

 i

EU-Schadensbericht

Back-Office

Bachelorarbeit

zur Erlangung des Bachelors

im Studiengang Informationsmanagement

vorgelegt von

Alexander Rippert

Betreuer: Diplom-Informatiker Stefan Stein,

 Institut für Wirtschafts- und Verwaltungsinformatik,

 Fachbereich Informatik

Gutachter: Prof. Dr. J. Felix Hampe,

 Institut für Wirtschafts- und Verwaltungsinformatik,

 Fachbereich Informatik

Koblenz, im Juli 2010

 ii

 iii

German Summary / Deutsche Zusammenfassung

Im Rahmen dieser Bachelorarbeit wurde ein Back-Office für die elektronische Version des

Europäischen Schadensberichtes erstellt. Es wurden bereits in anderen Arbeiten ein mobiler

Client, welcher auf einem Windows Mobile Handy läuft, sowie ein Polizei Client erstellt.

Diese greifen auf das Back-Office zu, um Daten, wie z.B. die Autodaten (Automarke, der Typ,

das Baujahr und Bilder eines 3D-Modells des Autos) zu einem bestimmten Kennzeichen oder

die Personendaten des jeweiligen Autobesitzers zu erhalten. Der mobile Client sendet zudem

die Unfallakte an das Back-Office, damit die Daten über einen Unfall in diesem abgespeichert

und weiter bearbeitet werden können.

Ziel der Arbeit war es ein erweiterbares, modulares System zu entwickeln, welches später um

weitere Module ergänzt werden kann, um neue Funktionen bereitstellen zu können. Diese

Module können jeweils beliebige Daten in einer Datenbank abspeichern und diese von der

Datenbank auch wieder abfragen, sowie verändern, ohne dass das relationale Schema der

Datenbank verändert werden muss. Diese Funktionalität wird von dem Kernsystem

bereitgestellt.

Als Teil dieser Bachelorarbeit wurden fünf Module entwickelt, die alle auf dem Kernsystem

aufbauen und verschiedene Funktionen für unterschiedliche Zielgruppen bereitstellen:

Das Modul für den mobilen Client stellt einen Webservice zur Verfügung, über den der mobile

Client Daten über Fahrzeuge sowie über die Fahrzeughalter abfragen kann sowie den

Unfallbericht als XML-Datei an das Back-Office übermitteln kann.

Das Modul für den Polizei Client stellt einen Webservice bereit, über welchen Daten über

Fahrzeughalter abgefragt werden können.

Das Modul für die Versicherung besteht sowohl aus einen Webservice, der eine Integration in

die Softwareinfrastruktur des Versicherungsunternehmens ermöglicht, als auch aus einer

Webanwendung, über die ein Mitarbeiter einen Unfallvorgang bearbeiten kann. Dabei kann er

alle nötigen Daten sehen und bearbeiten sowie Schäden beurteilen und festlegen, wie hoch

die Kosten für eine Reparatur der Schäden sind und ob die Versicherung für den Schaden

aufkommt.

Das Modul für den Autobesitzer verfügt, genauso wie das Modul für die Versicherung, über

einen Webservice sowie eine Webanwendung. Der Webservice ermöglicht auch hier eine

Integration in bereits existierende Systeme. Über die Webanwendung kann der jeweilige

Autobesitzer die Daten über einen Unfall ansehen, sowie den Bearbeitungsstatus erkennen. Er

kann auch Autowerkstätten auswählen, die dann die Schäden seiner Autos beurteilen dürfen.

Das Modul für die Autowerkstatt besteht aus einem Webservice sowie einer Webanwendung.

Ein Mitarbeiter kann die Schäden zu einem Unfall in das System einpflegen sowie die Kosten

zu dessen Reparatur angeben.

Zudem gibt es noch eine Weboberfläche für Administratoren des Systems, über die die

Benutzer des Systems, die Automodelle, sowie Versicherungen und Autowerkstätten

verwaltet werden können.

 iv

Das System besteht aus einem Kernsystem, welches aus der Entity-Framework Schicht

inklusive der Datenschicht und der eigentlichen Datenbank, sowie der Geschäftsschicht

besteht (siehe Abbildung 0.1). Dieses Kernsystem stellt ein abstraktes Objektmodell sowie

Methoden zur Verfügung, die es ermöglichen, Daten abzuspeichern, zu verändern und

abzufragen. Es stellt auch sicher, dass alle Änderungen versioniert (protokolliert) werden.

Entity-Framework

Mobiler

Client

G
P

S

Webservice

Mobiler Client

Datenbank

Webservice

Polizei

Webservice

Versicherung

Auto-Werkstatt

Gutachter

Webservice

Autobesitzer

Datenschicht

Geschäftsschicht

Logik für Webservice

Versicherung

Logik für Webservice

Mobiler Client

Logik für Webservice

Polizei

Logik für Webservice

Autobesitzer

Logik für Webservice

Auto-Werkstatt / Gutachter

Weboberfläche für

Versicherung

Weboberfläche für

Autobesitzer

Weboberfläche für Auto-

Werkstatt / Gutachter

Fortgeschrittener

Mobiler Client

für die Polizei

Abbildung 0.1: Aufbau des Systems

Daten werden in sogenannten Container-Objekten, welche Entities enthalten, abgespeichert.

Container-Objekte haben jeweils einen Namen und fungieren als Behälter für die einzelnen

Werte, die als Entity-Objekte abgespeichert werden. Entity-Objekte können jeweils als Parent

weitere Entity Objekte enthalten und können daher eine Referenz zu alten, veränderten Daten

enthalten (siehe Abbildung 0.2). Entity-Objekte können beliebige Daten abspeichern.

Container

Entity

Entity

Entity

Entity

Entity

Abbildung 0.2: Container Entity Modell

 v

EU-Accident-Report

Back-Office

Bachelor Thesis

in order to obtain a bachelor degree

in the degree program Information Management

provided by

Alexander Rippert

Supervising Tutor: Diplom-Informatiker Stefan Stein,

 Institut für Wirtschafts- und Verwaltungsinformatik,

 Fachbereich Informatik

Reviewer: Prof. Dr. J. Felix Hampe,

 Institut für Wirtschafts- und Verwaltungsinformatik,

 Fachbereich Informatik

Koblenz, July 2010

 vi

Table of Contents

Contents
1. Introduction .. 1

1.1 Motivation .. 1

1.1.1 The European Accident Report .. 1

1.1.2 The Electronic Version of the European Accident Report on a Mobile Client 3

1.1.3 Server System .. 4

1.2 Bachelor-Thesis Project Task .. 5

1.3 Overview ... 6

2. Current Situation .. 7

2.1 Sketch Tool on the web .. 7

2.2 Pre-filled forms ... 8

2.3 Processing the forms in the insurance companies ... 8

2.4 Mobile Client ... 8

2.4.1 First Prototype by Janek Klass and Tobias Knopp .. 8

2.4.2 Second Prototype by Nadine Gille ... 9

2.4.3 Third Prototype by Stephan Arlt .. 10

2.4.4 Prototype for the Police by Stephan Arlt ... 10

2.5 3D-Damage Visualization by Thomas Lempa ... 11

3. Data Privacy .. 12

4. Architecture .. 13

4.1 Peer-to-Peer Architecture .. 13

4.2 Repository-Style Architecture ... 15

4.3 Structure of the System .. 17

4.4 Structure of the Database ... 18

5. Technology .. 20

5.1 Microsoft SQL Server 2008 ... 20

5.2 Microsoft .NET-Framework 3.5 SP1 .. 20

5.2.1 ASP.NET 3.5 .. 21

5.2.3 ADO.NET Entity-Framework .. 22

5.2.4 Windows Communication Foundation (WCF) ... 22

5.3 Tools .. 23

 vii

5.3.1 Microsoft Visual Studio 2008 ... 23

5.3.2 Microsoft Expression Web 2 .. 23

6. Prototype Implementation ... 24

6.1 The Core System ... 24

6.1.1 The Entity-Framework Layer .. 24

6.1.2 The Business Layer ... 28

6.2 Administration .. 36

6.2.1 Managing Car Brands, Car Types and Years of Manufacture 36

6.2.2 Managing Users ... 38

6.2.3 Managing Insurance Companies .. 41

6.2.4 Managing Car Repair Companies ... 43

6.3 Web Service for the Mobile Client .. 45

6.4 Web Service for the Police .. 48

6.5 Insurance Company .. 49

6.5.1 Web Service ... 49

6.5.2 Web Application .. 54

6.6 Car Owner ... 65

6.6.1 Web Service ... 66

6.6.2 Web Application .. 68

6.7 Car Repair.. 72

6.7.1 Web Service ... 72

6.7.2 Web Application .. 75

7 Conclusion .. 77

7.1 Summary and Results ... 77

7.2 Outlook ... 78

Bibliography .. 79

viii

Table of Figures

Abbildung 0.1: Aufbau des Systems ……………………………………………………………..…………………………iv

Abbildung 0.2: Container Entity Modell ..iv

Figure 1.1: Development of the road network and load on roads in Germany [ADAC09a].........1

Figure 1.2: Paper form of the European Accident Report [Unfa09b]...2

Figure 2.1: Online Sketch Tool that makes it easier to draw a sketch of an accident [Unfa09a].6

Figure 2.2: The first prototype of a mobile client for the European Accident Report by Janek

 Klass and Tobias Knopp implemented as a Java application[KlKn07].........................9

Figure 2.3: Screenshots from the second prototype by Nadine Gille [Gill08]..............................9

Figure 2.4: Screenshots from the third prototype by Stephan Arlt [Arlt09b].............................10

Figure 2.5: Screenshot of the user interface of the police client: Adding a vehicle [Arlt09a]....10

Figure 2.6: Screenshot of the user interface of the police client: Streets [Arlt09a]...................11

Figure 2.4: 3D-Visualization prototype for the European Accident Report and Netcar24 by

 Thomas Lempa [Lemp08]...11

Figure 4.1: A Peer-To-Peer-like Architecture..14

Figure 4.2: Repository-Style Architecture...15

Figure 4.3: Structure of the System..18

Figure 4.4: Database Schema...19

Figure 5.1: .NET-Framework [Trai09]..20

Figure 5.2: Overview of the .NET-Framework 3.5 [CONR07]..21

Figure 6.1: Overview of the Core System...24

Figure 6.2: The Entity-Framework Model...25

Figure 6.3: Mapping Details of Entity...26

Figure 6.4: Mapping Details of Container...26

Figure 6.5: Mapping Details of DataType...27

Figure 6.6: Entity Framework Metadata [Lerm09]...27

Figure 6.7: Structure of the Core System..28

 ix

Figure 6.8: UML-Diagram of the Object Model of the Core System...29

Figure 6.9: Container and Entities..30

Figure 6.10: A newer Version of an Entity..30

Figure 6.11: Versioning Entities..31

Figure 6.12: Container: YearOfManufacture..31

Figure 6.12: The Administration Module..36

Figure 6.13: Container Data Diagram of the car models..36

Figure 6.14: Screenshot of managing car models...37

Figure 6.15: Screenshot of adding a new year of manufacture with the car models.................38

Figure 6.16: Container Data Diagram of User Profile...39

Figure 6.17: Screenshot of managing users..39

Figure 6.18: Screenshot: Adding a new user..40

Figure 6.19: Container Data Diagram of insurance companies..41

Figure 6.20: Adding a customer to an insurance company..41

Figure 6.21: Managing insurance companies...42

Figure 6.22: Container Data Diagram of car repair companies..43

Figure 6.23: Adding an employee to a car repair company..43

Figure 6.24: Managing car repair companies...44

Figure 6.25: The Mobile Client Module..45

Figure 6.26: Proxy Web Service..46

Figure 6.27: Container Data Diagram of Accident..47

Figure 6.28: The Police Module ...48

Figure 6.29: The Insurance Module..49

Figure 6.30: UML Diagram of Classes used by the Web Service for the Insurance Company....52

Figure 6.31: Insurance Company Customers..54

Figure 6.32: Container Data Diagram of Insurance Company Customer Data55

Figure 6.33: Car Details...55

 x

Figure 6.34: Manage Insurance Company Customer..56

Figure 6.35: Add Car...57

Figure 6.36: Container Data Diagram of Car Repair Company Customers...............57

Figure 6.37: Adding a car repair company to a user...57

Figure 6.38: Accident Overview Part 1...58

Figure 6.39: Accident Overview Part 2...58

Figure 6.40: Overview: Display all Versions of Data...61

Figure 6.41: Show Original XML Document ...62

Figure 6.42: Edit Accident...63

Figure 6.43: Edit Damage..64

Figure 6.44: The Car Owner Module..65

Figure 6.45: UML Diagram of Classes used by the Web Service for the Car Owner...................66

Figure 6.46: Car Owner Overview...68

Figure 6.47: Managing Car Repair Companies..69

Figure 6.48: Overview Accidents..69

Figure 6.49: Overview of Accident for Car Owner Part 1..70

Figure 6.50: Overview of Accident for Car Owner Part 2..71

Figure 6.51: The Car Repair Module...72

Figure 6.52: UML Diagram of Classes used by the Web Service for the Car Repair Company...73

Figure 6.53: Car Repair Company Overview……………………………………………………………………………75

Figure 6.54: Edit Damage……………………………………………………………………………………………………….76

 xi

Table of Listings

Listing 6.1: Creating a new Container...31

Lisitng 6.2: Adding an Entity to a Container...32

Listing 6.3: Code for creating the YearOfManufacture Container and its Entities.....................32

Listing 6.4: Retrieving a Container via its id..33

Listing 6.5: Retrieving Containers via an Entity’s value..33

Listing 6.6: Retrieving the Entity with the name “Year”...34

Listing 6.7: Deleting a Container...34

Listing 6.8: Updating an Entity..35

Listing 6.9: Using a new Entity Variable..35

Listing 6.10: Converting a byte array to a bitmap...46

Tables

Table 6.1: Web Service for the Mobile Client...45

Table 6.2: Proxy Web Service for the Mobile Client...46

Table 6.3: Web Service for the Police...48

Table 6.4: Web Service for the Insurance Company...49-51

Table 6.5: Insurance Company Module Methods...53-54

Table 6.6: Web Service for the Car Owner...66

Table 6.7: Car Owner Module Methods...68

Table 6.8: Web Service for the Car Repair Company..72-73

Table 6.9: Car Repair Company Module Methods..74

Page 1

1. Introduction
The amount of cars on Germany’s roads has been increasing during the last decades. There

had been 41.183.594 cars according to the ADAC in Germany in 2008. There were 3.148.163

new car registrations in 2007. 3.566.122 motorbikes existed in 2008 [ADAC09]. In addition to

cars and motorbikes there are also trucks on our roads.

Figure 1.1: Development of the road network and load on roads in Germany [ADAC09]

Figure 1.1 shows that the amount of motorized vehicles is continually rising while there are

not significantly more roads being build (the high rise of roads in 1990/1991 is due to the

opening of the Berlin Wall and the Union of Western- and Eastern-Germany and does

therefore not indicate a high rise of new roads being build). This means that there is an ever

growing amount of vehicles on the roads and the gaps between vehicles is getting smaller.

This inevitably leads to a higher risk of making an accident.

1.1 Motivation
If an accident happens, it should be as easy as possible to create a report about the accident.

In a lot of cases it is not necessary to call the police. In those cases the people involved in the

accident have to create the report by themselves and send it to their insurance company. The

insurance company will then process the accident case. It is of interest that this process is as

cheap as possible.

1.1.1 The European Accident Report

In order to make it easier to document an accident the European Accident Report has been

created. This is a standardized form for recording an accident case. It contains fields, which

the user can fill out, for all data about an accident that the insurance company needs in order

to be able to process the case.

The form can be seen in figure 1.2.

Page 2

 Figure 1.2: Paper form of the European Accident Report [Unfa09b]

Page 3

It can be used in accidents in which two parties are involved. Both parties can write down

what has happened and what damages exist. It also includes space to create a simple drawing

of the accident. Using this standardized form ensures that no important data is missing in the

report. It also helps to build trust because the form will be accepted by insurance companies.

It is much easier to document an accident with this form than if a person needs to start with

an empty page. Another advantage is that insurance companies can more easily work with the

reports because they include all necessary data in a standardized form. This reduces costs.

The paper form of the European Accident Report has also got some drawbacks. Only about 1

in 15 people had the form in their car due to a survey by Nadine Gille [Gill08]. Not all people

have a writing that is easily readable. This is especially true if people are nervous, which they

are after an accident. This makes it difficult for the insurance company to read the form. It

also leads to misunderstandings. In the paper form it is possible to make wrong statements.

E.g. it is possible to answer yes and no at the same time to the question “Material Damage

other than to vehicles A and B”. It is also possible to make contrary statements on the left and

right side of the form. The place for the sketch of the accident is very small and therefore it is

difficult to draw a good sketch. Another problem is that not all people are good drawers and

therefore sketches might not be easily readable. Damages cannot be documented in detail. It

is only possible to show where damages are. The insurance company will later need a more

detailed report to process the accident case.

Another big disadvantage of the paper based form is that the insurance companies need to

manually insert the data from the forms into their computer systems. Some of those forms are

already scanned and inserted into those computer programs via writing recognition, though,

this only works if the writing is well readable. In a lot of cases insurance employees need to

read and manually insert the data into their programs. This is a very costly process. Insurance

companies have an interest in decreasing those costs.

1.1.2 The Electronic Version of the European Accident Report on a Mobile Client

Because of these disadvantages of the paper based European Accident Report an electronic

version has been developed that runs on a mobile phone. This has a lot of advantages. The

program guides the user through the form on a step-by-step basis, so that the he does not

forget writing down important data. The user can get help in each step. This is important,

because the user will probably not use the program very often. Making contrary statements is

not possible. Therefore the user can no longer answer yes and no at the same time. Another

big advantage is that the user can use GPS in order to figure out his location. The mobile client

also helps the user create a sketch. He automatically gets a map of his current location. He can

then insert the cars that were involved in the accident.

The user does not have to enter all data. E.g. his name, address and car information can be

retrieved from a database. The insurance companies can insert this data when a new contract

is made. This makes the process easier and helps avoiding errors.

A second client has been developed that runs on a tablet PC and can be used by the police to

document an accident.

Page 4

1.1.3 Server System

As mentioned above, the mobile clients have already been developed and it is therefore

possible to create a report of an accident from a mobile phone. This does not only help the

users by making documenting an accident easier, but also helps the insurance companies

reducing costs, because they do no longer have to manually process paper-based reports.

In order to create a paperless workflow it is necessary to have a server system that can receive

and save the data from the accident reports that have been created on the mobile client.

It should be possible to save, change and view data about accident cases via this server

system. Such a system would eliminate the need to manually input the data from reports into

a system and therefore help reduce costs.

The system should also provide a web interface for insurance company employees. Via this

interface it is possible to see all data about an accident case. The mobile client provides an

easy way to mark where car damages are on the car by showing an image of a car. The user

can also make photos of the damages. This helps insurance companies understand how an

accident has happened. Because the insurance employees can more easily reconstruct an

accident case, they can also see which damages are not results of this accident case.

This helps insurance companies identify insurance fraud.

The system could also provide a web interface for car owners. The car owner can then log in

to this website and see all his accident reports and can also the current processing state of the

accident reports. This reduces calls to the insurance companies from customers who want to

know if their accident cases have already been processed.

Because of all those advantages such a server system is being implemented in this bachelor-

thesis.

Page 5

1.2 Bachelor-Thesis Project Task
The goal of this bachelor-thesis is to create a central system, which insurance companies can

use to process their accident cases.

It should provide a web service interface that can receive the accident documents from the

mobile client. It should also offer a user interface for insurance companies, which those

companies can use to add data about their customer’s cars, as well as process their accident

cases.

The system should also have web services via which it is possible to access data about cars

from the mobile client and from the police client.

The system is implemented as a generic framework that includes basic functionality to write

all necessary data into the database and to read this data from the database. It also ensures

that all data is versioned, that means that it is not possible to delete or change data without

being able to precisely see who did those changes and when changes have been made. It

therefore implements an object model that can be used to work with the data from the

database. This object model provides certain functionality to save, read, update and delete

data, while ensuring versioning.

On top of this basic framework are modules which provide certain functionality for different

application areas, e.g. there is a module that implements the web service for the mobile

client, a web service for the police, a web service for insurance companies and a web surface

for insurance companies. Those modules use the object model and its functionality from the

basic framework (core system) that lies below it to access data from the database and to write

and update data to the database.

Due to this modular architecture it is easily possible to extend the system by adding more

modules or to change the functionality of the system by modifying single modules. The

developer who modifies a module only needs to know how this module works, how the core

system works and what data he wants to use. He does not have to know how all the other

modules work. Therefore it is easily possible to add new functionality to the system, as for

example integrating 3D-models of the cars. It is not necessary to change the core system or

the database when adding new modules, because the core system can store any kind of data.

This avoids accidentally breaking functionality of the system.

The focus of this bachelor-thesis is to create a modular framework that can be used by other

projects to add additional functionality by either modifying the existing modules or adding

new modules.

The modules contained in this bachelor-thesis are meant to be examples of how modules can

be created. Therefore they are very simple and do not provide a lot of functionality.

Developers can use those modules as a starting point for developing their own modules that

can be used by the system. It is also easily possible to replace an existing module with a new

one, as long as the data used by the module is the same.

Page 6

1.3 Overview
An overview of the European Accident Report as well as of the project task of this bachelor

thesis has already been given.

Chapter 2 describes existing tools and prototypes that make it easier to report an accident

case. This includes the mobile clients that make it possible to fill in the form on a mobile

phone.

Chapter 3 talks about important privacy requirements that need to be considered.

Chapter 4 gives an overview of the architecture of the system.

Chapter 5 describes the technologies and tools used to build the system.

Chapter 6 is a detailed description of the system.

It consists of several chapters that all describe certain parts of the system:

Chapter 6.1 is about the core system and describes how new modules can be created on top

of the core system. It gives detailed examples that show how the functionality of this

framework can be used to enhance the system.

Chapter 6.2 gives an overview of the part of the system used by administrators of the system.

Chapter 6.3 describes the web service for the mobile client.

Chapter 6.4 is about the web service for the police.

Chapter 6.5 describes the module for the insurance companies.

Chapter 6.6 gives an overview of the module for the car owner.

Chapter 6.7 describes the module for the car repair companies.

Chapter 7 summarizes the results of this bachelor thesis and talks about possible future

enhancements of the system.

Page 7

2. Current Situation
Today people can use the paper based form of the European Accident Report to document an

accident. This was a big step forward. It provided a standardized form that contains fields for

all data needed by an insurance company to process a case. But the paper based version of

the European Accident Report is not without problems (See chapter 1.1 for more information

about the advantages and disadvantages of this form).

2.1 Sketch Tool on the web

Figure 2.1: Online sketch tool that eases drawing of an accident sketch [Unfa09a]

Various projects exist that help the user fill out the form, for example an online tool which

makes it easier for the user to draw sketches of an accident. See figure 2.1 for a screenshot of

this application. The user can draw a road by choosing different road parts, add traffic signs,

add the vehicles and persons involved in the accident and draw arrows to indicate the

directions in which the vehicles were driving during the accident.

This tool helps insurance companies better understand how the accident happened. The tool

is web based which makes it difficult to use it on a mobile phone, because the screen of this

device is too small to display the tool. The tool can also only be used when the user is online.

A person therefore either needs a notebook with internet access to draw the sketch, which is

very unlikely. He can draw the sketch later, but then he has probably already forgotten some

details of the accident at the time he creates the sketch.

Page 8

2.2 Pre-filled forms of the European Accident Report

Another way of assisting the user is to use a partly filled out form. This is often the case when

people get the form from their insurance companies. They fill out the customer’s name,

address, the car’s information as well as the insurance company’s information.

2.3 Processing the forms in the insurance companies
Today no technology exists which would make it possible to send the data from the European

Accident Report to the user’s insurance company in a digital form. All forms are sent to the

insurances in paper form. They can then be scanned and transformed into digital form via

hand writing recognition or they need to be inserted into those systems in a manual way. If

data is missing, the insurance company employee needs to either send the customer a mail or

call him via telephone and request the missing data. Oftentimes the insurance company needs

to wait for a detailed evaluation of the damages on a car. This analysis is also sent to the

insurance company in an analog way. The insurance companies use their own software to

process accident cases.

2.4 Mobile Client

2.4.1 First Prototype by Janek Klass and Tobias Knopp

Janek Klass and Tobias Knopp have developed a mobile client application at the University of

Koblenz that makes it possible to document an accident on location [KlKn07]. It is

implemented as a Java application that can be run on a mobile phone. The user can insert the

required data into a step-by-step form. This ensures that all data is being inserted. It is also

ensured that the user cannot make contradictory statements. For example the user can

sometimes only select one option out of several options and therefore the risk of checking

both “yes” and “no” at the same time is eliminated. Today most people carry a mobile phone

with them. Therefore they would constantly have the form with them. This was not the case

with the paper based form that a lot of people did not carry around with them. Another

advantage of the system is that the data will be inserted in a digital form. This makes it easier

to use the data in an insurance company, because the data does not have to be manually

inserted into their system. Figure 2.2 shows screenshots of the mobile client. It can be seen

how a person can create notes about damages on the car. They can select where the damage

is.

Page 9

Figure 2.2: The first prototype of a mobile client for the European Accident Report by Janek

Klass and Tobias Knopp implemented as a Java application [KlKn07]

2.4.2 Second Prototype by Nadine Gille

A second client application has been developed by Nadine Gille [Gill08], who made it easier to

use the application. The first prototype was only black and white and it was a very

rudimentary application. The second prototype featured a modern user interface. The user

can now ask for help in each step if he does not know how to use the application. The client

application is now multi-lingual. As can be seen in Figure 2.3 the user can now see an image of

a car and can use either a rectangle or a freehand pen to mark damages. He can also choose

which kind of damage has occurred. The user can zoom into the car to make it easier to mark

damages. He can also take pictures of the damages and add them to the report. The client

application uses GPS to retrieve the current location of the person using the mobile phone. It

then displays a map of this location onto which the user can place cars and indicate how the

accident has happened. This replaces the traditional sketch.

Figure 2.3: Screenshots from the second prototype by Nadine Gille [Gill08]

Page 10

2.4.3 Third Prototype by Stephan Arlt

A third prototype of the mobile client is being developed at the same time as this bachelor

thesis is written [Arlt09b]. It will use the web service described in chapter 6.3 to retrieve data

about drivers and cars and send the report to the back-office. This prototype uses a map in

order to display the area where the accident happened instead of a satellite image, as used in

the second prototype. This makes it easier for people to figure out where they are, because

some things are not easily found on a satellite image (e.g. a road in a forest).

Figure 2.4: Screenshots from the third prototype by Stephan Arlt [Arlt09b]

2.4.4 Prototype for the Police by Stephan Arlt

In addition to the mobile client that can be used by car drivers, a second client that runs on a

tablet pc has been created. This client can be used by the police to document an accident case

[Arlt09a]. The police can insert all data needed to document an accident case into the

application. The application can retrieve data about the drivers and the cars involved in the

accident via the web service described in chapter 6.4. This reduces the amount of time needed

to create an accident report. It also helps avoiding errors.

Figure 2.5: Screenshot of the user interface of the police client: Adding a vehicle [Arlt09a]

Page 11

The application is very flexible in order to make it possible to document complex accident

cases. The user can add text and audio recordings to the report. This client is also being

created at the same time as this bachelor thesis.

Figure 2.6: Screenshot of the user interface of the police client: Streets [Arlt09a]

These clients represent only the client side of the system. The task of this bachelor-thesis is to

create a back-office system that can save the data created by the client applications and

display them to an insurance company employee. The clients currently save the data as an

xml-document locally on the mobile client.

2.5 3D-Damage Visualization by Thomas Lempa
Thomas Lempa has created an application that uses a 3D-model of a car to visualize

information about its damages [Lemp08]. The 3D-model contains special markers on which

the user can click in order to see more information about damages. It is also possible to see

pictures of the damages on the car. This is a prototype that illustrates how a 3D-model could

be used to ease to evaluation of a car’s damages.

Figure 2.4: 3D-Visualization prototype for the European Accident Report and Netcar24 by

Thomas Lempa [Lemp08]

Because this bachelor-thesis develops a base framework of the back-office and only

implements a simple user interface for the insurance company, the 3D-model has not yet

been implemented. This feature can be added in the future if needed.

Page 12

3. Data Privacy
Insurance companies must adhere to German privacy laws. The use of personal data is

therefore limited. The German privacy laws regulate, that someone may only collect the data

that he needs to process a case. That means insurance companies may only save and use data,

which they need in order to be able to process an accident case. They may not build and use a

database containing data which they do not need for working on an accident case. If they

collect and use more than the essential data needed to process a case they need the explicit

written consent of the person for this data. This could be problematic, because this consent

must be voluntarily. It therefore cannot be enforced for all insurance company customers. The

privacy law also regulates that the data collected may only be used for the purpose that they

had been collected for. They may not be used for other things. This means that e.g. an

insurance company is not allowed to use their customer’s address to send them

advertisements about hotels, because the customers provided their address only for

processing accident cases. This means that the system must ensure that the data is not used

for purposes other than the ones that are needed by the insurance companies to process

accident cases. 1

This has several consequences for the system described in this bachelor-thesis.

Only a minimum amount of data is collected from the customers including his name and

contact information, which consists of his address and telephone numbers. The identity card

number, passport and driver’s license number are saved as well. The insurance companies also

need to save the license plate number of the cars as well as information about the cars (brand,

type and year of manufacture). This data is needed to be able to process an accident case.

The identity card number, passport and driver’s license number are only used by the police

client. They cannot be seen by the insurance company. The system does not collect additional

data (e.g. birthday, job, income) that is not needed by insurance company employees.

Data about an accident case can only be accessed by the insurance company of the car owner

who was involved in the accident. Other insurance companies cannot see this data.

Only car repair companies who are chosen by the insurance company or the car owner can see

the owner’s data and evaluate damage.

No car owner can see other car owners’ data.

Administrators of the central organization cannot access accident case data. They can only see

the user’s personal data, because they are responsible for maintaining this data.

The whole system is built in a way that ensures that only people who have got the right to see

data can access this data. It is not possible to see private data of other people.

1
Read more about Data Privacy in Germany at [Date09]

Page 13

4. Architecture

A back-office for the Electronic Version of the European Accident Report has several

requirements that need to be considered. First it must be possible to access all relevant data

needed to process an accident case. Because not all car-owners have the same insurance, it is

possible that a car accident case needs to be handled by more than one insurance company.

Therefore it must be possible to access this data from all insurance companies of users

affected by the accident. To avoid insurance fraud it may also be necessary to look up the

accident history of their insurants.

Second all changes made to data in the system must be logged. This assures that no person

can change any data to manipulate an accident case. Changes might be possible out of several

reasons, like for example when the car owner or car driver made wrong entries when using

the mobile client due to a shock he had after the accident. It is also possible that an insurance

employee makes a mistake when processing a case and needs to correct that mistake.

Third most insurance companies already have an existing software infrastructure to process

their accident cases. It should be possible to integrate the back-office of the Electronic Version

of the European Accident Report into those systems and therefore possible to enable each

insurance company to create an integrated workflow.

Third data privacy must be ensured. Each entity in the system must only have access to data

relevant to solve a case. It must be prevented that a person can access all data at all times. For

example an insurance company may not access personal data like an address of a person from

another insurance company that is not involved into an accident processed by that company.

There are two basic variants of such a system:

4.1 Peer-to-Peer Architecture
The first is a peer-to-peer-like architecture. This means that each insurance company would

implement their own system. All systems would need to communicate with all other systems

of all insurance companies through a standardized protocol (see figure 4.1). This has several

advantages. Data is only saved in the insurance company that processes an accident case. This

ensures that other companies cannot access this data. Access to data is only granted when

needed. Access can be granted for each case. This way it is easy to control which data can be

read by which people. Another advantage is that, because the system will be implemented by

each insurance company, each company can perfectly integrate the system into their existing

software infrastructure. This makes it easier to comply with company policies, like for example

where data may be saved. This way each insurance company is in control of their system.

There are also some disadvantages. Each company has its own unique system. Therefore a lot

of different systems are used, written in different programming languages and running on

different operating systems. This can make it difficult to connect all those systems with each

other. By sending data from one system to another system, data might get lost due to

encoding limitations, e.g. when converting a 64 bit integer to a 32 bit integer.

Another problem is that duplicate data will be saved, because the data needs to be saved in

each insurance company that needs to process an accident case. It is difficult to ensure that all

this data will always stay up to date.

Page 14

It is also difficult to handle people, who are car drivers but not car owners, because they do

not appear in the insurance’s database. In many cases the car driver is not the car owner, e.g.

in a car lending company. It can also be difficult to maintain such a system. Each time a new

insurance company is added to the system, all companies must update their system to

connect to the new insurance company.

Insurance 5
Insurance 1

Insurance 2

Insurance 4

Insurance 6

Insurance 3 Insurance 7

Insurance 8

Figure 4.1: A Peer-To-Peer-like Architecture

Page 15

4.2 Repository-Style Architecture

Insurance 1

Insurance 2

Insurance 3

Insurance 4

Insurance 5

Insurance 6

Central Organization

Insurance 7

Insurance 8

Figure 4.2: Repository-Style Architecture

The second version is a repository-style architecture. This means that there is a central

database and a central software system that is being used by all entities (see figure 4.2). This

implies that there is a separate organization which is responsible for maintaining the

database. This organization can add and manage users. It can also add and manage insurance

companies and other organizations that need to access the data saved in the database. All the

organizations can access the data through a standardized protocol or through a web interface.

Data access can be controlled through access rules. This way only organizations with proper

rights can access certain data and data protection can be ensured. It is easy to administer and

manage the system because all changes will only have to be made to a centralized system.

Another advantage is that there are contact persons in the organization who can help

insurance companies when they have problems related to the system.

This version has also got some disadvantages. There must be a centralized organization which

is responsible to manage and maintain the system. It might be difficult to create such an

organization.

Page 16

All data will be saved in one big database system and therefore it is volatile to misuse because

an attacker only needs to break into one system to get access to all data. If the data were

saved in several systems an attacker would have to get access to all systems in order to get

the data. It is also not as easy to integrate the system into the existing software systems of the

software companies, because there would be one centralized workflow and one standardized

data model.

The back-office of the Electronic Version of the European Accident Report is implemented in

the second, repository-style architecture. This eases management and maintenance of the

system. Another advantage is that it is possible to add people to the system who do not have

a car insurance, like for example car drivers that drive cars owned by other people, e.g.

parents or car lending companies. It also makes it easier to create a standardized data model

that all companies will use. For example all car models can be inserted into this centralized

database, therefore it is not possible that two insurance companies process the same accident

case but get problems because the car model saved in their database is not the same, because

they have two different data models for saving the car model. This also means that there is

only one version of the mobile client software that will be used by all insurance companies.

This client software will access the centralized back-office system. If the system was created in

a peer-to-peer-style architecture, there would either have to be a standardized protocol via

which the mobile client could access all the systems of all insurance companies related to the

car accident or each insurance company would have to create their own software, which

would make it difficult to use another person’s mobile device to record an accident. It is also

possible to access the data via a web interface without having to implement a software client

for each insurance company. Another advantage is that the software needs to be

implemented only once. Each insurance company can use the system. They can either access

the data via standardized protocols and integrate the system into their existing software

infrastructure or use the web interface to access the data. This greatly reduces costs because

insurance companies do not have to implement their own systems. It would also be possible

to use the centralized system to create detailed anonymous statistics of car accidents,

because all data is saved in one database in opposition to saving all data inside of separate

databases in insurance companies, where the data cannot be accessed for statistical purposes.

This can be interesting for insurance companies as well as for research institutions.

History has shown that it is possible to create a centralized organization that can manage the

system. In Germany the Schufa [Schu09] was founded in order to record data about people’s

debt and to avoid fraud. This made it more secure for stores and banks to give a person a

credit. The back-office of the Electronic Version of the European Accident Report could also

help to protect the insurance companies from insurance fraud. Therefore they might be

willing to pay some money for the service.

Page 17

4.3 Structure of the System
The software-implementation of the back-office of the Electronic Version of the European

Accident Report is built on top of a Microsoft SQL-Server 2008 database instance, in which all

data about accident cases as well as all user data is stored in.

The ADO.NET Entity-Framework layer [Lerm09] is located on top of the database. The Entity-

Framework creates an object model from the data in the database. These objects can be used

to work with all the data used in the system. The Entity-Framework also enables CRUD-

operations (Create, Read, Update and Delete) that make it possible to save, read, update and

delete data to and from the database (for more Information about the Entity-Framework read

section 5.2.3). The entity-framework layer acts as an access layer to the database. It therefore

includes the data-access-layer.

On top of the entity-framework layer is the business layer (see figure 4.3). In this layer all the

logic needed by the system is implemented. It acts as a further abstraction of the object model

found in the entity-framework layer. Additional functionality is added in this layer that ensures

that only users with appropriate privileges can access certain data and that no data can be

directly changed or deleted. Changes to data happen in an indirect way via a functionality that

archives all changes and therefore ensures that all changes can be reviewed in the future.

The entity-framework layer and the business layer form the core of the system. This core is a

platform that provides all functionality for working with the data in the system. All other parts

of the system are on top of this platform and use the functionality provided by the core. The

core provides a user management system as well as functionality for data access.

Encapsulating all functionality needed to work with the data in the system eases enhancing

the system in the future. Those enhancements can be made via modules. A module is a certain

set of functionality that is targeted toward a certain group of users, e.g. car owners. Each

module is independent of all other modules in the system. This improves maintainability of

the system, because the developers who make changes to a module only need to know how

the module they want to change works and how to use the core. They do not need to know

how all the other modules are implemented. Using the core is easy, because it can be used via

APIs and therefore it is not necessary that the developer knows how the core is implemented.

Changing a module cannot break other modules, because a module is only dependent on the

core and not on other modules. Data can be shared between modules via Containers and

Entities.

Page 18

Entity-Framework

Mobile

Client

G
P

S

Webservice

Mobile Client

Database

Webservice

Police

Webservice

Insurance

Car-Repair

Car-Expert

Webservice

Car Owner

Data-Access-Layer

Business Layer

Logic for Webservice

Insurance

Logic for Webservice

Mobile Client

Logic for Webservice

Police

Logic for Webservice

Car-Owner

Logic for Webservice

Car-Repair / Car-Expert

Web-Interface

for Insurance

Web-Interface for

Car Owner

Web-Interface for

 Car-Repair / Car-

Expert

Advanced Mobile Client

for Police

Administration

Figure 4.3: Structure of the system

4.4 Structure of the Database
The database of the back-office of the Electronic Version of the European Accident Report

consists of three tables. An Entity stores a simple atomic value. It has a name (EntityName)

and an ID, through which it can be accessed. An Entity is of a certain type (e.g. Integer). This

type is represented by the DataType table, which saves the type’s name (TypeName) and its

value. The value represents a .NET-Framework type. A module can use this value in order to

convert the data saved in the Value property of the Entity into a .NET-Framework type (e.g.

System.Int32). The data is saved as a varbinary in the database and can therefore save all

kinds of data. The module accessing this data is responsible for converting the data into an

appropriate data type so that it can use the data. The Parent property is used for versioning

an Entity. If an Entity is changed it is not deleted in the database, but it is set to inactive (via

the Active property) and the Parent property saves a link to this old Entity. Therefore it is

always possible to access older versions of an Entity. If an Entity is deleted its Active property

is set to false. No data is completely removed from the database.

The Container stores several Entities and therefore is similar to a table in a database. The

Entities are like the columns of that table. The tables are only accessed via the core system. All

modules use the core system to access the data in the database. No module directly uses

these tables.

Page 19

Figure 4.4: Database Schema

Page 20

5. Technology
The server infrastructure for the back-office of the Electronic Version of the European

Accident Report is using Microsoft technologies. All services run on the Internet Information

Services (IIS) on a Windows XP computer. The system can easily be transferred to a Windows

2003 or Windows 2008 Server if needed.

5.1 Microsoft SQL Server 2008
All data associated with the European Accident Report is saved in Microsoft SQL Server 2008.

This is a relational database management system. It consists of the Database Engine Services

which are responsible for saving the data and retrieving it. It is possible to query data by using

Structured Query Language (SQL) or by using Common Language Runtime (CLR) Languages, for

example C#. SQL Server 2008 also includes services for creating reports (Reporting Services,

Analysis Services, Data Mining), data transformation (Integration Services), synchronization

(Sync Framework) and Messaging (Service Broker). In this bachelor thesis Visual Studio 2008

Team Suite and Microsoft SQL 2008 Server Management Studio were used to create the tables

for the system.2

5.2 Microsoft .NET-Framework 3.5 SP1
The .NET-Framework is a programming environment developed by Microsoft. It consists of the

CLR (Common Language Runtime) which is responsible for the execution and compilation of

the source code. Similar to Java the CLR provides an intermediate language (IL) which is

executed at runtime. A lot of different languages exist which can be used in the .NET-

Framework, for example C#, Visual Basic.NET, C++. All of those languages are compiled into

the intermediate language and executed at runtime. The .NET-Framework also provides a rich

library consisting of thousands of classes and methods that help the programmer achieving his

goals.3

The following diagram gives an overview of the .NET Framework:

Figure 5.1: .NET-Framework [Trai09]

2
 To learn more about Microsoft SQL Server 2008 read: [BKSK06], [BSWK06], [DoKo03], [DrRa06],

 [BenG09], [Micr09a], [Stan09]
3
 To learn more about the .NET Framework read: [LoSt02], [Nort09], [Plat04], [Rich06], [Schw05]

Page 21

The .NET-Framework 3.0 and 3.5 are enhancements of the 2nd Version of the Framework. The

subsequent graphic displays the different parts of the .NET-Framework Version 3.5:

Figure 5.2: Overview of the .NET-Framework 3.5 [CONR07]

5.2.1 ASP.NET 3.5

ASP.NET is the successor of ASP (Active Server Pages). ASP.NET is a server side programming

environment for creating interactive internet applications. It is part of the .NET-Framework

and leverages its capabilities. Programming is possible with languages that run on the CLR

(Common Language Runtime). In this bachelor-thesis C# is used for programming all ASP.NET

pages.

ASP.NET uses xml-markup, which will be parsed at runtime and converted into HTML

(Hypertext Markup Language) to create a user interface. Though it is possible to combine

markup and code in one file, it is recommended to use code behind files for storing all code.

Therefore code will be saved in separate files. This makes it possible to separate functionality

from representation, which makes it easier to maintain the application later, because it is

possible to change the design of the application, e.g. by a designer, without touching the

functionality.

The functionality from the code behind files is saved into dlls (dynamic link libraries) at

runtime out of performance reasons. ASP.NET also provides rich functionality concerning user

and membership management and security. The membership-services are used by all server

side applications in the electronic version of the European Accident Report to authenticate

and authorize users. Access permissions to pages and directories can be configured in the

web.config of the application. This configuration can be made per user or it can be role-based.

The membership-services, too, handle state and session management. ASP.NET also includes

functionality for creating a navigation system for the website. The hierarchy of the website is

saved in an xml-file. It is possible to automatically create menus, a bread-crump navigation

element and a sitemap from this file. When adding or deleting pages, only the xml file needs

to be changed, all other pages do not need to be touched. This makes it easy to add, change or

delete pages.4

4
 To learn more about ASP.NET read: [SSVG05], [Espo08], [LoMü03], [Prei05], [ASPN09],

Page 22

5.2.3 ADO.NET Entity-Framework

The Entity Framework is a data access and modeling technology. It is built on top of ADO.NET

and uses LINQ (Language Integrated Query) to access data from a data source. Enterprise

applications are often implemented as a three-tier architecture. The lowest of those tiers is

usually a data access layer that is responsible for accessing data from a certain data source

and providing functionality for accessing this information through methods. The middle tier is

the business logic layer that contains objects representing the data from the data source and

methods that implement the functionality of the system. The third tier is the presentation

layer that is responsible for displaying the data via a user interface. The ADO.NET Entity

Framework makes it easier to create the business logic layer and access the data from the

data source, which can for example be a database. In our case this is a Microsoft SQL 2008

Server. It is possible to create a data model for the business logic layer and a mapping via an

xml file that maps the fields from the database to the fields in the objects. The Entity

Framework than figures out how to access the data from the data source and enables CRUD

(Create, Read, Update, Delete) operations. Therefore a developer does not have to implement

a data access layer and can create his application in an object oriented manner by using the

objects found in the business logic layer. LINQ to Entity is a technology that provides an easy

way to query data. With LINQ to Entity it is possible to use SQL style syntax, like for example

select, from, where statements, inside of a C# program. In contrast to SQL statements, which

in C# are handled as strings, LINQ to Entity commands can be validated by the compiler which

reduces programming errors. It also represents an easy and object oriented way to access and

work with data.5

5.2.4 Windows Communication Foundation (WCF)

The Windows Communication Foundation is a programming framework for creating

distributed systems. It provides a common environment for different kind of communication

technologies like for example xml web services, TCP/IP, Microsoft Message Queuing (MSMQ)

and named pipes. WCF is also extensible, that means it is possible to add new messaging

technologies to the framework. The three main components of a WCF application are an

address, a binding and a contract. The address represents the location where the service is

saved. The binding defines how an application processes, sends, and receives messages. This

could for example be through xml web services. The contract defines the endpoints in a

receiving application. This means it determines which parts in the message will be saved in

which fields in the respective .NET CLR type. WCF with xml web services has been used in the

back-office of the electronic version of the European Accident Report for all messaging

between different parts of the application. 6

5
 To learn more about ADO.NET Entity-Framework read: [MSDN09], [Lerm09]

6
 To learn more about the Windows Communication Foundation read: [Gail04], [Plat04], [Smit07]

Page 23

5.3 Tools
Several tools have been used to create the back office and the front ends of the electronic

version of the European Accident Report. The following section gives an overview of those

applications:

5.3.1 Microsoft Visual Studio 2008

Visual Studio is an integrated development environment from Microsoft.

It is available in several Versions: Visual Studio 2008 Express, a free light weight version for

beginners and hobbyists; Visual Studio 2008 Standard; Visual Studio 2008 Professional, which

also contains some advanced features as well as some more wizards as well as a tool for

creating and using unit tests; Visual Studio 2008 Team Developer, an edition that includes

team work features; Visual Studio 2008 Team Test, a version for testing engineers; Visual

Studio 2008 Database, a version for database experts; Visual Studio 2008 Architect, a version

for Software Architects and Visual Studio 2008 Team Suite, a comprehensive version

containing all the features of all the other versions. Visual Studio can be used to program

.NET-applications in C#, Visual Basic and C++. It is also possible to create native C++

applications with Visual Studio. Through the use of plug-ins other programming languages like

the functional programming language F# can also be used. Visual Studio can be used to

develop for different target platforms through various project types like for example dynamic

websites (ASP.NET, Silverlight), windows desktop applications (Windows Forms, WPF),

internet communication (asmx-web services, WCF, .NET-Remoting), Windows services, plug-

ins, Microsoft Office applications, database applications.7

All functionality of the electronic version of the European Accident Report has been created

with Visual Studio 2008 Team Suite.

5.3.2 Microsoft Expression Web 2

Expression Web is a WYSIWYG (What You See Is What You Get) tool for creating websites.

It contains graphical tools for creating web pages as well as text editors with intelli sense for

HTML, CSS, PHP, JavaScript as well as ASP.NET. It also provides functions which help to publish

a website on a server. Expression Web was used for designing the markup ASP.NET pages. The

functionality in the code behind files where created with Visual Studio 2008 Team Suite.8

7
 To learn more about Microsoft Visual Studio read: [Hund06], [Micr09b]

8
 To learn more about Microsoft Expression Web read: [Micr09c]

Page 24

6. Prototype Implementation
This chapter describes the prototype implementation of the back-office of the electronic

version of the European Accident Report. It starts by describing the core system, which can be

used by all modules of the system. It is also shown how a developer can program new

modules by using the container-entity-model provided by the core system. The chapter then

describes how the administration interface, the module for the insurance company, the car-

owner and the car-repair company has been created. It also gives an overview of the web

service for the mobile client and the police.

6.1 The Core System
The core system is the basement for all the modules used in the system. It was created in a

way that makes it easy to enhance the system by adding new modules or changing exiting

modules that sit on top of the core system. All modules use the core system to read, write and

update data from the database. No module accesses the database in a direct way. They all use

the API of the core system to work with data in the database. Therefore the core system is in

full control over all data that is being used by the system.

The following diagram shows the structure of the Core System:

Entity-Framework

Database

Data-Access-Layer

Business Layer

Figure 6.1: Overview of the core system

As can be seen in Figure 6.1 the core system consists of the database, the entity-framework

layer and the business layer. The database stores all data used by the system. It consists of

three tables in which all data is being saved (for more about the database see chapter 4.4

Structure of the Database).

6.1.1 The Entity-Framework Layer

The entity-framework layer is responsible for accessing the data from the database. It includes

the data-access-layer that is being implemented by using the Microsoft Entity-Framework.

The entity-framework layer consists of three parts: the Conceptual Model, the Mapping and

the Storage/Logical Model. The Conceptual Model is defined in the Conceptual Schema

Definition Language (CSDL) which is an XML-language that can be used to create a data model.

Page 25

It is represented by the Entity-Framework as objects that can be used by the developer to

work with the model. That means the developer does not directly access the database but

uses the objects defined by the CSDL definition and created by the Entity-Framework. He can

use them like normal .NET objects. Each object has methods for saving, updating and deleting

objects in the database. The Entity-Framework loads the data from the database and

transforms it into objects that can be used by the developer. A graphical representation of

the Entity-Framework object model can be seen in figure 6.2. The object model consists of

three classes: the DataType, representing a data type, the Entity, which saves atomic data and

the Container which contains Entities. The model also represents the relationships between

the different classes. It is possible to move from one object to another via navigation

properties, e.g. from an object of type Entity to its Container object via the container

navigation property. The Entity-Framework model mirrors the database model described in

chapter 4.4. It is an object oriented representation of this database model.

Figure 6.2: The Entity-Framework Model

Page 26

The Storage/Logical Model is defined in the Store Schema Definition Language (SSDL) which is,

as the CSDL, an XML-language. It creates a model that represents the database model. Every

time the database changes, this model will be changed as well. The Entity-Framework uses

this model so that it knows what the database model looks like. It uses this model to access

the tables and fields from the database.

Since the Conceptual Model is an object oriented model that should make it easier for the

developer to work with the database, this model can differ from the relational Storage/Logical

Model that represents the database schema. In order for the Entity-Framework to connect

classes and fields of the Conceptual Model with the tables and fields of the Storage/Logical

Model a mapping must be defined. This mapping is being defined in the Mapping in the

Mapping Specification Language (MSL) which is also an XML-Language. The Mapping tells the

Entity-Framework which fields of the database map to which fields in the classes defined in

the Conceptual Model.

Figures 6.3 – 6.5 show the mapping of the Entity, Container and DataType classes:

Figure 6.3: Mapping Details of Entity

Figure 6.4: Mapping Details of Container

Page 27

Figure 6.5: Mapping Details of DataType

As can be seen, the mapping contains information about which fields of the Conceptual Model

(right side) are to be connected with which fields of the Storage/Logical Model (left side),

which represents the database schema. The various data types shown in Figures 6.3 – 6.5 are

saved in the Conceptual Model and in the Storage/Logical Model.9

Figure 6.6 shows how those three definitions (Conceptual Model, Storage/Logical Model and

Mapping) work together to make it possible to use the object oriented model to work with the

database:

Figure 6.6: Entity Framework Metadata [Lerm09]

9
 To learn more about the inner workings of the Microsoft Entity-Framework read: [Lerm09], [MSDN09]

Page 28

6.1.2 The Business Layer

The entity-framework layer makes it is possible to access data in the database. It is also

possible to store new data into the database and update existing data. The entity-framework

layer does not version data, therefore it is not recommended to directly use this layer. If

modules used this layer to load, store, save and change data, each module would have to

make sure that data is versioned. Therefore it would be possible to create modules that

change data and do not save the old version. It would also be possible to completely delete

data from the database. This should not be possible. If changes occur, a new version of the

entity should be created that contains a link to the old version. If data needs to be deleted, it

should be set to inactive. It should not be possible to completely remove data from the

database. This way it is possible to track all changes and to look up older versions of data.

Because of these requirements another layer is needed. This functionality is implemented in

the business layer. This layer provides an API that can be used by module developers to work

with data in the database. The business layer ensures that all data is being versioned and that

no data can be entirely removed from the database. Therefore all modules use the business

layer’s APIs to work with data in the system. The business layer is an enhancement of the

entity-framework layer. Figure 6.7 illustrates this:

Figure 6.7: Structure of the core system

The database stores all data needed by the system and all its modules.

The entity-framework layer creates, updates and deletes data. It is also possible to access data

from the database via the entity-framework layer. It provides an object model that can be

used to work with data from the database. The business layer uses the object model from the

entity-framework layer to work with data. It provides additional functionality that ensures

that all changes are versioned and that no data can be entirely removed from the system.

Module developers use the API provided by the business layer to work with the data used in

the system. They must not use the entity-framework layer or connect directly to the database

Business Layer

Entity-Framework
Layer

Database

Page 29

to access the database or write data to the database, because this would break the versioning

functionality.

Figure 6.8 shows the classes of the object model:

-Container()

+Container(containerName: string, createUser: string)()

+Delete()

+AddEntity(in entity: Entity) : bool

+GetContainerByID(id: int): Container()

+GetContainersByName(name: name): List<Container>()

+GetContainersByDateTime(DateTime date): List<Container>()

+GetContainersByEntityValue(name: string, value: object): List<Container>()

-ConvertObjectToByteArray(obj: object): byte[]()

-CompareByteArrays(arra1: byte[], array2: byte[])() : bool

+ID : int

+CreateDate: DateTime

+ContainerName : string

+CreateUser : string

+Active : bool

-Entities: List<Entity>

Container

-Entity()

+Entitiy(entityName: string, type: string, value: object, createUser: string, container: Container)()

+Entitiy(entityName: string, type: string, value: object, parent: Entity, createUser: string, container: Container)()

+Delete()

+Update(updatedValue: object, user: string)()

-ConvertObjectToByteArray(obj: object): byte[]()

-ConvertByteArrayToObject(byteArray: byte[])() : object

+GetEntitiyByID(id: int): Entity()

+ID : int

+EntityName : string

+Type : string

+Value : object

+Parent: Entity

+CreateDate: DateTime

+CreateUser : string

+Active : bool

Entity

-Entities

1

-ID0..*

-Parent

1

-ID

0..1

Entities

Parent

Figure 6.8: UML-Diagram of the object model of the core system

Only two classes exist: the Container class and the Entity class. The Entity class stores the data

in the Value field. The Value field is of type object and can therefore save any type of data.

Every Entity has an ID and an EntityName via which it is possible to access the Entities.

The Active field signals whether the Entity is deleted (false) or not (true). If an Entity is

updated the Active field is set to false and a new Entity is created. The new Entity contains a

link to the old entity in its Parent field. Via this field it is possible to navigate to all previous

versions of the Entity. The Entity also saves the DateTime of the creation of the Entity and the

username of the user who created the Entity. This creates a full protocol of all changes to an

Entity.

The Container class is a bucket that can hold several Entities. The Entities of a Container can

be accessed via the Entities field. A Container has a name and saves the DateTime and the

username as do the Entities.

The following part describes the methods of the Entity and Container classes and how

Containers and Entities can be used to store, update, delete and retrieve data:

Page 30

Container Data Diagrams

Figure 6.9 shows how the data stored in a Container and its Entities can be visualized.

Container

Entity

Entity

Entity

Entity

Figure 6.9: Container and Entities

The Entities can be accessed via their Containers.

Because all data needs to be versioned, it is not possible to completely remove or change an

Entity. If an Entity is changed, a new Entity is created that contains a link to its old version.

Figure 6.10 illustrates this. The green Entity is the old version of the Entity. A new Entity (the

yellow one) has been created that contains a link to the green Entity.

Container

Entity

Entity

Entity

Entity

Entity

Figure 6.10: A newer version of an Entity

It is therefore always possible to access the older versions of an Entity. If the Entity is changed

another time, once again a new Entity is created. Figure 6.11 shows the new Container after

the Entity has been changed. The yellow Entity is the new Entity. It has a link to the green

Entity which in itself has a link to the red Entity.

In code the green Entity can be accessed via the yellow Entity’s Parent field.

If a user wants to see the red Entity he needs to use the green Entity’s Parent field.

Page 31

Container

Entity

Entity

Entity

Entity

Entity

Entity

Figure 6.11: Versioning Entities

Figure 6.12 shows an example of a Container that is used in the system (see chapter 6.2.1 for

more information about this Container). All of the following examples will use this Container.

YearOfManufacture

Year: String

Front: Bitmap

LeftSide: Bitmap

RightSide: Bitmap

CarTypeID: Integer

Rear: Bitmap

Figure 6.12: Container: YearOfManufacture

Creating Containers and Entities

A new Container can be created by using the constructor of the Container class. The

constructor has two parameters: The name of the new Container (“YearOfManufacture”) and

the username of the user who created the Container. Listing 6.1 shows how a new Container

can be created.

BackOffice.BusinessLayer.Container container = new

BackOffice.BusinessLayer.Container("YearOfManufacture",

User.Identity.Name);

Listing 6.1: Creating a new Container

Creating a new Entity is possible in the same way: The constructor of the Entity class is used.

It has four parameters: The name of the Entity (“Year”), the data type (“String”), the value of

the Entity (retrieved via a text box) and the container that the Entity will belong too (The

YearOfManufacture Container). The Entity will automatically be added to the Container.

Later it is possible to retrieve this Entity via this Container.

Page 32

A second constructor exists that has another parameter: It is used when changing an Entity.

The additional Entity is the parent Entity. This constructor is not to be used directly by the

developer.

BackOffice.BusinessLayer.Entity entity1 = new

BackOffice.BusinessLayer.Entity("Year", "String", TextBox_Year.Text,

User.Identity.Name, container);

Lisitng 6.2: Adding an Entity to a Container

The value of an Entity is of type object. Therefore it is possible to store any .NET-type in an

Entity. Listing 6.3 shows how the YearOfManufacture Container is created in C# and how the

Entities belonging to this Container are created and added to the Container.

Bitmap imageFront =

(Bitmap)Bitmap.FromStream(FileUpload_Front.PostedFile.InputStream);

Bitmap imageRear =

(Bitmap)Bitmap.FromStream(FileUpload_Rear.PostedFile.InputStream);

Bitmap imageLeftSide =

(Bitmap)Bitmap.FromStream(FileUpload_LeftSide.PostedFile.InputStream);

Bitmap imageRightSide =

(Bitmap)Bitmap.FromStream(FileUpload_RightSide.PostedFile.InputStream)

;

BackOffice.BusinessLayer.Container container = new

BackOffice.BusinessLayer.Container("YearOfManufacture",

User.Identity.Name);

BackOffice.BusinessLayer.Entity entity1 = new

BackOffice.BusinessLayer.Entity("Year", "String", TextBox_Year.Text,

User.Identity.Name, container);

BackOffice.BusinessLayer.Entity entity2 = new

BackOffice.BusinessLayer.Entity("Front", "Bitmap", imageFront,

User.Identity.Name, container);

BackOffice.BusinessLayer.Entity entity3 = new

BackOffice.BusinessLayer.Entity("Rear", "Bitmap", imageRear,

User.Identity.Name, container);

BackOffice.BusinessLayer.Entity entity4 = new

BackOffice.BusinessLayer.Entity("LeftSide", "Bitmap", imageLeftSide,

User.Identity.Name, container);

BackOffice.BusinessLayer.Entity entity5 = new

BackOffice.BusinessLayer.Entity("RightSide", "Bitmap", imageRightSide,

User.Identity.Name, container);

BackOffice.BusinessLayer.Entity entity6 = new

BackOffice.BusinessLayer.Entity("CarTypeID", "Integer", CarTypeID,

User.Identity.Name, container);

Listing 6.3: Code for creating the YearOfManufacture Container and its Entities

Page 33

As can be seen, the four Entities (Front, Rear, LeftSide and RightSide) store values of type

System.Drawing.Bitmap. After this code has been executed the Container, with all its Entities,

has been saved into the database.

Retrieving Containers and Entities

Several different methods exist that can be used to retrieve a Container from the database:

 Container GetContainerByID(int id)

 List<Container> GetContainersByName(string name)

 List<Container> GetContainersByUserName(string username)

 List<Container> GetContainersByDateTime(DateTime date)

 List<Container> GetContainersByEntityValue(string name, object

value)

GetContainerByID returns a Container via its ID. All other methods return a generic List of

Containers. This is needed because it is possible to retrieve more than one Container by using

those parameters. The GetContainersByName method returns all Containers that have a

certain name. The GetContainersByUserName method returns all Containers that have been

created by a certain user. GetContainersByDateTime retrieves Containers by their date and

time. GetContainersByEntityValue can be used to retrieve Containers by the value of one of

its Entities.

Listing 6.4 shows how a Container can be retrieved using its id.

BackOffice.BusinessLayer.Container container =

BackOffice.BusinessLayer.Container.GetContainerByID(

Convert.ToInt32(ListBox_YearOfManufacture.SelectedValue));

Listing 6.4: Retrieving a Container via its id

Listing 6.5 shows how Containers can be retrieved via a value of one of their Entities.

It has two parameters: The name of the Entity and the value of the Entity. This method

searches through all the Entities of a Container and checks if there is an Entity with this name

and if this Entity has got the value that the users is searching for. If this is true, the Container

will be returned. This is equivalent to retrieving the data of tables in a database by searching

by the values of its columns. In the following example all Containers are retrieved that contain

an Entity with the name CarType which has the value selected in a list box.

List<BackOffice.BusinessLayer.Container> containers =

BackOffice.BusinessLayer.Container.GetContainersByEntityValue("CarType

ID", Convert.ToInt32(ListBox_CarTypes.SelectedItem.Value));

Listing 6.5: Retrieving Containers via an Entity’s value

Page 34

Entities can be retrieved in three ways:

 Entity Entity GetEntityByID(int id)

 Container List<Entity> Entities

 Container Entity getEntityByName(string name)

The Entity class contains a static method (GetEntitiesByID) that returns an Entity by its id.

This method is used internally to retrieve Entities. The Container class contains a property

(Entities) via which it is possible to access all the Entities of a Container. This is a generic List

of type Entity. It is read only. The third way is to use the Container’s getEntityByName

method. Via this method a certain Entity of a Container can be retrieved by the name of the

Entity. E.g. it is possible to retrieve the Entity with the name “Year” (see listing 6.6).

BackOffice.BusinessLayer.Entity entity =

container.getEntityByName("Year");

Listing 6.6: Retrieving the Entity with the name “Year”

Deleting Containers and Entities

The Container class and the Entity class contain a Delete method:

 Container void Delete()

 Entity void Delete()

If those methods are called, the Container or the Entity is set to inactive. Therefore the data is

not entirely deleted and versioning is ensured. If a Container is deleted, the Delete method of

all its Entities is called. Listing 6.7 shows how a Container can be deleted.

container.Delete();

Listing 6.7: Deleting a Container

The developer should always use these methods to delete Containers and Entities. They

should never delete them via the entity-framework layer or directly, by deleting the data in

the database, because this would break versioning.

Page 35

Updating Entities

It is possible to change the value of an Entity. This is done by using the Update method:

 Entity Update(object updatedValue, string user)

This method has two parameters: updatedValue which contains the new value that is to be

stored in the Entity and user which saves the username of the user who made the change.

The method deletes the old Entity (sets it to inactive) and creates a new Entity. It also creates

a link to the old Entity. It returns the new Entity. This ensures versioning. All changes can be

monitored.

Listing 6.8 shows how the value of an Entity can be changed.

entity1.Update(TextBox_ChangeYearOfManufactureYear.Text,

User.Identity.Name);

Listing 6.8: Updating an Entity

If the new entity is used later in the program, a new variable should be created. It gets its

value via the return value of the Update method. The new Entity can then be used in the

program. See listing 6.9 for an example of how to use the new Entity variable.

BackOffice.BusinessLayer.Entity newEntity =

entity1.Update(TextBox_ChangeYearOfManufactureYear.Text,

User.Identity.Name);

TextBox_Value.Text = newEntity.Value.ToString();

Listing 6.9: Using a new Entity variable

Page 36

6.2 Administration
The administration module is used by administrators of the central organization to manage car

models, users, insurance companies and car repair companies.

Figure 6.12: The Administration Module

This module can only be accessed by administrators of the central organization that maintain

the system. Insurance company employees do not have access to this module.

6.2.1 Managing Car Brands, Car Types and Years of Manufacture

The system provides car modules that can be used by the mobile client to display a model of a

car. Those models are saved as four pre-rendered images of the car.

YearOfManufacture

Year: String

Front: Bitmap

LeftSide: Bitmap

RightSide: Bitmap

CarTypeID: Integer

CarType

TypeName: String

BrandID: Integer

Rear: Bitmap

CarBrand

BrandName: String

Figure 6.13: Container Data Diagram of the car models

Page 37

Each car brand will be stored in the database in a CarBrand Container. This Container has one

Entity that saves its name. Car brands often manufacture more than one car type (e.g. VW

Golf I, VW Golf II, VW Golf III, VW Lupo, VW Fox …). Those car types are saved in the CarType

Container. The CarType Container has two Entities: the name of the car type (e.g. VW Fox)

and the brand id. The brand id saves the id of the CarBrand Container of the company which

created the car type. This id functions as a foreign key, though, the core system does not

ensure referential integrity. Since changes can be made to car types, modules are saved as

year of manufacture. That means there is a module for each year that the car has been

manufactured. This is saved in the YearOfManufacture Container which has six Entities. The

Year Entity saves the year of manufacture. The CarTypeID saves the id of the CarType

Container of the car type of the model. This functions as a link to the car type. The four

remaining Entities save the pre-rendered images of the car module. Figure 6.13 shows the

container data diagram of the car models.

Figure 6.14: Screenshot of managing car models

Page 38

Figure 6.14 shows the user interface of the car models management module. Car brands, car

types and years of manufacture can be added, changed and deleted via this user interface. It

consists of three list boxes. If a user clicks on one of them the certain details are displayed, e.g.

if a user clicks on a car brand the car types are displayed. If a user clicks on a car type the years

of manufacture are displayed. If a user clicks on a year of manufacture the year and the

images of the model for this year of manufacture are displayed.

Figure 6.15 shows the user interface that can be used to add a new year of manufacture.

The user can upload the images from his computer. The models are then saved to the

database.

Figure 6.15: Screenshot of adding a new year of manufacture with the car models

6.2.2 Managing Users

Administrators of the central organization can add, delete and change users and their profile

data. Insurance company employees do not need to manage the user data. They will only

manage insurance specific data, like for example the insurance number of a customer.

The data managed by the administrators of the central organization is basic data needed by

the system. It saves the title, first name and last name of a person, as well as their address

containing the street, ZIP, city, telephone number and mobile phone number. The identity

card number, passport number and driver’s license number are saved as well. If some of this

data changes (e.g. the user moves to another city), he will have to contact the central

organization and ask them to change the data.

Page 39

UserProfile

Title: String

FirstName: String

Street: String

ZIP: String

City: String

LastName: String

TelephoneNumber: String

MobilePhoneNumber: String

IdentityCardNumber: String

Passport: String

DriversLicenseNumber: String

Username: String User

Figure 6.16: Container Data Diagram of User Profile

Figure 6.17: Screenshot of managing users

Page 40

Figure 6.17 shows the user interface for managing users. New users can be added, existing

users changed or deleted. An option exists that prevents displaying administrators in the list.

Figure 6.18 shows how a new user can be added to the system:

Figure 6.18: Screenshot: Adding a new user

Page 41

6.2.3 Managing Insurance Companies

The central organization will manage all insurance companies. The administrators of this

organization can add new insurance companies, change the name of existing insurance

companies or delete insurance companies. They can also add and remove users as an

employee to and from an insurance company or add and remove users as a customer to and

from a company.

InsuranceCompanyEmployee

InsuranceCompanyID:: Integer

InsuranceCompany

InsuranceCompanyName: String

Userame: String

InsuranceCompanyCustomer

InsuranceCompanyID:: Integer

Userame: String

User

Figure 6.19: Container Data Diagram of Insurance Companies

Each insurance company will be saved in the database in an InsuranceCompany Container.

This Container has one Entity (InsuranceCompanyName) which saves the name of the

insurance company. There are two more Containers, InsuranceCompanyEmployee, which

saves which users are employees of the insurance company and InsuranceCompanyCustomer,

which saves the users who are customers of the insurance company. Both save a reference to

the InsuranceCompany Container (InsuranceCompanyID) and to the user object (Username).

Figure 6.20 shows how a new customer can be added to an insurance company:

Figure 6.20: Adding a customer to an insurance company

Page 42

Figure 6.21 shows how an insurance company can be managed:

Figure 6.21: Managing insurance companies

Employees of an insurance company can later access the website for insurance companies and

process their customers’ accident cases.

Page 43

6.2.4 Managing Car Repair Companies

The central organization will manage all car repair companies. The administrators of this

organization can add new car repair companies, change the name of existing car repair

companies or delete car repair companies. They can also add or remove users as an employee

to and from a car repair company.

CarRepairCompanyEmployee

CarRepairCompanyID:: Integer

CarRepairCompany

CarRepairCompanyName: String

Userame: String User

Figure 6.22: Container Data Diagram of Car Repair Companies

The CarRepairCompany Container has one Entity (CarRepairCompanyName) which saves the

name of the car repair company. This Container represents a car repair company. The

CarRepairCompanyEmployee Container saves all employees that work at the car repair

company. It has two Entities: CarRepairCompanyID saves the id of the car repair company’s

Container. This id functions as a link to the CarRepairCompany Container. Username saves

the usersname of the employee.

Figure 6.23 shows how a new employee can be added to a car repair company:

Figure 6.23: Adding an employee to a car repair company

Page 44

Figure 6.24 shows how car repair companies can be managed:

Figure 6.24: Managing car repair companies

Page 45

6.3 Web Service for the Mobile Client

Figure 6.25: The Mobile Client Module

The mobile client module provides a web service which contains three methods that can be

used by the mobile client to retrieve and send data.

Method Name Parameters Return Type

GetPersonalData TelephoneNumber: string
password: string

PersonalData

GetModels brand: string
type: string
yearOfManufacture: string

Bitmap[]

SendAccidentData accidentData: string bool

Table 6.1: Web Service for the Mobile Client

The first method, GetPersonalData, has two parameters. TelephoneNumber is the car owner’s

telephone number. The second parameter is a password.

The method returns an object of type PersonalData. This object contains the Title, FirstName,

LastName, Street, ZIP, TelephoneNumber and MobilePhoneNumber of the car owner. It also

contains an array of Car objects. These represent the car owner's cars. A car object consists of

the LicensePlateNumber, Brand, Type, YearOfManufacture and Models (pre rendered bitmap

images of the car model). If an error occurs or no car owner can be found, an empty

PersonalData object is returned with the Valid field set to false.

Page 46

The second method, GetModels, can be used in order to retrieve images of pre rendered

models of a certain car. The brand, car type and year of manufacture are required by this

method. It returns an array of type bitmap.

The third method, SendAccidentData, can be used in order to send a report about an accident

case from the mobile client to the central system. It has one parameter that contains a string

representation of the xml-document that contains the accident data. The method returns a

boolean value. This value is set to true if the report has been successfully saved in the central

system. It is set to false if an error occurred.

Proxy Web Service

It was not possible to access the WCF web service via a Windows Mobile client. Therefore a

proxy web service has been created that is located between the web service for the mobile

client and the mobile client itself. Figure 6.26 illustrates this. The proxy web service is a classic

asmx-web service.

Figure 6.26: Proxy Web Service

There were also some problems transmitting the bitmap images via the asmx-web service.

That is why the images are transferred as byte arrays. Listing 6.10 shows a method via which it

is possible to convert a byte array to a bitmap.

private Bitmap ConvertByteArrayToBitmap(byte[] byteArray)

{

 System.IO.MemoryStream stream = new

 System.IO.MemoryStream(byteArray);

 System.Drawing.Bitmap bitmap = new Bitmap(stream);

 return bitmap;

}

Listing 6.10: Converting a byte array to a bitmap

Method Name Parameters Return Type

GetPersonalData TelephoneNumber: string
password: string

PersonalData

GetModels brand: string
type: string
yearOfManufacture: string

byte[][]

SendAccidentData accidentData: string bool

Table 6.2: Proxy Web Service for the Mobile Client

Web Service for the

Mobile Client

Proxy

Web Service

Mobile Client

Page 47

Figure 6.27 shows how the data, that has been submitted by the mobile client, is saved in the

back-office:

Accident

ID: String

Language: String

Language: String

PersonDamage: Boolean

LoginTelephoneNumber: String

LoginPassword: String

LicensePlateNumber: String

OwnerLastName: String

OwnerFirstName: String

OwnerAddress: String

OwnerMiscellaneous: String

OwnerCarBrand: String

OwnerCarType: String

OwnerCarYearOfManufacture: String

DriverLastName: String

DriverFirstName: String

DriverAddressr: String

DriverMiscellaneous: String

Time: String

Location: String

Witness: String

Description1: String

Description2: String

Description3: String

Description4: String

Description5: String

Username: String

AccidentID: String

LicensePlateNumber: String

LastName: String

FirstName: String

Address: String

Miscellaneous: String

AccidentID: String

Image: Bitmap

ModelPoints: Points

LicensePlateNumber: String

AccidentID: String

Description: String

LicensePlateNumber: String

Notes: String

Costs: String

Accepted: Boolean

AccidentID: String

LicensePlateNumber: String

Image: Bitmap

PhotoPoints: Points

AccidentID: String

Image: Bitmap

MapPoints: Points

Map

Photo

Damage

Model

Person

Statuse: String

User

ID: String

XMLDocument: String

AccidentReportXML

Figure 6.27: Container Data Diagram of Accident

The data is saved in seven containers: Accident, Person, Model, Damage, Photo , Map and

AccidentReportXML, which saves the original xml file that has been submitted by the client.

Page 48

6.4 Web Service for the Police

Figure 6.28: The Police Module

The web service for the police consists of only one method via which it is possible to retrieve

data about a person who is registered in the system.

Method Name Parameters Return Type

GetPersonalData number: string
type: Type

PersonalData

Table 6.3: Web Service for the Police

The data can be requested in several ways: The identity card number, passport number,

driver's license number or license plate number can be used in order to get a person's data.

The first parameter contains the number. The second parameter is an enumeration of type

Type (which can have the following values: Type.IdentityCardNumber, Type.Passport,

Type.DriversLicense, Type.LicensePlateNumber), which indicates which kind of number is

used. The Method returns an object of type PersonalData. This object contains the Title,

FirstName, LastName, Street, ZIP, TelephoneNumber and MobilePhoneNumber of the car

owner.

If an error occurs or no car owner can be found, an empty PersonalData object is returned

with the Valid field set to false.

The police client uses this service in order to pre fill forms. This makes it easier and faster for

the police to fill out the form.

Page 49

6.5 Insurance Company

Figure 6.29: The Insurance Module

The module for the insurance company provides a web service which can be used in order to

integrate the system into the software infrastructure of the insurance company.

6.5.1 Web Service

The web service for the insurance company consists of several methods via which an

insurance company can manage customers and manage accidents. Table 6.4 lists all the

methods of the web service for the insurance company:

Method Name Parameters Return Type

GetCustomers insuranceCompanyID: int
employeeUsername: string
password: string

Customer[]

GetCarRepairCompaniesForAUser insuranceCompanyID: int
employeeUsername: string
password: string

CarRepairCompany[]

GetCarRepairCompanies CarRepairCompany[]
AddCarRepairCompanyToUser carRepairCompany:

 CarRepairCompany
username: string
employeeUsername: string
password: string

RemoveCarRepairCompany
FromUser

carRepairCompany:
 CarRepairCompany
username: string
employeeUsername: string

Page 50

password: string
SaveCustomerChanges customer: Customer

employeeUsername: string
password: string

GetCarBrands CarBrand[]
GetCarTypes carBrand: CarBrand CarType[]
GetYearsOfManufacture carType: CarType YearOfManufacture[]
AddCar car: Car

username: string
employeeUsername: string
insuranceCompanyID: int
password: string

GetCarsForUser username: string
employeeUsername: string
password: string

Car[]

GetCarsForUserFor
InsuranceCompany
(GetCarForUser)

username: string
insuranceCompanyID: int
employeeUsername: string
password: string

Car[]

DeleteCar car: Car
employeeUsername: string
password: string

GetCarbyLicensePlateNumber licensePlateNumber: string
employeeUsername: string
password: string

Car

GetAccidentsForUser username: string
employeeUsername: string
password: string

Accident[]

GetAccidentsForUserFor
InsuranceCompany
(GetAccidentsForUser)

username: string
insuranceCompanyID: int
employeeUsername: string
password: string

Accident[]

GetAccident id: string
employeeUsername: string
password: string

Accident

GetOtherCar id: int
employeeUsername: string
password: string

Accident.OtherCar

GetDamage id: int
employeeUsername: string
password: string

Accident.Damage

AddDamage damage: Accident.Damage
accident: Accident
employeeUsername: string
password: string

ChangeDamage damage: Accident.Damage
accident: Accident
employeeUsername: string
password: string

DeleteDamage damage: Accident.Damage
accident: Accident

Page 51

employeeUsername: string
password: string

ChangeOtherCar otherCar:
 Accident.OtherCar
accident: Accident
employeeUsername: string
password: string

ChangeAccident accident: Accident
employeeUsername: string
password: string

GetAccidentReportXML accidentID: string
employeeUsername: string
password: string

XmlDocument

GetModel id: int
employeeUsername: string
password: string

Accident.Model

GetPhoto id: int
employeeUsername: string
password: string

Accident.Photo

GetMap id: int
employeeUsername: string
password: string

Accident.Map

Table 6.4: Web Service for the Insurance Company

The web service uses several classes in order to save and transfer data. Those classes are

shown in figure 6.30. The Customer class saves data about a customer of the insurance

company. The Accident class, which contains the OtherCar, Damage, Model, Photo and Map

class, saves all data about an accident case. The Car class represents a car.

Methods in the web service get the username and the password of the insurance company

employee who is calling a method and validates if they are correct. The methods also check

whether a user is allowed to access the data or do the action he is about to do.

The web service methods call methods of the insurance company model which retrieve data,

save data, change data or delete data. This helps to keep the web service methods clean. They

only contain the authentication and authorization code as well as the method calls to the

module methods. The module (InsuranceCompany.cs) contains all the functionality needed.

Table 6.5 lists all the methods of the insurance company module.

Page 52

+Username : string

+Title : string

+FirstName : string

+LastName : string

+Street : string

+City : string

+ZIP : string

+TelephoneNumber : string

+MobilePhoneNumber : string

+EMail : string

+InsuranceNumber : string

+Miscellaneous : string

Customer

+Name : string

+ID : int

CarRepairCompany

+LicensePlateNumber : string

+Brand: CarBrand

+Type: CarType

+YearOfManufacture: YearOfManufacture

+Models: System.Drawing.Bitmap[]

Car

+BrandName : string

+ID : int

CarBrand

+CarTypeName : string

+ID : int

+Brand: CarBrand

CarType

-Year : string

-ID : int

-CarType: CarType

YearOfManufacture

+ID : string

+Language : string

+PersonDamage : bool

+LoginTelephoneNumber : string

+LoginPassword : string

+LicensePlateNumber : string

+OwnerLastName : string

+OwnerFirstName : string

+OwnerAddress : string

+OwnerMiscellaneous : string

+OwnerCarBrand: CarBrand

+OwnerCarType: CarType

+OwnerCarYearOfManufacture: YearOfManufacture

+DriverLastName : string

+DriverFirstName : string

+DriverAddress : string

+DriverMiscellaneous : string

+Time : string

+Location : string

+Witness : string

+Description1 : string

+Description2 : string

+Description3 : string

+Description4 : string

+Description5 : string

+OtherCars: OtherCar[]

+Damages: Damage[]

+Models: Model[]

+Photos: Photo[]

+AccidentMap: Map

+Status : string

Accident

+ID : int

+LicensePlateNumber : string

+FirstName : string

+LastName : string

+Address : string

+Miscellaneous : string

Accident.OtherCar

+ID : int

+Description : string

+LicensePlateNumber : string

+Notes : string

+Costs : string

+Accepted : bool

Accident.Damage

+ID : int

+Image: Bitmap

+Points: List<List<string[]>>

Accident.Model

+ID : int

+Image: Bitmap

+Points: List<List<string[]>>

Accident.Photo

+ID : int

+Image: Bitmap

+Points: List<List<string[]>>

Accident.Map

*

1

*

1

*1

*

1

1
1

11

1

1

11

Figure 6.30: UML Diagram of Classes used by the Web Service for the Insurance Company

Page 53

Method Name Parameters Return Type

FillCustomer customerUsername: string Customer
FillCustomers insuranceCompanyID: int List<Customer>
FillCarRepairCompanies List<CarRepairCompany>
FillCarRepairCompaniesFor
User

username: string List<CarRepairCompany>

SaveCarRepairCompany carRepairCompany:
 CarRepairCompany
username: string
employeeUsername: string

RemoveCarRepairCompany carRepairCompany:
 CarRepairCompany
username: string
employeeUsername: string

SaveUserChanges customer: Customer
employeeUsername: string

FillCarBrands List<CarBrand>
FillCarTypes carBrand: CarBrand List<CarType>
FillYearOfManufacture carType: CarType List<YearOfManufacture>
SaveCar car: Car

username: string
employeeUsername: string
insuranceCompanyID: int

FillCarsForUser username: string List<Car>
FillCarsForUser username: string

insuranceCompanyID: int
List<Car)

RemoveCar car: Car
FillCarByLicensePlateNumber licensePlateNumber: string Car
FillAccidentsForUser username: string List<Accident>
FillAccidentsForUser username: string

insuranceCompanyID: int
List<Accident>

FillAccident id: int Accident
FillOtherCar id: int Accident.OtherCar
FillDamage id: int Accident.Damage
SaveDamage damage: Accident.Damage

accident: Accident
employeeUsername: string

SaveDamageChanges damage: Accident.Damage
accident: Accident
employeeUsername: string

DeleteDamage damage: Accident.Damage
employeeUsername: string

SaveOtherCarChanges otherCar: Accident.OtherCar
accident: Accident
employeeUsername: string

SaveAccidentChanges accident: Accident
employeeUsername: string

FillAccidentReportXML accidentID: string XmlDocument

Page 54

FillModel id: int Accident.Model
FillPhoto id: int Accident.Photo
FillMap id: int Accident.Map
CheckIfEmployeeBelongs
ToInsuranceCompany

username: string
insuranceCompanyID: int

bool

CheckIfInsuranceCompany
EmployeeIsAllowedToSee
DataOfUser

customerUsername: string
employeeUsername: string

bool

FillUsernameOfCarOwner car: Car string
FillUsernameOfOtherCar
Accident

car: Accident.OtherCar string

FillUsernameOfDamage damage: Accident.Damage string
FillAccidentOfAccidentModel model: Accident.Model Accident
FillAccidentOfAccidentPhoto photo: Accident.Photo Accident
FillAccidentOfAccidentMap map: Accident.Map Accident

Table 6.5: Insurance Company Module Methods

6.5.2 Web Application

Insurance company employees can use the web application in order to manage their

customers and the accident cases and damages of those customers. Figure 6.31 shows the

starting page of the web application. It contains a list with all customers of the insurance

company to which the insurance company employee belongs.

Figure 6.31: Insurance Company Customers

Insurance company specific data about a customer is saved in the

InsuranceCompanyCustomerData Container. This container consists of three entities. The

Username saves the username of the customer. Miscellaneous can contain random data that

does not fit into other fields. InsuranceNumber contains the insurance number of the

customer.

Page 55

InsuranceCompanyCustomerData

Miscellaneous:: String

Userame: String User

InsuranceNumber:: String

Figure 6.32: Container Data Diagram of Insurance Company Customer Data

Clicking on a customer in the above list (shown in figure 6.31) opens a detailed overview about

the customer (see figure 6.34). It contains the name and address of the customer, his

insurance number, which can also be changed via this form, a text field for inserting

miscellaneous data, as well as a list with the customer's cars, another list with the customer's

car repair companies, and finally a list with the accidents.

It is possible to add and delete cars to and from the customer (see figure 6.35). The car brand,

type and year of manufacture as well as the license plate number are saved for each car.

Clicking on a car in the list displays its details including pre-rendered images of the car model

that belongs to the car (see figure 6.33).

Figure 6.33: Car Details

Page 56

Figure 6.34: Manage Insurance Company Customer

Page 57

Figure 6.35: Add Car

An insurance company employee can add a car repair company to a user. After this, the car

repair company can access the user’s data and create a damage evaluation for the user’s cars.

The Container shown in figure 6.36 saves the link between a user and a car repair company.

It consists of two Entities: CarRepairCompanyID saves a link to the company and Username

saves a link to the user.

CarRepairCompanyCustomer

CarRepairCompanyID:: Integer

Userame: String

User

CarRepairCompany

Figure 6.36: Container Data Diagram of Car Repair Company Customers

Figure 6.37 shows how a car-repair company can be added to a user:

Figure 6.37: Adding a car repair company to a user

Selecting an accident in the accidents list (figure 6.34) opens its details (see figure 6.38 and

6.39).

Page 58

Figure 6.38: Accident Overview Part 1

Page 59

Figure 6.39: Accident Overview Part 2

Page 60

The details about the accident contain the name and address of the car owner, as well as the

car driver. A list exists containing all other cars that had been involved in the accident. Clicking

on a car opens its details that contain the name and address as well as the license plate

number of the car. In order to add random data, there is a miscellaneous field. The next

section states the location and the time of the accident. Next a list of witnesses who saw the

accident, followed by a list of descriptions of the accident is displayed. After this, the damages

are listed. Each damage contains a short description. It can also contain the costs of repairing

the damage and detailed notes about the damage. The minus or plus symbol indicates

whether the insurance company has accepted the damage (plus) or not (minus). If a damage is

accepted the insurance company will pay for it. After this, pre-rendered images of the model

are displayed, including marks of the damages that had been made on the mobile client while

creating the accident report. Below this, a list of photos can be found that can contain marks.

The photos were also made on the mobile client and can help evaluate a damage or help

recreating the accident. Then, a map of the location where the accident happened is

displayed. This map can contain marks and cars that show where the cars involved in the

accident were located. Last, the status of the accident case is displayed. This status can be

changed by the insurance company and indicates if the case is new, in process, on hold or

finished.

After this, two links can be found:

Show all Versions opens a page that lists all data about an accident case, including all versions

of the data (see figure 6.40). That means that it is possible to access old versions of data that

have been changed. Each version contains the value of the element, the creation date and the

user who has created the element or who has changed the data. This way an insurance

company employee can see which data has been changes at which time and who changed the

data.

Show Original XML Document opens the xml document that has been sent by the mobile

client (see figure 6.41). This can be handy if there are legal problems because of changes made

to the report by insurance company employees. In such a case the original xml document can

be used to see what has been send from the mobile client (in addition to the page that shows

all versions of the data of an accident case). This can also be used to validate that no errors

have been made while parsing the xml file and saving the data into the system.

Page 61

Figure 6.40: Overview: Display all Versions of Data

Page 62

Figure 6.41: Show Original XML Document

By clicking the edit button at the right side of the accidents list (see figure 6.34) the insurance

company employee can change the data of an accident case (see figure 6.42). The name and

address of the driver and car owner cannot be changed, because they are managed by the

central organization that is responsible for administrating the back-office of the electronic

version of the European Accident Report.

Damages can be added, deleted and changed. The insurance company employee can write a

short description, a longer note and add the costs of the damage. He can also decide whether

the insurance company will pay for the damage repair by checking the accepted check box

(see figure 6.43).

Page 63

Figure 6.42: Edit Accident

Page 64

Figure 6.43: Edit Damage

Page 65

6.6 Car Owner

Figure 6.44: The Car Owner Module

The module for the car owner provides a web service which can be used to access data about

accidents by the car owner.

Page 66

6.6.1 Web Service

The web service for the car owner consists of several methods via which a car owner can get

an overview of his accidents and manage his car repair companies. Table 6.6 lists all the

methods of the web service for the car owner:

Method Name Parameters Return Type

GetCarRepairCompaniesFor
User

username: string
password: string

CarRepairCompany[]

GetCarRepairCompanies CarRepairCompany[]
AddCarRepairCompanyToUser carRepairCompany:

 CarRepairCompany
username: string
password: string

RemoveCarRepairCompany
FromUser

carRepairCompany:
 CarRepairCompany

GetOwnerData username: string
password: string

Owner

GetAccidentsForUser username: string
password: string

Accident[]

GetAccident id: int
username: string
password: string

Accident

GetOtherCar id: int
username: string
password: string

Accident.OtherCar

GetModel id: int
username: string
password: string

Accident.Model

GetPhoto id: int
username: string
password: string

Accident.Photo

GetMap id: int
username: string
password: string

Accident.Map

Table 6.6: Web Service for the Car Owner

Page 67

+Username : string

+Title : string

+FirstName : string

+LastName : string

+Street : string

+City : string

+ZIP : string

+TelephoneNumber : string

+MobilePhoneNumber : string

+EMail : string

+IdentityCardNumber : string

+Passport : string

+DriversLicenseNumber : string

Owner

+Name : string

+ID : int

CarRepairCompany

+LicensePlateNumber : string

+Brand: CarBrand

+Type: CarType

+YearOfManufacture: YearOfManufacture

+Models: System.Drawing.Bitmap[]

Car

+BrandName : string

+ID : int

CarBrand

+CarTypeName : string

+ID : int

+Brand: CarBrand

CarType

-Year : string

-ID : int

-CarType: CarType

YearOfManufacture

+ID : string

+Language : string

+PersonDamage : bool

+LoginTelephoneNumber : string

+LoginPassword : string

+LicensePlateNumber : string

+OwnerLastName : string

+OwnerFirstName : string

+OwnerAddress : string

+OwnerMiscellaneous : string

+OwnerCarBrand: CarBrand

+OwnerCarType: CarType

+OwnerCarYearOfManufacture: YearOfManufacture

+DriverLastName : string

+DriverFirstName : string

+DriverAddress : string

+DriverMiscellaneous : string

+Time : string

+Location : string

+Witness : string

+Description1 : string

+Description2 : string

+Description3 : string

+Description4 : string

+Description5 : string

+OtherCars: OtherCar[]

+Damages: Damage[]

+Models: Model[]

+Photos: Photo[]

+AccidentMap: Map

+Status : string

Accident

+ID : int

+LicensePlateNumber : string

+FirstName : string

+LastName : string

+Address : string

+Miscellaneous : string

Accident.OtherCar

+ID : int

+Description : string

+LicensePlateNumber : string

+Notes : string

+Costs : string

+Accepted : bool

Accident.Damage

+ID : int

+Image: Bitmap

+Points: List<List<string[]>>

Accident.Model

+ID : int

+Image: Bitmap

+Points: List<List<string[]>>

Accident.Photo

+ID : int

+Image: Bitmap

+Points: List<List<string[]>>

Accident.Map

*

1

*

1

*1

*

1

1
1

11

1

1

11

Figure 6.45: UML Diagram of Classes used by the Web Service for the Car Owner

The web service uses several classes in order to save and transfer data. Those classes are

shown in figure 6.45. The Owner class saves data about the car owner. The Accident class,

which contains the OtherCar, Damage, Model, Photo and Map class, saves all data about an

accident case. The Car class represents a car.

Methods in the web service get the username and password of the car owner who is calling a

method and validates if they are correct.

The web service methods call methods of the car owner model which retrieve data, save data,

change data or delete data. This helps to keep the web service methods clean. They only

contain the authentication and authorization code as well as the method calls to the module

methods. The module (CarOwner.cs) contains all the functionality needed.

Page 68

Table 6.7 lists all the methods of the car owner module.

Method Name Parameters Return Type

FillCarRepairCompanies List<CarRepairCompany>
FillCarRepairCompanies
ForUser

username: string List<CarRepairCompany>

SaveCarRepairCompany carRepairCompany:
 CarRepairCompany
username: string

RemoveCarRepairCompany carRepaircompany:
 CarRepairCompany
username: string

FillCarBrands List<CarBrand>
FillCarTypes carBrand: CarBrand List<CarType>
FillYearsOfManufacture carType: CarType List<YearOfManufacture>
FillOwnerData username: string Owner
FillAccidentsForUser username: string List<Accident>
FillAccident id: string Accident
FillOtherCar id: int Accident.OtherCar
FillModel id: int Accident.Model
FillPhoto id: int Accident.Photo
FillMap id: int Acciden.Map

Table 6.7: Car Owner Module Methods

6.6.2 Web Application

The car owner can see his personal information in the web application. This includes his name,

address, contact informaiton, and identity car number, passport number and driver's license

number (see figure 6.46).

Figure 6.46: Car Owner Overview

Page 69

A car owner can add and remove car repair companies. If a company is added, it can access

the user’s data and can evaluate damage caused by an accident. Both car owners and

insurance companies can choose which car repair companies can access the data. See chapter

6.5.2 for more information about how the link between car repair companies and users is

saved in a Container.

Figure 6.47 shows how car repair companies can be managed. It contains a button for adding

and a button for removing a car repair company. It displays all car repair companies in a list

that are allowed to access the user’s data.

Figure 6.47: Managing Car Repair Companies

The car owner can also view his accident cases (see figure 6.48 and 6.49/6.50). The same

information is displayed here as in the web application for the insurance company employee

(see chapter 6.5.2 for a description of the different fields of the overview of the accident

case). The car owner can also see the status of the accident case and therefore knows what

his insurance company is doing.

Figure 6.48: Overview Accidents

Page 70

Figure 6.49: Overview of Accident for Car Owner Part 1

Page 71

Figure 6.50: Overview of Accident for Car Owner Part 2

Page 72

6.7 Car Repair

Figure 6.51: The Car Repair Module

The module for the car repair company provides a web service which can be used in order to

access and manage damages of customers.

6.7.1 Web Service

The web service for the car repair company consists of several methods via which a car repair

company can manage customers and manage damages. Table 6.8 lists all the methods of the

web service for the car repair company:

Method Name Parameters Return Type

GetCustomers carRepairCompanyID: int Customer[]
GetCarsForUser username: string

employeeUsername: string
password: string

Car[]

GetAccidentsByCar licensePlateNumber: string
employeeUsername: string
password: string

Accident[]

GetDamagesByAccident accidentID: string
employeeUsername: string
password: string

Damage[]

GetDamage id: int
employeeUsername: string
password: string

Damage

DeleteDamage damage: Damage

Page 73

employeeUsername: string
password: string

AddDamage damage: Damage
employeeUsername: string
password: string

ChangeDamage damage: Damage
employeeUsername: string
password: string

Table 6.8: Web Service for the Car Repair Company

The web service uses several classes in order to save and transfer data. Those classes are

shown in figure 6.52. The Customer class saves data about a customer of the car repair

company. The Damage class, which belongs to the Accident class, saves all data about a

damage.

The Car class represents a car.

Methods in the web service get the username and the password of the car repair company

employee who is calling a method and validates if they are correct. The methods also check

whether a user is allowed to access the data or do the action he is about to do.

The web service methods call methods of the car repair company model which retrieve data,

save data, change data or delete data. This helps to keep the web service methods clean. They

only contain the authentication and authorization code as well as the method calls to the

module methods. The module (CarRepairCompany.cs) contains all the functionality needed.

Table 6.9 lists all the methods of the car repair company module.

+Username : string

+Title : string

+FirstName : string

+LastName : string

+Street : string

+City : string

+ZIP : string

+TelephoneNumber : string

+MobilePhoneNumber : string

+EMail : string

Customer

+Name : string

+ID : int

CarRepairCompany

+LicensePlateNumber : string

+Brand: CarBrand

+Type: CarType

+YearOfManufacture: YearOfManufacture

+Models: System.Drawing.Bitmap[]

Car

+BrandName : string

+ID : int

CarBrand

+CarTypeName : string

+ID : int

+Brand: CarBrand

CarType

-Year : string

-ID : int

-CarType: CarType

YearOfManufacture

+ID : string

+LicensePlateNumber : string

+Time : string

+Location : string

Accident
+ID : int

+Description : string

+LicensePlateNumber : string

+Notes : string

+Costs : string

+Accepted : bool

Accident.Damage

*1

11

1

1

11

Figure 6.52: UML Diagram of Classes used by the Web Service for the Car Repair Company

Page 74

Method Name Parameters Return Type

FillCustomer customerUsername Customer
FillCustomers insuranceCompanyID: int List<Customer>
FillCarsForUser username: string List<Car>
FillAccidentsByCar licensePlateNumber: string List<Accident>
FillDamagesbyAccident accidentID: string List<Damage>
FillDamage id: int Damage
DeleteDamage damage: Damage

employeeUsername: string

SaveDamage damage: Damage
employeeUsername: string

SaveDamageChanges damage: Damage
employeeUsername: string

CheckIfEmployeeBelongs
ToCarRepairCOmpany

employeeUsername: string
carRepairCompanyID: int

bool

CheckIfCarRepairCompany
EmployeeIsAllowedTo
SeeDataOfUser

customerUsername: string
employeeUsername: string

bool

FillUsernameByLicensePlate
Number

licensePlateNumber: string string

FillUsernameOfDamage damage: Damage string

Table 6.9: Car Repair Company Module Methods

Page 75

6.7.2 Web Application

The web application for the car repair company enables a car repair company employee to

add, remove and edit damages (see figure 6.53). First a list with all customers of the car repair

company is displayed. Selecting one of them shows a list with the customer’s cars.

When a car is selected all accidents that this car has been involved in are displayed.

Selecting an accident shows a list of all damages that occurred in this accident. The car repair

company employee can now add new damages, delete damages or edit damages.

Figure 6.53: Car Repair Company Overview

When adding or editing a damage, the car repair company employee can add a short

description, a longer note and the costs of repairing the damage (see figure 6.54).

Page 76

Figure 6.54: Edit Damage

Page 77

7 Conclusion
This chapter provides a summary of this bachelor thesis and describes what functionality can

be added to the system in the future. It also contains improvement ideas.

7.1 Summary and Results
The electronic version of the European Accident Report, which can be used by filling a form on

a mobile phone, makes it easier to document an accident case, because the user is guided

through the form on a step by step basis and can therefore not forget to include data that is

needed by the insurance company to process the accident. The task of this bachelor thesis

was to create a back-office in which all data needed by an insurance company is saved. This

data should be versioned, that means it must be possible to see when changes have been

made and who made those changes.

A generic framework has been created as a result of this bachelor thesis that can be used to

save data related to accident cases, access, update and query this data, as well as manage

users. New functionality can be added to this system by adding modules. Those can save all

data needed by this module in the database, without needing to change the schema

information of the database. This is done by using the container-entity-model of the core

system. This makes it easy to add new modules to the system, because the module developer

does not need to know how the internals of the framework work; developers only need to

learn the API of the framework. The data, which can be saved into the database, can be of any

type, which makes it possible to save various kinds of data, like images, videos or even 3D-

models into the database.

Five modules have been created that can be used to process accident cases. They can also be

seen as examples of how modules can be developed.

The mobile client module provides a web service via which the mobile phone can get data

about a person and his cars and send the accident report to the system.

The police client module offers a web service via which the police client can access the data it

needs.

The insurance company module provides a web service that enables an insurance company to

integrate the system into their software infrastructure. A web application has also been

implemented that offers basic functionality for processing accident cases.

The car repair company module consists of a web service as well as a web application that can

be used by car repair companies to add and evaluate damages.

The car owner module, provides both a web service as well as a web application that can be

used to see the status of an accident case of the car owner. The car owner can also choose car

repair companies via this web application.

Another web application has been created that can be used by administrators of the central

system to manage users, car repair companies, insurance companies and car models.

Page 78

7.2 Outlook
In this bachelor thesis a generic framework has been created that makes it easy to create

modules that use the functionality of this core system in order to save, query and update data

from and to the database via the use of an abstract model (container-entity-model).

This system is fully working, but performance improvements could be made to make the

system faster and more scalable. This could be achieved by implementing lazy loading to the

querying mechanism. Today Containers are loaded that contain all the entities including old

versions of entities. This makes it easy to use the Containers, but it creates overhead. By

adding lazy loading to the system, this could be avoided.

An advanced querying mechanism could be added to the system. Today it is possible to query

data by the Container name, Container id, Entity id and by the value of an Entity. It is possible

to load every container needed from the database by using those methods, but this is not

always easy and convenient. A method that could return all Containers with a certain name

that include an Entity with a certain value would be useful (today the developer must

manually check if the Container, which is returned, is of the type he wants). It would also be

useful to be able to query Containers and Entities by using an SQL-like syntax. This way it

would be possible to return Containers that include several Entities that match certain

conditions. This would make it easier to query data.

The modules have been developed as examples of how modules can be developed.

They only have a basic user interface. This could be improved. More functionality could be

added to the system, e.g. it would be helpful for the car owner to be able to interact with the

insurance company. Today the car owner can only see the accident data. If he could edit this

data and add missing data, he would not have to contact the insurance company if he wants

to correct mistakes he made on the mobile client or add additional data.

Today the insurance company, as well as the car owner can only see an image of a map

including two cars and arrows of the accident location. This map and the cars cannot be

changed. It would be useful to have a detailed, editable map that shows how an accident

occurred (see Figure 2.1 for an example of such a map). This would make it easier to detect

insurance frauds, because the insurance company employee can better see how the accident

occurred and which damages have been caused by the accident and which damages cannot be

caused by the accident. This visualization could also be used on the police client to create a

sketch of the accident.

The current system uses pre-rendered images of 3D-models that can be used to mark

damages. Using real 3D-models would make it easier to see exactly where the damages are on

the car. The user could turn the 3D-model into every direction he needs in order to add a

damage mark (e.g. at the bottom of the car).

Another problem is the security of the system. E.g. today the mobile client uses a telephone

number and a password to verify a user. This is problematic because the user might forget his

password. A better solution to this problem should be implemented.

Page 79

Bibliography
[ADAC09] ADAC Statistik. (2009, February 1). Retrieved February 1, 2009, from ADAC

 Statistik: http://www.adac.de/images/Wichtige%20EckdatenStatstik_081128

 _tcm8-948.pdf

[Arlt09a] Arlt, S. (2009) EU Accident Report: Police Client (Presentation)

 (2009, October 5). Retrieved

 October 5, 2009, from http://userpages.uni-koblenz.de/~arlt/

 EUAccidentReport.pptx

[Arlt09b] Arlt, S. (2009) EU Accident Report: Mobile Client(Movie) (2009, October 5).

 Retrieved October 5, 2009, from http://userpages.uni-koblenz.de/~arlt/

 MobileClient.mov

[ASPN09] The Official Microsoft ASP.NET Site. (2009, January 1). Retrieved January 1,

 2009, from ASP.NET: http://www.asp.net/

[BenG09] Ben-Gan, I., (2009). Microsoft SQL Server 2008 - T-SQL Fundamentals.

 Redmond: Microsoft Press.

[BKSK06] Ben-Gan, I., Kollar, L., Sarka, D., Kass, S., & Campbell, D. (2006).

 Inside Microsoft SQL Server 2005: T-SQL Querying. Redmond: Microsoft Press.

[BSWK06] Ben-Gan, I., Sarka, D., Wolter, R., Kass, S., & Kollar, L. (2006).

 Inside Microsoft SQL Server 2005: T-SQL Programming. Redmond:

 Microsoft Press.

[CONR07] Conard, James (2007) Lap Around Visual Studio 2008 and the

 .NET-Framework 3.5 (Presentation). Redmond: Microsoft

[Date09] Datenschutz.de. (2009, August 4). Retrieved August 4, 2009, from

 Datenschutz.de: http://www.datenschutz.de/

[DoKo03] Doberenz, W., & Kowalski, T. (2003). Datenbank-Programmierung mit Visual

 Studio C# .NET. Unterschleißheim: Microsoft Press Deutschland.

[DrRa06] Dröge, R., & Raatz, M. (2006). Microsoft SQL Server 2005 - Konfiguration,

 Administration, Programmierung (2. Auflage). Unterschleißheim:

 Microsoft Press Deutschland.

[Espo08] Esposito, D. (2008). Programming Microsoft ASP.NET 3.5. Redmond:

 Microsoft Press.

[Gail04] Gailey, J. H. (2004). Understanding Web Services Specifications and the WSE.

 Redmond: Microsoft Press.

[Gill08] Gille, N. (2008). Elektronische Form des EU-Unfallberichts für Mobiltelefone

 (.Net Client) (Diplomarbeit). Koblenz: Universität Koblenz Landau.

Page 80

[Hund06] Hundhausen, R. (2006). Working with Microsoft Visual Studio 2005

 Team System. Redmond: Microsoft Press.

[KlKn07] Klass, J., & Knopp, T. (2007). Der European Accident Report –

 Eine automatische Erfassung des europäischen Unfallberichts (Studienarbeit).

 Koblenz: Universität Koblenz Landau.

[Lemp08] Lempa, T. (2008). Schadensvisualisierung (Diplomarbeit). Koblenz: Universität

 Koblenz Landau.

[Lerm09] Lerman, J. (2009). Programming Entity Framework. Sebastopol:

 O'Reilly Media.

[LoMü03] Lorenz, P. A., & Müller, C. A. (2003). Programmieren lernen in ASP.NET mit C#.

 München Wien: Carl Hanser Verlag.

[LoSt02] Louis, D., & Strasser, S. (2002). C# in 21 Tagen. München:

 Markt+Technik Verlag.

[Micr09a] SQL Server 2008 Overview, data platform, store data. (2009, January 1).

 Retrieved January 1, 2009, from Microsoft.com SQL Server 2008:

 http://www.microsoft.com/sqlserver/2008/en/us/default.aspx

[Micr09b] Visual Studio Development System. (2008, January 1). Retrieved January 1,

 2008, from Microsoft Visual Studio 2008: http://msdn.microsoft.com/en-

 us/vstudio/products/default.aspx

[Micr09c] Microsoft Expression Web. (2009, June 5). Retrieved June 5, 2009, from

 Microsoft Expression Web: http://www.microsoft.com/expression

 /products/Web_Overview.aspx

[MSDN09] ADO.NET Entity Framework. (2009, January 2). Retrieved January 2, 2009,

 from MSDN:

 http://msdn.microsoft.com/en-us/data/aa937723.aspx

[Nort09] Northrup, T. (2009). Microsoft .NET Framework - Application Development

 Foundation (Second Edition) (MCTS EXAM 70-536). Redmond: Microsoft Press.

[Plat04] Platt, D. S. (2004). The Microsoft Platform AHEAD. Redmond: Microsoft Press.

[Prei05] Preishuber, H. (2005). ASP.NET 2.0 Crashkurs - Schnelleinstieg in neue

 Technologien und Tools. Unterschleißheim: Microsoft Press Deutschland.

[Rich06] Richter, J. (2006). CLR via C# (Second Edition). Redmond: Microsoft Press.

[Schu09] Schufa. (2009, February 1). Retrieved February 1, 2009, from Schufa:

 http://www.schufa.de

[Schw05] Schwichtenberg, H. (2005). Microsoft .net 2.0 Crashkurs - Schnelleinstieg in

 neue Technologien und Tools. Unterschleißheim: Microsoft Press Deutschland.

Page 81

[Smit07] Smith, J. (2007). Inside Windows Communication Foundation. Redmond:

 Microsoft Press.

[SSVG05] ASP.MAG - Das Magazin für Web Development mit ASP.NET Vol. 1. 2005

 (Sonderausgabe des dot.net magazin). Unterhaching: Software & Support

 Verlag GmbH.

[Stan09] Stanek, W. R. (2009). Microsoft SQL Server 2008 - Administrator's Pocket

 Consultant. Redmond: Microsoft Press.

[Trai09] Framework. (2009, February 2). Retrieved February 2, 2009, from

 trainingon.net: http://trainingon.net/Articles/ArticleImages/

 136_Framework.png

[Unfa09a] Unfallskizze. (2009, July 3). Retrieved July 3, 2009, from unfallskizze.de:

 http://unfallskizze.de

[Unfa09b] European Accident Report. (2009, July 2). Retrieved July 2, 2009,

 from www.unfallskizze.de: http://www.unfallskizze.de/ressourcen/Europa-

 Unfallbericht_EN.php

