

SAFELINE VARIO Diagnose Handbuch

ЛΙИΑ ЛΙИΑ ЛΙИΑ ЛΙИΑ ЛΙИΑ $\bullet \bullet \bullet \bullet$ 2 0 3 4

DINA Elektronik GmbH Esslinger Straße 84

72649 Wolfschlugen Deutschland

Phone+49702295170Mailinfo@dina.deWebwww.dina.de

© Copyright by DINA Elektronik GmbH 2021

Alle Teile dieser Dokumentation sind urheberrechtlich geschützt.

Jede Verwendung außerhalb der Grenzen des Urheberrechts ist ohne schriftliche Genehmigung des Herausgebers nicht erlaubt. Dies gilt insbesondere für die Vervielfältigung, Verbreitung und Übersetzung dieser Dokumentation oder Teilen davon, sowie für die Speicherung und Verarbeitung der Inhalte mit elektronischen Datenverarbeitungssystemen.

Die Angaben innerhalb dieser Dokumentation entsprechen dem technischen Stand des Produktes zum Zeitpunkt der Veröffentlichung dieses Handbuches.

Impressum

Handbuch:	Handbuch
Zielgruppe:	Elektroniker, Elektrokonstrukteur
Bearbeiter:	DINA Elektronik GmbH
Dateiname:	slvario-diag-de-v0351
Sprache:	DEU
Publikationsstand:	05. Oktober 2021

Inhaltsverzeichnis

1	Onli	ine-Diagnose	5
	1.1	Starten der Online Diagnose	
	1.2.	Darstellung der Symbole in der Online Diagnose	
2	Rac	k-Diagnose	10
	2.1	Starten der Rackdiagnose	10
	2.2	Diagnose Buttons	
	2.3	Rack Informationen auslesen	
		2.3.1 Übersicht über mögliche Darstellungsarten der Module	
	2.4	Modul Diagnose	
		2.4.1 Übersicht über mögliche Darstellungsarten der Modulklemmen	
		2.4.2 Übersicht über mögliche Darstellungsarten der LEDs	
		2.4.3 Übersicht über mögliche Darstellungsarten der LEDs zur Drehzahlüberwachung	
	2.5	Statusinformationen	
		2.5.1 Statusinformationen Zentralmodul ZMV	
		2.5.2 Latch bei Drehzahlüberwachung am ZMV	
		2.5.3 Statusinformationen zu Zeitwerken	21
		2.5.4 Statusinformationen zu Zählern	
		2.5.5 Statusinformationen zu Schaltmatten	
		2.5.6 Statusinformationen zu Kopierern	
		2.5.7 Statusinformationen zu Nocken	
		2.5.8. Statusinformationen zum Synchron Vergleicher	
		2.5.9 Statusinformationen zu Analog-Klemmen	
		2.5.10 Statusinformationen zu Analog-Input Comparator	
		2.5.11 Statusinformationen zum Sicheren Bremsentest	
		2.5.12 Tabellen	
	2.6	Statusinformationen zu den Drehzahl-Überwachungsfunktionen	
		2.6.1 Latch-Funktion	
	2.7	Statusinformationen zum Feldbus Modul FBV	
	2.8	Statusinformationen zum Modul INV	.32
	2.9	Statusinformationen zum Modul IOV	
	2.10	Statusinformationen zum Modul RMV	
	2.11	Statusinformationen zum Modul NIV	
3	Fehl	ler Diagnose	34
	3.1	Detaillierte Informationen anzeigen	
4	Hist	ory	37
	4.1	History auslesen	
	4.2	History löschen	

SL VARIO Diagnose

Fehler- und Betriebszustände schnell erfassen

Produktbeschreibung

Die grafische Programmiersoftware SL VARIO Designer ermöglicht umfangreiche Diagnosemöglichkeiten. Sowohl Statusinformationen als auch Soll- und Istwerte der SL VARIO -Module werden durch die Software erfasst und dargestellt.

Der Einsatz von grafischen Elementen ermöglicht hier auf einfachste Art und Weise, Fehler und Betriebszustände der SL VARIO -Module zu erkennen, um somit schnell und effektiv Fehlerbeseitigungsmaßnahmen zu ergreifen.

Für die Diagnose muss das Zentralmodul ZMV bzw. ZMVK über den USB-Port an den PC angeschlossen werden.

Dann kann auf zwei verschiedene Diagnosemöglichkeiten zugegriffen werden:

- In der Online Diagnose können Zustände bei geöffneter Applikation erfasst werden.
- In der Rack Diagnose können die Zustände an den angeschlossenen Modulen auch ohne das Öffnen einer Applikation ausgelesen werden.

1 Online-Diagnose

In der Onlinediagnose können die Logikzustände der Applikation beobachtet werden. Der Anlagenstatus sowie Voraussetzungen für den fehlerfreien Betrieb sind nachvollziehbar.

1.1 Starten der Online Diagnose

- Starten Sie den Designer und verbinden Sie das Zentralmodul mit der USB Schnittstelle des Rechners.
- Öffnen Sie die Applikation, ggf. Passwort für die Berechtigung zur Nutzung der Applikation eingeben. (Abbildung 1-1)

Stellen Sie die Schnittstelle ein (Abbildung 1-2)

Menü "Übertragung-Schnittstelle", siehe

Abbildung 1-1

▶ Wählen Sie-"DIAGN" im Menü Logik an. (Abbildung 1-3)

Designer Handbuch

Abbildung 1-3

Die Diagnose wird gestartet und die tatsächlichen Zustände an den Modulen wird angezeigt. Ein Farbwechsel des Buttons kennzeichnet die aktive Diagnose. (Abbildung 1-4)

Abbildung 1-4

Während der Diagnose stehen nicht alle Funktionen des Designers zur Verfügung. Gesperrte Funktionen sind grau hinterlegt. (Abbildung 1-5)

Abbildung 1-5

1.2. Darstellung der Symbole in der Online Diagnose

Je nach projektiertem Symbol, werden die Zustände andersartig dargestellt. (Abbildung 1-6)

Abbildung 1-6

So werden bei der Drehzahlüberwachung sowohl die parametrierten Soll- als auch die aktuellen Istwerte angezeigt. Bei den Zeit- und Zählwerken wird immer der aktuelle Wert angezeigt. Sollund Istwerte sind auch bei allen analogen Elementen im Symbol sichtbar.

Die Klemmen an den Ein- und Ausgängen oder an Sicherheitskreisen wechseln ihre Farbe, je nachdem, ob die Klemme beschaltet oder unbeschaltet ist bzw. ob ein Fehler an dieser Klemme vorliegt.

Färbt sich ein ganzes Symbol orange, so deutet dies auf einen Fehler hin, der aber nicht zwingend zum SLOK OFF (d.h. zum Abschalten von SL Vario) führen muss.

Die folgende Tabelle zeigt die Darstellungsarten der einzelnen Symbole in der Online Diagnose.

Symbol	Darstellung	Beschreibung
Eingang (auch bei sicherheits- relevanten Funktionen)	ZMV 0 IN INI INI. Imi -	Klemme grau = Eingang off
	ZMV 0 IN INI INI. Milems	Klemme grün = Eingang on
	ZMV 0 IN IN2 IN2.	Klemme orange = Fehler am Eingang, z.B. getakteter Eingang wird statisch beschaltet
Ausgang		Klemme grau = Ausgang off
		Klemme grün = Ausgang on

1

Vergleicher DZÜ Synchron Vergleicher	Q1: D5V 1 D2U1 D2U1 D2U1 Q1: 2447.9Hz G1: 3000 Hz Q2: 05V 1 D2U2 Q2: 2511.9Hz G2 Q2: 2511.9Hz G2 P2: 1 G1 T-Up: 5 % G1 T-Down: 10 % (<) H: 2576.8Hz (=)	Schwarz: eingestellte Parameter Blau: aktuelle bzw. errechnete Frequenzwerte H: max. Toleranzwert L: min. Toleranzwert
Schaltmatte	ZMV 0 0 22.96V	Aktueller Spannungswert wird angezeigt.
	SM1.	Schaltmatte schaltet durch
	ZMV 0 25M6 SM6. 0.0V	Klemme rot: Kurzschluss oder Drahtbruch
Analoger Eingang		Obere Werte: parametrierte Grenzwerte Unterer Wert: aktueller Analogwert
	ZMV 0 → ANA1 ANA1. 3-6V 2.15V	Klemme grau:Analogwert außerhalb der parametrierten Grenzwerte.
	ZMV 0 → anai Anai. 3-60 3.130	Klemme grün: Analogwert innerhalb der parametrierten Grenzwerte.
	ZMV 0 ANA1 ANA1.	Klemme rot: Kurzschluss oder Draht- bruch oder Spannung/Strom mehr als 13.5V / 25mA
Multiplexer	53269.78 Hz 32710.04 Hz 12983.03 Hz	Sollwert für Fx3 Sollwert für Fx2 Sollwert für Fx1 Sollwert für Stillstand
	- 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8	laut DNCO Tabelle und angewählter Klemme.
	- 6 - 5 - 4 - 3 - 2	Grün: Angewählte Klemme
	- 1	

Addierer	ADD1 Q1: ANA1 Q1: PE Q2: ANA1 Q2: PE L1 L1: 1 L2: 1 L2: 1 L2: 1 L2: 1 L2: 1 L2: 1 L2: 1 L2: 1 L2: 1 L2	Schwarz: eingestellte Parameter Blau: aktuelle bzw. errechnete Analogwerte
Subtrahierer	SUB1 Q1: ANA1 Q1:	Schwarz: eingestellte Parameter Blau: aktuelle bzw. errechnete Analogwerte
Normierer	DIN 4mA: 0 20mA: 100 Of: 0 F: 1 Q: 0 M: 0 pE G: 0 pE	Schwarz: eingestellte Parameter Blau: aktuelle bzw. errechnete Analogwerte
Analog Input Comparator	AIC1 Q1: ANA1 Q1: ANA2 Q2: ANA2 Q2: 0 Abw: 0 Dif:0 (=)	Schwarz: eingestellte Parameter Blau: aktuelle bzw. errechnete Analogwerte
Analog Ausgang	ANA07 Q: ANA1 Q: 0 pE Min: 1	Schwarz: eingestellte Parameter Blau: aktuelle Analogwerte
	Mari 1 Uar 0.0 V ANAO7.	Klemme ANA wechselt von grau nach grün, wenn Spannung im parametrier- ten Bereich.
Kopierer	Q: ANA4 Q: 0 Act: 0	Q: analoger Wert an der vorgegebenen Quelle Act: kopierter Wert
Nocken	Slot: 5 Encoder: 1 OG: 100 UG: 50 Hyst: 0 13t: 203340 Ink Freq: 10064 Ink/100Ms (Range) -	Blau: aktuelle Istwerte
ERR-MESS	SIV 5 82405 Ink 0 Ink Res Encoder 1 ausN	Blau: aktuelle Istwerte der Encoder 1 und 2

2 Rack-Diagnose

Neben der Online Diagnose steht beim SL VARIO Designer die Rack Diagnose zur Verfügung. Dort wird ein Hardware-Abbild der auf dem Zentralmodul befindlichen Applikation wiedergegeben. Die Betriebszustände der jeweiligen Module sowie deren Details wie bspw. Achszustände, Betriebsarten, Sicherheitskreise etc. können erkannt werden.

2.1 Starten der Rackdiagnose

- Starten Sie den Designer und verbinden Sie das Zentralmodul mit der USB Schnittstelle des Rechners.
- Öffnen Sie eine neue Applikation "Datei-Neu" (Abbildung 2-1)

Stellen Sie die Schnittstelle ein (Abbildung 2-2) Menü "Übertragung-Schnittstelle", siehe Designer Handbuch

(Abbildung 2-3)

Image: Struktur Image: Struktur Image: Struktur Image: Struktur	Datei Parameter	Projekt Ansicht	Übertragung	Simulation	Hilfe		
Rack	🕑 🧀 😫	🖶 📲 🗒	🗱 📀				
Struktur	19 Gerätekonfigu	ration 🐉 Logik	Rack Di	agnose			
Rack	Rack-						
SI Vario-ZMV			Struktur ——				

Die Applikation wird aus dem Zentralmodul ausgelesen. (Abbildung 2-4)

Abbildung 2-4

Der Status der in der Applikation definierten Hardware wird angezeigt. (Abbildung 2-5)

Das Hauptmenü ist in 4 Bereiche aufgeteilt:

Im **Bereich 1** befinden sich die Diagnose Buttons. Mit diesen werden unterschiedliche Diagnosefunktionen aufgerufen oder eine Diagnose gestartet bzw. beendet. Die Funktionalität der Buttons wird im Kapitel "Diagnose Buttons" beschrieben.

Im **Bereich 2** wird das reale Rack dargestellt. Weitere Informationen zu diesem Bereich finden Sie im Kapitel "Rack Informationen auslesen".

Im **Bereich 3** erscheint eine vergrößerte Darstellung des im Bereich 2 ausgewählten Moduls. Weitere Informationen finden Sie im Kapitel "Modul Diagnose".

Im **Bereich 4** werden Statusinformationen zum im Bereich 2 ausgewählten Modul dargestellt. Weitere Informationen finden Sie im Kapitel "Statusinformationen".

2.2 Diagnose Buttons

Die An- bzw. Abwahl der Diagnose Buttons erfolgt über die linke Maustaste. Es kann nur jeweils eine Funktion aktiviert werden.

	RACK AUSLESEN Bei erstmaligem Start der Diagnose werden bestimmte Daten der vor- liegenden Applikation einmalig aus SL VARIO ausgelesen. Werden die in SL VARIO gespeicherten Applikationsdaten geändert oder wird ein neues Rack zur Diagnose angeschlossen, so muss eine neue Diagnose gestartet werden, damit auch diese Diagnoseinformationen aktualisiert werden können.
	STANDARD - DIAGNOSE Die Standard-Diagnose von SL VARIO wird aktiviert und deaktiviert. Diagnose und Statusinformationen werden ausgelesen.
	DIAGNOSE TRIGGERN Diese Funktion ist z.Zt. noch nicht realisiert.
<u>°0</u>	FEHLER-DIAGNOSE Öffnet das Fehler-Diagnose-Fenster. Dort werden alle Fehler detailliert aufgelistet.Weitere Informationen finden Sie im Kapitel "Fehler Diagnose".
	HISTORY Nach jeder Programmierung von SL VARIO werden Programmierzeit- punkt, Checksummen, Autor, Maschinenbezeichnung auf SL VARIO als History-Punkte permanent gespeichert. Maximal 16 History-Punkte können auf SL VARIO gespeichert werden. Mit dieser Funktion werden diese Daten ausgelesen und angezeigt. Weitere Informationen finden Sie im Kapitel "History".
14	DIAGNOSEAUSWAHL FÜR KEIN MODUL/ALLE MODULE Mit dieser Funktion können alle im Rack befindlichen Module für die Diagnose an- oder abgewählt werden. Einzelne Module können für die Diagnose mit der rechten Maustaste auf das Modulabbild im Bereich 2 einzeln an- und abgewählt werden. Somit kann die Aktualisierungszeit optimiert werden.

2.3 Rack Informationen auslesen

Im Bereich 2 wird das gesamte Rack, die Zustände an den Ein- und Ausgängen der SL VARIO Module und Fehlerzustände abgebildet.

2.3.1 Übersicht über mögliche Darstellungsarten der Module

2.4 Modul Diagnose

Mit Linksklick auf eines der Module im Rack (Bereich 2) erscheint dieses Modul im Bereich 3. Die Klemmen und die LEDs dieses Moduls werden dort vergrößert dargestellt. Die Zustände werden ständig aktualisiert.

2.4.1 Übersicht über mögliche Darstellungsarten der Modulklemmen

A1 24V/DC	Nur bei ZMV und ZMVK Al Klemme orange: SLOK OFF Al Klemme grün: SLOK
Digitale Eingänge	Grün entspricht H-Pegel Grau entspricht L-Pegel
Reset Eingang	Eine eingerahmte Klemme symbolisiert einen digitalen Eingang, der als Reset Eingang parametriert wurde.
Analoge Eingänge	Werden die Eingänge des ZMV als analoge Eingänge benutzt, so gilt: • Grün, wenn Spannung/Strom innerhalb des parametrierten Bereiches • Grau, wenn Spannung/Strom außerhalb des parametrierten Bereiches • Blinken, wenn Messwert OV, d.h. Drahtbruch
Frequenzeingänge	Werden die Eingänge des ZMV als Frequenzeingänge benutzt, so blinken die Klemmen mit der angelegten Frequenz.
Digitale Eingänge	Orange Klemmen weisen auf einen funktionalen Fehler hin, z.B. Fehler am Sicherheitskreis. Zum Löschen dieser Fehlermeldung muss in der Applikation das Ele- ment RTSK vorgesehen sein.
N N 2 N Ausgänge	Grün entspricht H-Pegel Grau entspricht L-Pegel Blinkende Ausgangsklemme: Kurzschluss am Ausgang Getaktete Ausgangspaare werden wechselweise blinkend dargestellt.

2.4.2 Übersicht über mögliche Darstellungsarten der LEDs

2.4.3 Übersicht über mögliche Darstellungsarten der LEDs zur Drehzahlüberwachung

An den SL VARIO Modulen, die eine Drehzahlüberwachung ermöglichen, zeigt die mittlere LED Reihe den Zustand Stillstand, Drehzahl ok bzw. Überdrehzahl an. Diese Zustände werden in der Rackdiagnose ebenfalls dargestellt.

2.5 Statusinformationen

Im Bereich 4 werden die Statusinformationen eines im Bereich 2 ausgewählten Moduls angezeigt. Die Abbildung der Statusinformation ist modulabhängig.

2.5.1 Statusinformationen Zentralmodul ZMV

Status-ZM		Sonstige Elemen	ite		Tabellen
SK 1 S SK 2 IC SK 3 IC SK 4 R SK 5 R SK 6 R SK 7 R SK 8 R ZH1 R	ystem OK D1+IO2: CLK D3+IO4: CLK TDS TNI (S) TNI (R) TSM TSK TFB	DZÜ1 DZÜ3 Initiatoren Sollwert 5.03/5.03 Hz Istwert 0/0 Hz	F11 F12 F13 MT1	DZ1	LATCH
ZH2 MODS1 MODS2		Strom A1: 131.25 mA Strom O1: 9.54 mA Strom O2: 0.0 mA		Spannung A Gerätetemp.	1: 24.15 V : 42.5°C

Statusinformationen ZMV

Im linken Bereich werden die folgenden Zustände dargestellt. Die Kästchen werden angehakt, wenn die Bedingungen erfüllt sind.

SK1-SK8	Bedingungen für Sicherheitskreis 1 Sicherheitskreis 8 sind erfüllt.
ZH1 - ZH2	Bedingungen für Zweihandschaltung 1/2 sind erfüllt.
MODS1 - MODS2	ein Ausgang am Betriebsartenwahlschalter (MODE SLCT) ist gesetzt.
System OK	SL VARIO funktioniert ordnungsgemäß.
IO1+IO2:CLK	IO1 und IO2 sind als Taktausgänge parametriert.
IO3+IO4:CLK	IO3 und IO4 sind als Taktausgänge parametriert.
RTDS	Quittierung von ausgelösten Drehzahlüberwachungen steht an.
RTNI (S)	Freigabe für Netzwerkeingangsinformationen ist gesetzt.
RTNI (R)	Freigabe der Netzwerkeingangsinformationen ist zurückgesetzt.
RTSM	Quittierung der Wiedereinschaltsperre bei Schaltmatten steht an.
RTSK	Quittierung der Sicherheitskreis Fehlermeldung und der Latch Fehlermeldung steht an.
RTFB	Feldbus Ausgänge sind aktiviert.

Im oberen Bereich befinden sich Schaltflächen. Durch Linksklick gelangen Sie in weitere Status-Informationsfenster.

Sonstige Elemente	Status Informationen zu Zeitwerken, Zählern, Schaltmatten, Kopierern, Nocken, Analog-Klemmen, Analog-input-comparator, Sichere Bremsen- überwachung siehe Kapitel "Statusinformationen zu…
Tabellen	DNCO-Tabellen siehe Kapitel "Tabellen"

Im unteren Bereich befinden sich Informationsfenster zu Hardwaregrößen

Strom und Spannung an den Klemmen A1, 01 und O2 Gerätetemperatur

Enthält die Applikation die Funktion Drehzahlüberwachung, so erscheint zusätzlich folgender Bereich. (Abbildung 2-6)

DZÜ5 DZÜ6			
TTL/HTL	F51	DZ5	
Sollwert	F52	SS5	' <u> </u>
135320 Hz	🖌 F53	BR	<u> </u>
lstwert	MT5	L	• • •
0 Hz		R	LATCH

Abbildung 2-6

- DZÜx projektierte Drehzahlüberwachungen. Auswahl mit Linksklick. Das entsprechende Feld wird blau.
- TTL/HTL Gebertyp
- Sollwert parametrierter Sollwert der angewählten Betriebsart
- Istwert aktueller Istwert

Ist die Betriebsart MT angewählt, so wird der zu beobachtende Sollwert für das jeweilige Drehzahlmodul als unendlich festgelegt. Im Anzeigefeld für den entsprechenden Sollwert erscheint dabei der Text "NO LIMIT".

Wurde in der Applikation "Positionsüberwachung" aktiviert, so werden anstelle der Soll- und Ist-Frequenzen die Inkrementalwerte eingeblendet.

Folgende Fenster zeigen den Status der Drehzahlüberwachung DSx

Dabei gilt:	🔽 erkannt und quittiert 🛛 🔲 ausgelöst/nicht erkannt
Fxx, MTx	Betriebsart
DZx	Drehzahlüberwachung
SSx	Stillstandsüberwachung
BR	Bremsüberwachung
L/R	Links-/Rechtslauf
• • ••	keine Gebersignale vorhanden
LATCH	Zum Aufrufen der Auslösebedingungen diesen Button betätigen.

Weitere Informationen siehe Kapitel "Latch bei Drehzahlüberwachung am ZMV".

2.5.2 Latch bei Drehzahlüberwachung am ZMV

Abschaltungen der Drehzahlüberwachung können verschiedene Ursachen haben. Die sogenannte Latch-Funktion der Drehzahlüberwachung in Verbindung mit dem Designer bietet gute Diagnosemöglichkeiten, um die Ursachen von Abschaltungen festzustellen. Bei einer Abschaltung wird der Zustand der Drehzahlüberwachung gelatcht d.h. zwischengespeichert und kann im Designer angezeigt werden, solange die Versorgungsspannung nicht abgeschaltet wird und die Latchfunktion nicht quittiert wird.

Betätigen Sie die Schaltfläche , so erscheint das Menü "Zustand der Drehzahlüberwachung beim Abschalten" (Abbildung 2-7).

Überwachung über Initiatoren

Überwachung über TTL/HTL-Geber

Sollwert	Parametrierter Sollwert
lstwert	lstwert zum Abschaltzeitpunkt
DZ1; SS1; BR	Gibt den Zustand der Ausgänge zum Abschaltzeitpunkt wieder.
F11-F13;MT1	Gibt den Zustand der Eingänge zum Abschaltzeitpunkt wieder.
L/R	Beschreibt die Richtung zum Abschaltzeitpunkt.
e	Es wird eine PDF Datei dieser Auslösedaten erstellt.

Mögliche Ursachen von Abschaltungen:

Überschreiten der parametr. Drehzahl:

Die Abschaltfrequenz wird im Latchfenster angezeigt.

Überschreiten der parametr. Position:

Die Position bzw. Inkremente werden im Latchfenster angezeigt.

Geberfehler: Wird durch Drahtbruch bei einem oder mehreren Signalen verursacht.

Sin/Cos = 0V:

Wird verursacht bei gleichzeitiger Sinus- und Cosinus-Differenzspannungen von < 60mV. Das kann z.B. bei abgehobenem Lesekopf von Lineargebern geschehen.

Spurenvergleich Fehler:

Die Spuren Sin / Cos bzw. A / B werden in der Drehzahlüberwachung 2-kanalig überwacht.

Zwei Ursachen, abgesehen von internen Hardwarefehlern, können zu diesem Fehler führen:

- Bei sehr unterschiedlichen Frequenzen (>20%) über einer Zeit > 2,5 Sekunden.
- Wenn eine Spur "steht" und die andere Spur Frequenzen > 5x Stillstandfrequenz bringt über eine Zeit von > 2,5 Sekunden .

Beides kann durch starkes Regelverhalten des Antriebs im Stillstand provoziert werden.

Abhilfe: Die Stillstandüberwachung per Positionsüberwachung realisieren.

Die Stillstandfrequenz möglichst hoch parametrieren auf entsprechend ca. 1/6 der reduzierten Geschwindigkeit.

Fehler Positionsvergleich:

Die Inkremente der Spuren Sin / Cos bzw. A / B werden bei der Positionsüberwachung 2-kanalig überwacht. Wenn die Position stark voneinander abweicht, kommt es zum Positionsvergleich Fehler.

Ursache, abgesehen von internen Hardwarefehlern:

Durch die Steuereingänge F11, F12, F13, MT usw. kann zwischen Frequenzmessung und Positionüberwachung per Inkremente umgeschaltet werden, wenn im Designer die Positionsüberwachung angewählt wird. Wenn die Steuereingänge alle abgeschaltet sind, wird auf Positionsüberwachung umgeschaltet.

Angenommen die Umschaltung auf Positionsüberwachung geschieht dann, wenn der Antrieb noch läuft, dann kann es zu diesem Positionsvergleich Fehler kommen, da die Umschaltung nicht absolut synchron erfolgt. Es sollte durch die Applikation sichergestellt werden, dass der Antrieb steht, wenn auf Positionsüberwachung umgeschaltet wird.

L/R-Wechsel >10kHz:

Nur bei Positionsüberwachung möglich. Bei Richtungswechseln schneller als 10kHz entsprechend tritt der Fehler auf. Wurde nur bei internen Hardwarefehlern der Drehzahlüberwachung beobachtet.

Sin²+Cos² ungleich 1:

Nur bei SL VARIO DSV Modulen möglich. Wenn die Option im Designer angewählt ist und das Sin/Cos Signal nicht der Gleichung Sin²+Cos²=1 entspricht, kommt es zu diesem Fehler, z.B. bei EMV Problemen. Im Latchfenster des Designers werden noch weitere Fehlermöglichkeiten angeführt. Sie beziehen sich ausschließlich auf interne Hardwarefehler, die zum Abschalten der Betriebsbereitschaft des Systems führen:

IPK Fehler

IPK Daten Fehler

CAN Fehler

Port Fehler

5V Fehler

Checksummen Fehler

Zum Löschen/Quittieren dieser Fehlermeldungen muss in der Applikation das Symbol 😲 RTSK verdrahtet werden.

2.5.3 Statusinformationen zu Zeitwerken

Zeitwerke mit 4 Eingängen

(Abbildung 2-8)

- [x]: das jeweilige Zeitwerk ist parametriert und in Verwendung.
- []: Zeitwerk nicht in Verwendung.
- aktueller Zeitwert in s.
- Zustände der Eingänge T...T3
- Zustand des Ausgangs

P					
	т	T1	T2	Т3	Ausgang
[x] ZW1: 0.0 s	V	2			*
[x] ZW2: 0.0 s	2				
[x] ZW3: 0.0 s					
[x] ZW4: 0.0 s	2	~			~
[x] ZW5: 0.0 s	~	2			~
[x] ZW6: 5.0 s	2	1			*
[x] ZW7: 6.0 s	F	•			*
[x] ZW8: 7.0 s	2	×			
[x] ZW9: 8.0 s	~				*
[x] ZW10: 9.0 s	~				
[]ZW11: 0.0 s					
[]ZW12: 0.0 s					
[]ZW13: 0.0 s					
[]ZW14: 0.0 s					
[]ZW15: 0.0 s					
					Schließen

Zeitwerk-S mit einem Eingang (Abbildung 2-9)

- [x]: das jeweilige Zeitwerk ist parametriert und in Verwendung.
- []: Zeitwerk nicht in Verwendung.
- aktueller Zeitwert in s.
- Zustand des Eingangs T
- Zustand des Ausgangs

Abbildung 2-8

C					
	т	Ausgang		т	Ausgang
[]ZW1A: 0.0 s			[]ZW8B: 0.0 s		
[]ZW1B: 0.0s			[]ZW9A: 8.0 s		
[]ZW2A: 0.0 s			[]ZW9B: 0.0 s		
[]ZW28: 0.0 s			[]ZW10A: 9.0 s		
[]ZW3A: 0.0 s			[]ZW10B: 0.0s		
[]ZW38: 0.0 s			[x] ZW11A: 0.0 s		*
[]ZW4A: 0.0 s			[x] ZW11B: 0.0 s	*	*
[]ZW4B: 0.0s			[x] ZW12A: 0.0 s	*	*
[]ZW5A: 0.0 s			[x] ZW12B: 0.0 s	*	*
[]ZW58: 0.0 s			[x] ZW13A: 0.0 s		
[]ZW6A: 5.0 s			[x] ZW13B: 0.0s		
[]ZW6B: 0.0 s			[x] ZW14A: 0.0 s		
[]ZW7A: 6.0 s			[x] ZW14B: 0.0 s		
[]ZW7B: 0.0s			[x] ZW15A: 0.0 s		*
[]ZW8A: 7.0 s			[x] ZW15B: 0.0 s		
			Schließen		

2.5.4 Statusinformationen zu Zählern

Abbildung 2-10

- Aktueller/
 eingestellter Zählerstand
- Zustände der Ein- und Ausgänge

Abbildung 2-10

2.5.5 Statusinformationen zu Schaltmatten

Abbildung 2-11

- Zustand des Ausgangs
- Istwert an der Eingangsklemme
- Spannungsgrenzen innerhalb welcher die Schaltmatte durchschaltet.
- Latch Werte

Bei einer Abschaltung wird der Zustand an der Eingangsklemme gelatcht d.h. zwischengespeichert solange die Versorgungsspannung nicht abgeschaltet und die Latchfunktion nicht quittiert wird.

Das Löschen/Quittieren dieser Latch Werte erfolgt über die Funktion RTSK In der Applikation.

1				
Ausgang	Istwert	Minimaler Wert:	Maximaler Wert:	Latch Werte
🖌 SM 1	9.7/9.7V	9.31V	14.21V	9.21/9.21V
SM 2				
SM 3				
SM 4				/
SM 5				
SM 6				
SM 7				
SM 8				
		Schließen		

2.5.6 Statusinformationen zu Kopierern

Abbildung 2-12

- Zustand des Eingangs
- Kopierter Istwert der Quelle

Abbildung 2-12

2.5.7 Statusinformationen zu Nocken

Abbildung 2-13

Nur die in der Applikation verwendeten Nocken sind sichtbar.

- Zustand des Ausgangs "Range"
- Unterer und oberer Grenzwert
- Slot des SIV Moduls
- Istwert am Encoder Eingang (Encoder Nr. : Inkremente/ Frequenz)

NOC					
Name	Range	Unterer Grenzwert [Oberer Grenzwert]	Slot:	SSI-Encoder
Nocken 1:		1000	200000	2	1: 0/0
		~<	1/8 >>]	
			Schließen		

2.5.8. Statusinformationen zum Synchron Vergleicher

Abbildung 2-14

Nur die in der Applikation verwendeten Nocken sind sichtbar.

- (=) Antriebe laufen synchron
- (>) Antrieb 1 läuft schneller als Antrieb 2
- G1 Antrieb 1 befindet sich innerhalb des Grenzwertes
- G2 Antrieb 2 befindet sich innerhalb des Grenzwerte
- Latch Synchronlauf war/ist
 nicht gewährleistet
- Istwerte
- Latch-Werte

Latch-Werte

Bei einer Abschaltung des (=) Ausganges wird der Istzustand gelatcht d.h. zwischengespeichert solange die Versorgungsspannung nicht abgeschaltet und die Latchfunktion nicht quittiert wird.

Das Löschen/Quittieren dieser Latch-Werte erfolgt über die Funktion RTSK in der Applikation.

` @									
	(=)	(<)	G1	G2	Latch	Istwert Q1	Istwert Q2	Latchwert Q1	Latchwert Q2
SVGL 1:		~			*	1.0Hz	1193.0Hz	1.0Hz	1193.0Hz
						Schlief	Sen		

2.5.9 Statusinformationen zu Analog-Klemmen

Abbildung 2-15

- Zustand des Ausgangs
- O-10V Spannungsauswertung
- 4-20mA Stromauswertung
- Minimaler Wert/Maximaler Wert
- Istwert an der Analogklemme
- Latch-Werte

Latch-Werte

Bei einer Abschaltung wird der Zustand an der Eingangsklemme gelatcht d.h. zwischengespeichert solange die Versorgungsspannung nicht abgeschaltet und die Latchfunktion nicht quittiert wird.

Das Löschen/Quittieren dieser Latch-Werte erfolgt über die Funktion RTSK in der Applikation.

Ausgang	0-10V	4-20mA	Minimaler Wert:	Maximaler Wert:	Istwert	Latch Werte
ANA 1	~		4.01V	8.03V	7.74/7.74V	8.13/8.13V
ANA 2	~		4.01V	8.03V	5.49/5.58V	0.0/0.0V
ANA 3					/	/
ANA 4					/	/
ANA 5					/	
ANA 6					/	
ANA 7					/	/
ANA 8					/	/
				ah Sall an		
			5	chilelsen		

2.5.10 Statusinformationen zu Analog-Input Comparator

Abbildung 2-16

- Zustand des Ausgangs
- Q1/Q2 Analogeingänge, die verglichen werden.
- Abweichung Toleranz
- Q1/Q2 Istwert Q1/ Istwert Q2
- Differenz Differenz aus Q1 und Q2
- Latch-Werte

Latch-Werte (blau dargestellt)

Bei einer Abschaltung wird der Zustand an den Eingangsklemmen gelatcht d.h. zwischengespeichert solange die Versorgungsspannung nicht abgeschaltet und die Latchfunktion nicht quittiert wird.

Das Löschen/Quittieren dieser Latch-Werte erfolgt über die Funktion RTSK In der Applikation.

2.5.11 Statu	sinformatione	n zum Sichere	on Bromsontost

Abbildung 2-17

- Zustände der Eingänge
- Zustände der Ausgänge
- Ist- und Sollwerte von
 - Beruhigungszeit
 - Prüfzeit
 - Timeout
- Step Aktueller Prüfschritt

Eine Erläuterung zum Prüfschritt finden Sie im Designer Handbuch.

Diagnose Kästchen

Diese zeigen den Status des Bremsentests an.

,	Ausgang	Q1	02	Abweichung	Q1/ Q1-Latch	Q2/ Q2-Latch	Differenz/ Latch	Gelatcht
AIC 1	*	ANA5	ANA6	10	352/ 352	357/ 340	5 12	*
					/	/	0	
					/	/	0	
					/	/	0	
					Schließen			

Abbildung 2-16

1

0.0 sec / 0.0 sec Beruhigungszeit: SBT1 Prüfzeit 0.0 sec / 0.0 sec 0.0 sec / 0.0 sec Timeout: Step: Bremsentest angefordert FRG1 Bremsentest aktiv HB1 FRG 1-3 HB2 BTakth START [DZÜ-OK BTIO HB2 RESET ERR 🔲 HB1 DZŪ-OK [RFK1 HB1 RFK2 HB2 SBT1 SBT2 SBT3 SBT4 SBT5 SBT6 SBT7 SBT8 Schließer

2.5.12 Tabellen

Mit dem Button "Tabellen" werden die Werte aus den DNCO1- und DNCO2-Frequenztabellen ausgelesen. (Abbildung 2-18)

abellen			Schließen
DNCO1 DNCO2			
01: 50604.16	17: 30285.8	33: 10043.9	49: 10.07
02: 50604.16	18: 31073.23	34: 11129.91	50: 20.14
03: 51919.87	19: 31881.13	35: 12020.81	51: 30.38
04: 53269.79	20: 32710.04	36: 12983.03	52: 40.29
05: 54654.8	21: 34433.07	37: 14022.26	53: 49.47
06: 54654.8	22: 35328.33	38: 15144.68	54: 60.75
07: 56075.83	23: 36246.87	39: 15942.44	55: 70.86
08: 57533.8	24: 37189.29	40: 17218.57	56: 80.57
09: 57533.8	25: 38156.21	41: 18125.57	57: 89.28
10: 59029.67	26: 39148.27	42: 19080.36	58: 98.94
11: 60564.45	27: 40166.13	43: 20085.43	59: 109.63
12: 60564.45	28: 41210.45	44: 21143.45	60: 121.49
13: 62139.12	29: 42281.92	45: 22257.21	61: 131.21
14: 63754.74	30: 43381.25	46: 22835.89	62: 141.72
15: 63754.74	31: 44509.16	47: 24038.8	63: 149.18
16: 65412.36	32: 44509.16	48: 25305.06	64: 161.13

Abbildung 2-18

2.6 Statusinformationen zu den Drehzahl-Überwachungsfunktionen

Statusinformationen DSV

Slot Steckplatznummer

Im linken Bereich werden die folgenden Zustände dargestellt. Die Kästchen werden angehakt, wenn die Bedingungen erfüllt sind.

SK1 - SK4	Bedingungen für Sicherheitskreis 1 Sicherheitskreis 4 sind erfüllt.
ZH	Bedingungen für Zweihandschaltung sind erfüllt.
RTDS	Quittierung von ausgelösten Drehzahlüberwachungen steht an.
01+02:CLK	O1 und O2 sind als Taktausgänge parametriert.
03+04:CLK	03 und 04 sind als Taktausgänge parametriert.

Folgende Fenster zeigen den Status der Drehzahlüberwachung DSx

Dabei gilt:	🖌 erkannt und quittiert 🛛 🔲 ausgelöst/nicht erkannt
DZx	Drehzahlüberwachung
SSx	Stillstandsüberwachung
BRx	Bremsüberwachung (nur bei DSV)
Fxx, MTx	Betriebsart
L/R	Links-/Rechtslauf
Sollwert	parametrierter Sollwert in der angewählten Betriebsart
lstwert	aktueller Istwert
SIN/COS	projektierter Gebertyp

Ist die Betriebsart MT angewählt, so wird der zu beobachtende Sollwert für das jeweilige Drehzahlmodul als unendlich festgelegt. Im Anzeigefeld für den entsprechenden Sollwert erscheint dabei der Text "NO LIMIT".

Wurde in der Applikation "Positionsüberwachung" aktiviert, so werden anstelle der Soll- und Ist-Frequenzen die Inkrementalwerte eingeblendet. Hinter den eingeblendeten Werten steht in diesem Fall die Bezeichnung "Ink".

keine Gebersignale vorhanden

LATCH

Zum Aufrufen der Auslösebedingungen diesen Button mit der linken Maustaste drücken. Weitere Informationen siehe Kapitel "Latch-Funktion".

2.6.1 Latch-Funktion

Abschaltungen der Drehzahlüberwachung können verschiedene Ursachen haben. Die sogenannte Latch-Funktion der Drehzahlüberwachung in Verbindung mit dem Designer bietet gute Diagnosemöglichkeiten, um die Ursachen von Abschaltungen festzustellen. Bei einer Abschaltung wird der Zustand der Drehzahlüberwachung gelatcht d.h. zwischengespeichert und kann im Designer angezeigt werden, solange die Versorgungsspannung nicht abgeschaltet und die Latchfunktion nicht quittiert wird.

Betätigen Sie die Schaltfläche , so erscheint das Menü "Zustand der Drehzahlüberwachung beim Abschalten" (Abbildung 2-19).

Zustand der Drehzahlüberw DSV 1.1 Solwert 96.67 Hz abwert 496937.04 Hz 0.21 @ R BR R	achung beim Abschalten Geberfehler SinCes+0V Spurenvergleich-Fehler Fehler Daktonsvergleich UR Wechsel>10Hz Sin* - Ces ⁴ ungleich 1 Slave hat ausgelöst	Fehler an PK Fehler auf CAN-Bus Fonfehler Cht/Summ-Fehler SV-Fehler Datenfehler PK
	Schließen	2

Sollwert	Parametrierter Sollwert
lstwert	lstwert zum Abschaltzeitpunkt
DZ1; SS1; BR	Gibt den Zustand der Ausgänge zum Abschaltzeitpunkt wieder.
F11-F13;MT1	Gibt den Zustand der Eingänge zum Abschaltzeitpunkt wieder.
L/R	Beschreibt die Richtung zum Abschaltzeitpunkt.
	Es wird eine PDF Datei dieser Auslösedaten erstellt

Mögliche Ursachen von Abschaltungen:

Überschreiten der parametr. Drehzahl:

Die Abschaltfrequenz wird im Latchfenster angezeigt.

Überschreiten der parametr. Position:

Die Position bzw. Inkremente werden im Latchfenster angezeigt.

Geberfehler: Wird durch Drahtbruch bei einem oder mehreren Signalen verursacht.

Sin/Cos = 0V:

Wird verursacht bei gleichzeitiger Sinus- und Cosinus-Differenzspannungen von < 60mV. Das kann z.B. bei abgehobenem Lesekopf von Lineargebern geschehen.

Spurenvergleich Fehler:

Die Spuren Sin / Cos bzw. A / B werden in der Drehzahlüberwachung 2-kanalig überwacht.

Zwei Ursachen, abgesehen von internen Hardwarefehlern, können zu diesem Fehler führen:

- Bei sehr unterschiedlichen Frequenzen (>20%) über einer Zeit > 2,5 Sekunden.
- Wenn eine Spur "steht" und die andere Spur Frequenzen > 5x Stillstandfrequenz bringt über eine Zeit von > 2,5 Sekunden .

Beides kann durch starkes Regelverhalten des Antriebs im Stillstand provoziert werden.

Abhilfe: Die Stillstandüberwachung per Positionsüberwachung realisieren.

Die Stillstandfrequenz möglichst hoch parametrieren auf entsprechend ca. 1/6 der reduzierten Geschwindigkeit.

Fehler Positionsvergleich:

Die Inkremente der Spuren Sin / Cos bzw. A / B werden bei der Positionsüberwachung 2-kanalig überwacht. Wenn die Position stark voneinander abweicht, kommt es zum Positionsvergleich Fehler.

Ursache, abgesehen von internen Hardwarefehlern:

Durch die Steuereingänge F11, F12, F13, MT usw. kann zwischen Frequenzmessung und Positionüberwachung per Inkremente umgeschaltet werden, wenn im Designer die Positionsüberwachung angewählt wird. Wenn die Steuereingänge alle abgeschaltet sind, wird auf Positionsüberwachung umgeschaltet.

Angenommen die Umschaltung auf Positionsüberwachung geschieht dann, wenn der Antrieb noch läuft, dann kann es zu diesem Positionsvergleich Fehler kommen, da die Umschaltung nicht absolut synchron erfolgt. Es sollte durch die Applikation sichergestellt werden, dass der Antrieb steht, wenn auf Positionsüberwachung umgeschaltet wird.

L/R-Wechsel >10kHz:

Nur bei Positionsüberwachung möglich. Bei Richtungswechseln schneller als 10kHz entsprechend tritt der Fehler auf. Wurde nur bei internen Hardwarefehlern der Drehzahlüberwachung beobachtet.

Sin²+Cos² ungleich 1:

Nur bei SL VARIO DSV Modulen möglich. Wenn die Option im Designer angewählt ist und das Sin/Cos Signal nicht der Gleichung Sin²+Cos²=1 entspricht, kommt es zu diesem Fehler, z.B. bei EMV Problemen. Im Latchfenster des Designers werden noch weitere Fehlermöglichkeiten angeführt. Sie beziehen sich ausschließlich auf interne Hardwarefehler, die zum Abschalten der Betriebsbereitschaft des Systems führen:

IPK Fehler

IPK Daten Fehler

CAN Fehler

Port Fehler

5V Fehler

Checksummen Fehler

Zum Löschen/Quittieren dieser Fehlermeldungen muss in der Applikation das Symbol 😢 RTSK verdrahtet werden.

2.7 Statusinformationen zum Feldbus Modul FBV

IN/OUT-	1	NON.	T-2	LZ	Oct.	2	LZ (Oct. 3		LZ	Oct. 4	LZ	Oct.	5	LZ (Oct. 6	6	LZ O	ct. 7
Slot: 1 Adr: 3		Bit 8	7	6	5	4	3	2	Bit 1			Bit 8	7	6	5	4	3	2	Bit 1
SK 1	FBI1	0	0	0	0	0	0	0	0		FB01	0	0	0	0	0	0	0	0
SK 2	FBI2	0	0	0	0	0	0	0	0		FBO2	0	0	0	0	0	0	0	0
 SK 3	FBI3	0	0	0	0	0	0	0	0		FBO3	0	0	0	0	0	0	0	0
	FBI4	0	0	0	0	0	0	0	0		FBO4	0	0	0	0	0	0	0	0
□ ZH	FBI5	0	0	0	0	0	0	0	0		FBO5	0	0	0	0	0	0	0	0
	FBI6	0	0	0	0	0	0	0	0		FBO6	0	0	0	0	0	0	0	0
	FBI7	0	0	0	0	0	0	0	0		FB07	0	0	0	0	0	0	0	0
46.5°C	FBI8	0	0	0	0	0	0	0	0		FBO8	0	0	0	0	0	0	0	0

Statusinformationen FBV

Über die Schaltflächen IN/OUT-1 bzw. IN/OUT-2 werden die Bereiche der Feldbusein/-ausgänge FBI/O1-8 bzw. FBI/O9-16 ausgewählt.

- Die Bits der FBlx entsprechen den FB-Eingängen FBlx.1-FBlx.8 im Logikplan.
- Die Bits der FBOx entsprechen den FB-Ausgängen FBOx.1-FBOx.8 im Logikplan.

Über die Buttons LZ Oct x wird der Inhalt der Bytes aus der Laufzeitdiagnose (siehe Designer Handbuch) ausgelesen.

SlotSteckplatznummerAdrStationsadresse

Die Kästchen werden angehakt, wenn die Bedingungen erfüllt sind.

SK1-SK4	Bedingungen für Sicherheitskreis 1 Sicherheitskreis 4 sind erfüllt.
ZH	Bedingungen für Zweihandschaltung sind erfüllt.
RTFB	Feldbus Ausgänge sind aktiviert.

2.8 Statusinformationen zum Modul INV

Statusinformationen INV

Slot Steckplatznummer

Die Kästchen werden angehakt, wenn die Bedingungen erfüllt sind.

SK1 - SK8	Bedingungen für Sicherheitskreis 1 Sicherheitskreis 8 sind erfüllt.
ZH	Bedingungen für Zweihandschaltung sind erfüllt.
IO1+IO2:CLK	IO1 und IO2 sind als Taktausgänge parametriert.
103+104:CLK	IO3 und IO4 sind als Taktausgänge parametriert.

2.9 Statusinformationen zum Modul IOV

Statusinformationen IOV

Slot Steckplatznummer

Die Kästchen werden angehakt, wenn die Bedingungen erfüllt sind.

SK1 - SK4	Bedingungen für Sicherheitskreis 1 Sicherheitskreis 4 sind erfüllt.
ZH	Bedingungen für Zweihandschaltung sind erfüllt.
01+02:CLK	O1 und O2 sind als Taktausgänge parametriert.
03+04:CLK	O3 und O4 sind als Taktausgänge parametriert.

2.10 Statusinformationen zum Modul RMV

Status-RMV		
Slot: 5 Gerätetemp.: *C SK 1 SK 2 SK 3	╞╌╎	Relais1
SK 4	╞╌╎	Relais2 RM33-34 RM43-44

Statusinformationen RMV

Slot Steckplatznummer

Die Kästchen werden angehakt, wenn die Bedingungen erfüllt sind.

SK1 - SK4	Bedingungen für Sicherheitskreis 1 Sicherheitskreis 4 sind erfüllt.
ZH	Bedingungen für Zweihandschaltung sind erfüllt.
Relais 1	Relais 1 hat angezogen
Relais 2	Relais 2 hat angezogen

2.11 Statusinformationen zum Modul NIV

Slot: 5	Module: NIV	Der	vice temp.: °C	
SC 1	IN OUT			
SC 2	IN1 IN2 IN3	IN4 IN5	IN6 IN7 IN8	
🔲 SC 3	NI4.1	NII4.9	NII4.17	NII4.25
SC 4	NII4.2	NII4.10	NII4.18	NII4.26
RTNI (S)	NI4.3	NII4.11	NII4.19	NII4.27
	NI4.4	NII4.12	NII4.20	NII4.28
	NI4.5	NII4.13	NII4.21	NII4.29
Network address: 1	NII4.6	NII4.14	NII4.22	NII4.30
Baud rate: 50 kBit	NI4.7	NII4.15	NII4.23	NII4.31
Daud Tate: 50 KDit	NI4.8	NII4.16	NI4.24	NII4.32

Statusinformationen NIV

Slot	Steckplatznummer
Netzwerkadresse	Gibt die NW Adresse des NI-Moduls an, dessen Daten hier dargestellt werden.

Die Kästchen werden angehakt, wenn die Bedingungen erfüllt sind.

SK1 - SK4	Bedingungen für Sicherheitskreis 1 Sicherheitskreis 4 sind erfüllt.
RTNI	Gibt an, ob das RTNI Signal gesetzt (S) oder zurückgesetzt (R) ist.
IN1IN8	zeigt den Zustand der Eingänge dieses NIV-Moduls. Die erste Ziffer gibt die Netzwerkadresse an, von welcher die Signale gesendet wurden.
OUT1OUT8	zeigt den Zustand der Ausgänge dieses NIV-Moduls. Die erste Ziffer gibt die Netzwerkadresse an, zu welcher die Signale gesendet werden.

3 Fehler Diagnose

Bei SL VARIO wird zwischen zwei unterschiedlichen Fehlerarten unterschieden. Zum einen sind es SLOK-OFF-Fehler, die einen SLOK-OFF(Fehlerhafter Betriebszustand von SL VARIO) verursachen. Zum anderen sind es Plausibilitätsfehler, die auf einen unkorrekten, aber nicht zum SLOK-OFF führenden Zustand von SL VARIO hinweisen.

🕂 Ein SLOK-OFF erfordert immer einen Neustart des Zentralmoduls.

Jeder festgestellte Fehler führt dazu, dass das Steckplatznummernfeld des betroffenen Moduls in der Rack Darstellung rot aufleuchtet. (Abbildung 3-1)

Abbildung 3-1

Nach Anwahl dieses rot hervorgehobenen Steckplatznummernfeldes werden die am jeweiligen Modul vorliegenden Fehler angezeigt. (Abbildung 3-2)

Abbildung 3-1

3.1 Detaillierte Informationen anzeigen

Genaue Informationen über Fehlerzustände können über den Fehler-Diagnose-Button aufgerufen werden. (Abbildung 3-3)

Bereich 2										
•	•	۱ 🌣								
SP-0: Error-1 Modulfehler! Modul - Die Karte in folg Steckplatz 00 - Fe Applikationsfehler Steckplatz 00 - Fe Querschlussfehler Steckplatz 01 - Fe Karte fehlt (No SLO Mögliche Ursache Modul nicht gesteck CAN defekt >>> M	meldet sich nicht beim ZM endem Steckplatz fehlt: St hler Nr. 0160 hler Nr. 0260 an Sicherheitskreis 1 (No hler Nr. 0314 K-Off) >>> Mögliche Abhilfe t >>> Mödul tauschen odul tauschen	l leckplatz 1 SLOK-OM) Bereich:		18 18 100 178 178 68 0 0 0 0 0 0 0 0 0 0 0 0 0	ChkSum Designer ChkSum Projekt ChkSum APP ChkSum Master ChkSum Slave ChkSum NL ChkSum FB ChkSum DS ChkSum Analog Firmware-Release Modul Maschine Version Autor Datum Firmware ANALOG FBNL BNL MUTE	Bereich:3				

Es erscheint das Fehler-Diagnose-Panel. (Abbildung 3-4) Dieses ist in 3 Bereiche aufgeteilt.

Abbildung 3-4

Im **Bereich 1** erscheint eine Liste aller aufgetretenen Fehler. Alle Fehlermeldungen sind gekennzeichnet durch eine Fehlernummer und dem Steckplatz, auf dem der Fehler aufgetreten ist. Fehler, die nicht zu einem SLOK OFF führen, sind entsprechend gekennzeichnet.

Im Bereich 2 befinden sich folgende Buttons:

Aktuelle Fehler anzeigen

Hiermit werden ständig die aktuell vorliegenden Fehler-Informationen aus SL VARIO ausgelesen und angezeigt.

Gespeicherte Fehler anzeigen

Die zuletzt von SL VARIO erkannten und in einem EEPROM gespeicherten Fehler werden angezeigt. Diese sind auch nach einem Spannungsausfall noch abrufbar.

Löschen gespeicherter Fehler

Die in SL VARIO gespeicherten Fehler werden gelöscht. Wenn SL VARIO mit einem Passwort versehen wurde, findet eine Passwortabfrage statt.

Drucken

Eine PDF Datei wird erzeugt, welches die Informationen dieser Seite enthält.

- läuft, wenn aktuelle Diagnose aktiv
- Steht, wenn Diagnose abgebrochen oder gespeicherte Fehler ausgelesen werden.

Im Bereich 3 erhalten Sie Informationen über

- Checksummen
- Firmwarestand des angeschlossenen Gerätes
- Applikationsspezifische Daten, wie Maschinenname, Autor, Datum
- Spezielle Funktionen, die die Applikation beinhalten, wie z.B. Analogklemmen oder DNCO die Sie zur genaueren Fehlerbetrachtung heranziehen können.

4 History

Nach jeder Programmierung von SL VARIO werden folgende Informationen gespeichert

- Programmierzeitpunkt
- Autor
- Designer Version
- Checksummengröße
- Maschinenbezeichnung

Maximal 16 History-Indizes werden auf SL VARIO gespeichert. Die Daten sind in der Reihenfolge der Programmierung angeordnet. Im Index-1 stehen die zuletzt übertragenen Daten.

4.1 History auslesen

Dieser Button öffnet einen Notizblock, in dem Sie Projektnotizen nach Datum und Uhrzeit sortiert eintragen und ausdrucken können. Diese sind nicht in der Projektdokumentation sichtbar.

Betätigen Sie den Button "History" (Abbildung 4-1)

Abbildung 4-1

Die Daten werden ausgelesen und angezeigt. (Abbildung 4-2). Wenn SL VARIO mit einem Passwort versehen wurde, findet zuerst eine Passwortabfrage statt.

SLVario History										
Index	ChkSum APP		Maschine		Version		Autor		Datum	
1	55		MASCHINE 1		0344		DINA		271114	
2	198		MASCHINE 1		0344		DINA		271114	
3	186		MASCHINE 1		0344		DINA		271114	
4	141		MASCHINE 1		0344		DINA		261114	
5	9		MASCHINE 1		0344		DINA		261114	
6	204		MASCHINE 1		0344		DINA		261114	
7	190		MASCHINE 1		0344		DINA		261114	
8	137		TEST_MASCH		0344		_DINA_		261114	
9	190		MASCHINE 1		0344		DINA		261114	
10	43		MASCHINE 1		0344		DINA		261114	
11	14		MASCHINE 1		0344		DINA		261114	
12	234		MASCHINE 1		0344		DINA		251114	
13	91		MASCHINE 1		0344		DINA		251114	
14	209		MASCHINE 1		0344		DINA		251114	
15	191		MASCHINE 1		0344		DINA		251114	
16	183		MASCHINE 1		0344		DINA		251114	
				[U/i					

4.2 History löschen

Zum Löschen der History, betätigen Sie den Button "History löschen" (Abbildung 4-3).
 Wenn SL VARIO mit einem Passwort versehen wurde, findet eine Passwortabfrage statt.

