Wir werden im folgenden den Teil eines Ty-
pen/Sortensystems mit dem Wort ., Typ“ belegen, der zur Konsistenzsicherung verwandt
wird, wihrend wir den Teil, der als Reprdsentalionsmechanismus genutzt wird mit dem
Begriff ,,Sorte® belegen.

In YA behalten wir zur Sicherung der Konsistenz Churchs Typsystem bei und fiithren
zusidtzlich ein System von Sorten ein, das zur Reprisentation von taxonomischem Wissen
genutzt werden soll. Natiirlich muf} dieses Sortensystem dem Typsystem untergeordnet sein,
damit die Logik in sich konsistent bleibt. In XA sind Sorten also selbst getypte Objekte;
inshesondere beschreibt eine Sorte A vom Typ e — § Funktionen und hat deswegen eine
Definitionsbereichssorte 9(A) vom Typ a und eine Wertebereichssorte t(A) vom Typ .
Beschriankungen der Zuldssigkeit von Termdeklarationen stellen dann sicher, dafl Terme
und ihre Sorten vom Typ her zusammenpassen. So 148t sich beispielsweise die Teilmenge
C°(IR,IR) der stetigen Funktionen aller reellen Funktionen F(IR,IR) darstellen durch eine
Basissorte C mit 9(C) = R und t(C) = R, wobei R die Sorte der reellen Zahlen ist.

Die Semantik von XA ist eine Verfeinerung der verallgemeinerten Semantik nach Hen-
kin [Hen50] auf partielle Funktionen. Wir verwenden hier eine verallgemeinerte Semantik,
da die Standardsemantik nach dem Goédelschen Unvollstdndigkeitssatz [G6d31] keine voll-
stdndigen Kalkiile zul&ft und deswegen keinen brauchbaren Vollstindigkeitsbegriff liefert.
Eine verallgemeinerte Semantik interpretiert die Funktionsuniversen D,_.g nicht als die
Menge F(D,;Dg) aller Funktionen von D, nach Dg, sondern als eine Teilmenge, die al-
lerdings alle durch Terme darstellbaren Funktionen enthilt. Diese Klasse von verallgemei-
nerten Modellen ist so reich an Nichtstandardmodellen, daf alle nicht ableitbaren S&tze
Gegenbeispiele haben und deswegen nicht allgemeingiiltig sein kénnen. Wir bemiihen uns
in dieser Dissertationsschrift um einen, im Vergleich zur Literatur, algebraischen Aufbau
der Semantik hoherer Stufe. Dies und die hier entwickelten Begriffe der X-Struktur und
Y-Algebra erleichtern uns nachher die technischen Grundlagen fiir die Vollsténdigkeitsbe-
weise.

Im Gegensatz zu einfacheren Sortensystemen 148t sich in einem logischen System mit
Termdeklarationen die Sorte eines Terms nicht ableiten, indem man ausschlieBlich rekursiv
die Struktur des Terms analysiert. Deswegen ist es fiir XA notwendig, die Wohlsortiertheit
eines Terms durch ein Inferenzsystem zu definieren. Diese, aus dem Bereich der A-Kalkiile

v

stammende Technik erlaubt die im Bereich der Logik erster Stufe selten verwendete Beweis-
technik der Induktion {iber Herleitungen, die wir in dieser Arbeit ausgiebig verwenden. Um
in einem Inferenzsystem fiir einen sortierten A-Kalkiil Konsistenz sicherzustellen miissen
Signaturen (Mengen von Termdeklarationen) bestimmte Bedingungen erfiillen. Insbeson-
dere miissen die Terme in den Termdeklarationen wohlsortiert sein, was allerdings nur
relativ zu einer giiltigen Signatur definiert ist. Weiterhin muf} einerseits die Sn-Reduktion
gewissen Sortenbedingungen gehorchen, andererseits mufl Wohlsortiertheit von Termen in-
variant unter 8n-Konversion sein, damit durch diese die Wohlsortiertheit von Termen nicht
verlorengeht. Wir haben auch hier einen Fall von gegenseitiger Abhédngigkeit. Um diese Pro-
bleme zu losen werden die rekursiv voneinander abhéngigen Urteile fiir Wohlsortiertheit,
Giiltigkeit von Signaturen und sortierter Sn-Reduktion in einem gemeinsamen Inferenzsy-
stem (3.2.7) definiert. Auf diese Weise kann die Rolle der Terme in Termdeklarationen, die
in [SS89] recht undurchsichtig war, in ¥ A vollkommen geklirt werden. Weiterhin kénnen wir
die Eigenschaft der Subterm-Abgeschlossenheit (Subterme von wohlsortierten Termen sind
wieder wohlsortiert), die Schmidt-Schauf} als Einschrinkung fordern muf}, in XA ableiten
(3.2.20).

Aufbauend auf diesem Inferenzsystem definieren wir Wohlsortiertheit von Substitu-
tionen und zeigen, daff die Anwendung wohlsortierter Substitutionen (sogenannter X-
Substitutionen) die Sorten von Termen erhilt (3.4.4). Dies ist eine wesentliche Vorbedin-
gung fiir den Beweis der gleichen Eigenschaft fiir sortierte Sn-Reduktion (3.5.1). Unsere
Grundoperationen in XA sind also sortenerhaltend, das heifit, sie iiberfiihren wohlsortierte
Objekte (Terme, Substitutionen, ...) wieder in wohlsortierte. Deswegen kénnen wir uns
in unserer Mechanisierung ausschlieilich auf die Betrachtung von wohlsortierten Objekten
beschrinken. Damit haben wir also ein in sich abgeschlossenes logisches System definiert
und die wichtigsten Operationen in XA untersucht.

Ein Beleg fiir die Stdrke der Deklaration von Sorteninformation tiber Termdeklarationen
kann darin gesehen werden, dafl in XA der Begriff der Untersorte ein abgeleitetes Konzept
ist. Semantisch gesehen stellt die Ableitbarkeit eines Urteils [XzA] Fy X =B (dieses Urteil
besagt, dafl unter der Voraussetzung, dafi X die Sorte A hat, hat X auch die Sorte B) sicher,
daB alle Objekte der Sorte A auch die Sorte B haben, da Instantiierung sortenerhaltend ist.
In anderen Worten, A ist eine Untersorte von B. Es stellt sich heraus, daf} alle Inferenzre-
geln fiir die Untersortenrelation, wie Reflexivitat, Transitivitit oder A < d(A) — v(A), aus
den Inferenzregeln fiir Wohlsortiertheit ableitbar sind (3.6.9). Als eine Konsequenz daraus
spielen Untersortenbeziechungen weder in der Unifikation noch hinterher im sortierten Re-
solutionskalkiil eine Rolle, da sie durch die Behandlung der Termdeklarationen bereits mit
abgedeckt werden.

Unifikation in ¥A (Kapitel 4)

In XA stellte sich die Entwicklung von Unifikationsalgorithmen als ein schwieriges Unterfan-
gen heraus, da die Mechanismen der A-Konversion, der Sorten und der Termdeklarationen
auf nichttriviale Weise interagieren. Herkémmliche Unifikationsmethoden berechnen parti-
elle Losungen, indem sie rekursiv die Struktur der jeweiligen Termpaare untersuchen. Da
aber sortierte Unifikation auch die Sorteninformation eines Termpaares in Betracht ziehen
muf}, diese aber von der Struktur der Sortenherleitung abhidngt, die wiederum von der
Struktur des Terms unabhéngig ist, miissen hier zusdtzliche Hilfsmittel entwickelt werden.

Das Hauptwerkzeug fiir die Unifikation h6herer Stufe ist der Begriff der approzimieren-
den Bindungen, also der allgemeinsten Terme in der Klasse aller Terme einer gegebenen
Sorte mit einem gegebenen Kopfsymbol. Da aber das Kopfsymbol im Gegensatz zur Sorte
ein aus der Struktur eines Terms abgeleiteter Begriff ist, muf} fiir die Berechnung von ap-
proximierenden Bindungen ein Zusammenhang zwischen Termstruktur und Sorte (oder der
Sortenherleitung) hergestellt werden. Das theoretische Haupthilfsmittel dafiir ist das Struk-
turtheorem (4.1.2), das fiir jeden Term A der Sorte A die Existenz von Herleitungen des
Urteils I' Fy A=A in einer speziellen Form garantiert. Obwohl die Struktur auch dieser Her-
leitungen, die wir semi-strukturell nennen, nicht direkt der Struktur des Terms A entspricht,
reicht der strukturelle Zusammenhang doch aus, um approximierende Bindungen zu berech-
nen. Der Beweis, dafl approximierende Bindungen wirklich die allgemeinsten Vertreter der
Klasse der Terme gegebener Sorte und Kopfsymbols (4.2.4) sind, ist dann eine Konsequenz
des Strukturtheorems. Fiir den Beweis des Strukturtheorems verwenden wir die sehr star-
ke Technik der logischen Relationen, wie sie zum Beispiel aus Terminierungsbeweisen fiir
B-Reduktion oder aus Schnitteliminationsbeweisen bekannt ist. Im Gegensatz zu einfach
getypten A-Kalkiilen ist allerdings eine Findeutigkeit von approximierenden Bindungen ei-
ner gegebenen Sorte nicht mehr garantiert, da jede Termdeklaration mit entsprechendem
Kopfsymbol einen Beitrag leisten kann. Dieses Phinomen ist dabei keine Besonderheit des
A-Kalkiils, weil es bereits bei Termen erster Ordnung, wie sie von Schmidt-Schaufl [SS89]
betrachtet wurden, auftritt. Mit dem Hilfsmittel der approximierenden Bindungen lassen
sich dann im wesentlichen auf herkémmliche Weise [Hue76, Sny91] Unifikationsalgorithmen
hoherer Stufe bauen, deren Verzweigungsrate im Vergleich zum getypten Fall beschrénkt
ist durch die Anzahl gewisser Termdeklarationen. Wir fiihren diese Konstruktionen fiir die
Félle der allgemeinen X-Unifikation und der Prd-3-Unifikation aus.

In XA tritt im Vergleich zum unsortierten Fall bei der Pri-Unifikation die Schwie-
rigkeit auf, daf} fiir flexible Paare, bei denen die Kopfvariablen funktionale Basissorten
haben, im allgemeinen nicht gew&hrleistet ist, da} die Einsetzung mit konstanten Funktio-
nen wohlsortiert ist. In diesem besonderen Fall kénnen also gewisse flexible Paare nicht als
gelost angesehen werden und miissen auf herkémmliche Weise weiterverarbeitet werden.
Wir verwenden spiter die Pri-Y-Unifikation fiir unseren Resolutionskalkiil, da dieser Uni-
fikationsbegriff dafiir ausreicht, aber einen wesentlich kleineren Verzweigungsgrad aufweist.
Mithilfe der approximierenden Bindungen konnten wir zeigen, dafl das Problem der Sorten-
berechnung in ¥ A dquivalent ist zu dem ,higher-order matching“-Problem (4.3.5). Da die
Entscheidbarkeit dieses Problems nur fiir beschrinkte Formelklassen [Hue76, Dow92, Mil92]
gesichert ist, miissen wir diese Frage fiir den allgemeinen Fall offen lassen.

YHOL: Eine sortierte Logik héherer Stufe

Fiir das logische System YHOL wird der sortierte A-Kalkiil ¥A durch die Festlegung eines
Basistyps o und einer zugehorigen Basissorte O fiir Wahrheitswerte spezialisiert. Weiter-
hin werden Termdeklarationen fiir die logischen Konstanten [¢R:A — A — O] fiir die
Gleichheit, die Junktoren [-:0 — O] und [A:0 — O — O] und zusétzlich der Quantor
[MA:(A — O) — O] als logische Konstanten mit fixierter Bedeutung angenommen.

Wir definieren und untersuchen fiir YHOL zwei verschiedene Semantikbegriffe, den der
Y-Modellstrukturen und den Spezialfall der verallgemeinerten 3-Modelle. Der erste Be-
griff ist gerade die Spezialisierung der Y-Strukturen auf den Kontext mit Wahrheitswer-

vi

ten und logischen Konstanten, der zweite spezialisiert diesen Begrifl weiter auf den Fall
von X-Algebren und ist deswegen der intuitive Semantikbegriff fiir Logiken héherer Stu-
fe. Der wesentliche Unterschied der beiden Semantikbegriffe ist die Giiltigkeit des Axioms
(A & B) = (A = B) fiir Formeln A und B der Sorte O, das eine Aussage iiber die An-
zahl der Wahrheitswerte macht. Bedauerlicherweise kann dieses Axiom in keinem der bis-
her bekannten maschinenorientierten Kalkiile zielorientiert behandelt werden. Weil es aber
in allen verallgemeinerten Y-Modellen giiltig ist, haben wir diese zu Y-Modellstrukturen
verallgemeinert, um so einen Vollstindigkeitsbegriff zu erhalten, der von der Anzahl der
Wahrheitswerte unabhingig ist.

Durch diesen Semantikbegriff wird es uns méglich, modelltheoretische Vollstdndigkeits-
aussagen fiir maschinenorientierte Kalkiile hherer Stufe zu machen. In der Literatur sind
bisher nur beweistheoretische Vollstindigkeitsaussagen bekannt. Diese Aussagen betref-
fen die deduktive Stérke eines Kalkiils im Vergleich zu einem anderen (Andrews Kalkiil' ¥
aus [And71]) und beruhen im wesentlichen auf Andrews ,, Unifying Principle for Type Theo-
ry“ [And71], das den Beweis der Vollstindigkeit von Kalkiilen auf die Uberpriifung einiger
natiirlicher, beweistheoretischer Eigenschaften zuriickfiithrt. Da es fiir die Logik hoéherer
Stufe kein einfaches Herbrand-Theorem gibt, sind die Unifying Principles zur Standardme-
thode fiir Vollstdndigkeitsheweise hoherer Stufe geworden.

Wir beweisen fiir unsere beiden Semantikbegriffe Unifying Principles, wobei das fiir
die ¥-Modellstrukturen (5.4.18) auf Techniken aus [And71] beruht. Allerdings stérken wir
den Begriff der abstrakten Konsistenz durch eine zusétzliche Saturiertheitsbedingung und
erhalten so im Beweis totale Valuationen. Diese erlauben es uns den Beweis und die dahin-
terstehenden semantischen Objekte stark zu vereinfachen. Insbesondere lassen diese totalen
Valuationen erst die Konstruktion eines Modells fiir abstrakt konsistente Satzmengen zu
und fiihren daher zu der modelltheoretischen Variante des Unifying Principle. Aus die-
sem kann man dann mittels der Korrektheit von ¥ sofort ein beweistheoretisches Unifying
Principle (5.4.19) wie in [And71] als Korollar erhalten.

Das Unifying Principle fiir verallgemeinerte ¥-Modelle (5.4.23) bendtigt weitere Me-
thoden zur Behandlung der Gleichheit. Diese Theoreme erlauben es uns nun sowohl die
Vollstindigkeit der Hilbertkalkiile X% und X%¢& (siehe 5.5.7 und 5.5.3) als auch Kompakt-
heitssétze (5.5.8) sehr einfach zu beweisen.

Ein Resolutionskalkiil fir XHOL

Durch die sortierte Unifikation lassen sich die bekannten Widerlegungskalkiile fiir Logi-
ken hoherer Stufe [Hue72, Mil83, And89] zu sortierten Kalkiilen fiir YHOL verallgemei-
nern [Koh94]. Wir fithren das in dieser Dissertationsschrift fiir Huets Resolutionskalkiil
exemplarisch durch und erhalten so den sortierten Resolutionskalkiil ¥HR fiir Y HOL. Da-
bei iibernehmen wir aber Huets Kalkiil nicht unverdndert, sondern entwickeln ihn auch
unabhingig von der Verallgemeinerung sortierte Logik weiter. Die im folgenden zusammen-
gefafBten Methoden und Resultate sind im wesentlichen unabhéngig von der Sortierung, da
sich die Unterschiede zwischen sortierten und unsortierten Widerlegungskalkiilen eigentlich
auf die Unifikation beschrédnken und wir diese bereits gesondert abgehandelt haben.

!Dieser Kalkiil ist nur im Sinne der Y-Modellstrukturen und nicht im Sinne der verallgemeinerten Y-
Modelle vollstandig.

vii

Die Skolemisierung in Huets Originalkalkiil war nicht korrekt, deswegen verwenden wir
in unserem Kalkiil ¥HR keine Skolemisierung, sondern verwalten die Abhingigkeiten zwi-
schen existentiellen und universellen Variablen direkt in einer sogenannten Variablenbedin-
gung. Unsere Methode beruht auf Arbeiten von Miller [Mil83, Mil92], der die Skolemisierung
in Logiken hoherer Stufe korrigiert hat, und Bibel, der solche Verfahren [Bib82] im Bereich
der Konnektionsmethode erster Stufe untersucht hat.

Da die Unifikation héherer Stufe unentscheidbar ist, kann sie in einem Kalkiil natiirlich
nicht ohne weiteres als Teilprozedur etwa der Resolutionsregel eingesetzt werden. Huets
Losung fiir dieses Problem besteht darin, in der Resolutionsregel die Literale nicht etwa
direkt zu unifizieren, sondern als Nebenbedingungen (Constraints) zu behalten, und am
Ende der Deduktion, wenn eine leere Klausel gefunden wurde, auf Lésbarkeit zu iiberpriifen.
Diese Strategie ist natiirlich fiir praktische Anwendungen so nicht verwendbar, da zwischen
je zwei Literalen immer resolviert werden kann und nicht eine fortschreitende Instantiierung
den Suchraum beschrinkt. Deswegen lassen wir in Y’HR eine Mischung aus Unifikation
(Constraint- Vereinfachung) und Resolution zu.

Dies erlaubt auch eine konzeptuell einfachere Behandlung von flexiblen Literalen, also
Literalen, deren Kopfsymbol eine Variable ist. In 3HR kénnen wir ndmlich anstelle von
Huets Splittingregeln [Hue72] Andrews primitive Substitutionen [And89] verwenden. Diese
Inferenzregeln erlauben die explizite Instantiierung von Pradikatsvariablen. Im Gegensatz
zur Resolution erster Stufe kann die Unifikation in der Resolution héherer Stufe nicht
alle notwendigen Instanzen generieren, da auch Pridikatsvariablen auftreten, fiir die im
allgemeinen auch Ausdriicke eingesetzt werden miissen, die logische Konstanten enthalten.

Allerdings macht die Mischung aus Unifikation und Beweissuche fiir den Beweis der Voll-
stdndigkeit von YHR (6.4.4) ein starkes Lifting-Lemma (6.3.5) erforderlich, das bei Huets
Beweis nicht notwendig war. Lifting-Lemmata sind aus Vollstdndigkeitsbeweisen fiir Wi-
derlegungskalkiile erster Stufe bekannte Teilschritte, die fiir jede Widerlegung einer Formel
6(A) eine solche fiir A garantieren. Mit ihrer Hilfe 148t sich die Frage nach der Vollstindig-
keit des Kalkiils auf die Vollstdndigkeit von variablenfreien Formelmengen zuriickspielen.
Im Gegensatz zur Logik erster Stufe, wo sich durch Instantiierung nur die Terme in Klau-
seln dndern, kann sich in der Logik hoherer Stufe durch die flexiblen Literale auch die
Struktur der Klauseln &ndern. Wird ndmlich in die Kopfvariable eines flexiblen Literals
ein Ausdruck mit logischen Konstanten eingesetzt, ist das Resultat kein Literal mehr und
muf} erst in Klauselnormalform iiberfilhrt werden. Diese Strukturverdnderung stellt sich
als eine Schwierigkeit beim Beweis des Lifting-Lemmas heraus, weil es fiir das Anheben
der Beweisschritte aus der Widerlegung von #(A) wichtig ist, immer eine genaue Entspre-
chung der Klauseln und Literale in der Widerlegung von A zu behalten. An jeder Stelle, wo
sich durch Instantiierung die Struktur der Klauseln in der Widerlegung von #(A) dndert,
muf} die Entsprechung durch Anwendung von geeigneten primitiven Substitutionen in der
Widerlegung von A wiederhergestellt werden. Die primitiven Substitutionen in 3HR sind
wieder spezielle approximierende Bindungen, deren Kopfsymbole allerdings logische Kon-
stanten sein miissen, um die Aufgabe der Strukturverdnderung erfiillen zu kénnen. Durch
das Vorhandensein von Termdeklarationen in XHOL tritt hier der einzige wirkliche Unter-
schied zwischen dem sortierten und dem unsortierten Fall auf. Da die approximierenden
Bindungen in ¥HOL mehr als eine logische Konstante enthalten kénnen, kann der Beweis
des Lifting-Lemmas an dieser Stelle nicht der Struktur von 8 folgen, wie es im unsortierten
Fall méglich wire.

viii

Riickblick

Um ein besseres Verstidndnis fiir die praktischen Vorteile des Sortenmechanismus in 3HOL
zu bekommen, wollen wir uns nun ansehen, wie sich Sorten auf die Moglichkeiten auswir-
ken, mathematische Sachverhalte in Logiken héherer Stufe zu kodieren. Mit der aus Logiken
erster Stufe wohlbekannten Technik der Relativierung lassen sich sortierte Formeln A in
unsortierte Formeln Rel(A) transformieren. So transformiert sich zum Beispiel ein quan-
tifizierter Ausdruck der Form VXa.A nach VX, (n).(PaX) = Rel(A), wobei Py ein neues
Priadikatensymbol ist, das die Menge A beschreibt. Diese neuen Pridikate bekommen ihre
Bedeutung durch eine Axiomatisierung Rel(X) der Sorteninformation aus der Signatur X,
die gleichzeitig mit der Relativierung bereitgestellt werden mufl. Leider ist die Situation
in X’HOL nicht so einfach wie fiir Logik erster Stufe, wo Quantifikation das einzige syn-
taktische Konstrukt ist, das Variablen bindet und deswegen die Implikation als Mittel zur
Beschrédnkung des Giiltigkeitsbereichs ausreicht. Fiir die Relativierung von A-Abstraktionen
benotigen wir eine Form von Konditionalen, da schon wegen des Typs nicht die Implikation
benutzt werden kann.

Fiir die meisten sortierten Logiken (zum Beispiel [Wal87, SS89, Wei91]) ist eine wohl-
sortierte Formel A genau dann giiltig in der Klasse der sortierten Modelle, wenn Rel(A)
giiltig ist in der Klasse der Modelle, die Rel(X) erfiillen. Von einem theoretischen Stand-
punkt aus gesehen sind also diese sortierten Logiken nicht expressiver als die unsortierte
Logik erster Stufe, aulerdem lassen sich sortierte Logiken durch das Zusammenwirken von
Relativierung und unsortierter Deduktion mechanisieren. Da sich Konditionale aber erst in
Logiken héherer Stufe mit Beschreibungsfunktionen definieren lassen und es fiir diese bisher
keine zielorientierten Mechanisierungen gibt, steht uns die Méglichkeit der Mechanisierung
von YHOL durch Relativierung und Verwendung von unsortierten Beweisern nicht wirklich
offen. In diesem Sinne ist die Mechanisierung von XHOL also wirklich ausdrucksstarker als
der einfach getypte A-Kalkiil.

Auch schon ein Vergleich der Gréfle und Komplexitit einer X’HOL-Formelmenge mit ih-
rer Relativierung, wie wir ihn in 7.2 durchgefiihrt haben, zeigt deutlich, dafl die Suchrdume
fiir die relativierte Formelmenge so grofl werden, dafl an eine automatische Behandlung
nicht zu denken ist. Mit diesem Vergleich kann die Verwendung von Sortentechniken im
automatischen Beweisen hoherer Stufe als eine Verfeinerung angesehen werden, die es er-
laubt, spezielle Klassen von Axiomen der Form (VX*.(p'X') = ... = (p"XF*) = (¢A)),
wobei die p' und ¢ einstellige Pridikate und die X' die freien Variablen von A sind, als
Termdeklarationen [V[X*:P*].A:Q] zu fassen und algorithmisch in der Unifikation zu be-
handeln.

Ausblick

Natiirlich haben wir in dieser Arbeit nicht alle Fragen, die sortierten Logiken ho&herer
Stufe und ihre Mechanisierung betreffen, 16sen kénnen. Im Folgenden sollen daher einige
vielversprechende, weitergehende Forschungsthemen skizziert werden.

Es wire wiinschenswert, den Sortenmechanismus in XHOL um Sortenkonstruktoren
zu erweitern und so eine direkte Beschreibung von Funktionenrdumen, wie zum Beispiel
Ci(H,R) in der Analysis, zu ermdglichen. Weiterhin wire die FErweiterung des Sortenme-
chanismus um Schnittsorten (vergleiche [KP93]) interessant, da sie die Probleme mit der
Regularitidt von Signaturen vereinfachen wiirde.

X

In der Logik erster Stufe haben sortierte Unifikationsalgorithmen mit Termdeklara-
tionen zur Entwicklung von speziellen Resolutionskalkiilen mit dynamischer Sorteninfor-
mation [Wei91, Wei93] gefiihrt. Diese Systeme erlauben die Spezifikation von bedingter
Sorteninformation, wie sie zum Beispiel in der Definition der Stetigkeit von Funktionen
([f=C] < Ve.dé....) auftritt. Dadurch kann im Verlauf der Beweissuche neue Sortenin-
formation berechnet werden, indem diese Bedingungen bewiesen werden. Diese wird dann
sofort durch den Unifikationsalgorithmus genutzt und trigt so zur stetigen Verbesserung
der deduktiven Stirke des Kalkiils bei. Es scheint, dal sowohl der Mechanismus der be-
dingten Sortendeklarationen als auch die Resolution mit dynamischer Sorteninformation
fiir die Mechanisierung der Mathematik sehr interessant sein kénnen, insbesondere wenn
sie auf Logiken hoherer Stufe verallgemeinert werden.

Die Resolutionskalkiile mit dynamischen Sorten wurden in [KK94] ihrerseits eine Grund-
lage fiir die Mechanisierung von partiellen Funktionen basierend auf den bekannten drei-
wertigen Kleene-Logiken [Kle52]. Wir hoffen diese Ansitze fiir YHOL verallgemeinern zu
kénnen und damit Kalkiile zu haben, die mit der Behandlung von Sorten und partiel-
len Funktionen einen signifikanten Teil der mathematischen Umgangssprache addquat ab-
decken. Solch ein logisches System mit Sorten und partiellen Funktionen ist natiirlich fiir
die Mathematik noch besser geeignet als X HOL, denn nur ein Teil der in der Mathematik
auftretenden Funktionen haben Definitionsbereiche, die Cartesische Produkte sind und sich
daher einfach als Sorten fassen lassen. So ist es zum Beispiel weit natiirlicher, die Funktion
flz,y) = IlTy als partielle Funktion der Sorte R — R — R aufzufassen, die nur fiir z # y
definiert ist, als fiir sie eine Wertebereichssorte zu konstruieren.

Da der intuitive Semantikbegriff fiir Logiken h&herer Stufe die verallgemeinerten -
Modelle sind, wire es wiinschenswert, in der Zukunft Resolutionskalkiile zu entwickeln,
die im Sinne der verallgemeinerten X-Modelle vollstdndig sind. Wir stellen in 7.3 eine
Idee vor, wie man das Axiom der Wahrheitswerte in einem Resolutionskalkiil zielorientiert
mechanisieren kénnte. Wir hoffen mit unserem Unifying Principle fiir ¥-Modelle, ein Be-
weishilfsmittel bereitgestellt zu haben, das den Vollstdndigkeitsbeweis eines solchen Kalkiils
erleichtert.

Das explizite Lifting-Lemma fiir XHR erlaubt es, realistische Suchstrategieen zu unter-
suchen, wie sie fiir Resolutionskalkiile erster Stufe bekannt sind. Diese Strategien sind fiir
die praktische Einsetzbarkeit von Resolutionsbeweisern hoherer Stufe unabdingbar, aber
bisher weder theoretisch noch praktisch untersucht worden.

Die in dieser Arbeit vorgestellten Methoden, Kalkiile und Algorithmen bilden eine
theoretische Basis fiir die Entwicklung von konkreten, automatischen Beweisern héherer
Stufe und damit fiir Deduktionssysteme fiir die Mathematik. Eine Implementation ist im
Moment an der Universitdt des Saarlandes im Rahmen des Sonderforschungsbereichs 314
»Kiinstliche Intelligenz — Wissensbasierte Systeme“ in Arbeit. Die Logik YHOL ist die
Basis der Arbeitssprache POS7T (Partial Order-Sorted Type theory) in der sich mathe-
matische Sachverhalte — beispielsweise eines typischen mathematischen Lehrbuchs — fiir
das OMEGA-System ausdriicken lassen. Bei diesem System handelt es sich um ein inter-
aktives Beweissystem, wie wir es am Anfang dieser Zusammenfassung beschrieben haben.
Die umfangreich Erfahrung in der Kodierung mathematischer Probleme fiir traditionelle
automatische Beweiser erster Stufe, und die Kritik der Reprdsentationssprache, die als zu
schwach empfunden wurde, waren eine wichtige Motivation fiir diese Arbeit. Erste Experi-
mente mit dem neuen System haben gezeigt, daf sortierte Logiken héherer Stufe tatséchlich

ein ausreichend michtiges System darstellen um einen nichttrivialen Teil der Mathematik
adidquat zu formalisieren. In diesem Zusammenhang verwirklichen wir nun auch unseren
Resolutionskalkiil YHR im £EO (Logic Engine for OMEGA) System.

xi

CONTENTS CONTENTS

Contents
1 Introduction 1
1.1 Higher-Order Logic 3
1.2 Higher-Order Automated Theorem Proving 5
1.3 Sorts in First-Order Deduction 8
1.4 Sorted A-Calculi (Related Work) 11
1.5 XA: A Sorted A-Calculus o 12
1.6 YXHOL: A Sorted Higher-Order Logic 15
1.7 YHR: A Mechanization of ¥HOL by Higher-Order Resolution 16
1.8 OQutline of this Thesis e 17
2 Simply Typed A-Calculus 19
2.1 Preliminaries e e e e e e e 19
2.2 Well-Formed Formulae, 22
2.3 A-Reduction and Normal Forms 25
2.4 TypelInference e 30
3 YA: A Sorted A-Calculus 34
3.1 Sorts . .. e e e 34
3.2 Well-Sorted Formulae, 36
3.3 X-Structures e e e e e 43
3.4 XY-Substitutions e 46
3.5 Sorted Reduction e 49
3.6 SortlInclusion e 56
4 Computational Aspects XA 62
4.1 Structure Theorem 62
4.2 General Bindings L 68
4.3 Sort Computation e e 72
4.4 X-Unification Problems 73
4.5 General ¥-Unification (XUT) oo oo 78
4.6 Pre-Y-Unification (¥P7) 85
5 YHOL: A Sorted Higher-Order Logic 88
5.1 The System XHOL e 88
5.2 XY-Model Structures. e e 89
5.3 Calculi e e 94
5.4 Unifying Principles L 98
5.5 Completeness L 106
6 YHR: Resolution for YHOL 108
6.1 Reduction to Clause Normal Form 108
6.2 The Resolution Calculus XHR 114
6.3 Lifting Properties for XHR oo 116
6.4 Completeness of XHR e 121

xii

CONTENTS

CONTENTS

7 Conclusion 126
7.1 Applications e 126
7.2 Sorted Logics: An A-Posteriori View 127
7.3 Further Work L 129

8 Acknowledgments 134

9 Bibliography 135

10 Table of Defined Symbols 147

xiii

1 INTRODUCTION

1 Introduction

The field of mathematical logic has its roots in the effort of understanding the process of
rational human reasoning. Since mathematical reasoning is human reasoning in its purest
and most rigorous form, it is the most natural object for the investigation of this process.

If we look at the history of mathematics, we can observe a recurring pattern of change.
Consider, for instance, the case of calculating with numbers, a task that has changed
from a difficult job for highly paid specialists in Roman times to a task that is feasible
for children in our century. What is the cause of this dramatic change? Of course the
formalized reasoning procedures for arithmetic that we use nowadays. These so-called
calculi consist of a set of rules that can be followed purely syntactically, but nevertheless
manipulate arithmetic expressions in a correct and fruitful way. An essential prerequisite
for syntactic manipulation is that the objects are given in a formal language suitable for
the problem. For example, the introduction of the decimal system has been instrumental
to the simplification of arithmetic mentioned above. When the arithmetical calculi were
sufficiently well understood and in principle a somewhat mechanical procedure, and when
the art of clock-making was mature enough, to design and build mechanical devices of an
appropriate kind, the invention of calculating machines for arithmetic by Schickard (1623),
Pascal (1642), and Leibniz (1671) was only a natural consequence.

Another important step for understanding the human reasoning process was the obser-
vation Aristoteles, and other Greek philosophers, and later by Leibniz, Boole, and Frege,
that mathematical methods (calculization) can be applied to the reasoning process itself.
In particular, mathematical reasoning can be carried out by syntactically applying simple
rules to formal expressions just like in the case of arithmetical calculi. This idea, to de-
velop calculi for reasoning in analogy to those for arithmetic, has strongly influenced the
development of formal languages, notions of semantics, and modern logical calculi. Just
as the discovery of efficient calculi for arithmetic has led to the development of mechanical
calculators, the discovery of logical calculi has led to the development of todays deduction
systems, which are computer programs that perform reasoning tasks by operationalizing
these calculi. The systems built so far can be roughly categorized into the paradigms of
interactive and fully automatic systems that aim at finding proofs for theorems with or
without user interaction.

Automated theorem provers are usually based on refutation calculi that try to prove
a theorem by deriving a contradiction from its negation and rely on unification [Rob65]
as a central inference procedure. Unification algorithms (see [BS94] for a comprehensive
survey) compute substitutions that equate given sets of terms. For refutation purposes
only such substitutions (called most general) are needed from which all others can be
recovered by instantiation. This property allows the refutation procedure to search for
schematic proofs that represent all instances of the proof. Such refutation procedures
are conceptually and computationally very simple, if the used sub-procedures, such as
normal form reductions and unification, are decidable and of relatively low complexity.
Therefore almost all automated theorem provers restrict the input language to some variant
or subsystem of first-order logic, where unification is decidable and yields unique, most
general unifiers.

The primary emphasis of research for fully automated systems lies in finding strong
calculi and search strategies that restrict the search spaces associated with proof search.

1 INTRODUCTION

There are three classes of refutation calculi for automated theorem proving that turned out
to be of primary importance, namely, resolution [Rob65, OS89], the mating/connection
method [And81, Bib83], and analytic tableaux [Smu68, Fit90]. The resolution method
has been further refined for a special treatment of the equality predicate in the Paramod-
ulation [RW69], E-resolution [Mor69], and RuE-resolution [Dig79] calculi. Term Rewrit-
ing [KB70] systems, which have at first been developed for pure equational logic, have since
been generalized to full first-order logic in the superposition calculi [ZK88, BG90, BG92].

Automated theorem proving systems based on any of the calculi above have reached
the power to solve non-trivial problems, but they are (like all search procedures) subject to
the combinatorial explosion of the search spaces, and therefore have principal limits to the
complexity of proofs that can be found. Thus in general they can approach the efficiency
of mathematicians only in domains, where humans have very little or no intuition at all.

These limits have led part of the research community to investigate systems that rely on
user interaction to find proofs. Since universal proof procedures do not play an important
role in this paradigm, the community has developed highly expressive logical formalisms and
calculi that are modeled after human reasoning in mathematical practice. This is essential
for the concept of interactive deduction systems, because an expressive language allows
for adequate formalizations of mathematical practice and also for short proofs that can be
easily communicated. The AuTOMATH Project [dB80] has pioneered the area of mechanical
proof checking by coding the total contents of a mathematical textbook [Lan30] in a formal
language and proving all theorems in the accompanying proof system [Jut79].

Unfortunately, typical proofs in this and other systems are still so long and complex
that almost all practical interactive systems provide a so-called “tactic mechanism” (giving
rise to the name “tactic theorem proving”), which allows the user to write small specialized
automatic reasoning procedures to relieve him of some of the routine work. Among the
most influential tactic theorem provers are the Nuprl [CAB*86], the HOL [Gor85, GM93],
the PVS [ORS92], and the KIV [HRS90, HRS91] systems, which were originally designed
for program and hardware verification. Isabelle [PN90] and EIf [Pfe91] are examples for
deduction systems that mechanize logical frameworks, i.e. systems where the logic language
is powerful enough to allow the specification of object logics.

The motivation for the work reported in this thesis comes from the attempt to de-
velop deduction systems that inherit the merits of both approaches to theorem proving,
the interactive and the fully automatic one [HKKT92, HKK*94]. If deduction systems
are to be useful as assistants to mathematicians or in software verification, we will need
the expressive formalisms (currently found in interactive systems) and the strong universal
proof procedures (without the restriction to first-order logic), since otherwise formal de-
duction will be too tedious and expensive in practice. Clearly the solution cannot be an
automated theorem prover for expressive logics, since it is maybe even more subject to the
combinatoric explosion. The author believes that a possible solution might be an interact-
ive deduction system that has access to powerful automated theorem proving procedures
(logic engines, such as resolution systems) to fill non-trivial gaps in the proofs the user de-
velops interactively with the system. These logic engines must be automatic systems that
can routinely solve non-trivial problems given in the expressive language of the interactive
system calling them.

The concrete goal of this thesis is to develop a mechanization of a very expressive
logical formalism that is suited for the use in mathematics. As mathematical facts cannot

1 INTRODUCTION 1.1 Higher-Order Logic

be adequately formalized in first-order logic and first-order automated theorem proving has
shown that sort techniques allow for an efficient automatic proof search, we have chosen a
sorted higher-order logic for the task. The sorted higher-order resolution calculus developed
in this thesis is intended to be a basis for logic engines that are suited for the task described
above.

In the remainder of this introduction we will have a look at higher-order logic and
deduction, and sorted first-order deduction systems to motivate the features of our com-
mon generalization. Then we will review related work and finally outline the results and
structure of this thesis.

1.1 Higher-Order Logic

At the beginning of this century mathematicians applied the newly developed logical meth-
ods to mathematics itself (e.g. [WR10]) and thereby tried to provide it with a secure logical
foundation. A solution of this “Grundlagen” problem requires a formal language to express
all mathematical statements and a consistent logical calculus that can formally derive all
true statements. This endeavor turned out to be much more difficult than expected, for
instance the well-known Russell-antinomies show that special precautions must be taken in
order to prevent inconsistencies. Russell already suggested the use of typed logics [Rus08]
as a possible remedy and used this approach together with Whitehead in the Principia
Mathematica [WR10]. Typed logics classify objects by assigning a certain type to each
object, and by restricting term formation to well-typed formulae. To be well-typed objects
of functional type can only be applied to arguments whose type matches the type of their
domain. The hierarchy of types naturally induces the notion of an order on types and
objects.

In [G6d30] Godel proved the completeness of a subsystem of the logic underlying Prin-
cipia Mathematica (the so-called first-order logic), which allows quantification only over
first-order variables (individuals). In contrast to this we will call logical systems that allow
quantification over variables of arbitrary order higher-order logics. Unfortunately, first-
order logic is so weak that neither Peano arithmetic nor, for instance, the theory of torsion
groups? can be finitely axiomatized. Gdodels later result [God31], stating that the full sys-
tem of Principia Mathematica (and indeed any logical system that can formalize Peano
arithmetic) is incomplete, has led to the dominance of first-order logic that we still ex-
perience today, even though only a fragment of mathematics can be adequately expressed.
First-order logic is even more appealing, because the technical device of typing can be
left implicit by distinguishing “terms” (denoting individuals) and “propositional formulae”
(denoting truth values).

Zermelo, Fraenkel, G6del, and others used an encoding of mathematics into set the-
ory [Zer08, Fra28, Neu28, G6d40, Ber41] that is itself axiomatizable in first-order logic to
give an answer to the foundation problem for mathematics that is accepted by most math-
ematicians today. It is appealing, since it only uses first-order calculi and thus inherits
all nice properties of first-order logic. Consequently, these ideas have been the basis for
attempts to build automated theorem provers for mathematics [BLMT86, Qua92]. Note

?Torsion groups are groups, where for any element a, there is a natural number n such that a™ is the
neutral element.

1.1 Higher-Order Logic 1 INTRODUCTION

that these systems must be incomplete, as Peano arithmetic can be formalized in them via
the encoding.

Mathematical vernacular usually uses a mixture of both: set theory and typed higher-
order logics. Set theory provides a powerful tool for describing mathematical objects,
and proofs are carried out in a logic implicitly typed by the choice of notation (n, m, k
for natural numbers; f, g, h for functions ...). Furthermore, explicit quantification over
variables of higher type is widespread. Naturally, the opportunity to encode all of this into
set theory is almost never used, since the encodings of the objects of interest become much
too large and quite unwieldy. On the contrary, deduction is in general carried out in the
respective technical language, that has been established for the particular mathematical
field in question. Thus, if we view axiomatic set theory only as an answer to the foundation
problem of mathematics, where the aim consists in demonstrating that the whole body of
mathematics can be encoded into a consistent logical system, the problem can be viewed
as solved and the technical inconvenience that, for instance, basic mathematical objects
like functions have to be encoded as right total, left unique relations are irrelevant. This
need for encoding into axiomatic set theory is clearly an obstacle for giving an adequate
account of informal mathematical practice. The author believes that the choice of a typed
higher-order logic is much more natural for the use in deduction systems, since it takes
those objects as primitive that most mathematicians consider as basic. Moreover, we can
also use axiomatic set theory in higher-order logic, since it contains first-order logic as a
subsystem.

The expressiveness of the logical systems discussed so far (higher-order logics as well as
axiomatic set theories) is guaranteed by the so-called comprehension azioms, which pos-
tulate the existence of all functions that can be expressed by well-formed formulae para-
meterized by free variables. Unfortunately, this infinite set of axioms makes a direct use of
higher-order logic for the mechanization of mathematics impossible, because an automated
theorem prover would have to be interactively supplied with the subset of comprehension
axioms relevant for the problem at hand. Thus significant guidance would be left to the
user of a deduction system, since the choice of the appropriate comprehension axiom (for
instance, postulating the existence of a diagonal sequence in the proof of Cantor’s theorem)
is often a key idea to the proof.

This was one of the reasons for Church to reformulate higher-order predicate logics
to the (logically equivalent) system of simple® lype theory. In this logical system the
comprehension axioms are cast in an equality theory, which can even be directed to a
confluent terminating reduction system, and is therefore decidable. We can understand this
reformulation by the following argument. Take an instance of the original comprehension
axiom dF.VX.FX = A, where A is an arbitrary formula, and give the function F, which
is guaranteed by this axiom, the name AX.A, then we are left with the assertion that
VX.(AX.A)X = A. This can be instantiated by an arbitrary formula B to (AX.A)B =
[B/X]A which is just the definition of §-equality. Thus Church’s simply typed A-calculus is
a very elegant and intuitive formulation of higher-order logic, since the syntax and semantics
of typed predicate logics can be reobtained by simple definitions. Therefore we base the
work reported in this thesis on simple type theory.

Independently from its logical origins the simply typed A-calculus has become one of the

In fact, Church’s type system is a simplification of Russell’s system of ramified types [Rus08].

1 INTRODUCTION 1.2 Higher-Order Automated Theorem Proving

most important tools of computer science for describing functions, programming languages,
and more generally computability. This has spawned the development of a rich zoo of
specialized type systems for various A-calculi (see for instance [Tho91]). Although the name
“type theory” has originally been used by Church for his logical system (i.e. the simply
typed A-calculus augmented by logical constants and axioms), it has become customary to
refer with this name to A-calculi with powerful type systems but without logical constants
or axioms. We will stick to this usage and call our A-calculi higher-order logics whenever
logical constants and axioms are present.

We also want to mention an alternative, equivalent formulation of higher-order logic.
Combinatory logic was developed by Schonfinkel [Sch24], and then thoroughly investigated
by Curry and Feys [CF58] (for a modern treatment see [HS86]). In combinatory logic the
role of A-abstraction and (-conversion is taken up by the combinators K, S5, I, and the
axioms of weak combinatory reduction: TA — A, KAB — A and SABC — (AC)(BC).
The simply typed version of this system of higher-order logic is equivalent to the simply
typed A-calculus, since each combinatory logic formula can directly be translated into a A-
calculus formula and vice versa. Moreover, the equality theories are coextensive modulo this
translation. Combinatory logic has one great technical advantage: there is no need for A-
abstractions, and consequently, bound variables are not a problem. But it has the practical
disadvantage that formulae are much more difficult to read for humans. While there have
been attempts to mechanize mathematics on the basis of combinatory logics [Rob69b,
Joh91, DJ92, Dou93, Joh93, Koh93], this is not the subject of this thesis, although it may
become important in the future.

1.2 Higher-Order Automated Theorem Proving

The history of building automated theorem provers for higher-order logic is almost as old
as the field of deduction systems itself. In fact, one of the first attempts to build a semi-
automated deduction systems (SAM [BEGT64, Gua64, Gou65, GOBS69]) did not restrict
itself to first-order logic but instead used higher-order logic.

When evaluating calculi for higher-order logic the classical notion of completeness be-
comes problematic, since higher-order logic cannot admit complete calculi according to
Godel’s first incompleteness theorem [G6d31] as mentioned above. At closer view, Godel’s
theorem only applies to the so-called standard semantics, where a model consists of a given
universe D, of individuals, the set D, of truth values, and universes D,_,g for the function
types that are just the sets of all functions with domain in D, and codomain in Dg. While
this semantics is indeed the intuitive semantics for mathematics, it does not necessarily
yield a reasonable measure for the completeness of a calculus. If we consider a general-
ized notion of model theory, the so-called general models, where the universes of functional
type are only required to be subsets of the set of all functions such that there exists a
denotation for any well-formed formula?, then appropriate generalizations of first-order
calculi are complete [Hen50]. Clearly each standard model is a general model. Moreover,
there are now so many new models, that all propositions that are valid but not provable
(in the standard sense) now have a counterexample. Furthermore, by Gédel’s second in-
completeness theorem formal methods cannot characterize standard models in the class of
general models. Thus this so-called generalized (or Henkin)-semantics yields an appropriate

*Note that this requirement directly corresponds to the comprehension axioms.

1.2 Higher-Order Automated Theorem Proving 1 INTRODUCTION

measure of completeness for higher-order calculi. Fortunately, the corresponding notion of
soundness entails that of standard soundness, since each standard model is a general model
by definition.

A wide range of methods for higher-order automated theorem proving has been pro-
posed. In [Rob68, Rob69a] Robinson presented a proof procedure that is essentially a
tableau implementation of the calculi given in [Sch60, Tak53]. A similar procedure was
later implemented in [Hib73] and successfully applied to problems from number theory.
In [Rob69b] Robinson proposes to translate a problem given in higher-order logic into
combinatory logic and to give it to a conventional first-order Resolution/Paramodulation
theorem prover that has also been given an axiomatization of combinatory logic. In [Dar71]
Darlington presents a resolution procedure that allows limited second-order formulae in or-
der to handle induction schemata. He employs the unification algorithms from [Gou66].
Andrews proposed a resolution calculus for full higher-order logic [And71], and for the
completeness proof pioneers the use of a unifying principle for higher-order logic. This
technique is probably more important than the particular calculus itself, which lacks uni-
fication just like the calculi discussed so far, and is therefore not practically applicable. The
unifying principle of [And71] has become the standard method for proving completeness of
higher-order calculi, and we will use, extend and simplify it in this thesis.

The first successful attempts to mechanize and implement higher-order logic were those
of Huet [Hue72] and Jensen and Pietrzykowski [Pie73, JP73, JP76]. They combine the
resolution principle with higher-order unification, which we now discuss in more detail.
The unification problem in typed A-calculi is naturally much more complex than that for
first-order terms, since it has to take the theory of A-equality into account. This problem
was first investigated in depth by Gould in [Gou66], who already identified the problem as
nullary®. Even though Gould’s unification algorithms (and also those of Darlington [Dar68]
and Ernst [Ern71]) are not complete, the early work identified the major difficulties, and
lead to the solution of the problem by Huet, Jensen, and Pietrzykowski [Hue72, Hue76,
JP73, JP76]. Huet proved that third-order unification is undecidable [Hue73], a result that
was independently obtained by Lucchesi [Luc72], refined by [Bax78], and finally extended
to second-order logic [Gol81, Far9la]. The last result gives a sharp classification of the
undecidability of higher-order unification: if the language has one binary function constant,
then unification is undecidable; if there are only unary function symbols, then unification
is decidable: it can easily be seen to be equivalent to associative unification, which is
decidable [Mak77], and has at most infinitely many most general unifiers [Plo72].

The first implementations of higher-order unification already revealed that the search
space for unifiers is far too large to be feasible for practical applications. Huet developed
a restriction of the higher-order unification problem (pre-unification) that is sufficient for
the completeness of refutation procedures, where one is only interested in the solvability of
unification problems rather than in the unifiers themselves. Although the pre-unification
problem is also undecidable, a simple modification of Huet’s algorithm enumerates sets
of most general solutions to unifiable problems. Moreover the application to almost all
practical problems yields small sets of most general unifiers. For a modern presentation of
higher-order (pre-)unification we refer the reader to [SG89, Sny91].

A unification problem is called nullary, if complete sets of unifiers need not always have most general
elements.

1 INTRODUCTION 1.2 Higher-Order Automated Theorem Proving

Another research topic in the field of higher-order unification that is motivated by prac-
tical applications is the search for subclasses of higher-order formulae that enjoy a tractable
unification problem. A subclass that is particularly interesting because its unification prob-
lem is decidable, unitary [Mil92] (solvable unification problems always have unique most
general unifiers), and linear [Qia93] (that can be computed in linear space and time) is
that of higher-order patterns introduced by Miller for the higher-order logic programming
language A\-ProrLoa [Mil91]. This subclass has since proven its usefulness for higher-order
equality reasoning [Nip91, Pre94b, Pre94a] and logical frameworks [Pfe91]. In some cases
it is possible to relax the conditions of higher-order patterns and still obtain a decidable
unification problem. For instance, unification of pairs consisting of one higher-order pattern
and one second-order formula are still decidable [Pre94b, Pre94al].

The question of higher-order unification, where the theory of gn-equality has been
augmented by a further equational theory such as associativity or commutativity, has
led to algorithms for general- [Sny90] and modular higher-order E-unification [NQ91,
Miil93, MW94, Web93]. The modular algorithms are, in fact, more of a combination
method that allows to combine higher-order unification with existing first-order unifica-
tion algorithms. For an application of the associative commutative higher-order patterns
see [QW94]. In [Joh91, DJ92] the methods developed by Dougherty for unification with
combinators have been extended to higher-order F-unification by employing combination
methods for first-order narrowing.

A totally different approach to higher-order unification is taken by Dougherty in
[Dou93], where he gives a unification algorithm for combinatory logic that is based on
a first-order narrowing method for the theory of weak combinatory equality.

In contrast to the higher-order unification problem, where the issue of decidability is ba-
sically well-understood, the question of decidability of higher-order matching (for given for-
mulae A and B find a substitution o such that o(A)=g,B) is still largely open. In [Hue76]
Huet was able to prove decidability of second-order matching and recently Dowek exten-
ded this result to third-order formulae [Dow92]. Even though various authors have studied
other special cases [Zai87, Wol93, CQ94, Cur93] the decidability of the general higher-order
matching problem is still open.

Granted a good understanding of higher-order unification, higher-order theorem prov-
ing is still a complex issue. We now discuss some of these problems using the example of
higher-order resolution. The same problems, however, also appear in the context of other
higher-order refutation procedures, such as the higher-order matings method [And89]. Since
higher-order unification is undecidable, incorporating unification into the resolution infer-
ence rule would not result in an effectively computable rule. As a remedy, the unification
process can be delayed by capturing the unification problems as constraints and effectively
interleaving the search for empty clauses by resolution with the search for unifiers. Fi-
nally, in contrast to first-order refutation theorem proving not all instantiations that are
necessary in a refutation can be obtained by unification, since the heads of flexible literals
(i.e. literals, where the head is a predicate variable) have to be instantiated with formulae
that contain the logical constants A,—,Il. Clearly these substitutions cannot be found
using unification, since the needed head symbols are not even present in the clause set,
as they have been eliminated in the clause normal form transformation. Huet solves this
problem by introducing special “splitting” inference rules that provide the instantiations
by enumerating all possible substitutions. This approach can hardly be called practical,

1.3 Sorts in First-Order Deduction 1 INTRODUCTION

since these inference rules are infinitely branching. Unfortunately, a better solution for the
general problem remains still to be found. It seems probable that Bledsoe’s “set variables”
method [Ble77, Ble79] from the context of set-theoretic theorem proving might give some
heuristics or even provide a direction towards a complete mechanization.

While experiments like the TPS-project [ALCMP84, And89, AINP90] of Andrews at the
Carnegie Mellon University have shown the practical feasibility of higher-order automated
theorem proving based on these ideas, such systems are rather weak in their deductive
power when compared to automated theorem provers for first-order logic. Part of this
weakness stems from the fact that higher-order deductive systems have to treat problems
(like complex unification problems and the problem of flexible literals) that are intrinsic to
higher-order logic and slow down the proof search. The other major cause of inefficiency
is the fact, that most technological advances in first-order theorem proving, such as FE-
unification, sorts, sophisticated search strategies, special methods for equality, as well as
implementational progress, such as term indexing have not yet found their way into higher-
order theorem proving or are only beginning to be investigated recently. The author believes
that the obstacles to proof search intrinsic to higher-order logic may well be compensated
by the greater expressive power of higher-order logic and by the existence of shorter proofs.
Thus higher-order automated theorem proving will be practically as feasible as first-order
theorem proving is now as soon as the technological backlog is made up.

The work reported in this thesis is intended to fill this gap at least with respect to the
treatment of sorts by generalizing the first-order sort techniques of Schmidt-Schaufl [SS89]
to higher-order logic.

1.3 Sorts in First-Order Deduction

The introduction of sorted logics has been one of the most successful contributions to
first-order automated deduction. Sort techniques consist in syntactically distinguishing
between objects of different semantic classes (foxes, wolves, numbers, points, lines, etc.);
the essential idea behind sorted logic is to assign sorts (specifying the membership in some
class) to objects and restrict the range of variables to particular sorts. Sorted logics have
already been studied very early from a theoretical point of view by Herbrand [Her30],
Schmidt [Sch38, Sch51], Wang [Wan52] and Oberschelp [Obe62]. The practical exploit-
ation of sort information in the search for proofs can dramatically reduce the search
space associated with theorem proving (see e.g. [Wal85]), and hence the resulting sor-
ted calculi are much more efficient for deduction purposes. In the context of first-order
logic sort information has been successfully employed by Walther [Wal83, Wal85, Wal88],
Schmidt-Schauf [SS86, SS89], Cohn [Coh87, Coh89, Coh92], Frisch [Fri90, CF92], Weiden-
bach [Wei89, Wei91, Wei93], and others.

In unsorted logics the only way to express the knowledge that an object is a member
of a certain class of objects is through the use of unary predicates, such as the predicate N
in the formulae (N2), i.e. “2 is a natural number” or —(NPeter) with the meaning “Peter
is not a natural number”. This leads to a multitude of unit clauses (SA) in the deduction
that only carry the sort information for A. Furthermore, in unsorted logics quantification
is unrestricted, whereas in practice one often wants quantifications to range only over the
objects in a certain class. The latter kind of quantification can always be formulated with
formulae like YX.(NX) = (> X0). But the approach is unsatisfactory, because inter alia

1 INTRODUCTION 1.3 Sorts in First-Order Deduction

the derivation of the nonsensical formula (NPeter) = (> Peter0) is permitted, even though
(> Peter 0) can never be derived because of =(NPeter).

Sorted logics remedy this situation by assigning sorts to constants and variables and
require that formulae meet certain restrictions to denote meaningful objects: an application
(AB) is well-sorted, iff there are sorts A and B such that A is of sort B — A and B is of
sort B. In this case the sort of (AB) is A. Furthermore, sorted logics provide mechanisms
for restricted quantification, where the truth value of a formula ¥Xp.A depending on the
instances of A with respect to objects of sort A. Thus in a sorted logic the quantified
formula above would read VXn.(> X0) where > would be declared to be a binary relation
on N and 0 to be of sort N.

The set of declarations for sort information is traditionally called the signature of the
sorted logic. Classical sorted logics know three mechanisms for declaring this sort inform-
ation:

e Variables can be restricted to sorts via declarations of the form [X:A] where X is a
variable and A is a sort. In fact, most sorted logics postulate a total sort function,
that associates a unique sort with each variable.

e Constants and functions can be declared to belong to certain sorts by declarations of

the form [¢:A] and [f:A — B].

e Subsort information can be declared by declarations of the form [A < B]. This
induces a subsort relation on sorts, which is the smallest partial ordering that contains
these subsort declarations. The subsort relation plays such a central role in sorted
logics that these are often called “order-sorted”. It is a useful notion to employ,
since it allows the specification of hierarchies of sorts, which encode the definitional
taxonomies of objects that play a great role in mathematics. Examples of such
taxonomies are the hierarchies in algebra (semigroups, monoids, rings, fields,...) or
numbers (natural numbers, integers, rationals, complex,. . .).

Naturally, these declarations have an effect on the notion of a model of a logic system.
The carrier set D has subsets Dp corresponding to the sorts. The correct semantical notion
for functions is that of partial functions, which obey the declarations of the signature, i.e. if
[f=:A — B] is declared in the signature, the denotation of f must be a partial function that
is total on Dp, and moreover f(Dp) C Dg. For each subsort declaration [A < B] we must
have Py C Dg. This semantics reflects the fact that humans use certain classes to structure
the universe and that mathematicians naturally use variables and functions restricted to
these classes. Thus the sorted models are closer to the intuition of mathematicians than
the unsorted ones.

However, it is well-known and, in fact, one of the major results of first-order lo-
gic [Sch38, Sch51, Wan52, Obe62], that the use of sorts does not yield logics that have
more expressive or deductive power, since with the technique of relativization all sorted
first-order formulae, proofs, and models can be coded into unsorted first-order logic, in such
a way that entailment and provability are preserved. For instance, the formula VX :A.A
is transformed to VX.A(X) = Rel(A), where A is a new unary predicate of the unsorted
language. Declarations like [¢:A] or [A < B] from the signature are relativized to new
“signature axioms” A(c) and YX.A(X) = B(X). On the model theoretic side the algebras

1.3 Sorts in First-Order Deduction 1 INTRODUCTION

of partial functions are transformed into algebras of total functions by extending partial
functions arbitrarily. So-called sort theorems now verify the coordination of the two no-
tions of relativizations by stating that a sorted sentence A is satisfiable, iff its relativization
Rel(A) has a model that also satisfies the signature axioms.

In his sorted logic with term declarations [SS89] Schmidt-Schauf} relaxes the implicit
condition that only the sorts of constants and variables can be declared, and allows declar-
ations of the form [A:A], called term declarations, where A can be an arbitrary formula.
The idea of term declarations is that there can be sort information within the structure of
a formula, if the formula matches a certain schematic formula (a term declaration). Con-
sider, for instance, the addition function, which (semantically) we would like to have the
sort N XN — N where N is the sorts of natural numbers. If we also have a sort for the even
numbers E, then we might want to specify that the expression [+aa] is an even number,
even if a is not. This information can be formalized by declaring the formula [+ XnXn] to
be of sort E using a term declaration. In this expressive system term declarations of the
form [Xpa:B] entail that A is a subsort of B and induce the intended subsort ordering on
the set of sorts.

Research in sorted first-order logics and sorted deduction has primarily centered around
the following topics:

Unification: Here the impetus has been in developing expressive sorted logics, finding uni-
fication algorithms, and proving complexity results for them. For instance, unification
in sorted logics is decidable and unitary, if the subsort relation is tree-like, and finitary,
in the case where only function declarations are allowed [Wal84, Wal88]. Schmidt-
Schauss proved that in the case of general term declarations, sorted unification is
undecidable and infinitary. However, there is a restricted class of term declarations
(presented by Uribe and Socher in [Uri92, Soc93]) that is much richer than that of
function declarations, and where unification is still decidable. For a very abstract
account of unification in various sort theories see [CF92].

Sorted refutation calculi: The sorted resolution calculi of Walther [Wal83, Wal87], and
Schmidt-Schaufl [SS86, SS87, SS89] simply substitute sorted unification for unsor-
ted unification to obtain a sorted refutation calculus (the power and generality of
this approach has been made explicit by Frisch in [Fri90]). Here the taxonomic the-
ory in the signature is fixed in advance and is completely separated from the object
theory. Thus the sort theory can only influence the deduction by restraining the
search space. The calculi of Cohn [Coh87, Coh89, Coh92], Beierle et al. [BHP192],
and Weidenbach [Wei89, W0O90, Wei91, Wei93] even allow conditional term declara-
tions. This mechanism allows the derivation of more sort information during a proof
and thus makes the sort information that constrains the proof search more and more
concise during the proof search. The most extreme calculus is the resolution calcu-
lus with dynamic sorts [Wei91, Wei93], where the sort theory and the object theory
are completely mixed, but the unification procedure used in the resolution inference
always takes the current state of the sort theory into account.

Logic programming: Since logic programming languages like PROLOG are based on frag-
ments of first-order logics and the operational semantics can be seen as a very re-
stricted form of resolution, there are various order-sorted logic programming lan-

10

1 INTRODUCTION 1.4 Sorted A-Calculi (Related Work)

guages (such as, for instance TEL [SNGMS87, Smo89] or the many-sorted language
GODEL[HL94]) that take advantage of the sort mechanisms. In this setting the aspect
of search control — the user has a clear understanding of the operational semantics
(the search behavior) and uses it for programming — is not as important as the greater
conciseness of problem formulations. Since sorted programming languages should not
be less efficient than unsorted ones on unsorted problems, compilers of such languages
often try to precompute sorts of terms at compile-time in order to reduce the complex-
ity of the sorted unification needed at runtime. Practical type systems also provide
mechanisms of polymorphism and type reconstruction to ease the burden of typing
for the user.

1.4 Sorted A\-Calculi (Related Work)

The question of the behavior of higher-order logic under the constraints of a full sorted
type structure is a natural one to ask, in particular, since calculi in this system promise
the development of more powerful deduction systems for real mathematics.

In typed A-calculi the idea of declaring sort information is very natural, as all objects
are already typed, which amounts to a — very coarse — division of the universe into classes.
The type system is merely refined by considering the sorts as additional base types. This
gives rise not only to new classes of objects (sorts A, B), but also of functions (sort A — B),
where domains and codomains are just the sorts. Thus a sorted higher-order logic seems
to be the most adequate system, for example, to formalize analysis, since we now have
constructs for the domain and codomain, the image and the support of a function, and for
function restriction within the system.

Huet was the first to propose the study of a sorted version of higher-order logic in an
appendix to [Hue72]. The unification problem in extensions of this system has since been
studied by Nipkow and Qian [NQ92] and Pfenning and the author [KP93]. Furthermore,
typed A-calculi with order-sorted type structures have been of interest in the programming
language community as a theoretical basis for object-oriented programming and for more
expressive formalisms for higher-order algebraic specifications [Qia91, Car84, BL90, Pie91].

Nipkow and Qian [NQ92| consider a collection of sort systems parameterized by rules
for contravariance® in the domain sort. This principle states that, if A < B, then B —
C < A — C and (semantically) corresponds to implicit function restriction. The paper
presents a unification algorithm for the resulting sorted calculi. Functional formulae in
these calculi in general do not have unique supporting sorts. The consequent difficulties
with extensionality are solved by studying unification under sorted equalities that have
been restricted to appropriate domain sorts — such restrictions enable specification of a
well-defined n-rule. Constant overloading and functional base sorts are not present in these
calculi.

In [KP93] Pfenning and the author consider a calculus A% with intersection sorts.
The intersection operator & on sorts provides sorts A&B denoting the intersection of the
sets denoted by A and B. This calculus also supports contravariance in the domain sort and
constant overloading. Permitting intersection sorts makes it possible to define a minimal
sort for every formula, so that all signatures are regular. In this setting problems with
extensionality are alleviated by allowing only typed abstractions and by defining a formula

®The dual covariance principle states that, if A < B, then (C — A) < (C — B).

11

1.5 YA: A Sorted A-Calculus 1 INTRODUCTION

AX.M to have the sort A — B, iff M has sort B assuming that X has sort A. n-equality
is then a typed relation which preserves the sorts of formulae. This calculus has been
generalized by Pfenning [Pfe92] to a A-calculus with dependent types, which will be used
as a logical framework extending LF in the EIf programming language [Pfe91].

The calculi mentioned above only allow for sorting the universe of individuals, so they
are not directly comparable, in terms of expressive power, with the one presented in this
thesis. Indeed, these calculi represent a principally different approach to deduction which
appears to call for a semantics where functions are total functions on the types and where
the sort information only specifies the behavior of these functions when restricted.

The works of Cardelli [Car88], Bruce and Longo [BL90], Curien and Ghelli [CG91], and
Pierce [Pie91] treat variants of the system F< which encompass polymorphic intersection
types (i.e. intersection types whose variables are explicitly quantified) and the interaction
between these types, and various subsort relations. These calculi serve as computational
models for functional programming languages and are much more expressive than those
studied here, but since they are not intended for deduction purposes, their unification
problems have not yet been addressed. In such calculi subsort declarations are not required
to respect the functional structure of types, rendering the decidability of sort assignment
a very complex issue.

Farmer develops a version of higher-order logic LUTINS [Far9la, Far91b], where all
objects of functional type are partial functions and uses it as the working language of the
IMPS [FGT93] system, an interactive deduction system that has been used to formalize
and prove a large variety of theories in mathematics. In this setting sorts are a derived
notion, they are used as a device to characterize certain partial functions as total on the sets
represented by the sorts and make computation much more efficient using this information.
Experiments with the IMPS system have shown that the greater expressiveness of sorted
logics” is invaluable for formalizing mathematical statements and finding proofs for them.

1.5 YA: A Sorted M-Calculus

The logical system YHOL (sorted type theory) developed in this thesis is a sorted higher-
order logic that is an instance of a sorted A-calculus XA with term declarations and func-
tional base sorts. We now proceed to discuss the primary features of XA and our results.
Since the terms “type” and “sort” are not used uniformly in the literature, let us now
take a look at the underlying principles and fix the usage for this thesis. Both terms refer to
the idea of annotating syntactic objects with semantic information about class membership.
The notion of “type” has first been introduced by Russell to avoid paradoxes and antinomies
in higher-order logics. As we have seen in 1.3 the term “sort” comes from first-order
deduction systems, where the mechanism is used for representing part of an axiomatization
into sort information that can be efficiently manipulated by the calculus. In typed A-calculi
the type mechanism is used in both ways without properly distinguishing them. In XA we
want to make the type mechanism of simply typed A-calculus more expressive without
losing consistency of the language. Thus we separate both uses into a simple type system
(for the safety aspect) and a sort system (for the additional expressiveness). In particular,
we will use the term “type” to refer to a mechanism that is used for the safety aspect and

"Experience with LUTINS shows that the vast majority of examples can be handled with sort mechan-
isms, a fact that may also corroborated by our experience in the Q-MKRP system [HKK*92, HKK*94].

12

1 INTRODUCTION 1.5 YA: A Sorted A-Calculus

the term “sort” for the representation aspect. Clearly the sort system has to conform to the
type system in some way in order to ensure that no antinomies can be imported via the sort
declarations. In our case, the sort system is a refinement of the underlying type system,
and sorted operations will turn out to be refinements of their unsorted counterparts; in
particular, well-sorted formulae are still well-typed in XA.

The calculus YA differs from the systems described in 1.4 in the following three principal
ways:

Functional base sorts: In addition to partitioning the function universes into the classes
A — B of functions defined by domains A and codomains B, the sort system of
YA allows base sorts of functional type, i.e. base sorts that denote subclasses of the
function classes A — B. Syntactically, each sort A comes with a type 7(A), and —
if is of functional type — also with a domain sort 9(A) and a codomain sort v(A).
Semantically, the sorts C denote subsets D¢ of the family of partial functions of type
a, where « is the type of C.

Extensionality: We do not consider function restriction as a “built in” of the system, since
we take seriously the mathematical intuition that functions have uniquely specified
domains. In 3 A, formulae of functional type have unique supporting sorts, i.e. if a
formula A has sorts A and B, then 2(A) = 2(B). Consequently, our subsort relation
cannot be contravariant in the domain sort. This property of XA allows us to give a
meaningful account of the extensionality principle (VX :A.fX = ¢X = f = g), which
relies on the concept of unique supporting sorts (unique domains of functions), even
in a context without typed equality®.

Term Declarations: The term declaration mechanism is much more powerful than the de-
claration schemata proposed in the A-calculi mentioned in 1.4. XA can be seen as
a unifying framework which subsumes most known declaration mechanisms. For in-
stance, sort inclusion (a concept that is primitive to most sorted logics) is a derivable
mechanism in 2A.

The aspects of an extensional sort system and functional base sorts are genuinely higher-
order notions, and do not occur in first-order logic. Furthermore, they interact in a very
subtle way. We have investigated a subsystem of XA that only allows signatures consist-
ing of constant declarations and thus treats the interaction of functional base sorts and
extensionality in isolation in [JK93, JK94]. In contrast to this subsystem, the power-
ful mechanism of term declarations in XA allows a straightforward specification of many
mathematical concepts (cf. examples 3.4.10, 4.5.17, and 6.4.8).

The idea of using term declarations as a general framework for sorted logics was used
in [SS89], so YA is a generalization of the system presented there. Achieving a formalization
for the term declaration mechanism in the context of A-calculi and higher-order accounts
for most of the technical difficulties that we deal with in this thesis. The task is so difficult,
since term declarations heavily interact with §-conversion (see the discussion in 3.2.12).

81n various logical systems the problem of identifying supporting sorts is circumvented by requiring a
typed notion of equality =". For instance, if R () is the sort of real (positive real numbers) and i (a) is
the identity (absolute value) function on the real numbers, then we would have 1 =P 4 but not i =R 4. Tn

such systems the extensionality principle has the form VX :A.fX B gX = f —A-B
intuitive domain of f and g¢.

¢ independent of the

13

1.5 YA: A Sorted A-Calculus 1 INTRODUCTION

We have focused on the term declaration mechanism, since it yields a very general basis®
for understanding sorted A-calculi. Moreover, since the term declaration mechanism is in
no way tied to extensionality or functional base sorts, we conjecture that it can be added
to most type systems in the literature. If we, for instance, add a declaration mechanism
(restricted to variable declarations is sufficient) to the system A=Y of [KP93], then the
special inference rule for well-sorted abstractions gives rise to the contravariance principle
in subsorting. This suggests that YA and A~% are in some ways more homogenous systems
than that of [NQ92], where this is not the case.

The generalization of Schmidt-Schaufl’ logic to the higher-order setting has exposed
methodical difficulties in the first-order system, which have also flawed an earlier at-
tempt [Koh92] to treat the unification problem for ¥A. In this thesis we have corrected
the relevant definitions of [Koh92] and with these were able to prove all the results claimed
there.

One of the difficulties in devising a formal system with term declarations is that the
signature needed for defining well-sortedness contains formulae that again have to be well-
sorted. Furthermore, the concept of gn-conversion is so basic to A-calculi that it should
not change'® the sort of a formula. Therefore it is necessary to combine the inference
systems for validity of signatures, well-sortedness, and sorted §7n-reduction into one large
inference system. This approach has the advantage that the role of the formulae in term
declarations, which was somewhat mystical in [SS89], is now absolutely clear. Furthermore,
the property of subterm-closedness (subformulae of well-sorted formulae are well-sorted),
which Schmidt-SchauB} is forced to assume, becomes a theorem of Y A.

Our main results for ¥ A are that sorted gn-reduction is terminating and confluent and
moreover conserves the sets of sorts of formulae. Additionally, well-sorted formulae always
have unique supporting sorts. The proof of the g-reduction results makes use of the fact
that Y-substitutions (well-sorted substitutions) also preserve sets of sorts. These results
show that even though there is a strong interaction between sorted (7-conversion and term
declarations (proofs of well-sortedness are totally independent of the structure of formulae)
the system XA still satisfies the basic properties required for speaking of a A-calculus.

All of the development of XA takes place in the general algebraic framework of -
structures, which subsume the structures of well-sorted formulae and the relevant se-
mantical notions of Y-algebras of partial functions. This allows us to give a very structured
presentation of the theory, and to use the algebraic notions of ¥-homomorphisms and -
congruences for understanding the syntactic and semantic manipulations needed in the
proofs.

Since our study of YA was motivated by the quest for efficient calculi for higher-order
theorem proving, we study the unification problem of XA and present related algorithms for
general ¥-unification and pre-Y-unification. Just as in the unsorted case, these algorithms

?Note that this is only meant in the context of Church-style logical systems for formalizing mathematics.
Clearly intensional A-calculi like Martin-Lof type theory [ML94] or the calculi of constructions [CH85] have
much more general type systems, but theses systems are usually only used via the propositions as types
isomorphism, and thus these sorts do not appear as a mechanism on the object level, which is just what we
are interested in.

1T his assumption is a rather strong one, motivated by the intended semantics of mathematics. In fact,
for most logical systems it would suffice to assume that reduction to long #n-normal form does not render
formulae ill-sorted by loosing sorts of subformulae. However, in XA we need the stronger assumption in
order for X-unification to work properly.

14

1 INTRODUCTION 1.6 YHOL: A Sorted Higher-Order Logic

build upon the notion of a general binding, i.e. a formula that is most general in the class
of all formulae that share a given head and sort. In XA we identify these formulae and
prove the general binding theorem (4.2.4), stating that for any given formula A of head h
and sort A there exists a general binding G of head h and sort A and a X-substitution p
such that p(G) is equal to A up to sorted n-equality. Once this theorem — which is nearly
trivial in the unsorted case — is established, the unification algorithms can be obtained with
standard methods and their correctness and completeness only requires standard proofs.
The only surprising fact is that in the case of pre-Y-unification, we have to require regular
signatures and even then cannot fully eliminate the so-called “guess rule”, since due to the
presence of functional base sorts flex-flex pairs are not always trivially solvable.

The proof of the general binding theorem is based on the structure theorem, which is
the main technical result of this thesis, since the unification and the completeness results
for the resolution calculus heavily depend on it. The structure theorem 4.1.2 establishes
a correspondence between the structure of a formula A and its sort A by guaranteeing
sorting proofs that A has sort A in a certain normalized form (cf. 4.1.1). Due to the strong
interactions of term declarations and sorted Bn-conversion, we have to take advantage of
the powerful method of a logical relations proof to be able to prove it. This proof method
was developed by Tait for cut-elimination proofs and later adapted for the related task of
showing termination of typed B-reduction. It consists in a subtle combination of inductions
over the structure of types and formulae.

1.6 YHOL: A Sorted Higher-Order Logic

In order to obtain the sorted higher-order logic X’ HOL we specialize the types in XA by
restricting them to a type ¢ for individuals and a type o for truth values. We do not need
any other types, since we can model all other type distinctions in our sort system. Closely
tied to the type o we use a sort O to be able to speak about truth values in our sort
system. To complete the logical system 3HOL, we add compulsory logical constants and
term declarations [¢":A — A — O] for equality, [-:0 — O] and [Az:0 — O — O] for the
connectives, and, finally, [[I?z(A — O) — O] for quantification.

Since we want to develop a sorted higher-order resolution calculus, we investigate three
notions of a model theory. The standard ¥-model semantics is the intuitive semantics
for mathematics, but it has the disadvantage that it does not admit complete calculi, for
principal reasons [G6d31], as we have pointed out above. The general ¥-model semantics
is somewhat less intuitive, but admits complete calculi [Hen50], and indeed we present a
generalization of Henkin’s original calculus from [Hen50] and prove its completeness with
respect to this class of models. Unfortunately, current refutation calculi for automated
theorem proving have problems with completeness for the general model semantics, since
they fail to prove what we have called the axiom of truth values (cf. 5.3.5). Therefore
we develop an even weaker semantics — that of Y-model structures — which makes these
refutation calculi complete. This notion of completeness is equivalent to the notion of
relative completeness found in the literature [And71, Mil83, Pfe87]. We compare all of
these notions in the sorted setting of XHOL.

Furthermore, we prove unifying principles for general Y-models and ¥-model structures.
These theorems state that sets that have the property of being consistent in some abstract
way (Vy-consistency) have a ¥-model (structure). The proof of the unifying principle for

15

1.7 YXHR: A Mechanization of ¥HOL by Higher-Order Resolution 1 INTRODUCTION

Y-model structures is based on techniques from [And71], but we strengthen the notion
of abstract consistency class by an additional saturatedness condition. This makes the
valuations in the proof total, which in turn simplifies the proof and the semantical objects
used in it. Furthermore, it allows to construct a Y-term structure for any Vy-consistent
set of sentences, which yields the model-theoretic result. Without saturatedness Andrews
can only obtain partial valuations, and from this can only conclude %-consistency of Vy-
consistent sets, where ¥ is a special Hilbert-Style calculus for higher-order logic. This
result is a direct corollary of our’s, since X% is sound with respect to Y-model structures.
The unifying principle for general 3-models needs further methods for the manipulation
of equality and its connection to propositional equivalence in order to handle the axiom
of truth values. These allow us to construct a Y-congruence on the Y-term structure that
collapses the set Dg to the set {T,F} of truth values, and thus constructs a general %
model for any Vy-consistent set of sentences, provided that Vy is a saturated, extensional
abstract consistency class.

Since an abstract consistency class Vy can be expressed in purely syntactic terms our
unifying principles can be used in a completeness proof for a refutation calculus C by
showing that C-consistency is an abstract consistency property and thus that C-consistent
sets of formulae are satisfiable. The contrapositive of this (unsatisfiable sets of formulae are
C-refutable) is just the assertion of the completeness for C. We use this argument to give
simple and elegant completeness proofs for the sorted variants of the Hilbert-style calculi
from [Hen50, And71]. These then result in compactness theorems for YHOL with respect
to Y-model-structures and general Y-models.

1.7 YHR: A Mechanization of YHOL by Higher-Order Resolution

By using pre-X-unification instead of unsorted, higher-order pre-unification, the refutation
calculi for higher-order logics [Hue72, Mil83, And89] can be generalized to sorted calculi for
YHOL. In this thesis we verify this claim by generalizing Huet’s calculus of “constrained
resolution” [Hue72] to a sorted higher-order resolution calculus YHR. While the basic
concepts of YHR come from [Hue72], we further develop the calculus independently of the
generalization to the sorted setting. The methods and results that we summarize in the
following are mainly independent of the sort system, since the differences are contained in
the process of Y-unification, which we already have dealt with above.

Naive Skolemization in the resolution calculi in [And71, Hue72] is not sound, in fact,
it is possible to prove an instance of an axiom of choice which is known to be independ-
ent [And73, Mil83]. Therefore we do not use it in XHR, but use the well-known technique
of explicitly representing the variable dependencies between universally and existentially
quantified variables in a relation (called variable condition) that is maintained during the
deduction. Our technique is based on the work of Miller [Mil83, Mil91, Mil92] who has cor-
rected Skolemization for higher-order logics and on that of Bibel [Bib82], who has developed
such methods in the context of the first-order connection method.

Huet’s calculus works on a generalization of first-order clauses that also incorporates
unification constraints. As higher-order unification is undecidable the resolution step only
cuts literals of complementary polarity from the clauses and adds the appropriate pair to
the unification constraint, which is checked for unifiability at the end of the deduction, once
an empty clause has been found. Clearly this strategy is not viable for practical applic-

16

1 INTRODUCTION 1.8 Outline of this Thesis

ations, since any two literals can be resolved upon, and it is not the case that successive
instantiation constrains the search space. Therefore in X’ HR we allow an interleaving of the
search for empty clauses and unification (constraint simplification). In particular, the rule
Y'HR(Solv) propagates partial solutions from the constraints to the clause part and thus
help detect clashes early. Since the substitution may well change the propositional struc-
ture of the clause by instantiating a predicate variable, we have to renormalize the clause
on the fly. This interleaving also makes it possible to use a variant of Andrews’ primitive
substitutions [And89] for instantiating flexible literals, which is conceptually much simpler
than Huet’s splitting rules.

On the other hand the interleaving proof search and unification makes it necessary to
prove a a series of lifting lemmata for XHR, which are then used in the process of showing
that XHR-consistency is an abstract consistency property. In the light of the unifying
principle for XHOL this fact entails the refutation completeness of Y’ HR with respect to
Y-model structures. Lifting lemmata are theorems well-known from completeness proofs
of first-order refutation calculi that guarantee (lifted) refutations of a formula A whenever
there is one for an instance §(A). With their help first-order completeness theorems can
be reduced to the question of completeness on ground (variable-free) sets of formulae.
Huet does not need an explicit lifting lemma for the completeness proof of his calculus,
since no instantiation takes place during the deduction. In contrast to first-order logic,
where instantiation does not change the propositional structure of a formula or clause, the
existence of flexible literals in higher-order logic can result in a change of structure. If the
head variable of a flexible literal is instantiated with a formula containing logical constants,
then the resulting formula is no longer a clause and has to be renormalized. This change
of structure turns out to be the major difficulty in the proof of the lifting lemma, since for
lifting steps from the refutation of §(A) it is important to maintain a tight correspondence
to the clauses and literals in the refutation of A. Thus in any case where instantiation
destroys the correspondence it has to be reestablished by suitable primitive substitution
inference rules. These rules explicitly instantiate the heads of flexible literals with general
bindings. In order to be able to carry out the intended change of structure, their heads
have to be logical constants. Due to the existence of term declarations in X HOL this is the
only place, where there is a difference between the sorted and the unsorted setting. Since
general bindings in YHOL can have more than one occurrence of logical constants, the
proof of the lifting lemma cannot directly follow the structure of 8 as it would be possible
in the unsorted case.

1.8 Outline of this Thesis

This thesis is organized in three major parts: the first part (sections 2 and 3) is concerned
with the introduction of a sorted A-calculus XA, the second part (section 4) deals with
Y-unification and the third part (sections 5 and 6) is devoted to the development of a
higher-order sorted resolution calculus using Y.-unification. Although we are ultimately
interested in the logical system YHOL, some methods (like unification) do not depend on
the interpretation of the A-calculus as a logical system. Therefore we will only specialize
the system XA to the logical system XHOL in the third part.

In order to make the exposition in this thesis self-contained and motivate the techniques,
we start out by reviewing the classical approach to higher-order deduction before we pass

17

1.8 Outline of this Thesis 1 INTRODUCTION

on to our order-sorted version. Thus we use section 2 to give an introduction to Church’s
simply typed A-calculus (A), which serves as a foundation of the following. Here we fix most
basic notations and give an algebraic semantics for the simply typed A-calculus. However, in
contrast to other expositions we already generalize all notions to a partial function setting,
since with this precaution we will be able to use the results directly for the sorted version
later on. Finally, we review the notion of (type) inference systems, which will be a basic
tool for the following sections.

In section 3 we introduce the sorted A-calculus 3A. Since in the presence of term
declarations sort information cannot simply be derived from the structure of a A-formula, we
give inference systems for validity of signatures, well-sortedness of formulae, S7n-reduction,
and Y-substitutions. We discuss basic properties like monotonicity or subterm-closedness
of signatures, give basic properties of Y-substitutions, and discuss the algebraic notions
of Y-structures and their relations to structures of well-sorted formulae. Furthermore, we
show that sorted 8n-reduction is terminating, confluent, and sort-preserving and that well-
sorted formulae have unique supporting sorts. Finally, we discuss subsorting in XA and
see that the natural subsorting inference system (and thus the notion of subsorting) is a
derivable concept in X A.

In section 4 we turn our attention to the more algorithmic properties like sort com-
putation or Y-unification of ¥ A. Building on this notion of general bindings we develop
three related transformation systems for general ¥-unification (X 7) and pre-X-unification
(X¥PT) and prove them correct and complete. In fact, we need to consider a slightly more
general unification problem than found in the literature, since for our resolution calculus
Y’HR the unifiers have to respect certain variable conditions.

We start the third part in section 5 by instantiating A to a logical system XHOL, which
is essentially a sorted version of the Andrews-Henkin version of simple type theory. We
give three distinct notions of algebraic semantics:

e standard Y-models are the intuitive semantics for sorted higher-order logic,

e general Y-models are a generalization of the Andrews/Henkin general model se-
mantics. This is a generalization of the standard semantics that admits complete
calculi and is therefore better suited for modeling deduction systems.

e Y-model structures are joint generalizations of Y-structures, Andrews’ wv-comple-
xes [And71] and Nadathur’s labeled structures [Nad92], which allow for extensionality
to fail.

We chose this last semantics as relevant for our work, even though it is the weakest notion
of the three, since there has not been a reasonable account for extensionality in higher-
order refutation calculi. We discuss sorted abstract consistency classes and prove a unifying
principle, which will be used in the completeness proofs later on.

Section 6 is devoted to the exposition of a sorted higher-order resolution calculus XHR,
which is a sorted variant of Huet’s “Constrained Resolution” calculus. However, since the
naive treatment of Skolemization in Huet’s calculus is not sound [And73], we develop a
variant of Miller’s approach [Mil83, Mil92] where the variable dependencies are explicitly
represented in a relation (called variable condition) that is maintained during the deduction.
Here we make use of the Y-unification algorithms that respect variable conditions that we

18

1 INTRODUCTION 1.8 Outline of this Thesis

have developed in section 4. Since in contrast to “Constrained Resolution” our calculus
allows mixing Y.-unification and refutation inference rules, we can show a general lifting
theorem, which we then use for the completeness proof.

Finally, in sections 7 we discuss some applications of our work and sketch further work
left open by this thesis. These concluding sections also give us the chance to situate the
work presented in this thesis from the point of view of applicability and the line of research
it may lead to.

19

2 SIMPLY TYPED A-CALCULUS

2 Simply Typed A-Calculus

In this section we review Church’s simply typed A-calculus A. We will use it as an algebraic
foundation for higher-order logic. We discuss the algebraic structure of well-formed formu-
lae, and we give notions of algebraic semantics that are independent of the logical view of
higher-order logic. For this we introduce the framework of 2-structures, which provides a
more algebraically flavored setting than, for example, the one given in [And86] or [HS86].
In particular, the notions of 2-homomorphism and 2-congruence will be useful later on.

We will introduce all concepts of A in the more general setting of partial functions,
as they can be handled with little overhead, and we can also use them as a basis for the
sorted A-calculus XA and the sorted higher-order logic >HOL. In XA and YHOL the type
system is refined by a sort system, in which the domains of functions coincide with their
domain sorts (which are subsets of the types), thus functions are total on their domains,
but partial on the types.

2.1 Preliminaries

We first lay a foundation by fixing the notation for relations and functions, which are the
basic objects in all our semantic notions.

Definition 2.1.1 (Relations) Let A, B, and C be sets, then the Cartesian product
A x B of A and B is the set of pairs {(a,b) | « € A,b € B}. A binary relation ¢ on
A X B is a subset of the Cartesian product ® C A x B, its domain Dom(®) is the set
{a € A| (a,b) € D}, its image Im(®P) is the set {b € B | (a,b) € ®}. Let ¥ C B x C be
another relation, then the composition of ® and V is defined by Yo ® := {(a,c¢) | (a,b) €
®,(b,c) € ¥}, if Im(®) C Dom(V¥). The relation ! := {(b,a) | (a,b) € ®} C B x A
is called the inverse relation for ®. We call ® left (right) unique, if it does not
contain two different pairs having the same first (second) components. It is called total, if
Dom(®) = A, and surjective, if Im(®) = B, in this case the inverse relation is total. Let
a € Dom(®), then the application ®(a) of ® to a € A is the set {b € B | (a,b) € ®}.
We sometimes write ®(a,b), if (a,b) € ®.

Definition 2.1.2 Let A be a set, then we call a relation ® C A x A
o reflexive, iff (¢,a) € ® holds for all a € A.
e symmetric, iff (a¢,b) € ® implies (b,a) € 9.
e antisymmetric, iff (a,b) € ¢ implies (b,a) ¢ ®.
e transitive, iff (a,b), (b, ¢) € ® implies (a,c) € P.
¢ an equivalence relation, iff ® is reflexive, symmetric, and transitive.
¢ a quasi-ordering, iff ® is transitive and reflexive.

Let < be a quasi-ordering, then we call the relation ~ := < N <~! the equivalence
induced by <, and < := {(a,b)| @ < b but a o b} the strict ordering for <. A quasi-
ordering < is called a partial ordering, iff ~ is trivial, i.e. z ~ g, iff z = y. It is called

20

2 SIMPLY TYPED A-CALCULUS 2.1 Preliminaries

terminating or well-founded, iff there are no infinite sequences aq,as,... with a¢; € A
and @;+1 < a;. A transitive relation ® is called confluent, iff for all a,b,c € A with ®(a,b)
and ®(a,c), there is d € A such that ®(b,d) and ®(c,d).

For an equivalence relation ~ C A x A we denote the equivalence class of @ € A by

[e] == [a]. ={b€ A|b~ a}.

Definition 2.1.3 (Partial Function) We call a left unique relation a partial function.
It is called injective, iff it is also right unique. We denote the family of all partial func-
tions ® C A x B by %(A; B) and the family of all total relations by R*(A; B). The set
F(A; B) := RY(A; B)n F,(A; B) is called the set of total functions.

Let ® be a partial function and ¢ € Dom(®), then the application ®(a) of a partial
function ® to a € A is the unique b € B such that (a,b) € ®. In order to make
the presentation of partial functions simpler, we introduce a special symbol L (for the
undefined) and extend the definition of function application by ®(¢):= L, if ¢ € A, but
¢ ¢ Dom(®), or if ¢ = L itself. This often allows to omitting the reasoning about domains.
In particular, we have fog(a) = f(g(a)) for g € F(A;B), f € F(B;C), and ¢ € A
independently of definedness considerations. Note that the symbol L is not an object
in any of the given sets, but rather a syntactic trick that eases notation. The so-called
function composition o is associative and therefore the sets F,(A; A) and F(A; A) are
monoids with this operation.

If & € 7,(A;B) and ¥ € F,(A;B) are partial functions such that ¥(a) = b, but
U(c) = ®(c) for all ¢ # a, then we denote ¥ by ®,[b/a]. For partial functions that can be
presented by a finite set of pairs (e.g. substitutions and variable contexts), we often use the
notation ® := [b!/al],...,[07"/a"], if ® = {(a',b'),...,(a™, b™)}. Furthermore, we denote
with ®_. the partial function {(a,b) € ® | a # c}.

Let W C A and ® € Z,(A; B), then the restriction of ® to W is defined to be the
function @|y, :={(a,b) € ® | @ € W}. Note that ®|,;, € Z(W;B) and that with this
definition ® and ®|y;; are only equal, iff W N Dom(®) = Dom(®). If ® and V¥ are partial
functions such that their restrictions on Dom(®)NDom(¥) are identical, then we say that
they agree and write ®||¥. In this case the set-theoretic union ® U ¥ is again a partial
function.

Remark 2.1.4 (n-ary Relations and Functions) Let Ay,..., A, be sets, then we can
define the n-fold Cartesian product Ay X---x A, by (+-- (A1 XAz)x---xA,), thusit is the
set of ordered n-tuples {(a1,...,a,) | a; € A;}, where (a1,...,a,) == (---(a1,az2),...,a,).

With this definition we can generalize the previous definitions for binary relations and
unary functions to n-ary relations and n-ary functions. In particular, the domain
Dom(®) of an n-ary relation ® is the set {(a1,...,an-1) | (a1,...,0n-1,a,) € @}, the
image Im(®) of ® is the set {a, | (a1,...,a,-1,a,) € ®}. We denote the family of n-ary
total relations by R*(Ay,..., A,; B) and adapt the other notions accordingly.

This construction implies that we can use unary functions instead of general n-ary
ones. In particular, the well-known process of applying an n-ary function ® to an n-tuple

(ai,...,a,) can be considered as applying ® to the sequence of values a4, ..., a, one after
the other. Thus the application of ® to a tuple (aq,...,a) yields an (n — k)-ary function
that give a,41, if applied to the tuple (agt1,...,a,). This process is called currying.

Therefore F(Aq,...,An; B) becomes F(Ay; F(Ag;...; F(A,; B)...), and therefore we can

restrict ourselves to unary functions.

21

2.1 Preliminaries 2 SIMPLY TYPED A\-CALCULUS

Remark 2.1.5 (Extensionality) Two partial functions f,g: A — B are equal, iff they
are equal as binary relations, that is, if Dom(f) = Dom(g) and for all 2 € Dom(f) we
have f(z) = g(«). This property is called the extensionality of equality.

Definition 2.1.6 (Types) Let B7 be a set of symbols, then the set 7 of types is in-
ductively defined to be the set B7 together with all expressions « — 3, where « and
are types. The functional type a — [denotes the type of functions with domain a and
codomain 3. The types in BT C 7 are called base types, types of the form a — 3 are
called functional types.

We define the length of a type a by setting In(a):=0, iff @ € B7 and In(a —
B) =1+ 1n(f). Thus the length intuitively is the number of top level arrows — in a type.
In other words a type a is functional, iff its length is positive.

Notation 2.1.7 For the following we fix a set B7 of base types and a set 7 of types
induced by B7. As syntactic variables for types we use lower case Greek letters. We use
the convention of association to the right for omitting parentheses in types, thusa — g — ~v
is an abbreviation for (& — (8 — =v)). This way the type v := 81 — ... — (3, — a denotes
the type of n-ary functions, that take n arguments of the types 31, ..., 8, and have values
of type a. To conserve even more space we use a kind of vector notation and abbreviate v
by 3, — a.

We now start with the definition of our basic algebraic structures, which are hierarchies
of sets indexed by types. As most objects in A are such collections, and for well-formedness
the type structure has to be respected, we now define the notion of a typed collection,
which formalizes this concept.

Definition 2.1.8 (Typed Collection) A collection D := Dy :={D, | a € T} of sets
D., indexed by the set 7 of types, is called a typed collection (of sets). In the following
we will always assume that D, N Dg = 0, if a # B. This allows us to define the type
function 7:(J,e7 Po — 7 by 7(g) = o, iff g € D,. Let D7 and &7 be typed collections,
then a collection 7 := {Z® € F,(Dy; &) | @ € T} of partial functions is called a typed
partial function 7: Dy — &7.

It is often convenient to view a typed collection Dz as the union |J,c7 Dy and a
typed function 7: D7 — &1 as a function 7: U,e7 Do — Uyer €o With I% := Z|; and
Im(Z%) C &,. We take the liberty to switch the point of view whenever it is convenient.
A collection {R, C D, X D, | @ € T} are called a typed binary relation.

Our treatment of A is parametric in the choice of constants that are supplied. As
constants are typed objects and the considerations of this section depend on their choice,
we fix a typed collection Q7 of sets of constants. In particular, the algebraic structure
of a pre-)-structure, which we are about to define, varies in the way the constants are
interpreted. The intuitive meaning for objects of functional type is a function, i.e. an
object that can be applied to other objects of the appropriate type. Here we give a very
abstract notion of an algebraic structure with function applications, which provides us with
the basic vocabulary for the development of A.

22

2 SIMPLY TYPED A\-CALCULUS 2.2 Well-Formed Formulae

Definition 2.1.9 (Pre-Q-Structure) Let D7 be a typed collection of sets,
@:={@*":D,_s3x Dy, — Ds|a,B €T}

a typed family of partial functions, and let 7: @ — D be a typed total function, then we
call the triple A := (D,@,7) a partial pre-Q-structure. The collection D is called the
carrier set or the frame of A, the set D, the universe of type «, the function @ the
application operator, and the function 7 the interpretation of constants. A pre-Q-
structure is called total, iff @ is a collection of total functions. For an object f € D,_.g
we define the domain of f as the set Dom(f):= {a € D, | (f,a) € Dom(Q@)}.

We call a pre-Q-structure A = (D, @,7) functional, iff the following statement holds
for all f,g € Dop: f =g, if forall « € D, fQa = g@a. Note that functionality only
poses a restriction on the function universes.

Remark 2.1.10 The application operator @ in a pre-Q-structure is an abstract version
of function application. As in the case with functions before (cf. 2.1.4) it is no restriction
to exclusively use a binary application operator, which corresponds to unary function ap-
plication, since we can define higher-arity application operators from the binary one by

setting
fa(at,...,a") = (...(f@Qa")...Qa")

Definition 2.1.11 (Q-Homomorphism) Let A = (D,@4,7) and B = (£,@5,7) be
pre-Q-structures. A Q-homomorphism is a typed function x: D — & such that

1. koI =1.

2. Forall f € D, and g € D, we have: if g € Dom(f), then x(g) € Dom(x(f)) and
K(1)@8k(g) = w(f@4g).

As usual we define an Q-endomorphism x on A to be an Q-homomorphism x: A —
A, an Q-epimorphism and an Q-monomorphism to be surjective and injective -
homomorphisms respectively.

2.2 Well-Formed Formulae

A prominent example of a pre-Q-structure is the collection of well-formed formulae. For
defining them we need a collection of variables as a category of syntactic objects distinct
from the collection Q of constants. Since variables are much more volatile syntactic objects,
which are frequently instantiated and renamed, we need an infinite supply of variables of
any type. So we fix a countably infinite set V, of variables of type a for every type
a € 7. Thus we have a typed collection V of variables, which we use in the following.

Definition 2.2.1 (Well-Formed Formulae) For each o € 7 we define the set wff, ()
of well-formed formulae of type « inductively by

1. Q4 UV, C wff,(Q)
2. If Ap_a € wffs_o () and Bs € wffy(Q), then AB € wff, ().
3. If Ay € wff,(2), then (AX5.A,) € wffs_ ().

23

2.2 Well-Formed Formulae 2 SIMPLY TYPED A\-CALCULUS

We call formulae of the form AB applications, and formulae of the form AX,.Ag A-
abstractions.

Notation 2.2.2 We denote the constants by lower case letters and the variables by upper
case letters and use bold upper case letters A,, B,_g, C, ... as syntactical variables for
well-formed formulae. The type of an object is denoted as a subscript, if it is not irrelevant
or clear from the context.

In order to make the notation of well-formed formulae more legible, we use
the convention that the group brackets (and) associate to the left and that the
square dot . denotes a left bracket, whose mate is as far right as consistent with
the brackets already present. Additionally, we combine successive A-abstractions,
so that the well-formed formula (AX1.AXZ...AX™AE!'...E™), which stands for
AX'(AX2. .. (AX"(AEYHE?...E™)---), becomes AX'...X".AE'...E™, and in addi-
tion, we shorten the expression to AX".AE™ by a kind of vector notation.

To avoid confusion with equality in the logic we denote the meta-logical relation of
syntactic equality of well-formed formulae by =.

Example 2.2.3 If we define AGB := (AB) for A ¢ wff,(2) and B € wff3(2), then
Q: wff,—5(2) X wffy(Q) — wffs(R) is a total function. Thus (wff(2),@,Idg) is a total
pre-2-structure. The intuition behind this example is that we can think of the formula
A € wff,_5(Q) as a function

Az wff,(Q) — wffs(2); B~ (AB) .

Definition 2.2.4 Let A be a well-formed formula, then a variable X is called bound
(free) in A, iff it is (not) in a well-formed part of the form (AX.B) in A. The respective
sets of variables are denoted by Free(A) and Bound(A). A well-formed formula is called
closed, if it does not contain free variables. We denote the set of closed well-formed
formulae of type a by cwff, ().

With the definition of free variables we can define sets of well-formed formulae that
have restricted sets of free variables: let = C V be a typed collection of variables, then
we denote the set of well-formed formulae with free variables in = by wff,(©2,Z):={A €
wff, () | Free(A) C =}. Since any formula A can only have finitely many variables there
is always a set = of variables such that A € wff, (2, E).

Definition 2.2.5 (Assignment) Let A = (D,@,7) be a pre-Q-structure. A typed func-
tion : YV — D is called an assignment into A.

In a pre-Q-structure A = (D, @,7) constants are given a meaning by the interpretation
function Z:Q — D, and variables get their meaning by assignments ¢:V — D. Since well-
formed formulae are inductively built up from constants and variables we can extend ¢ and
Z to an Q-homomorphism on well-formed formulae.

Definition 2.2.6 (Homomorphic Extension) Let A = (D,@,7) be a functional pre-
Q-structure and let ¢ be an assignment into .4. Then the homomorphic extension 7,
of ¢ to wff(Q?) is inductively defined to be a typed partial function Z,: wff(2) — D such
that

24

2 SIMPLY TYPED A\-CALCULUS 2.2 Well-Formed Formulae

T (X) = (X),if X is a variable,
2. Z,(c) =I(c), if ¢ is a constant,
I,(AB) = I,(A)QZ,(B),

4. T,(AX4.Bp) is the function in D, p such that Z,(AX,.B)@z =7, x(B). Note
that this function is unique, since we have assumed A to be functional.

We call Z,(A,) € D, the value or denotation of A, in A for ¢. Note that since A
need not be total, we can have Z, = L.

Lemma 2.2.7 Let A = (D,Q,7) be a functional pre-Q-structure and ¢:V — D
an assignment into A, then the homomorphic extension Z,: wff(Q) — D is an Q-
homomorphism.

Proof: The assertion is a direct consequence of the definitions and the fact that Z,oldg =
Zoldg =7 on Q. O

Remark 2.2.8 We have defined valuation only on functional pre-Q-structures, which is
sufficient for our purposes, since we want to formalize mathematical systems. In fact, it
seems to be rather difficult to give a general definition of values for abstractions without
functionality. Andrews and Nadathur solve this problem for v-complexes [And72] and
labeled structures [Nad92] by assuming a tight correspondences between objects and labels,
but we do not know how to generalize this to the framework of Q-structures.

Definition 2.2.9 (Q-Structure) A functional pre-Q-structure A = (D,@,7) is called
comprehension-closed, iff for each assignment ¢ into .A the homomorphic extension Z,, is
total on wff(2). A functional pre-Q-structure is called Q-structure, iff it is comprehension-
closed. These closure conditions for the carrier set D of A assure that the universes of
functions D,_p are rich enough to contain a value for all A,_5 € wﬁ[a_w(ﬂ). For a
detailed discussion in the framework of Q-algebras we refer the reader to [And72, And73].

Remark 2.2.10 Note that the pre-Q-structure wff(2) from 2.2.3 is not comprehension
closed, since there is no formula C = Z,(AX,.B) € wff,_5(2) such that CQA = CA =
I%[A/X](B). In particular, the “obvious” choice AX,.B for C does not work, since
(AXo-B)A # 7, 1a/x)(B). In fact, if wff(Q2) were comprehension closed B7-equality would
have to be valid in wff(Q?) (cf. 2.3.22), which it clearly is not.

Lemma 2.2.11 Let A = (D,Q,7) be an Q-structure, A € wff(Q) and let ¢ and be
assignments into A that coincide on Free(A), then T,(A) =Zy(A).

Proof: We prove the lemma by induction on the structure of A. The only interesting case is
the one, where A is an abstraction, since the assertion is trivial for constants and variables,
and a simple consequence of the inductive hypothesis for applications. So let A = (AX.B),
then Z,(A)Qa = Z,,/x1(B) = Zy[o/x1(B) = Zy(A)Qa by inductive hypothesis, since
@, [a/X] and v, [a/X] coincide on the free variables of B. Thus we obtain the assertion
from the definition of Z,,. O

25

2.3 X-Reduction and Normal Forms 2 SIMPLY TYPED A\-CALCULUS

2.3 JA-Reduction and Normal Forms

In this section we introduce the notions of Q-congruences, A-conversion, and substitutions,
which are closely related to each other. The A-conversion relations establish certain well-
formed formulae as functions, by giving interpretations to function application and function
equality.

Definition 2.3.1 (Q-Congruence) Let A = (D,@,7) be a pre-Q-structure, then a typed
equivalence relation ~ is called an 2-congruence on A, iff f ~ f' € D,_gand g ~ ¢’ € D,
imply f@g ~ f'Qg'".

An Q-congruence ~ is called functional, iff for all types a,3 and all f,g € D,_.5 the
fact that fQa ~ g@a for all @ € Dy implies f ~ g. Note that, since ~ is a congruence, we
also have the other direction, so we have

fQa ~ gQa for all a € Dg, iff f~g

Definition 2.3.2 (Quotient Pre-Q-Structure) Let A = (D, @,7) be a pre-Q-structure,
DY =A[f] | f € Da}, and I™(c,) := [Z(cs)] for all constants ¢, € Q. Furthermore let
@~ be defined by [f] @~ [a] := [f@Qa]. To see that this definition only depends only on
equivalence classes of ~, consider f' € [f] and ¢’ € [g], then [fQg] = [f'Qg] = [f'Q¢'] =
[f@g']. So @~ is well-defined and thus A/ := (D~,@~,77) is also a pre-Q-structure.
We call A/. the quotient structure of A for the relation ~ and the typed function
Tt A — A/o; f— [f]. its canonical projection.

This definition is justified by the following theorem.
Theorem 2.3.3 Let A be a pre-Q-structure and let ~ be an Q-congruence on A, then
1. the canonical projection w.. is an Q-epimorphism.
2. A/ is functional, iff ~ is functional.
3. A/ is comprehension-closed, iff A is.
. Ale is total, if A is.

BN

Proof: Let A= (D,@,7) be a pre-Q-structure.

1. To convince ourselves that 7. is indeed an Q-epimorphism, we note that by definition
T~ is surjective and I = 7., o Z. Now let f € Dg_,, and g € Dom(f) C Dg, then
g’ € [g] for all ¢’ € Dom(f) and therefore [g] = 7~(g) € Dom([f]) = Dom(7.(f))
and 7(f)@~n(g) = [[/1@~ [¢] = [fQg] = =(SQg).

2. Note that [f] = [g], iff f ~ g, iff fQa ~ ¢gQa, iff [fQa] = [¢gQ@Qa], iff [f]Q~ [a] =
[g] @~ [a] for all @ € D, and thus for all [a] € DY .

3. Let ¢ be an assignment into A/., then there exists an assignment ¢ into .4 such that
¢ = T~ 0 @, since T is an (d-epimorphism. We prove that 7)) = 7. o I, (which
entails the assertion) by induction over the structure of well-formed formulae. In
order to simplify the notation we abbreviate 7. by 7.

26

2 SIMPLY TYPED A\-CALCULUS 2.3 A-Reduction and Normal Forms

QI7(B)=71oZI,(A)@r0Z,(B)=n(Z,(AB))

(4) ZH(AXA)@(g) = I, 1oy my(A) = 7T pyrx1(A) = 70 T((AX A))@n(g)
4. A/. is total, since 7w is an epimorphism. O

Definition 2.3.4 (Substitution) We call an assignment ¢ into wff(Q) a substitution,
iff its support supp(o):=4{X € V | o(X) # X} is finite. We write a substitution o as
supp(o) = {X',..., X"} and o(X?) = A" as [A}/X],...,[A"/X"] or short [A"/X"]. If
o = [A/X], then we often write o(B) as [A/X]|B. The set Intro(o):= U,., Free(A")
is called the set of variables introduced by o. The set of substitutions is denoted by
SUB(Q). An injective substitution o := [A"/X"] is called renaming substitution, if
the A® are all variables.

Remark 2.3.5 A substitution ¢ can always be extended to a total Q-homomorphism &
by requiring

1. 6|, = Idg
2. 0(AB) = (c(A)a(B))
3. 0(AX.A) = (A X.o_x(A))

This gives us a second mechanism for extending an assignment ¢ to an -homomorphism.
Note that in general with this definition it is not the case, that o(A) = Z,(A). In 2.3.14
we can see a case, where they are equal. It depends on the context, whether it is more
convenient to view substitutions as functions with finite support or as Q-homomorphisms,
hence we take the liberty to switch our point of view whenever convenient.

It is easy to see, that if there is a any well-formed part (A\Y.C) of B, in which a variable
X is free, Y € Free(A), and B’ is obtained from B by replacing all free occurrences of X
with A, then B’ has bound occurrences of variables Y that were free occurrences in A. We
call this situation variable capture and need to avoid it for correctness of instantiation.

Definition 2.3.6 (a-Conversion) If a well-formed formula B is obtained from a well-
formed formula A by replacing a subformula (AX,.C) of A such that Y, ¢ Free(C) with
(AY,.[Ya/X4s]C), then B is called an alphabetical variant of A.

General Assumption 2.3.7 It will turn out in 2.3.19, that we have Z,(A) = Z,(B) for
any Q-structure A = (D,@,7), any assignment ¢ into A, and any pair of well-formed
formulae A and B that are alphabetical variants. Thus we can avoid variable capture,
if we rename the bound variables in Im(c) by a-conversion, so that the sets of bound
and free variables are disjoint. Another, more algebraic way of avoiding variable capture
is to assume a-equality to be built into the system and regard well-formed formulae as
syntactically equal, iff they are alphabetical variants (a-equal). Formally we replace the
pre-Q-structure wff(Q2) by its quotient modulo a-conversion. We could also have used de
Bruijn’s indices [dB72], as a concrete implementation of this approach at the syntax level.

27

2.3 X-Reduction and Normal Forms 2 SIMPLY TYPED A\-CALCULUS

Definition 2.3.8 (Idempotent Substitution) A substitution ¢ is called idempotent,
iff 0 0 0 = 0. Note that the condition Intro(o) N supp(c) = (is a sufficient condition for
o to be idempotent [Sny91].

Definition 2.3.9 (A-Reduction) Let A € {3, 6n,n}. We say that a well-formed formula
B is obtained from a well-formed formula A by a one-step A-reduction (A —) B), if it
is obtained by applying one of the following rules to a well-formed part (which we call a

A-redex) of A.
B-Reduction (AX.C)D —4 [D/X]C.
n-Reduction If X is not free in C, then (A X.CX) —, C.

As usual we denote the tramsitive closure of a reduction relation — —A with —3. Thus
A —* AB, iff there is a sequence of one-step A-reductions

A=A'-,...5,A"=B

These rules induce equivalence relations =g, =,, and =g, on wff(Q), which we call the A-
equality relations. A formula that does not contain a A-redex, and thus cannot be reduced
by A-reduction, is called a A-normal form.

The -, -, and fn-reduction relations are terminating and confluent, as the reader can
convince himself by looking at the proofs in [Bar80] or [HS86]. For any formula A there is
a sequence of f-reductions A —% B such that B is a f-normal form. Furthermore, for
any derivation A, —>En B, thereis a derivation A, —>E C, —>7*7 B,. Thus we can compute
fOn-normal forms by first reducing to g-normal form and then further n-reducing to normal
form.

Lemma 2.3.10 The A-equivalence relations are Q2-congruences on wff(Y). Moreover the
n- and Bn-equivalence relations are functlional.

Proof: The fact that the A-equivalences are {2-congruences is an immediate consequence of
the definitions. To see that the n- and #n-equivalences are functional let A, B € wff,_ 3(92)
and AQC = AC=3,BC = BQC for all C ¢ uff, (). In particular, we have
AX=3,BX for a variable X € V, that is not free in A and B. By definition we have
A=, AX,.AX=45,1,BX=4,B. O

Definition 2.3.11 Let A = (AX™.AE™) be a well-formed formula such that A is a constant
or variable, then we say that A is in head normal form. The part AX" is called the
binder of A, the part RE™ the matrix, and the constant or variable A is called the head
of A. We denote the head of A with head(A). A is called rigid, iff A is a constant or
a bound variable, otherwise flexible. If 4 is the bound variable X%, then A is called a
(k-)projection formula.

A well-formed formula A that is not in head normal form must be of the form

A = (AX.(AY.M)BF). We call the redex (A\Y.M)B' the head redex of A and the
B-reduction step (AX.(AY.M)B*) -5 (AX.[B'/Y]MB2...B*), which reduces this head

28

2 SIMPLY TYPED A\-CALCULUS 2.3 A-Reduction and Normal Forms

redex, a head reduction step. We denote the head reduction relation by —". Since (-
reduction is confluent and terminating, the head reduction strategy (restricting §-reduction
to the unique head redex) is complete for §-reduction to head normal form. This fact is
convenient in some situations, where we want to fix a unique [-reduction sequence. For
any formula A we call the formula B obtained with a maximal head reduction sequence
from A the head normal form of A. Of course the strategy of reducing a term to head
normal form and then recursively head reducing the immediate subterms of the matrix
yields a complete strategy for full g-reduction. Note that 3-normal forms are head normal
forms, where the subformulae E* are also 3-normal forms.

Definition 2.3.12 (Long (7-Normal Form) Let A = (AX™.hE™) be a well-formed for-
mula in head normal form such that the matrix (RE™) is of type By — v and v € BT, then
the n-expanded form of A denoted by 5n[A] is defined to be

1 ny 1 k 1 mys1 k
AXT XYL YA RE . EMYE LYE

where Yﬁii are new variables of types ;. We define the long head normal form, denoted

by Al”", of a well-formed formula A to be the n-expanded form of the head normal form
of A. Similarly the long 7-normal form of A, denoted by Al, is the formula that we
obtain by recursively extending this process to the arguments E* and Y7, thus

Al =AX' XY YE (B [E VA |VE]

Definition 2.3.13 (Term Structure for Q) Let D7 be the collection of well-formed for-
mulae in gn-normal form, let A@QB be the gn-normal form of AB, and Z := Idg, then we
call 7§(Q) := (D, @,7) the term structure for €.

The name “term structure” in the previous definition is justified by the following lemma.
Lemma 2.3.14 78(Q) is a total Q-structure.

Proof: Note that constants are Gn-normal forms, therefore 75() is the quotient structure
of wff(2) for the relation =g,. It is total and functional by 2.3.3 and 2.3.10. As we have
remarked in 2.2.10, wff(2) is not comprehension closed, so we cannot use 2.3.3, but have to
convince ourselves directly that 7§(€) is comprehension-closed. So let ¢ be an assignment
into 7§(Q) and A a well-formed formula. Note that ¢ := 9°|Free(A) is a substitution, since
Free(A) is finite. We can convince ourselves that Z,(A) = o(A)| by a simple induction
on the structure of formulae using

o(AX.A)@B = (A\X.0_xA)@B = 0,[B/X]A = T, p,x)(A) = Z,(A)QB

O

Remark 2.3.15 Since the n-expansion relation is a subrelation of the inverse of 7-
reduction, the n-normal forms of A € wff(2) and n[A] are equal and therefore A and
n[A] are n-equivalent.

We often use the n-expanded form rather than the n-reduced form of the g-normal form,
because this normal form has better closure properties, e.g. if A is in §-reduced form, then

29

2.3 X-Reduction and Normal Forms 2 SIMPLY TYPED A\-CALCULUS

n[A] is in S-reduced form as well, whereas the n-reduced form need not be. For a detailed
discussion we refer to [Sny91].

In the definition of the term structure for Q, we could also have used long (7n-normal
forms, however, the interpretation function would then have to be the n-expansion function.

Lemma 2.3.16 Let A= (D,Q,7) be a functional Q-structure and X be a variable that is
not free in A, then T,(AX.AX)=1,(A) for all assignments ¢ into A.

Proof: With 2.2.11 and the fact that X is not free in A we have
I@(/\XAX)@Q = I%[Q/X](A)@I%[G/X](X) = I@(A)@a
which implies the assertion Z,(AX.AX) =Z,(A), as A is functional. O

Theorem 2.3.17 (Substitution Value Theorem) Let A = (D,Q,7) be an Q-struc-
ture. If the variable X is not bound in a well-formed formula B, then Z,([B/X]A) =

Lo z,B)/x)(A).

Proof: We prove the assertion by induction on the structure of A. If A is a constant or
variable, then the assertion is trivial. The case where A is the application CD is entailed
by the fact, that substitution and value function are defined inductively on the structure
of applications. Furthermore, we have

Z,([B/X]|CD) = Z,([B/X]|C)aZ,([B/X]|D)
Ly 7,(B)/x1(C)QL, 7, (B)/x)(D)
= Zyz,(B)/x1(CD)
If A=(A\Y.D)and ¥ = ¢,[a/Y], then
7,(1B/X]A)@a = Z,(AY.[B/X]D)@a = T,([B/XID) = T, 17, sy x](D)

by inductive hypothesis. Note that ¢ and ¢ coincide on the free variables of A, therefore
by 2.2.11 we have Z (7 (A)/x)(D) = Z, 7,(a)/x])(AY.D)@a, which implies the assertion,
since A is functional. O

Corollary 2.3.18 If A= (D,Q,7) is an Q-structure and Y ¢ Free(A), then T,(AX.A) =
T (AY.[Y/X]A) for all assignments ¢ into A.

Proof: We have Z,(AY.[Y/X]A)Qa = T, 1,/v)([Y/X]A) = T, [/x)(A) = Z,(AX.A)Qa
with 2.3.17. g

Corollary 2.3.19 a-conversion is sound in §-structures.

Definition 2.3.20 We extend the function head by the definition head(A) := k, iff A is
a k-projection formula. Otherwise the function head would be undefined for projection
formulae, because the its head is some variable, whose name of no role outside the formula
(we take alphabetic variants to be identical).

30

2 SIMPLY TYPED A-CALCULUS 2.4 Type Inference

Corollary 2.3.21 Let A = (D,Q,7) be an Q-structure and X not bound in A, then
I,((AX.A)B) = Z,([B/X]A) for all assignments ¢ into A.

Proof: We have Z,((AX.A)B) = Z,(AX.A)QZ,(B) = Z,7,B)/x)(A) = Z,([B/X]A)
with 2.3.17. g

We combine lemmata 2.3.16 and 2.3.21 to the following soundness result:

Theorem 2.3.22 §n-conversion is sound in Q-structures, i.e. if A = (D,Q,7) is an Q-
structure and A=g, B, then T,(A) = 1,(B) for any assignment .

We now specialize the notion of Q-structures to the standard general model semantics

for A.

Definition 2.3.23 (Pre-Q-Algebra) A pre-Q-algebra A := (D,7) is a pre--structure
(D,Q,T) such that Dy_g C F(Dy;Dg) and fQa = f(a). A pre-Q-algebra is called full,
iff Do—p = Fo(Dy; Dg). It is easy to check that A is total, iff Dy_.g C F(Dy; Dp).

Note that pre-{2-algebras are functional, since they are defined as structures of math-
ematical functions. We call a pre-Q-algebra an Q-algebra, iff it is an Q-structure, i.e. iff
it is comprehension-closed.

2.4 Type Inference

We now recast the definitions of well-formed formulae and A-conversion as type inference
systems. The notion of type inference system helps the analysis of A-calculi such as XHOL,
where the type (or in our case the sort) does not only depend on the structure of the
formula. Type inference systems define judgments: in the case of the simply typed A-
calculus the primary judgment is - A:a, which means “the formula A has type a”.
In contrast to definition 2.2.1 this judgment is defined inductively on the structure of the
derivation of 2 - A:« rather than on the structure of A. In the simply typed A-calculus
these notions of inductions coincide, since the type inference system is structural, but in
the case of YA they do not and the notion of an inference system is necessary to define
well-sortedness.

Definition 2.4.1 (Inference System) Each logical system is built up from syntactic ob-
jects like types, formulae, variables. These objects are called raw types, formulae,. ...
Let J be a relation on these entities, then we call 7 a judgment schema and a tuple
(EY,...,€") € J a judgment. An inference rule is an effectively computable relation

R={(C},....C",D)|C' e J',DeK}

on judgments such that J* and K are judgment schemata. Inference rules are traditionally
represented by a set of schemata of the form

cl,....cm
D

R

31

2.4 Type Inference 2 SIMPLY TYPED A-CALCULUS

where the part C!,...,C™ is called antecedent and D is called the succedent. In order
to give a finite presentation of an inference system the schemata may be schematic in the
syntactic objects. Inference rules with empty antecedent are called axioms and otherwise
proper inference rules. An inference system 7 is a finite set of inference rules.

Definition 2.4.2 (Z-Derivation) Let Z be an inference system and D be a finite tree,
where each node A in D is labeled with a triple (J,R,{J",...,J"}) such that R €
7 and (JY,...,J",J) € R. J is called the assertion, R the justification, and the
set of J* the support of . D is called an Z-derivation, iff each node A" with label
(T, R, {J*,...,J"}) has n children N with assertions J¢. Note that, since the leaves
of these trees have no children, they have to be labeled with axioms. Because of the tree
nature, we often call an Z-derivation a proof-tree.

Let J be a judgment and ® be a set of judgments. We call an Z-derivation D an
Z-derivation of 7 from the set ® of hypotheses, if 7 is the assertion of the root of
D and the supports of the leaves of D are subsets of ®. If there exists an Z-derivation D
of J from ®, then we write ® -7 J or D:® 7 7, if we want to specify the derivation.
If D only consists of a single node labeled with the inference rule R, then we often write
dr J.

We will frequently prove our theorems by induction on the structure of the derivations
involved in the assertion. For this we will use the structural ordering on derivations,
which we can define by D < £ iff D is a subtree of £.

Definition 2.4.3 Let 7 be an inference system, then an inference rule R is called ad-
missible in 7, iff adding R to Z does not change the set of judgments derivable from

a given set of hypotheses. An inference rule R is called derivable in 7, iff for each
JY ..., TJ"Fr J € R there already exists an Z-derivation J',...,J" F1r J.

Thus admissible rules can be added to an inference system without changing its theoretical
properties. For practical reasoning applications, these added rules can sometimes make life
much easier. Clearly, derivable rules of inference are also admissible.

We now give an inference system for the judgments introduced so far. The judgment
Q F A:a holds, iff A is a formula of type a. Since the type inference system defines the
well-formed formulae of A (those that have a type a), we also call it A. We will maintain
this practice in the following and identify the names of the logical systems with those of
the inference systems defining them.

Definition 2.4.4 (Type Inference System A) The syntactic category of raw formu-
lae consists of untyped constants, variables, applications, and abstractions, and the in-
ference system A for the judgment schema of well-typedness 2 - A:a is given by the
following schemata:

ceQ, X ey,
—— wff:const — wffwar
QFca QF X:a
QF A: QFB: .
e 5 wff:app QF Aza wff:abs
QFAB:a QF (AXg.A): B — a

32

2 SIMPLY TYPED A-CALCULUS 2.4 Type Inference

We sometimes call A-derivations typing proofs, since they prove the typing judgment of
the root node. It is obvious that this inference system for the well-typedness judgment is
correct and complete with respect to the definition 2.2.1. Thus we can alternatively use
this type inference system as a definition of well-typed formulae by specifying that any raw
formula A is called well-typed, iff the judgment Q F A:a is derivable in A. Note that
just like definition 2.2.1 this is an inductive definition. However, in contrast to the old
definition this formally is inductive on the structure of A-derivations rather than on the
structure of formulae.

Remark 2.4.5 By inspection of the type inference system A above we see that the formulae
in the succedent of the inference rules are partitioned by the four possibilities for the
structure of formulae (variable, constant, application, and abstraction), which is a disjoint
partition of formulae. Thus the root node of any proof of a judgment 2 - A: a is uniquely
determined by the structure of A, and consequently, there is a tree-isomorphism between
any typing proof for @ - A:a and the formula A itself (when viewed as a tree). We call
inference systems where this is the case structural. Note that structural type inference
systems can be very conveniently inverted into type inference algorithms that recursively
analyze the structure of formulae. For an example of a non-structural type inference system
see YA in definition 3.2.7.

Now we use inference systems to analyze subsystems of A-conversion.

Definition 2.4.6 (One-Step, Top-Level Reductions) A-reduction can be formalized
with a judgment Q - A —, B, which is given by the following inference rules for top-level
reduction together with the inference rules of 2.4.7 that extend these to the full A-reduction
judgments.

wff :B:top

QO F (AX5.A)B =4 [B/X4]A

Xg ¢ Free(A) QF A:f— «

wffmtop
QF(AXg.AX) —>f7 A

Here we use the judgment Y € Free(A), which we have defined in 2.2.4. We can recast
this as a structural inference system

Y € Free(A) Y € Free(B)
Y € Free(Y) Y € Free(AB) Y € Free(AB)

Y € Free(A) X#Y
Y € Free(AX.A)

These top-level A-reduction relations can be augmented to a A-equality relation in a
very general manner, which we present in the following definitions.

33

2.4 Type Inference 2 SIMPLY TYPED A-CALCULUS

Definition 2.4.7 (Multi-Step Reduction) Let R(A,B) be a relation on well-formed
formulae given by an inference system (such as A —) B), then we obtain the term
relation by adding the following inference rules for congruence closure

R(A,B) R(A,B)
——trappifn —lrapparg
R(AC,BC) R(CA,CB)

R(A,B)
tr:abs

R(AX.A,A\X.B)

and the multi-step relation by adding the rules for transitivity and reflexivity

R(A,B) R(B,C)
ms:trans —— msref
R(A,C) R(AA

and the congruence relation with the rule for symmetry

R(A,B)
eq:sym
R(B, A

For any derivation D in a multi-step inference system, we define the length of D (written
as In(D)) to be the number of ms:itrans nodes in D.

Notation 2.4.8 We mostly use the previous definition to extend the A-reduction relations
R(A,B):= A —! B. We write the corresponding term relations as —, the multi-step
relations as —3, and the congruence relations as =). Here A € {§, 7, 61}.

34

3 YA: A SORTED A-CALCULUS

3 YA: A Sorted M-Calculus

In this section we define a sorted A-calculus XA with term declarations and functional
base sorts. This system is a generalization of the first-order system described in [SS89]
and the system A presented in section 2. We start out with the system A and add more
syntactic information to the formulae in order to distinguish certain well-typed formulae
as well-sorted. Since well-sortedness is not a structural property, we give a sort inference
system for well-sortedness.

As we have mentioned in 1.1 types were developed as a syntactic means to distinguish
mathematical objects of fundamentally differing nature and thereby eliminate antinomies
and paradoxes from the formal system. We have seen in 1.3 that types (as a mechanism
equivalent to flat sort hierarchies) can also serve as a powerful representation mechanism
that allows to formalize disjoint sets as differing types. In XA we want to make the type
mechanism more expressive without loosing the safety aspect in terms of antinomies of
a type system. Thus we separate both aspects into a simple type system (for the safety
aspect) and a sort system (for the additional expressiveness). In fact, we only need one base
type symbol ¢ for individuals in the presence of a sort system, since all other distinctions
can and — as the author believes — should be made within the sort system. We will violate
this intuition by introducing a second base type o for truth values, when we instantiate XA
to a logical system in section 5, since in this case it is more convenient to do so.

Clearly the sort system has to conform to the type system in some way, in order to
ensure that no antinomies can be imported via the sort declarations. In our case the sort
system is a refinement of the underlying type system and sorted operations will turn out to
be refinements of their unsorted counterparts. In particular, well-sorted formulae are still
well-typed.

3.1 Sorts

Sorting the universe of individuals gives rise to new classes of functions, whose domains
and codomains are just the sorts. In addition to this essentially first-order way of sorting
the function universes, the classes of functions defined by domains and codomains can be
further divided into subclasses, since functions are explicit objects of type theory. Sorts of
functional type, i.e. base sorts that denote classes of functions, are introduced. Syntactically
each sort comes with a type, and —if it is of functional type — also with domain and codomain
sorts.

Definition 3.1.1 (Sort System) A sort system is a quadruple (S, 5S,t,0), where

1. BS := BS7 :={BS, | @« € T} is a typed collection of sets of symbols, called base
sorts, which we assume not to contain any types (we always want to be able to
distinguish sorts and types).

2. the collection sorts S is the closure of BS under function construction, i.e. § is a
typed collection that contains BS such that for any A € S, and B € Sz, we have
A — B € S,—3. Note that if all BS, are finite, then so is each Sg.

3. the domain sort function 0 is a function 2: BS,_3 — S,.

35

3.1 Sorts 3 YA: A SORTED A\-CALCULUS

4. the codomain sort function tis a function v: BS,—3 — Sg.

If the context is clear we will often denote the sort system (S, BS,0,t) only by S.

Definition 3.1.2 Let S be a sort system and A € S. Remember that S is a typed collection
(cf. 2.1.8) induces a type function. We call the type 7(A) € 7 the type of the sort A.
If 7(A) ¢ BT, then we call A a functional sort (A € §/) and otherwise non-functional
(Aes™).

For the structure theorem and the definition of general bindings we will need the notion
of the length of a sort. We set In(A):=0, iff A € BS and In(A — B) :=1 + In(B)
otherwise. Thus the length intuitively is the number of top level arrows — in a sort.
Although this definition is analogous to the definition of length for types, in general we
have In(A) # In(7(A)) due to the existence of functional base sorts.

Notation 3.1.3 We denote sorts with uppercase symbols like A, B, C, or D. For
C:=(A — B) € S we define t(C):=B, d2(C) := A, thus we can extend the functions t
and 9 to /. Furthermore, we use v and 9 on types in the obvious way. For the rest of this
thesis we fix a sort system § = (S, B8S,0,1).

We often use the shorthands 9*(A) and t*(A) for the k" domain sort and the k-fold
codomain sort of A, which we inductively define by

P(A) = A dTYA) T
PA) = A dH(A) = A(x(A)

[l
[
—~

™.
—~
p
~—
~—

Definition 3.1.4 (Trivially Sorted) Since we are ultimately interested in sorted formu-
lae and their typed counterparts, we only consider sort systems where 7 is surjective. Thus
we can pick a local inverse, i.e. an injection f: 7 — §. We sometimes also denote 7 by b,
when we want to stress the property of being an inverse of f.

We call a sort system trivially sorted, iff 7: BS — B7 is a bijection. In this case
there can be no functional base sorts, since all base sorts are of base type. Moreover the
functions b and § are bijections and inverses, so the sort system S is isomorphic to 7 and
the functions 0 and t are trivial. If we only have one base type, then we call the sort system
one-sorted.

It will be important that the signatures, over which our well-sorted formulae are built,
“respect function domains”, i.e. that for any formula A and any sorts A and B such that
A has sort A and sort B at the same time, the domain sorts 9(A) and d(B) are identical.
The proof that signatures indeed satisfy this property (see theorem 3.5.4) depends on the
fact that term declarations meet the sort condition of ws:td in definition 3.2.7 below. This
sort condition is given in terms of the equivalence relation Rdom , which we now define.

Definition 3.1.5 We say that sorts A and B have equal domains (A Rdom B), if either
A,B € 8™ and 7(A) = 7(B), or t(A) Rdom t(B) and ?(A) = ?(B). Note that A Rdom B,
iff 0°(A) = %(B) for all 1 < 4 < k such that v*(A) and v*(B) are of the same base type.
Thus Rdom is an equivalence relation that respects types, i.e. A Rdom B can only hold,
if 7(A) = 7(B). For trivially sorted sort systems Rdom is just equality.

36

3 YA: A SORTED M\-CALCULUS 3.2 Well-Sorted Formulae

Remark 3.1.6 We have kept the sort system of XA as simple as possible for this theoretical
exposition. For a practical system we would like to have features like sort constructors,
such as C: S X § — &, which allows the construction of new base sorts such as C(R, R) that
stands for the continuous functions with domain IR = Dg and codomain IR from the sort R
of real numbers. Another practical improvement would be the introduction of intersection
sorts [KP93, Wei93], which would make our signatures regular (cf. 3.6.16). We believe that,
while this would add considerably to the complexity and practical descriptive power of the
system, the theory can be dealt with by simple extensions of the methods described here.

3.2 Well-Sorted Formulae

Next we introduce the concept of well-sortedness for well-formed formulae. It is defined
with respect to a variable context, which gives local sort information for the variables, and
a signature, which contains sort information for formula schemata (term declarations). A
formula A be called well-sorted with respect to a signature ¥ and a context I', iff the
judgment I' Fy, A=A is derivable in the inference system X A. The variable context now
explicitly assigns sorts to variables that are only implicitly typed in 2A.

One of the difficulties in devising a formal system with term declarations is that the
signature, needed for defining well-sortedness, itself contains formulae that have to be
well-sorted. We have another case of recursive dependency: on the one hand we need
well-sortedness conditions on the inference rules for sorted gn-reduction, and on the other
hand we need an inference rule ws;3n that guarantees formulae that are Sn-equivalent to
have identical sets of sorts. Therefore we need to combine the inference systems for valid
signatures, well-sortedness, and sorted fn-reduction into one large system A.

Definition 3.2.1 (Variable Context) Let X, be a variable and A a sort, then we call a
pair [X :A] a variable declaration for X, iff 7(A) = a. We call a typed, partial function
from variables to sorts a (variable) context. Thus a variable context is just a set of
variable declarations.

Notation 3.2.2 We write the fact that a typed partial function I':V — § is a variable
context as Fq, ', and we generally use the symbols I', A, and = for variable contexts. With
our convention from 2.1.3 we have I'(X) = A for I := I", [X =A], even if I'(X) = B. We
sometimes abbreviate contexts [X1:A],...,[X":A] by [X,..., X":A] in order to conserve
space and increase legibility.

For most of our purposes we will only need finite variable contexts, but in section 5 we
will need infinite variable contexts to construct suitable term models.

Definition 3.2.3 (Raw XA-formulae) Raw YA-formulae are well-typed A-formulae,
where A-abstractions have the form (AXa.A). To make this definition formal, we extend
the trivial injections § and b (cf. 3.1.4) of sorts and types to formulae by

1. f(c) ==b(c):=cfor c € Q
2. 4(X)=b0(X):=Xfor X €V
3. #([AB]) := [t(A)4(B)] and b([AB]) := p(A)H(B)]

37

3.2 Well-Sorted Formulae 3 YA: A SORTED M\-CALCULUS

4. $([AX4A]) = [MNXy(a)4(A)] and d([AXn.A]) = [AXy(a)b(A)]

These homomorphisms are so trivial (they only add or delete sort information in abstrac-
tions), that we will often keep them implicit and directly consider Y A-formulae as A-
formulae.

Definition 3.2.4 (Term Declaration) We call a triple [VI'.A:A] consisting of a variable
context I', a raw formula A, and a sort A a term declaration and a finite set of term
declarations a signature.

The idea of term declarations consists in the intuition, that there can be additional sort
information within the structure of a formula, as the following example shows. Consider,
for instance, the addition function, which we (semantically) would like to have the sort
N X N — N, where N is the sort of natural numbers. If we also have a sort for the evens
E, then we might want to specify that the expression [+aa] is an even number, even if a is
not. This information can be formalized by declaring the formula [+XnXn], to be of sort
E (an even number) using a term declaration. We might also want to give the addition
function the sort E x E — E, however, since it is central to our program that formulae have
unique domain sorts, we cannot declare this directly in the signature. Closer inspection of
the semantics behind our example reveals, that it is consistent with our program to declare
the restriction of the addition function to the even numbers has codomain in E, which we
can legally declare with the term declaration [V[X :E], [Y:E]. + XY :E].

Definition 3.2.5 (Sorted a-Conversion) In YA we cannot simply take typed a-con-
version, since this would not conserve well-sortedness. Consider, for instance, the formulae
AXa.A and \Yg.[Y/X]A, which are typed a-variants, if 7(A) = 7(B). They do not have
the same sorts in XA, thus a formula containing the first as a subformula would become
ill-sorted, if it were to be replaced by the second. For a sorted a-conversion relation we
define raw formulae AXgz.A and AYa.[Y/X]A to be alphabetic variants.

General Assumption 3.2.6 (Implicit a-Conversion) Just like in the system A in as-
sumption 2.3.7, we consider sorted a-conversion as built into the system to avoid variable
capture during instantiation. Thus we regard 3 A-formulae as syntactically equal, iff they
are sorted alphabetical variants. Note that this assumption can be justified with exactly
the same argument as the one for assumption 2.3.7.

Since the context in a term declaration is a kind of declaration that locally binds vari-
ables, we also assume implicit a-conversion (i.e. the term declarations [VI, [X =A].AzA] and
[VI', [Y=A].[Y/X]A:A] are alphabetic variants) for term declarations and consider alpha-
betical variants as identical.

Definition 3.2.7 (Inference System for ¥A) We define well-sorted formulae by an
inference system for the judgments

o by, X (X is a valid signature)
e I'Fx A:A (in ¥ formula A has sort A assuming I')

o I'Fy A=43,B (B can be obtained from A by sorted $n-conversion in ¥ assuming I')

38

3 YA: A SORTED M\-CALCULUS 3.2 Well-Sorted Formulae

We say that a signature ¥ is valid, iff there is a XA-derivation of I, X. For a fixed
signature ¥ and a context I" we say that a formula A is of sort A, iff I' Fy A=A, and
that A is well-sorted, iff there is a sort A such that A has sort A, otherwise we call A
ill-sorted in I and ¥. We fix the notation SL(A) := {A € S| T Fx A:A} for the set of
sorts of A, and wsfp (X, ") for the set of formulae of sort A.

The inference system XA has the rules

sig:empty
'_sig @

l_sigE C@éE AeS T(A)IO{
Fsig 2, [czA]

sig:const

'ty A:A A RdomB

sig:td
Fsig 3, [VI.AzB]

for the judgment g, ¥. Here the second rule allows the introduction of initial sort
declarations for constants that have never appeared before, whereas the rule sig:itd for
proper term declarations allows the declaration of further sort information for well-sorted
formulae, if the new sort B respects function domains. Note that in this rule we do not
have to require -, ¥, since A can only be proven to be well-sorted, if ¥ is valid. The
previous definition needs the judgment of well-sorted formulae, which we define with the
next set of inference rules:

FsigX Feae I I'(X)=A Fsig X [VALA:Ale ¥ ACT
wswar ws:td

Iy X:A Tty A:A

'y A:A AFy B:o(A) T|A
AUT Fy (AB):=r(A)

ws:app

[[X:=B]Fs A:A
'ty (A XB.A):B — A

ws:abs

I'ky AzA Ty B:B T'ky A=g,B
Ity B:A

ws:Bn

Note that the rules for variables, application, and abstraction are the obvious generaliza-
tions of the corresponding rules for simple type theory. In the setting with term declarations

39

3.2 Well-Sorted Formulae 3 YA: A SORTED M\-CALCULUS

we do not need a separate rule for constants, since all constants have to be declared in term
declarations.

Now we define the judgment I' -y, A=4, B for sorted Bn-equality with the following set
of inference rules. The one-step top-level reduction rules

I'Fx A:A X ¢ Free(A)

sort:n:itop
I'Fy (/\XD(A).AX) —>f7 A

I',[X:B]Fy A:A Aty B:B T|A

sort:;F:top
T'UA by (/\X[BA)B —>tﬁ [B/X]A

are turned into a congruence judgment by the following inference rules, which are a spe-
cialization of those in 2.4.7 to our setting.

'ty A—\B Tky A:zA T'ky C:0(A) T

trapp:fn
rul’kg AC —), BC
'ky A—,B T'ky Az(A) Ty C:A T|TY
lr:app.arg
rur’t+y CA —, CB
I'[X:Altx A -, B
- - tr:abs
'ty AXp.A —) A\ Xp.B
' A—=3B I'+FyB—=5C TI||I" Iy A:A
ms:trans — msref
I‘/UFFEA—V:\C 'y A=A
I'Fty A=,B
=7 7" eqsym
I'Fy B=, A

We need these rules, since we view gn-conversion as basic to our system, therefore we do
not want (n-conversion to increase the sort of a subformula, and thereby possibly convert
a well-sorted formula to an ill-sorted one. In the definition of sorted n-reduction we have
taken care to identify the (unique) supporting sort 9(A) of A, since the formula AXg.AX
denotes the restriction of the function A to sort B, if B is a subsort of d(A).

Remark 3.2.8 By defining the sets of sorts as typed collections we have enforced that
the sorts refine an existing type structure. We could have defined the sort system without
reference to types by making the domain sort and codomain sort information part of the

40

3 YA: A SORTED M\-CALCULUS 3.2 Well-Sorted Formulae

signature (cf. 3.2.7), but we prefer to have the type information as a useful intuition in the
background and keep the definition of the sorted signatures comparatively simple.

The following lemma is useful for carrying out proofs by induction over the structure
of Y A-derivations.

Lemma 3.2.9 If A: Tty A=A ends in a ws:td-node, then either A is a constant or there is
a signature ' C X and a context T C T such that T' by A:B for some B with B Rdom A.

Proof: Since A ends in ws:td, we know that there is a term declaration [VA.AzA] € ¥ and
a YA-derivation D:l;, ¥. We show the assertion by induction on the structure of D. ¥
is nonempty, so sigiempty cannot apply. If A ends in sig:const, then A is a constant. If D
ends in sig:td, then we have the following situation

D/
=ty B:C CRdomB
Fsig ¥, [VE.B:C|

sig:td

Thus we have to consider two cases: if A = Z, A = B, and A = B, then D: A by A:C
and C Rdom B Rdom A, which gives the assertion, since Rdom is transitive. If this is
not the case, we obtain the assertion by inductive hypothesis for D’. O

The next lemma convinces us that the judgments defined above respect well-formedness,
i.e. that the information described by XA merely refines the type information.

Lemma 3.2.10 Let X be a valid signature.
1. IfT'Fx A=g,B, then b(A)=g,»(B).
2. If T'Fx AzA, then T(A) = T(A).
3. IfFsig ¥ and [VI'.A=zA] € ¥, then T(A) = 7(A).

Proof: We prove the assertions by a simultaneous induction over the structure of the
Y A-proofs for the judgments involved. The only interesting cases for the first assertion are
sort:3:top and sortmtop, where we can read off the assertions from the inference rules.

For the second assertion we consider the cases for the last step in the XA-derivation
D:T Fy A:A. If D ends in wswar, then A is a variable of some type a and we have
7(A) = a by definition. In the cases where D ends in wsid or ws3n we obtain the
assertions by 1. and 3. If D ends in wswapp, then A = CD, and we have XA-proofs
for I' by C:C and I' by D=d(C), where A = t(C). By inductive hypothesis we have
7(C) = 7(C) and 7(D) = 7(d(C)), and therefore 7(A) = 7(¢(C)), since v(7(C)) = 7(x(C))
and 7(0(C)) = 9(7(C)). Finally, we get the assertion for the remaining case, where D ends
in ws:abs, with a similar application of the inductive hypothesis.

The only interesting cases for the third assertion are the inductive rules sig:const and
sig:itd. While we obtain the assertion for the former by construction, the well-typedness for
the latter relies on the fact that Rdom is a typed binary relation. O

41

3.2 Well-Sorted Formulae 3 YA: A SORTED M\-CALCULUS

General Assumption 3.2.11 Since we have assumed implicit a-conversion on term de-
clarations (cf. 3.2.6), it is easy to see that a variant of the a-conversion principle holds on
judgments. The judgment I',[X =B] Fyx A=A is provable in XA, iff the alphabetic variant
IL[Y:B] Fx [Y/X]AzA is. We will use this phenomenon to keep contexts in our Y A-
derivations disjoint by consistently renaming all judgments in subderivations, whenever
clashes occur. In particular, for ws:abs nodes of the form

I, [X:B]Fy A:A
'ty (A XB.A):B — A

ws:abs

in a ¥ A-derivation A we always assume that X ¢ Dom(I'). Moreover, we use the notation
I',A for T'U A with the implicit assumption that Dom(I') N Dom(A) = 0.

Remark 3.2.12 (Non-Structural) Inspection of the inference rules above shows that
the inference system YA for sort inference is non-structural (cf. 2.4.5), since the succedent
of ws:fn is not restricted to any structural category and furthermore, sorted gn-conversion
can dramatically change the structure of a formula. Thus it is not obvious how to con-
struct a sort inference algorithm from this inference system. We will later recover some
structural properties (cf. 4.1.2) of ¥ A-derivations and use these for sort computation in
theorem (4.3.5).

Remark 3.2.13 At first sight the restriction of A Rdom B in sig:td appears to be a grave
restriction on the expressiveness of term declarations, since it severely restricts the over-
loading of function constants. In particular, it is impossible to combine declarations like
[+:(N = N —= N)],end[+:(R — R — R)] declaring the addition function to be a function
of naturals and of reals in one signature, since one of them would have to be added to the
signature with the sig:itd rule and we cannot have (N — N — N) Rdom (R — R — R),
since R # N. However, on closer inspection it turns out that the declarations should really
formalize the fact that the restriction of the addition function to the naturals ranges over the
naturals and should therefore be declared as [+:(R — R — R)], [V[X =N], [Y=N]. + XY =N],
which is legal in ¥A. This way the formula + is of sort (R — R — R) with domain in the
reals whereas the formula [AXyYn. + X Y] is of sort (N — N — N) and has domain in the
naturals.

The notion of a unique supporting sort corresponds to the intuition in mathematics
that functions come with a unique (maximal) domain and have to be distinguished from
restrictions to subdomains.

Notation 3.2.14 To conserve space and increase legibility we abbreviate term declara-
tions of the form [VI,[X1:Al], ... [X":A".AX":B] with [V[.A}A! — ... — A" — B], if
X1 ..., X" ¢ Dom(T). Such a declaration specifies that the denotation of the functional
formula A when restricted to Dg1 X --- X Dgn has values in Dg.

With this convention the declaration in remark 3.2.13 would look like [+:R — R — R]
and [+N — N — NJ, which is much easier to read.

Definition 3.2.15 Let A be a well-sorted formula, then we call a context I" frugal for
A, iff T only contains the free variables of A. We also call a judgment I' -y, A=A or a term

42

3 YA: A SORTED M\-CALCULUS 3.2 Well-Sorted Formulae

declaration [VI'.A:A] frugal, iff ' is frugal for A and we call a signature ¥ frugal, iff all
term declarations in 3 are frugal.

Lemma 3.2.16 If Y is a frugal signature and I' by A=A, then there is a X A-derivation
of T' by, A=A such that T is frugal for A and T' CT.

Proof: By simple induction over the proof of I' Fy A:zA. O

Remark 3.2.17 Note that we cannot assume all subderivations to be frugal. While for
the empty signature ¥ the judgment) Fy AXaYp.Y:A — B — B has the frugal ¥ A-proof
below, the subderivation for AY.Y cannot be frugal, since we need the variable declaration
[X :A] for the final ws:abs step in the following X A-derivation:

wsvar

[X:AL[Y:B]Fy Y:B
[X:AlFx AYg.Y:B — B
OFs AXaYp.Y:A—B—B

ws:abs

ws:abs

The previous lemma allows us to drop declarations in variable contexts of judgments
in order to make them frugal. Note that it is in general possible to drop declarations from
signature, in particular, it is not true, that 4, A, whenever 4, ¥ and A C ¥, since,
for instance, deleting the only constant declaration for a constant in ¢ € ¥ prohibits the
proofs of well-sortedness needed for the term declarations in which ¢ occurs. The following
lemma does just the opposite by allowing to enlarge signatures and variable contexts in
judgments. We will often use it in the proofs to follow without explicitly stating it.

Lemma 3.2.18 (Monotonicity) Let A C X be valid signatures, and let = C T' be variable
contexts, then we have

1. If I'Fa A:A, then I by AzA.
2. If = Fy A=A then T Fy AzA.

Proof: The assertions can be proven by simple inductions on the ¥ A-derivations involved.
|

Remark 3.2.19 Together with monotonicity our assumption (3.2.11) on disjointness of
contexts in YA-derivations (cf. 3.2.11) allows us to assume extended contexts in XA-
derivations that end in ws:app. Thus we can use the following, alternative form of the
ws:app inference rule

I'Fy AzA T Fy B:2(A)
I' ks (AB):x(A)

ws:app

Lemma 3.2.20 Any valid signature is subterm-closed, that is, each subformula of a
well-sorted formula is again well-sorted.

43

3.3 X-Structures 3 YA: A SORTED M\-CALCULUS

Proof: Let D:T Fy A:A be a Y A-derivation using the alternative ws:app rule as defined
above (3.2.19), and let B be a subformula of A, then we show that I' Fy BB holds for
some sort B € § by induction over the Y A-derivation of I' Fy AzA.

wswar In this case A = B € V and there is nothing to show.
ws:td By 3.2.9 and monotonicity 3.2.18.

ws:app In this case A = CD and B is a subformula of either C or D, which are well-sorted,
so we directly obtain the assertion by inductive hypothesis.

ws:abs Here we have A = AXyn).C with I' by C:t(A), so B is well-sorted by the inductive
hypothesis, since either B = X or B is a subformula of C.

ws:fn If the Y A-derivation ends in ws:0n, then there is a shorter X A-derivation I' by A:C
for some C € S and B is well-sorted!! by inductive hypothesis. O

The property of subterm-closedness is natural in the context of mathematics, since it
does not make sense to allow ill-formed subexpressions in well-formed expressions. This
situation may, for instance, be different in the field of natural language processing. Non
subterm-closed signatures would also cause technical problems, for example, structural
induction would not be possible.

Remark 3.2.21 For a fixed, valid signature 3 we can simplify the inference system by
dropping the premise -;, ¥ from the rule ws:td, since the proofs in the original system can
be obtained from those in the simplified system by copying the validity proofs for ¥ into
the ws:td-nodes.

General Assumption 3.2.22 We assume that all signatures ¥ we speak about are valid
and that for any constant ¢, € €, there is a constant declaration [¢,:A] € X. Note that
by 3.2.10 we have a = 7(A).

Notation 3.2.23 In order to stress the relation of the set Q with X, we often denote Q
with ¥. Moreover we use the bar operator for the forgetful functor, which indicates the
underlying unsorted objects of sorted ones.

3.3 Y-Structures

With the previously defined concept of valid signatures we can now lay the framework of
Y-structures, which serves as an algebraic basis for our development of YA.

Definition 3.3.1 (Sorted Collection) In analogy to the typed case we define sorted
collections of sets, functions, and relations by substituting sorts for types in the definitions.
But we do not insist that Dy and Dg be disjoint in a sorted collection Dg of sets for distinct
sorts A and B, since it is intended e.g. for well-sorted formulae to have multiple sorts. Note
that sorted collections are also typed collections, since sorts have types: Let Dg be a sorted
collection, then D7 defined by D, := UT(A\):Q Dp is a typed collection. We call D := Dt
the typed collection corresponding to D = Dg.

"' Now we see why we had to require the formula B to be well-sorted in sortm:top, since otherwise a
formula B :=[AXp.c]D would be well-sorted for arbitrary well-typed formulae D, whenever c is a well-
sorted constant, and then our system would not be subterm-closed any more.

44

3 YA: A SORTED M\-CALCULUS 3.3 Y-Structures

Definition 3.3.2 (Pre-Y-Structures) Let ¥ be a valid signature and Dg a sorted col-
lection of sets, then we call the triple (Ds,@,7) a pre-X-structure, if

1. A:= (D7,@,7) is a partial pre-Y-structure (cf. 2.1.9), where D, = U-a)=a Ph,
2. DPa@Dyny € Dyny and Dom(@) O Dy x Dy(p) for a functional sort A € Sy p.

Now we can adapt the nomenclature from definition 2.1.9 to the sorted case. In particular,
the set Dp is called the universe of sort A. Note that in contrast to the pre-Q-structures
we require pre-X-structures to be total on the sorted universes Dp. For a pre-X-structure
A = (D,@,T) we call the partial pre--structure A = (D,@,7) the corresponding pre-
Y-structure. We call A comprehension-closed (functional), iff A is.

Let A = (D,@4,7) and B = (£,@5, J) be pre-S-structures, then a S-homomorphism
k: A — B is called a Y-homomorphism, iff x(Dn) C &n for all sorts A € S. & is
called ¥-monomorphism, if it is injective, and a Y-epimorphism, if it is surjective and
moreover K(Pp) = k(&a) for all A € S. We call k a X-isomorphism, iff it is an injective
Y-epimorphism.

Note that this definition does not take the information given in the term declara-
tions into account, but only concentrates on the sort structure. This is natural for
pre-Y-structures, since the underlying pre-Y-structures do not assume anything about
comprehension-closedness, and therefore do not guarantee denotations for the formulae
in term declarations. Hence it is not possible to give a definition that takes the term de-
clarations into account either. This situation will be better in X-structures, which we are
about to define. But first let us give the standard example for a pre-X-structure.

Example 3.3.3 If ¥ is a valid signature and I' is a context, then wsf(X,I') is a pre-X-
structure, if A@QB = (AB), since ws:app ensures the totality condition 3.3.2.2.

Now we come to the more relevant notion of X-structure.

Definition 3.3.4 (X-structure) Let A = (D, @,7) be a pre-X-structure and I' a variable
context, then we call a function ¢: Dom(I') — Dgs a I'-assignment into A, iff o(X) € D
for every X € Dom(I') with I'(X) = A. We call a functional pre-X-structure A a X-
structure, iff it is comprehension-closed and for all term declarations [YI'.A:A] € ¥ and
for all I'-assignments ¢ into A we have Z,(A) € Dp.

If A is a closed formulae, then Z,(A) is independent of the I'-assignment ¢. In these
cases we drop the reference from Z,(A) and simply write Z(A).

Remark 3.3.5 Note that I'-assignments need not exist, since the sets Dg may be empty
in ¥-structures. Thus if I'(X') = A in a term declaration [VI'.A:A € Y], then the condition
for Y-structures is vacuously fulfilled. This is consistent with the intuition that term
declarations specify objects of sort A, which are instances of A. Now if Dy is empty,
then there cannot be any objects to match A and therefore the term declaration does
not contribute any objects for Pn. Emptiness of sorts is a problem for the soundness of
refutation calculi, which we address in subsection 5.2.4.

Lemma 3.3.6 Let I' Fy A:A and A = (D,Q,7) be a X-structure, then for any I'-
assignment ¢ into A we have I,(A) € Dp. As a consequence I, is a X-homomorphism.

45

3.3 X-Structures 3 YA: A SORTED M\-CALCULUS

Proof: We prove the assertion by an induction on the structure of D:T' Fy A:A. For the
ground cases we remark that, if D ends in wswar or ws:td, the assertion holds, since ¢ is a
I'-assignment, and A is a Y-structure (where the assertion holds for term declarations by
definition). In the cases where D ends in ws:app or ws:abs we obtain the assertion from the
inductive hypothesis and the definition of Z,. For ws:3n note that I' Fy, A=g,B implies
I,(A) =1,B) (2.3.22). O

Now we state some lemmata, which are direct consequences of their counterparts in
A. Here we take advantage of the fact that we have invested some extra work for A by
generalizing all notions to partial functions.

Lemma 3.3.7 Sorted n-conversion is sound, i.e. if A = (D,Q,7) is a X-structure and
I'Fy A=g, B, then I,(A) = Z,(B) for any I'-assignment ¢.

Proof: This result is an immediate consequence of the unsorted result for Y-structures
(see lemma 2.3.22). a

In particular, we have the same tight correspondence between substitutions and variable
assignments as in A.

Theorem 3.3.8 (Substitution Value Theorem) Let A = (D,Q,7) be a X-structure,
A € wsf(¥,T,[X:A]), A € wsf(¥,I'), and ¢ be a I'-assignment, then I,([B/X]A) =
Lo jz,B)/x)(A)-

Proof: By 2.3.17. O

Definition 3.3.9 Let A be a pre-X-structure, then a congruence ~ on A is called a -
congruence on A, iff f € Dg and g ~ f imply ¢ € Dg. Here we have adapted the
definition of a ¥-congruence (cf. 2.3.1) by requiring a totality condition for domain sorts,
that is analogous to that in the definition of Y-structures.

A Y-congruence ~ is called functional, iff for all functional sorts A € S7 and all
/;9 € Da the fact that f@a ~ g@a for all @ € Dy(n) implies f ~ g. Note that, since ~ is a
congruence, we also have the other direction, so f@a ~ gQa for all a € Dg, iff f ~ g.

Lemma 3.3.10 If ~ is a X-congruence on a pre-Y-structure A, then AJ. is a pre-X-
structure as well, and 7w~ is a YN-homomorphism. Furthermore, A /. is comprehension-
closed, iff A is, and functional, if ~ is.

Proof: In the light of 2.3.3 and 3.3.2 it only remains to show that Dy @ND;(A) C D:EF‘) and

that @~ is a total function on Dy x Dyyp). Solet f € Dp and a € Dy(p), then [f] € Dy
and [a] € D and [f] @~ [¢] = [f@Qda] € D{n), since f/Q@a € Dyp. O

Lemma 3.3.11 Let W :={X! ..., X2 } and Q := {cél, .. .,cg“m} be typed sets of vari-

@ ?
ables and constants. Furthermore, let

who= (X ()]s (X ()]}
Q= {[clz:ﬁ(ﬁl)],...,[cm::ﬁ(ﬁm)]}

for some context I' with Dom(I') = W, then

46

3 YA: A SORTED M\-CALCULUS 3.4 Y-Substitutions

1. Q is a valid signature.

to

f: wff(Q, W) — wsf(8,T) is a Q-monomorphism and b: wsf(8,T) — wff(Q, W) is a
Q-epimorphism.

3. For A € wff(Q, W) we have ¥+ A:a, iff I Fqi t(A)zf(a).
4. For A € wsf(X,I') we have I' Fqr A=A, iff Q@+ b(A):b(A).
5. b(#(A)) = A for al A € wff(Q, W), thus b is an inverse for .

6. § and b are Q-isomorphisms, if QF is trivially sorted.

Proof: Immediate from the definitions. O

Remark 3.3.12 YA is a generalization of A.

Proof: If ¥ is trivially sorted, then ¥ contains exactly one term declaration [¢:B] with
7(B) = a for each constant ¢, € X, since Rdom is just the equality relation and we
have assumed declarations for all constants in X. Thus trivially sorted signatures are
isomorphic (by 7) to the signatures of 2.4.4. It is easy to see that sorted fn-conversion is
just unsorted Bn-conversion, which is sort-preserving even without the rule ws:37, therefore
ws:fn becomes redundant in the trivially sorted case. Thus the judgment I' Fy A:A
coincides with the judgment ¥ F A:7(A), and therefore well-sortedness just reduces to
well-typedness, and the functions § and b are isomorphisms of pre-X-structures. O

3.4 Y-Substitutions

Definition 3.4.1 (X-Substitution) Let I' and A be variable contexts, then we call a
substitution ¢ a Y-substitution with domain context A and codomain context I,
iff the judgment I' Fy, oA is derivable in the following inference system:

wsub:start

0 ks 0:0

Ity oA T'Ey A:A T||IIY X ¢ Dom(T') U Dom(T")
I"UT by o, [A/X]:A, [X=A]

wsubext

The set of X-substitutions is denoted by wsSub(X,A — I'). A Y-substitution ¢ €
wsSub(X, A — T') is called a ¥-renaming, if it is a sort-preserving renaming substitution,

that is, if ¢(X) =Y such that A(X) = A, then I'(Y') = A.
Lemma 3.4.2 Let I' by oA, then we have

1. Dom(A) = Dom(o), Intro(c) C Dom(T'), and Dom(A) N Dom(T') = 0, so in
particular, o is idempotent (cf. 2.3.4).

47

3.4 X-Substitutions 3 YA: A SORTED M\-CALCULUS

2. If o = o',[A/X], then A = A’,[X:A], and there is a context T' C T such that
T by o'zA.

3 Ilfo = [A¥/X*] and A(X?) = AY, then there are contexts I* C T such that T% by
A=A for all i < k.

Proof: Immediate from the definitions. O

We now want to show that Y-instantiation, i.e. application of Y-substitutions, preserves
sorts.

Theorem 3.4.3 If=,[X:B]Fy A:A and I' Fx B:B, then =, Fy [B/X]A:A.

Proof: To make the inductive hypothesis go through, we show a stronger version of the
assertion. We show Z,T' by [B/X]A:A from D:Z' by A:A where 2 C Z, and ¥ C X
by induction on the structure of D. If D ends in ws:td, then there is a signature X" C Y/,

some 2’ C Z’, and a subderivation D':Z" Fy»n A:zC of D. So by monotonicity there is a

Y A-derivation D":=,T by [B/X]A:=C. Now consider the following Y. A-derivations
= [X:Alky A:A
ws:abs
I'Fy B:B =Fy (AXg.A):B— A !
T

ws:app
Fy (AXg.A)B:A =0 by [B/X]A:C x

=@ by [B/X]A:A

—_—
—
=

ws:fn

This completes the proof for the ws:td. In the ws:war case we see that A is some variable

Y € Dom(Z') with Z(Y) = Aor A= X. f A=Y € Dom(Z’), then 0(A) =Y and
thus Z,I' Fy A:A by wswar and monotonicity 3.2.18. On the other hand A = X, then
[B/X]A = B and we have I' by [B/X]A::A by assumption.

—/

In the ws:iabs case we have Z' Fy» (AYe.D):C — D for some sort D, by inversion
= [Y:C] by DD and thus Z, T, [Y:C] gy [B/X]D:D by inductive hypothesis. Thus we
obtain the assertion by definition of substitution application.

The remaining cases ws:app and ws;3n can be proven similarly by direct applications
of the inductive hypothesis and monotonicity. In particular, we do not need any argument
about sorted fn-conversion in the ws:3n case, since inversion of that rule gives us a LA-
derivation of 2’ Fy» A:C, to which we can directly apply the inductive hypothesis. O

Theorem 3.4.4 IfZ, Aty Az:A and I' Fy oA, then E,1 Fy o(A):=A.

Proof: We prove the assertion by induction on D:I' by o:A that Z,' by o(A):A. If
D ends in wsub:start, then o is the empty substitution and the assertion is trivial. If D
ends in wsubext, then 0 = ¢',[B/X] and A(X) = B. Furthermore, we have I -y, B:B
and D:T" by o':A_x for contexts I", T" C T with T'||T” by by 3.4.2.2. By the previous
theorem 3.4.3 we have Z,1" Fy [B/X]A:A. Now the inductive hypothesis gives us the
assertion, since o(A) = o/([B/X]A), as o is a X-substitution and consequently idempotent.

|

Corollary 3.4.5 The following assertions are direct consequences of 3.4.4.

48

3 YA: A SORTED M\-CALCULUS 3.4 Y-Substitutions

1. If o € wsSub(X,A — 1), then o(wsfy(X,=,A)) C wsfp(¥,E,T).
2. The composilion of two Y-substitutions is again a Y-substitution when defined.
3. 2,A bty C=4,D and I' Fy, 0:A imply 2,1 by, 6(C)=p,0(D).

These considerations can also be used to give new, convenient inference rules, that are
admissible in ¥ A. Thus we will freely use these rules in 3 A-derivations, without changing
our system. In particular, we only have to consider the original inference system from 3.2.7
in our meta-logical considerations.

Definition 3.4.6 (X-Instantiation) We define two inference rules that will become con-
venient in the following.

A,[X:B]Fy AzA TI'ty B:B T||A X ¢ Dom(I')
AUT g [B/X]A=A

ws:inst

AEFy A:A Thyo:E Dom(T)NDom(A) =0
AT Fy o(A):A

ws:subst

Note that ws:inst is only a special case of ws:subst.
Lemma 3.4.7 The ws:inst and ws:subst rules are derived rules of X A.

Proof: By 3.4.4. O

Remark 3.4.8 On first sight the idea of term declarations, that is to allow the declarations
of sort information for schematic formulae, would be more suitably treated by postulating
the wsinst inference rule instead of the much more powerful (and problematic) ws;3n-rule.

However, in such a system term declarations would to be severely restricted in order to
obtain well-sortedness of sorted -reduction. Consider, for instance, the following signature:

Y= {[+:N =N —= N],[(AXn. + XX):N— E],[1:N]}

In the ws:inst-system the judgment I' Fy (AXN. + X X)1:E is derivable, but the judgment
I' by (+11)=E cannot be derived. Obviously, we can remedy this situation by giving the
equivalent (leading to the same well-sorted formulae) declaration [V[X :NJ. + X X :E], but
in the signature

Y = {[f:A— C],[a:A],[VGa-na.f(Ga):D]}
we have I' Fy f((AXa.X)a)=D, but only I' Fy, fa:C.

Definition 3.4.9 (X-Algebra) Let X be a valid signature, then a pre-X-algebra A =
(D,T) is a pre-Y-structure such that

1. for all A € 87 we have Dp C f(Da(A);Dt(A)),

49

3.5 Sorted Reduction 3 YA: A SORTED M\-CALCULUS

2. fQa = f(a).

Like in the unsorted case we call a pre-X-algebra standard, iff Da_.g = F(Da;DPg).
Note that A = (D,,Z) forms a pre-Y-algebra, therefore pre-Y-algebras are functional.
We call a pre-Y-algebra A a Y-algebra, iff it is a Y-structure.

Example 3.4.10 (Rudimentary Calculus) Suppose we want to use the sorts to model
the world of elementary analysis. This means we want to include the sets of real numbers
(R), the non-negative real numbers (P), and the set of continuous functions on the reals.
We denote the subclass of k-differentiable functions in F(A; B) by C*(A; B) and the class
of continuous functions with C°(A4; B).

Let ¥ be a higher-order signature with S := {P,R,C, O} such that 7(P) = 7(R) = ¢,
7(C) = (¢ —), t(C) = ?(C) = R. Suppose we additionally want to model a positive
constant 7, the identity function ¢, and absolute value functions a, and the differentiation
operator d. With the signature

Y ={[r=P],[az:(R — P)], [i=:C], [d=:(C — R — R)], [V[X =:P]. X =R]}

we have Fy a:R — P, by azR — R, and [F:C] by dFa:R.

The definitions Dg := IR and D¢ := C(IR;IR), together with the convention that the
interpretation of 7, 7, a, and d are the number 7 (3.1415...), the identity function, absolute
value function and Z(d) the differentiation operator respectively specify a standard pre-X-
algebra, whereas the setting Dg_g := C°(IR;IR) defines a class of non-standard pre-3-
algebras.

3.5 Sorted Reduction

It is important to the program of this thesis that the fundamental operations of the calculus
do not allow the formation of ill-sorted terms from well-sorted ones. This will ensure that
our calculus never has to handle ill-sorted terms, even intermediately. We have seen in 3.4.4
that Y-instantiation conserves sorts. In this subsection we will use this to show that, if
I Fy A=g,B, then S5(A) = SL(B). This fact implies that sorted reduction is strongly
normalizing and all results carry over from the typed case. For the confluence result we need
that well-sorted formulae of functional type have unique domain sorts. We will show that
the restrictions imposed on the validity of signatures indeed guarantee that all functional
well-sorted formulae have unique supporting sorts, which exactly capture the intuition of
mathematical practice, where functions have unique domains associated with them. This
fact a posteriori justifies our definition of sorted 7n-conversion, which is a weak form of
the extensionality principle, and therefore relies on the existence of unique domains for
functions.

Lemma 3.5.1 If 'y A=3,B, then I' by A=A, iff I by, B:A.

Proof: We only have to show one direction of the equivalence, since =g, is symmetric. To
make the induction go through, we have to show a slightly stronger result: if C:I' Fy, A=g,B
and A:T by AzA with ¥/ C X, then T' by B:A. We prove the assertion by induction on
(C,A) with respect to the strict lexicographic ordering < on pairs of ¥ A-derivations.

50

3 YA: A SORTED M\-CALCULUS 3.5 Sorted Reduction

We first convince ourselves that it is suflicient for our purposes to show that B is
well-sorted (A:T' Fy B:C for some sort C), since afterwards we can use the ws:3n rule

to construct a X A-derivation that verifies the assertion: with monotonicity we obtain a
Y A-derivation B:T by A:A from A, and therefore

B A’
'y AzA T'Ey BiC Iy A=4,B
ws:fn
Ity B:A

We now proceed to analyze the cases for the X A-derivation A. If A ends in an application
of the ws:fn rule, then we have the following situation:

& A’ C’
T "E/ P:A T l_E’ A:C r l_E’ PIﬁnA
ws:Bn
Iy AzA

Since A’ is a proper subderivation of A, we have (C, A") < (C, .A) and therefore by inductive

hypothesis for A:T' by A:zC and C:T' Fy A=g,B we have I' Fyy B:C, which yields the
assertion.

If A ends in wsitd, then we have [VA.A:zA] € ¥’ for some context A C I', and there
is a signature ¥ C ¥ such that A: A Fg» A:C and C Rdom A. Since A’ is a proper
subderivation of A, we have (C, A’) < (C,.A), and therefore by inductive hypothesis I' Iy,
B:C.

Now that we have treated the ws:6n and ws:td cases for A we proceed by analyzing
the Y A-derivation C. We first treat the four base cases separately in which C ends in some
top-level (n-conversion:

8 Here A = (AXg.M)N and B = [N/ X]M, and we have I' by NuB and I', [X :B] Fy M:C
for some sort C by inversion of sort:f:top, so by ws:inst we have I' Fy B:C, which
completes this case in light of the remarks above.

7! Here B = (AXg.M)N and A = [N/X]|M, and just as above we have I' by, N=:B and
I',[X=B] Fy M:C for some sort C, and therefore

I'[X=B]Fy M:C
I'Fy N:B I'Fy AXp.M:B — C
I'Fy B:C

ws:abs

ws:app

n Here A = (AX.BX), so by inversion we have I' -y B:C.
n~! Here B = (AX.AX), so by monotonicity we have
[X=(A) s A=A I [X:=0(A) by X=o(A)
[X:=(A) by AXe(A)
I Fs AXya) AX:0(A) — t(A)

ws:app

ws:abs

51

3.5 Sorted Reduction 3 YA: A SORTED M\-CALCULUS

which yields the assertion of the theorem. Clearly we obtain the stronger assertion
of the induction with monotonicity.

If C ends in trappifn, then A = CD and B = C'D where I' Fy C=4,C’. So the
only interesting case for A is ws:app, since ws:abs and wswar cannot apply, and we have
treated ws;Bn and ws:td. In this case we have A = v(C), Y A-derivations I' Fy C:C, and
I' by D:0(C) and by inductive hypothesis I' by C':C. Therefore we obtain I' by B:t(C)
by a single application of ws:app. It is easily seen that the cases tr:app:arg and tr:abs can
be treated with similar arguments.

If C ends in mswref, then we have A = B, and the assertion is trivial. So in order
to complete the proof we only have to treat the case, where C ends in an application of
the ms:trans rule. Here we have subderivations C:T Fy A=, C and C":T Fy C=g,B of
C, therefore by inductive hypothesis we have a Y A-derivation A": T Fy C:A and again by
inductive hypothesis I' Fy, B:A. Note that, since we have chosen < to be the lexicographic
ordering, the second application of the inductive hypothesis is independent of the size of

A’ O
Theorem 3.5.2 Sorted fn-reduction on wsf(X,1") is terminating.

Proof: This result is a direct consequence of lemma 3.2.10: any sequence of sorted (7-
reductions is also a sequence of (unsorted) n-reductions and those always terminate. O

We now prove that valid signatures respect function domains in the sense that for every
formula A of functional sort and any sorts A,B of A, we must have A Rdom B, and
therefore 9(A) = 9(B), which we call the supporting sort of A.

Definition 3.5.3 (Depth) We define the depth dp(A) of a formula A inductively on
the structure of A by setting the depth of variables and constants to 0 and the depths of
applications and A-abstractions to the maximum of depths of the immediate subformulae
incremented by 1. This definition is only a special case of the general definition of depth
for trees, setting the depth of leaves to 0. It gives us a notion of depth for 3 A-derivations,
that we use in the following.

Theorem 3.5.4 IfI'Fy A=A and I' -y A:B, then A Rdom B.

Proof: Let A, B, and £ be X A-derivations and u(A, B) := (11(A, B), p2(A, B), E), where
p1(A, B) := max(dp(A),dp(B)) and pa(A,B) = (dp(A),dp(B)). Furthermore let < be
the strict lexicographic ordering on triples for the component orderings < on natural num-
bers, the multiset ordering on pairs of natural numbers, and the structural ordering on
Y A-derivations.

Let A:T Fx A:A, B:T Fy B:B, and £:T Fy A=g,B. To make the induction go
through we prove the stronger assertion that in this case A Rdom B by induction on
(A, B,C) with respect to <.

If A ends in ws:87n, then we have the following situation:

./4/ ./4//
I'ky C:A TI'kFy AzC T'Fy A=4,C
ws:fn
Ity A:A

52

3 YA: A SORTED M\-CALCULUS 3.5 Sorted Reduction

If dp(A) < dp(B), then py(A', A”) < dp(A) < pu1(A, B), so u(A’, A”) < u(A, B), and thus
by inductive hypothesis A Rdom C. Furthermore we have u;(A”, B) = dp(B) = u1(A, B),
but wa(A”,B) < ua(A,B), so u(A”,B) < wu(A,B), and thus by inductive hypothesis
C Rdom B. If on the other hand, dp(8) < dp(A), then py (A, A”) < dp(A) = u1(A, B),
so by inductive hypothesis A Rdom B. Furthermore ui(A”,B) < ui(A,B), therefore
C Rdom B. This completes the case where A ends in ws;Gn, since Rdom is transitive.
Note that for this argument we have only used the fact that A" and A” are subderivations
of A. This makes this argument widely applicable in this proof.

If A ends in wsitd, then there is a term declaration [VA.A:zA] € ¥ for some vari-
able context I' C T, a signature ¥’ C X, and a Y A-subderivation A":T" Fy A:C of
A, for some sort C Rdom A. Now dp(A’) < dp(A) implies pq(A",B) < pi(A,B) and
p2(A", B) < pa(A, B), so by inductive hypothesis we have C Rdom C and thus A Rdom B
by transitivity of Rdom . Clearly the cases where B ends in ws;3n or ws:ld are analogous,
since sorted fn-equality is symmetric.

Now we proceed by analyzing the cases for £. If £ ends in ms:ref, then then we have
A = B. Soif A ends in ws:war, then we can assume that B does too, since ws:app and ws:abs
do not apply and we have already treated ws:3n and ws:ld. In the remaining case we have
A = B, which clearly entails A Rdom B. If A and B both end in ws:app, then A = CD =
B, and there are subderivations A’: C::C and B’: C:D of A and B that satisfy the inductive
hypothesis, so we have C Rdom D and thus A = t(C) Rdom t(D) = B. Finally, if A and
B both end in ws:abs, then A = AX¢.D = B and there are subderivations A’: D:D and
B': D:E, so by inductive hypothesis D Rdom E, and thus A = C — D Rdom C — E = B.

If £ ends in sort:B:top, then A = (AX¢.C)D and B = [D/X]|C. Since we have treated
the cases ws:0n and ws:td, we can assume that A ends in ws:app and we have the following
situation

./4/ ./4//
I'Fy AXc.C:E T Fyx Dx(E)
I s (AXc.C)D:t(E) = A

ws:app

with an argument exactly like the above we treat the cases, where A’ ends in ws;3n or
ws:td, so we can assume that A’ ends in ws:abs and we have the following situation:

C
I [X:C]Fky C:A A
ws:abs ———
I'Fy A Xc.C:C — A Ity D:C
I'Fy (A X¢.C)D:A

ws:app

If C= X, then B=D and C = A, thus we obtain A Rdom B by inductive hypothesis for
A" B, and £. With this argument we can for the rest of this case assume that C # X. If
B ends in wswar, then B = C € Dom(I'), since C # X. Thus we obtain the assertion by
inductive hypothesis for C, B, and £. If B ends in ws:app, then C = EF, B = [D/ X](EF),

53

3.5 Sorted Reduction 3 YA: A SORTED M\-CALCULUS

and B is of the form
B/
I'Fy [D/X]E:E Tty [D/X]F:0(E)
'y ([D/X]E)([D/X]F):x(E) =B

ws:app

by an argument as above C has the form
Cl
'y ExF T, [X:A]Fy F2o(F)

ws:app
I'[X:A]Fy EFuxx(F) = A
so we can construct a L A-derivation C”
C/
I, [X:A]Fy E:F A

ws:abs ——————
I [X=AlFy (AXc.E):C—F Ity D:C
I'ts (A Xc.E)D:F

ws:app

Clearly we have dp(C"”) < dp(A), so u(C",B") < p(A,B), and therefore the inductive
hypothesis guarantees that E Rdom F, so A = t(F) Rdom v(E) = B. The case where B
ends in ws:abs can be treated with analogous methods and completes the analysis for the
case where & ends in sort:G:top. If £ ends in sortmtop, then A = (AX¢c.BX) and we can
assume that we have the following form for A:

C
'ty B:A [X:C]ky X:C
I'Fy A Xc.B:C — A
I'ty (A Xe.BX):A

wsvar

ws:app

ws:abs

thus we directly obtain the assertion by the inductive hypothesis for C, B, and the the
Y A-derivation consisting only of a single ms:ref step. Now it only remains to check the
inductive cases for £. If £ ends in tr:app:fn or tr:app:arg, then A and B must be applications,
so we can assume that A and B end in ws:app. Thus we have ¥ A-subderivations A’, B, and
&’ that meet the assumptions of the inductive hypothesis, which then yields A Rdom B. It
can easily be seen that the cases tr:abs, ms:trans, and eq:sym, can be handled with related
methods. Thus we have finally completed our analysis of all possible cases for £ and thus
proven the assertion. |

Corollary 3.5.5 IfI' by (AXg.A):A, then B = 2(A).
Proof: By lemma 3.2.20 there is a sort C such that I' Fy A:C, so by ws:abs we have
I'Fy (AXp.A):B — C, so we have A Rdom B — C, and therefore B = 2(A). a

54

3 YA: A SORTED M\-CALCULUS 3.5 Sorted Reduction

Remark 3.5.6 The previous corollary allows us to infer the sorts of bound variables in
well-sorted formulae. This enables us to simplify the notation by dropping the sort in A-
abstractions, if we specify the sort. For example, if B = (AX#*:B*.A) and I' Fy, B=:A, then
B’ = 2°(A). Therefore we often write B as AX*.A.

Definition 3.5.7 Let A be a well-sorted formula, then we call the unique sort B¢ such
that B® = 0°(A) for all sorts A with I' Fy; AzA the i argument sort of A (supp’(A)).
We also call the first argument sort of A the supporting sort of A and denote it by

supp(A).

Remark 3.5.8 The set of argument sorts is effectively computable. If A is an abstraction
of the form AXpn.B, then supp(A) = A and supp't'(A) = supp’(B), if A = BC, then
supp'(A) = supp't!(B). The supporting sorts of constants and variables can be read off
their declarations.

Remark 3.5.9 The theorems above are the reason for requiring the Rdom proviso for
any term declaration to be added to a signature by the rule sig:itd. We do not need such a
proviso for the sig:const rule, since for new constants there is no sort information present
that would have to be respected.

Most mathematicians would agree that functional extensionality relies heavily on the
notion of explicitly specified domains of functions. Unique supporting sorts are intended to
syntactically capture this intuition in XA. Indeed in mathematics, functions are assumed
to have unique (explicitly specified) domains, and must therefore be distinguished from
restrictions to subdomains. For example, the addition function on the reals must be dis-
tinguished from the addition function on the natural numbers, and in general functions f
and g should only be considered the same, if fa = ga for all ¢ in the common (explicitly
specified) domain of f and ¢g. Observing these distinctions is necessary for a correct treat-
ment of extensional higher-order calculi, and they must be reflected in the syntax of any
such calculus. This fact is taken into account in our definition of Y-structures by requiring
that all functions in Dp are total on Dy(n).

Theorem 3.5.10 Sorted fn-reduction is confluent.

Proof sketch: Since sorted fn-reduction is terminating, we only have to show that it is
weakly confluent, ie. if I' by A —g, B and I' Fx A —g,; C, then there is a formula
D such that ' Fy B —>En Dand I Fy C —>En D. This can be shown in three steps.
The first two steps show that sorted [-conversion is weakly confluent, and that §— and
n-reduction commute, i.e.if ' by A —3 B —, C, then there is a formula D such that I' by
A —, D —4 C and vice versa. This can be done with standard arguments from [Bar80,
HS86], since the sort conditions in sort;3:top only concern well-sortedness and fn-reduction
conserves sorts by 3.5.1. Thus for any fn-reduction of the form I' Fy A —5, B; there
is a fn-reduction I' Fy A —5 C —] B. Now it only remains to be shown that sorted
n-reduction is weakly confluent.

Let A := C|[B] denote a formula A, with one occurrence of a subformula B in the
context C. Then we have three cases for n-reduction:

1. T by C[AXa.PX] —; C[P],

55

3.5 Sorted Reduction 3 YA: A SORTED M\-CALCULUS

2. T by C[AXa.PX] —4 C[AXa.P'X],
3. T by C[AXa.PX] =4 C'[AXa.PX],

where I' by C —>7*7 Cand'Fy P —n P’. By inversion we have I' Fy P:B for some B with
9(B) = A, and by 3.5.1 we have I' -y, P’:B. Thus we can n-reduce AXp.P'X to P’, and
join 1. and 2. by C[P’]. Moreover we can join 2. and 3. by C'[P]. O

Remark 3.5.11 In light of the previous theorem it makes sense to speak of the sorted
p-normal form and the sorted (long) f7-normal form. Since these normal forms are
also unsorted normal forms all results and definitions from the typed case (cf. 2.3) carry
over to YA. Furthermore, lemma 3.5.1 implies that both notions of sorted normalization
conserve the sets of sorts of formulae.

Now we use the results of this section to define suitable notions of term algebras.

Definition 3.5.12 (Term Y-Structure) Let Dp be the set of well-sorted formulae A in
sorted gn-normal form such that I' Fy A:A. Furthermore, let AQB be the sorted (G7-
normal form of (AB) and Z := Idy;, then we call 7§(X,1') := (Ds,@,7) the term struc-
ture for ¥ and I

This definition is justified by the following lemma.

Lemma 3.5.13 78(%,T) is a Y-structure with T,(A) = p(A)].

Proof: By 2.3.14 78(%,T') = 78(Q) is a pre-Y-structure. Let A be a finite variable context
such that Dom(A)NDom(T') = § and A Fy A=A and ¢ be a A-assignment into 78(Z, T'),
then ¢ is a X-substitution, since it is a A-assignment. We can convince ourselves that
Z,(A) = o(A)] by a simple induction on the structure of formulae using

o(AX.A)@B = (A\X.0_yA)@B = 0,[B/X]A = T, p,x)(A) = Z,(A)QB

Thus Z,(A) = o(A)] € 7Sa(¥,T) by 3.5.1 and 3.4.4. In other words, 78(3,T) is
comprehension-closed. Finally, for any term declaration [VA.A:zA] € X we have I' Fy A=A
by ws:td, and thus we can verify 7, € 7Sa(%,I') with the same arguments. O

We now convince ourselves that we need only consider term declarations of a certain
syntactically restricted form, since all other term declarations can be replaced by term
declarations in this form without changing the set of well-formed formulae.

Lemma 3.5.14 Let X be a sel of term declarations, D = [VI'.B:B] € X, and let D' =
[V[.B’=B], where B’ is the fn-normal form of B. Furthermore, let ¥’ = {D' | D € ¥},
then

1. Fyig X implies by X
2. 'ty A:A, iff I' b AZA

3. T'by A=, B, iff I by A=, B

56

3 YA: A SORTED M\-CALCULUS 3.6 Sort Inclusion

Proof: We prove the assertions by simultaneous induction on the structure of the X A-
derivations involved.

1. If &: k4 ¥ ends in sigitd, then ¥ = A, [VI.B:B] and I' -5 B:C such that B Rdom C.
Let A":= {D' | D € A}, then we have b, A’ by inductive hypothesis 1, and I' -
B:C by inductive hypothesis 2 (the proof of I' FAo B:C is a subderivation of &).
By 3.5.1 we have I' F o/ B’::C, and therefore we obtain F;, ¥’ by a single application
of sigitd. The sig:const case is trivial, since constants are already in 8n-normal form.
Note that the lemma is not true for long fn-normal forms, since we cannot add
n-expanded forms of constants without declaring constants with a sig:const rule first.

2. Let £&: T Fy A=A, we only show that I' Fyxy A:A, since the other direction is trivial.
The only interesting cases are those, where £ ends in ws:td or ws;8n, since wswar is
trivial, and ws:app and ws:abs are direct consequences of the inductive hypothesis.
For the ws:td case let £ end in

VI".A:A]le ¥ I'CT
Ity A=A

ws:td

and let B be the gn-normal form of A. Then by the construction we must have
[VI".B:A] € ¥/, so we can get I' Fyy B:A by ws:td, and moreover I' by A=g,B by
3. Finally, we obtain the assertion (I' Fyxy A:zA) with 3.5.1. The case where & ends
in ws;@n is similarly obtained with the inductive hypothesis and 3.

3. The assertion is a direct consequence of the inductive hypothesis for the inductive
rules for congruence judgments. Furthermore, the preconditions of sort:8:top and
sortartop only consist of well-sortedness conditions, so the assertion is a simple con-
sequence of 2.

O

General Assumption 3.5.15 In the following we only consider signatures Y such that
in all term declarations [VI'.AzA] € ¥ the formula A is a fn-normal form. As the previous
lemma shows, this is only a syntactic restriction, since for any valid, unrestricted signature
Y we can give a valid, restricted signature ¥’ that yields the same well-sorted formulae.
Therefore this restrictions do not amount to a restriction of the expressive power of X A.

3.6 Sort Inclusion

We can make the following observation: if I' by, X :B and I'(X) = A, then Dy C Dg. Thisis
just the situation that is captured with the notion of sort inclusion in sorted logics without
term declarations. In such systems the subsort relation is the smallest partial ordering that
contains a set of subsort declarations. The subsort relation plays such a central role in
these systems that they are collectively called “order-sorted”. For specifying mathematics
in XA the notion of subsorting also plays an important role, since it allows to specify
taxonomic hierarchies of sorts, which, for instance, occur in the definitional hierarchies of

57

3.6 Sort Inclusion 3 YA: A SORTED M\-CALCULUS

mathematics and help to guide mathematical intuition. Since subsorting in XA, where we
have term declarations, is a derived relation, we do not have to treat it in our meta-logical
development. On the object level (and for computation) however, it is a useful notion to
employ.

Definition 3.6.1 (Subsort Relation) We say that A is a subsort of B in X, iff
[X:A]Fy X =B, and write ¥ - A C B.

In contrast to the first-order systems, the subsort relation in XA is not finite, even
when we assume a finite set of base sorts. Thus the relation cannot be pre-computed
in advance. Furthermore, it is not clear whether the sort-checking problem is decidable
(see the discussion in subsection 4.3), which is another reason for the limited practical
usefulness of the full subsorting relation. One way out of this situation is to define a
computable partial ordering relation that approximates the full subsort relation by closing
a set of subsort declarations under certain inductive principles that induce subsort relations
on higher types from such for lower types.

For our approach it is only essential that the subsort declarations are correct, i.e.
that [X:A] by X:B, whenever A < B is a subsort declaration. Completeness, i.e. that
the subsort relation defined from the declarations captures all semantical subset relation,
only plays a role for the effectiveness of actual computational algorithms, since the term
declaration mechanism assures completeness of the calculi, even if we chose an empty set
of term declarations.

Definition 3.6.2 Let R be a typed binary relation on sorts such that A C B whenever
R(A,B), then we call R an approximation of C in .

We now identify special term declarations that we use to build a concrete approximation
of C.

Definition 3.6.3 (Subsort Declaration) We abbreviate term declarations of the form
[VI.(AY*.Z):C] by [A < B], and call them subsort declarations, iff

1. t*(C) =B,

2. I(Z) = A or there is a number i < k such that Z = Y* and ?/(C) = A.
We denote the set of subsort declarations in ¥ by SD(X).

Lemma 3.6.4 If[A<B] € X, then ¥+ AL B.

Proof sketch: Let [A < B]:= [VI.(A\Y%.Z2):C] € &, t*(C) = B, and T'(Z) = A or there
is a number ¢ < k such that Z = Y* and ?/(C) = A. Furthermore, let I'' = T, [X*:0k(C)],
then we have a ¥A-derivation of the form

ws:td

I' g (A\YF.Z):C

ws:app”

(A\YF.Z)XFuek(C)
I'Fy Z:tF(C) =B

ws:fn

58

3 YA: A SORTED M\-CALCULUS 3.6 Sort Inclusion

where I'(Z) = I'(Z) = A or there is a number i < k such that I"(Z) = I'(X*) = ?/(C) = A.
This yields the assertion. O

Definition 3.6.5 (Sort Inclusion) Let R be an approximation of C, then the following
inference system is called the XA subsort inference system for R

R(A,B) kg B Fsig 2 .
tor:start ————jorref
YFA<z B YFA<gA

Foig X A€ BSY
A< D(A) — ’C(A)

tor:nat

SFA<gB SFB<zC SFA<zB ,
or:itrans ior.cov
SFA<RC YFC—-A<rxC—B

We call the relation RS, defined by RS(A,B), iff ¥ - A <z B, the ordering relation
for R.

Theorem 3.6.6 If R is an approzimation of the subsort relation of Y., then the relation
RS is also an approzimation. Moreover RS is a quasi-ordering.

Proof: We prove that [X:A] Fy X:B by induction on the structure of 7:¥ F A < B.
We first consider the base cases. If D ends in tor:start, we obtain the assertion from the
hypothesis, that R is an approximation, and the ior:ref case corresponds to the wswar
rule. For the tor:nat rule consider the following Y A-derivation,

wswar wsar

[X:=Al by XA Y:(A) Fy Y:0(A)
[(X:=AL[Y2(A)] Fy XY:r(A)
[X:zA]Fy (AYy)- XY):0(A) — v(A)

ws:app

ws:abs

which yields [X =A] by X:0(A) — t(A) by a single application of lemma 3.5.1.
For the inductive cases we see that the iorirans rule can be recovered with the ws:nst

A B
[X:AlFyg X:B [Y:uB]Fy Y:C
[X:AlFy X:C

rule

ws:inst

For ior:cov let A:3 F A <z B, then by inductive hypothesis we have a Y A-derivation
A':[Z:A] by Z:B. Furthermore, we have

wsvar —— wsvar

[X:C—A]Fy X:C—=A [Y:C] by Y:C
[X:C— AL[Y:C]Fy XY:A

ws:app

59

3.6 Sort Inclusion 3 YA: A SORTED M\-CALCULUS

and thus
./4/
[X:C — AL[Y:Clky XY:A [Z:A]Fy Z:B
[X:C— A][Y:C]Fy XY:B
[X:A - C]Fy (AYc.XY):C—B

ws:inst

ws:abs

Just as above we can conclude [X:C — A] by X:C — B with lemma 3.5.1. The claim
that RS is a quasi-ordering is an obvious consequence of the admissibility of ior:itrans. O

Notation 3.6.7 As a consequence of the previous theorem semantic subsort relation is a
partial ordering and closed under ior:cov and ior:nat, since it also is an approximation of
C. We have seen in 3.6.4 the set of subsort declarations for an approximation of E. Thus
the relation given by the judgment ¥ = A <sp(x) B is an approximation of C, which we
simply denote by X F A <B.

Definition 3.6.8 (Weakening) Let R be an approximation of the subsort relation in X,
then the following inference rule is called the weakening rule for R:

'y AzA YFA<Lz B
I'ty A:B

wsweaken(R)

As above we denote the inference rule wsweaken(SD(X)) just by wsweaken.

Lemma 3.6.9 Let R be an approzimation of the subsort relation in Y., then
1. wsweaken(R) is admissible in YA.

2. A formula A is well-sorted, iff the set S(A) of sorts of A is a nonempty upper segment
for RS,

Proof: By wsinst and ws:weaken(R) and the relevant definitions. O

Theorem 3.6.10 Let R be an approzimation of the subsort relation in Y., then A Rdom B
whenever ¥ = A <g B. In particular, we have 7(A) = 7(B).

Proof: By theorem 3.6.6 we have [X:A| Fy X =B, but we also have [X=A] Fyx X:A by
wswar, therefore A Rdom B by 3.5.4. O

Remark 3.6.11 As a consequence the sets S, are mutually incomparable, i.e. if A € S,
B € Sg, and a # 3, then we can never have I' Fy, A C B. The most important consequence
of this is that we can only have finite ascending and descending chains of sorts with respect
to C.

60

3 YA: A SORTED M\-CALCULUS 3.6 Sort Inclusion

General Assumption 3.6.12 Let X be a sorted higher-order signature, and let ~ be the
equivalence relation induced by <y, thatis, X FA~B,if *FACBand X+ B C A.
Observe that for X F A ~ B we can derive I' by A:A whenever we can derive I' by, A:B
by application of the ws:weaken inference rule.

If we pass to the quotient signature X’ with respect to ~, that is, for any equivalence
class in & we pick a representative and replace sorts by their representative, then we get a
signature Y/, where C' is a partial ordering, which entails that ~’ is trivial. Furthermore,
Y is valid whenever ¥ is, since the inference system for valid signatures is only concerned
about sorts in term declarations respecting function domains, and we have A Rdom B
whenever A ~ B by 3.6.10

If we always take care to pick a representative of maximal length, then we can never
have d(C) — t(C) C C for any base sort C € BS/, since we always have the converse by
iorinat. Thus we can assume that C is a partial ordering with C C 9(C) — (C) for all
functional base sorts C € BS. While we will not need this assumption in the following,
other signatures would in some sense be redundant and thus non-optimal in practice.

Remark 3.6.13 (Contravariance and Function Restriction) In our sort system the
rule for contravariance in the domain sort

YXFALB
YFB—-C<A-C

tor:contra

which corresponds to function restriction cannot be admissible, since it contradicts 3.6.10.
This defect in symmetry is intended, since we want functions to have unique supporting
sorts (cf. 3.5.9). The natural notion of semantics for Church-style A-calculi for mathematics
with covariance seems to be a total function semantics, where a declaration of the form
[f=:A — B] has the intended semantics that the denotation of f is a total (on some predefined
universe) function that, when restricted to some subdomain Dp, yields values in the subset
Dg of the universe. While this is a reasonable semantics for many applications (even the
n-rule can be given a reasonable semantics), it is not the one intended in this thesis. For
A-calculi with contravariance see [NQ92, KP93]. In our system we do not have to treat
function restriction as a built-in implicit notion, since we can make it explicit: for any
formula A of function sort A, the function Z,(AXg.AX) is the restriction of Z,(A) to the
subset Dg C Dy(n), if B is a subsort of 2(A).

Remark 3.6.14 (Top Sort) In contrast to many other expositions of sorted logics we do
not require the existence of a maximal sort (usually called top sort), since this concept
does not mix well with A-calculi that respect function domains. Even if we postulate a top
sort A for each base type a, then the function types do not have maximal sorts. Consider
for instance, the sorts A — A and B — A that are incomparable for any other sort B of
type a. For A-calculi with contravariance the concept of a top sort T is no problem, if it is
accompanied by a least sort L, as then the sorts L — T and T — L are the top and least
sorts of functional type.

61

3.6 Sort Inclusion 3 YA: A SORTED M\-CALCULUS

Remark 3.6.15 Considering the semantics for YA, we see that a more general version of
the tor:cov inference rule

SFO(A)=0(B) Tk (A) < o(B)
YFA<LB

ior:cov’

would not be correct. Let Dy and Dg be the classes of surjective functions in
F(Dyay; De(ny) and F(Dymy; Dep))- I X F v(A) < (B), then Dypy C Dy(g) in any X-
structure (D, @,7) but functions from Dp would in general not be surjective in the larger
codomain Dyg) and therefore not in Dg. For similar reasons an inference rule like

iorsnat™!

cannot be correct. Let Dp := {a}, Dp := {b,d}, Dc := {b,c}, t(F) = B, o(F) = A, and
G :=A — C. Then the definitions Df := {{(a,c)}} and Dg = {{(a,b)},{(a,c)}} satisfy
the preconditions (D C Dg), but clearly we do not have Dy C Dg.

Definition 3.6.16 A signature Y is called regular, iff each well-sorted formula has a
unique least sort with respect to <y. In regular signatures we denote the unique least
sort of A by uSx(A).

Remark 3.6.17 Regular signatures are very desirable for practical purposes, since they
allows to label terms A only with the sort uSy(A), instead of Sy(A), which is a — in
general rather large — set of sorts. It will turn out that regularity is also a precondition for
our pre-unification algorithm. Unfortunately, it will also turn out that the regularity is an
undecidable property for signatures in general (cf. 4.6.2). In A-calculi with intersection sorts
(see the discussion in 3.1.6) signatures would be trivially regular. However, in such systems
the problem whether for any given sort A there is a closed formula A with I' Fy A=A is
undecidable.

Example 3.6.18 Let Y := {[a:A],[a:B],[A < C],[B < C]} be a valid signature, then
uSx(a) = {A,B}, and therefore ¥ is not regular.

62

4 COMPUTATIONAL ASPECTS XA

4 Computational Aspects YA

In this section we investigate computational properties and algorithms for the judgments
defined in section 5 and take a look at the Y-unification and ¥-matching problems re-
spectively. The algorithms will be central inference procedures for the resolution calculus
presented in section 6. Building upon the notion of general binding we give a set of trans-
formations for general Y-unification and pre-X-unification, which will be shown correct and
complete based on methods from [Sny91].

Unfortunately, many of the discussed problems will obtain turn out to be undecidable,
and we will have to take special precautions in our attempts to mechanize XA. There are
two sources of undecidability in XA, namely

o term declarations (regularity and E-unification are undecidable even for the first-order

fragment [SS89]).

o [(n-equality (unsorted unification for second-order A-calculi is undecidable [Hue73,
Luc72, Gol81, Far91a])

However, we conjecture that the undecidability problem is mainly a theoretical one, since
the class of formulae, where undecidability occurs will not appear in most practical the-
orem proving applications. In particular, if XA is used as a language for mathematical
problem specification, the complexity of term declarations is not a source of undecidability,
since the term declaration mechanism is mainly used to code taxonomic hierarchies, where
the declaration formulae are members of subclasses (e.g. higher-order patterns), where
Y-unification is decidable.

4.1 Structure Theorem

The key tool for the investigation of well-sorted formulae is the structure theorem, which
we are about to prove. The principal difficulty of XA is that the property of well-sortedness
is highly non-structural, which makes the classical deduction methods, such as unification,
that analyze the structure of formulae difficult. The structure theorem recovers structural
properties of well-sorted formulae by linking the sort information (the existence of certain
term declarations) with structural information about normal forms.

Definition 4.1.1 (Semi-Structural ¥ A-Derivation) We call a ¥ A-derivation A:T Fy
A:A in semi-structural form, iff A is of the form

H D!
Il Fy H:B T,Z' Fy D:2Y(B)
— ws:app™
I, = by HD™ 2™ (B) = t/(A) o
— ws:abs’ - -
I'kFs A XLHD™:A I'ky AtA Ty /\XZ.HDm:ﬁnA 3
ws:On
Ity A=A

where

63

4.1 Structure Theorem 4 COMPUTATIONAL ASPECTS YA

1. I =1In(A), m =1+ In(7(B)) — In(r(A)) > 0,
2. =7 is the variable context [X1z0(A)],..., [X/7=!(A)],
3. the subderivations D: ! T -y, D*::0%(B) are also semi-structural,
4. one of the following holds for the ¥ A-derivation H:I',=! Fy H:B:
(a) H is a variable with I',Z/(H) = B, and H consists of a single wswar step. Note
that H = head(A), since =/, T by AX.HD =4, A.

(b) H = 6(B) for some term declaration [VA.B:B] € ¥ and some substitution 8,
and H is a ¥ A-derivation of the form

[VA'.B:B] € © £
— wsid I
Aty B:B I' = Fy 6:A

ws:inst

I,Z' Fy 6(B):B

where the subderivations E of &:T,E by #:A are again semi-structural. In this
case Z/,T by AX.HD™ =g, A entails that we have the following three cases for
the head of B: head(B) = head(A), or head(B) = j, or head(B) € Dom(A).

The subderivations D' and & are called the principal subderivations of A.

If A = HD?, where s = m — [= In(7(B)) — In(7(A)) > 0, then A is of the form!?
H o
I'Fy H:B Ty D“2Y(B)
I by, HD®:t%(B) *

ws:app®

; — l ws:appl

I[='Fy HD’ X (B) = ©'(A)

S — ws:abs' - _
'k AXLHDS X :A * I by /\XZ.HDSXl:77HDs

— ws:Bn
Ity HD?:A

Clearly this ¥ A-derivation is redundant, since in this case t*(B) = A, and thus the judgment
'y HD®:A is derived twice in A. Thus we can shorten it to the X A-derivation

it _
I'Fy H:B T Fy D"2Y(B)
I by HD®:t%(B)

ws:app’®

We call Y A-derivations of this form in restricted semi-structural form. Note that
Y A-derivations in restricted semi-structural form can always be trivially extended to such
in semi-structural form.

12We have abbreviated some subderivations by *, in order to conserve space.

64

4 COMPUTATIONAL ASPECTS YA 4.1 Structure Theorem

Theorem 4.1.2 (Structure Theorem) If I' Fy A:A, then there is a semi-structural
Y A-derivation of I by A:A.

Proof sketch: The course of the proof (which will take up the rest of this subsection)
will be to define a relation SR, which captures the content of the structure theorem, and
a relation LR, that transports the structure information from the base sorts to the arrow
sorts. These relations coincide on the base sorts, and we show in 4.1.10 that LR C SR and
in 4.1.11 that all well-sorted formulae are in £R, which together entail the assertion of the
structure theorem. O

Definition 4.1.3 (Structure Relation) Let A be a well-sorted formula with I' Fy A=A,
then I' Fy, SR(A;A) (we say the structure relation SR holds on A and A), iff there is a
semi-structural X A-derivation of A:T Fy A:A. Similarly we define the restricted struc-
ture relation RSR by the existence of a ¥A-derivation in restricted semi-structural form.
Note that RSR is a sub-relation of SR, since Y A-derivations in restricted semi-structural
form can always be extended to such in semi-structural form. For a substitution ¢ with
I' by o:A we write I' Fy, SR(o; A), iff for all X € Dom(o) we have I' by, SR(0(X); A(X)).

Note that SR as well as RSR are monotonic, i.e. I' bz SR(A;A), if A by SR(A;A) and
ACT.

We now prove some technical lemmata, which we need in the proofs later on.
Lemma 4.1.4 Let I' by, A=, B, then I' by, SR(B;A) iff I' by SR(A;A).

Proof: Let I' by SR(A;A), so we have a semi-structural ¥ A-derivation of the form

D A C
I'Fe AXLHD™:A Ty AsA Ty AXLHD =4,A
ws:fn
Ity A=A

Let C":T Fy A=g,B, then we can obtain a X A-derivation C":T Fyx /\F.HD—m:gnB with
ms:trans. Moreover, by 3.5.1 there is a X A-derivation A”:T Fy B:A, thus

D A// C//
I'Fy AXLHD™:A I'Fy B:A I'Fy AXLHD =4,B ;
ws:fn
I'ky B:A
is a semi-structural Y A-derivation that verifies the claim. O

Lemma 4.1.5 IfI'Fx RSR(A;A) and I Fy, SR(C;0(A)) with T'||I", then we have I', T by
RSR(AC;t(A)).

65

4.1 Structure Theorem 4 COMPUTATIONAL ASPECTS YA

Proof: Let A:T by A:A be in restricted semi-structural form
H D’
I'Fy H:B T kg D:0Y(B)
I Fy HD®:t%(B)

ws:app’

where s = In(7(B)) — In(7(A)) > 0. Let s’ := In(7(B)) — In(r(x(A))) = s +1 > 0, then
AC = HD®C = HD" , if we set D**! := C, and therefore the Y A-derivation
H Dz Ds—}—l
I'Fy H:B Ty D@0YB) 1Y Fy D*FLott(B)

ws:appsl

I',T ty HD®:t* (B)
is in restricted semi-structural form, if we take D*": " 5, C:0(A) to be the Y A-derivation
in semi-structural form guaranteed by the assumption I Fy, SR(C;d(A)). a
Lemma 4.1.6 [fI',[Y:C]Fy SR(A;D), then I' by SR(AYc.A;C — D).

Proof: Let I' = T',[Y:C] and A:T by A:D be of the form

H D!
"2 by H:B I',2' g D':0Y(B)
— ws:app™
I',Z by HD™:t™(B) = /(D) c
—_— ws:abs’ ———
I'" g AXLHD™:D B Ity AXLHD"=4,A
ws:Bn
"ty A:D

where B:1" by, AzD. We have C": T Fy AY¢c.A=g, Y X! HD™ by tr:abs, thus the following
Y A-derivation A’ is in semi-structural form

H D'
I'Z'Fy H:B 1',Z' Fy D:2'(B)
— ws:app™
I',Z by HD™:t™(B) = ¢'*}(C — D) !
— ws:abs' T —
I'Fy AYXLHD™:C — D B Tkg AYXLHD =4,\Yc.A

ws:fn
I'bs AYc.A:C — D

where B’ is the obvious proof of well-sortedness of AY¢.A obtained from B with ws:abs. O
Remark 4.1.7 If we look closely at the proof above we can see that dp(A’) = dp(A) +1,

since dp(B’) = dp(B) + 1, dp(C’) = dp(C) + 1, and there is an additional ws:app step in
the left branch of A’.

66

4 COMPUTATIONAL ASPECTS YA 4.1 Structure Theorem

We now want to define a second relation £R for the structure theorem and investigate
its relation to SR.

Definition 4.1.8 (Logical Relation) The logical structure relation is inductively

defined by
1. I'Fs LR(A;A),iff T Fy SR(A;A) and A € S™/.

2.1 Fy R(A;A), iff T' Fy A=A, and for all formulae C with I"||I' and 1" Fyx
LR(C;d(A)) we have I, T Fy, LR(AC;t(A)).

For a ¥-substitution ¢ with I' Fy, oA we define R (o, A) to hold, iff I' Fy LR(0(X); A(X))
holds for all X € Dom(o). Note that for the identity substitution () we can vacuously
conclude I' ks, LR(0,0).

The course of the proof of the structure theorem is to show that for a given signature
3} and context I' the relation £R subsumes the relation SR. Then we will prove that for all
well-sorted formulae A of sort A we have I' by, LR(A;A) and therefore SR(A;A), which is
just the assertion of the structure theorem. However, we first need a couple of technical
lemmata.

Lemma 4.1.9 (Closure under Head-Equality) If I' by A=g,B, then we have I' -y
LR(A;A), iff I' by LR(B;A) holds.

Proof: For A € 8™/ we obtain the assertion with 4.1.4. Let I'||I” and I" ks £R(C;0d(A)),
then I'. T Fy, LR(AC;t(A)) and T Fy LR(BC;t(A)), since I",T by, AC=3,BC by trapp:fn
and the inductive hypothesis, therefore we obtain I' Fy, ZR(B;A) by definition of R. O

Lemma 4.1.10 We have the following dependencies between SR, RSR, and LR:
1. IfT'Fx RSR(A;A), then I' by, LR(A;A).
2. If T'ks LR(A;A), then I Fy SR(AA).

Proof: We prove the two assertions by joint induction on the structure of 7(A). If A € S,
then the claim is trivial, since the relations LR and SR coincide for non-functional sorts.
Solet A€ S/,

For the first assertion let I' by, RSR(A;A), I'||T', and I' Fy LR(C;0(A)). Then by the
second inductive hypothesis we have I' ks, SR(C;d(A)) and thus I'",T Fx RSR(AC;t(A))
by 4.1.5, so by the first inductive hypothesis we have I, I' Fy, LR(AC;t(A)), which gives
I' by LR(A;A) by definition of £R.

For the inductive case of the second assertion let I' Fy, LZR(A;A) and Y ¢ Dom(T') be
a variable, clearly the Y A-proof for [Y:d(A)] Fx Y:0(A), that consists of a single wswar-
node, is in restricted semi-structural form, so wee have [Y:d(A)] Fx RSR(Y;0(A)) and
[Y:o(A)] Fx LR(Y;0(A)) by the first inductive hypothesis. Thus by definition of LR we
see that I', [Y:0(A)] Fx LR(AY ;t(A)) and get I', [Y=2(A)] Fx SR(AY;t(A)) by the second
inductive hypothesis. By lemma 4.1.6 we have I' Iy SR(/\YB(R).AY;A), thus we have
completed the second assertion with 4.1.4, since Y ¢ Free(A). O

67

4.1 Structure Theorem 4 COMPUTATIONAL ASPECTS YA

Lemma 4.1.11 IfE,A by A:zA and I' by LR(0; A), then Z,1 by LR(O(A); A).
Proof: By induction over the proof D:T' Fy A:A:

wswar Here A is a variable and A(A) = A or Z(A) = A. In the first case E,T Fy
LR(6(A); A), since we have required that I' by £R(6; A). In the second case §(A) = A
and =,A Fy RSR(A;A), since the ¥ A-derivation =, A Fx A=A which consists of a
single ws:war node, is in restricted semi-structural form. Thus we obtain the assertion
by 4.1.10.

ws:td We have SR(6; A) by 4.1.10, so there is a semi-structural proof of £:T' Fy 6:A, thus

the Y A-derivation
VA" A:Al e ¥ £
ws:td

Aby A:A ' [Fy 6:A
E,AFx 0(A):A

ws:inst

is in restricted semi-structural form. Therefore we obtain the assertion in the ws:td-
case by the first assertion in 4.1.10.

ws:abs In this case A = (AX.C), A=B — C and D ends in

=,A[X:B]Fy C:C
=, AFy A Xp.C:B — C

ws:abs

Let I Fx LR(B;B) such that I'||I' and 6’ :=6,[B/X], then we have I",T' Fy
LR(0'; A, [X:B]) and I",T Fy 6(AXg.C)B —>Z 6([B/X]C) = #'(C). By induct-
ive hypothesis we get I'",I' by LR(6'(C);C) and therefore I' Fy, LR(6(AXp.C)B;C)
by 4.1.9, so by definition of LR T' by, LR(6(A); =A).

ws:app In this case A = BC, A = t(B) and D ends in

=, Aty B:B =, A"y C:o(B) =, A||E", A"
=,AFy BCut(B)

ws:app

By inductive hypothesis we have =, T Fy R(6(B);B) and Z',T" s LR(6(C); d(B)).
Furthermore, B € S/, thus we obtain =/, I, Fy, LR(8(BC); t(B)) by definition of LR.
ws:fn Here, we have the following situation:
A
E,AFy P:A EAFy AtB E,AFy P=4,A

ws:fn
=, AFy A:A

By inductive hypothesis for A we have that Z,I' Fy LR(6(B); A), so with 4.1.9 we
obtain Z,I' by, LR(O(A); A), since =, T Fy 6(A)=4,0(B).

68

4 COMPUTATIONAL ASPECTS XA 4.2 General Bindings

O

Finally, we have obtained all the partial results. we need to assemble the proof of the
structure theorem.

Corollary 4.1.12 (Structure Theorem) IfT' Fy A:A, then I' Fy SR(AA).

Proof: Let I' Fy A=A, by lemma 4.1.11 where we take 6 to be the identity substitution
we see that I' by LR(A;A), and with lemma 4.1.10 we obtain the assertion. O

Note that the structure theorem does not make any claim about the uniqueness of the
semi-structural Y A-derivation it guarantees. In fact, as the following example shows, there
may be several, which even use different term declarations.

Example 4.1.13 Let ¥ := {[V[X:C].X:A],[(AXa.X):B — A], [a:B], [a:C]}, then

[axC] € ¥
wsubistart —————— ws:td
[V[X:C].X=:Ale X Fs 0:0 by a:C
- - ws:td ——— wsubext
[X:C]Fy X:A Fy [a/X]:[X =C] .
TE A wsunst
Y ax
and
[a:B] € © [(AX.X):B— Ale X
—— ws:td - ws:td
Fs a:B Fe (AX.X):B— A
ws:app
Fo (AX.X)azA
ws:Bn
Fy azA

are semi-structural Y A-derivations for I' by a:A.

4.2 General Bindings

One of the key steps in sort computation and Y-unification consists in solving the following
problem: given a sort A and an atom C, find the most general well-sorted formula of sort
A that has head C. Such formulae are called general bindings (cf. 4.2.2) of sort A for the
head C.

Example 4.2.1 In XA this problem requires a more careful investigation than in A. Con-
sider, for instance, the following signature,

Y :={[e=A],[6:B],[f:(B — B — B)], [V[X =B].(faX)=A],[V[X:B].(fXb):A]}

If T' be a context with I'(Z) =B — B, I'(X) = I'(Y) = B, then the most general formulae
with the head f and sort

e Bis fXY
e Aare faX and fXb

69

4.2 General Bindings 4 COMPUTATIONAL ASPECTS XA

e (B— A)are AXg.fa(ZX) and AXp.f(ZX)b.

Note that both pairs of solutions are incomparable by the instantiation ordering <.
Now we formally define general bindings.

Definition 4.2.2 (General Binding) Let I' be a variable context, and A and B be sorts
with v"(B) = t/(A), where [= In(A) and m = [+ In(7(B)) — In(7(A)) > 0. Furthermore
let C be the variable context

C = [H':d/(A) — oY(B)],...,[H™:=0!(A) — 2™ (B)]

Then the formula
G = (AXji(a) - Xy) KV'...VT)

is called a general binding of sort A, if V' = (H'X'...X"), where H® are variables not
in Dom(T'), and for K one of the following holds:

1. K= X’ and B = ?/(A).

2. K€ Dom(Il') and I'(K) = B.

3. K = [W"/Y"|B, where
(a) there is a term declaration [V[Y!:Cl],...,[Y":C"].B:B] € ¥
(b) W= (K'X1... X"

(¢c) K' are variables not in Dom(I') chosen distinct from the H°.

In this case we have to augment the context C by the variable declarations

[K':4A) — CY, ..., [K"0l(A) — C"]
for the variables K*.

We call C the context of variables introduced for G. We now characterize G by the
possible cases for head(G).

o If G is flexible, then we call G a general weakening binding of sort A.
e If G is rigid and head(A) is constant, then we call G an imitation binding.

e If head(G) = j (recall our convention in 2.3.20), then we call G a j-projection
bindings of sort A.

We denote the set of all general bindings of sort A, head k, and introduced context C by
GR(X,T,C) and that of all weakening bindings of sort A by G¥(X,T',C). Note that since
valid signatures are finite, the set of all weakening bindings is also finite for a given sort.

Finally, we need the set AK(E, A, C) of general bindings of sort A that approximate
a given head h by projection, imitation, or weakening. We define this set by

AR(Z,A,0) == GA(E,A,C) U GA(Z, A, C) U GH(X,A,C)

70

4 COMPUTATIONAL ASPECTS XA 4.2 General Bindings

The definition of general bindings closely corresponds to the definition of semi-structural
Y A-derivations. In particular, we have two possible forms for general bindings, the first
(classical) one obtains the sort information from the head variable, whereas the second one
obtains the sort information from a term declaration. In A we only have the first form,
since we do not have term declarations. Consequently, general bindings are unique up to
the choice of new variables and consist only of the head and of variables. In XA each
term declaration, that has the appropriate head and meets certain conditions contributes
a general binding.

Lemma 4.2.3 If G € GK(%,T,C), then I',C +x G:A and head(G) = h.

Proof: We use the notation of definition 4.2.2. Let G = (AX!...X .KV!'... V™) and
== [X1l(A)], ..., [X52(A)], then we have

'y Chty H:DI(A) —0(B) EFyg X720/(A) o

— ws:app

=C, kg K:B =,C Fy V'20'(B)
— ws:app™
=,C,T Fy KV ™(B) = ¢/(A)
— ws:abs'
I,C ks AXLKV™:t(A)
where H is one of the following ¥ A-derivations.
= vky _ ak
CUT(K)=8B E(X7) =0%(A)
—————— wswar wswar
C,TFy K:B =Ty XF0%(A) =8B
Chy K'l(A) = C' Ebky X/20/(A)
— ws:app
[V[Y?:C"].B:B] € & E,Ctky Wi
ws:td wsubext™
[Y7:C"] gy B:B E,CFy [W/Y"]z[Ym:CP
ws:subst
=.Chky K:B
Thus we have verified the assertion. O

Theorem 4.2.4 (General Binding Theorem) Let A be a well-sorted formula with
I Fx A:A and head(A) = h, then there ezists a general binding G € AL(2,T,C) and
a Y-substitution p such that I' by p:C and C,T' by p(G)=pg,A. Let A:T Fx A=A be a
semi-structural S A-derivation, then there are semi-structural Y A-derivations R* that wil-

ness I' Fs, SR(p; C) with dp(R') < dp(A).

71

4.2 General Bindings 4 COMPUTATIONAL ASPECTS XA

Proof: Let A:T Fy A:A be the semi-structural Y A-derivation assumed in the assertion,

then A is of the form ,
H D

IZ'Fy H:B 1,2 g D0Y(B)

— ws:app™
I,Z' kg HD™:t™(B) = ¢/(A)

— ws:abs'
I'Fs A XLHD™:A * ok

Ity A=A

ws:fn

Let G = (’\Xall(m) . .Xél(m).KV1 ... V™) be the general binding as defined in 4.2.2. The
two possibilities for H and H give us the two possibilities in the choice of K.

1. I,ZY(H) = B and ‘H consists of a single wswar step. In this case let K = H and C
be just as defined in 4.2.2 and furthermore

p:=[AXL.DY/HY,...,[]\XL.D™/H™]

so T by p(G) = AMXp(K)p(V™)=3,AXL.HD =4, A, and thus A is really a (-
instance of G.

2. H = 0(B) for some term declaration [VA.B:B] € ¥ with A = [Y":C"] and some
substitution #. In this case H is a Y A-derivation of the form
[VA.B:B| € & £

— wsid T
Aty B:B I,=Z" kg 6:A

ws:inst

I,Z' Fy 6(B):B

In this case let K = [W"/Y"]|B, and C be defined as in 4.2.2, and
p = [AXLO(YY/KY,... [\ X O(YY)/KY,[AX.D/HY,...,[\X.D™/H™]

We can easily verify that I',Z! by, pzC,C". Now W' = K'X!, so p(W') = 8(Y?) and
p(K) = p([W!/Y%]B) = 6(B), therefore I Fx p(G)=3,(AX".6(B)D™)=4,A.

If we apply lemma 4.1.6 [times to D¢, then we obtain semi-structural YA-derivations
Di:T Fy AXLD:0/(A) — 2(B). Moreover dp(D?) = dp(D') 4+ 1 < dp(A), since there are
[ws:abs nodes in A below D*. The same argument holds for the £. Collecting the D* and
possibly the &£ gives us the semi-structural Y A-derivations R’ with the appropriate depth
conditions. O

Remark 4.2.5 Let ¥ be a trivially sorted signature, then X = {[ezf(a)] | ¢ € 3.}, so
general bindings of head h and sort f(a) have the form

G = AMXpn(y(a)) R(H'X™) .. . (H"X™)

if h € V5UY 5 where In(h(3)) = m and the H® are new variables of sort 27(§(a)) — 2*(§(8)).
Note that this is just (up to n-equality) Huet’s definition of a partial binding (cf. [Sny91]).

72

4 COMPUTATIONAL ASPECTS YA 4.3 Sort Computation

Remark 4.2.6 Note that for an implementation of Y-unification, the set g[{(E, I',C)is not
an optimal set of general bindings. We have only concentrated on giving a complete set of
general bindings. In particular, the subsort relation is not integrated into the concept of
general binding leading to some redundancy in the search for unifiers. A concrete imple-
mentation of XA would take care to rule out this redundancy.

4.3 Sort Computation

In this subsection we analyze the sort computation problem. It will turn out, that the sort
computation problem for arbitrary signatures and the higher-order matching problem are
interreducible. Unfortunately, the latter is only known to be decidable in subcases [Hue76,
Dow92, Wol93], and the issue is still open for the general case.

Definition 4.3.1 Let A € wff,(Q) be a formula in S-normal form, then we define the sort
system SA by

BSA = Y(BT)uU{A}
T(A) = «

o(A) = ot(@)

t(A) = (@)

Note that we have A Rdom §(«), since 9(A) = 3(#(a)) and t(A) = t(#(a)).
Let W = {Xél, .. ,Xgn} be a finite set of variables, then we can define a signature nA

by choosing YA = Q and ¥ := XF [VIWF.(A)=A]. From lemma 3.3.11 we know that ¥F is
a valid signature and W¥ g $(A)zf(a), so B4 is a valid signature by sig — ¢d.

Lemma 4.3.2 Let B € wff,(Q) be an arbitrary formula, then the following assertions are
equivalent:

1. The judgment Free(B)F Fea BuA is provable in XA, but Free(B) gy B:A is not.
2. There exists a substitulion p € SUB(Q) such that p(B)=g,A.

Proof: Let assertion 1. be valid, then by a close inspection we observe that there is only
one general binding of head head(B) and sort A, namely, §(A) itself, since we have chosen
A to be a base sort, which has length zero. Thus we get the sufficiency direction by the
general binding lemma 4.2.4.

The sets wff, (3, W) are isomorphic to the wsfu(a)(Eﬁ, WF) and even to wsfu(a)(EA, W),
since the new term declaration cannot result in any new judgments I' Fy B:B, where B
does not contain A. So the substitution f(p) is also a X-substitution, and therefore we
obtain the necessitation direction by ws:inst. O

Definition 4.3.3 (X-Matching) Let A Fy A:zA and I' Fy B:B, such that A Rdom B,
then a ¥-substitution 6 such that I' by :A and T' by §(A)=g, B is called the ¥-matcher
of A to B.

We call the problem of finding X-matchers for given formulae the ¥-matching prob-
lem. The matching problem for A is called the higher-order matching problem. It
is known to be decidable for higher-order patterns [Mil92] and formulae of order less than
tree [Hue76, Dow92].

73

4.4 ¥-Unification Problems 4 COMPUTATIONAL ASPECTS YA

In fact, the general binding theorem 4.2.4 can be read as an algorithm for sort compu-
tation using higher-order matching:

Theorem 4.3.4 Sort computation in XA can be reduced to higher-order matching.

Proof: We first note that for a well-typed formula A, there is a X A-proof of T' Fy A=A,
ifl A is the Y-instance of a general binding of sort A. Indeed if I' Fy A:A, then by the
general binding lemma 4.2.4, there is a general binding G € G&(X,T,C) and a substitution
p such that I' by, p=C and I' Fy p(G)=pg,A. On the other hand, if there exist a well-sorted
formula G of sort A (the general binding) and a X-substitution p, then p(G) is also of sort
A by 4.2.4.

Now let Mat(b(A),»(B)) be a complete set of higher-order matchers (cf. definition 4.3.3)
of well-typed formulae b(A) and b(B), then the following inference rule together with those
for ¥-substitutions (cf. 3.4.1) give an alternative inference system for well-sortedness:

I'Fy 8(p)=C p e Mat(p(A),b(G)) G € Ga(X,1,0)
I'Fy A=A

ws:alt

We now convince ourselves that this inference system terminates modulo higher-order
matching. Let A:T' by A:zA be in semi-structural form, then the general binding the-
orem (4.2.4) also gives us semi-structural Y A-derivations A:T by p(X?):C(X?) for all
X' € Dom(p) such that dp(A*) < dp(A). Thus, if we consider the set A of depths of
semi-structural S A-derivations associated with the subgoal judgments I' by A‘:A’, then
each backward application of ws:alt with subsequent decomposition of I' Fy f(p):C by
wsub:ext yields a multiset N with NV < A where < is the multiset ordering on natural
numbers. O

Corollary 4.3.5 The problem of sort computation in XA and the problem of higher-order
matching in wff(?) are interreducible and therefore equivalent.

It is not clear whether the higher-order matching problem in typed A-calculi is decidable
in general. However, there are large subclasses where matching is known to be decidable, for
instance, the class of higher-order patterns [Mil92] or that of third-order formulae [Hue76,
Dow92]. Restricting term declarations to these or other such classes yield instances of
YA, where the sort computation problem is decidable, which is of course desirable for all
practical applications. We conjecture that all term declarations that come up when a user
codes a mathematical theory into a sort structure will be simple and the usual matching
and unification procedures will terminate on them. Practice in programming languages has
shown that humans have great difficulties thinking in terms of functions of order greater
than three. Therefore it would probably — for all practical (theorem proving) purposes —
not be a significant restriction to restrict term declarations to third order logic.

4.4 Y.-Unification Problems

In this subsection we define Y-unification and present the Y-unification problems, the basic
structures that are manipulated by our X-unification algorithms. Originally a higher-order

74

4 COMPUTATIONAL ASPECTS YA 4.4 ¥-Unification Problems

unification problem consists in finding a substitution o such that o(A)=g,o(B) for given
formulae A and B. Naturally in ¥A we have to restrict our attention to substitutions
o that are well-sorted. Furthermore, as formulae are only well-sorted with respect to a
certain variable context, it is advantageous to record this context as part of the problem.

Most unification algorithms solve unification problems by transforming sets of pairs
A =" B of formulae to a solved form, from which a solution can be directly read off. The
presentation of unification algorithms as inference rules is a variant of the presentation as
systems of transformations, which was introduced in [MMT73]. Since in this thesis we do
not consider higher-order unification for its own sake, but in the context of a higher-order
resolution calculus, we have to consider unification problems that are even more general
than sets of pairs. In particular, for resolution we need to manipulate quantified formulae,
where the sequencing of quantifiers induces dependencies on variables. These dependencies
(variables Y that were existentially quantified in the scope of a universal quantifier V.X
may not be free in any formula instantiated for X') have to be respected in order to obtain
a sound calculus. Note that this dependency is usually coded into the Skolem functions in
the first-order case of resolution. Thus our X-unification problems will be built up from a
variable context, a variable condition, and a set of pairs. To make this formal, we have to
generalize our notion of variable context by marking the variables with labels +, —, and
0, in order to distinguish between variables for which we may (4, coming from universal
variables) or may not (— coming from existential variables) substitute, and those that come
from variables that used to be locally bound (0).

Definition 4.4.1 (Annotated Variable Contexts) Let I' be a typed partial function
on V7 that associates with each variable a sort A and an annotation + € {+,0,-},
then we call I' an annotated variable context. To distinguish non-annotated variable
contexts from annotated ones we sometimes speak of proper variable contexts.

As in the case of usual variable contexts we write ' as a set of annotated variable
declarations of the form [X*:A], if T(X) = (A,), and call + the annotation of X in
I'. If the annotation of X is + (—) in I', then we call it positive (negative), otherwise
(0) locally bound, and we indicate this by annotating X with + as in X%,

Obviously any annotated variable context can be made into a variable context by pro-
jection on the first component, so we can use all of the machinery developed so far. Fur-
thermore, we can obtain a variable context I't (I'",T%) from I' by restricting I' to the
positive (negative, locally bound) variables.

Definition 4.4.2 (Variable Condition, Rp-Substitution) Let I' be an annotated vari-
able context and R C Dom(I'") x Dom(I'"), then R is called a variable condition.

A Y-substitution o with I™, A by o:I'T is called an Rp-substitution assuming T', iff
Y ¢ Free(o(X)) for all (X,Y) € R. Thus the intuitive meaning of a pair (X*,Y) in
a variable condition R for I' is that no formula containing Y~ as a free variable can be
legally substituted for X .

For a variable condition R and an annotated variable context A we define a judgment
AFR(X*t A), called the associated substitution condition R to hold on X+t and A,
iff

1. AT Fy AxTH(X),

75

4.4 ¥-Unification Problems 4 COMPUTATIONAL ASPECTS YA

2. X ¢ Free(A),
3. no variable Y € Free(A) is an R-image of X*t, ({X T} x Free(A)NR = 0).

Thus we can rephrase the condition on Rp-substitutions as A Fy R(X,o(X)) for all
X € Dom(o). For a given variable condition R for I' and an Rp-substitution ¢ we will
often need the following variable condition

R(o)={(Z,W)eR|Z ¢ Dom(o)}U{(Z,W)| Z € Intro(c), R(X,W),X € Dom(o)}

for I'. In most applications o only consists of one pair [A/X], in this case we write R(c)

as R(A/X).

Definition 4.4.3 (More General) Let A Fy A=A and I' by B:A, then we say that A
is more general than B, iff there exists a Y-substitution ¢ € wsSub(X,A — TI') such
that I' by 0(A)=g,B. In this case we call B an instance of A, and denote this fact by
I' s A < B. Note that the resulting instance relation < is a partial ordering relation
on well-sorted formulae.

Definition 4.4.4 Let ¢ and § be Y-substitutions such that I' by oA, T' by :A') A||A,
[T, and E C Dom(A) N Dom(A’), then

e o and # are equal over = (¢ = §[=]), iff for all X € Dom(Z) we have (X) = 0(X).

e o and 6 are fn-equal over = (I' by 0=g,0[Z]), iff for all X € Dom(Z) we have
[T by o(X)=p,0(X).

e 0 is more general than 6 over = (I' by o <z, [=]), ifl there is a substitution
p € wsSub(X,I" — I') such that I',I" by, =g,p o o[Z].

If o and @ are Y-substitutions such that Dom(c) C Dom(#) and ¢ <g, §[Dom(0)], then
we call 0 an approximation of 4.

To ease the load of notation we denote the judgment I' by 0=g,0[Dom(I't)] by I' kg
o=g,0[&] for any equational problem & = (I': R).£’ and we sometimes even drop the [Z] in
I' by o < 0[], if it is clear from the context.

Definition 4.4.5 (X-Unification Problem) Let I' be an annotated variable context and
R a variable condition for I'. Then we call a triple (I': R).C a X-unification problem,
iff C is of the form C = P; A ... A P,, where the so-called pairs P; are of the form
P, =(A; =7 B;) for some A;,B; € wsf(X,1') or P; = T,. We call a formula A in A ="B
flexible, iff head(A) € Dom(I'") and rigid otherwise. Huet’s classification of pairs into
the categories rigid/rigid, flex/rigid, and flex/flex will play a great role in our analysis of
Y-unification. Since each X-unification problem £ = (I': R).C determines a unique variable
condition R, we say that ¢ is an £-substitution, iff ¢ is an Rp-substitution.

Remark 4.4.6 Note that our X-unification problems are generalizations of Miller’s unific-
ation problems with a mixed prefix from [Mil91], since the mode of the quantifications in
a prefix can be coded into our annotations, and the sequencing in Miller’s prefix naturally
leads to a variable condition.

76

4 COMPUTATIONAL ASPECTS YA 4.4 ¥-Unification Problems

Definition 4.4.7 (X-Unifier) Let £ = (I': R).F be a Y-unification problem, then we call
an Rr-substitution o a Y-unifier of £, if o solves all pairs in F,ie. A Fy 0(A)=g,0(B)
for all pairs A =" B € F. We call a Y-unification problem £ Y-unifiable, iff there is a
Y-unifier for £, and we denote the set of Y-unifiers of a Y-unification problem & with

wsU(Y,).

General Assumption 4.4.8 (a-Conversion for YX-Unification Problems) Let T' =
A,[XT:A] and T' = A,[YT:A] be annotated variable contexts, and let R be a variable
condition for T'. Then R':= R([Y/X]) is a variable context for I" and R’, which can be
obtained from R by systematically replacing all occurrences of X in R by Y. Furthermore,
we have wsU(X, (I': R).E) = wsU(X, (I'": R').[Y/X]E) up to variable renaming.

In the following we will consider the declaration (I:R). in a X-unification problem
as a binder for all variables in Dom(I'), and we will keep a-conversion for X-unification
problems implicit, renaming them whenever variable disjointness is required.

Note that Y-unifiability does not entail that both formulae of a pair have identical
sets of sorts, since these sets may grow as more term declarations become applicable with
instantiation. For instance, consider the unification problem (I':().F =’ G where I'(F) =
A, T'(G) =B, and ¥ - A C B. Nevertheless, X-unifiable pairs must have the same types,
and moreover the sorts must obey the Rdom relation.

Lemma 4.4.9 If A +y A=A and A Fy B:B, and A and B are X-unifiable, then
A Rdom B.

Proof: Let 6 be a Y-unifier for (I: R).A =" B, then 6(A)=g,0(B), and we have ' Fy
f(A):Aand I' by §(B)=B by ws:subst and I' Fy, §(A)=B by 3.5.1. Now we get the assertion
with 3.5.4. O

Lemma 4.4.10 [fT Fy B=4,B’, £ = (I R).A="BAF, and &' = (I"R).A =" B' A F,
then wsU(X, &) = wsU(X, &").

Proof: By definition of Y-unifiers. O

General Assumption 4.4.11 Since we are only interested in X-unification problems,
where X-unification does not fail trivially, we assume for all Y-unification problems
E=(T:R).A'="B'A...AA" =7 B" that T -y A":A", T Fy B':B’, and A° Rdom B
for all © < n. Note that we can decide whether a well-sorted unification problem meets
this condition, because we can compute the argument sorts. Furthermore, we assume all
A’ and B’ to be in S-normal form.

Definition 4.4.12 (X-Solved Form) Let £ = (I': R).£’ be a X-unification problem with
I'*(X) = A. Then we call a pair XT =" A Y-solved in &, iff I by R(X*,A), and
moreover X T is not free elsewhere in &’.

We call a variable X Y-solved in &, iff there is a Y-solved pair X =7 A in £, and we
call £ in Y-solved form, if all of its pairs are 3-solved in £. A Y-unification problem £ =
(T:R). X1 =" AT A...A X" =7 A" in ¥-solved form determines a unique Rr-substitution

77

4.4 ¥-Unification Problems 4 COMPUTATIONAL ASPECTS YA

og = [A'/X4],...,[A"/X"] that will turn out to be the unique most general Y-unifier of
€ (cf. 4.4.14). This result justifies the name X-solved.

Note that any Y-unification problem & can always be written as (I': R).F A G, where
G is the set of pairs in & that are Y-solved in £. We call G the Y-solved part of £, and
denote it by &,, if ¢ = og is the Rp-substitution that corresponds to G.

Definition 4.4.13 (Complete Set of X-Unifiers) Let & be a Y-unification problem,
then a subset ¥ C wsU(X, &) is called a complete set of X-unifiers of &, iff for all
6 € wsU(X,€) thereis a o € ¥ with I' Fx 0 < 9[€].

If the singleton set {o} C wsU(X, £)is a complete set of X-unifiers for £, then o is called
a most general Y-unifier for £. We call a complete set ® € wsU(X,) of X-unifiers
minimal or a set of most general Y-unifiers, iff any 0,0 € ® are <-incomparable, i.e.
we do not have I' Fy o < 0[£].

Transformation-based unification methods attempt to reduce the input systems to
solved systems, which represent their unifiers. The fundamental connection between solved
systems and Y-unifiers is the following fact, which shows that solved systems indeed rep-
resent their own solutions.

Lemma 4.4.14 Let £ = (I R).E; be a X-unification problem in Y-solved form, then o is
a most general Y-unifier for £. In particular, for any X-unifier of £ we have 8=g,60 o o[E].

Proof: Clearly o is an Rp-substitution, since £ is in X-solved form. Moreover o(X) = o(A)
for any pair X =" A € &,, thus o is a Y-unifier for £&. If § € wsSub(X, Tt — A) is
a Y-unifier for &, then T, A by 6 o o(X?) = 6(A)=4,0(X?) and 6(Y) = 0 o o(Y) for
Y ¢ Dom(I'"), so that indeed 8=4,6 o 0. a

In general however, a X-unification problem &£ does not have a single most general
Y-unifier and may not even have most general Y-unifiers at all, even if it is 3-unifiable;
this behavior is not a particular feature of the XA system, since it is well-known that it is
already the case for A [Gou66]. The next lemma will be used to show that we need not be
concerned with Y-solved pairs, when computing Y-unifiers. It is therefore consistent with
the intuition that the YX-solved part of a system is merely a record of an answer substitution
being constructed.

Lemma 4.4.15 wsU(X, (I"R).EANE;) = wsU(E, (I"R).a(E)AN Es)

Proof: Clearly we have § € wsU(Y,(I"R).ENE,), Hf § € wsU(X,(I'"R).E) N
wsU(X,(I'"R).E), so § = f oo by 44.14. Now f oo € wsU(X,(I'"R).E), iff § €
wsU(X, (I':R).0(E)), which gives the assertion. O

Definition 4.4.16 (Complete Y-Unification Procedure) An inference system 7 is
called a complete Y-unification procedure, iff for every Y-unification problem & and
each Y-substitution § € wsU(X, &) there is a system F in ¥-solved form such that & -7 F
and I' by or < 0[€].

78

4 COMPUTATIONAL ASPECTS XA 4.5 General X-Unification (XUT)

Remark 4.4.17 The algorithms for Y-unification consist in the process of systematically
exploring the search trees generated by the respective inference systems from a root £. The
leaves of these trees are labeled with X-unification problems, where none of the rules apply.
A leaf is called a success node, if the corresponding Y-unification problem is in X-solved
form, otherwise it is called a failure node.

We will prove (cf. 4.5.15) that the set of substitutions corresponding to the Y-unification
problems of the success nodes of the unification tree are complete sets of Y-unifiers of £.

4.5 General Y-Unification (XUT)

We present a Y-unification algorithm that solves Y-unification problems by transforming
them into X-solved form. For a given Y-unification problem & it returns a complete set of 3i-
unifiers, if £ is ¥-unifiable, and fails otherwise. It is a generalization of Huet’s higher-order
unification algorithm [Hue72, Hue76], as presented in [SG89].

Definition 4.5.1 (SZM: Simplification of Y-Unification Problems) Let STM be
the following inference system:

(I:R).(AXn.A) =" (\Ya.B)AE Z ¢ Dom(I)
(I, [2°:A]:R).[Z/X]A =" [Z/Y|BAE

SIM(a)

(I'R).(AXp.A)="BAE Z ¢ Dom(I)
(I,[2°:A1:R).[Z/X]A =" (BZ)A &

SIM(n)

(T:R).EAT, (T:R).A="ANE _
—— STM(T,) STM(triv)
(I"R).E (I"R).E

(T:R).AU" =" hV"AE h € X UDom(IT%) UDom(T")
ST M(dec)

(T:R) UL =" VA . AU =" VAL

This set of rules is used with the convention that all formulae are eagerly reduced to
head normal form, i.e. each rule consists of two parts, first applying the transformation,
and then head reducing to head normal form. Furthermore, we apply these rules with
the understanding that the operators A and =’ are commutative (£ A F) = (F A £) and
associative (EA(FAG)) = ((EANF)ANG). Note that, in contrast to [Mil92], we consider the
quantifier prefixes as declarations and therefore do not need inference rules for quantifier
exchange.

Clearly the set SZM of transformations is terminating and confluent up to a-
equivalence. Thus we can use it to reduce unification problems to a unique normal form
(we have assumed implicit a-conversion for X-unification problems) which we call SZM-
normal form. By inspection we can easily see, that in SZM-normal forms all pairs must
be of the form AU =’ AV, where h and k are constants or variables.

79

4.5 General ¥-Unification (SUT) 4 COMPUTATIONAL ASPECTS YA

We sometimes use the following inference rule that combines the SZM inference rules,
in order to make STM simplifications explicit:

£ SIM
g/

if £ is the SZM-normal form of &.

Remark 4.5.2 At first glance the rule STM(n) seems to need the further assumptions
I' Fy, B:B and 9(B) = A in order to be sound, since it corresponds to sortatop, which has
similar preconditions. But these assumptions are trivially entailed for Y-unifications with
the Rdom -assumptions from 4.4.11.

Lemma 4.5.3 If D:& Fstm &, then wsU(X, &) = wsU(X, &) [€].

Proof: Clearly it suffices to show the assertion for the case, where D consists of a single
rule application. The assertion is trivial for STM(triv) and STM(T,). For STM(a) let

(T:R).(AXp.A) =" (\Ya.B) Z ¢ Dom(I)

SIM(a)
(I'":R).[Z/X]A="[Z/Y]BAE

where T' := T',[Z%:A]. We first convince ourselves that any X-substitution o is an Rp-
substitution, iff it is an Rps-substitution. So let o be an Rp-substitution. Since we have
assumed that Z° ¢ Dom(T'), o is also an Rp-substitution. If on the other hand o is an Ry
substitution, then Z° ¢ Im(o), since it is locally bound, therefore we have I, A by =TT,

Furthermore, let 6 be a Y-substitution with A, T~ by 6:T'F, then A, T~ by (AX.A) =
6(AY.B), iff A,I'" Fy 0(AZ.[Z/X]A) = 6(AZ.[Z]Y]|B) by a-conversion and A, '™ Fyx
(AZ.0([Z/X]A) = (AZ.0([Z]Y]B), since we can assume that X,Y # Dom(I'). However
the last condition is equivalent to 8([Z/X]A) = 6([Z/Y]|B) by msitrans. Thus the sets of
substitutions that solve £ and &' are identical.

In the presence of STM(a) the rule STM(7) is equivalent to a direct consequence of
n-conversion: let & = (I:R).(AXa.A) =" B, then I' Fy B:B and 9(B) = A, since we
have restricted Y-unification problems by an Rdom condition 4.4.11, so by sortatop
I' by B=,(AXa.BX). Therefore the set of ¥-unifiers does not change by replacing B by
its n-expansion (AXp.BX). Now we obtain the assertion for SZM(n) by that for STM(a).

In the ST M(dec) case we have

(I:R).AU" =" hV*AE h € X UDom(I)
SIM(dec)

2

(T:R).U' =" VIA .. AU =" V"AE

Let § € wsU(Z,(I:R).U =" VIA...ATU" =" V* A E), 50 (U)=50(V') for all 1 < i <
n and therefore

6(hU™) = hO(U™)=h8(V"™) = O(hV™)
Thus for any atom h we have § € wsU(X, E). a

80

4 COMPUTATIONAL ASPECTS XA 4.5 General X-Unification (XUT)

Definition 4.5.4 (XU7: Transformations for X-Unification) Let X7 be the sys-
tem SZM, augmented by the following inference rules. Just as in SZM leave the as-
sociativity and commutativity of A and =" implicit:

(T:R).AU" =" hV* AE h € Dom(T'")
YUT (dec)

(T:R).U' =" VIA. . AU =" V" AL

For the following rules let G € Ah(E, A, C)be a general binding of sort A that approximates
the head h.

(T:R).FU="AVAE THF)=A TFyR(F*G)
YUT (flex/orig)

(I,C:R[G/F)).F =" G A[G/F|(FU =" kV A £)

(T:R).FU="HVAE THF)=A TT(H)=B TtgR(F',G)
YUT (guess)

(I,C:R[G/F)).F =" GA[G/F|(FU =" HV A &)

This set of rules is used with the convention, that all formulae are eagerly reduced to
SZ M-normal form, i.e. each rule consists of two parts, first applying the transformation,
and maximally SZM-reducing afterwards.

Remark 4.5.5 Our YU7T (flex/orig) rule subsumes Huet’s rules of imitation (G has
head h) and projection (G is a projection binding) transformations (see [Sny91]), since
A"(¥,A,C) contains imitation and projection bindings. Note that A"(¥,A,C) also con-
tains weakening bindings, which correspond to the concept of a weakening transformation,
which is needed in YA, where we use term declarations to model subsorting.

Note that the rule XU7T (guess) is finitely branching in our context, since the set of
general bindings G of sort A is bounded by the number of term declarations in 3 and the
number of variable declarations in I'. However, since the sorts of general bindings are about
the only constraints on the set of applicable general bindings, the branching factor of the
Y-unification algorithm corresponding to these rules makes it infeasible in practice.

Remark 4.5.6 If sort computation should turn out to be decidable the inference rule

YUT (elim), defined below, is effective, and can be added to SZM.

(T, [F=AL [X00n(A):R).FXO="AAE T kg R(F*,AX,.A)
(T:R[A/F)).F =" (A X,.A) A[(AX,,.A)/F|€

YUT (elim)

In contrast to the substitution in YXU7 (flex/orig) and YUT (guess), where well-sortedness
of the added pair is guaranteed by 4.2.3, we have to check for well-sortedness before elimin-
ating the variable F. The following example shows that this gives practical improvements.

81

4.5 General ¥-Unification (SUT) 4 COMPUTATIONAL ASPECTS YA

Example 4.5.7 Let ¥ := {[a:C — B], [¢:C]}, then
([F*:A — B],[Y " :A:0).FY =" ac

- - . YUT (flex/orig)
([FT=:A — B, [GT:A — C|,[Y =:A:0).a(GY) = acA F =" \Zp.a(GZ) SUT(dec)
Ft:A - B],[GT:A = CL[Y :A:D.GY = ¢ A F =" \Zp.a(GZ
([Il Il J:0) A a-a(GZ) SUT(flex orig)

([F*:A = B],[GT:A = C|,[Y :A]:0).c =" ¢ ANF =" AZp.ac A G =" \Wa.c

The inference rule XU7 (elim) immediately computes the Y-unifier [AXa.ac/F] and there-
fore replaces two applications of XUT (flex/orig) and one of STM(dec).

For showing the soundness of X7 we start out with some technical lemmata, which
will allow us later on to prove the soundness theorem. In particular, the sort conditions in
the inference rules enforce the preservation of well-sortedness of the X-unifiers.

Lemma 4.5.8 Let & syt &' by a single application of XUT (dec) to a pair HU™ = HV",
then for any substitution 8 we have

1. If H € supp(0), then 8 € wsU(X, E’) implies that 6 € wsU(X,).
2. If H ¢ supp(0), then 6 € wsU(X, &), iff 6 € wsU(X,E&").
Proof: Let § € wsU(X, &), so §(UY)=
O(HU™) = 0(H)0(U™)=p0(H)O(V™) = 6(HV™)

Thus for any atom H we have § € wsU(X,&). Now let H ¢ Dom(#) and 8 € wsU(X,),
then §(H) = H, so in this case we have § € wsU(X, &). a

By applying the rules XUT (flex/orig) and XUT (guess) we effectively commit ourselves

50(V*) for all 1 < i < n and therefore

to a particular approximation of a solution, and thus cannot reasonably expect to conserve
the set of Y-unifiers.

Lemma 4.5.9 If £ Fyyr £ by a SUT -derivation only containing applications of the rules
YUT (flex/orig) and XUT (guess), then wsU(X, ') C wsU(Y,).

Proof: The transformations YXU7T (flex/orig) and YUT (guess) can be divided into three
parts, first adding a pair X =’ G, then eliminating the variable, and finally SZM-

reducing. Clearly adding a new pair does not create new X-unifiers, so we must have
wsU(X,EA X =" A) C wsU(X, €). Thus obtain the assertion with 4.4.15 and 4.5.3. O

Lemma 4.5.10 If & & sy (eiim) €5 then wsU(X, &) = wsU(X, £').

Proof: Let T°(X;) = 9"(A) and TT(F) = A and £ = (I"R).FX? =" AAE be a 3-
unification problem and (FX) =7 A be the pair that the rule XU 7 (elim) acts upon. We
show that for an arbitrary Y-unifier 6 of &, the formula AX.A is more general than 6(F).
So let @ be an arbitrary Y-unifier of £ such that Z by 6:I't, then

= by 8(F)=3,0(\X.FX) =3, X H(FX)=, X.0(A)=5,0(\X.A)

since the X? are not in Dom(#). This is just the claim with § as the instantiating substi-
tution. Now we obtain the assertion by 4.4.15. O

82

4 COMPUTATIONAL ASPECTS XA 4.5 General X-Unification (XUT)

Theorem 4.5.11 (Soundness of XUT) If £ = (I'"R).E' bsyr F such that F is in X-
solved form, then the substitution O'_7-‘|D0m(r+) e wsU(X,E).

Proof: We prove or € wsU(Y,&) by induction on the length of the transformation
sequence using the above lemmata in the induction step. The restriction of ox does not
affect the fact that Uf|D0m(F+) still X-unifies &. O

So if the algorithm X7 returns a substitution @ for an initial system &, then 6 is
indeed a Y-unifier for £. The main result of this section is the converse, namely, that given
an initial Y-unification problem &£ and a Y-unifier 6, the algorithm U7 can compute a
Y-unifier o of £, which is more general than 6.

As higher-order unification is undecidable [Gol81, Hue76, Luc72], our set of transforma-
tions cannot be terminating in general. We will prove, that X7 is a complete Y-unification
procedure, that is, if for any given 8 € wsU(X,) there is a XUT-derivation & Fsyr F
such that F is a Y-unification problem in X-solved form, and or is more general than 6.
For this we only need termination for X7 inference rules that approximate 6.

The following measure provides the basis for defining the approximating rule applica-
tions and for proving their termination.

Definition 4.5.12 Let & = (I':R).’ be a Y-unification problem and 6 be an Rp-
substitution, then

(&, 0) = (ni(€,0), p2(€))
is called a measure for £ and 6, iff ;;(&,0) is a multiset of depths of semi-structural
Y A-derivations Ax:T by 6(2):I'T(X), where X € Dom(#) is unsolved in & and puy(€)
is the multiset of depths of formulae in €. Furthermore, let < be the strict lexicographic
ordering for the obvious component orderings.

Lemma 4.5.13 Let £ be a X-unification problem in ST M-normal form, but not in X-
solved form, 8 € wsU(X,&), and p(&,0) a measure for & and 0, then there exists a X-
unification problem &', an &'-substitution §', and a measure p(&',0") for &' and §' such that

Ersyur &, and
1. 6 =08,
2. 0" e wsU(X, &),
3. u(&,0) < (&, o).

Proof: Let £ = (I'R).F,Z Iy 6:I't, and FU =7 GV be a pair in F, that is not X-solved.
We observe that F and G must be atoms and cannot be equal constants, and moreover we
cannot have I' by, A=, B, since £ is in SZM-normal form.

If F = G is a variable not in supp(#), then YU7 (dec) applies. By 4.5.8 we have
6 € wsU(X, &) and p(&',0) < pn(&,0), since py(E',0) < p1(&,0) and pa(E) < u(E).

Otherwise either F # G or F = G € supp(f). In both cases, since £ is Y-unifiable,
either F or G is an unsolved variable F' € supp(f) with I't(F) = A at the head. Without
loss of generality we assume that F' = F. Now, since 8 is an Rr-substitution we have
Z,T by 0(F):A and Z,T by R(F,0(F)). By the general binding theorem 4.2.4 there
exists a general binding G € AX(%,(Z,T1),C) of sort A and a Y-substitution p, such that
supp(p) = Dom(C) and C,I' by p(G)=g,A. Since the variables in Dom(C) are new, we
also have R(FT,G). Therefore,

83

4.5 General ¥-Unification (SUT) 4 COMPUTATIONAL ASPECTS YA

o if head(G) ¢ supp(f), then YXUT (flex/orig) applies.
o if head(G) € supp(f) then YUT (guess) applies.

In all these cases we set 6’ := 8 U p and have 6 = @[], since supp(p) N Dom(I't) =
Dom(C) N Dom(I'") = § and #' € wsU(X,&’) by 4.5.11. To see that p is a R[G/X]-
substitution, we have to convince ourselves that Y ¢ Free(p(X)) for all X € Dom(p) =
Dom(C) such that (X,Y) € R[G/F]. By definition of R[G/F] this is the case, if Y ¢
Free(p(X)) for all X € Dom(C) such that (#,Y) € R. If this were the case, then Y would
be free in p(G) = O(F'), which would contradict the assumption that is an R-substitution.
If A:Z,T' by 6(F)=A is the semi-structural X A-derivation that contributes to pq(&,8),
then the general binding theorem guarantees the existence of semi-structural X A-derivations
RUZE,T by p(X)=C(X) for all X € Dom(f). Since XUT (guess) and YUT(flex/orig)
remove the variable F' from the set of variables in supp(f) that are not X-solved in &, and
since they replace it with the set Dom(C) = supp(p), we have pq(&',8') < p1(&,0). Thus
we have p(&',0") < u(€,9). a
If we call such a transformation p-prescribed, then each application of a u-prescribed
transformation decreases the well-founded measure p. Thus any sequence of p-prescribed
transformations must terminate. The previous lemma also guarantees that any system
obtained by exhaustively applying p-prescribed transformations to a Y-unifiable system
must be Y-solved, since otherwise it guarantees another u-prescribed transformation.

Corollary 4.5.14 If £ is a Y-unifiable unification problem such that no p-prescribed trans-
formation rule from SUT is applicable, then & is in Yi-solved form.

Theorem 4.5.15 (Completeness Theorem for XUUT) For any Y-unificalion problem
& and any X-substitution 8 € wsU(X, &), there is a SUT -derivation & Fyyr F such that
F is in Y-solved form and T' by or <g, 0[E].

Proof: Let £ = (I"R).G and D: & Fxyr F be a maximal p-prescribed YU 7 -derivation
out of £. By 4.5.13 this is alway finite, so we can prove the assertion by induction on the
number n of nodes in D. If n = 0, then £ is in X-solved form and og¢ is a most general
Y-unifier for £. In particular, we have I' Fy og <3, 0[&].

If n > 0, then there is a u-prescribed inference £ + &’ and a X-substitution 8" sat-
isfying 4.5.13. By inductive hypothesis there is a XU7-derivation &' Fyxy7 F such that
I'by or8'[E']. By 4.5.11 we have or € wsU(X, &) C wsU(X, £). Furthermore, by inspec-
tion of the inference rules we see that X7 rules only expand the set of positive variables
inI', so I' by or =g, 0'[&'] implies I' Fy, or <g, 0'[€], which in turn yields the assertion
with the conclusion ¢ = 0[€] of 4.5.13. O

If we combine the soundness results theorem 4.5.11 with the completeness result from
theorem 4.5.15, we can characterize the set of solutions found by the algorithm XU7T by
the following corollary.

Corollary 4.5.16 For any Y.-unification problem & the sel
SUT(E) = {or | £ Fsyr F and F is in X-solved form}

1s a complete set of YLi-unifiers for £.

84

4 COMPUTATIONAL ASPECTS XA 4.5 General X-Unification (XUT)

Example 4.5.17 Let R,RT be sorts of type ¢ with the intended meanings of real numbers
and non-negative real numbers. Furthermore, let M, P, D, C sorts of type ¢ — ¢ such that
all have domain and codomain sorts R. These have the intended meanings of monomials,
polynomials, differentiable and continuous functions on the reals. Finally, let ¥ be the
signature with the following term declarations:

[+:R — R — R], [*:R — R — R], [V[X:R]. * X X:R*],

R* <R],M < P[P <D],[D < C]

A Xg. X =M, [V[Y:R].(AXR.Y):=M],

VIF, G:M].(AXR. % (FX)(GX))=M], [V[F,G:P.(AXRr. + (FX)(GX))=P],
[0:D — C], [0}P — P],[0M — M].

Thus 3 formalizes a small fragment of elementary calculus. In this setting we can answer
the question whether there are differentiable functions that are non-negative by solving the
following unification problem:

([F:D],[G:R — R*]:0).F =" G

This is a flex-flex problem, so we can use XU7 (guess) with the general imitation binding
(AXg.* (H'X)(H'X)) induced by the term declaration [V[X =R]. * X X=:R*] € X, thus we
obtain

([F:D],[G:R — R¥],[H':R — R]: 0).F =" MXg.+(H' X)(H'X)AG =" A\Xg.+(H'X)(H'X)

With the weakening bindings F =7 Hg and H® =" HY from the subsort declarations
[P <DJ],[M < P] € ¥ we have

HY =" \Xg. * (H'X)(H'X)

To make the XU 7T -derivation more legible, we drop the declaration and delete solved pairs
in Y-unification problems in this example. To keep the sort information complete we
indicate the sorts of variables in the subscript. We continue our XU 7 -derivation by apply-
ing XUT (flex/orig) with the binding Hyy =" AXg. * (H3X)(HEX) from the declaration
[VIF, G:M].AXR * (FX)(GX):P] € £ we obtain

HyY =" Hy gY ANHGY =" Hi &Y

The first pair can be solved with the imitation binding Hg g = (AXr.Hy(Hg_gY) and
the subsequent projection using Hg g = (AXg.X). This leaves us with the problem

HSY =" HYY

which can be solved with the bindings HS =" (AXg. Hy(HSY) and HY =" (AXg.X). Note
that the last general binding comes from the term declaration [AXg. X :=:M] € Y.

Collecting all partial solutions obtained in this X7 -derivation gives us the Y-unifier
o:=[D/F],[D/G] where D = (AXg. x (HyX)(HX)), which is just the most general
expression for a monomial with even degree.

85

4.6 Pre-Y-Unification (YP7T) 4 COMPUTATIONAL ASPECTS XA

4.6 Pre-X-Unlification (XP7T)

Just as in the case of unification for A, the rule XU 7T (guess) gives rise to a serious explosion
of the search space for unifiers (cf. 4.5.5), which makes general higher-order unification in
this form impractical. Huet’s solution to this problem was to redefine the higher order
unification problem to a form sufficient for refutation purposes: for the pre-unification
problem flex-flex pairs are considered already solved, since they can always be trivially
solved by binding the head variables to special constant functions that identify the formulae
by absorbing their arguments.

We give a generalization of Huet’s pre-unification procedure to ¥A. However in YA the
solution to the flex-flex problem is not as simple as in the unsorted case, since the heads of
flex-flex pairs can be variables of functional base sorts A. In this case flex-flex-pairs, are not
solvable independently of their arguments, since in general the constant functions needed
for absorbing the arguments are not of sort A. Our solution to this problem is to modify
the definition of pre-solved pairs and to keep the guess rule, but to restrict its application to
the functional flex-flex case. Furthermore, pre-Y-unification only makes sense for regular
signatures (cf. 3.6.16), as the following example shows. Therefore we will only consider
regular signatures in the following.

Example 4.6.1 (Non-Regular Pre-YX-Unification) We consider the non-regular signa-
ture given by S := {A,B}, 7(A) = 7(B) = «, and ¥ := {[cz:A], [czB]}. The X-substitution
[¢/X],[c/Y] is the only Y-unifier of the unification problem ([X*=:A],[Y*+:B]:0).X =Y,
but it can only be found by applying some kind of YU 7 (guess) transformation.

Lemma 4.6.2 The problem of deciding whether a given signature X is reqular or not, can
be reduced to the X-unification problem. Thus it is undecidable.

Proof: Let ¥ be a regular signature, A,B, and D new base sorts of base type a, and
AFy A:C and Aty B:C where 7(C) = 7. Furthermore, let Yi=%u {hy—q} and

Y = Y U {[h:C — D], [VA.RA:A], [VA.AB:B]}

Clearly X' is a valid signature, since A, B, D are of base type and therefore A Rdom B and
B Rdom D. If there is a Y-unifier § € wsSub(¥,A — T) of (A:().A =’ B, then I' Iy
h6(A):A and T' by h6(B):B by wsitd and ws:subst. Furthermore, we have I' Fy, h0(A):B
by 3.5.1, since I' by, 8(A)=3,0(B), and therefore I' -y h8(A)=g,h8(B) by trapp:arg. In
particular, we have found a formula with two least sorts. Thus X' is regular, if A and B
are not Y-unifiable. O

Remark 4.6.3 Note that the previous undecidability result is independent of the decid-
ability of the sort computation problem.

Definition 4.6.4 (Pre-Equality) Let I' Fy A=P3nB be the pre-equality judgment
defined by the inference system for sorted gn-equality augmented by the following inference
rule

V(I(F)) = #(I(G) I(T(F) > n In(T(G)) > k

sort:pre:itop

by FUT=PGVF

86

4 COMPUTATIONAL ASPECTS XA 4.6 Pre-Y-Unification (YXPT)

Let £ = (I: R).£" be a X-unification problem, then we call an Rr-substitution o a pre-
Y-unifier of the pair A =7 B € &, iff A,T~ kg d(A)=Pgno(B). We denote the set of
pre-Y-unifiers by wsPU(Y, £).

Definition 4.6.5 (Pre-X-Solved Form) Let £ = (I': R).£’ be a Y-unification problem,
then we call a pair FTU* =7 G*V" pre-Y-solved in &, iff It(F) = A — B and
I't(G) = C" — B. A Y-unification problem &’ is in pre-Y.-solved form, iff all pairs in &’
are Y-solved or pre-X-solved.

If £ is a Y-unification problem in pre-YX-solved form, then we can write & = (I R).E; A
&p, where the pairs in £, are pre-X-solved, but ¥-unsolved.

Remark 4.6.6 Let £ = (I'R).7 be a Y-unification problem in pre-X-solved form such
that G := FU" =" GV™ is a pre-Y-solved pair in F with A(F) = A* — B, [(G) = C™ —
D, and let H be a variable of sort B not in Dom(I'), then

oF = AXp1.. Xfn H/F,[AX¢1 .. . XEn H/G]

is a Y-unifier for &, since ' by ox(FU™)=p,H=p,07(GV™). Clearly the sort conditions
on F and G ensure that or is an Rp-substitution.

Thus pre-X-unifiers can always be extended to X-unifiers by finding trivial X-unifiers for
the pre-X-solved pairs. Let £ = (I':R).E, A &, be a Y-unification problem in pre-¥-solved
form, then we can construct a Y-unifier 8 for &, as above, and see that # U o is a Y-unifier
of £. Therefore a Y-unification problem & is pre-Y-unifiable, iff it is Y-unifiable.

Definition 4.6.7 (¥P7: Transformations for Pre-Y-Unification) We define the set
YP7T of transformations for pre-Y-unification by modifying X7 (4.5.4): the inference
rules of XP7T are obtained from their XU7 counterparts by requiring that they may not
be performed on a pre-Y-solved pair. Thus we have the following set of inference rules:

(I:R).FU* =" V" A E
(T:R).U' =" VIA...AU"="V"AE

YPT (dec)

(T:R).FU*="hVAE TFrgR(F',G)
(I,C:R[G/F)).F =" GA[G/F](FU ="hV AE)

YPT(flex — rig)

(I'R).CV FU" =" GV™AE T kg R(F,G)

- —— YPT (guess)
(,C:RIG/F]).F =" G A[G/F|(FU =" GV A €)

where I'(F) = A, I'(G) = B, In(A) > n, In(B) > m, and G € A*(X,A,C) is a general

binding of sort A that approximates some head h.
With this definition we immediately obtain the soundness of XP7T.

Theorem 4.6.8 (Soundness of ¥PT) Let D:& Fypr &, if & = (I'R).E, N E, is in
pre-Y-solved form, then o € wsPU(X,£).

87

4.6 Pre-Y-Unification (YP7T) 4 COMPUTATIONAL ASPECTS XA

Proof sketch: All ¥P7-transformations are special cases of the XU 7T -transformations,
so the assertion can be obtained with the same methods as 4.5.11. O

For the completeness result we need an analogue of the termination lemma (4.5.13).

Lemma 4.6.9 Let £ be a Y-unification problem in SIM-normal form, but not pre-X-
solved and 0 € wsPU(X, £), then there exists a X-unification problem &', an &'-substitution
¢, and a measure pu(&',0") for & and §' such that € Fypr &', 8 = 0'[€], ' € wsPU(X, &),
and p(&',0") < (&, 9).

Proof sketch: In the proof of 4.5.13 we observe that the restriction of the XU/ 7 inference
rules to ¥P7 inference rules by forbidding applications of XU7T (flex / orig) to flex-flex-pairs

does not affect the result, since the forbidden applications to unsolved flex-flex pairs can
be simulated by a YP7 (guess). O

Theorem 4.6.10 (Completeness Theorem for XP7) For any X-unification problem
& and any 0 € wsPU(X, &), there is a XPT -derivation £ Fxpr F such that F is in
pre-Y-solved form and ox < 0[E].

Proof sketch: The proof for the completeness of XP7 is analogous to that of 4.5.15,
using 4.6.9 instead of 4.5.13. O

If we combine the soundness and completeness results 4.6.8 and 4.6.10, we can charac-
terize the set of solutions found by the algorithm XP7 by the following corollary.

Corollary 4.6.11 XP7 is a complete pre-Y.-unification procedure. Moreover, if £ is a
Y-unification problem, then the set YPT(E):={o | & Fupr &} is a complete set of pre-
Y-unifiers for £.

Example 4.6.12 Let us reconsider the example 4.5.17. Since M and P are base sorts, and

therefore have length one, the Y7 -derivation presented there is also a %P7 -derivation,
thus o is also a pre-Y-unifier of ([F'=D], [G=R — N]:0).F =" G.

88

5 YHOL: A SORTED HIGHER-ORDER LOGIC

5 YHOL: A Sorted Higher-Order Logic

In this section we will present a formulation XHOL of higher-order logic by giving the
sorted A-calculus XA developed so far a logical interpretation. For this we specialize the
sort system and assume the existence of certain logical constants with a fixed interpretation.
In the trivially sorted case XHOL is a simply typed system of higher-order logic, which is
essentially the Andrews/Henkin version [Hen50, And71, And72] of simple type theory. We
give three notions of algebraic semantics for YHOL: we review the notions of standard
and general 3-models and introduce the concept of 3-model structures, which generalize
Andrews’ v-complexes [And71], and serve as a semantics for non-extensional higher-order
logics.

5.1 The System XHOL

General Assumption 5.1.1 For the sorted higher-order logic ¥ HOL we assume that the
set BT of base types is {o,:} where the base type ¢ stands for the set of individuals and
the type o for the truth values. A well-formed formula of type o is called a proposition,
and a closed proposition a sentence.

Furthermore, we assume that for any sort system (S, 5S,0,t) we have a sort O with
7(0) = 0. We need this sort of truth values, since types are not first-class objects of XHOL,
and we want to be able to characterize sentences and propositions by their sort.

General Assumption 5.1.2 (O is Top Sort) We assume that whenever A € BS,, then
[A < O] € X, since we want O to be the top sort of type o. Otherwise it would be possible
to specify signatures that severely distort the intended semantics of the universe D,, which
we want to correspond to the truth values.

We could have achieved the same goal by prohibiting any other sorts of type o, but
as we will see our more general solution provides a powerful means for specifying the
semantics of predicates (5.1.6), and even allows alternate, specialized formalizations of
logical calculi (5.3.15).

Remark 5.1.3 For unsorted higher-order logics the underlying A-calculus is usually spe-
cialized by assuming the existence of logical constants {¢5_,,_., | a € T} C Q for equality
and {—,—0, Aomo—os H(O‘a_m)_m | @ € T} for the connectives and quantors.

In our sorted setting we have a problem, when naively a priori assuming the ex-
istence of the logical constants, since we need infinitely many declarations of the form
[pPA:A — A — O] for logical constants ¢% ., because there are infinitely many sorts A.
As a solution we have the alternative either to extend the definition of valid signature to en-
compass infinite signatures by allowing infinite ¥’HOL-derivations or to use the mechanism

of negative variables, which is equivalent.
Definition 5.1.4 (Logical Constants) Let
REHL - ([(A:A = A = 0],[-:0 — 0],[Az0 — O — O], [I":(A - 0) - O] |A e S}

We see that ¥ is a valid signature, since all these constants are distinct and can
therefore be added with the rule sig—const. Moreover we can always assume our signatures

89

5.2 Y.-Model Structures 5 YHOL: A SORTED HIGHER-ORDER LOGIC

EZ')‘KQE

to be supersets of by replacing the rule sig:empty with

sig:emply’
'_sig EE?‘K?L‘

We call the constants ¢®, -, A, II® logical constants. More specifically -, A are called
connectives and TI? a quantor in order to distinguish them from the equality constant
¢®. Non-logical constants are called parameters, since the choice of parameters determines
the particular formulation of the logical system XHOL.

Notation 5.1.5 Since the constants ¢™ are intended to denote the equality relation, we
use A =" B or even A = B as an abbreviation for (¢ AB). Furthermore, we can obtain
the connectives V, =, < from the connectives defined so far, for instance, we take A = B

as an abbreviation for =(A A —-B). Finally, we use the infix notation for connectives, and
write VXa.A as an abbreviation for II?*(AXg.A)

Example 5.1.6 (Subsorts of O) Let T,F,P,N, sortz, and R be sorts and X be the set
of the following term declarations!3

[T <OL[F <O],[-:0 — O], [~} T — F],[~|F — T],
[AtO — O — O], [A[T =T = T],[AJT - F = F],[Al[F - T — F],[A[F — F — F]

together with the declarations [II*:(A — O) — O], [I1*z:(A — T) — T]forall A € S.

Clearly 3 gives complete semantic information for the connectives and partial inform-
ation for the quantor II?, if we interpret T as the subset {T} C Do and F as {F} C Dg. If
the signature ¥ is augmented with term declarations

P <R],[N<R],[Z <R],[1:P],[3:P],[-5:N], [0::Z],

<:R— R — O], [V[X:R].X < X:T],
<IP=N-=FLIKIN=P=T],[<|P—2Z—F],

+:R—R — R], [—|—|:[F° —P - P], [—|—|:N — N — N], [—|—|:Z —P - [FD] .. }

—— — —

for various predicates and functions on the positive (P), negative (N), real (R) numbers,
and zero (Z), then formulae like =5 + 0 < 3 and VXp. — 5 < 3 4+ X can be seen to be of
sort T, while =0 < 0 and 0 + 1 < 0 have sort F. Moreover we have -y VPy.P = P and
Fs VPg.P = P. But we cannot infer Fy VPp.P = P in XHOL, since the sort mechanism
of XHOL cannot manipulate sort information that formalizes that O is the union of T and

F.

5.2 Y-Model Structures

The standard example and intuitive semantic notion for sorted higher-order logic is that of a
general Y-model. This we can define from X-algebras by insisting on a suitable semantics for
the sort O of truth values. Since we also want to have a semantics where the extensionality

3We want to remind the reader that the notation [A}A] is an abbreviation for the term declaration

[()\Xn(m).AX)::A].

90

5 YHOL: A SORTED HIGHER-ORDER LOGIC 5.2 Y-Model Structures

axioms can fail to be valid, we generalize the notion of a general 3-model to the notion of
a Y-model structure. The definitions are fairly simple, since we can make use of the work
we have invested in the construction of algebraic models for XA and A.

Definition 5.2.1 (2¥-Valuation) Let A = (D,@,7) be a X-structure, then a surjective
total function v: Dg — {T,F} such that

1. v(Z(¢™)@a@b) = T, iff a = b,

(
v(Z(-)@Qa) =T, iff v(a) =F,
(

2.)
3. v(Z(V)Qa@b) =T, iff v(a) =T or v(b)=T,
4. o(Z(MMYAf) = T, iff v(fQa) = T for each a € Dp

is called a X-valuation for A.

The notion of 3-valuation intuitively gives a truth-value interpretation to the domain
Do of a Y-structure, which is consistent with the intuitive interpretations of the logical
constants. Since models are semantic entities that are constructed to make statements
about truth and falsity of formulae, the requirement that there exists a X-valuation is
perhaps the most general condition under which one wants to speak of a model. Thus we
will define our most general notion of semantics as X-structures that have 3-valuations.

Definition 5.2.2 (¥-Model Structure) Let A = (D,@,7) be a YX-structure and v be a
Y-valuation for (D,@,7), then we call the quadruple M := (D, @,7Z,v) a ¥-model struc-
ture. Let I' be a variable context, and ¢ be a I'-assignment into A, then we call the
function B, = voZ,: wsfp(X,I') — {T,F} the value function for M and ¢. If I' does
not contain positive variables or the formulae in question are closed, then the value does
not depend on the assignment. In these cases we drop the reference from U, and call U
the value function for M.

Remark 5.2.3 Let M = (D,Q,7,v) be a ¥-model structure, then Do has at least two
elements, since we have assumed v: Dg — {T,F} to be surjective. Furthermore, we have
assumed that O is the top sort of type o, thus for all A of type o we have X F AC B and
thus Pp C Dg. This guarantees that D, = Unens Pa = Do.

General Assumption 5.2.4 For each A € § we assume the existence of a closed formula
Gh e wsfy(X,0). This guarantees that sorts are not empty, i.e. that Dy # @ in any X-model
structure A = (D, @,7,v), since Z(G?) € Da by definition of L-structures (3.3.4).

Automated deduction systems based on unification usually work with this implicit as-
sumption, since otherwise the calculus becomes unsound: if the sort A is empty, the formula
[pXa] A =[pXa] is contradictory but at the same time satisfiable.

Note that it is sufficient to assume a closed formula GP for all A € BS, since we can
choose GB=A .= (A\Xg.GR). Therefore each well-sorted formula A € wsfy(X,T) has a
closed Y-instance, that is, there exists a X-substitution o € wsSub(X, A — I') such that
0(A) is a closed formula. In this case the contradiction above really is unsatisfiable.

91

5.2 Y.-Model Structures 5 YHOL: A SORTED HIGHER-ORDER LOGIC

Lemma 5.2.5 Let M be a Y-model structure and U the value function for M, fur-
thermore, let T, = (¢ = ¢®) and L, := ¢°>®(A\Xo.T,)(AX0.X), then TV(T,) = T and
T(L,) =F.

Proof: Note that Z(T,) = Z(¢* A% ¢*) = 7(¢)QI(q)QZ(q), so V(T,) = v(Z(T,))

T by definition. Furthermore, U(L,) = v(Z,(¢(AX.T)(AX.X))) = T, iff Z,(AX.T,) =
Z,(AX.X),since v is a ¥-valuation. This is the case exactly, iff Z(AX.T,)Qa =
for all @ € Dp, since M is functional. Finally, this is equivalent to Z(T,) = Zj,,x)(X) = a,
which is obviously not the case, since Do has at least two elements by 5.2.3. O

Thus we can define expressions for truth (T,) and falsity (L,) in YHOL from ¢ that
obtain the intended meaning in all ¥-model structures. We use them just like logical
constants in the following. Similarly we can define equality from the connectives and
quantors.

Definition 5.2.6 (Leibniz’ Formulation for Equality) We define the Leibniz for-
mula for equality by
Q" := (\XaYa.VPa_0.PX = PY)

With this definition the formula (A = B) = Q®AB f-reduces to VPay_0.(PA) = (PB),
which can be read as: formulae A and B are not equal, iff there exists a discerning property
P. In other words, A and B are equal, if they are indiscernible. We semantically justify
this definition by 5.2.7.

Lemma 5.2.7 Let M = (D,Q,7,v) be a X-model structure, and let Q? be defined as in
5.2.6, then V,(QRAB) =T, iff T,(A) = Z,(B).

Proof: Let a,b € Dp, we show that v(Z,(Q)Qa@b) = T, iff @ = b, which entails the
assertion. We have Z,(Q) = Z,(AX.AY.VP.PX = PY) by definition 5.2.6, and thus
7,(QM)@a@b = Z,(VP.PX = PY),if ¢ = ¢,[a/X],[b/Y]. Now let r € Da_.o, then

v(Zypp(PX))=r@a=F or u(Zyp/p(PY))=rQa=T,

since v is total. So we see that v(Z,(Q)QaQa) = v(Zy,/p(PX = PY)) = T for all
r € Dn_ o, which yields the assertion.
Now let a # b€ Da and r = Z, [,/ x)(AYa.¢" XY), then

v(rQ@a) = I¢7[G/X]7[a/y](qAXY) =T and v(r@b) = Zy,(*XY) =F.

Thus v(Z,(Q)Qa@b) = v(Zy(VP.PX = PY)) = F, since v(Zy [, p)(PX = PY)) =F, as
V(Zy [ryp(PX)) = r@QaT and v(Zy [,/ p)(PY)) = rQb=F. O

Remark 5.2.8 The previous lemma shows that in definition 5.1.4 we can indeed use the
Leibniz property to treat equality as a defined notion, if we take care to ensure that our
Y-model structures contain the identity relation for each sort. Thus we would principally
not have needed to assume the constants ¢® in our signature. The critical part in this
choice is that for ensuring the correct meaning for Q® we have to require the existence of
the identity relation for each sort in each ¥-model structure (see [And72] for a discussion
in the context of unsorted general models). This requirement is automatically met, if we
have constants ¢® € I, so it seems natural to treat equality as primitive.

92

5 YHOL: A SORTED HIGHER-ORDER LOGIC 5.2 Y-Model Structures

We now present two special classes of Y-model structures, which model the intended
understanding of ¥HOL. The class of standard ¥-models is in some way the most natural
notion of semantics for XHOL, however, with the notion of completeness induced with this
semantics there cannot be complete calculi, a fact that makes it virtually useless for our
purposes. The class of general Y.-models allows complete calculi and, in fact, we will exhibit
one later in this section (see subsections 5.3 and 5.5). Unfortunately, it will turn out that
our resolution calculus is not complete even with respect to general Y-models, therefore
we cannot restrict our presentation to this semantics, but have to take the more general
notion of Y-model structures.

Definition 5.2.9 (General ¥-Model) Let M = (D,@,7,v) be a ¥-model structure
such that A = (D,7) is a X-algebra, then M is called a general ¥-model, iff Dg is the
set {T,F} of truth values. Note that with this definition v must be the identity function on
D, moreover @ is just function application. Thus @ and v are fixed in general Y-models,
and we can fully describe M by its carrier set D and its interpretation Z. We are striving
for a general notion of algebraic model, so we only require M to be comprehension-closed
(A is a Y-algebra) and do not require M to be full. A full general ¥-model is called a
standard Y-model.

Now we define the usual notions of satisfiability and validity. However, since we have
more than one notion of semantics, we have to take care to specify the intended semantics.

Definition 5.2.10 Let K be a class of ¥-model structures, M = (D,@,7,v) € K, T Fx
A0, and ¢ a I'-assignment into M. We say that

1. ¢ satisfies A in M (M =, A),iff Z,(A) =T.
2. A is satisfiable in M, iff there is an assignment ¢ that satisfies A in M.

3. A is satisfiable in K, iff there is a X-model structure M € K such that A is
satisfiable in M.

4. Ais valid in M (M = A), iff all assignments into M satisfy A in M.
5. Ais valid in K (x A), iff A is valid in all M € K.

We say a proposition A entails a proposition B in K (A |=x B), iff for all M € K we
have that M = A implies M |= B.

Remark 5.2.11 If we were only interested in analyzing >HOL with respect to the gen-
eral ¥-model semantics, we could have simplified the presentation of the theory by only
assuming the equality constants, defining the other logical constants by the following defin-
itions, and treating them as defined formulae: - := (¢®1,), II? := (¢*~®(AXa.T,)) and
A= (A XoYo.(AG.GT,T,) = (A\G.GXY)).

Furthermore, we could have weakened the conditions for v to be a ¥-valuation by only
requiring that v o Z(¢®) is the identity relation on Dp, since the definitions above entail
that v := Idpg is a X-valuation. Let us consider the cases of 5.2.1.

1. This case is trivial, since I(qm) is the identity relation on Dp by definition.

93

5.2 Y.-Model Structures 5 YHOL: A SORTED HIGHER-ORDER LOGIC

2. We have Z(-)@a = Z(¢° T,)Qa = Z(¢°)@FQa = T, iff a = F, since Do = {T,F}.

3. Z(Maf = Z(P~°(A\Xa.T)Qf = T, iff Z(AXa.T,) = f, if T = Z(T,) =
I(AX T,)Qa = fQa for all @ € Dp, since M is functional.

4. Let a,b € Do and ¢ = [a/X],[b/Y], then Z(A)Qa@b = T, iff Z,(A\G.GT,T,) =
I,(AG.GXY), which is the case, iff for all ¢ € Do_o—o we have gQTQT = ¢@a@b,
since M is functional. This is clearly equivalent to the condition that ¢ = T = b.

Note that a construction like the one above is not possible in the case of ¥-model structures,
since the proof of the condition for — requires that Do has exactly the elements T and F,
as we take all elements that are not T to be false.

Remark 5.2.12 Let M = (D,Z) and N = (£,J) be general X-models, and let x: M —
N be a Y-homomorphism, then by 5.2.5 and 2.1.11(2) we have k(T) = k(Z,(T,)) =
Jrow(To) = T and similarly &(F) = F.

Remark 5.2.13 Note that the class of general Y-models defined above is rich in non-
standard models'?, since we do not require it to contain a description function. In this
detail we differ from most systems of higher-order logic (cf. [Rus08, Chu40, Hen50, And71,
And86]), which do require the existence of a constant A € Y(a—o)—a for each type A.
Correspondingly these approaches require that this constant denotes the function that
maps each singleton set to its unique member in (general) ¥-models by requiring an axiom

VPA_>®.(E|XA.PX) A (VYD(A).PX = .X = Y) = P(LP)

Even though our’s may not be the most interesting notion of general 3-model, we choose
not to deal with descriptions in this thesis, which focuses on treating sorted methods in a
resolution context.

Definition 5.2.14 (Full Extensionality) We call the following formula schemata

Ext? = VFaVGa(VXyn) FX =GX)=F=G
Ext® = VFpVGe.(FeoG)e F=G

the axioms of full extensionality and we specifically refer to the latter formula as the
extensionality axiom for truth values.

We now analyze the validity of the extensionality axioms in our notions of semantics.
Lemma 5.2.15 Lelt M be a S-model structure and A € 8™, then M |= Ext®,

Proof: The validity of Ext® is a consequence of the functionality we have assumed for
Y-algebras. O

Lemma 5.2.16 The aziom Ext® is not valid in the class of X-model structures.

'1n our notion of general ¥-model we cannot guarantee the existence of, for instance, step functions, i.e.
functions f € F(Dp; D) that are constant on sets in Dp_,q.

94

5 YHOCL: A SORTED HIGHER-ORDER LOGIC 5.3 Calculi

Proof: Let (D,@,7) be any standard X-algebra with Do = {a,b, ¢}, and let v(a) = v(b) =
T and v(c) = F. Furthermore, let the interpretation function Z behave on connectives and
quantors as indicated by the following schemata:

I(N)|a b ¢
I(~)|a b ¢ a |a a c
‘ c ¢ a b |a a ¢
c |c ¢ ¢
'y _J a, if fQg € {a,b} forall g € Dy
H)ef = { b, if f@g = c for some g € Dp

Let ¢(X) = a and ¢(Y) = b, then we can see that Z,(X = Y)=aand Z,(X < Y) =a,
thus Z,(X © Y)=a, but Z(X =Y) =c. So we have Z,(VX,Yp. X © Y. X =Y) =¢, and
thus B, (VX,Yo.X © Y.X = Y) = F. O

Lemma 5.2.17 Let M be a general S-model, then M |= Ext®.

Proof: The validity of the axiom for truth values is a consequence of 5.2.5 and the definition
of Y-valuation. O

As we have seen, full extensionality is valid in general Y-models, unfortunately, it will
turn out that our resolution calculus will not be able to handle full extensionality. This is
not a problem special to our sorted system, since this is also a problem for the unsorted
calculus of higher-order resolution [Hue72] (or for higher-order mating-search [And89]).
These papers give relative completeness results like our theorem 6.4.6, we additionally give
an algebraic semantics that describes the derivational power of our calculi.

5.8 Calculi

In this section we introduce the syntactic counterparts of the entailment relation and fix
the formalism for the calculi ¥%, ¥%n, and XZE, which are simple and intuitive gener-
alizations of a commonly used Hilbert-style calculus for first-order logic, and characterize
their deductive power in terms of our semantics. In the literature [And71, Hue72, Mil83]
the deductive power of machine-oriented calculi is determined relative to that of the un-
sorted versions of these calculi. Analogously we compare the deductive power of the sorted
versions with that of our sorted resolution calculus ¥'HR, and we obtain the analogous
results.

Definition 5.3.1 (Calculus) A calculus C is an inference system for the judgment + A,
i.e. A is provable in C. Since I is a unary relation, it is customary to drop it, and to
consider inference rules of a calculus C just as relations over propositions.

Let A be a proposition and ® be a set of sentences. Using the nomenclature for inference
systems we call a C-derivation D a C-proof of A from the set ® of hypotheses, if A
is the assertion of the root of D, and the supports of the leaves of D are subsets of ®. If
there exists a C-derivation of A from @, then we write ® k¢ A. Let C be a calculus, then
a proposition A is called a theorem of C, iff there exists a C-derivation of A from the
empty set of hypotheses.

95

5.3 Calculi 5 YHOL: A SORTED HIGHER-ORDER LOGIC

Definition 5.3.2 (C-Consistent) Let C be a calculus, then a set ® of propositions is
called C-inconsistent, iff & ¢ L,, and C-consistent otherwise. We call a set ¥ (-
consistent with a set ®, iff ® U ¥ is C-consistent.

Lemma 5.3.3 IfC is a calculus, and if ® is a C-inconsistent sel of propositions, then there
exists a finite C-inconsistent subsel of ®.

Proof: Let D be a C-derivation of L, from ®. As D is a finite tree, the set ¥ C ® of labels
of the leaves of D is finite. Thus V¥ is a C-inconsistent and finite subset of V. O

Definition 5.3.4 (Sound, Complete, Saturated) Let C be a calculus and K a class of
Y-model structures, then

1. C is called sound with respect to K, iff each theorem of C is valid in K.

2. C is called complete with respect to K, iff each valid sentence in K is a theorem

of C.

3. C is called refutation complete with respect to K, iff each K-unsatisfiable sen-
tence A can be refuted in C, i.e. there is a C-derivation of an elementary contradiction
from A.

4. C is called saturated, iff for all C-consistent sets ® of propositions we have ® x A is
C-consistent or ® * = A is C-consistent.

Definition 5.3.5 (The Calculi X%, ¥%n and X3€) The calculus X% consists of the fol-
lowing propositional axiom schemata:

I(P)=0 I(P)=0
'ty (PVP)=P 'ty (P=(P=P)
I(P)=1(Q)=0 I(P)=I(Q)=TI(R)=0
'ty (PVQ)=(QVP) (P=>Q)= .(RVP)=(RVQ)
[(F)=A—0 TI(X)=2(A) I(P)=0 I(F)=A—-0
A pF = Fx VXa(PV FX)= .PVIAF

The 3-conversion (X%(3)), modus ponens (YT(MP)), X-substitution (LZT(Subst)),
and universal generalization (Y Z(UG)) inference rules

'ty A=3B T'fts A 'ty A=B TkyA
$3(8) YT(MP)
r H_E B I H—E B
I[X:Alky AX T Fy B:A I [X=:Al ks AX
XA Y S (Subst) ET(UG)
I'ts AB [y TRA

96

5 YHOCL: A SORTED HIGHER-ORDER LOGIC 5.3 Calculi

We obtain the calculus ¥%n by adding the n-conversion rule

Ity A=,B ThyA

YE(
'ty B)

and, finally, X3¢ with the following rule for full extensionality

I'ts A& B

SIE(TW)
Tty A=B

These rules correspond to the Ext? and Ext® axioms. We collectively denote these
calculi with X%*. Note that if I' 5 A, then we have I' Fy A::O, since we have taken care
to require this for the propositional axioms, and the proper inference rules conserve this

property.

Theorem 5.3.6 (Soundness) X% and X% are sound with respect to the class of X-model
structures. Moreover, X% are sound with respect to the classes of general YX-models and
standard Y.-models.

Proof: The inference rules Y¥(3) and Y'%(n) are sound in all ¥-structures and therefore
in all ¥-model structures. The validity of the propositional axioms YE(MP) and YT(UG)
is an immediate consequence of the definition of ¥-valuations. For the YZ(Subst) rule let
I'[X:A]Fs AzO, IV Fy B:A and M = A, then by the substitution value theorem (3.3.8)
we have v(Z,([B/X]A)) = v(Z, [1,B)/x])(A) = T for all T-assignments ¢. Thus all infer-
ence rules are sound.

We obtain the second assertion by 5.2.17 and the fact that the classes of general and
standard X-models are subclasses of that of ¥-model structures. O

We now present two results on provability, which simplifies the analysis of the %%«
calculi.

Definition 5.3.7 We call a proposition A a tautology, iff it is a substitution instance of
a proposition P that only contains logical connectives and variables of sort O, and is valid
in all ¥-model structures. Note that the validity of P only depends on the assignment for
propositional variables in P.

Lemma 5.3.8 (Rule P) If A is a tautology, then tc A for any X %+-calculus C.

Proof: Let P be the proposition such that A = ¢(P), and P only contains propositional
variables and connectives. It is well-known that the propositional part of X%« is complete
(see for instance [And86]), so there is a XT-proof D: Fyug. P. One application of the
substitution rule now gives the assertion. O

Theorem 5.3.9 (Deduction Theorem) If H,A ¢ B, then H k¢ A = B where C €
YTk,

97

5.3 Calculi 5 YHOL: A SORTED HIGHER-ORDER LOGIC

Proof: We refer to lemma 5240 in [And86] and to [Hen50)]. O

Notation 5.3.10 For reasons of legibility we will write S *a for SU{a}, where S is a set.
We will use this notation with the convention that * associates to the left.

Lemma 5.3.11 All X%« calculi are saturated.

Proof: Let C be a X%T* calculus. To see that C is saturated, let ® «* A and ® x = A be C-
inconsistent, then we show that ® is C-inconsistent, and obtain the assertion. By definition
&+ At L1,, and by the deduction theorem ® k¢ A = 1,, and thus ® ¢ = A by rule P,
similarly ® k¢ A and thus @ is C-inconsistent. O

Remark 5.3.12 If we look more closely at the proof, we see that we only need the de-
duction theorem and rule P, thus any calculus C that admits the deduction theorem and
rule P is saturated. Therefore saturatedness is a natural property for calculi and thus for
abstract consistency classes, since it is a direct consequence of the deduction theorem.

Theorem 5.3.13 Let ® be a set of propositions, and furthermore, let
1. K be a class of ¥-model structures and C = %1, or
2. K be a class of Y-models and C = NFE,
then the following assertions hold:
1. If AY, ..., A" ¢ B such that B is false in some M € K, then M |= \/"_,(~A").
2. f M eK, then ¥ :={A € wsfp(X,T) | M |= A} is C-consistent.

3. ® is C-inconsistent with A*, ..., A", iff ® k¢ /7, (-AY).

Proof: By 5.3.6 we know that C is sound with respect to K. We show the first assertion
by induction on the size of the C-derivation D of B from ®. As C is sound with respect to
K, the proposition 1, cannot be an axiom of C, thus the base case is vacuously true. For
the inductive case let M = (D,@,Z,v) € K be a ¥-model structure such that U,(B) =F,
and let D end in an application of the rule R := Al,...,A" i B € C. Since C is sound
with respect to K, we have €U¢(A1, ...,A” = B) = T by modus ponens, and therefore
U,(V" (=A%) = T. Therefore one of the premises of R is false in M, and by induction
we get the assertion.

To prove the second assertion consider the contrapositive statement: let ¥ be C-
inconsistent and ® := {A',..., A"} be a C-inconsistent subset of ¥, then A!, ..., A" I
1,, and therefore one of the A’ is false in M by the first assertion, which contradicts the

assumption.

For the third assertion we note that, if ® is C-inconsistent with A',..., A", then
B, A, A" e mALso P e A= L. = A" = =A!, and therefore ® ¢ /7, (-A").
The other direction is immediate. O

Lemma 5.3.14 X% and X% are nol complete with respect to general Y-models.

98

5 YHOCL: A SORTED HIGHER-ORDER LOGIC 5.4 Unifying Principles

Proof sketch: We do not have the means of proving this lemma here, since the argu-
mentation involves the use of the resolution calculus XHR presented in section 6, so we
only sketch the proof and refer to 6.4.7. Let X := {[czO — O],[bz0]}, A = (¢b), and
B := ¢(—=—b). The proof of the assertion has three ingredients:

e C:=-A AB is not ¥HR-refutable.
e Y%7 is sound and refutation-complete with respect to X-model structures (see 5.5.7).
e and YHR is sound and complete with respect to X-model structures (6.4.4).

—C cannot be derivable in X%7, since otherwise C could be refuted in XHR, as YHR is
refutation complete. The same argumentation holds for X%, since it is weaker lacking the
n-axiom of X%¥. O

Example 5.3.15 (X% with Sorts) We can give an alternative formalization of the calcu-
lus ¥% using term declarations: if we augment the signature from 5.1.6 with the declarations

[V[P:O].(PV P) = P:0],

[V[P:O].(P = (P = P):0],

V[P, Q=] (PVQ)=(Q= P):0],

[V[P,Q, R=O.(PV Q)= .(RV P) = (RV Q):0],
[V[F:A — O], [X:AL.IIPAF = FX:0],
[V[P:0],[F:A — O]YX:A(PV FX) = .PVII*F:0],

and augment ¥%¥ with the inference rule

Ty AT
'ty A

then we can drop all of the propositional axioms of ¥.%. The gain of this measure is greater
than apparent at first glance. As we have seen in example 5.1.6, a whole class of tautologies
(which can be arbitrarily extended by providing further term declarations) can be shown
to be of sort T, and thus is specially treated by the calculus. Thus the term declaration
mechanism offers a tool to adapt certain calculi to specific needs.

5.4 Unifying Principles

In this subsection we introduce an important tool for proving completeness results in higher-
order logic. The importance of unifying principles lies in the fact that they abstract over
the model theoretic part of various completeness proofs. Unifying principles were first
introduced by Smullyan in [Smu63, Smu68] based on work by Hintikka and Beth and later
generalized to higher-order logic by Andrews in [And71]. Unifying principles generalize
the process of extending a given C-consistent set ® of sentences and constructing from it
a Y-model structure for ® by capturing the conditions necessary for this extension in the
notion of an abstract consistency class. Thus with the help of a unifying principle the
completeness proof for a given logical system C is reduced to the (purely proof-theoretic)

99

5.4 Unilying Principles 5 YHOL: A SORTED HIGHER-ORDER LOGIC

demonstration that the class of C-consistent sets is an abstract consistency class. Since
there is no simple Herbrand theorem in higher-order logic, Andrews unifying principle for
type theory from [And71] has become the standard method for completeness proofs in
higher-order logic.

The most important tools used in the proofs of the unifying principles are the so-called
3-Hintikka sets. These sets are maximal elements in abstract consistency classes, and allow
computations that resemble those in ¥-model structures. The key step in the proof of the
unifying principles is an abstract extensional lemma, which guarantees a Y-Hintikka set H
for any set H of sentences in Vy,.

Definition 5.4.1 Let Vy be a class of sets.

1. Vy is called closed under subsets, iff for all sets S and 7" the following condition

holds: if S CT and T" € Vy, then S € Vy.

2. Vy is called of finite character, iff for every set S the following condition holds:
S € Vy, iff every finite subset of § is a member of Vy.

Lemma 5.4.2 If Vy, is of finite character, then Vy, is closed under subsels.

Proof: Suppose § CT and T' € Vy. Every finite subset A of S is a finite subset of T, and
since Vy is of finite character, we know that A € Vy. Thus 5 € Vy. O

Definition 5.4.3 (Abstract Consistency Class) Let I' be a negative annotated vari-
able context, and let Vx(I') be a class of sets of propositions, then Vy := {Vx(I')} is called
an abstract consistency class, iff each Vy(I') is closed under subsets, and for all sets
¢ € Vy(T') the following conditions hold:

1. If A is atomic, then A ¢ ® or —A ¢ ®.

2. If A € & and ifB is the long fn-normal form of A, then B x & € Vy(I').
3. If -—~A € ®, then A x® € Vy(I).

4. f AvB € ®, then @+ A € Vy(I') or @+« B € Vy(I).

5. If /(A Vv B) e ®, then &x-Ax-B e Vg(D).

6. IfTIRA € ®, then ® + AB € Vyx(T) for each B € wsf(X,T).

7. If =1IIRA € ®, then & x ~(AX) € Vx(T, [X ~=A]).

We call an abstract consistency class saturated, iff for all & € Vy(I') and all atomic
propositions A € wsfg(X,I') we have ® x A € Vg(I') or & x —=A € Vy(I).

Remark 5.4.4 Note that if X is trivially sorted, then this definition corresponds to that
of Andrews in [And72]. In contrast to the presentation there, we work with saturated
abstract consistency classes in order to obtain total X-valuations, which make the proof
of the unifying principle much simpler and moreover yield much more natural Y-model
structures.

100

5 YHOCL: A SORTED HIGHER-ORDER LOGIC 5.4 Unifying Principles

Lemma 5.4.5 Let Vy be a saturated abstract consistency class, ® € Vx(I'), and A an
atomic sentence, then ® * (A V -~A) € Vy(T').

Proof: Since Vy is saturated and ® € Vy(I'), we must have ® « (A vV -A) € Vy(I') or
¢+ (A V -A) € Vy(I'). We prove the assertion by refuting the second alternative. If
¢+x-(AV-A) € Vy(l), then @U{-(AV-A),-A,-—-A, A} € Vy(I') by 5.4.3.5and 5.4.3.3.
Since A is an atomic sentence this contradicts 5.4.3.1. O

Theorem 5.4.6 For each abstract consistency class Vy, there exists an abstract consistency
class V. such that Vx(T') C V5 (T), and VY, is of finite character. Furthermore, Vs, is
saturated, iff V§ is.

Proof: (following [And86]) Let
V5(T) = {® C wsfe(X,T) | every finite subset of ® is in Vy(T)} .

To see that Vy(I') C V§(T'), suppose that ® € Vy(T'). Vy(I') is closed under subsets, so
every finite subset of @ is in Vy(I'), and thus ® € V§(T').

Next let us show that V§,(T') is of finite character. Suppose ® € V{(I') and ¥ is an
arbitrary finite subset of ®. By definition of V§(T') all finite subsets of ¥ are in Vy(I'), and
therefore ¥ € V§(I'). Thus all finite subsets of ® are in V§(I') whenever ¥ is in V§(T').
On the other hand, suppose all finite subsets of ¥ are in V§(I'). Then by the definition of
V§(I') the finite subsets of ¥ are also in Vx(I'), so @ € Vi(I'). Thus V§(T') is of finite
character.

Now we show that V§(I') is an abstract consistency class, and ® € Vg(I'). By
lemma 5.4.2 it is closed under subsets.

1. Suppose there is an atom A € ¢ such that -A € ®. Then {A,-A} € V()
contradicting 5.4.3(1).

2. Let (-—A) € &, and ¥ be any finite subset of ® x A and © := (V\ {A})*(-—A). O
is a finite subset of ®, so @ € Vy(I'). Since Vy(I') is an abstract consistency class
and (——A) € O, we get © x A € Vy(I'). We know that ¥ C © x A, and Vy(I') is
closed under subsets, so ¥ € Vy(I'). Thus every finite subset U of ® * A is in Vy(I'),
therefore by definition ® * A € Vi (I').

3.-7. are treated analogously to 2. (see [And86] for a complete presentation).

For the proof that V% is saturated let @ € Vy(I'), but neither ® * A nor ® * = A be in
V4 (T). Then there are finite subsets ®* and ®~ of ® such that &+ x A ¢ Vg(I') and
&~ +=A ¢ Vg(T') (since all finite subsets of ® are in Vy(I')). As ¥ := &+t U P~ is a finite
subset of ®, we have ¥ € Vy(I'). Furthermore, Ux A € Vy(I') or ¥x—A € Vy(I'), because
Vx(I) is saturated and {A,-A} C V. Vx(T) is closed under subsets, so ®* x A € Vy(I)
or ®~ x2A € Vyg(I'). This is a contradiction, so we can conclude that if & € Vx(I'), then
PxAecVLT)or dx-A e VL(T). O

Definition 5.4.7 (Extensional Abstract Consistency Class) An abstract consist-

ency class Vy is called an extensional abstract consistency class, iff the following
additional conditions hold for all sets & € Vy(I'):

101

5.4 Unilying Principles 5 YHOL: A SORTED HIGHER-ORDER LOGIC

8. f «(A="B)c ®and AcS’, then & (~AX = BX) € Vy(T,[X:2(A))).
9. If {A,B} C @, then ® x (A = B) € Vy(I).
10. If {~A, =B} C &, then & + (A = B) € Vy(I).

Theorem 5.4.8 For each extensional abstract consistency class Vy, there exisls an exten-
sional abstract consistency class Vs, such that Vs C V& and VY is of finite character.
Just as in 5.4.6 the abstract consistency class VY, is saturated, if Vy, is.

Proof: Let V§ be the abstract consistency class of 5.4.6, that is
V() = {® C wsfp(X,T) | every finite subset of ® is in Vg(T)}.

Then Vyx(I') C VL(I') and V§ is a saturated abstract consistency class. To convince
ourselves that the additional conditions for extensional case hold, we redo the proof
for 5.4.7(8) as a model for the rest.

Let A =R B € & and ¥ be any finite subset of ® x (AX = BX), we show that
U e VL(I,[X~=0(A)]). Clearly 0 := (¥ \ {A = B})* (AX = BX) is a finite subset
of ®, and therefore ® € Vy(I',[X~:0(A)]). Since Vx(I') is an abstract consistency class
and (A =% B) € 0, we have © + (AX = BX) € Vg(I,[X~=0(A)]). Furthermore, ¥ C
O x (A = B) and Vg(I) is closed under subsets, so ¥ € Vyg(I'). Thus every finite
subset U of ® *+ (AX = BX) is in Vy(I',[X7:0(A)]), therefore by definition we have
¢ x(A=B)e V(). O

Definition 5.4.9 (X-Hintikka Set) Let Vy be an abstract consistency class and H €
Vx(I'). Then H € V(1) is called a Vy-extension of H,iff H CH and I' CI". A set H
is called maximal in Vy(I'), iff for each sentence D € Vyx(I') such that H « D € Vy(I'),
we already have D € H. A set H € Vy(I') is called a ¥-Hintikka set for Vy and H, iff
H is maximal in Vy(T') and H C 'H.

We now give some technical properties of %-Hintikka sets that are useful for manipulat-
ing formulae. Since the case of extensional abstract consistency classes concerns a superset
of conditions, we always treat the non-extensional case first, and then extend the result for
the extensional case.

Theorem 5.4.10 (Hintikka Lemma) If Vy is an abstract consistency class, and H is
mazimal in Vy, then the following statements hold:

1. If A is atomic, then A ¢ H or -A ¢ 'H.

2. If(——A) € H, then A € H.

3. IfT by A=4,B, then we have A € H, iff B € H.
4. If(AVB) € H, then A€ H orBeH.

5. If (A VB) € H, then -A € H and -B € H.

(=N

. IfTIRA € H, then for each B € wsfy(X,T) we have AB € H.

102

5 YHOCL: A SORTED HIGHER-ORDER LOGIC 5.4 Unifying Principles

7. If -1IRA € H, then there is a B € wsfy(X,T") such that ~AB € H.

Furthermore for any atomic sentence A we have (A V -A) € H.

Proof: The assertions are all of the same form, and have analogous proofs, therefore we
only prove the first assertion. If -—=A € H, then H * A € Vg(I') (Vg(I') is an abstract
consistency class). The maximality of H now gives the assertion. The last claim of the
theorem can be proven with the same methods using 5.4.5. O

Theorem 5.4.11 If Vy is an extensional abstract consistency class, and H is a Y- Hintikka
setl for Vy,, then the following statements hold:

8. Let A,B € wsfp(X,T), then there is a C € wsfyny(X, 1), such that (~AC = BC) €
M, if (A = B) € H.

9. Let A,B € wsfg(X,T), then (A =B)eH, if {A,B} CH.
10. Let A,B € wsfe(X,T), then (A =B) e H, if {-A,-B} C H.

Proof: The proofs are analogous to those of 5.4.10. O

Lemma 5.4.12 Let Vy be a salurated abstract consistency class, lel 'H be mazimal in

Vx(T), and A € wsfe(X,1), then A € H, iff -A ¢ H.

Proof: We prove the assertion by induction on the structure of A. If A is atomic, then
H+A € Vy(I') or H¥—A € Vy(I'), since Vy is saturated and H € Vy(I'). The maximality
of H tells us that A € H or ~A € H. Now the assertion is a simple consequence of 5.4.3(1).

If A = -B, then -A = (--B) € H, and therefore B € ‘H by 5.4.3(3), contradicting
the induction hypothesis. If A =BV C, then B € H or C € H by 5.4.3(4). On the other
hand -A = =(BV C), and by 5.4.3(5) we have {-B,~C} C H, contradicting the inductive
hypothesis. The rest of the cases can be shown analogously. O

Corollary 5.4.13 If we assume that the abstracl consistency class in 5.4.10 and 5.4.11 1is
saturated, then the statements there also hold in the other direction. For instance, -IIRA ¢
H, iff there is a B € wsfg(X, 1) such that “AB € H. Furthermore, if A,B € wsfg(X,1),
then (A =B) e H, iff {A,B} CH or {-A,-B} C H.

Proof: Since all proofs are analogous we only show the case of existential quantification.
From 5.4.10 we know that -—A € H implies that A € H. So suppose that A € H, then
by 5.4.12 we know that =A ¢ H and again by 5.4.12 =—A € H. O

Lemma 5.4.14 Lel Vy be an extensional abstract consistency class and 'H a Y%-Hintikka

set for V. If A,B € wsfa(X, 1), then VX3n)(AX = BX) € H, implies (A =B) € H.

Proof: We have (A = B) ¢ H, iff -(A = B) € H by 5.4.12 (and possibly 5.4.10(2)).
So by 5.4.11(9) there is a Cg € wsfg(X,I') such that -(AC = BC) € H. If we assume
that VXg(AX = BX) € H, then we obtain (AC = BC) € H by 5.4.10(6), which contra-
dicts 5.4.12. O

103

5.4 Unilying Principles 5 YHOL: A SORTED HIGHER-ORDER LOGIC

Lemma 5.4.15 Let Vy be an extensional abstract consistency class and H € Vx(T'). If
H is a X-Hintikka set for Vy and H, then (A & B) € H implies (A = B) € H.

Proof: Let (A & B) € H, then by 5.4.10(5) we also have =A V B € H, and moreover,
AV -B € H. Because of 5.4.10(4) we have to consider two cases: if B € ‘H, then -B ¢ H,
and therefore A € H. If =A € H, then A ¢ H, and therefore =B € H. In both cases we
get the assertion (A = B) € H by 5.4.11(10) or 5.4.11(11). a

Lemma 5.4.16 If'H is a X.-Hintikka set and A, B are propositions, then either A = B € H
or A=-B¢cH.

Proof: A tedious, but straightforward computation using the results from lemma 5.4.10
shows that -(A & B) € H, iff A & -B € H. Now we conclude with 5.4.12, that either
A & BeHor(As -B)eH, from which we get the assertion by 5.4.15. O

We now come to the proof of the abstract extension lemma, which nearly immediately

yield the unifying principle for ¥-model structures. For the proof we adapt the construction
of Henkin’s completeness proof for X3¢ from [Hen50].

Theorem 5.4.17 (Abstract Extension Lemma) Let Vy be an (extensional) abstract
consistency class of finite character, and let H € Vy(I') be a set of propositions. Then
there exists a Y-Hintlikka sel H for Vy, and H.

Proof: For the case where Vy is extensional we construct H by inductively constructing
a sequence of sets H' € Vy(I') and negative annotated variable contexts I' such that
H' € Vg(I¥) and T*||[T"*1. Then the ¥-Hintikka set is H = U;epy H' € Vx(I'), where
I':= U;evI*. For the base case we choose H® := H and I'V :=T.

Now let H* and I'* be already defined, then we can arrange all propositions in wsfo (X, 1)
as two infinite sequences C', C?, ... and D?,D?, ..., where the D* are of the form —~(TIRA)
or =A =R B for some A € &7, and the C' are not. For each n € IN we inductively define
a set H"™ C wsfg(X,T?) of propositions by

1. H® .= H'.
2. If A"+ C" ¢ Vyx(I), then H™1 := H™.
3. If H" + C" € Vy(T) then H™*! := H™ « C™.
Let K := Unew H7", then clearly each of the H™ € Vy(I), and therefore K' € Vy(I'),

since Vy is of finite character. Now we inductively define negative annotated variable
contexts A" and sets K™ C wsfg(X, A*) of propositions by
1. AY:=T% and K° := K.
2. If K™+ D" € Vyx(T) and D" is of the form (=1I*A), then
K™= K" % -1I?A + ~(AX), where X ¢ Dom(A”) and A" .= A™ [X :A].

3. If K" x D" € Vy(T') and D" is of the form (A #% B) with A € S/, then
we choose K"t := K"+ A # B % (AX # BX), where X ¢ Dom(A") and
A= A" X (A

104

5 YHOCL: A SORTED HIGHER-ORDER LOGIC 5.4 Unifying Principles

and set H'T! = Unemw K" and it = Unemw A". We have to treat the cases 2 and 3 in
separate rules, since without 3 we would only obtain the witness XA # XB for A # B
instead of AX # BX.

Next we show by induction that K™ € Vx(I'™) for all n € IN. The base case holds by
construction. So let K™+ D™ € Vy(T') where D™ is of the form -1 A. By construction
X~ ¢ Dom(A™), so by 5.4.3(7) we have K™t € Vg (A™!). Since Vy is of finite character,
we also have H'*t! ¢ Vyg(T).

In order to prove the maximality of H, let A € wsfg(X,I') be an arbitrary proposition
such that H*D € Vy(I'). Since A has only finitely many free variables, there is an n € IN
with I'" by Az0. Furthermore, we know that A = C* or A = DF for some k£ € IN. If
A =CF then H" +C C H* C € Vg(I™) and H" x C € Vg(A), since Vy is closed under
subsets. Hence by definition we know that A € H™t!' C ‘H**! and therefore A € H. The
case for A = D* can be treated analogously.

If Vy is not extensional, then we do not have to treat the case where D* is of the form
(A #R B), and the same construction without rule 3 yields the desired Y-Hintikka set H.

|

We now use the Y-Hintikka set, guaranteed by the previous lemma, to construct a
Y-valuation for the X-term structure that turns it into a 3-model structure.

Corollary 5.4.18 (Unifying Principle for ¥-Model Structures) Let H € Vg(I')
and Vy, be a saturated abstract consistency class, then there is a Y.-model structure M

with M |= H.

Proof: Let H be the maximal Vy-extension guaranteed by 5.4.17, then we chose v(C) =T,
if C € H and v(C) = F, if -C € H. By 5.4.12 v is a total function, and by 5.4.10 v is
a Y-valuation of the ¥-term structure 7S(X,I'). Thus M := (7S8(X,1'),v) is a Y-model
structure with M = H. O

We now state a variant of the previous theorem, which is related to Andrews’ unifying
principle for type theory from [And71]. It is not a generalization precise of his theorem, since
n-equivalence, which we need for the functionality of ¥-model structures, is not considered
there. In particular, it seems difficult to extend our methods to obtain his result.

Theorem 5.4.19 (Unifying Principle for ¥X%7) If Vy is a saturated abstract consist-
ency class, and ® € Vy(T') is a finite set of sentences, then ® is XEn-consistent.

Proof: Let K be the class of Y-model structures and M € K the Y-model structure guar-
anteed by 5.4.18. By theorem 5.3.6 %7 is sound with respect to K, and therefore 5.3.13(2)
gives the assertion. O

We now turn to the unifying principle for general Y-models. In contrast to the case for
Y-models structures, we have to construct a Y-structure with Dg = {T,F}. We do this by
extracting a Y-congruence ~ from the ¥-Hintikka set H guaranteed by 5.4.17 and taking
the quotient pre-X-structure of the X-term structure with respect to ~y

Definition 5.4.20 Let Vy be an extensional abstract consistency class, and let H be

maximal in Vy. Then formulae A and B are called H-congruent (A ~y B), iff the
universal closure of A = B is a member of H.

105

5.4 Unilying Principles 5 YHOL: A SORTED HIGHER-ORDER LOGIC

Lemma 5.4.21 (Congruence Lemma) Let Vy be an abstract consistency class, and let
H # 0 be mazimal in Vy, then ~3 is a functional Y-congruence on wsf(%,T).

Proof: To obtain the assertion we first have to make sure that ~% is an equivalence
relation. We only give the tedious details of the proof of symmetry as an example for
proofs in abstract consistency classes, since the syntactic manipulations for transitivity
and reflexivity are analogous.

Let (A = B) = (VPa—o.PA = PB) € H and P € wsfy_o(X,I') be an arbitrary
formula, then by 5.4.10(6) we have (-PA = -PB) = ((-—PA) VvV .-PB) € H. Now
by 5.4.10(4) we have to consider two cases. If =—=PA € H, then PA € H, and therefore
PA Vv .-PB € H by 5.4.10(2) and 5.4.10(4). If on the other hand -PB € H, then
-PB V PA € H. In both cases we have (-PB = PA) € H for all P € wsfy_,¢(X,1'), and
therefore (A = B) = VPa_0.PB = PA € 'H by 5.4.10(6).

Now we verify the congruence property. Let A, B € wsfo(m(E, I'), we only prove that
CA ~y CB for all C € wsfg(X,I') whenever A ~4 B, since the other condition is
analogous. So let (A = B) = (VPa~o.PA = PB) € H and P € wsfyn)_o(Z.T) be an
arbitrary formula, then P(CA) = P(CB) € H, since I' bz Ay(n).P(CX):0(A) — O, and
therefore CA = CB € H, since P was arbitrary.

To see that ~¢ is functional let A,B € wsfp(¥,I') and AC ~y BC for all C €
wsfym)(X, '), then we have AC ="A) BC € Hforall C € wsfyay (X, 1). By 5.4.13 we know

that A #R B € M, iff there is a formula D € wsfa(m(E,F) such that AD =*®) BD € H,
thus A #8 B ¢ H. By 5.4.12 this entails A =" B € ‘H, and thus A ~y B. O

Remark 5.4.22 Note that in the proof of the congruence lemma we have implicitly used
lemma 5.4.15, since we have only considered the congruence properties of ~4 as given by
the presence of some equalities in H. Since we treat equality as an abbreviation of Leibniz’
indiscernability formula, the congruence properties follow almost immediately from the use
of logical constants and the definition of the abstract consistency class. Thus, with the
help of 5.4.15, we do not have to consider the congruence properties of equivalence and the
interaction of equivalence and equality.

Theorem 5.4.23 (Unifying Principle for General ¥-Models) If Vy is a saturated,
extensional abstract consistency class, then H has a countable general Y.-model.

Proof: We can assume without loss of generality (5.4.8) that Vy is of finite character, so the
preconditions of 5.4.17 are met, and therefore there exists a ¥-Hintikka set H C wsfg(X,1)
for Vy with H C H. By 5.4.21 the relation ~4 is a functional }-congruence, so the
quotient structure MM = TS8(E, 1) /ny, = (D*,@,7™) with respect to the H-congruence
is a Y-structure by lemma 3.3.10. From lemma 5.4.16 we know that ~4 has exactly two
equivalence classes on 7Sg(X,1'). Thus we have Dg = {T,F}, if we define T:= [A V -A]
and F := [A A ~A] for some atomic sentence. By lemma 3.5.13 we have Z,(A) = [p(A)] =
Tr((A).

By lemmata 5.2.11 and 5.2.7 it suflices to show, that I(Qm) is the identity relation on
Dp. Since my is an epimorphism Z,(A) = [p(A)] and Z,(B) = [¢(B)] be two arbitrary
members of Dy. By construction Z,(A) = Z,(B),iff (A = B) € H, iff T = Z(Q"AB) =
Z(QMQZ(A)QZ(B), thus Z(QM) is indeed the identity relation on DPp, and M™ is a general
¥-model.

106

5 YHOCL: A SORTED HIGHER-ORDER LOGIC 5.5 Completeness

We have Z,(H) = {T} for each assignment ¢ into D, since A V -A € H. Furthermore,
we have H C 'H, hence we get Z,(H) = {T}, and therefore M |= H.

If we pay attention to the constructions in the proof of 5.4.17, it is easy to see that M™
is indeed countable, since the sets of well-sorted formulae are countable. O

5.5 Completeness

In this subsection we use the unifying principles for XHOL to give short and elegant proofs
of completeness for ¥%n and YZE.

Theorem 5.5.1 The class Vy = {® C wsfp(X,I') | ® is X3IE-consistent} is an exten-
stonal abstract consistency class.

Proof: Obviously Vy is closed under subsets, since any subset of a 33E-consistent set is
Y %€-consistent. Also by definition no well-formed formula A can be in a 33E-consistent
set along with its negation —A, this establishes 5.4.3(1). Vy is saturated by 5.3.11.

To verify 5.4.3(3), 5.4.3(5), and 5.4.3(6) we note that, if g C = D' A...A D"
for some C € ® where ® is Y 3E-consistent, then ® U {D!, ...,D"} must be N3E-
consistent (5.3.13(3)). The observation that the proposition ((mAA-B)V(AAB)) & A &
B is tautologous can be used to extend this argument to a proof of 5.4.7(9) and 5.4.7(10).

If & is X3E-consistent, and ¢+ A and ®+B are both X3&-inconsistent, then ® fyq: - A
and ® Fy3 -B, so ® Fyge ~(A V B) by rule P (cf. 5.3.8), therefore (A V B) ¢ ®, which
is just the contrapositive of 5.4.3(4).

To establish the remaining cases 5.4.3(7) and 5.4.7(8), where the variable context is
extended with a new variable X7, let ® C wsfg(X,T') and X ¢ Dom(I'). We only show
the first case, since the other is analogous.

We assume that -1I* A € ® and ® is XF¢-consistent, but ®+—=(AX) is UFE-inconsistent.
So there is a L3&-derivation D: ® x5 AX by 5.3.13 and 5.3.8. By adding an application
of XZ(UG) the root of D' we obtain a X3E-derivation of ® tyg ITA, which contradicts
our assumption that ® is X%T-consistent. Thus ~(AX) ¢ ®. a

Corollary 5.5.2 (Henkin’s Theorem for X3¢) FEvery Y3&-consistent set of sentences
has a countable general Y-model.

Proof: By 5.5.1 we know that the class of sets of X%E-consistent propositions constitute
a saturated, extensional abstract consistency class Vy with ® € Vy(I'). Thus 5.4.23
guarantees a countable general Y-model for ®. O

Corollary 5.5.3 (Completeness Theorem for ©3¢) We have A tx3 B, iff A= B
with respect to the class of general Y-models.

Remark 5.5.4 In the light of the previous theorem it is not surprising that we can prove
the formula that was used to show incompleteness 5.3.14 of ¥%n in X%E. Here we sketch
the direct proof. We have Fyxge b < .=—b and by extensionality kFxge b = .-=b, which
expands to fFyge VPo_o0.Pb = P.-=b and by substitution kFyge ¢b = ¢.——b. O

With the same methods we can prove the following theorems.

107

5.5 Completeness 5 YHOL: A SORTED HIGHER-ORDER LOGIC

Theorem 5.5.5 The class Vy with Vy = {® C wsfp(X,I') | ® is XTn-consistent} is a
saturated abstract consistency class.

Theorem 5.5.6 (Henkin’s Theorem for X%) Fvery X%n-consistent set of sentences
has a countable ¥-model structure.

Theorem 5.5.7 (Completeness Theorem for ¥X%n) We haveA x5, B, iff A =B in
the class of YX-model structures.

Finally we can use the completeness theorems obtained so far to prove a compactness
theorem for our semantics.

Corollary 5.5.8 (Compactness Theorem) Let ® be a set of sentences, then ® has a
general Y-model (Y-model structure), iff every finite subset of ® has a general X-model
(X-model structure).

Proof: Let every finite subset ¥ of ® be satisfiable by a general Y-model, then ¥ is %3&-
consistent by 5.5.3, so ® is X 3E-consistent (every L3E-proof is finite), and thus satisfiable
by a general ¥-model by 5.5.3.

For ¥-model structures we use the same argumentation with ¥%n and 5.5.7. O

108

6 YHR: RESOLUTION FOR YHOL

6 YHR: Resolution for XHOL

In this section we present a sorted variant of Huet’s “Constrained Resolution” calcu-
lus [Hue72], and prove it correct and complete with respect to X-model structures.

Since resolution calculi operate on formulae in clause normal form, we will begin with a
discussion of an inference system RC that transforms arbitrary formulae into clause normal
forms, conserving satisfiability. The only conceptually difficult step in this reduction is
the one that deals with existential quantifications in the scope of universal quantifications.
This is traditionally treated by a technique called Skolemization [Sko19], which is basic-
ally a syntactic trick that allows to employ the occurs-check of unification to reject any
instantiation that does not obey the semantic restrictions imposed by V3-quantifications.
As Andrews pointed out in [And73] naive Skolemization is not sound in higher-order logic.
In fact, it is possible to prove an instance of the axiom of choice (which is known to be
independent of higher-order logic) in the resolution systems [And71, Hue72] with naive
Skolemization.

In his thesis [Mil83] Miller presents a sound version of Skolemization in the con-
text of expansion trees and higher-order matings, and further developed the technique
in [Mil91, Mil92] for the context of higher-order logic programming. Soundness of the
refutation calculus given there is guaranteed by explicitly keeping track of the variable
dependencies coming from the quantifier prefix and modifying the classical higher-order
unification procedure to reject all solutions that do not conform to these restrictions. In a
first-order setting a similar alternative to Skolemization has also been considered by Bibel
in [Bib82]. In section 4 we have already introduced the mechanism of variable conditions,
which we use for maintaining the satisfiability of generalized Y.-clauses during clause form
reduction.

6.1 Reduction to Clause Normal Form

One of the most prominent features of resolution calculi is that they manipulate formulae
in clause (conjunctive) normal form. The conjunctive normal form is a prenex normal
form, where all existential quantifications have been eliminated and where the matrix has
been transformed by DeMorgan laws such that the matrix is a conjunction of disjunctions
and such that negations have minimal scope. This normal form is traditionally written in
clause form where the quantifier prefix is dropped, and the matrix is written as a set of
clauses, which are in turn sets of literals. This set notation emphasizes the commutativity,
associativity, and idempotence of conjunction and disjunction.

In X'HR we take Yi-clauses to be disjunctions of literals, which are just atomic formulae,
labeled with their intended truth value. In contrast to the tradition in first-order resol-
ution theorem proving, we do not eliminate existential quantifications by Skolemization,
but rather use a variable condition to keep track of the dependencies. Finally, since -
unification is undecidable, we have to augment clauses with unification constraints that
allow us to delay the computation of Y-unifiers. These unification constraints of a X-clause
are sets of negatively labeled equality literals.

Definition 6.1.1 (Literal) Let A be a proposition and a € {T,F}, then we call a pair
A“ a labeled proposition. A proposition A where head(A) is a parameter or variable
is called atomic. Labeled propositions A® are called literals, if A is atomic. For the

109

6.1 Reduction to Clause Normal Form 6 YXHR: RESOLUTION FOR YXHOL

definition of ¥-clauses we will need a special kind of literals of the form (A =’ B)F where
I'ty A=A, T Fy B:B, and A Rdom B. We call these literals pairs, since they serve the
same purpose as pairs in unification problems, and we often write them as A #’ B to
conserve space. If we specifically want to reference literals that are not pairs, we call them
proper literals.

Definition 6.1.2 (2¥-Clause) Let I' be an annotated variable context and R a variable
condition for I'. If I' Fy, M;z0 and o; € {T,F}, then we call a formula D := (I"R).CV € a
generalized X-clause, if C is of the form C := M{* V...VM}" and if £ is a conjunction
of pairs of the form A' #* B' A ... A A™ £7 B™. We call (I:R).C the clause part
of D and (I': R).€ the unification constraint of D. We call C a Y-clause, iff the M;"
are literals. In the following we will identify Y.-clauses that only differ in the ordering of
literals, and we will often treat X-clauses as sets or multisets of literals.

Remark 6.1.3 Let £:= A =" Bl v ...v A™ =" B™ be the “syntactic negation” of the
set £ of pairs of D, then F := (I:R).€ is a Y-unification problem. Since this “syntactic
negation” is only an adaptation to the context of Y-clauses, where unification problems
appear as constraints, we will often neglect this distinction, and apply all methods from
section 4 directly to £.

Notation 6.1.4 We use the symbols A% B“, ... for labeled formulae and literals, £, F, ...
for disjunctions of pairs, and C,D,... for disjunctions of labeled formulae, literals, and
pairs.

Since each generalized X-clause C = (I':R).C determines a unique variable condition
Rr, we say that o is a C-substitution, iff ¢ is an Rp-substitution.

Definition 6.1.5 (Empty YX-Clause) We call a Y-clause initial, iff its unification con-
straint is pre-X-solved, and terminal, iff if does not contain any proper literals, i.e. n = 0.
In accordance with the practice from first-order resolution we call the class of X-clauses
that are initial and terminal empty, since these play the role of the empty clause in our
resolution calculus and we denote them collectively by O.

We present the process of transforming a sentence A into clause normal form as a
calculus RC, in order to facilitate the study of the interaction with the resolution calculus

YHR defined below.

Definition 6.1.6 (Reduction Rules (RC)) The objects manipulated by the RC-calculus
are generalized X-clauses. Since RC-derivations do not change the constraints of generalized
Y-clauses, we only show the effects on the formula part.

We use the rules with the convention that V is associative (as we have already suggested
by leaving out the parentheses) and commutative. Furthermore, after each application the

110

6 YXHR: RESOLUTION FOR YXHOL 6.1 Reduction to Clause Normal Form

formulae in the new Y.-clauses are reduced to sorted n-normal form.

(I'R).CV (AAB)T (I'R).CV (A AB)T
RC(AD) RC(AT)
(T:R).Cv AT (I:R).Cv BT

(T:R).CV (A AB)F
RC(V
(I:R).Cv AF v BF
(I'R).CV (-A)T . (I:R).CV (-A)F

RC(— RC(-F)
(T:R).CV AF (T:R).CVv AT

(T:R).CV (MRA)T
(I, [XT=A:R).CV AXT

RC(V)

(T:R).CV (TI"A)F
(T, [X~=Al: R U (Free(A) x {X~})).CV (AX)F

RC(3)

We can extend this calculus to act on sets of sets of generalized X-clauses. Since the
notions are equivalent, we will always adopt the notion most convenient for our purposes.

Lemma 6.1.7 The reduction relation induced by RC on sels of generalized Xi-clauses is
confluent, terminating, and the RC-normal forms are Y.-clauses.

Proof: For the confluence note that the rules of RC act only on one labeled proposition in
the Y-clause without changing the others, and applicability of the rules is determined by
the head symbol of the chosen proposition.

By a simple induction over the number of logical constants that occur at top level in
a generalized Y.-clause we observe that the RC-rules can only be applied finitely often to a
finite set of generalized Y.-clauses, so the reduction relation is terminating. O

Remark 6.1.8 Sometimes we do not want to exercise the idempotence of V to collapse
multiple occurences of literals in Y-clauses in order to obtain tighter control over RC-
derivations in the proofs of the lifting lemmata. In these cases we use RC with an explicit
inference rule for collapsing multiple occurrences of literals:

(I"R).M*vM*V C
(I:R).M* Vv C

RC(coll)

Definition 6.1.9 (Clause Normal Form) Let C be a generalized X-clause, then we call
the set CNF(C) of X-clauses that are derivable from C in RC the clause normal form of C.

111

6.1 Reduction to Clause Normal Form 6 YXHR: RESOLUTION FOR YXHOL

If I' is an annotated variable context, and A® is a labeled proposition such that I' Fy A:O,
then we call the set CNF((I:0).A|T) clause normal form of A, and denote it with
CNF(A). Note that, since RC conserves long #n-normal forms, all literals in CNF(A) are
in long #n-normal form as well. If ® = {Aq,..., A, } is a set of sentences, then we call the
set CNF(®) := U;,, CNF((I':0).AT) the clause normal form of &.

Remark 6.1.10 Note that only top level occurrences of propositional subformulae are
considered in clause normal form. In general there be “buried” propositional subformulae
in general form in X-clauses. For instance, if A :=VYXg_oVYp.X(—=—Y)V =(XY), then
clearly Fy A:O and

CNF(A) = ((XT:0 — O], [Yt:0]: 0).(X.--Y)T v .(XY)F

We now proceed to give a definition of validity for Y-clauses that are the basis of the
soundness considerations. This notion of validity takes positive variables in generalized -
clauses to be implicitly, universally quantified, and uses the notion of Rp-correspondences
as a semantic counterpart of variable conditions that specify the dependencies of variables
recorded during the clause normal form transformation.

Definition 6.1.11 (Validity for ¥-Clauses) Let M = (D,@,7,v) be a ¥-model struc-
ture, I' an annotated variable context, and R a variable condition for I'. If Y~ € Dom(I'7),
{X{, ..., X} =R YY), and I'(X;) = A, then a total function fy:Dp, X -+ x Da, —
Dr(y) is called an Rr-function for Y in M. We call a complete set {fy | Y € Dom(I'")}
of Rp-functions an Rp-correspondence for M. Note that in the case, where n = 0
Y~ € Dom(I'") is not in Im(R), but we still need an fy € Dr(y) in F.

If F is an Rp-correspondence for M and ¢ is a I-assignment into M, then we define
the I'-assignment @r by

e(Y), if Y ¢Dom(I'7)
er(Y) =< frQp(X;)@..-Qp(X,), if Y € Dom(I'")and
{X1,.., X, } =RYY)

Let C = (I R).C be a generalized Y-clause, ¢ a ['-assignment, and F an Rp-correspondence
for M. We say that a labeled proposition M® in C is satisfied by ¢ in M, iff v(Z,,.(M)) =
a, analogously for a pair A #° B in C, iff Z,,.(A) # Z,,(B). We call C valid in M
(M = C), iff there is an Rrp-correspondence F for M such that for all I'-assignments ¢
there is a labeled proposition or pair in C that is valid in M.

A consequence of this definition, which regards positive variables as implicitly, univer-
sally quantified, is that the names of these do not carry any semantic meaning.

Lemma 6.1.12 (a-Conversion for X-Clauses) Let ' = A, [X:A]and ' = A, [Y:A] be
annotated variable conteztls, and let R be a variable condition for I'. Then for any Y-model

structure M we have M = (I'"R).C, iff M = (I'": R").[Y/X]|C where R' = R[Y/X].
Proof: Let C = (I:R).C, C' = (I":R').[Y/X]C, and M [= C, then there is an Rp-

correspondence F such that for all I'-assignments ¢ into M, some labeled proposition
or pair in C is satisfied by ¢ in M. Clearly F is also an Rf,-correspondence. Let

112

6 YXHR: RESOLUTION FOR YXHOL 6.1 Reduction to Clause Normal Form

¢ =, [p(X)/Y], then ¢ is a I'-assignment into M with ¢’ = ¢r,[¢(X)/Y]. Thus
for a labeled proposition M* in C, we have Z, (M) = a = Z,,(M) (M" is satisfied by
¢'), or some pair in C’ is satisfied by ¢’ in M. Since we have chosen ¢ arbitrarily for all

I'-assignments ', there is a labeled proposition or pair in C’ that is satisfied by ¢’, so C’
is valid in M. O

General Assumption 6.1.13 Just as in the case of X-unification problems (cf. 4.4.8) we
consider the declaration (I': R).in a Y¥-clause as a binder for all variables in Dom(I'"), and
we keep a-conversion for Y-clauses implicit, renaming them whenever variable disjointness
is required.

Remark 6.1.14 For generalized Y-clauses of the form (§: 0).AT, the notion of validity for
Y-clauses coincides with the classical notion, as defined in 5.2.10. Indeed if the variable
condition is empty, and the variable context does not contain negative variables, the variable
correspondence must be empty too. Since A is a sentence, its validity is independent of
the assignment considered.

Lemma 6.1.15 If I' is an annotaled variable context, R is a variable condition for I' and

I' by C=4,D, then M |= (I'R).C, iff M |= (I':R).D for any X-model structure M.

Proof: The assertion is a direct consequence of lemma 3.3.7 and the definition of validity
for Y-clauses. O

Lemma 6.1.16 Let C Fge D and M be a ¥-model structure, then M |=C, iff M = D.

Proof: Without loss of generality we can restrict ourselves to RC-derivations of length 1,
since the general case follows by a simple induction on the length. Also we only present
the proof for the case where C Fre D by RC(3), since all others are unproblematic, because
the variable condition is not altered by the transformation.

If ¢ = (I:R).(II"A)F v C, then D must be of the form D = (I',[X ~=Al: R").CV(AX~)F
up to sorted B7n-conversion and R’ := R U (Free(A) x {X}).

If M =(D,Q,Z,v) = C, then there is an Rp-correspondence F for M such that for all
I-assignments ¢ there is a labeled proposition or pair in C that is satisfied by ¢ in M. We
can without loss of generality assume that v(Z, . (II*A)) = F, since otherwise the assertion
is trivial. As v is a Y-valuation, there is an a € Dp such that Z,,(A)@a = F, and thus
Zy(AX™)=F, where ¢ := ¢r,[a/X]. Since for any ¢’ that agrees with ¢ on Free(A) =
{X1,..., X}, we have Z,(A) = Zy(A), this ¢ only depends on ’Q/J|Free(A) = 997‘—|]F‘I'ee(A)'
Since we have made no assumptions on ¢, the set

fx ={((X1),...,9(X,),a) | ¢ is a I'—assignment }

is a total function, which makes 7' := F % fx to an R’-correspondence. Furthermore, we
have ¢ = pr,[a/X 7] = ¢z, s0 I, ,(AX ™) =F for all I'-assignments ¢ into M and thus
M = D by definition.

For the converse direction let M |= D. We assume the existence of an Rﬁ[X_:A]—corres—
pondence F' for M such that for all I', [X ~:A]-assignments ¢ we have v(Z, ,(AX ™)) = F.
Since X~ € Dom(I'",[X ~zA]) there must be a function fx:Dp(x,) x -+ X Dp(x,) —

113

6.1 Reduction to Clause Normal Form 6 YXHR: RESOLUTION FOR YXHOL

Drx-y in F'. Let F:=F"\ {fx}, then F is an R-correspondence and @z =
or, [[xQp(X1)@- - Qp(Xy)/ XT]. Thus Z, . (AX) = T, - (A)Q(fx Qp(X1)Q - - - Qp(X)),
and therefore v(Z, (II*A)) = F, since v is a ¥-valuation. Since we have taken ¢ to be an
arbitrary I'-valuation, we have M |=C.

Since the RC-rules are used with implicit subsequent (Bn-normalization, we need
lemma 6.1.15 to complete the proof of the assertion. O

If we instantiate this result with maximal RC-derivations, we obtain the following clause
normal form theorem.

Theorem 6.1.17 (Clause Normal Form Theorem) Let ® be a set of sentences, and

let M be a ¥-model structure, then M |= @, iff M = CNF(®).

Proof: For any sentence A € ® we have M |= A, iff M = (T:0).AT (cf. 6.1.14) and
by 6.1.16 M |= C for any X-clause C € CNF(A). We obtain the assertion by extending
this argument to the set ®. O

Note that this theorem is stronger than traditional variants for calculi that use Skolem-
ization, which can only assert that satisfiability is preserved, since Skolem functions have to
be given exactly one interpretation which entails an implicit uniqueness condition for the
models of Skolemized formulae holds (that need not be valid in the models of the original
formula). Now we convince ourselves that Y-instantiation also conserves satisfiability with
respect to Y-model structures.

Theorem 6.1.18 Let I' be an annotated variable context such that TT(X) = A, and let
R be a variable condition for T. If M is a ¥-model structure with M |= (I',[XT:z:A]: R).C
and T by R(X T, A), then M |= (T: R[A/XT]).[A/XT]C.

Proof: Let M = (D,@,7,v),C = (T, [Xt:A]: R).C, and ' = (I"R[A/XT]).[A/XT]C,
then there is an Rp-correspondence F for M, such that for all I-assignments ¢ there
is a labeled proposition or pair in C that is satisfied by ¢. Let Y~ € Dom(I'") with
R7UY)={X",X,,...,X,.}, then there is a function fy € F with fy: Dr(x-) X Dr(x,) X
e X DF(XH) — DF(Y) and (R[A/AXV_])_I(Y) = {Zl, ey Ly Xo, . .,AXVTL}, if Free(A) =
{Z1,...,7Z}. Furthermore, let

Sy Dr(zy) X -+ X Dpz,) X Dr(x,) X -+ X Dr(x,) — Pry)

be defined by f;,@a;@...Qay = fyQZ},,/71(A) and fi == fy for all Y € Dom(I'") with
X~ ¢ R7UY), then F':={f}; | fy € F}is an R[A/X]p-correspondence and moreover,
JyQu(Z1)@---Qp(Z,) = fyQI,(A), so or = ¢,[L,,.(A)/X], and therefore Z, ,(M) =

I@f,[z¢f(A)/X](M) = a by the substitution value theorem 3.3.8. O

Lemma 6.1.19 Any empty clause O is unsatisfiable with respect to YX-model structures.

Proof: We have defined empty clauses to be the initial and terminal clauses, thus O must
be of the form (I': R).E, since it is terminal, and furthermore, the unification constraint
&= A 7£? B;Vv...vVA, ;é? B,, must be pre-X-solved, since O is initial. Thus by 4.6.6
there is an Rr-substitution @, that solves all pairs in O. Thus if M | O, then by 6.1.18
M= (T:R(6)).0(A1) A7 0(By) V...V 0(A,) # 6(B,,), which is clearly impossible. a

114

6 YXHR: RESOLUTION FOR YXHOL 6.2 The Resolution Calculus YHR

6.2 The Resolution Calculus ¥HR

Now we turn to the actual resolution calculus X’HR. The previous results set the stage by
giving a semantic justification of a resolution calculus that proves well-sorted sentences A
by converting (0: (Z)>.AF to clause normal form and then by deriving the empty clause O
from that.

In contrast to Huet’s calculus we allow pre-Y-unification transformations to be applied
to Y-clauses during the resolution process. This generalization allows us to investigate
more realistic strategies than in Huet’s calculus, which uses the “lazy unification” strategy,
that only allows unification to happen after a terminal X-clause has been derived.

Definition 6.2.1 (Sorted Higher-Order Resolution (XHR)) The calculus YHR is a
variant of Huet’s resolution calculus from [Hue72|, and has the following rules of inference:

(I:R).N*vC (I"RH)M°VD a#p
(I,T"RURN.CVDVM #" N

YXHR(Res)

(I"R).M*VN*VvC
(I:R).M*VCVM # N

YHR(Fac)

which operate on the clause part of X-clauses. For the Y’HR(Res) rule we assume that
the contexts I' and I’ are disjoint. Note that this assumption does not result in a loss
of generality, since we can always take a suitable a-variant by 6.1.12. For manipulating
the unification constraints XHR utilizes the ¥P7T rules YPT (flex — rig) and YPT (guess)
(cf. 4.6.7) by extending them to X-clauses in the obvious way. The following inference rule

(I, [F*=A]:R).FUF vC Iy R(F*,P)

— YHR(Prim)
(I,C,[P:A:R[P/X]).FU* vCVF# P

generates instantiations for flexible literals, i.e. literals where the head symbol is a positive
variable. Here P € AIE\(E,F,C) is a general binding of sort A that approximates some
logical constant k € {A,—,11B | B € S}. ¥’HR has one further inference rule

(I"R).CVEVE,
C

YHR(Solv)

where &, is X-solved in £ V &, and C € CNF((I':R).0(C) vV £). This rule propagate
partial solutions from the constraints to the clause part, and thus help detect clashes early.
Since the instantiation may well change the propositional structure of the Y-clause by
instantiating a predicate variable, we have to renormalize the Y-clause on the fly.

115

6.2 The Resolution Calculus YHR 6 YXHR: RESOLUTION FOR YXHOL

Definition 6.2.2 We call a set ¢ of well-formed sentences XHR-refutable, iff O is de-
rivable from the set of ¥-clauses CNF(®). A YHR-derivation R of an empty X-clause O
from a set C of X-clauses is called a XHR-refutation of C. By a slight abuse of notation
we call a sentence A YHR-refutable, iff CNF(((:).AF) is S HR-refutable.

Example 6.2.3 Let ¥ := {[¢z:O0 — O], [=0]}, A := (cb), and B := ¢(-—b), then we can
convince ourselves that there is no ¥’HR-refutation of C := -A A B: The clause normal
form of C is {{0:0).(cb)F, (0:0).c(==b)T. Clearly the only rule that applies to CNF(C)
is YHR(Res) yielding (0:0).(cb) #£7 ¢(==b), which simplifies to the unsolvable constraint
(0:0).b #° (=-b).

Lemma 6.2.4 Let ® be a set of X-clauses and ® Fyxpr D, then for any Y-model structure
M we have M =D, if M |= ®.

Proof: Let D: ® Fyyr D, we prove the assertion by induction over the structure of D. If
D is the empty XHR-derivation, then the assertion is trivial. If D is obtained from & by
Y'HR(Res), then we have the following situation:

D 2
(I:R).N*vC (I":R)M°VD a#p
(T,T"RURN.CVDVM £' N

YHR(Res)

By inductive hypothesis,there is an Rp-correspondence F and an Rf.,-correspondence F’
such that for all I'-assignments ¢ and I"'-assignments ¢’ we have Z, . (N) = aor Z, (L) = v
for some L” € C and I(’OI}"(M) =B or Iw’f,(K) = § for some K° € D.

Clearly F U F'is an Rr U R[.-correspondence for I', I”, since we have assumed variable
disjointness, and furthermore, any I', I'-assignment 1 is of the form ¢U¢’. We now convince
ourselves, that Z, (L) = 7 for some L” in CVD VM #" N. We have two cases: if
Ty, (L)=7vor waf,(K) = 6, then the claim is trivial, in the other case we have

Lyry(M) =T, (M) = @ # 5Ly (N) =Ty, ., (N)

and in particular, Z, (M =? N) = F. Now the only remaining non-trivial case is
that of Y’HR(Solv), since the case of Y’HR(Fac) is analogous to Y’HR(Res), and the rules
YHR(Prim), YPT(flex — rig), and XP7 (guess) only add pairs. This entails the assertion,
since additional pairs weaken disjunctions.

The YHR(Solv) inference rule can be divided into two parts, first instantiating a Y-
clause C = (T:R).CV X #" A to a generalized Y-clause C' := (I R[A/X]).[A/X]C, and
then reducing it to clause normal form. Thus soundness of this case is a consequence
of 6.1.18, the inductive hypothesis, and 6.1.17. O

Theorem 6.2.5 The YXHR calculus is sound, i.e. if A is a well-sorted sentence such thal
A is YXHR-refutable, then A is unsatisfiable with respect to Y-model structures.

Proof: Let & = CNF((0:0).A). If ® Fyyr O, then ® is unsatisfiable with respect to
Y¥-model structures by 6.2.4 and 6.1.19. Now the clause normal form theorem 6.1.17 gives
the desired result. O

116

6 YHR: RESOLUTION FOR YHOC 6.3 Lifting Properties for YHR

6.3 Lifting Properties for YHR

A central part of the completeness proofs for unification-based refutation calculi are the lift-
ing properties. The central lifting theorem for ¥HR states that, if 8(A) is XHR-refutable,
then there exists a (lifted) YHR-refutation of the proposition A. Note that, since YXHR
differs from Huet’s constrained resolution in that we allow interleaving 3-unification and
resolution, the lifting lemmata become considerably more complex and take up most of the
work in the completeness proof for XHR.

The key technical device for the lifting property is the notion of a clause set isomorphism,
which ties the structure of X-clauses in X HR-derivations to the structure of the lifted X HR-
derivations.

Definition 6.3.1 (Clause Set Isomorphism) Let C and C’ be generalized Y-clauses
such that ® and ®’ are the respective sets of proper labeled formulae in C and C’, then we
call a bijection w: @ — @’ a clause isomorphism, iff w(M®) is of the form N®. If the con-
straints of C and C’ are (I: R).£ and (I": R’).£’, and moreover § is a C-substitution, we say
that w is §-compatible, iff (M) = §(M) and wsPU((I:R).EV) C wsPU((I": R').E").

Let @ and V¥ be sets of Y-clauses, then a bijection w:® — W together with a family
of mappings we:C — w(C) for all C € @ is called a clause set isomorphism, iff all w¢
are clause isomorphisms. We call w #-compatible, iff all we are. Similarly we can define
(-compatible) isomorphisms of derivations as isomorphisms of the underlying trees such
that corresponding nodes have clause isomorphisms.

We need the following technical lemma, which allow us to mimic RC-derivations by
Y'HR-derivations using XHR(Prim) inferences and factorization.

Lemma 6.3.2 (Lifting Lemma for RC) Let C,C@,C} be generalized Y-clauses and lel
Co Fre C~9 be a maximal RC-derivation. Furthermore, let 8 be a C-substitution, and let
w:C — Cy be a B-compatible clause isomorphism. Then there exists a YHR-derivation
C btymr C, a C-substitution 8 with 6 = f[Dom(0)], and a 6-compatible clause isomorphism
&:C — 5@, so that we have the following commutalive diagram.

Co Fre Co
0% 5}3
C btsm C

Proof: As remarked above the number of nodes in maximal RC-derivations that do
not exercise idempotence of V is independent of the concrete YHR-derivation. So let
Dy:Co Fre Cy I—n;(w”) C~9 where the RC-derivation 759: Chbre C~9 consists entirely of RC(coll)
steps collapsing duplicate literals. We first construct a YHR-derivation R':C Fgur C' by
induction on the number of nodes in Dy, and then extend this appropriately by YHR(Fac)
steps to account for idempotence.

If Dy is empty, then Cj = Cy, so we obtain the assertion with C' := C, ¢’ := 6, and the

117

6.3 Lifting Properties for X HR 6 YHR: RESOLUTION FOR YHOC

empty YHR-derivation. If Dy begins with an RC(V)-step, then Dy is of the form

Co = (I:R).HF)FvoC)vF —_
(r:R).DEvDEveCc)v F

(I:RYDVF

and C = (A:Q).FV CV ¢, since w is a §-compatible clause isomorphism. Note that
the head of F must be a positive variable P*, since FT is a literal (head(F) cannot be a
constant or negative variable h, since then head(6(F)) would be h, which contradicts our
assumption). On the other hand, the head of §(F) must be the constant V, since RC(V) acts
on O(FT), thus head(#(P)) is the logical constant V, or §(P) is a projection formula. Let
AT(P) = A, then there is a general binding G € Agead(e(P))(E, A,(C)and a Y-substitution
p such that A by p(G)=g,0(P) according to the general binding theorem (4.2.4). So let

(A:Q)FVCVE
(A,C:Q[G/F]))FVCVEAP# G
(A QhYH"'v...VH"V[G/P]CV[G/P]E

YHR(Prim)
Y HR(Solv)

where H: (A,C: Q[G/F)).[G/P]F Fre (A: Q') H{* V...V H/" is a maximal RC-derivation
in YHR(Solv). We have to consider the possibility that [> 2 in the conclusion of
R, since G may contain more than one logical constant, if the corresponding term de-

claration does. Clearly 6" :=60 U p is a Q[G/P]a¢ substitution. Furthermore, we have
Aty (PT)=p,p(G), and therefore

wsPU(X, (A: Q).[G/PIEA P =" G A Em) C wsPU(X, (A: Q).EA &)
by 4.4.15, and thus
wsPU(Z, (A: Q).EAP =" G A &) C wsPU(E, (I'R).F)

since w is #-compatible, so w is also #”-compatible. Since [G/P] approximates 6, the same
RC-derivations apply to §(F) and [G/P]F. Thus by a simple induction on the length of H
we obtain a nonempty RC-derivation Dgn:Cy b Cj and a 6”-compatible clause isomorphism
W' C" — Cj. Finally, we have (A,C: Q[G/P]).[G/P]F V [G/P|C ke C" by a maximal
RC-derivation that is nonempty, as the head of §(F) is V.

Since we do not exercise idempotence of V and RC is confluent, there must be an RC-
derivation Dy:Cj Fgre Cj that has fewer nodes than Dy. Thus we obtain the assertion
with the inductive hypothesis by combining ¥’HR-derivations according to the following
diagram:

Co Fre ¢/ bt Ch
gl[w 0// w// 0/ <.u/

C Fomrprimy C" L

118

6 YHR: RESOLUTION FOR YHOC 6.3 Lifting Properties for YHR

This completes our first goal for the RC(V) case. Let us recapitulate the argumentation: we
have started out with an RC(V) node in Dy and have simulated that by a YHR(Prim) step,
using a general binding G that approximates the head V. Since G can have more logical
constants, the reduction of clause normal form in the subsequent YHR(Solv) step can be
an RC-derivation of length greater than one. Fortunately the same RC inference rules apply
to both generalized clauses. So we have identified a RC-derivation D}, and obtained the
assertion by applying the inductive hypothesis to the remaining reduction. The remaining
cases are similar, and can be solved with the same methods. With this inductive argument
we have constructed a Y HR-derivation D':C Fre €' and a 6’-compatible clause isomorphism
w':C" — Cj. We did not exercise the idempotence of V, since we would had more problems
maintaining the clause isomorphisms. Accounting for this is the next and final step of the
proof.

Now Cy is obtained from C; by collapsing duplicate literals, which we simulate by
YHR(Fac) steps on the more general level. Let g = #', we proceed by constructing a 6-
compatible clause isomorphism & from w' by induction on the structure Dy: Cy Fre Co. It
Dy is empty, then we take @ := &', and there is nothing to do. If Cp is nonempty, then it
must be of the form

Cy

(T:R).H(M*) Vv §(N¥) v (C)V F
(T:R).6(M*) Vv B(C)V F

RC(coll)

where §(M) = #(N), then we can imitate the step with the following one

CI

(A QYM*VN*VCVE
(A QVM*VCVM# NVE

YHR(Fac)

and inductively obtain a YHR-derivation D:C' Fymr C. Furthermore, & := w_pn« is a
f-compatible clause isomorphism, since

wsPU(S, (AR Q).EAM="NAE) = wsPU(E, (A Q).ENOM) =" (N)A &)
= wsPU(X(I'R).EN &)

by 4.4.15 and the fact that 5(1\/[) = g(N), so we obtain the assertion by inductive hypothesis.
Finally, it only remains to combine the two Y%’HR-derivations, we have constructed in this
proof, according to the following commutative diagram:

Cy Fnr Cy Fre Co

0% O’Lu’ 5[@
C

C Famr C Fumr

119

6.3 Lifting Properties for X HR 6 YHR: RESOLUTION FOR YHOC

Lemma 6.3.3 (RC-Normalization Lifting Lemma) Let A by A:O and I by 6:AT,
then there is a YHR-derivation D of a set = of initial X-clauses from CNF(A®%), a X-
substitulion 0, and a 8-compatible clause sel isomorphism &: ® — CNF(6(A)*), so thal
we have the following commutative diagram.

B(A)™ Fre CNF(f(A)%)
0 0|o
A® Frg CNF(A®) by ®

Proof: Let ® = CNF(6(A)*) and ¥ = CNF(A®). Furthermore, let C € ¥ be a Y-clause
and R: (A:().A% b C its reduction to clause form. Clearly the same RC-reductions also
apply to (I': 0).0(A%), since if head(A) € {V,—,II?}, then head(A) = head(6(A)). Thus
we have an RC-derivation D: (I':(0).0(A*) Fre Cg and a clause isomorphism w:C — Cy. As
the constraint parts of C and Cy are empty, w is trivially #-compatible.

Now Cy need not be a X-clause yet, so let R:Cy Fre C) € O be a maximal RC-derivation.
By the lifting lemma for RC (6.3.2) there is a Y-clause C’, a ¥’HR-derivation D:C Fyyr C,
and a ¢'-compatible clause isomorphism w':C" — Cj.

Thus for any X-clause C € ¥ and each X-clause Cy € © we have a YHR-derivation
C Fxur C' and a #'-compatible clause isomorphism w’:C’ — Cj. Hence we obtain the
assertion by collecting all such Y-clauses C’ in the set ®. If we take care to keep the
domains of the contexts in the respective derivations disjoint, then the X-substitutions 6’
all have the form 6 U p, where all p have disjoint domains, so we can construct a single
Y-substitution 6 := § U Ue p, which verifies the assertion. O

Lemma 6.3.4 (Lifting Lemma for YXHR) Let w: ¥ — O be a 0-compatible clause set
tsomorphism and D: 0 Fyyur Cg such that the constraint of Cy is pre-Y-unifiable, then there
is a YHR-derivation ¥ Fyyr C and a 8'-compatible clause isomorphism w':C — Cy for a
Y -substitution €', so that we have the following commutative diagram.

O Fsmr Gy
O[w H’LJ’

Proof: We prove the assertion by induction on the structure of D. If D is the empty tree,
then we choose w’ := w and #' := 6, and obtain the assertion from the definition of clause
set isomorphism.

If D ends in a Y’HR(Res) step, then we have the following situation:

0,0,
Ch Cy
———— YHR(Res)
Cy

By inductive hypothesis we have Y HR-derivations R": ¥ Fgyr C" and R": ¥ bFypr C” and
¢'-compatible clause isomorphisms w’:C" — Cj and w”:C" — Cj/ for a Y-substitution #'.

120

6 YHR: RESOLUTION FOR YHOC 6.3 Lifting Properties for YHR

We can restrict ourselves to a single Y-substitution 6" here, since the parent Y-clauses can
be renamed to suitable a-variants that have disjoint variable contexts. Since w’ and w"” are
clause isomorphisms, we must have C’ = (A”: Q). A*VC'VE and C" = (A": Q').BPvC"vE"
with a # 3, and D must be of the form

0 D © .
(T: RY.0(A)* voC)vF T"R".6B) v F"

(I, T R'UR".O(C)V O(C"YV F'vF"VOA)# 6(B)

YHR(Res)

Let R be the following ¥’HR-derivation:

\II R/ @ R//

(A QN A*vC'vE (A"Q")\BPvC"vE"
(A,A":Q'uQM.C'vC'VEVE'VA£B

YXHR(Res)

Now we trace the clause isomorphism through the ¥HR-derivation. Let us first treat
Y-clauses as multisets to avoid the hassle with factoring. By #'-compatibility from the
inductive hypothesis we have

wsPU(X, (A Q). A &)
wsPU(X, (A": Q").E" A Epr)

wsPU(X, (T: R").F")
wsPU(X, (I'": R").F")

N 1N

and moreover,
wsPU(X, (A: Q).A="BA &) =wsPU(X,(I"R).0(A) =" 0/(B) A &)
by 4.4.15,if we set A := A", A", Q:=Q U Q" T :=1"T", and R := R' UR", so that

wsPU(X, (A: Q).E'NE"NE ="F A &)
= wsPU(X, (A: Q).E'AE"ANO(E) =7 O(F) A &)
C wsPU(X,(T:R).EAF AO(E) =" §(F))

which proves that the obvious choice for w is #'-compatible. The YHR(Fac) case is ana-
logous.

YHR(Prim), YPT(flex — rig), and YP7 (guess) share the following common structure:
all introduce a general binding ¥’ =7 G for a variable /' ¢ Dom(#). Since F' ¢ Dom(d),
we can lift the rule applications directly (i.e. create a more general YHR-derivation by
introducing exactly the same general binding), and obtain the assertion by the methods
we have exemplified for the Y’HR(Res) case above. For the YHR(Solv) case we have the
following situation

(T:R).O(C)VFVF#£" A

YHR(Solv)
(I:R[A/F]).DVI[A/FIFVF # A

where [Z/F]0(C) Fre D, so we obtain the assertion with 6.3.2. O

121

6.4 Completeness of X HR 6 YXHR: RESOLUTION FOR YXHOL

Theorem 6.3.5 (X HR-Refutation Lifting) Let A Fy A:O and I' by 6:A, then A is
YHR-refutable, if 6(A) is Y HR-refutable.

Proof: Let © = CNF(6(A)) and ¥ = CNF(A), then by the RC-normalization lifting
lemma 6.3.3 there is a set ® of X-clauses, a X-substitution ¢ with § = #'[Dom(#)], and a
#'-compatible clause set isomorphism w: ® — ®. Furthermore, there is a Y HR-derivation
H: ¥ Fyyr ©. We continue the proof according to the following diagram:

9(A) Fre (S O
0 0/ w/ 0// w//
A Ftg CNFA) tyny @ Fge (NR)FVF by O

Let D be the YHR-refutation of §(A),i.e. D: O Fyyg (I':'R).E where & is pre-X-solved, then
by the lifting lemma for XHR (6.3.4) there is a YHR-derivation R": ¥ Fyyr (A: Q).CV F
and a #”-compatible clause isomorphism w”: (A: Q).F — (I': R).£. Thus C is the empty
disjunction and wsPU(X, (A: Q).E A &) = wsPU(X, (I': R).E), which was nonempty by
assumption. However, each pre-3-unifier of the subproblem F also unifies the system
F A Egn. Consequently, there is a YP7-derivation that transforms F to pre-3-solved form
by 4.6.10. Let R"” be the corresponding X ’HR-derivation, then we obtain a X HR-refutation
of Aby H: U FHpn W R L (A: Q).F FE - O, that validates the assertion. O

Definition 6.3.6 (Tautology) A Y-clause C = (I': R).MT Vv NF v CV € is called a tau-
tology, if I' by M=4,N and (I':R).£ is pre-X-solved. C is called elementary, iff C
empty.

Remark 6.3.7 If C is an elementary tautology and ®,C Fyyr O, then @ Fyyr O. By the
lifting lemma (6.3.4) we have a YHR-refutation ®*C’ where C' = ([P=0]: §).PF v PT. Note
that the only inference rule that can be applied to C' is a YHR(Res) step of the form

D= (I"R).B*VC ([P:0]:0).PFv PT
D' = (I,[P:0]:R).CV P* VP #' B

YHR(Res)

Clearly any YHR-derivation using D can also use D’.

6.4 Completeness of ¥YHR

We now investigate the relative completeness of 3¥’HR and use the unifying principle to
show along the lines of [Hue72], that the class Vg(I') := {® C wsfe(X,1') | unr O} is
an abstract consistency class.

Lemma 6.4.1 Let ® be a set of Y-clauses, I' and = annotated variable contexts such
that T by A:z0, E by B:0, and Dom(I') N Dom(Z) = (. Furthermore, let R be a
variable condition for I', and T one for =. If ® x (I"R).A Fyyr (A: Q).CV &,, then
®+(I,Z: R UT).AVB Fypr (A: Q).Cor &+(I,Z: R U T).AVB Fss (A,Z: QU T).CVB.

122

6 XHR: RESOLUTION FOR YXHOL 6.4 Completeness of XHR

Proof: Let D: @« (I R).A Fyyr (A: Q).C, then we prove the assertion by induction over
D. If D is empty, then (A: Q).C € ® or (A: Q).C = (I':R).A. In both cases we obtain the
assertion with the empty Y ’HR-derivation.

If D ends in YHR(Res), then D is of the form

@« (I:R).A @« (I:R).A
D/

D//
(I"RHYN*VC, (I"RNMPVC, a#p

(A:Q).C;VCy VM #' N,

YHR(Res)

where A :=T",T" and Q := R' UR". By inductive hypothesis we have ¥’ HR-derivations

. &+ (I,=XRUT).AVB F (ImR)N*V Cy or & (I,Z:RUYT).AV B Fur
(I"Z2: R"UT).N*vC; VB

2. 0% (I,Z2RUT)LAVB F (I":RNMP VvV Cy or & % ([,Z:RUT).A VB ks
(" Z:R"UYT).MPVvC,vVB

Thus we have four cases, but as all of them can be treated with the same methods, we
show the most complex one, where for both applications of the inductive hypothesis the
latter alternative is assumed. In this case, we have

o+ (I'=:RUT).AVB o+ (I'=:RUT).AVB
D/ D//
(TZ:R'UT)N*VC; VB (I"Z:R"UT)MPVCy,VB a#4

. YHR(Res)
(A,Z2:QUT).C,vC, VM # N; VB

The Y'HR(Fac) case is similar but much less complex, since we only need one application
of the inductive hypothesis. In the XHR(Solv) case we have the following situation:

@« ([R).A

D/

C=(T"RN.CVF#£ A
(A:Q)DVF £ A

YHR(Res)

where (I": R').[A/F]C Fxre (A: Q@).D by a maximal RC-derivation. By inductive hypothesis
we have ® + ([,Z:RUT)AVBF (I":RN.CVF # Aor &+ (I,Z2RUT).AVB Fgr
(I, Z:R'UTY).CV F #* AV B. Note that because of F € Dom(T') we have [A/F|B = B,
therefore we obtain the assertion by a single application of X’HR(Solv).

The remaining cases YHR(Prim), XPT (flex — rig), and XP7 (guess) are nearly trivial,
since they simply add a pair to C, thus we obtain the assertion directly by the inductive
hypothesis. O

Lemma 6.4.2 Let ® and ¥ be sels of sentences, and @V ¥V :={AVB|Ac ®,B¢c V}.
Furthermore, let ® Fyyr O and ¥ Fyyr O, then @V V¥ Fyyr O.

123

6.4 Completeness of X HR 6 YXHR: RESOLUTION FOR YXHOL

Proof: Let B€ ¥, & = {A’,..., A"}, and ® := {A'VB,...,A'VB, A" . A"} then
we first convince ourselves by induction on i, that ® Fyyr O or @ Fyxr C. If i = 0, then
® = ®Y Fyyr O by assumption. If i > 0, then ' bFyyr O or @' Fyyr B by inductive
hypothesis, thus we obtain the assertion by the previous lemma.

In particular, for ¢ = n we have Dg: 9" = & V {B} Fyyg O or Pg:® Vv {B} - B for
all B € W. If the first case is assumed for some B € ¥, then we have proven the assertion.
Otherwise we have ® V ¥ Fyyr ¥ by combining all 3HR-derivations Dg, which we can
combine with the XHR-refutation of ¥ to obtain the assertion. O

Now we are in the position to attack the completeness proof for YHR. We use the
unifying principle for ¥-model structures, which we have proven in section 5.

Theorem 6.4.3 Let Vx(I') := {® C wsfg(X,1') | & Venr O}, then Vx(T') is a saturated
abstract consistency class.

Proof: To see that Vy is saturated, let ® AT Fsyr O and @ * AF Fsxr O. By the
previous lemma 6.4.2 we can find a YHR-refutation ® + AT v AF and one of @ by 6.3.7.
We verify the properties of 5.4.3 for some set ® € Vy(I') of sentences.
Let A € ® be an atom such that A, —=A € ®, therefore we have (I': R).AT (I: R).AF ¢
Q for the corresponding unit Y-clauses. So we obtain the assertion with the following
YHR-derivation
(T:R).AT (I'R).AF

(T:R).A# A
O

YHR(Res)

SIM

The remaining cases all share the following form: if A € ®, then U ¥ € Vy(I") for some
set of formulae ¥. So we have to prove that,if A € ® and Q / O, then QUCNF(V) eur O,
or equivalently, that the existence of a Y HR-refutation of QU CNF(¥) guarantees a YHR-
refutation of . Condition 4 is a direct consequence of 6.4.2. For the cases 2, 3, and 5 the
argumentation is trivial, since any YHR-refutation of ® * A|, & x-—A or ®*x~(AV B) is
also one for @, because the clause normal forms of A|, == A and that of A are identical,
and finally, CNF(-(A v B)) = CNF({-A,-B}).

To verify 5.4.3(6) let IRA € ® and Dy be a LHR-refutation of ¥y := & x AB. Let
® = &' x IR A, then Dy is also a N'HR-refutation of ¥} := &' U {AXT, Pi"A}, since the
clause normal forms of ¥y and ¥} are a-variants (cf. 6.1.12). Now let ¥ = {AX T AY T}
and § = [B/Y], then (V) = W}, so by 6.3.5 there is a XHR-refutation D of ¥. As the
clause normal forms of AXt and AY T are a-variants, D is also a Y HR-refutation of ®.

For 5.4.3(7) let =II"A € & and D be a X 'HR-refutation of & + ~A X~ for some X~ ¢
Dom(I'). Note that the clause normal forms of ® + ~AX~ and ¢ are a-variants, since
those of ~II? A and “A X~ are, so D is also a YHR-refutation of ® + AX ~. O

Now the completeness theorem is only a simple corollary.

Corollary 6.4.4 (Completeness of XHR) Let ® be a finite set of well-sorted sentences.
If ® is unsatisfiable in the class of Y-model structures, then ® Fyyr O.

124

6 XHR: RESOLUTION FOR YXHOL 6.4 Completeness of XHR

Proof: Let Vy(I') := {V¥ C wsfp(X,I') | ¥ ypr O}. If ® were not YHR-refutable, then
® € Vy(0) by construction. Furthermore, by 6.4.3 Vy is a saturated abstract consistency
class and therefore by 5.4.19 there is a X-model structure M |= ®, which contradicts the
assumption. O

Theorem 6.4.5 A well-sorted sentence A is valid in the class of X-model structures, iff

-A is XHR-refutable.

Proof: The result is an immediate consequence of 6.4.4 and 6.2.5. O

Theorem 6.4.6 (Relative Completeness of XHR) Let A be a well-sorted ¥-sentence,
then Fxg, A, iff AF Fyyr O.

Proof: By the previous theorem and 5.5.7. O

Now we can prove the statement about the completeness of our sorted Hilbert-Style
calculi ¥%*, which we made above in section 5.

Corollary 6.4.7 3% and X% are not complete with respect to general Y-models.

Proof: As we have seen in 6.2.3, there is a well-sorted formula C that is not X HR-refutable.
With the relative completeness theorem 6.4.6 above it is clear that =C is not derivable in

Y%n. Since the calculus Y% is weaker than Y%7 (because it lacks the n-axiom) the result
also holds for ¥%. O

We conclude our exposition of ¥’ HR with an example.

Example 6.4.8 Let ¥ be the signature of 4.5.17 augmented by the sort N of natural
numbers and the declarations

[0:IN], [s:N — NJ, [+N = N — N],
[>:R — R — 0],[degzM — N], [pz:(R — R) — O], [nc:(R — R) — O]

We consider the following axiomatization of the degree of monomials
D1 VYg.deg(AXg.Y) = 0
D2 deg(AXg.X) = s(0)
D3 VFu, Gum. deg(AXg. * (FX)(GX) = deg(F) + deg(F)
and the following basic facts about >, non-constant (nc), and positive functions (p):
> VXn.2(X) >0
N VFy.deg(F) > 0 = nc(F)
P VFg_g+.p(F)

+ VXN, IN(X >0AY >0=X4Y >0

125

6.4 Completeness of X HR 6 YXHR: RESOLUTION FOR YXHOL

From these we want to prove the assertion that there is a differentiable function that is
positive, but not constant:

IFp.p(F) A ne(F)
The clause normal form of its negation is
T ([F:M]:0).p(F)F V ne(F)F
from which we can obtain

R1=R(T,N) ([F=M]: 0).p(F)F v (deg(F) > 0)F
R2=R(R1,P) ([F:M],[G:R — Rt:0).(deg(F) > 0)F v F £" G

by YHR(Res). Since all variable conditions in this example are empty, we drop the de-
clarations from the clauses, and indicate the sort of variables by indices. With the XP7-
derivation (cf 4.6.12) of 4.5.17 and YHR(Solv) we obtain

R3=U(R2) (deg(F) > 0)F vV F £7 (A Xg. * (HHX)(HHX))
R4=S(R3) (deg(AXg. * (HHGX)(HHX)) > 0)F

Since the clause normal form of D3 is
Pn_o(deg(AXg. (FuX)(GumX))TV P(deg(F) + deg(F))F
we have

R5=R(R4,G3) Pn_o(deg(Fm)+ deg(Fm))Fv
(deg(AXR. * (HYX)(HHX)) > 0)F £7 P(deg(AXg. * (FuX)(GuX))

With the general bindings

PN—>® :: AXN > (HéﬁNX)(HliﬁNX)
Hin =" (AXn.0)

and reduction to SZM-normal form we obtain

R6=U(RS) Pu_o(deg(Fi) + deg(Fu) > 0)F V (HEX) =7 (FuX)V (HjpX) =" (GuX))
which reduces to

R7=U(RS6) Pu_o(deg(Fum) + deg(Fu) > 0)F v HY =" Fu Vv Hy = Gu

RS=S(RT) P_o(deg(H}) + deg(Hy)F

R8=R(R7,+) deg(H2) > OF

On the other hand we have

RI=R(>,G2) Pn_o(deg(AXgr.X))TV Pnoo(s(0) £7 S(X) >0

With X =7 0 and general bindings for P analogous to those above we obtain

R10=U(RY) deg(AXg.X) > 0T
R11=R(R10,R8) H®> = (AXg.X)

which is an empty clause, since the remaining pair is solved as the identity function is a
monomial. O

126

7 CONCLUSION

7 Conclusion

7.1 Applications

This thesis has been motivated essentially by practical practical considerations, i.e. the
shortcomings of first-order theorem proving and the lack of expressive power in higher-
order logics due to the absence of sorts. However, as it turned out the content of this thesis
is rather theoretical in nature. To bridge this gap and to see whether this theoretical system
can fulfill its practical expectations, let us have a look at some applications of XHOL.

We claim that introducing sorts to higher-order logic results in considerably more ex-
pressivity, and hence ultimately a practical language to express mathematical facts natur-
ally. In fact, XHOL is the logical basis for the higher-order logic POS7 (Partial Order-
Sorted Type theory) of the Q-MKRP deduction system [HKKT92, HKK*94], currently
under development at the Universitit des Saarlandes. The goal of the Q-MKRP project
is to develop an interactive proof development environment which can be used to prove
the total contents of a typical mathematical textbook. The extensive experience of the
Q-MKRP group, gained by axiomatizing mathematical theories for automated theorem
provers, and the critique of existing input languages, which are considered too weak, have
been a major motivation for the work reported in this thesis. The experiments with this
new system have verified that sorted higher-order logics indeed offer a sufficiently rich lan-
guage for naturally specifying a non-trivial fragment of mathematics. These experiments
also show that, while term declarations are a desirable feature of a specification language
for mathematics, pattern signatures have so far been sufficient for all practical applica-
tions. Thus the problems with decidability of sort computation (see the discussion in 4.3)
are mainly a theoretical concern.

The resolution calculus YHR finds its concretization in the £LEO (Logic Engine for
Q-MKRP) theorem prover also currently under development in Saarbriicken. This imple-
mentation is currently been used to test the practical applicability of our calculus and for
the development of search strategies specialized to higher-order logic. Naturally unifica-
tion in XHOL is considerably more complex than in the simply typed A-calculus, but this
complexity is more than compensated by the restriction of search spaces associated with
resolution theorem proving.

These applications in higher-order deduction for mathematics are not the only conceiv-
able ones. For instance, X’HOL can be seen as a logical basis for sorted logic programming
languages, such as extensions to A-Proroc [MN87, Mil89] in the spirit of TEL [Smo89]
or GopEL [HL94]. Because of undecidability issues, term declarations would have to be
severely restricted, e.g. to higher-order patterns, in order to make sort computation decid-
able. Even with this restriction X-unification is still undecidable and infinitary (because the
first-order subcase is), but it seems probable that there are decidable subcases analogous
to those for first-order systems (cf. [Soc93, Uri92]).

Finally, our work can be seen as a guide for adding sort information to other typed A-
calculi. In this respect our work has applications in the field of meta-logical frameworks (-
calculi with strong type systems that are used to formalize logical systems), since the added
expressivity makes practical formalizations of logic systems much more convenient. It is still
unclear, whether our focus on an extensional partial function semantics is advantageous for
logical frameworks. The features of X HOL like functional base sorts or term declarations

127

7.2 Sorted Logics: An A-Posteriori View 7 CONCLUSION

can, however, be adapted to existing sort systems for logical frameworks [Pfe93, KP93] as
well.

7.2 Sorted Logics: An A-Posteriori View

To get a better intuition of the improvements that XHOL has to offer for specifying math-
ematical theorems and proving them, let us have a closer look at the alternative of using
an unsorted higher-order logic. With the relativization technique well-known from first-
order logic a well-sorted formulae A can be coded into an unsorted formula Rel(A). For
instance, a sorted quantification VXp.A is transformed into VX (n).(PaX) = Rel(A) for
some new predicate Py that captures the sort information. These new predicates obtain
their meaning from an axiomatization Rel(X) of the sort information present in a valid
signature Y., which is provided by the relativization operation. For most sorted first-order
logics it is a theorem (see [Wal87, SS89, Wei91] for examples) that a well-sorted formula
A is satisfiable in the class of sorted models, iff Rel(A) is satisfiable in the class of un-
sorted models that satisfy the signature axioms Rel(¥). Thus from a theoretical point of
view these sorted first-order logics are not more expressive than unsorted ones. Indeed we
conjecture that some kind of sort theorem also holds for XHOL. This would entail that in
theory all theorems of ¥HOL can be proven by coding them into simple type theory and
then proving them by simply typed constrained resolution.

Unfortunately, in 3’HOL the situation is not as simple as in the first-order case, where
the only binding constructs are quantifications that can be transformed as shown above. In
the presence of A-abstractions we need some form of conditionals in the target system for
coding functional formulae, such as Ag.A, which have to be relativized as partial functions.
Conditionals can be realized by description functions (see 5.2.13) as in [Chu40]. Such a
system can be obtained from ¥HOL by adding a logical constant ¢(,_.o)_, for each a € 7
and the inference rule

Ity Q:A— 0 ThyVXa.QX = ¥YYa(QY = X =)
QQ)

YE()

to X3E. Moreover, in the definition of general 3-models we have to specify that the value
of ¢ is the function that maps singleton sets to their unique member. In this setting we can
define a conditional w,,, as implication, if & = o, and otherwise as (A X, PO.LQ(OQ).AYQ.PA
Y = X). It is easy to see that for any general ¥-model M = (D,7Z) we have Z,(w)(a,T) = a.

With these extensions we can now define a relativization operator Rel, and use it to
compare the relativization of an example with the sorted version. This comparison will
give us a feeling for the advantages of sorts in higher-order deduction.

Definition 7.2.1 (Relativization) Relis a typed mapping Rel: S — wff(X U Ps), where
Ps := {Py | A € 8} is a set of new predicates of type 7(A) — o. We now inductively define
Rel by setting

1. Rel(A) := Py for A € S/ N BS,

2. Rel(A — B) = (/\FT(A)_W(B).VXT(A).(REI(A)X) = .Rel(B)(FX)),

128

7 CONCLUSION 7.2 Sorted Logics: An A-Posteriori View

3. Rel(A) := AX,(n).Pa A Rel(d(A) — t(A))X for A € S,

This relativization of sorts allows us to define the full relativization operator on well-sorted
formulae, which is a typed function Rel: wsf(3,T) — wff(X U Ps) such that

4. Rel(A) := A, if A is a constant or variable,
5. Rel(AB) := Rel(A)Rel(B),
6. Rel(AXp.A) := (AX.wRel(B)A).

Finally, we can map valid signatures ¥ into sets Rel(X) of sentences, called signature
axioms, by defining

7. Rel(X, [VI'A=zA]) := Rel(X) A Rel([VI.A:A]) where

8. Rel([VI.A:A]) = ‘V’X;(Al), X, Rel(A;)X! = ...= Rel(A,)X"
= Rel(A)Rel(A)
and I' = [X1:Al],... [X":A"].

For instance, in the case of a subsort declaration [A < B] € ¥ we have

Rel([A <B]) = Rel([V[X:A].X:=B])
= VX, (a)-(Rel(A)X) = Rel(B)X

as we would have expected from the analogy with first-order sorted logics. In particular,
if A and B are non-functional sorts, then the sentence VX.(P3X) = .PgX just amounts
to the subset definition. To enhance our intuition on relativizations of signatures, let us
compare the sorted formulation of the signature in example 4.5.17 with its relativization
in the following signature axioms:

Rel([9:D — C]) = VYF.(PpF AVY.RRY = Pg(FY)) = .Pc(F)
AVY.RY = Pr(0F)Y
Rel([0:P — P]) = VE(PpF AVY.FRY = B(FY))) = .(B(9F))
AVY.BY = Pr(OF)Y)
= Bp(AX.w(BRXX))AVY.(BY) = (Pe(w(BRrX)Y))
= VZ.(BRZ = Bp(AX.w(BRX 2)VY.(RY)) = (Pr(w(PrX)Z)))

Rel([V[F:P][G:P].AXg. + (FY)(GY)=P])
—VE,G.(BeF) = (BpG) >
Pr(AX. w(BX. + (FX)(GX)))VY.(RY) = (Fr(w(PRY) + (FY)(GY)))
Rel([V[Fp][Gp]. A XR. * (FY)(GY):P)])
—VE,G.(BF) = (BpG) =
P AX w(BX. « (FX)(GX))VY.(RY) = (BR(w(BRY)* (FY)(GY)))

This set of axioms has to be added to the relativization of any X HOL-sentence that we
want to prove in the relativized form. A further effect, which we have not illustrated for
lack of space, is that the unification in the sorted setting finds out conflicting taxonomic
information for proof objects, and prevent any inference that would yield ill-sorted objects.

Rel([AXgr.X :P]

)
Rel([V[Zr]. A Xg.Z:P])

129

7.3 Further Work 7 CONCLUSION

These objects arise naturally in the relativized setting, but due to Rel(X) they can never
contribute to any proof. Thus resolution in X HOL gives us the further advantage of cutting
off enormous redundant branches in the search space. As a consequence the search spaces
are so much smaller that the sorted calculus is clearly practically superior.

In an a posteriori view we can see the generalization of resolution to a sorted setting
as the process of building certain classes of axioms, namely, those that correspond to term
declarations, into the unification. This process takes axioms of the form (Vﬁ.ple =
...= p"XF* = (gA)) where the p' and ¢ are unary predicate constants and X® are the free
variables of A out of the search, and treats them algorithmically in the unification.

7.3 Further Work

Naturally we have not solved all of the problems of sorted A-calculi and sorted higher-order
logics. On the contrary the investigation of this topic has just started. We now point out
some problems left open by our work, and indicate some directions of future research.

Syntactically Restricted Classes of Formulae

For certain practical applications it is important to find syntactically restricted classes
of formulae and signatures that enjoy more tractable unification and sort computation
problems. Omne of the top candidates would be an appropriate generalization of higher-
order patterns [Mil92]. In A this class of syntactically restricted formulae has a decidable
unification problem. Miller used higher-order patterns as a basis for the logic programming
language A-PROLOG [NMS88, Mil91], Nipkow in [Nip91] for higher-order rewriting, and
Pfenning adapted the results to his logic programming language ELF [Pfe91]. The use of
sorted logics in logical frameworks [Pfe93] has lead Pfenning and the author to develop a
pattern unification algorithm for a sorted A-calculus [KP93].

Unfortunately, we cannot hope that Y-unification for is unitary or decidable, since this
is not the case for the first-order case [SS89]. Furthermore, the naive generalization of the
pattern techniques for the flex/flex case, which call for inference rules like the following will
not work.

(I, [FzA:R).FPXCM) | xe() =7 pxv() | x¥(0) A g

YUP(same)

(T, [FFaA] [HEI(A) — (A R).F =" Aoy -« - X HY W Y?D A €

Here p is a partial permutation satisfying: there exists a k such that p(k) = ¢(¢) iff
(i) = (0.

(T, [FT:A:R).FTXM) | xe0) =7 gx v | xv0m) A ¢

R - : SUP(diff)
(D, [Ft=A), [Ht:B],[X,,:B"]:R).F="FAG=" G

where

- n ! "«
L F = Aoy - - X HY?' W Y0,

130

7 CONCLUSION 7.3 Further Work

— m ! (1
2. G = Ay - - Xy HYV' D YV O),

3. ¢’ and ¢’ are partial permutations satisfying: there exists a k such that ¢'(k) = ¢
and 9/(k) = j iff ¢(i) = ¥(i),

4. T(X#W) =2(A) T(X¥E)) =0d'(A).

These inference rules cannot work, since if In(A) < n, then we cannot guarantee that the
general binding F really has sort A.

There are syntactic restrictions on the term declarations in the first-order case that
make first-order Y-unification decidable [Uri92, Soc93]. So there is hope that suitable
generalizations of these restrictions to X-patterns yield decidable Y-pattern unification
problems. For instance, if the signature is elementary, i.e. all term declarations contain
at most one occurrence of a constant symbol, the sort constraint techniques of [KP93] can
be used to obtain a decidable subcase.

Dynamic Sorts and Partial Functions

In first-order predicate logic the introduction of term declarations has been a major step
in the development of dynamic sorted logics [W090, Wei91, Wei93], where variables are
restricted to sorts, but where the sorts can also be treated as unary predicates in the
logic allowing the specification of conditioned term declarations; thus the signature is no
longer fixed during the search, as sort information can appear in the deduction process.
The resolution rule always uses sorted unification with respect to the signature specified
by the current state of the proof. Since predicates are primary objects of type theory,
a generalization of the resolution system in [Wei91] may yield very powerful calculi for
mechanizing mathematics and, in particular, for analysis.

Recently Weidenbach’s results have been applied by Kerber in collaboration with the
author to obtain an efficient mechanization of Kleene’s three-valued approach for partial
functions [KK93, KK94]. We believe that this result can be generalized to higher-order
logic, and leads to a very natural and powerful logic system for mechanizing informal
mathematical practice. Our resolution calculus ¥’HR and especially our Y-unification al-
gorithms with term declarations are an important foundation for the generalization of these
resolution calculi with dynamic sorts to higher-order logic. Thus the work reported here
is one key ingredient of POS7, a higher-order logic with sorts and partial functions along
the lines of our first-order formalization mentioned above. In this direction the work of
Farmer [Far93, FGT93] in LuTiNs and IMPS has shown that partial functions are a very
natural and powerful tool for formalizing mathematics. The author expects that our three-
valued approach, which remedies some problems of the simpler two-valued approach, will
give an even more powerful framework for deduction systems for mathematics, since the
three-valued logic rejects sentences that most mathematicians would deem false whereas
LuTins accepts them as theorems.

Relativization

The relativization technique indicated in section 7.1 has to be formalized, and the sort
theorems in the spirit of [Wal87, SS89, Wei91]) have to be proven. Sort theorems may be
more meaningful and natural in extensions of Y HOL with description functions. In [Far93]

131

7.3 Further Work 7 CONCLUSION

Farmer claims that XA can be directly encoded into his system LUTINS that takes the notion
of partial functions as primitive [Far90, Far91b] objects. This claim is natural, since sorted
logics in some sense formalize the “well-behaved” part of partial functions. On similar
grounds the relativization into a higher-order generalization of the three-valued Kleene
logic [KK94], which we have discussed above, would be interesting. In fact, these logical
system is probably an even more natural target system for relativization than unsorted
higher-order logic with description functions. It would be interesting to formalize these
encodings, and use them for a comparison between the two-valued and the Kleene approach
to partial functions.

Another, perhaps more practical, application of the relativization technique would be to
provide the user of a deduction system with a very expressive sort mechanism for specifying
mathematics, but then rely on relativization techniques to code this into less expressive
sorted logics that have better computational properties. In particular, we think of restric-
tions of the signatures as discussed above. For such applications it would be fruitful to
consider Stickel’s technique of term relativization [Sti86].

Cut Elimination in Extensional Higher-Order Logic

In [And71] Andrews has given a simple cut-elimination proof for a system GT of higher-
order logic without extensionality by showing that both the system G with cut and the
cut-free system G are complete relative to . We conjecture that along these lines it should
be easy to construct a cut elimination proof for simple type theory with extensionality. In
particular, the method above would lead to a proof of cut-elimination in a formulation of
type theory with function symbols. The author only knows of proofs in formulations of
classical higher-order logic without function symbols (cf. [Tak87, Tak68, Tak70]). There
is a cut-elimination for intuitionistic type theory with extensionality and function symbols
in [Autar]. Note that the results in [And71] are abstractions of the cut-elimination proof
for simple type theory in [Tak67], which was extended to the extensional case in [Tak68].
Therefore we believe that the unifying principle for general Y.-models can be used corres-
pondingly.

Resolution for Extensional Higher-Order Logic

As we have seen in example 6.2.3 X’HR is not complete with respect to general Y-models,
since they are fully extensional (5.2.17), and ¥’HR cannot cope with the axiom of truth
values 5.2.14. This is unfortunate, since this class of models is the most intuitive one
that admits complete calculi. In particular, our mathematical intuition would make us
believe that a clause set like C{(0: 0).(¢b)F, (: 0).c(=—b)T should be refutable, because =—b
is provably equivalent to b. This example shows us that in extensional calculi we have to
deal with propositions that appear in the arguments of function constants. The simplest
approach to build a calculus that can refute C is to add the equational theory b = ——-b
to higher-order unification. Even though this approach is intuitive, it does not solve the
general problem of incorporating extensionality into resolution. In fact, we can generalize
the formula C := (¢b) V —¢(=-b) to C':= (cA) V =(¢B), where A and B are arbitrary
propositions. Now C’ is valid in the class of general ¥-models, iff A < B is valid. So the
approach of enhancing the unification would require augmenting the unification procedure

132

7 CONCLUSION 7.3 Further Work

by the theory of logical equivalence, which would enable the unification procedure to prove
any theorem by unifying it with T,.

To make these ideas more precise let us digress to a more general look at automatic
theorem proving. Theorem proving is a syntactic process of making judgments about the
validity of formulae in all models.

In propositional logic formulae are built up from propositional variables, and the logical
connectives = and V. While the variables can be arbitrarily interpreted (to be either T or F),
the connectives = and V are interpreted to denote the negation and disjunction functions
on the set of truth values. Thus the class of models consists only of the {-, V}-algebra with
carrier set D, = {T,F} where Z(—) and Z(V) are the well-known functions.

In first-order logic there is a clear conceptual distinction between terms (syntactic ob-
jects that denote individuals) and formulae (syntactic objects that denote truth values).
Formulae are built up from atoms, the symbols = and V, and quantification. Atoms take
the place of propositional variables, whereas —, V, and quantification have fixed interpret-
ations. Atoms are built up from predicate symbols and terms, which in turn are built
up from function symbols, individual constants, and variables, all of which can be freely
interpreted. Thus the class of models for first-order logic consists of some universe D, of
individuals and D, with a fixed interpretation for =, vV, and quantification.

Skolemization eliminates the treatment of quantification into a preprocess in refutation-
based theorem proving. For instance, resolution-based calculi consist of the propositional
rules (computation in the fixed part D,) and the unification procedure, which amounts
to solving term equations in all models. Since the term algebra is the free algebra, it is
sufficient to solve the term equations there.

Let us summarize these ideas. Due to the strong division of the model theory into a fixed
part D, and a free part D, first-order theorem proving can be divided into a propositional
part (acting on formulae) and a term part (unification), which do not interfere.

In higher-order logic (here simple type theory) we do not have this clear division. In
particular, there are formulae, where symbols with a fixed interpretation are dominated (in
the scope or subterms of arguments) by symbols with a flexible interpretation.

We propose a calculus where the unification procedure calls the theorem proving proced-
ure recursively on demand, i.e. whenever it encounters a propositional pair. This approach
makes it necessary to break down the distinction between unification and resolution. It
should treat both processes in one uniform calculus.

To account for extensionality we propose the following two rules:

(I'R).CVA# B Ity A:0 Ity B:O

ER(Ref)
(I: R).CNF(~(A & B))V C

(T,[P:(A - B) — O]: R).(PA)F v (PB)f v C

: ER(FExt)
(T,[Q=A — O],[X~:B]: R).(Q(AX)F v (Q(BX))f v C

Obviously the first rule amounts to the recursive call of the refutation procedure. In our

133

7.3 Further Work 7 CONCLUSION

example above we have the following Y. HR-derivation A
(0:0)-(cB)F (0:0).c(~-0)"
(0:0).c(=b) #” (cb)
(0:0).(~=b) £7 b
(0:0).b

YXHR(Res)

SIM
ER(Ref)

similarly we have a XHR-derivation A" of (§: ()).b, since the clause normal form of =(A <
B) is {(0:0).67, (0: 0).6F}. Thus we can complete the refutation with

A A
(0: @>Q.)b® <®?: 0).—b SHR(Res)
Mb£ Db
w0

Even though we do not have a completeness proof, we are confident that the proposed
calculus will at least solve the problem of two-valuedness.

Equality and Higher-Order RU F-Resolution

If we consider the inference rules of an unsorted version of XHR, then we see that they are
direct generalizations of the classical RU E-resolution calculus of Digricoli [Dig79, Dig81],
which also mixes unification with proof search. In particular, if we exchange our symbol ="
in Y-unification problems for the equality constant =7, then the pairs in unification con-
straints become proper equality literals, and can be resolved upon like the RU F-resolution
calculus advocates. Our completeness result for YHR (6.4.4) can then be read as partial
completeness result for a higher-order RU F-resolution calculus for input formulae without
equality. It would be interesting to extend this result to full higher-order logic with equality.

We only use this little observation as an example for the real problem of finding spe-
cialized mechanizations of higher-order equality. Finding efficient methods for equality
will be one of the most critical single problems remaining to be solved in order to make
higher-order deduction practical.

134

8 ACKNOWLEDGMENTS

8 Acknowledgments

I am indebted to my advisor Jérg Siekmann for introducing me to the field of artificial
intelligence and giving me a feeling for the big picture of our field. I still feel honored that
he accepted me, a total newcomer to artificial intelligence and logic, as a student. I was
very lucky that he focused my interest to the fascinating subject of higher-order deduction.
His research group at the Universitit des Saarlandes has provided the friendly, supportive,
and extremely stimulating environment that is necessary for successful research.

During my visit to Carnegie Mellon University, Peter Andrews and Frank Pfenning have
answered a great many questions, and have always had an open ear for my ideas; I would
like to thank them for their patience and support.

Frank Pfenning has become a second advisor to me, he has even taken time off from his
vacation in Germany, when I was hopelessly stuck in the proof of the structure theorem,
and pointed me to the technique of logical relations, which finally solved the problem.

The three main components of this thesis can be traced to the influence of these three
people: Jorg Siekmann has introduced me to first-order resolution theorem proving and
the dream of mechanizing mathematics. Furthermore, he has conveyed the practical im-
portance of sorted logics, that have been significantly influenced by researchers under his
supervision. Peter Andrews had an important role in shaping my view of higher-order
logic and deduction, while Frank Pfenning introduced me to type theory, and helped me
to aquire most of the background that was necessary to complete this thesis.

I would also like to explicitly thank my colleagues Franz Baader, Manfred Kerber, Daniel
Nesmith, Christian Prehofer, Zhenyu Qian, Christoph Weidenbach, Ahmet Bozkurt, Gerald
Klein, and Ortwin Scheja for valuable discussions and proofreading of earlier drafts of this
thesis. Dr. Patricia Johann has read and discussed preliminary versions of this thesis in
depth and has spent a lot of time finding formal errors and discussing them with me. Last
but not least I want to thank Andrea Kohlhase, who has given me the moral support that
is necessary to survive a substantial research project and who has taken up most of the
burden of proofreading. More valuable even, she has always insisted that I try harder,
when explanations were still unclear.

Finally, the “Studienstiftung des Deutschen Volkes” has had a twofold influence on the
work reported in this thesis. At one of their summer academies in Campill, Italy, I had
my very first positive experience with the field of artificial intelligence. This course, given
by Jorg Siekmann and Wolfgang Wahlster, later brought about my decision to change my
research field from mathematics to deduction systems. Much later the Studienstiftung
provided the research grant that made it possible to visit the Carnegie Mellon University
for a semester without a lot of bureaucratic overhead.

135

REFERENCES REFERENCES

References

[Aie90]

[AINP90]

[ALCMP84]

[And71]

[And72]

[And73]
[And81]

[And86]

[And89]

[Autar]

[Bar80]

[Bax78]

[BEGT64]

[Ber41]

[BG90]

[BG92]

Luigia Carlucci Aiello, editor. Proceedings of of the 9th Furopean Confer-
ence on Artifical Intelligence, Stockholm, Sweden, 1990. Pitman Publishing,
London, England.

Peter B. Andrews, Sunil Issar, Dan Nesmith, and Frank Pfenning. The TPS
theorem proving system. In [St:90], 1990.

Peter B. Andrews, Eve Longini-Cohen, Dale Miller, and Frank Pfenning.
Automating higher order logics. Contemp. Math, 29:169-192, 1984.

Peter B. Andrews. Resolution in type theory. Journal of Symbolic Logic,
3(36):414-432, 1971.

Peter B. Andrews. General models and extensionality. Journal of Symbolic
Logic, 37(2):395-397, 1972.

Peter B. Andrews, 1973. letter to Roger Hindley dated January 22, 1973.

Peter B. Andrews. Theorem proving via general matings. Journal of the
Association for Computing Machinery, 28(2):193-214, April 1981.

Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press, 1986.

Peter B. Andrews. On connections and higher order logic. Journal of Auto-
mated Reasoning, 5:257-291, 1989.

Unknown Author. Unknown Title. PhD thesis, Worcester College, Unknown
Year. I have a manuscript of the thesis (the author is a student advised by
Professor Gandy) without a title page.).

Hendrik P. Barendregt. The Lambda-Calculus: Its Syntax and Semantics.
North-Holland, 1980.

L. D. Baxter. The undecidability of the third order dyadic unification problem.
Information and Control, 38(2), 1978.

J. H. Bennet, W. B. FEaston, J. R. Guard, D. B. Loveman, and T. H. Mott.
Semi-automated mathematics: SAM IV. Scientific Report 64-827, Air Force
Cambridge Research Laboratories, October 1964.

Paul Bernays. A system of axiomatic set-theory. Journal of Symbolic Logic,
6:1-17, 1941.

Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodu-
lation with simplification. In [Sti90], pages 427-441, 1990.

Leo Bachmair and Harald Ganzinger. Non-clausal resolution and superposi-
tion with selection and redundancy criteria. In [Vor92/, pages 273-284, 1992.

136

REFERENCES REFERENCES

[BHP+92]

[Bib82]

[Bib83]

[BL9O]

[Ble77]

[Ble79]

[BLM*86]

[Boo91]

[BS94]

[Bun94]

[CAB*86]

[Car84]

[Car88]

[CF58]

[CF92]

[CGO1]

[CHS5]

Christoph Beierle, U. Hedtstiick, U. Pletat, P. Schmitt, and J. Siekmann. An
order sorted logic for knowlege representation. Journal of Artificial Intelli-
gence, 55:149-191, 1992.

Wolfgang Bibel. Automated Theorem Proving. Vieweg, Braunschweig, 1982.

Wolfgang Bibel. Matings in matrices. Communications of the ACM, 26:844—
852, 1983.

Kim B. Bruce and Giuseppe Longo. A modest model of records, inheritance
and bounded quantification. Information and Computation, 87:196-240, 1990.

W. W. Bledsoe. Set variables. In [IJC77], pages 501-509, 1977.

W. W. Bledsoe. A maximal method for set variables in automatic theorem
proving. Machine Intelligence, 9:53-99, 1979.

Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark Stickel,
and Lawrence Wos. Set theory for first-order logic: Clauses for Gédel’s axioms.
Journal of Automated Reasoning, 2:287-327, 1986.

R. Book, editor. Proceedings of the 4th International Conference on Rewriling
Techniques and Applications, number 488 in LNCS. Springer Verlag, 1991.

Franz Baader and Jorg Siekmann. Unification theory. In Dov Gabbay, ed-
itor, Logic in Artificial Intelligence and Logic Programming. Oxford University
Press, 1994.

Alan Bundy, editor. Proceedings of the 12th Conference on Automated De-
duction, LNAI, Nancy, France, 1994.

Robert L. Constable, S. Allen, H. Bromly, W. Cleaveland, J. Cremer,
R. Harper, D. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki,
and S. Smith. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

Luca Cardelli. A semantics of multiple inheritance. In [KDM8/], 1984.

Luca Cardelli. A semantics of multiple inheritance. Information and Compu-
tation, 76:138-164, 1988.

H. B. Curry and R. Feys. Combinatory Logic, Volume 1. North Holland, 1958.

Anthony G. Cohn and Alan M. Frisch. An abstract view of sorted unification.
In [Kap92], pages 178-192, 1992.

Pierre-Louis Curien and Giorgio Ghelli. Subtyping + extensionality: Conflu-
ence of #n-top reduction in f<. In [IM91], 1991.

Thierry Coquand and Gérard Huet. A theory of constructions. In Semantics
of Data Types. Springer Verlag, 1985.

137

REFERENCES REFERENCES

[Chu40]

[Coh87]

[Coh89]

[Coh92]

[CQY4]

[Cur93]

[Dar68]

[Dar71]

[dB72]

[dBS0]

[Dig79]

[Dig81]

[DJ92]

[Dou93]

[Dow92]

[Dri81]

Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56-68, 1940.

Anthony G. Cohn. A more expressive forumlation of many sorted logic.
Journal of Autmated Reasoning, 3:113-200, 1987.

Anthony G. Cohn. Taxonomic reasoning with many-sorted logics. Artificial
Intelligence Review, 3:89-128, 1989.

Anthony G. Cohn. A many sorted logic with possibly empty sorts. In [Kap92],
pages 633-647, 1992.

Régis Curien and Zhenyu Qian. Modular second-order F-matchning for reg-
ular theories, 1994. draft.

Régis Curien. Second order E-matching as a tool for automated theorem
proving. In Miguel Filgueiras and Luis Damas, editors, Progress in Artificial
Intelligence, 6th Protuguese Conference on Al, FPIA °93 number 727 in Lec-
ture Notes in Artificial Intelligence, pages 242-257, Porto, Portugal, October
1993. Springer Verlag.

J. L. Darlington. Automatic theorem porvind with equality substitutions and
mathematical induction. Machine Intelligence, 3:113-130, 1968.

J. L. Darlington. A partial mechanization of second order logic. Machine
Intelligence, 6:91-100, 1971.

Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with an application to the Church-
Rosser theorem. Indagationes Mathematicae, 34(5):381-392, 1972.

Nicolaas Govert de Bruijn. A survey of the project AUTOMATH. In [HS80],
pages 579-606. 1980.

Vincent J. Digricoli. Resolution by unificatoin and equality. In [Joy79/, 1979.

Vincent J. Digricoli. The efficacy of rue resolution, experimental results and
heuristic theory. In [Dri81], pages 539-547, 1981.

Daniel Dougherty and Patricia Johann. A combinatory logic approach to
higher-order F-unification. In [Kap92], pages 79-93, 1992.

Daniel Dougherty. Higher-order unification using combinators. Theoretical
Computer Science B, 114(2):273-298, 1993.

Gilles Dowek. Third order matching is decidable. In [LIC92b], pages 2-10,
1992.

Ann Drinan, editor. Proceedings of the 7th International Joint Conference on
Artificial Intelligence (ICJAI), Vancouver, Canada, 1981. Morgan Kaufmann,
San Mateo, California, USA.

138

REFERENCES REFERENCES

[Ern71]

[Far90]

[Far9la]

[Far91b]

[Far93]

[FGT93]

[Fit90]

[Fra28]

[Fri90]

[GM93]

[GOBS69]

[G5d30]

[G6d31]

[G6d40]

[Gol81]

G. W. Ernst. A matching procedure for type theory. Technical report, Case
Western Reserve University, 1971.

William M. Farmer. A partial-function version of Church’s simple theory of
types. Journal of Symbolic Logic, 55:1269-1291, 1990.

William M. Farmer. Simple second-order languages for which unification is
undecidable. Theoretical Computer Science, 87(251):25-41, 1991.

William M. Farmer. A simple type theory with partial functions and sub-
types. Technical report, MITRE Corporation, Bedford, MA01730 USA, 1991.

William M. Farmer. Theory interpretation in simple type theory. In [HOA 93],
1993.

William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An
Interactive Mathematical Proof System. Journal of Automated Reasoning,
11(2):213-248, October 1993.

Melvin Fitting. First-Order Logic and Automated Threorem Proving. Springer
Verlag, 1990.

Adolf Abraham Fraenkel. Zusatz zu vorstehendem Aufsatz Herrn v. Neu-
manns. Mathematische Annalen, 99:392-393, 1928.

Alan M. Frisch. The substitutional framework for sorted deduction: Funda-
mental results on hybrid reasoning. Artificial Intelligence, 49:161-198, 1990.

M. J. C. Gordon and T. F. Melham. Introduction to HOL — A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

J. R. Guard, F.C. Oglesby, J.H. Bennet, and L. G. Settle. Semi-automated
mathematics. Journal of the Association of Computing Machinery, 16(1):49-
62, 1969.

Kurt Godel. Die Vollstdndigkeit der Axiome des logischen Funktionenkalkiils.
Monatshefte fir Mathematik und Physik, 37:349-360, 1930. English Version
in [VH67].

Kurt Gédel. Uber formal unentscheidbare Sitze der Principia Mathematica
und verwandter Systeme 1. Monatshefte der Mathematischen Physik, 38:173—
198, 1931. English Version in [vH67].

Kurt Godel. The Consistency of the Aziom of Choice and of the Generalized
Continuum-Hypothesis with the Azioms of Set Theory, volume 3 of Annals
of Mathematics Studies. Princeton University Press, Princeton, New Jersey;
eighth printing 1970, 1940.

Warren D. Goldfarb. The undecidability of the second-order unification prob-
lem. Theoretical Computer Science, 13:225-230, 1981.

139

REFERENCES REFERENCES

[Gor85]

[Gou65]

[Gou66]

[Guab4]

[Hen50]

[Her30]

[Hib73]

[HKK+92]

[HKK+94]

[HL94]

[HOA93]

[HRS90]

[HRSO1]

[HS80]

[HS86]

Mike Gordon. HOL: a machine oriented formulation of higher-order logic.
Technical Report 68, University of Cambridge, Computer Laboratory, July
1985.

William Eben Gould. CRT-aided semi-automated mathematics. Semi-annual
report, Applied Logic Corporation, December 1965.

William Eben Gould. A matching procedure for w-order logic. Technical
report, Applied Logic Corporation, One Palmer Square, Princeton, NJ, 1966.

J. R. Guard. Automated logic for semi-automated mathematics. Scientific
Report 64-411, Air Force Cambridge Research Laboratories, March 1964.

Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15(2):81-91, 1950.

Jaques Herbrand. Recherches sur la théorie de la démonstration. PhD thesis,
Université de Paris, 1930. Englisch translation in [vH67].

Giinter Hibsch. Ansatz fiir ein mechanisches Beweisverfahren fiir die
Priadikatenlogik zweiter Stufe mit Anwendungen auf die Zahlentheorie. Mas-
ter’s thesis, TU-Miinchen, 1973.

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Daniel
Nesmith, Jérn Richts, and Jorg Siekmann. 2-MKRP — a proof development
environment. Technical Report SR-92-22, Universitdt des Saarlandes, 1992.

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Daniel
Nesmith, Jérn Richts, and Jorg Siekmann. Q-MKRP a proof development
environment. Submitted to the Third International Symposium on Artificial
Intelligence and Mathematics, Ft. Lauderdale, USA, 1994.

Patricia Hill and John Lloyd. The Godel Programming Language. Logic Pro-
gramming series. MIT Press, 1994.

HOA’93, an International Workshop on Higher-order Algebra, Logic and
Term Rewriting, Amsterdam, The Netherlands, 1993.

Maritta Heisel, Wolfgang Reif, and Werner Stephan. Tactical Theorem Prov-
ing in Program Verification. In Proceedings of the 10" International Con-
ference on Autom ated Deduction, volume 449 of Lecture Notes in Artificial
Intelligence, pages 115-131. Springer Verlag, 1990.

Maritta Heisel, Wolfgang Reif, and Werner Stephan. Awulomating Software
Design, chapter 21, pages 547-574. AAAT Press, 1991.

R. Hindeley and J. Seldin, editors. To H.B. Curry: Fssays in Combinalor
Logic, Lambda Calculus and Formalisms. Academic Press, 1980.

J. Hindeley and J. Seldin. Introduction to Combinators and Lambda Calculus.
Cambridge University Press, 1986.

140

REFERENCES REFERENCES

[Hue72]

[Hue73]

[Hue75]

[Hue76]

[1JC77]

[IM91]

[JK93]

[JK94]

[Joh91]

[Joh93]

[Joy79]

[IP72]

[JP73]

[JP76]

[Jut79]

[Kap92]

Gérard P. Huet. Constrained Resolution: A Complete Method for Higher
Order Logic. PhD thesis, Case Western Reserve University, 1972.

Gérard P. Huet. The undecidability of unification in third order logic. In-
formation and Control, 22(3):257-267, 1973.

Gérard P. Huet. An unification algorithm for typed A-calculus. Theoretical
Computer Science, 1:27-57, 1975.

Gérard P. Huet. Résolution d’Equatz’ons dans des Langages d’ordre 1,2,...,w.
These d‘Etat, Université de Paris VII, 1976.

Proceedings of the 5th International Joint Conference on Artificial Intelligence
(ICJAI). Morgan Kaufmann, San Mateo, California, USA, 1977.

T. Ito and A. R. Meyer, editors. Theorelical Aspects of Compuler Science,
number 526 in LNCS. Springer Verlag, 1991.

Patricia Johann and Michael Kohlhase. Unification in an extensional lambda
calculus with ordered function sorts and constant overloading. SEKI-Report
SR-93-14, Universitit des Saarlandes, 1993.

Patricia Johann and Michael Kohlhase. Unification in an extensional lambda
calculus with ordered function sorts and constant overloading. In [Bun94/,
pages 620-634, 1994.

Patricia Johann. Complete Sets of Transformations for Unification Problems.
PhD thesis, Wesleyan University, 1991.

Patricia Johann. A combinator-based order-sorted higher-order unification
algorithm. SEKI-Report SR-93-16, Universitdt des Saarlandes, 1993.

William H. Joyner, editor. Proceedings of the jth Workshop on Aultomated
Deduction, Austin, Texas, USA, 1979.

D. C. Jensen and Thomasz Pietrzykowski. A complete mechanization of (w)-
order type theory. In Proceedings of the ACM annual Conference, volume 1,
pages 82-92, 1972.

D. Jensen and T. Pietrzykowski. Mechanizing w-order type theory through
unification. Internal Report CS-73-13, Department of Applied Analysis and
Computation, University of Waterloo, 1973.

D. C. Jensen and T. Pietrzykowski. Mechanizing w-order type theory through
unification. Theoretical Computer Science, 3:123-171, 1976.

L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the AUTO-
MATH System, volume 83 of Mathematical Centre Tracts. Mathematisch
Centrum, Amsterdam, Netherlands, 1979.

D. Kapur, editor. Proceedings of the 11th Conference on Automated Deduc-
tion, volume 607 of LNCS, Saratoga Spings, NY, USA, 1992. Springer Verlag.

141

REFERENCES REFERENCES

[KB70]

[KDM84]

[KK93]

[KK94]

[Kle52]
[Koh92]

[Koh93]

[Koh94]

[KP93]

[Lan30]

[LIC92a)

[LIC92b]

[LIC94]

[LOSS]

[Luc72]

Donald E. Knuth and Peter B. Bendix. Simple word problems in universal
algebras. In J. Leech, editor, Computational Problems in Abstract Algebra,
pages 263-297. Pergamon Press, 1970.

G. Kahn and G. Plotkin D.G. MacQueen, editors. Semantics of Data Types,
number 173 in LNCS. Springer Verlag, 1984.

Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene
logic for partial functions. SEKI-Report SR-93-20 (SFB), Universitidt des
Saarlandes, Saarbriicken, 1993.

Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene
logic for partial functions. In [Bun94/, pages 371-385, 1994.

Stephen C. Kleene. Introcuction to Meta-Mathematics. North Holland, 1952.

Michael Kohlhase. Unification in order-sorted type theory. In [Vor92], pages
421-432, 1992.

Michael Kohlhase. Higher-order resolution with combinators. In J. Avenhaus
and J. Denzinger, editors, Informal Proceedings fo the Annual Meeting of “GI-
Fachgruppe ‘Deduktlionssysteme’ in Kaiserslautern, 1993, number SR-93-11
(SFB) in SEKI-Report, page 15, 1993.

Michael Kohlhase. Higher-order order-sorted resolution. Seki Report SR-94-1,
Fachbereich Informatik, Universitit des Sarrlandes, 1994.

Michael Kohlhase and Frank Pfenning. Unification in a A-calculus with inter-
section types. In Dale Miller, editor, Proceedings of the International Logic
Programming Sympsion. ILPS5°93, pages 488-505. MIT Press, 1993.

Edmund Landau. Grundlagen der Analysis. Wissenschaftliche Buchgesell-
schaft, Darmstadt, Germany; second edition, 1930. Reprint of the edition,
Leipzig, 1970.

Proceedings of the 6th Annual IEEE Symposium on Logic in Computer Science
(LICS-6). IEEE Computer Society Press, 1992.

Proceedings of the 7Tth Annual IEEE Symposium on Logic in Computer Science
(LICS-7). IEEE Computer Society Press, 1992.

Proceedings of the 9th Annual IEEE Symposium on Logic in Computer Science
(LICS-9). IEEE Computer Society Press, 1994.

Ewing L. Lusk and Ross A. Overbeek, editors. Proceedings of the 9th Confer-
ence on Automated Deduction, number 310 in LNCS, Argonne, Illinois, USA,
1988.

Claudio. L. Lucchesi. The undecidability of the unification problem for third
order languages. Report CSRR 2059, University of Waterloo, Waterloo,
Canada, 1972.

142

REFERENCES REFERENCES

[Mak77]

[Mil83]

[Mil89]

[Mil91]

[Mil92]

[ML94]

[MM73]

[MN87]

[Mor69]

[Mii193]

[MW94]

[Nad92]

[Neu28|

[Nip91]
[NMS8S]

[NQ91]

INQ92]

G. S. Makanin. The problem of solvabiliy of equations in a free semigroup.

Math. USSR Sbornik, 32(2):129-198, 1977.

Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon
University, 1983.

Dale Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification. In Peter Schroeder-Heister, editor,
Extensions of Logic Programming: International Workshop, Tibingen FRG,
December 1989, pages 253-281. Springer-Verlag LNCS 475, 1989.

Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 4(1):497—
536, 1991.

Dale Miller. Unification under a mixed prefix. Journal of Symbolic Compu-
tation, 14:321-358, 1992.

Per Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1994.

A. Martinelli and U. Montanari. An efficient unification algorithm. In Pro-
ceedings of the Third International Joint Conference on Artificial Intelligence,
1973.

Dale Miller and Gopalan Nadathur. A logic programming approach to manip-
ulating formulas and programs. In IEFFE Symposium on Logic Programming,
Salt Lake City, 1987.

James B. Morris. E-resolution. In [WN69], pages 287-294, 1969.

Olaf Miiller. Optimierung der modularen F-Unifikation héherer Stufe. Mas-
ter’s thesis, Universitit Karlsruhe, Germany, May 1993.

Olaf Miiller and Franz Weber. Theory and practice of minimal modular
higher-order F-unification. In [Bun94/, pages 650-677, 1994.

Gopalan Nadathur. A notion of models for an intensional higher-order logic.
Unpublished note, 1992.

John von Neumann. Die Axiomatisierung der Mengenlehre. Mathematische
Zeutschrift, 27:669-752, 1928.

Tobias Nipkow. Higher-order critical pairs. In [LIC92a/, pages 342-349, 1991.

Gopalan Nadathur and Dale Miller. An overview over APROLOG. Technical
Report MS-CIS-88-40, LINC LAB 116, University of Pennsylvania, 1988.

Tobias Nipkow and Zhenyu Qian. Modular higher-order E-unification. In
[Boo91], pages 200-214, 1991.

Tobias Nipkow and Zhenyu Qian. Reduction and unification in lambda calculi
with subtypes. In [Kap92/, pages 66-78, 1992.

143

REFERENCES REFERENCES

[Obe62]

[ORS92]

[0589]

[Pfe87]

[Pfe91]

[Pfe92]

[Pfe93]

[Pie73]

[Pie91]

[Plo72]

[PN9O]

[Pre94al]

[Pre94b]

[Qia91]

[Qia93]

Arnold Oberschelp. Untersuchungen zur mehrsortigen Quantorenlogik. Math-
ematische Annalen, 145:297-333, 1962.

S. Owre, J. M. Rushby, and N. Shankar. PVS: a prototype verification system.
In [Kap92], pages 748-752, 1992.

Hans Jirgen Ohlbach and Jorg Siekmann. The Markgraf Karl Refutation
Procedure. In Computational Logic — Essays in Honor of Alan Robinson,
pages 41-112. MIT Press, Cambridge, 1989.

F. Pfenning. Proof Transformations in Higher-Order Logic. PhD thesis,
Carnegie-Mellon University, Pittsburgh Pa., 1987.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard P.
Huet and Gordon D. Plotkin, editors, Logical Frameworks. Cambridge Uni-
versity Press, 1991.

Frank Pfenning. Intersection types for a logical framework. POP-Report
92-106, Carnegie Mellon University, 1992.

Frank Pfenning. Refinement types for logical frameworks. In Herman Geuvers,
editor, Informal Proceedings of the 1993 Workshop on Types for Proofs and
Programs, pages 285-301, Nijmegen, The Netherlands, May 1993. University
of Nijmegen.

Thomasz Pietrzykowski. A complete mechanization of second-order type the-
ory. Journal of the Association for Compuling Machinery, 20:333-364, 1973.

Benjamin C. Pierce. Programming with Intersection Types and Bounded Poly-
morphism. PhD thesis, School of Computer Science, Carnegie Mellon Uni-
versity, December 1991. Available as Technical Report CMU-CS-91-205.

G. Plotkin. Building in equational theories. Machine Intelligence, 7:73-90,
1972.

Lawrence C. Paulson and Tobias Nipkow. Isabelle tutorial and user’s manual.
Technical Report 189, Computer Laboratory, University of Cambridge, Janu-
ary 1990.

Christian Prehofer. Higher-Order Fquational Reasoning: From Logic lo Pro-
gramming. PhD thesis, Technische Universitdt Miinchen, 1994. forthcoming.

Christian Prehofer. Solving higher-order equations. In [LIC9/j], pages 507—
516, 1994.

Zhenyu Qian. Fxtensions of Order-Sorted Algebraic Specifications: Paramel-
erization, Higher-Funclions and Polymorphism. PhD thesis, Universitit Bre-
men, Marz 1991.

Zhenyu Qian. Linear unification of higher-order patterns. In J.-P. Jouannaud

M.-C. Gaudel, editor, Proceedings of TAPSOFT(CAAP)’93, number 668 in
LNCS, pages 391-405. Springer Verlag, 1993.

144

REFERENCES REFERENCES

[Qua92]

[QW94]

[Rob65]

[Rob68]

[Rob69a]

[Rob69b]

[Rus08]

[RW69]

[Sch24]

[Sch38]

[Sch51]

[Sch60]

[SG89)

[SieS6]

[Sko19]

[Smo8&9]

Art Quaife. Automated deduction in von Neumann-Bernays-Godel set theory.
Journal of Automated Reasoning, 8(1):91-148, 1992.

Zhenyu Qian and Kang Wang. Modular AC unification of higher-order pat-
terns, 1994. draft.

J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the Association for Computing Machinery, 12(1):23-41, 1965.

J. A. Robinson. New directions in theorem proving. In Proceedings of IFIP
Congress in Information Processing, volume 68, pages 63—-67. North Holland,
Amsterdam, 1968.

J. A. Robinson. Mechanizing higher order logic. Machine Intelligence, 4:151—
170, 1969.

J. A. Robinson. A note on mechanizing higher order logic. Machine Intelli-
gence, 5:121-134, 1969.

Bertrand Russell. Mathematical logic as based on the theory of types. Amer-
tcan Jounal of Mathematics, XXX:222-262, 1908.

Arthur Robinson and Larry Wos. Paramodulation and TP in first order the-
ories with equality. Machine Intelligence, 4:135-150, 1969.

Moses Schonfinkel. Uber die Bausteine der mathematischen Logik. Mathem-
atische Annalen, 92:305-316, 1924. Englisch Version entitled: On the building
blocks of mathematical logic in [vH67].

A. Schmidt. Uber deduktive Theorien mit mehreren Sorten von Grunddingen.
Mathematische Annalen, 115, 1938.

A. Schmidt. Die Zul&ssigkeit der Behandlung mehrsortiger Theorien mittels
der iiblichen einsortigen pridikatenlogik. Mathematische Annalen, 123, 1951.

Kurt Schiitte. Semantical and syntactical properties of simple types theory.
Journal of Symbolic Logic, 25:305-326, 1960.

Wayne Snyder and Jean Gallier. Higher-Order Unification Revisited: Com-
plete Sets of Transformations. J. Symbolic Computation, 8:101-140, 1989.

J. Siekmann, editor. Proceedings of the 8th Conference on Automated Deduc-
tion, volume 230 of LNCS, Oxford, England, 1986. Springer Verlag.

Albert Thoralf Skolem. Logisch-kombinatorische Untersuchungen iiber die
Erfiillbarkeit oder Beweisbarkeit mathematischer Sitze. Videnskapkasselska-
pets Skrifter, 1:1-36, 1919. English translation in [vH67].

Gert Smolka. Logic Programming over Polymorphically Order-Sorted Types.
PhD thesis, Universitit Kaiserslautern, 1989.

145

REFERENCES REFERENCES

[Smu63]

[Smu68]

[SNGMST]

[Sny90]

[Sny91]

[Soc93]

[5586]

[5587]

[5589]

[Sti86]

[Sti90]

[Tak53]

[Tak67]

[Tak68]

[Tak70]

[Tak87]

[Tho91]

Raymond M. Smullyan. A unifying principle for quantification theory. Proc.
Nal. Acad Sciences, 49:828-832, 1963.

Raymond M. Smullyan. First-Order Logic. Springer Verlag, 1968.

Gert Smolka, Werner Nutt, Joseph A. Goguen, and José Meseguer. Order-
sorted equational computation. SEKI-Report SR-87-14, Universitdt Kaiser-
slautern, 1987.

Wayne Snyder. Higher order F-unification. In [Sti90], pages 573-578, 1990.

Wayne Snyder. A Proof Theory for General Unification. Progress in Computer
Science and Applied Logic. Birkhduser, 1991.

Rolf Socher. Unification in order-sorted logic with term declarations. In
[Vor93], pages 301-308, 1993.

Manfred Schmidt-Schaufl. Unification in many-sorted equational theories. In
[Sie86], pages 538-552, 1986.

Manfred Schmidt-Schaufl. Computational Aspects of an Order-Sorted Logic
with Term Declarations. PhD thesis, University of Kaiserslautern, 1987. Also
[SS89].

Manfred Schmidt-Schaufl. Computational Aspects of an Order-Sorted Logic
with Term Declarations, volume 395 of LNAI Springer Verlag, 1989.

Mark E. Stickel. Schubert’s steamroller problem: Formulations and solutions.
Journal of Automated Reasoning, 2:89-101, 1986.

Mark Stickel, editor. Proceedings of the 10th Conference on Automated De-
duction, number 449 in LNCS, Kaiserslautern, Germany, 1990.

Gaisi Takeuti. On a generalized logic calculus. Japan Journal of Mathematics,
23:39 1., 1953.

Moto-o Takahashi. A proof of cut-elimination in simple type theory. Journal
of the Mathematical Society of Japan, 19:399-410, 1967.

Moto-o Takahashi. Cut-elimination in simple type theory with extensionality.
Journal of the Mathematical Sociely of Japan, 19, 1968.

Moto-o Takahashi. A system of simple type theory of Gentzen style with
inference on extensionality and the cut-elimination in it. Commentaric Math-
ematici Universitatis Sancti Pauli, XVIII(II):129-147, 1970.

Gaisi Takeuti. Proof Theory. North Holland, 1987.

Simon Thompson. Type Theory and Functional Programming. International
Computer Science Series. Addison-Wesley, 1991.

146

REFERENCES REFERENCES

[Uri92]

[VH67]

[Vor92]

[Vor93]

[Wal83]

[Wal84]

[Wal85]

[Wal87]

[Wal8g]

[Wan52]

[Web93]

[Wei89]

[Wei91]

[Wei93]

T. E. Uribe. Sorted unification using set constraints. In [Kap92], pages 163—
177, 1992.

Jean van Heijenoort, editor. From Frege to Goel A Soruce Book in Mathem-
atical Logic, 1879-1931. Source Books in the History of the Sciences. Harvard
University Press, 1967.

Andrei Voronkov, editor. Proceedings of the International Conference on Logic
Programming and Automated Reasoning LPAR’92, volume 624 of LNAI, St.
Petersburg, Russia, 1992. Springer Verlag.

Andrei Voronkov, editor. Proceedings of the International Conference on Logic
Programming and Automated Reasoning LPAR’93, volume 698 of LNAI, St.
Petersburg, Russia, 1993. Springer Verlag.

Christoph Walther. A many—sorted calculus based on resolution and paramod-
ulation. In Alan Bundy, editor, Proceedings of the 8th International Joint
Conference on Artificial Intelligence, pages 882-891, Los Altos, California,
USA, August 1983. William Kaufmann.

Christoph Walther. Unification in many-sorted theories. In T. O’Shea, editor,
Proceedings of the Furopean Conference on Artificial Intelligence, pages 593—
602, Pisa, Italy, 1984.

Christoph Walther. A mechanical solution of Schubert’s steamroller by many-
sorted resolution. Artificial Intelligence, 26(2):217-224, 1985.

Christoph Walther. A Many-Sorted Calculus Based on Resolution and Para-
modulation. Pitman, London. Morgan Kaufman Publishers, Inc, 1987.

Christoph Walther. Many-sorted unification. Journal of the Accociation for
Computing Machinery, 35(1):1-17, January 1988.

Hao Wang. Logic of many-sorted theories. Journal of Symbolic Logic, 17,
1952.

Franz Weber. Softwareentwicklung mit Logik héherer Stufe. PhD thesis, Uni-
versitit Karlsruhe, Germany, July 1993.

Christoph Weidenbach. A resolution calculus with dynamic sort structures
and partial functions. Seki-Report SR-89-23, Fachbereich Informatik, Uni-
versitit Kaiserslautern, Kaiserslautern, Germany, 1989.

Christoph Weidenbach. A sorted logic using dynamic sorts. Technical Report
MPI-1-91-218, Max-Planck-Institut fiir Informatik, Saarbriicken, Germany,
1991.

Christoph Weidenbach. Unification in sort theories and its applications. MPI-
Report MPI-1-93-211, Max-Planck-Institut fiir Informatik, Saarbriicken, Ger-
many, March 1993.

147

10 TABLE OF DEFINED SYMBOLS

[WN69]

[WO090]

[Wol93]

[WR10]

[Zai87]

[Zer08]

[ZKSS]

Donald E. Walker and Lewis Norton, editors. Proceedings of the 1st Interna-
tional Joint Conference on Artificial Intelligence, 1969.

Christoph Weidenbach and Hans Jiirgen Ohlbach. A resolution calculus with
dynamic sort structures and partial functions. In [Aie90], pages 688-693,
1990.

David A. Wolfram. The Clausal Theory of Types. Cambridge University Press,
1993.

Alfred North Whitehead and Bertrand Russell. Principia Mathematica,
volume I. Cambridge University Press, Cambridge, Great Britain; second
edition, 1910.

M. Zaionc. Word operation definable in the typed A-calculus. Theoretical
Computer Science, 52:1-14, 1987.

Ernst Zermelo. Untersuchungen iiber die Grundlagen der Mengenlehre. I.
Mathematische Annalen, 65:261-281, 1908.

Hantao Zhang and Deepak Kapur. Frist order theorem proving using condi-
tional rewrite rules. In [LO88], pages 1-20, 1988.

10 Table of Defined Symbols

currently under construction

148

