Studies on the 4-Dimethylallyltryptophan Synthase Mechanism Development of a Divinylcyclopropane Rearrangement based Strategy for the Formation of Cyclohepta[cd]oxindoles and its Application on the Synthesis of 5-(10 $\longrightarrow 9$)Abeo-Ergot Alkaloids

Dissertation submitted for the degree of Doctor of Natural Sciences
(Dr. rer. nat.)

Presented by
 Darius D. Schwarzer

Faculty of Sciences
Department of Chemistry

Day of Oral Examination: May 29, 2017

1. Examiner: Prof. Dr. Tanja Gaich
2. Examiner: Prof. Dr. Andreas Marx

Konstanz, 2017

To my parents

"Vanity of vanities, says the Preacher, vanity of vanities! All is vanity. What does man gain by all the toil at which he toils under the sun? All things are full of weariness; a man cannot utter it; the eye is not satisfied with seeing, nor the ear filled with hearing. What has been is what will be, and what has been done is what will be done, and there is nothing new under the sun. There is no remembrance of former things, nor will there be any remembrance of later things yet to be among those who come after."
-Ecclesiastes 1

Scientific Contributions from 2011 to 2016

Publications

Schwarzer D. D.; Gritsch P. J.; Gaich, T. "How to "COPE" with the prenylation of the indole C-4-position", Synlett. 2013, 24, 1025.

Schwarzer, D. D.; Gritsch, P. J.; Gaich, T. "Mimicking the Dimethylallyltryptophan Synthase - Experimental Evidence for a Biosynthetic Cope Rearrangement Process", Angew. Chem. Int. Ed. 2012, 51, 11514.

El-Seply, O.; Schwarzer, D.; Oswarek, P.; Mlynarski, J. "Direct Aldol Reaction of Pyruvic Derivatives; Catalytic Attempt to Synthesise Ulosonic Acids", Eur. J. Org. Chem. 2012, 14, 2724.

Poster \& Talks

The Münster Symposium on Cooperative Effects in Chemistry, 2014 Münster, Germany, Poster: "How to "Cope" with prenylation of the indole C4-position"

14th Tetrahedron-Symposium, 2013 Vienna, Austria
Poster: "Mimicking the DMAT-Synthase - Evidence for a Biosynthetic Cope Rearrangement"

8th Status Seminar Biological Chemistry, 2013, Frankfurt am Main, Germany Poster: "Mimicking the DMAT-Synthase - Evidence for a Biosynthetic Cope Rearrangement"

2nd Winterfeld Symposium, 2012, Leibniz University of Hannover, Germany Talk: "Anwendung der Divinylcyclopropanumlagerung in der Synthese von Indolalkaloiden"

Abstract

1. Experimental evidence was found to support the enzymatic [3,3]-sigmatropic rearrangement catalysed by dimethylallyltryptophan (DMAT) synthase. A bio-inspired system showed the feasibility of Cope rearrangement to the C-4 position of the indole nucleus. This experiment supports the theory which says that 4-DMATS reverse prenylates C-3 and catalyses the Cope rearrangement into C-4. 2. A new methodology for the construction of cyclohepta[cd]oxindoles has been established. The presented methodology is intended to serve as a general approach to the functionalization of the 4-position of indole. It serves as an alternative to reactions where the toxic elements thallium and mercury are used, and offers broader scope compared to the Witkop cyclisation. The reaction is generally not affected by substituents on the aromatic core and tolerates many functional groups at the cyclopropane and the olefinic parts. 3. This work features the synthetic approach towards $5(10 \rightarrow 9)$ abeo-ergoline derivatives, unnatural products derived from methyl lysergate. The key features of our synthesis is the divinylcyclopropane rearrangement to establish the tricyclic cyclohepta[cd]indole core. Gold (I) catalysis and Jeffrey cross coupling conditions furnished the pyrrolidine moiety and completed the carbon skeleton. Nevertheless, the adverse alignment of the orbitals on C9 and C-10, that could be proven by force field calculations, prevented the completion of our common intermediate. 4. The mechanism of the divinylcyclopropane rearrangement for the formation of cyclohepta[cd]oxindoles has been investigated with respect to the dependence of the rate constants k and the cis-trans isomerization on the Thorpe-Ingold effect. The presence of a substituent on C-9 revealed a great increase of the rate constant compared to the unsubstituted compound. Furthermore, the cis-trans isomerization could be detected by NMR by using the C-9 nor-alkyl compound. Moreover, X-ray single crystal structure of the two corresponding trans-aldehydes showed the influence of the Thorpe-Ingold effect on the molecules.

Keywords: 4-DMAT, biomimicking, divinylcyclopropane rearrangement, cyclohepta[cd]indoles, total synthesis, Thorpe-Ingold effect, kinetic.

Zusammenfassung

1. Der Experimentelle Beweis für eine enzymkatalysierte [3,3]-sigmatrope Umlagerung durch die 4-Dimethylallyltryptophan Synthase wurde erbracht. Das von der Natur abgeleitete System zeigt die Realisierbarkeit einer Cope-Umlagerung in die C-4 Position des Indols. Dieses Experiment unterstützt die Theorie, dass 4-DMATS zunächst C-3 revers prenyliert und anschließend mittels der Cope Umlagerung C-4 alkyliert.
2. Eine neue Methode zur Synthese von Zyklohepta[cd]oxindolen wurde bearbeitet. Die vorgestellte Methode soll dazu dienen einen allgemeinen Zugang zur Funktionalisierung der Indol-4 Position zu etablieren. Dabei erlaubt sie das Umgehen von giftigen Reagenzien wie Thallium und Quecksilber und zeigt einen breiteren Anwendungsbereich auf als die Witkop-Zyklisierung auf. Die Reaktion wird dabei nur wenig von verschiedensten Substituenten am aromatischen Kern beeinflusst und es können viele verschiedene Substituenten sowohl am Cyclopropan als auch am Vinylrest verwendet werden.
3. Diese Arbeit befasst sich mit dem synthetischen Ansatz zur Darstellung 5(10 $\rightarrow 9$)abeoErgolin Derivaten, welche nicht natürlich vorkommende Derivate von Lysergsäuremethylester sind. Ein Schlüsselmerkmal dieser Synthese ist die Divinylzykopropanumlagerung, welche dazu verwendet wird, um den trizyklischen Zyklohepta[cd]indol Kern aufzubauen. Die Pyrrolidinstruktur, welche das Kohlenstoff Skelett komplettiert, wird durch Gold(I) Katalyse oder unter Jeffrey Kreuzkupplungsbedinungen erhalten. Nichtsdestotrotz hat die Ungünstige Anordnung der Orbitale an C-9 und C-10, welche über Kraftfeld Berechnungen nachgewiesen werden konnte, die Fertigstellung des privilegierten Intermediates verhindert.
4. Der Mechanismus der Divinylcyclopropanumlagerung zur Darstellung von Zyklohepta[cd]oxindolen wurde im Hinblick auf den Einfluss des Thorpe-Ingold Effekts auf die Geschwindigkeitskonstanten k, sowie die cis-trans Isomerisierung untersucht. Die Anwesenheit eines weiteren Substituenten an C-9 offenbarte eine starke Erhöhung der Geschwindigkeitskonstante. In Abwesenheit eben jenen Substituenten konnte die cis-trans Isomerisierung über NMR-beobachtet werden. Zudem konnte mittels Röntgenkristallographie der Einfluss Thorpe Ingold Effekt auf die entsprechenden trans-Aldehyde nachgewiesen werden.

Schlagworte: 4-DMAT, biomimicking, Divinylcyclopropanumlagerung, Cyclohepta[cd]indole, Totalsynthese, Thorpe-Ingold Effekt, Kinetik.

Graphical Abstract

1.

2.

3.

4.

Table of Contents

Scientific Contributions III
Abstract V
Zusammenfassung VII
Graphical Abstract IX
General Introduction 1
1 Cope Mechanism of the DMAT-Synthase 3
1.1 Introduction 5
1.1.1 Indole alkaloids 5
1.1.2 Ergot alkaloids 6
1.1.3 Mechanistic studies 8
1.1.4 Cope Rearrangement 17
1.1.5 Cyclopropane 19
1.1.6 Divinylcyclopropane rearrangement 21
1.2 Aim of this Project 25
1.3 Own Contributions 27
1.4 Summary and Outlook 35
2 DVPR Methodology 37
2.1 Introduction 39
2.1.1 Cyclohepta[cd]indole. 39
2.1.2 Direct C-4 activation. 40
2.1.3 Formation of cyclohepta[cd]indoles 41
2.2 Aim of this Project 45
2.3 Own Contributions 47
2.4 Summary and Outlook. 57
$35(10 \longrightarrow 9)$ Abeo-Ergoline Project. 61
3.1 Introduction 63
3.1.1 Total synthesis 63
3.1.2 $5(10 \rightarrow 9)$ Abeo-Ergoline derivatives 65
3.2 Aim of this Project 69
3.3 Own Contriutions 71
3.3.1 $1^{\text {st }}$ Approach 71
3.3.2 $2^{\text {nd }}$ approach 73
3.3.3 $3^{\text {rd }}$ approach 78
3.3.4 $4^{\text {th }}$ approach 82
3.4 Additional Material 101
3.5 Summary and Outlook 103
4 Thorpe-Ingold Effect on the DVCPR 105
4.1 Introduction 107
4.1.1 Thorpe Ingold effect 107
4.1.2 Divinylcyclopropane rearrangement. 110
4.1.3 Chemical kinetics 112
4.1.4 Arrhenius equation and Arrhenius plot 112
4.2 Aim of this Project 115
4.3 Own Contribution 117
4.4 Summary and Outlook 133
5 Experimental Cope Mechanism of the DMAT-Synthase 135
5.1 Graphical Overview 138
5.2 General 138
5.3 Procedures 139
5.4 Spectra 151
6 Experimental DVPR Methodology 174
6.1 Graphical Overview 178
6.2 General 179
6.3 Procedures 179
6.4 Spectra 207
7 Experimental 5(10 \rightarrow 9)abeo-Ergoline Project 252
7.1 Graphical Overview 256
7.2 General 257
7.3 Procedures 257
7.4 Spectra 291
8 Experimental Thorpe Ingold Effect on the DVCPR 337
8.1 Graphical Overview 341
8.2 General 341
8.3 Procedures 342
8.4 Crystalographic Data 347
8.5 Spectra 351
9 List of Schemes 361
10 List of Figures 373
11 List of Tables 377
12 List of Abbreviations 381
13 References 385
14 Acknowledgment. 395
15 CV 399

General Introduction

This PhD thesis was performed from April 2012 till August 2016 in the group of Prof. Dr. Tanja Gaich. The main topic of this thesis is the divinylcyclopropane rearrangement and its application in the synthesis of indole alkaloids. The dissertation is split into four parts describing (chapter 1) the investigation of the [3,3]-sigmatropic rearrangement catalysed by dimethylallyltryptophan (DMAT) synthase by in vitro experiments, (chapter 2) the development of a divinylcyclopropane rearrangement based methodology for the preparation of cyclohepta[cd]oxindoles, (chapter 3) the application of the above-mentioned methodology on the total synthesis of 5(10-9)abeo ergoline alkaloids and (chapter 4) the investigation of the Thorpe-Ingold effect on the kinetics of the divinylcyclopropane rearrangement.

An important reaction in the biosynthesis of ergot alkaloids is the C-4 prenylation of the indole core. Since the mechanism is not fully understood, an academic discussion has been held for decades whether the prenylation takes place directly Fridel-Crafts like into the indole C-4 or via a $[3,3]$-sigmatropic rearrangement. The first part of this thesis (chapter 1) is the development of a molecule mimicking 3-dimethylallyltryptophan. This should undergo the Cope rearrangement providing the first in vitro experiment for a naturally occurring [3,3]sigmatropic rearrangement.
Additionally, the influence of the two germinal-methyl groups on the rate constant of the rearrangement and the cis-trans isomerisation of the vinyl-cyclopropane will be investigated (chapter 4). The result obtained should provide further support for an in vivo occurring [3,3]sigmatropic rearrangement.

As there are just three methods known for a direct activation of the indole C-4 position, the [3,3]-sigmatropic rearrangement mentioned in Chapter 1 should provide a general approach for the functionalisation of the above-mentioned C-4 position (chapter 2). This methodology holds the advantage as no poisonous heavy metals are necessary. Furthermore, it should offer a broader scope compared to the Witkop cyclisation. Thus, the optimised methodology should be applied on the total synthesis of the nor naturally occurring 5(10-9) abeo ergoline alkaloids which hold the cyclohepta[cd]oxindole scaffold. Products containing the above-mentioned scaffold are of general interest as they are known for their biological properties. These propertiescomprise antifungal and larvicidal activities, the depolymerisation of microtubule
and the ability to reverse P-glycoprotein-mediated multiple drug resistance (MRD) in human cancer cells.

For the reason of clarity, the combined experimental procedures as well as the NMR spectra are located in the rear part of the thesis, in particular in Chapter 5, 6, 7, and 8.

1 Cope Mechanism of the DMAT-Synthase

"Du bist aber auch ein ganz gescheites Kindi. Warum machst du das denn auch?"

Dr. Philipp J. Gritsch

1.1 Introduction

1.1.1 Indole alkaloids

Alkaloids based on tryptophan can be found in higher plants and microorganisms. They represent the majority of the known alkaloids. Due to their resemblance to the amino acid tryptophan itself and for example serotonin, this class of alkaloids possessed a salient position. Since most of the indole alkaloids possess biological activity they are valuable therapeutics. ${ }^{[1]}$ Their biosynthesis is based on tryptophan and mostly terpenoids, but also other substrates. ${ }^{[2]}$ The monoterpene secologanine (Scheme 1) is responsible for the isoprenoide moiety of most of the indole alkaloids. Based on that, eight biogenetical structural groups can be derived in which the majority of these indole alkaloids can be classed into (Figure 1): Corynanthean (C) (1), Vincosan (D) (2), Vallesitacotaman (V)-(3), Strychnan (S)-(4), Aspidospermatan (A)-(5), Eburnan (I)-(6), Plumeran (P)-(7), and Ibogan (I)-type (8). ${ }^{[3]}$

Corynanthean C-Type

Aspidospermatan A-Type

5

2

Eburnan
E-Type
6

Vallesicachotaman
V-Type
3

Plumeran
P-Type
7

Ibogan
I-Type
8

Figure 1. Skeletal types of monoterpenoid indole alkaloids.

To elucidate the biosynthesis, in vivo feeding experiments were performed which were replaced by cell-free preparations utilising enzymes and the extraction of the produced intermediates. ${ }^{[4]}$ The five reactive sites which are present in Secologanine (10; Scheme 1, ester, vinyl-group, and three carbonyl moieties), are responsible for the diversity of the structures in these indole alkaloids.

Rotation about the C-5, C-9 bond of secologanine (10; Scheme 1) is suitable to apply the characteristic quinolizidine partial structure $\mathbf{1 2}$ of the majority of these indole alkaloids. The aldehyde functionality is used to establish the tryptoline unit, which is a common structure motif.

Scheme 1. Indole alkaloid biosynthesis starting from (-)-secologanine (10).

1.1.2 Ergot alkaloids

The class of ergot alkaloids belongs to the prenylated indole alkaloids, which are secondary metabolites containing an isoprenoid moiety or a structure deduced from, as well as an indole related core. Often these alkaloids have a diketopiperazine (13, Figure 2) or a bicycle[2.2.2]diazaoctane (14) in common. ${ }^{[5]}$

Figure 2. Structure of Euchinulin (13) and (-)-Notoamide B (14).

Ergot alkaloids possess structural motifs that are similar to neurotransmitters such as noradrenaline (17; Figure 3), dopamine (16) and serotonin (18). Therefore, they have an impact on the human nervous system, as they usually act as non-selective agonists and antagonists. ${ }^{[6]}$

Figure 3. Structure motifs of neurotransmitters mimicked by ergot alkaloids.

Naturally occurring ergot alkaloids and semi synthetic derivatives are used for many medicinal applications (Figure 4). The area of application includes also cytotoxicity and anthelmintic qualities.

$\mathrm{R}^{1}=\mathrm{Ph}$
$R^{2}=M e$
$\mathrm{R}^{3}=\mathrm{H}$
$\mathrm{R}^{1}, \mathrm{R}^{2}=i-\mathrm{P}$
$\mathrm{R}^{3}=\mathrm{Br}$
(-)-Ergotamine Natural product Migraines 21

Bromocriptine
Semi-synthetic
Parkinson's
iseas

Figure 4. Examples for ergot alkaloids with medicinal application.

As the serotonin receptor in the central and peripheral nervous systems is closely linked to a many processes in the human body, for instance the blood coagulation, mood, sleep, aggression and anxiety, a selective control holds great potential. Especially malfunctions or perturbations in the activation of this $5-\mathrm{HT}$ receptor (serotonin $=\underline{5}$-hydroxytryptamine) can lead to a lot of diseases, including migraines or depression. Similar to tryptanes, ergotamines act as agonist at the $5-\mathrm{HT} 1 \mathrm{~B} / 1 \mathrm{D}$ receptors and can be applied in the treatment of migraine. Additionally, dihydroergotamines find its application in the treatment of clusterheadaches. ${ }^{[7],[8],[9]}$ A well-known ergot alkaloid with an impact on the 5-HT-receptor is LSD the abbreviation indicating the linkage already, as LSD stands for Lysergic acid diethylamide. It is known as a psychedelic drug and can have a psychiatric use.

Ergometrine (20; Figure 4) is often used on women in labour, as an oxytoxic in the prevention of uterine bleeding after Caesarian operations. It stimulates α-adrenergic receptors and leads to a faster stimulation of the uterine muscle. ${ }^{[9]}$ [10]

Ergot alkaloids also support the treatment of Parkinson's disease. For example, bromocriptine (22; Figure 4), lisuride and pergolide are known to relieve the symptoms. These ergot alkaloids function as dopamine agonists, but lisuride also has an impact on serotonine-receptors and therefore strong psychiatric adverse side effects. ${ }^{[11]}$

1.1.3 Mechanistic studies

An important reaction in the biosynthesis of indole alkaloids is the prenylation of the indole core. This step is catalysed by a variety of enzymes. ${ }^{[12]}$ These prenyltransferases catalyse a normal prenylation, where $\mathrm{C}-1$ adds to the indole or a reverse prenylation where $\mathrm{C}-3$, the tertiary carbon, forms a C-C bond with the indole. ${ }^{[13]}$ Plenty prenyltransferases have been discovered since 2005. With the exception of the indole C-3a and C-7a, these enzymes address every other position of the indole core.

The prenyltransferase which was identified first is the 4-dimethylallyltryptophan synthase (4DMATS/FgaPT2). ${ }^{[14]}$ This synthase catalyses the normal prenylation at $\mathrm{C}-4$ of tryptophan which is also the first step in the biosynthesis of the ergot alkaloids.
Based on the research of Floss et al. ${ }^{[14 a, 15]}$ on ergot alkaloids, a generally accepted biosynthetic pathway could be established (Scheme 2).

The first committed step in the biosynthesis is the prenylation at C-4 of L-tryptophan (24; Scheme 2). This mechanism is still a subject of controversial scientific discussion. It may either proceed via a Cope rearrangement as displayed in Scheme 2 or via a direct Friedel-Crafts alkylation into C-4. ${ }^{[15 b, 16]}$ Subsequent N-methylation with S-adenosylmethionine (SAM) and two not fully elucidated oxidation-reduction steps provide Chanoclavine-I (30) which is also the first regularly isolable product of this pathway. ${ }^{[17],[18],[19],[20]}$ Compound $\mathbf{3 0}$ is then oxidised to the corresponding aldehyde 31 which can undergo an imine condensation. The obtained iminium ion 32 is then reduced by agroclavine dehydrogenase. Further oxidations lead to paspalatic acid (35), which spontaneously isomerises to lysergic acid (36). Enzymes LPS1 and LPS2 finally complete the biosynthesis of ergotamine (21).

Scheme 2. Biosynthesis of Ergotamine. Dashed arrows display not confirmed steps. a. DmaW (prenyltransferase), b. EasF (N -methyltransferase), c. EasE/EasC (oxidoreductase/catalase), d. EasE/EasC (oxidoreductase/catalase), $-\mathrm{CO}_{2} \mathrm{e}$. EasD (oxidase), f. imin condensation, spontaneous, g. EasG (reductase), h. p450 (monooxigenase), i. 2x CloA (monooxigenase), j. spontaneous/isomerase, k. LPS1 (D-lysergyl-peptide synthase 1), LPS2 (D-lysergyl-peptide synthase 2). ${ }^{[21]}$

As it was mentioned before, the mechanism of the prenylation catalysed by 4-DMATS is a contentious scientific point. Floss et al. examined the prenylation mechanism into the notably unreactive C-4 position by labelling experiments (Scheme 3). ${ }^{[15]}$ In the beginning, they used mevalonate which was labelled with ${ }^{14} \mathrm{C}$ at $\mathrm{C}-2$. For two further feeding experiments the proR and pro-S hydrogen atoms at C-5 were replaced by ${ }^{3} \mathrm{H}$. The isolated Elymoclavine (34a, b) displayed a 90% labelling of $\mathrm{C}-17$ and 10% of $\mathrm{C}-7$. This indicates a double $\mathrm{S}_{N} 2$ attack at DMAPP.

25a

24

24

C-17 labeled Elymoclavine ~ 90 \% 34a

27a

27b

Scheme $3 .{ }^{14} \mathrm{C}$ labelling experiment by Floss et al.
To undergird their results Floss et al. performed further feeding experiments applying cultures of Caviceps sp. strain SD58 (Scheme 4). In this case they used mevalonate with (5S)- and (5R)[$2-{ }^{13} \mathrm{C}, 5-{ }^{2} \mathrm{H} 1$]. They were able to ascertain that the scrambling of the protons and the carbon atoms are independent processes.

Scheme 4. Further feeding experiment using mevalonate with (5S)- and ($5 R$)-[2- $\left.{ }^{13} \mathrm{C}, 5-{ }^{2} \mathrm{H} 1\right]$.
The loss of stereochemical information during or before the biosynthesis of dimethylallyl diphosphate (DMAPP, 25; Scheme 4) has been proposed earlier by Arigoni et al. ${ }^{[22]}$ This proposal was confirmed by an experiment where (Z)-[methyl- $\left.{ }^{2} \mathrm{H}_{3}\right]$ DMAPP (25b, c) was used
with DMATS, yielding the corresponding (Z)-[methyl- $\left.{ }^{2} \mathrm{H}_{3}\right]$ DMAT (27d-f, Scheme 5). Subsequent conversion yielded the analogue Chanoclavine (30) and Elymoclavine (34). Throughout the examination, the stereochemical information was preserved in Caviceps sp. SD58.

Scheme 5. Feeding experiments to show the preservation of the stereochemical information.
These results led to the assumption that DMAPP which is bound to the enzyme dissociates into a dimethylallyl cation/pyrophosphate ion pair (Scheme 6). During the reaction progress the indole C-4 performs a nucleophilic attack on the C-1 of the prenyl cation. Subsequent deprotonation of the indole C-4 should lead to the rearomatisation of the tryptophan (Scheme 6). Mechanistic studies performed by Poulter et al. ${ }^{[16 \mathrm{a}]}$ confirmed Floss' results.

Scheme 6. Direct $\mathrm{S}_{N} 2$ prenylation of tryptophan.
Tanner et al. were able to undergird the suggestion of a dimethylallyl cation/ pyrophosphate ion pair by performing a positional isotopic exchange experiment (PIX; Scheme 7) in 2009. ${ }^{[16 b]}$ They applied an ${ }^{18} \mathrm{O}$-isotopic label in the bridging position of $\left[1-{ }^{18} \mathrm{O}\right]$-DMAP (25e) for the
enzymatic reaction. Analysis of the remaining DMAPP after the reaction displayed that the ${ }^{18} \mathrm{O}$-isotope was scrambled from the bridged position into a non-bridged position (25f).

Scheme 7. Tanner's PIX experiment in order to show the existence of an allyl cation.
Nevertheless, these results were not able to explain why the reactive positions of the indole core (C-3 and C-2) should be passed over in order to alkylate the least reactive C-4 position. ${ }^{[23]}$ Therefore, another mechanism has to be considered. In the 1970's Arigoni ${ }^{[22]}$ and Wenkert ${ }^{[24]}$ proposed a mechanism (Scheme 8) which took the low nucleophilicity of the indole C-4 into account. In their hypothesis, the indole C-3 position is reverse prenylated by DMAPP (25). Intermediate 26 undergoes a Cope rearrangement into the indole C-4 and the rearomatisation should yield DMAT (27).

Scheme 8. Proposed mechanism of prenylation of indole C-4 via a [3,3]-sigmatropic rearrangement.
Since they were not able to prove their hypothesis by in vitro experiments (Scheme 9) and enzymes which catalyse sigmatropic rearrangements are uncommon, this idea was dismissed. Instead of the desired rearrangement into the indole C-4 position, they obtained decomposition (38) and rearrangement into $\mathrm{N}-1$ (40).

A. Wenkert's Model System

37

38

37

39
40

[^0]Li et al. were able to overproduce the 4-DMAT synthase in Aspergillus fumigatus. ${ }^{[25]}$ This facilitated the research in this field. The first structure of 4-DMATS was reported in 2009 and the corresponding Michaelis complex was identified subsequently (Figure 5). ${ }^{[26]}$ Instead of the reactive DMAPP, dimethylallyl S-thiolodiphosphate (DMSPP) has been utilised which is the unreactive analog. The complex displays a distance of $3.5 \AA$ between DMSPP C-3 and tryptophan C-3 as well as 3.8 Å between tryptophan C-4 and DMSPP C-1. Furthermore, the indole core and the dimethylallylpart of DMSPP are coplanar. In combination with the nucleophilicity of indole C-3 a [3,3]-sigmatropic rearrangement is most likely.

Figure 5. Michaelis complex of DMSPP (an unreactive DMAPP analogon, left side, white orange) and L-tryptophan in the active site of the 4-DMATS. The L-tryptophan is stabilised by two residues seen on the right side, Glu and Lys. Schematic dimensional sketch of the Michaelis complex. The distances between the two reaction partners are given. The orientation of the components already indicates a favoured reverse prenylation of the C-3.

The Cope mechanism got further support by Tanner et al. utilising a catalytically active mutant of the DMATS (K174A) by a site-directed mutagenesis in the active site of the enzyme (Scheme 10). ${ }^{[27]}$ Only 10% DMAT (27) were isolated. 90% of the isolated product was the reverse prenylated tricycle 41. This was highly surprising, as pericyclic rearrangements do not occur often in enzymes since it is very difficult to stabilise the transition state within the enzyme. The structure could be affirmed by comparing 41 to the saponificated ester, Danishefsky et $a l .{ }^{[28]}$ prepared during their synthesis of amauromine. Even though the results were promising, Tanner mentioned that it cannot be excluded that the observed reaction is caused by the mutation itself.

Scheme 10. Proposed mechanism with a sigmatropic rearrangement. In the K174A mutant a lysine was mutated to alanine and gave only a reverse-prenylated pre-Cope product and not 4-DMAT.

Very recently, 4-substituted tryptophans 42 were exposed to 4-DMATS (Scheme 11). ${ }^{[29]}$ As the C-4 position was blocked, the substrates reacted very slow and delivered product mixtures. Depending on the substituents which blocked C-4, different positions of the tryptophan derivative were addressed by the enzyme. In case of a methyl substituent the two major products were C-3 revers prenylated tryptophan 43 (44\%) and normal N-prenylation 45 (44\%). Also small amounts of C-3 normal prenylation 44 (7\%) and C-5 normal prenylation products (5\%) were detected.

Scheme 11. Poulter's experiment with 4 substituted tryptophan.

When C-4 was blocked by substituents revealing a +M-effect, a different distribution of the prenyl-chain was observed (Scheme 11). In case of 4-methoxy-L-tryptophan the prenylation took only place at C-5 (48) while 4-amino- L-tryptophan delivered normal prenylation at indole C-5 (47) and C-7 (46). Since no prenylation at C-3 has been observed, Poulter et al. suggested
that this experiment proved the simple direct electrophilic addition for that class of enzymes. Even for the less nucleophilic C-4 positions the Cope mechanism does not have to be taken into consideration. Others emphasise that the methoxy and amine substituents at C-4 increased the reactivity of C-5 and C-7 for electrophilic aromatic substitutions. ${ }^{[30]}$ The substitution of the C-4 also hamper the enzyme which could lead to a loss of control of the reactants and the emerge of different products.

Turning the attention from the biochemical toward the chemical line of argumentation, it becomes apparent that not much effort has been put in this field since Arigoni and Wenkert. Ganesan et al. (Scheme 12) ${ }^{[31]}$ performed an aza-Claisen rearrangement in their total synthesis of Okaramine J (51) in 2003. After N-alkylation using 3-bromo-3-methylbut-1-yne, the triple bond was reduced with Lindlar catalyst. Treating 49 with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ initiated a charge accelerated N -1 to C-7 aza-Claisen rearrangement with regioinversion of the tert-prenyl group.

Scheme 12. Charge accelerated aza-Claisen rearrangement. a. TFA (5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt., $16 \mathrm{~h}, 84 \%$.
Even though charge accelerated aza-Claisen ${ }^{[32]}$ reactions have been reported before by Hurd, Jenkins and Carnahan ${ }^{[33]}$, Ganesan et al. were the first ones performing this reaction using an indole. Furthermore, the rearrangement did not need to be heated such as the aza-Claisen reactions reported previously. They explained the rection by the gem-dialkyl which places the vinyl group into the necessary conformation. Moreover, the sulphonamide directed the vinyl group towards the aromatic ring so the reaction could be performed under these mild conditions.

Rainier et al. ${ }^{[34]}$ induced a stereoselective Cope rearrangement of thioamide 52 (Scheme 13) into C-4 in 2005. They exposed 53, which contains an electron poor prenyl derivative, to an aqueous solution of HgCl_{2} at ambient temperature.

Scheme 13. Prenylation of C-4 by Rainier et al. using HgCl_{2}. a. dimethylvinyl diazoacetate (2 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(5 \mathrm{~mol} \%)$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 88 \%$, b. HgCl_{2} (4 equiv.), $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN}, 85 \%$.

Their report also mentioned that they were able to observe the reaction under thermal conditions. The result was a 1.6:1 mixture of diastereomers obtained in 80% yield. Nevertheless, they remained short on experimental details for the thermal rearrangement. This system looks similar to the test system of Wenkert et al. (Scheme 9) which failed to undergo the rearrangement. The fundamental difference between the two systems is that Rainier's substrate contains an imine functionality which is missing in Wenkert's.

Five years later the Cope rearrangement into C-4 was reported by Westwood et al. (Scheme 14). ${ }^{[35]}$ They observed the rearrangement as a side reaction during their studies on the Claisen rearrangements with the indolo[2,3-b]quinolone system.

Scheme 14. Thermal Cope rearrangement of vinyl group from C-3 to C-4. a. PhMe, reflux, 5 h, 89%, b. PhMe, reflux, 5 d, 57 12\% and 58 72\% yield.

Altering from the previous two examples, they utilised a simple vinyl group, as Arigoni did (Scheme 9). Heating 55 (Scheme 14) for five hours led to the desired Claisen rearrangement product 56. When 56 was refluxed in toluene for a further five days, they were able to isolate either, the N-1-allylated Cope rearrangement product 57 and 58, the $\mathrm{C}-4$ allylated as minor product.

Even though these systems were able to generate C-4 substituted products, they are far away from being similar to simple tryptophan.

Viswanathan et al. ${ }^{[36]}$ reported a regioselective Cope rearrangement of prenyl on indoles in 2015 (Scheme 15). Their methodology utilises L-tryptophan (24) which is first protected and then reverse prenylated and oxidised. The resulting product 59 is then heated in DMAc to $150^{\circ} \mathrm{C}$ or exposed to microwave in a phosphate buffer.

Scheme 15. Viswanathan's biomimetic 4-DMAT synthesis. a. 1,3 dimethylpiperazine (0.6 equiv.), NCS (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then $\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}(24 \mathrm{~mol} \%)$, prenyl alcohol (2 equiv.), $12 \mathrm{~h}, \mathrm{~b}$. DMAc, $155^{\circ} \mathrm{C}, 55 \mathrm{~h}, \mathrm{c}$. phosphate buffer (pH 8.8), $150 \mathrm{~W}, 150^{\circ} \mathrm{C}, 40 \mathrm{~min}$.

Even though they applied an oxindole in the rearrangement instead of an indole (Scheme 16), these experiments revealed that the mechanism proposed by Arigoni and Wenkert is plausible. Without the protecting groups the prenyl moiety stays at C-3 when heated and a [1,3]-shift is observed (62).

Scheme 16. [1,3]-shift when nitrogen is not protected. a. 1,3 dimethylpiperazine (0.6 equiv.), NCS (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 2 h , then $\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}$ (24 mol\%), prenyl alcohol (2 equiv.), $12 \mathrm{~h}, \mathrm{~b}$. DMAc, $155^{\circ} \mathrm{C}, 55 \mathrm{~h}, \mathrm{c}$. phosphate buffer (pH 8.8), 150 W , $150{ }^{\circ} \mathrm{C}, 40 \mathrm{~min}$.

Additionally, lactam 62 (Scheme 16) is obtained as shown by Tanner's mutant 4-DMATS (Scheme 10). As Ganesan implied for their system, the bulky phthalimide here might be necessary for the Cope rearrangement as it directs the prenyl moiety towards the benzene core.

1.1.4 Cope Rearrangement

Since the discovery by A. C. Cope and E. M. Hardy in 1940 (Scheme 17) ${ }^{[37]}$ the Coperearrangement became a very important method in organic chemistry. In addition to the Claisen rearrangement, this is the most considerable [3,3]-sigmatropic shift.

Scheme 17. Mechanism of Cope and Claisen rearrangement.

In these thermal isomerisation reactions (Scheme 17), a σ-bond is shifted along the π-system. Most of the known Cope-rearrangements are proceeding through a concerted mechanism
passing through a six-membered, cyclic, conjugated transition state. ${ }^{[38]}$ Abandoning of the original and the formation of the new sigma bond is not necessarily a concerted process. In particular cases, where the 2 - and 5 -position are substituted with radical stabilising groups ($\mathrm{R}=$ vinyl, phenyl, CN or COOMe), a two-step diradical mechanism can be observed. ${ }^{[39]}$ A Cope rearrangement with a zwitterionic intermediate is also possible with the appropriate substitution pattern. ${ }^{[40]}$ The regio- and stereochemistry of pericyclic reactions can be explained by the principle of orbital symmetry conservation, which is expressed by the Woodward Hoffmann rules. Thus, the transition state of the Cope-rearrangement can be described as a set of two allylic fragments (Scheme 18). As a consequence, two geometric arrangements are possible: The transition state can take the chair like or the boat like conformation. E. Doering and W. R. Roth were able to prove that the chair like transition state in the Cope rearrangement is favoured over the boat transition state. ${ }^{[41]}$ After thermal conversion of meso-3,4-dimethylhexa-1,5-dien (66; Scheme 18) 99.7\% of the cis-, trans- (69) and only 0.3% of the trans-, trans-isomer (70) were obtained, the latter of them formed by a boat like transition state.

Scheme 18. Thermal conversion of meso-3, 4-dimethylhexa-1,5-dien (66).

During the thermal rearrangement of racemic 3,4-dimethylhexa-1,5-dien (71;
Scheme 19) the major products were the trans-, trans- 75 (~90\%) and the cis-, cis-isomer 76 (~9\%), which are delineated through the chair-like transition state. The cis-, trans-product 77 can be traced back to a boat-like transition state and was obtained in less than 1% yield.

Scheme 19. Thermal conversion of racemic 3,4-dimethylhexa-1,5-dien (71).
R. K. Hill and N. W. Gilman revealed, that transition states in which the sterically demanding groups are in equatorial position are more favoured than those where the substituents are in axial position, which explains the results of Doering and Roth. ${ }^{[42]}$ If the geometry of the transition state is known, the stereochemistry of the resulting product can be predicted. Thus, the Cope rearrangement proves to be a valuable method for the transmission of stereoinformation.

1.1.5 Cyclopropane

The smallest existing carbocycle is the cyclopropane. It was first isolated by A. Freund ${ }^{[43]}$ who prepared it via an intramolecular Wurtz reaction utillising 1,3-dibromopropane and sodium. Gustavson published a more feasible synthesis in 1887, applying zinc instead of sodium. ${ }^{[44]}$ It did not take long until it was realised that the reactivity of trimethylene is different to that of other carbocycles. Even though the C-C cleavage energy and the strain energies of cyclobutanes and cyclopropanes are similar, the reactivity is not. While cyclobutanes react similar to other cycloalkanes, the reactivity of cyclopropanes closely resembles the reactivity of olefins. ${ }^{[45]}$

Förster revealed in 1939 that the valence direction and the direction of bonding may deviate. This model was further developed by Coulson and Moffitt in 1949 and 1951. They described a cyclopropane as a ring which is formed by three sp ${ }^{3}$ hybridised CH_{2} groups. In this case, the orbital overlap is weak and in line with the carbon atoms. By decreasing the s-

Figure 6. Bend bonds with an increased angle. character to 17% for the C-C bond, the orbital overlap is increased (Figure 6). These $s p^{5}$-Orbitals are the reason for the stability of cyclopropanes. As they are bent, they are also called "banana bonds" with an inner orbital angle of 104°. The bending can also be an explanation for the shorter C-C bonds in the cyclopropane.

Walsh proposed that cyclopropanes have a significant sp^{2} character and therefore should react similar to olefins. He considered a cyclopropane as a combination of three methylene groups (Figure 7). The combination of the σ and π orbitals is unable to combine as it has different symmetries. Walsh separated the two sets of orbitals giving rise to the $D_{3} h$ symmetric group. In this model the three σ-type orbitals are symmetrically combined with the orbitals overlapping in the centre of the cyclopropane. Ψ_{2}

Figure 7. Walsh orbitals. displays a distorted π-bond which might give an explanation regarding the reactivity of cyclopropanes toward electrophilic reagents. ${ }^{[45]}$

Even though cyclopropanes represent a special case of cycloalkanes, the range of possible reactions for ther preparation is quite broad. The three major reaction types used for cyclopropane synthesis are the Michael induced ring closing type reaction (Figure 8), ${ }^{[46]}$ the synthesis via cationic cyclisation ${ }^{[47]}$ and the metal catalysed cyclopropanation of olefins via metal-carbenoids derived from diazo-carbonyl compounds. ${ }^{[48]}$

87

Figure 8. Preparation of 1,1-disubstituted cyclopropanes. ${ }^{\text {[49] }}$
Yates proposed a mechanism for the decomposition of diazo-compounds by transition metals in 1952. ${ }^{[50]}$ The first and reversible step is a nucleophilic attack of the diazo-compound on the metal. The second and irreversible step is the liberation of nitrogen, which is also the ratedetermining step. This step depends on the steric hindrance and the electronic character of
the carbenoid. The last step is the concerted, asynchronous [2+1]-cycloaddition of the carbenoid and the olefin. Due to the high reactivity, no rhodium carbenoids have been isolated yet. ${ }^{[51]}$ However, copper (I) ${ }^{[52]}$ and ruthenium (II) ${ }^{[53]}$ complexes could be isolated which are active in cyclopropanation reactions too.

1.1.6 Divinylcyclopropane rearrangement

A special case of the Cope rearrangement is the divinylcyclopropane-cycloheptadiene rearrangement yielding 1,4-cycloheptadienes (90; Scheme 20). The driving force of this Cope rearrangement related reaction is the ring strain release. The ring strain of the cyclopropane unit lowers the activation energy of this particular reaction. Vogel et al. ${ }^{[53]}$ first observed the reaction while exposing a mixture of benzene and diazo methane to sunlight or ultra violett light. The in situ formed divinylcyclopropane underwent the rearrangement directly. Also the cyclopropanation performed by Doeringer et al. using triene 88 at $-50^{\circ} \mathrm{C}$ with diazomethane and copper chloride, provided only the divinylcyclopropane rearrangement product 90. ${ }^{[53-54]}$ Brown et al. were the first to isolate 89 at $-20^{\circ} \mathrm{C}$ and determine the half-life time (11 min. at 288 K) by NMR experiments. ${ }^{[54 c, ~ d]}$

Scheme 20. Formation of 1,4-cycloheptadiene (90) at $-50^{\circ} \mathrm{C}$.

The conformation of the substrate is important for this reaction. Due to the restrictions of the configuration of the olefins in a cycloheptene system, the only possible transition state is $\mathbf{9 4 a}$ (Scheme 21). The boat like transition state 94 a leads to 95 containing two cis-double bonds. Transition states such as 84a and 92a would lead to a cycloheptadiene containing a transdouble bond which cannot be obtained, since (E)-cyclooctene is the smallest sized ring containing a stable (E)-double bond in the ring.

Scheme 21. Transition state of the divinylcyclopropane cyclisation. ${ }^{[55]}$
Substituents on the olefins destabilise the boat like transition state (Scheme 22) by interacting sterically with the cyclopropane. ${ }^{[56]}$ Substrates with a pronounced steric hindrance do not undergo the Cope rearrangement, instead a cis-trans-isomerisation takes place. ${ }^{[56-57]}$

Scheme 22. cis-trans isomerisation of hindered divinylcyclopropanes.

Trans-1,2-divinylcyclopropane (100; Scheme 23) is thermally more stable than the corresponding cis-compound $89 .{ }^{[53]}$ While $\mathbf{8 9}$ rearranges to $\mathbf{9 0}$ at room temperature, 100 needs to be heated up to $190^{\circ} \mathrm{C}$ for a couple of hours, finally yielding the same rearrangement product as 89 . The product can be explained by homolytic dissociation of the central linkage providing trans-allyl biradical 100a. ${ }^{[58]}$ Isomerisation of the allyl-groups to cis-compound 89 enables the Cope rearrangement. It is not proven whether only the isomerisation occurs via a biradical mechanism or also the cyclisation itself. Another possible pathway proceeds via the zwitterionic species 100b.

Scheme 23. Biradical mechanism of the cis-trans-isomerisation of 100 and 89.

Nevertheless the divinylcyclopropane rearrangement has become an important methodology for the total synthesis of natural products containing a seven membered ring, such as Davies' Tremulenoide A (105;Scheme 24). ${ }^{[59]}$

Scheme 24. Total synthesis of Tremulenoide A (105). a. $\mathrm{Rh}_{2}\left(\mathrm{OC}_{8} \mathrm{H}_{17}\right)_{4}$, hexane, reflux. b. $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{c} . \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$.

1.2 Aim of this Project

The aim of this project is the preparation of a system mimicking intermediate 26 (Scheme 8) during the prenylation of tryptophan by 4-DMAT-synthase. This should provide the first in vitro experiment supporting the hypothesis made by Arigoni and Wenkert. This should help to resolve an academic discussion held for decades whether the prenylation takes place directly Friedel-Crafts like into indole C-4 or via a [3,3]-sigmatropic rearrangement. Furthermore, the system should also reveal, that the indole reactivity is not skipped by nature. To do so, the system needs to fulfill four requirements.

1. The rearrangement needs to proceed at room temperature.
2. The reaction should not need any manipulations at the benzene core.
3. Any sort of conventional catalysts has to be avoided for the reaction.
4. The system should contain all important functionalities and features the natural intermediate possess.

1.3 Own Contributions

During preliminary studies towards the total synthesis of Actinophylic acid, P. J. Gritsch ${ }^{[60]}$ was seeking for a test-system to obtain a convenient access to cyclohepta[b]indoles via a divinylcyclopropane rearrangement. Cyclopropanation of $\mathbf{1 0 7}$ (Scheme 25) and isoprene, ${ }^{[61]}$ led to the desired spiro-vinylcyclopropane 108 and two other products.

Scheme 25. Gritsch DVCPR precursor synthesis. a. $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 90 \%$, b. $\mathrm{TsNHNH} 2, \mathrm{MeOH}, 60{ }^{\circ} \mathrm{C}, 80 \%, \mathrm{c} . \mathrm{NaOH}$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, 73 \%, \mathrm{c} . \mathrm{Rh}_{2}(\mathrm{OAc})_{4}$, isoprene, reflux, 69%.

During the interconversion of oxindole 108 (Scheme 26) into the cyclohepta[b]indole 111, methyllithium was used as nucleophile. Afterwards, the crude reaction mixture was heated to reflux in benzene in order to eliminate water. Instead of the desired cyclohepta[b]indole 111, the corresponding cyclohepta[cd]oxindole $\mathbf{1 1 0}$ was obtained as major product.

Scheme 26. Divinylcyclopropane rearrangement on the test system. a. MeLi, THF, $-78^{\circ} \mathrm{C}$, then PhH reflux.

Since compound $\mathbf{1 0 8}$ (Scheme 26) cannot undergo the rearrangement into indole C-4, it was assumed that the stereochemistry of the spiro-cyclopropane 108 was not determined correctly (Scheme 27). Comparing the NMR spectra of 110 and the former by-product (Scheme 25) revealed, that cyclohepta[cd]oxindole 110 has also been achieved during the first cyclopropanation reaction (Scheme 25).

Scheme 27. Formation of the two DVCPR products. a. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ isoprene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, b. MeLi, THF, then reflux.

The formation of $\mathbf{1 1 0}$ (Scheme 26) is surprising in two ways. First of all, it is remarkable that the rearrangement takes place at one of the least reactive positions of the indole nucleus. Furthermore, this reaction allows the substitution of indole C-4 without a prefunctionalisation at that position, which will be the topic of chapter two.

A closer look on the assumed reactive substrate $\mathbf{1 1 4}$ (Figure 9) and taking the biological point of view into account, this molecule would support perfectly the hypothesis of Arigoni and Wenkert (Scheme 8).

The system itself mimics the conformational restrictions the substrate is subjected to by the enzyme in the active site (Figure 9). The rigidity of the system is ensured by the spiro-fused cyclopropane. As the orbital overlap is mandatory for the reaction, the stereochemistry with the vinyl group pointing towards the benzene core of the indole is critical. The two geminal methyl groups of $\mathbf{2 6}$ facilitating the Cope-rearrangement in the enzyme are represented here by the methyl group of 114. In both cases the Thorpe-Ingold effect forces the vinyl substituents toward the benzene core and enables the Cope rearrangement.

Figure 9. Comparison between our bio-inspired system and the proposed natural intermediate.

In regard to the oxidation state of the indole, compound $\mathbf{1 1 4}$ (Figure 9) differs. However, indole C-2 displays the same hybridisation (sp^{2}) as it was predicted for the reverse prenylated intermediate by Arigoni and Wenkert (Scheme 8). A comparison of the first two test systems 37/39 (Scheme 9) and the bio-mimicking system 114 reveals differences. While $\mathbf{1 1 4}$ is rigid, $\mathbf{3 7}$
and 39 are flexible, thus an orbital overlap of the vinyl moiety with the benzene core cannot be ensured.

In order to get access to the bio-mimicking cis-vinylcyclopropane 114 (Scheme 28) we could not proceed via a selective route, since this would extend the synthesis tremendously. The short retrosynthetic analysis starts with the divinylcyclpropane rearrangement of 114. Olefin 114 should be obtained from spiro-cyclopropane 116 by deprotection, oxidation and olefination. A cyclopropanation of diazo isatin 118 with TBS protected β-methallyl-alcohol (119) should deliver a diastereomeric mixture of 116 and 117.

Scheme 28. Retrosynthesis for the bioinspired system.

The route was based on an intermolecular cyclopropanation utilising a slightly modified procedure of Carreira et al. ${ }^{[61-62]}$ In a first reaction benzyl protected oxindole was transferred into the corresponding diazo compound 107 (Scheme 29). β-Methallyl-alcohol was protected with TBSCI. Furthermore, diazo 107 and TBS- β-methallyl-alcohol (119) were stirred in presence of rhodium(II) acetate dimer at room temperature providing a 1:1 mixture of the two diastereomeres 116 and 117. The obtained diastereomers were separated by flash column chromatography. Deprotection of the TBS-group, oxidation of the alcohol and subsequent olefination of the aldehyde (120/122) via Wittig olefination led to the corresponding vinylcyclopropanes 108 and 112.

Scheme 29. Selective synthesis of cis and trans diastereomer. a. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(3 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 60 \%, 1: 1116$ and 117 (33% if $\mathrm{R}=\mathrm{H}$), b. TBAF (2 equiv.), THF, 87%, c. IBX (1.05 equiv.), DMSO, 95% (91% if $\mathrm{R}=\mathrm{H}$), d. $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (3 equiv.), NaHMDS (3 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 84 \%$ (85% if $\mathrm{R}=\mathrm{H}$). E. PhH, $60^{\circ} \mathrm{C}, 55 \%(58 \%$ if $\mathrm{R}=\mathrm{H}$).

As expected, $\mathbf{1 1 2}$ (Scheme 29) rearranged slowly at room temperature, while $\mathbf{1 0 8}$ was stable even at $40^{\circ} \mathrm{C}$.

The corresponding indole $\mathbf{1 2 6}$ (Scheme 30) was prepared by Boc protection and subsequent olefination of 121. The obtained olefin 125 rearrangeged immediately. The remaining oxindole was reduced by NaBH_{4} and the obtained hemi aminal subsequently underwent the elimination to yield 126.

Scheme 30. Formation of indole 126. a. $\mathrm{Boc}_{2} \mathrm{O}$ (1.2 equiv.), THF, then $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (2 equiv.), NaHMDS (2 equiv.), $\mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, then NaBH_{4} (1 equiv.), $\mathrm{MeOH}, 0^{\circ} \mathrm{C}, 42 \%$.

To confirm the relative stereochemistry of the two diastereomers (Scheme 29), selective preparation of the cis- or the trans-diastereomer was necessary. We developed a transselective route (Scheme 31) based on the intramolecular cyclopropanation reaction introduced by Qin et al. ${ }^{[63]}$ in their biomimetic approach to Perophoramidine and Communesin. Olefin 108 should be achieved by oxidation, benzyl protection and olefination. Reduction of the azide functionality should provide alcohol 127. Intramolecular cyclopropanation of α-diazo ester 129 should establish the cis-fashioned lactone 128. An esterification of acid $\mathbf{1 3 0}$ and alcohol $\mathbf{1 3 1}$ and subsequent diazo transfer into the α-position should provide diazo compound 129.

Scheme 31. Retrosynthesis of cis-selective route.

In the first step, acid 130 (Scheme 32) was esterified utilising β-methallyl-alcohol (131), DIC and 4-DMAP. Using ABSA and DBU the diazo functionality could be introduced into the α position delivering 129. The subsequent intramolecular cyclopropanation yielded 128. As the cyclopropanation proceeds via an intramolecular mechanism, the cis-fashion of lactone 128 is assured.

The azide functionality was suspected to interfere somehow with the functionalities (Scheme 32) under the given conditions, but luckily it remained passive. In order to obtain oxindole 127, azide 128 was reduced utilising Pd/C under hydrogen atmosphere. Since the corresponding aniline did not open the lactone, acetic acid was added and the reaction mixture was heated yielding oxindole 127. As alcohol 127 caused solubility problems, IBX was utilised for oxidation as the reaction is performed in DMSO. The oxidation proceeded slowly but aldehyde 123 was obtained in a very good yield. Aldehyde 123 was further benzyl protected and subsequent Wittig reaction provided 108.

Scheme 32. Selective synthesis of trans-olefin 108. a. β-methallyl-alcohol (1.05 equiv.), DMAP ($20 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then ABSA (1.05 equiv.), DBU (2 equiv.), THF, 92\% over two steps, b. [(CuOTf) ${ }_{2} \bullet$ Tol] ($1.5 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2} 84 \%, \mathrm{c} . \mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%), \mathrm{H}_{2}$ (5 bar), EtOH then HOAc, reflux. 89%, d. IBX (1.1 equiv.), DMSO, $94 \%, \mathrm{e}$. NaH (1.05 equiv.), BnBr (5 equiv.), DMF, 80%, f. $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (5 equiv.), NaHMDS (5 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 80 \%$.

Since $\mathbf{1 2 3}$ (Figure 10) crystallised readily, the relative stereochemistry of this compound could be confirmed by single-crystal X-ray analysis easily. ${ }^{[64]}$

Figure 10. Single crystal X-ray structure of 123.

With both diastereomers in hands the investigation of the different reactivities of the two vinylcyclopropanes 108 (Figure 11) and 112 was of particular interest. Therefore, the two diastereomers were subjected to a NMR experiment. To indicate the reaction progress during the experiment we chose to observe the CH_{2} group of the cyclopropane, since the signals of that group do not overlap in NMR. Furthermore, the chemical shift of the protons changes during the reaction so the reaction progress is easily comprehensible. Benzene- d_{6} was used as solvent and the reaction temperature was set to $60^{\circ} \mathrm{C}$.

Figure 11. Reactivity of $\mathbf{1 0 8}$ in contrast to $\mathbf{1 1 2}$ at $60^{\circ} \mathrm{C}$.

In the first two rows of Figure 11, the pure diastereomers (108/112) are depicted. The third row shows a mixture the two diastereomers (108/112). In the rows below the reaction progress of the diastereomeric mixture is logged. The NMR revealed that diastereomer $\mathbf{1 1 2}$ reacts under the given conditions while the CH_{2} group of $\mathbf{1 0 8}$ remains essentially untouched. To exclude the influence of the protecting group on the rearrangement, the unprotected cisvinylcyclopropane 114 had to be prepared (Scheme 29). The preparation proved to be challenging. Since the protecting group free diazo $\mathbf{1 1 8}$ is poorly soluble in most solvents, the reaction temperature had to be elevated to $65^{\circ} \mathrm{C}$. This provided an acceptable combined yield of 33% in a $1.6: 1$ diastereomeric ratio in favour for cis-diastereomer 116. The solubility problems continued during the synthesis making the purification a tough task. Nevertheless, the desired vinylcyclopropanes were obtained and exhibited a higher reactivity than its protected pedant as it rearranged faster at room temperature than 112. The spontaneous rearrangement is also a strong support for the Cope-rearrangement hypothesis of Arigoni and Wenkert since elevated temperatures rarely appear in living organisms.

1.4 Summary and Outlook

By retro analysis of DVCPR product 110 (Scheme 29) it was possible to prepare a system mimicking the reverse prenylated intermediate 26 (Scheme 8) during the C-4 prenylation, as proposed by Arigoni and Wenkert. It was possible to point out the basic demants necessary for an in vitro experiment in order to support the [3,3]-sigmatropic rearrangement hypothesis. The designed system involved the conformational restrictions which the substrate is subjected to in the enzyme. Also, the stereochemistry and the gem-dialkyl group could be installed in the mimicking system 110. Compounds 112 and 114 (Scheme 29) were able to undergo the DVCPR even at room temperature which is a great indication that this reaction may occur in nature as well. Generally speaking the prepared system provided the first experimental evidence for a possible enzyme-catalysed sigmatropic process in the C-4 prenylation of indole alkaloids. The system also allows a direct C-C bond formation with a synthetic access to cyclohepta[cd]indoles.

As this system needs no pre-functionalisation or heavy metals to form a $\mathrm{C}-\mathrm{C}$ bond into the relatively unreactive indole C-4, further research is necessary in order to investigate the scope for the reaction. This will be part chapter two and three. Furthermore the influence of the Thorpe-Ingold effect needs to be investigated (chapter four)

2 DVPR Methodology

```
"Herr Schwarzer, machen Sie sich einen Plan und seien Sie anderen ein Licht. Machen Sie sich einen zweiten, denn funktionieren, werden sie alle nicht."
```

Prof. Dr. Johann Mulzer

2.1 Introduction

2.1.1 Cyclohepta[cd]indole

Cyclohepta[cd]indoles are molecules comprising an indole core fused to a seven-membered ring at indole C-3 and C-4 (see 131; Figure 12). The tricyclic scaffold can be found in nature but it is limited to a small group of natural products such as the Welwitindolinones or Dragmacidin E (133). The family of Welwitindolinones is known for their biological properties such as antifungal and larvicidal activities, the depolimerisation of microtubili and the ability reverse multi drug resistance (MDR) in human cancer cells. ${ }^{[65]}$ Dragmacidin E (133) acts as an inhibitor of serine-threonine protein phosphatase ${ }^{[66]}$.

Welwitindolinone C 131

Welwitindolinone D 132

Dragmacidin E 133

Welwitindolinone B
134

3-Hydroxy-N-methylmelwitindolinone C 135

Figure 12. Known cyclohepta[cd]indoles.
As these cyclohepta[cd]indoles (Figure 12) display an array of biological activities, new substrates containing this motif are of interest. A good source which was found providing a great variety of cyclohepta[cd]indoles are the ergot alkaloids ${ }^{[67]}$ which have to be synthetically transformed.

2.1.2 Direct C-4 activation

As the reactivity of the indole nucleus at the C-4-position is low, direct functionalisation remains somewhat difficult for a synthetic chemist. In fact, up to date there are only a few reagents known providing functionalisation at this position.

One reagent is mercuric acetate reacting already at room temperature with the indole, providing 3-mercurated product 137 (Scheme 33). ${ }^{[68]}$ If C-3 is already substituted, the mercuration takes place at C-4 yielding 139. Mercurated indoles can be applied for the preparation of boronic acids and 4-iodo-indoles. Furthermore, they can be applied directly in palladium catalysed cross-coupling reactions. ${ }^{[69]}$

Scheme 33. Mercuration of indoles. a. $\mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{AcOH}, \mathrm{rt}$, then NaCl .

Another method to activate indole C-4 is to treat the indoles with thallium trifluoroacetate (Scheme 34). Utilising simple indoles, this reaction provides no defined products. Having an electron-withdrawing substituent at $\mathrm{C}-3$ which is able to chelate thallium yields the 4 -thallated product 141. This product can be used to prepare different 4-substituted indoles via palladium catalysed cross-couplings. ${ }^{[70]}$

Scheme 34. Thalliation of 3-substituted indole 140. a. $\mathrm{Tl}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{3}$, TFA, rt.
Although these reagents allow a direct activation of C-4 they are avoided in synthesis as they proved to be highly toxic. A method which allows the alkylation at C-4 without using highly toxic reagents is the Witkop cyclisation (Scheme 35). ${ }^{[71]}$ It is the result of an attempted photoreduction of chloroacetyltryptophan 142 providing the C-4 substituted tricyclic product 146. Mechanistically, the reaction proceeds via an intramolecuar photon-induced electron transfer generating a diradical. The generation of a radical anion and a radical cation in close proximity allows the C-C bond formation at C-4. The intermediate rearomatise or it can be captured by a nucleophile to obtain a non-aromatic product.

Scheme 35. Mechanism of the Witkop cyclisation.

Although this reaction is limited to α-chloroacetyl derivatives of aromatic amino-acids and amines it is nevertheless a useful tool in chemical synthesis. For instance, the methodology was applied in the total synthesis of Dragmacidin E (133, Scheme 36). ${ }^{[72]}$

Scheme 36. Total synthesis of Dramacidin E (133). a. hv, $254 \mathrm{~nm}, \mathrm{MeCN}$.

2.1.3 Formation of cyclohepta[cd]indoles

The scaffold of cyclohepta[cd]indoles is an interesting target for drug discovery. Even though they do not appear frequently in nature, the natural products containing this scaffold address a variety of biological targets. In order to build up this scaffold directly some few methods have been developed. The very first method providing cyclohept[cd]indoles was developed by Nagasaka et al. (Scheme 37). ${ }^{[73]}$ In a first step 150 was transferred into the corresponding acid chloride 151. The subsequent Friedel-Crafts acylation provided the derived Uhle ketone 152 in 24% yield over two steps. ${ }^{[74]}$

Scheme 37. Friedel-Crafts reaction providing cyclohepta[cd]indole. a. $\mathrm{SOCl}_{2}, \mathrm{CHCl}_{3}$, steambath, b. $\mathrm{AlCl}_{3}, \mathrm{DCE}$, rt, 24% over two steps.

Oppolzer et al. stumbled over 156 (Scheme 38) in their total syntheses of Clavine alkaloids in 1983. ${ }^{[75]}$ Reduction of 153 led to aldehyde 154 which was treated with methylhydroxylamine to obtain the transient nitrone 155. Refluxing the reaction mixture in benzene provided the
[3+2] cycloaddition reaction to form the bridged cycloadduct 156 instead of the desired isoxazolidine 157. By introducing substituents to the vinyl moiety, the formation of then nonbridged isoxazolidine is favoured limiting the scope of the reaction dramatically.

Scheme 38. [3 + 2] aproach to cyclus 157. a. DiBAl-H, PhMe, then, MeNHOH, NaOMe, PhH, reflux, 56\%.
Moody et al. ${ }^{[76]}$ were following a different approach in 1989. Instead of starting from an indole or its derivatives they applied different cyclic ketones (Scheme 39). In a first step ketone 158 was transferred into an epoxide which was selectively opened by NaN_{3}. The tertiary alcohol was eliminated and the vinyl azide was refluxed in mesitylene undergoing a thermolysis which provided indole 160. Despite the new approach, a significant drawback of this method is that no further functionality is provided. Every functionality needed on the seven-membered ring has to be toilsome introduced.

Scheme 39. Cyclohepta[cd]indole synthesis by Moody's thermolysis route. a. $\mathrm{Me}_{2} \mathrm{~S}^{+} \mathrm{OCH}_{2}{ }^{-}, \mathrm{DMSO}, 55^{\circ} \mathrm{C}, \mathrm{b} . \mathrm{NaN}, \mathrm{LiCl}, \mathrm{DMF}$, $65^{\circ} \mathrm{C}, \mathrm{c} . \mathrm{SOCl}_{2}$, pyridine, rt., d. mesitylene, reflux.

Even though palladium catalysed reactions were used in the synthesis of ergotalkaloids earlier ${ }^{[69 a,}{ }^{77]}$ the first palladium catalysed synthesis of cyclohepta[$\left.c d\right]$ indoles has been reported by Roberts et al. (Scheme 40) in 1994. ${ }^{[78]}$ Using 161 under standard Heck conditions they obtained a mixture of three different products 162, 163 and 164 in poor yields.

Scheme 40. First reported palladium catalysed synthesis of cychlohepta[cd]indoles. a. 1. $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv.), (PhO) ${ }_{3} \mathrm{P}(12 \mathrm{~mol} \%)$, $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{MeCN}, 85^{\circ} \mathrm{C}$.

Murakami et al. (Scheme 41) ${ }^{[79]}$ were able optimise the reaction and made it suitable for organic synthesis. In their synthesis, indole C-3 is acylated by Friedel-Crafts reaction followed by the de-functionalisation of the benzylic ketone using triethylsilane in TFA to obtain 166. Heck reaction provided bridged indole 167.

Scheme 41. Heck reaction in the synthesis of cyclohepta[cd]indoles. a. $\mathrm{ClOCC}_{2} \mathrm{H}_{4} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{AlCl}_{3}, 54 \%, \mathrm{~b} . \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{TFA}, 54 \%$,

$$
\text { c. } \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2},{\mathrm{DMF}: E t_{3} \mathrm{~N}, 100{ }^{\circ} \mathrm{C}, 7 \mathrm{~h}, 67 \% . ~}_{\text {. }}
$$

The synthesis of Zard et al. (Scheme 42) ${ }^{[80]}$ avoids expensive and pre-functionalised starting materials. In their three-step synthesis, the key-feature is a radical cyclisation. The first step is a Friedel-Crafts reaction to acylate indole C-3. The product was further transferred into xanthate 170. Catalytic amounts of lauroyl peroxide and an excess of allyl compound reacted in a dithiocarbonate group transfer reaction yielding xanthate 170 (Scheme 43). The annelation to indole C-4 took place when $\mathbf{1 7 0}$ was exposed to an excess of lauroyl peroxide in refluxing chlorobenzene.

Scheme 42. Annelation of 170 via radical reaction. a. $\mathrm{ClCH}_{2} \mathrm{COCl}, \mathrm{AlCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{EtOCS}_{2} \mathrm{~K}$, acetone, b. allyl-compound, lauroyl peroxide (10 mol\%), DCE: PhCl, reflux, 77%, c. lauroyl peroxide (1.25 equiv.), PhCl, reflux, 54%.

Scheme 43. Dithiocarbonate group transfer. b. see Scheme 42.

In the total synthesis of N -methylwelwitindolinone-C (131; Scheme 44) Garg et al. applied an indolyne cyclisation to afford the cyclohepta[cd]indole 174. ${ }^{[81]}$ Their synthesis starts with easy accessible 5-substituted indole 172 and sodium amide providing aryne 173. Sodium amide causes also the enolisation of the ketone. The enolate reacts subsequent with aryne 173
providing 3,4 -fused indole 174. The second seven membered heterocycle 175 is obtained when the oxygen of the enolate undergoes a reaction with the aryne.

Scheme 44. Garg's indolyne cyclisation. a. NaNH_{2} (10.5 equiv.), t - BuOH , (3.5 equiv.), THF, rt., 46%.
Most recently Nemoto et al. (Scheme 45) ${ }^{[82]}$ reported the application of platinum in the synthesis of 3,4 -fused tricyclic indoles (180). As control experiments excluded an in situ formation of allenyl intermediates, the first step is a propagyl cation formation. Cation 177 is able to react in a Friedel-Crafts type C-H coupling, providing 178. The remaining cation 178 is then trapped by the nitrogen of the aniline. Treating 179 with TFA provides indole 180. This method is useful if substituents in C-5 are desired and the product contains either a nitrogen or a geminal ester in homo-benzylic position.

Scheme 45. Nemoto`s platinum catalysed synthesis of cyclohepta[cd]indoles. a. [Pt(dba) ${ }_{3}$] ($\left.5 \mathrm{~mol} \%\right)$, DPEphos ($6 \mathrm{~mol} \%$), DMSO, $100^{\circ} \mathrm{C}, 16 \mathrm{~h}, 42-91 \%$, b. TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 12 \mathrm{~h}, 61-99 \%$.

Of all these methods, only the cross-coupling variant (Scheme 41) and the indolyne cyclisation (Scheme 44) were applied in total synthesis. These two methods have the advantage that they tolerate a good many of functionalities and enable the installation of complex substituents to C-4.

2.2 Aim of this Project

Even though methodologies for C-C bond formation into indole C-4 have been investigated, most of them are limited to a few substrates or special substitution patterns. The most feasible methodology is the cross-coupling which has already been applied to total synthesis. A drawback here is the necessity of $\mathrm{C}-4$ pre-functionalised indoles. They are generally expensive, since their synthesis takes either heavy metals or several tedious reaction- and purificationsteps.

This project should lead to a generalised and practical access of cyclohepta[cd]oxindoles. The substrates applied for the synthesis have to be easily accessible and the conditions used should be in no need of inert gas.

The diversification of substrates prepared by a multistep synthesis should be performed late stage in order to make use of a privileged intermediate. This should ensure a broad application. Furthermore, the reaction has to tolerate a variety of functional groups on the oxindole core as well as on the bridging chain.

2.3 Own Contributions

Most of the methods for the preparation of cyclohepta[cd]indoles are restricted to specific structural motifs (see Scheme 38, 39, 40, 42) in one or the other way, as well as prefunctionalisations (see Scheme 40, 41, 42, 45). We desired to introduce a methodology which is more versatile (Scheme 46). The methodology should allow the application of substituted as well as plain indoles. Furthermore, it should provide the possibility to install functionalities in every position of the seven-membered ring.

Scheme 46. Positions to be substituted for the DVCPR.
We decided to evaluate mainly the effects of the isatine core on the reaction outcome and keep the isoprene moiety, functioning as the diene reaction partner, constant. In case of the substituents at the benzene core of the isatine (Figure 13), we decided to introduce halogens which may be applied in subsequent reactions. Nitro- and methoxy groups should expose the influence of mesomeric effects and a methyl substituent should serve as an example for alkyl substituents.

184

185

186

187
$\mathrm{X}=$ halogens

Figure 13. Isatines that should be used in the synthesis of cyclohepta[cd]indoles.
Even though cyclohepta[cd]oxindoles (chapter one, Scheme 29) have been prepared via an established route, a shorter, more efficient route to generate the "simple" products was required. Considering the preliminary studies of P. J. Gritsch (chapter one, Scheme 27), the desired cyclohepta[cd]oxindoles should be obtained in a one pot reaction, even though the yield of 7.3% was not encouraging.
The required isatines were prepared by Sandmeyer's isatine synthesis (Scheme 47). ${ }^{[83]}$ The corresponding aniline was dissolved in aqueous hydrochloric acid with hydroxylamine
hydrochloride, $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and chloralhydrate. Afterwards the reaction mixture was heated and the obtained solid has been treated with sulfuric acid. This step appeared to be sensitive to temperature. When the reaction temperature of $85^{\circ} \mathrm{C}$ has been exceeded, in case of the OMe and NO_{2} substituents the product decomposed in the sulfuric acid. Once the reaction temperature dropped below the lower limit of $80^{\circ} \mathrm{C}$ the reaction did not take place.

Scheme 47. Sandmeyer isatine synthesis.

In case of the diazotation only the substrates featuring mesomeric effects were fraught with problems, since they decomposed easily. $7-\mathrm{NO}_{2}$ diazoisatine proved to be fairly instable, decomposing immediately during workup. Consequently, this compound was excluded from the table.

The first tandem cyclopropanation DVCPR tandem reactions failed (Scheme 48), as the diazo compounds were little soluble in isoprene. The problem was simply solved by performing the reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, isoprene and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ at $40{ }^{\circ} \mathrm{C}$ in a sealed tube. By lowering the temperature, the amount of side products could be decreased.

Scheme 48. First attempts on short route toward cyclohepta[cd]oxindoles. a. Isoprene (10 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{~mol} \%)$, sealed tube, reflux. b. Isoprene (10 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Rh}_{2}(\mathrm{OAC})_{4}$ (2 mol\%), reflux.

Another problem appeared when a new batch of the catalyst was used (Table 1). It became apparent that we were not able to reproduce the results applying the new batch. Even changing to another supplier (from Alfa Aesar ${ }^{\circledR}$ to Sigma Aldrich ${ }^{\circledR}$) could not solve this issue.

The problem has been addressed by preparing the catalyst from $\mathrm{RhCl}_{3} \bullet \mathrm{X}\left(\mathrm{H}_{2} \mathrm{O}\right)$. Applying the abovementioned catalyst, we were able to deliver reproducible results with a slight increase of the yield compared to the first catalyst batch of Alfa Aesar ${ }^{\circledR}$.

Table 1. Yields achieved with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (2 mol\%) from different sources using different diazo isatines with isoprene
(10 equiv.) at $40^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a sealed tube.

Entry	Product	Yield: Alfa 1 $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	Yield: Alfa 2 $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	Yield: Sigma $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	Yield: self prep. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$
1	5-F (203)	50	35	40	55
2	5-Br (204)	47	32	36	47
3	5-Cl (205)	40	30	35	44
4	5-Me (206)	45	33	37	49
5	5-OMe (207)	55	35	42	56
6	5- $\mathrm{NO}_{2}(\mathbf{2 0 8)}$	35	24	30	37
7	7-F (209)	40	27	34	41
8	7-Br (210)	50	36	41	52
9	7-Cl (211)	49	34	40	52
10	7-Me (212)	51	34	42	53
11	7-OMe (213)	42	32	35	44

A look at Table 1 reveals that the nitro group and fluoride substituent affect the reaction negatively. The yields of both differ significantly from the other substrates.

As the substituents on the benzene core proved to be suitable for the reaction, the attention was directed to the use of different dienes (Figure 14).

214

216

217

218

219

Figure 14. Dienes used in the Cyclopropanation-DVCP tandem reaction.
Utilising butadiene (214; Scheme 49) and isoprene (215) generated the desired product 220 in 40% and 115 in 56% yield. In case of butadiene (214) we had to change the solvent after cyclopropanation, since no rearrangement could be observed at $40^{\circ} \mathrm{C}$.

Scheme 49. a. butadiene (10 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then DMSO reflux., 54%, b. isoprene (10 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}\left(2\right.$ mol\%), reflux, $53 \%, \mathrm{c}$. Denishefsky diene (1.2 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (2 mol\%), neat, $70^{\circ} \mathrm{C}, 50 \%$.

The classic Danishefsky diene did not react under standard conditions. This was surprising as this is a very electron rich diene and therefore it should be very suitable for a rhodium catalysed cyclopropanation. In order to investigate the reason, a few experiments were executed (Table 2).

Table 2. Approaches toward the cyclopropanation of Danishefsky diene.

Entry	Diene Eq.	Solvent	Catalyst	Conditions	Outcome
1	2.5	PhH	-	$\mathrm{rt}, 48 \mathrm{~h}$	SM
2	2.5	PhH	-	$40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	SM
3	2.5	PhH	-	$100^{\circ} \mathrm{C}, 12 \mathrm{~h}$, sealed tube	Diene recovered decomp. diazo.
4	2.5	PhH	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4},(1 \mathrm{~mol} \%)$	$40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	SM
5	2.5	PhH	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4,}(5 \mathrm{~mol} \%)$	$40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	Diene recovered decomp. diazo.
6	2.5	PhH	$[\mathrm{Cu}(\mathrm{OTf})]_{2} \mathrm{PhMe}(1 \mathrm{~mol} \%)$	$40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	SM
7	2.5	PhH	$[\mathrm{Cu}(\mathrm{OTf})]_{2} \mathrm{PhMe} \mathrm{(5mol} \mathrm{\%)}$	$40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	Diene recovered decomp. diazo.
8	2.5	-	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4,}(2 \mathrm{~mol} \%)$	$\mathrm{rt} \mathrm{to} 40^{\circ} \mathrm{C}$,	Decomp. Diene 40 min

It became apparent that TMS Danishafsky diene did not react in solution. Utilising neat starting materials with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ led to decomposition of the enolether. Therefore, TBS protected Danishefsky diene 216 (Scheme 49) was prepared and applied in the reaction. Obviously the desired rearrangement did not take place as all four aromatic NMR signals remained in the spectrum (Figure 15). After NMR analysis, the structure could be elucidated. Instead of the divinylcyclopropane rearrangement, the vinyl cyclopropane rearrangement occurred and the corresponding spiro compound $\mathbf{2 2 1}$ (Scheme 49) was obtained.

Figure 15. Four aromatic integrals of spiro-oxindole 221 and characteristic signal pattern for DVCPR-products.
Applying prenylene $\mathbf{2 1 7}$ (Scheme 51) as diene provided only the trans-vinyl-cyclopropane $\mathbf{2 2 7}$ which could be proven by its trans selective preparation (Scheme 50).

Scheme 50. Selective preparation of 226. prenyl -alcohol (1 equiv.), DMAP ($20 \mathrm{~mol} \%$), DIC (1.05 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$, b. ABSA (1.05 equiv.), DBU (2 equiv.), THF, 96\%, c. [(CuOTf) ${ }_{2} \bullet$ PhMe] ($1.5 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2} 80 \%$, d. PBu_{3} (1.05 equiv.), THF then PhMe, reflux. 80\%.

Even heating $\mathbf{2 2 7}$ (Scheme 51) to $120^{\circ} \mathrm{C}$ in DMSO resulted in decomposition only. In order to examine whether we were able to obtain the corresponding cis-compound, TBS-protected prenyl alcohol 229 (Scheme 51) was applied in a cyclopropanantion reaction. This experiment led to the same result. The only product obtained was trans-cyclopropane 228. The alcohol was deprotected, oxidized and olefinated to obtain 227.

Scheme 51. a. prenylene (10 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then DMSO reflux., 45%, b. TBS-prenyl alcohol (10 equiv.),

$$
\begin{gathered}
\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{~mol} \%) \text {, reflux, } 53 \%, \mathrm{c} . \mathrm{TBAF} \text { (4 equiv.), THF, } 0^{\circ} \mathrm{C}, 71 \%, \mathrm{~d} . \mathrm{IBX}\left(1.1 \text { equiv.), DMSO, } 44 \%, \mathrm{e} . \mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}\right. \\
\text { (5 equiv.), NaHMDS (5 equiv.), THF, }-78{ }^{\circ} \mathrm{C} \text { to rt., } 83 \% \text {. }
\end{gathered}
$$

The formation of 227 (Scheme 51) can be explained by the mechanistic model of Doyle (Scheme 52), ${ }^{[84]}$ even though it was once developed for more simple systems. The two methyl groups of 227a avoid the benzene core as well as the catalyst complex. The developing electrophilic character on the tertiary carbon is stabilised by the nucleophilic carbonyl oxygen. The nitrogen of the oxindole enhances the nucleophilicity resulting in a more stable transition
state. The vinyl-group on the other hand is able to turn out of plane to minimise the interactions with the catalyst complex and the benzene core.

Scheme 52. Possible transition states for cyclopropanation.
Compounds $\mathbf{2 2 2}$ (Scheme 53) and $\mathbf{2 3 0}$ are part of chapter three. Nevertheless, both substrates were prepared successfully in a tandem cyclopropanation-DVCPR-reaction.

Scheme 53. NTs diazoisatine (1 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ ($1 \mathrm{~mol} \%$), diene 218 (1.5 equiv.), $\mathrm{PhH}, 65{ }^{\circ} \mathrm{C}, 39 \%$, b. NTs diazoisatine (1 equiv.), 219 (4.5 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1 \mathrm{~mol} \%), \mathrm{PhH}, 80^{\circ} \mathrm{C}$, then DMSO, $100^{\circ} \mathrm{C}, 33 \%$ over two steps.

The next step in this methodology was to introduce highly versatile substrates. Cyclopropanes deriving from bis-allylic alcohols (Scheme 54) hold the advantage as they allow to target both, cyclohepta[cd]indoles (234) and cyclohepta[b]indoles (236) respectively. This may lead to a unified route in order prepare one substrate addressing two different positions selectively.

Scheme 54. Use of bis-allylic diols for the synthesis of cyclohepta[cd]oxindole and cyclohepta[b]indoles.
With respect to selectivity problems which appeared while using 231 (Scheme 54) in an intermolecular reaction, the strategy for more complex substrates had to be reconsidered. Also the use of an excess of the diol would be a disadvantage in a synthesis. Therefore, a new route has been developed (Scheme 55) which allows to perform an intramolecular
cyclopropanation reaction, delivering the desired cis-olefin 233 (Scheme 54) necessary for the rearrangement.

Scheme 55. Retrosyntheic analysis for the use of diols in a selective synthesis.
We decided to prepare two allylic alcohols. Diol 243 (Scheme 56), containing an exomethylene group and $\mathbf{2 4 8}$ (Scheme 57), comprising an alkyl substituent in order to show the selective introduction of substituents into the cyclohepta[cd]oxindole 237 (Scheme 53).

Following Crimmins' protocol, diol 243 (Scheme 56) could be obtained. ${ }^{[85]}$ TBS-protection of hydroxyacrylate (242) and subsequent reduction of the ester provided the diol 243.

Scheme 56. Synthesis of diol 243. a. Imidazole (2.5 equiv.), TBSCl (2.5 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, b. DiBAI- H (3 equiv.), $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 90 \%$ over two steps.
The second diol should have an increased substitution pattern on the cyclopropane. Following the procedure of Gilbert et. al. (Scheme 57) ${ }^{[86]}$, the first step was a Baylis-Hillman reaction of 244 and 245. ${ }^{[86 b]}$ Subsequent Mitsunobu reaction ${ }^{[87]}$ using 246 and mesitoic acid yielded trans ester 247. After chemoselective reduction ${ }^{[88]}$ of ester 247 and silylation of the resulting alcohol, the mesitoic acid was cleaved ${ }^{[89]}$ and alcohol 248 has been obtained in good yields.

[^1]Both substrates could be successfully esterificated and transferred to the α-diazo compound 249/250 (Scheme 58). The cyclopropanation delivered solid yields of 74% and 84%. To obtain the spiro oxindole we could not carry out the standard procedure. The application of hot acetic acid to a TBS protected primary alcohol to obtain oxindole $\mathbf{2 3 8}$ did not seem practicable. The discriminability of the two alcohols would get lost when the protecting group got cleaved. After screening different reaction conditions (Table 3), entry 8 proved to be the most practible conditions.

Table 3. Conditions used in order to form the oxindole under non-acidic conditions.

Entry	Solvent	Conditions	Temperature	Yield.
1	3:1 THF: $\mathrm{H}_{2} \mathrm{O}$	PBu_{3} (1.1 equiv.)	$0^{\circ} \mathrm{C}$ to rflx	-
2	THF	PBu_{3} (1.1 equiv.)	$0^{\circ} \mathrm{C}$ to rflx	-
$3^{[90]}$	MeCN	PBu_{3} (1.1 equiv.), then $\mathrm{Et}_{3} \mathrm{~N}$; DBU	$0^{\circ} \mathrm{C}$ to rflx	-
4	MeOH	$\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (25 bar)	rt.	-
$5{ }^{[91]}$	MeOH , then THF	$\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (25 bar), then NaH (3 equiv.)	rt. $0^{\circ} \mathrm{C}$ to rflx.	20\%
$6^{[92]}$	$\begin{gathered} 3: 1 \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}, \\ \text { then THF } \end{gathered}$	PBu_{3} (1.1 equiv.) then EtMgBr (4 equiv.)	$0^{\circ} \mathrm{C}$	65\%
$7{ }^{[93]}$	$\begin{gathered} \text { 9:1 THF:H2O, } \\ \text { then THF } \end{gathered}$	PBu_{3} (1.1 equiv.) then $i-\mathrm{PrMgCl}$ (2.1 equiv.)	$0^{\circ} \mathrm{C}$	94\%
$8^{[93]}$	MeOH , then THF	$\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2} \text { (25 bar), }$ then $i-\mathrm{PrMgCl}$ (2.1 equiv.)	rt. then $0^{\circ} \mathrm{C}$	93\%

Scheme 58. Selective synthesis of 259, 260, 261 and 262. a. 130 (1 equiv.), 4-DMAP ($20 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, b. ABSA (2 equiv.), DBU (3.5 equiv.), MeCN, $86 \% \mathbf{2 5 0}$ over two steps, $81 \% \mathbf{2 4 9}$ over two steps, c [(CuOTf) ${ }_{2} \mathrm{PhMe}$ (3 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{7 4 \%}$ 252, 84\% 251, d. Pd/C (10 mol\%), H_{2} (25 bar), EtOH , then $i-\mathrm{PrMgCl}\left(2.1\right.$ equiv.), THF, $0^{\circ} \mathrm{C}, 87 \% \mathbf{2 5 4}$ over two steps, $93 \% \mathbf{2 5 3}$ over two steps.

Scheme 59. CBr_{4} (1.1-2 equiv.), PPh_{3} (1.1-2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, \mathrm{f} . \mathrm{R}=\mathrm{Me}, \mathrm{TBAF}\left(1.2\right.$ equiv.), $\mathrm{THF}, 0^{\circ} \mathrm{C}, 72 \% 256$ over two steps; f. R = H HF*pyridine (120 equiv.), pyridine, THF, $0^{\circ} \mathrm{C}$, $77 \% \mathbf{2 5 5}$ over two steps, g . IBX (1.2 equiv.), DMSO, h. $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Me}$ (1.1-1.2 equiv.), $45-60^{\circ} \mathrm{C}$, 84% 259/260 over two steps, i. $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}(2.5-4$ equiv.), NaHMDS (2.54 equiv.), $-78{ }^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}, 69 \% \mathbf{2 6 2 , 6 8 \%} 261$ over two steps.

To maintain the discriminability of the two diol positions, the free alcohol (253/254; Scheme 59) was transferred into the corresponding bromide. Subsequent deprotection of the alcohol and oxidation delivered aldehyde $\mathbf{2 5 7} / \mathbf{2 5 8}$. After performing the Wittig olefination, the resulting cyclohepta[cd] oxindoles (259/260/261/262) were obtained in good yields. In case of $\mathbf{2 5 9} / \mathbf{2 6 0}$, the bromide was eliminated, yielding a 1,6 system.

Since the elimination to the 1,6 system was not intended, we decided to convert the alcohol into a carbonyl group, which would not undergo an elimination reaction (Scheme 60). Starting the synthesis from 253 we had to realise that the oxidation protocol needed to be reconsidered as the formation of many side products was observed applying IBX (Table 4).

Table 4. Oxidation of 253.

Entry	Solvent	Conditions	Yield	remark
1	DMSO	IBX (1.2 equiv.) 24 h	80%	many side products
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{DMP}(1.25$ equiv.), NaHCO_{3} (10 equiv.)	82%	Purification problems
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{DMSO}, \mathrm{SO}_{3} \bullet$ pyr., Et 3 N		

Masking the carbonyl as dithiane (263; Scheme 60) revealed a sensitivity of the TBS-alcohol towards Lewis acids. Following the very mild conditions of James' protocol ${ }^{[94]}$ using iodine as Lewis acid led to a mixture of deprotected and decomposed products. Praseodymium triflate proved to be more suitable Lewis acid as it provided $\mathbf{2 6 3}$ in 62% yield. ${ }^{[95]}$

Scheme 60. a. PDC (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MS} 3 \AA \AA$, b. $\mathrm{HSC}_{3} \mathrm{H}_{6} \mathrm{SH}$ (1.2 equiv.), $\operatorname{Pr}(\mathrm{OTf})_{3}$ ($5 \mathrm{~mol} \%$), $\mathrm{MeCN}, 62 \%$ over two steps, c . $\mathrm{HF} \bullet$ pyridine (120 equiv.), pyridine, THF, $0^{\circ} \mathrm{C}$, d. $\mathrm{SO}_{3} \bullet$ pyr. (4 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (5 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{DMSO}(1: 1), 0^{\circ} \mathrm{C}, 86 \%$ over two steps, e. $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (2.5 equiv.), NaHMDS (2.5 equiv.), THF, -78 to $0^{\circ} \mathrm{C}$, then $\mathrm{PhH} 50^{\circ} \mathrm{C}, 71 \%$ over two steps, f. α-TMSethylacetate (2.6 equiv.), LiHMDS (2.5 equiv.), THF, $-78^{\circ} \mathrm{C}$, then $\mathrm{C}_{6} \mathrm{D}_{6} 40^{\circ} \mathrm{C}, 75 \%$ over two steps.

The TBS group of $\mathbf{2 6 3}$ (Scheme 60) was cleaved by HF•pyridine and the resulting alcohol was oxidised using Parikh-Doering protocol which provided aldehyde 264. Tandem Wittig-DVCPR reaction yielded 265 in 71\% over two steps. Unexpectedly the Wittig reaction to $\mathbf{2 6 6}$ did not proceed. Applying ethyl-diethylphosphonoacetate under HWE conditions allowed the isolation of $\mathbf{2 6 6}$ in poor yields of 23%. The best result has been achieved under Peterson olefination conditions (see entry 5, Table 5) using α-TMS-ethylacetate and LiHMDS. ${ }^{[96]}$

Table 5. Olefination of $\mathbf{2 6 4 .}$

Entry	Conditions	Yield	remark
1	Methyl(triphenylphosphoranylidene)acetate (1.1 equiv.), benzene (0.1 M), $60^{\circ} \mathrm{C}$ then rflx	-	SM could be reisolated
2	Methyl(triphenylphosphoranylidene)acetate (1.1 equiv.), DMSO $\mathrm{d}_{6}(0.1 \mathrm{M}), 60^{\circ} \mathrm{C}$	-	progress observed by NMR
3	Ethyl diethylphosphonoacetate 2.5 equiv., NaHMDS (2 m in THF, 2.5 equiv.), $-78^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, THF (0.2 m)	23\%	-
4	Ethyl diethylphosphonoacetate (4 equiv.), BuLi (2.5 m in hexane, 4 equiv.), $-78^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 2 \mathrm{~d}$, THF (0.2 m)	-	marginal progress
$5^{[96]}$	TMS-Ethylacetate (2.6 equiv.), LiHMDS (1 m in THF, 2.5 equiv.), THF (0.15 M), $-78^{\circ} \mathrm{C}$, then benzene $40^{\circ} \mathrm{C}, 20 \mathrm{~h}$	75\%	increased formation of side products above $40^{\circ} \mathrm{C}$

2.4 Summary and Outlook.

Summarising the project, two procedures have been developed providing general access to cyclohepta[cd]oxindoles. Most starting materials utilised, are readily accessible using short synthetic procedures. It was possible to introduce different substituents on the oxindole core. Furthermore, by using different dienes and allylic alcohols, the bridging seven-membered ring could be substituted in various positions. C-9 provided the opportunity to introduce different functionalities such as olefins, halogenides and carbonyls into the cyclohepta[cd]oxindoles. The yields achieved in the one-pot syntheses are acceptable as the substrates are cheap and can be prepared in bulk respectively. The multistep syntheses starting from different allylic diols provided always good yields. With exception of the Peterson olefination all reactions could be carried out on a bench-top without the need of inert gas.

By now the scope is only limited by the accessibility of cis-vinylcyclopropanes and the corresponding E-olefins. Within this methodological studies, the boundaries of the reaction regarding substitution pattern and functional groups have yet to be discovered.

Both substrates, Danishefsky diene (216; Scheme 61) and 217 failed to form the cisdiastereomer under the given conditions. In case of $\mathbf{2 1 6}$ the chosen conditions led to vinylcyclopropane rearrangement to yielding spiro-compound $\mathbf{2 2 1}$ instead of the bridged system.
With respect to the prenyl moiety neither 217 nor 229 (Scheme 51) led to the desired cisdiastereomer under the chosen conditions, even though one might expect that π-stacking could support the formation of the cis-diastereomer during the reaction. Instead both the vinyl group and $\mathrm{CH}_{2} \mathrm{OTBS}$ most likely turn out of plane to minimise interactions with the aromatic ring and the catalyst, resulting in the trans-diastereomer.

Future endeavours should have a focus on cis-selective cyclopropanation of electron rich dienes such as the Danishefsky diene. 216 (Scheme 61) is known to be suitable for cyclopropanation and even DVCPR. ${ }^{[97]}$

Scheme 61. Cyclopropanation of Danishefsky diene using Fisher carbenes. Following DVCPR works for both diastereomers. a. $25^{\circ} \mathrm{C}$, benzene, $2 \mathrm{~d}, \mathbf{2 6 8} 40 \%, 27023 \%$, b. $90^{\circ} \mathrm{C}, 3 \mathrm{~h}$, quant.

System 272 (Scheme 62) would allow the introduction of functionalities directly at the core utilising an easily accessible substrate. Moreover, the orthogonal protecting groups would also allow to address both functionalities independently.

Scheme 62. Cyclopropanation/divinylcyclopropane rearrangement using Danishefsky diene.
A decrease in reaction temperature and the formation of a stable carbene might lead to the goal of cis-Danishefsky cyclopropane. The example of $\mathbf{2 6 8}$ (Scheme 61) shows also that in this case even the trans-diastereomer may react to 270.

In case of prenyl type olefins, the cis-diastereomer might be obtained an increase of the steric demand of the ligands in order to force the vinyl group toward the benzene core (Scheme 63). The prenyl moiety is interesting regarding the total synthesis of Welwitindolinones. Utilising an $\alpha, \beta, \gamma, \delta$ unsaturated system would provide an easy access to the core structure.

Tetrakis[1-[(4-tert-butylphenyl)sulfonyl]-(2R)-pyrrolidinecarboxylate] dirhodium(II) (273)
$\mathrm{Rh}_{2}(R \text {-TBSP })_{4}$

Bis[rhodium($\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetramethyl -1,3-benzenedipropionic acid)] (274) $\mathrm{Rh}_{2}(\text { esp })_{2}$

276

271

277

Welwitindolinone D (132)

Scheme 63. Theoretical inversion of diastereoselectivity by increasing steric demand of the catalyst. a. $\mathrm{Rh}_{2} \mathrm{~L}$ (1 mol\%), neat or benzene, heat.

A very interesting field is the selective intermolecular cyclopropanation of allylic diols. This would make the methodology more feasible, since the amount of reaction steps would be minimised.

Two promising methods were published by Wang ${ }^{[98]}$ and Davies. ${ }^{[99]}$ Wang utilised $\mathrm{Pd}(\mathrm{OAc})_{2}$ as catalytical Lewis acid for the cycloproapanation of electron deficient olefins. The cyclopropanation proved to be highly stereoselective (cis:trans 95:5, Scheme 64).

Scheme 64. Wang's Lewis acid catalysed cyclopropanation. a. $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, $\mathrm{PhMe}, 80^{\circ} \mathrm{C}, \mathrm{b} . \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, Ligand ($6 \mathrm{~mol} \%$), DCE, rt., $10 \mathrm{~d}, \mathrm{c} .80^{\circ} \mathrm{C}$.

Diol 286 (Scheme 65) could lead to 287, where the alcohol is pointing towards the benzene core and the two carbonyls are cis-fashioned. The subsequent procedure would be similar to Scheme 58. Deprotection, oxidation and olefination would provide the necessary cis-vinylcyclopropane which should then undergo the rearrangement providing 288.

Scheme 65. Wang's route used on oxindole 271. a. $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{PhMe}, 80^{\circ} \mathrm{C}$.
The second method to introduce the diols is a thermally induced cycloaddition (Scheme 66). Reacting electron rich olefins under thermal conditions with diazo compounds provides transcyclopropanes (291/293) in good yields and diastereomeric ratios up to 19:1.

Scheme 66. Davies thermal cyclopropanation. a. $\mathrm{PhCF}_{3}, 102{ }^{\circ} \mathrm{C}, 86: 14 \mathrm{dr}, 85 \%, \mathrm{~b} . \mathrm{PhCF}_{3}, 102{ }^{\circ} \mathrm{C}, 92: 8 \mathrm{dr}, 72 \%$.

In this case diols such as 231 (Scheme 67) would need orthogonal protecting groups to maintain the discriminability of the two alcohols. This route would also lead to a much shorter synthesis of 232. Utilising Davies' methodology (Scheme 66) necessitates the investigation of protecting group systems and their influence on the selectivity. In Davies' publication the size of the functional groups does not seem to hamper the selectivity of the reaction. It is very likely that the use of electron rich protecting groups might be the decisive factor with respect to the selectivity. ${ }^{[44]}$

Scheme 67. Cyclopropanation using Davies conditions. a. $\mathrm{PhCF}_{3}, 102{ }^{\circ} \mathrm{C}$.

3 5(10 $\rightarrow 9$)Abeo-Ergoline Project

"What's wrong with gold?"

Haihua Liu

3.1 Introduction

3.1.1 Total synthesis

Natural product synthesis is a part of organic chemistry dealing with the development of efficient syntheses of naturally occurring compounds. Although these compounds are often pharmacologically active, it is not only their activity that attracts the scientists' interest, but also interesting and challenging structures or structure motifs and the structure elucidation. The major problem of natural products is their low availability from natural sources. A famous example is Taxol ${ }^{\circledR}$ ($\mathbf{2 9 5}$, Scheme 68), an anti-cancer drug. ${ }^{[100]}$ In order to obtain one gram of that compound, the bark of twelve Pacific yew trees (Taxus brevifolia) is necessary. ${ }^{[101]}$ During the second clinical trial, it became apparent that the amount of bark needed would be a minimum of 30,000 kilogram. Furthermore, it was calculated that annually 360,000 trees would be necessary in order to obtain enough $\operatorname{Taxol}^{\circledR}(\mathbf{2 9 5})$ to treat all malenoma and ovarian cancer cases in the USA. Holton ${ }^{[102]}$ and Nicolaou ${ }^{[103]}$ published their total syntheses of Taxol ${ }^{\circledR}$ (295) independently in 1994. Based on Holton's approach, a demand-satisfying industrial semisynthesis of Taxol $^{\circledR}$ (295) could be established (Scheme 68).

Scheme 68. The first two total syntheses of Taxol ${ }^{\circledR}$ (295) by Holton and Nicolaou.

In general, a total synthesis has to be efficient and the requirements are:

1. keeping the number of steps low
2. avoiding the formation of side-products or the use of highly toxic reagents
3. using catalytic processes
4. using cheap and commercially available starting materials

The definitions were refined and concepts of an ideal synthesis introduced by Hendrickson and Baran. ${ }^{[104]}$ There is even an equation to calculate the "ideality" of a synthesis.

$$
\% \text { ideality }=\frac{[(\text { no.of construction rxns })+(\text { no. of strategic redox rxns })]}{(\text { total no.of steps })} \times 100
$$

Along with these theoretical reflections, there are two general concepts (Figure 16). The first one is the classic approach in which a great amount of starting material is used in order to get to one target via a linear reaction sequence. Most total syntheses are based on this approach. The second approach, the so called divergent approach, is based on a common intermediate that may be used to prepare different natural products, which do not necessarily belong to the same family of natural products. The advantage is evident, as diversification to the different natural products occurs in a late stage of the synthesis and the route to the common intermediate needs be optimised just once for all the natural products derived from.
classic total synthesis

Figure 16. The two general concepts in total synthesis. ${ }^{\text {[105] }}$

A good example for the common intermediate based total synthesis has been published by Krüger. ${ }^{[106]}$ In order to prepare various sarpagine alkaloids, 299 (Scheme 69) was synthesised by a [5+2] cycloaddition and a late stage fisher indole synthesis. Utilising this common intermediate, Krüger was able to complete four different sarpagine alkaloids.

Scheme 69. Krüger's synthesis of sarpagine alkaloids via common intermediate.

Another reason for total synthesis is the availability of natural product derivatives, as natural products are often unselective regarding their pharmaceutical profile. Therefore, the variation of functional groups or changes in the molecular structure may increase the selectivity or alter the potency of the derivatives. Furthermore, it is possible to get access to hybrids containing structural features of two or more different natural products. An example for a hybrid product is the ansamitocin hybrid $\mathbf{3 0 5}$ (Scheme 70), containing the aromatic structure of geldanamycin (304). ${ }^{[107]}$ It is very unlikely that this product occurs in nature, as the two natural products are produced by different organisms.

Geldanamycin (304)

Hybrid (305)

Ansamitocin (306)

Scheme 70. Jürjens' hybrid 305 from ansamitocin (306) with the aromatic element of geladanamycin (304)

3.1.2 $5(10 \rightarrow 9)$ Abeo-Ergoline derivatives.

As mentioned in chapter one, ergot alkaloids and their derivatives are used to treat pathophysiological disturbances. They all share the tetracyclic core structure that is a common feature of ergot alkaloids. This tetracyclic core contains parts which are related to catecholamines as well as indolethylamines and they react with the monoaminergic recognition sites. Therefore, it is important to prepare derivatives that do not react unselectively with the serotonergic system. The group of Vasari ${ }^{[67]}$ dealt with this topic and focused their research on the development of $5-\mathrm{HT}_{1 \mathrm{~A}}$ ligands. They were able to prepare 21
compounds (Figure 17) derived from methyl-lysergate (328) with moderate to high affinity and selectivity for the $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor.

This receptor is of interest, as it is widely spread in vertebrates and can be found in the cerebral cortex and the hippocampus, such as the raphe nucleus. This serotonin receptor is therefore a good target for drugs to treat anxiety disorders and depression.

Vasari et al. prepared all their compounds (Figure 17) by a semi synthetic approach utilising, methyl-lysergate (328) as starting material, which can be obtained by fermentation. This allowed them to reduce the total amount of reaction steps. Furthermore, they were able to get their complex and highly functionalised substrates in multi gram scale at relatively low cost.

315

316

Figure 17. $5(10 \longrightarrow 9)$ abeo-ergoline derivatives.

Starting with 328 (Scheme 71), hydroboration, protection of the primary alcohol and Grob fragmentation led to 331. When the carbonate was saponificated, 307 and $\mathbf{3 0 8}$ were obtained.

Scheme 71. a. $\mathrm{NaBH}_{4}, \mathrm{BF}_{3} \bullet \mathrm{OEt}_{2}$, THF, $-30^{\circ} \mathrm{C}$, then $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{KOH}, \mathrm{THF}, 40-50^{\circ} \mathrm{C}$, then MeOH , reflux, b. $\mathrm{CH}_{3} \mathrm{COCl}$, pyridine, rt., c. POCl_{3}, pyridine: HCl , pyridine, $40-50^{\circ} \mathrm{C}$, d. $\mathrm{NaOH}, \mathrm{MeOH}, \mathrm{rt}$.

With alcohol $\mathbf{3 0 7}$ (Scheme 72) in hands, they were able to prepare 310, $\mathbf{3 1 3}$ or $\mathbf{3 1 5}$ in only one reaction step. From 313 four different compounds could be derived. Reduced indole $\mathbf{3 2 3}$ has been the source for further various derivatives.

Scheme 72. a. DBU, DMF, $10^{\circ} \mathrm{C}$, b. $\mathrm{MsOH}, i-\mathrm{PrOH}, \mathrm{hv}, \mathrm{c} . \mathrm{POCl}_{3}$, pyridine, then $\mathrm{NaBH}_{4}, \mathrm{DMSO}$, d. $\mathrm{KOH}, \mathrm{Mel}$, DMSO, e.NBS, dioxane, $40^{\circ} \mathrm{C}$, f. MeSSMe, $\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, then $-35^{\circ} \mathrm{C}$, g. $\mathrm{Br} 2, \mathrm{HOAc}$, rt. h. $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$; $\mathrm{EtOH}, \mathrm{i} . \mathrm{NaBH}_{4}, \mathrm{TFA}, 10^{\circ} \mathrm{C}$, j. $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $50^{\circ} \mathrm{C}$, k. fuming $\mathrm{HNO}_{3}, \mathrm{HOAc}$, rt., then dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$, reflux, $\mathrm{I}^{2} \mathrm{SnCl}_{2}, \mathrm{EtOH}, 70^{\circ} \mathrm{C}$, then $\mathrm{NOBF}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, then $120^{\circ} \mathrm{C}$, o-dichlorobenzene, then dil. $\mathrm{KOH}, \mathrm{EtOH}$, reflux. m. $\mathrm{Br}_{2}, \mathrm{HOAc}$, rt., then dil. $\mathrm{KOH}, \mathrm{EtOH}$, reflux.

3.2 Aim of this Project

The aim of this project is a generalised total synthetic approach to the $5(10 \rightarrow 9)$ abeo-ergoline alkaloids based on the divinylcyclopropane rearrangement. The synthesis should allow the preparation of an advanced intermediate from which a variety of $5(10 \rightarrow 9)$ abeo-ergoline derivatives can be obtained. In Varasi's semi synthesis alcohol $\mathbf{3 0 7}$ (Scheme 72) is the common intermediate. In this project, compound 315 should be the privileged intermediate. The reason for this intermediate can be seen in Scheme 73. By hydroboration of 315, compound 310 and 311 can be addressed. Selective reduction of the exo-methylene group of 315 will lead to 318 and therefore to nine more products. Reduction of both doublebonds will provide 322.

Scheme 73. Advantage of advanced intermediate 315.

The divinylcyclopropane rearrangement is the preferred method to build up the cyclohepta[cd]indole structure. It allows the introduction of different functional groups which are suitable for further functionalisation, here in particular for the introduction of the pyrrolidine moiety.

3.3 Own Contriutions

3.3.1 $1^{\text {st }}$ Approach

The first approach to $\mathbf{3 1 5}$ (Scheme 74) starts with a Hoffmann-Löffler-Freytag reaction ${ }^{[108]}$ of the corresponding amine of $\mathbf{3 3 2}$. Alcohol $\mathbf{3 3 4}$ should be introduced via a Heck coupling to obtain 333. A decisive step in this retrosynthesis is the shift of the doublebond (DB shift) which is formed in the divinylcyclopropane rearrangement. Cyclohepta[cd]oxindole 335 should be obtained via cyclopropananation of butadiene (214) and diazoisatin 337, followed by a DVCPR.

Scheme 74. First retrosyntheic approach towards 315.
The synthesis was started with the cyclopropanation of diazoistaine $\mathbf{3 3 7}$ (Scheme 75) and butadiene (214), catalysed by bis-rhodiumtetraacetate. The yields varied between 40% for the unprotected diazo 118 and up to 80% for the tosyl protected derivative 337 (Scheme 75).

Scheme 75. Formation of $\mathbf{2 2 0} / 338$ and isomerisation of the olefin to 339/340. a. butadiene (10 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then DMSO reflux., b. see Table 6.

The obtained substrates $\mathbf{2 2 0}$ (Scheme 75) and $\mathbf{3 3 8}$ were exposed to different conditions in oder to obtain the desired products $\mathbf{3 3 9}$ and $\mathbf{3 4 0}$ (Table 6).

Table 6. Conditions and catalysts used for the isomerisation of the olefin.

Entry	Catalyst	Solvent	Conditions	Outcome
$1^{[109]}$	RhCl_{3}	$\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}$	room temperature	no reaction
$2^{[109]}$	RhCl_{3}	EtOH	refluxing	decomposition
$3^{[110]}$	Howeyda Grubbs II	MeOH	room temperature refluxing	no reaction no reaction
$4^{[111]}$	$\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RhCl}$	PhH	refluxing	no reaction
$5^{[112]}$	$\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$	EtOH	refluxing	no reaction
$6^{[112]}$	Rh/C	EtOH	refluxing	no reaction
7	Pd/C	EtOH	refluxing	decomposition
8	Pd/C	EtOH	room temperature	no reaction
$9^{[113]}$	Grubbs II	MeOH	refluxing	no reaction
$10^{[114]}$	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	refluxing	no reaction
$11^{[115]}$	$\mathrm{RuCl}_{2} \mathrm{PPh}_{3}$	PhMe	room temperature	no reaction
$12^{[115]}$	$\mathrm{RuCl}_{2} \mathrm{PPh}_{3}$	PhMe	refluxing	decomposition
$13^{[116]}$	RuCl ${ }_{2} \mathrm{PPh}_{3}$, DIPEA	PhMe	refluxing	decomposition
14	AcOH	THF	refluxing	no reaction
15	DiPEA	MeCN	room temperature	slow decomposition
16	TEA	MeCN	refluxing	decomposition
17	DBU	MeCN	refluxing	decomposition
$18^{[117]}$	$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$	PhH	refluxing	no reaction
$19^{[118]}$	$\begin{gathered} \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}, \\ \mathrm{DABCO} \end{gathered}$	EtOH 10\%	refluxing	no reaction
$20^{[119]}$	$\mathrm{Ni}\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{4}$	$\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$	room temperature	decomposition
$21^{[120]}$	Crabtree	THF	room temperature	no reaction

However, after extensive experimentation, we were not able to shift the double bond into conjugation. It did not matter if the oxindol was protected or not. To exclude the reactivity of the oxindole $\mathrm{C}-3$, we decided to repeat the experiments using the corresponding indole 341
(Scheme 76). It was expected that this conversion would deliver product mixtures $(\mathbf{3 4 2}, \mathbf{3 4 3})$ depending on whether the doublebond shifts in conjugation with the benzene core or the pyrrole of the indole.

Scheme 76. Expected isomerisation of the alkene using indole 341. a. NaBH_{4} (2 equiv.), $\mathrm{MeOH}: \mathrm{THF} 0{ }^{\circ} \mathrm{C}$, then $\mathrm{TFA}^{\text {in }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}, 84 \%$, b. see Table 6.

Disappointingly, the examination delivered the same result as the screening using oxindole 338 (Table 6) neither did it shift into the one nor into the other position.

Since we were not able to shift the double bond into conjugation, a different approach needed to be found.

3.3.2 $2^{\text {nd }}$ approach

Based on the easily accessible starting material 338 (Scheme 77), the retrosynthesis was redesigned. The first step of this retrosynthesis is the Heck reaction which is supposed to close the pyrrolidine ring. The β-hydride elimination should recreate the double bond on the sevenmembered ring (315). A 1,4 addition of 345 and 346 should introduce the tertiary amine to obtain 344. The ketone has to be eliminated afterwards by reduction and treatment with trifluoroacetic acid to obtain the system necessary for the Heck reaction. Amine $\mathbf{3 4 6}$ will be obtained from propargylic alcohol (336) via a literature known procedure. Allylic oxidation of the DVCPR product 338 is supposed to deliver the α, β-unsaturated ketone $\mathbf{3 4 5}$. Cyclohepta[cd]oxindole 338 should be obtained via a cyclopropanation and subsequent divinylcyclopropane rearrangement using 337 and 214.

Scheme 77. $2^{\text {nd }}$ retrosynthetic approach towards 315.

Since the reagents for the allylic oxidation could also attack the unprotected nitrogen of the oxindole, tosyl protected substrate $\mathbf{3 3 7}$ (Scheme 78) should be used exclusively. As in the first approach, we started with the cyclopropanation of 337 with butadiene (214) followed by DVCPR to receive 338. With $\mathbf{3 3 8}$ in hands, the product was exposed to different reagents and catalysts (Table 7) in order to perform an allylic oxidation. We expected the allylic/benzylic C10 position of the cyclohepta[cd]oxindole 338 to undergo the oxidation.

Scheme 78. Preparation of DVCPR product 338, formation of indole 341 and subsequent allylic oxidation. a. butadiene (10 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1 \mathrm{~mol} \%)$, then DMSO $110^{\circ} \mathrm{C}, 54 \%$. b. see Table $7, \mathrm{c} . \mathrm{NaBH}_{4}$ (2 equiv.), THF: $\mathrm{MeOH} 0{ }^{\circ} \mathrm{C}$, then TFAA $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 84 \%$.

Table 7. Conditions used for allylic oxidation of 338 and 341.

Entry	Conditions	Outcome
$1^{[121]}$	SeO_{2} (6.3 equiv.), TBHP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. rt.	n.r.
$2^{[122]}$	SeO_{2} (2.2 equiv.), $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (3.2 equiv.), PhMe , rflx.	decomp.
$3^{[123]}$	SeO_{2} (3 equiv.), dioxane, rflx.	decomp.
$4^{[124]}$	SeO_{2}, (1.2 equiv.) PNO (4 equiv.), dioxane, $90^{\circ} \mathrm{C}$	decomp.
$5^{[125]}$	CrO_{3} (20 equiv.) 3,5-DMP (20 equiv.), $-25^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	decomp.
$6^{[126]}$	$\mathrm{Ph}_{2} \mathrm{Se}_{2}$ (10 mol\%), PhIO_{2} (3 equiv.), Pyridine (10 equiv.), PhCl , $100^{\circ} \mathrm{C}$	decomp.
$7{ }^{[127]}$	CrO_{3} (10 equiv.), AcOH	decomp.
$8^{[128]}$	CrO_{3} (18 equiv.), pyridine (38 equiv.), $4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt.	decomp
$9^{[129]}$	PIFA (3 equiv.), TBHP (2 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (4 equiv.), $4 \AA \mathrm{MS}, \mathrm{EtOH}$, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	n.r.

$10^{[130]}$	$\mathrm{RuCl}_{3} \mathrm{xH}_{2} \mathrm{O}$ (1 mol\%), TBHP, cychohexane, water, rt .	n.r.
$11^{[131]}$	$\mathrm{Mn}(\mathrm{OAc})_{3}$ ($35 \mathrm{~mol} \%$), TBHP (5 equiv.), $4 \AA \mathrm{MS}, \mathrm{O}_{2}, \mathrm{EtOAc}, \mathrm{rt}$.	n.r.
$12^{[132]}$	Pd / C ($2.5 \mathrm{~mol} \%$), TBHP (2.5 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(25 \mathrm{~mol} \%\right.$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$	n.r.
$13^{[133]}$	$\mathrm{Pd}(\mathrm{OH})_{2}(5 \mathrm{~mol} \%), \mathrm{TBHP}$ (5 equiv.) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$.	n.r.
14	$\mathrm{Pd}(\mathrm{OH})_{2}$ (2 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$	n.r.
$15^{[134]}$	PDC (4 equiv.), TBHP (4 equiv.), PhH, rt.	decomp.
$16^{[135]}$	IBX (3 equiv.), DMSO, flourobenzene, $85{ }^{\circ} \mathrm{C}$	decomp.
$17^{[136]}$	DDQ (1.3 equiv.), acetone, water, $0^{\circ} \mathrm{C}$	n.r.

Contrary to the expectations, mostly decomposition products were obtained. In one case a mixture of three different products could be isolated, but only one of them contained a ketone which could not be separated. To exclude the oxidation of oxindole C-3, the series was repeated utilising corresponding indole 341 (Scheme 78).

Similar to the first approach, indole 341 was expected to deliver more than one oxidation product due to the two allylic/benzylic positions. It emerged that also indole $\mathbf{3 4 1}$ was not suitable for the allylic oxidation, as only decomposition could be observed. We were surprised by these results, as Li et al. (Scheme 79) reported the benzylic oxidation of cyclohepta[cd]indole 350 employing DDQ. ${ }^{[137]}$

Scheme 79. Li's allylic oxidation with DDQ. a. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{TFA}, \mathrm{rt}, 95 \%$, b. $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, reflux, then $\mathrm{Cr}_{2} \mathrm{Cu}_{2} \mathrm{O}_{5}$, quinolone, $200^{\circ} \mathrm{C}, 85 \% \mathrm{c} . \mathrm{DDQ}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 91 \%$.

As the oxidation did not deliver the desired Michael system we had to reconsider the retrosynthetic analysis and try a different approach in order to obtain the unsaturated ketone 345 (Scheme 77).

In this case we wanted to prepare an α-diazoketone which should undergo a Wolffrearrangement similar to the reaction cascade shown by Stoltz et al. (Scheme 80). ${ }^{[138]}$ In absence of a nucleophile, the ketene undergoes the DVCP-rearrangement to deliver 1,4 system 354.

Scheme 80. Tandem Wolff-Cope rearrangement with an option for a Norrish type I reaction. a. $\mathrm{AgOBz}(10 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}$ (1 equiv.), THF, $45^{\circ} \mathrm{C}$, ultrasonic sound; alternative hv, $254 \mathrm{~nm}, \mathrm{THF}, \mathrm{rt} ., \mathrm{b}$. hv $310 \mathrm{~nm}, \mathrm{PhH}, \mathrm{rt}, 72 \%$.

The revised retrosynthesis needed just a few alternations. Ketone $\mathbf{3 4 5}$ (Scheme 81) should be obtained by the Wolff-DVCPR tandem reaction of 357. The cyclopropanation of MVK 358 and 337 followed by a diazo transfer reaction α-diazoketone 357 should be received.

Scheme 81. Variations of the retrosynthesis for the Wolff-Cope tandem reaction.

The first reaction in this sequence was the literature known, thermally initiated cyclopropanation of MVK (358; Scheme 82) and diazo compound 337. ${ }^{[139]}$ The desired cisketone $\mathbf{3 5 8}$ could be separated and obtained in 60% yield. Preparation of diazo compound 357 proved to be difficult, since only freshly distilled THF and freshly prepared LiHMDS led to satisfying results. ${ }^{[140]}$ In a first reaction the LiHMDS forms the enol which is acylated by trifluoroethyl trifluoroacetate (TFETFA). Addition of MsN_{3} and TEA delivered α-diazo ketone 357 in 70\% yield.

Scheme 82. a. MVK 358 (3 equiv.), $95^{\circ} \mathrm{C}$, $10 \mathrm{~min} .95 \%$ total yield, b. HMDS (1.3 equiv.), THF, $-78{ }^{\circ} \mathrm{C}, n \mathrm{nbuLi}(1.3$ equiv.), then THF $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}$ (1.4 equiv.), then $\mathrm{Et}_{3} \mathrm{~N}$ (10 equiv.), MsN_{3} (3 equiv.), THF $16 \mathrm{~h}, 70 \%$ at 2 mmol scale, c . see Table 8.

With the desired product 357 in hands, different Wolff rearrangement conditions were examined (Table 8).

Entry	Conditions	Product	Outcome
$1^{[141]}$	PhMe, $70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	-	no reaction
2	$\mathrm{PhMe}, 140^{\circ} \mathrm{C}$, sealed tube, 24 h	-	no reaction
$3^{[142]}$	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2.5 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$.	-	decomposition
$4^{[138]}$	$\mathrm{AgOBz}(10 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}$ (3 equiv.), $\mathrm{THF}, \mathrm{U} / \mathrm{S}, 45{ }^{\circ} \mathrm{C}$	360	75\%
$5^{[138]}$	AgOBz (20 mol\%), THF, U/S, $45^{\circ} \mathrm{C}$	-	no reaction
6	$\mathrm{Ag}_{2} \mathrm{O}(20 \mathrm{~mol} \%), \mathrm{THF}, 20$ to $50^{\circ} \mathrm{C}$	-	no reaction
7	$\mathrm{Ag}_{2} \mathrm{O}$ (10 mol\%), $\mathrm{Et}_{3} \mathrm{~N}$ (3 equiv.), THF, U/S, $45{ }^{\circ} \mathrm{C}$	360	53\%
$8^{[143]}$	$\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%$), cyclohexane, rt	-	no reaction
$9^{[143]}$	$\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%$), cyclohexane, rflx.	-	decomposition
$10^{[144]}$	AgNO_{3} (1.05 equiv.), THF , rt.	-	decomposition
$11^{[145]}$	[(CuOTf) $)_{2} \mathrm{PhMe}$], $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$.	-	no reaction
$12^{[145]}$	[(CuOTf) ${ }_{2} \mathrm{PhMe}$], $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$	-	decomposition
$13^{[138]}$	hv, 254 nm , PhH	-	decomposition

Only the conditions of entry 4 and 7 (Table 8) delivered an isolable product. After extensive NMR analysis, we were able to elucidate the structure of the Wolff product (Scheme 83). It appeared that the Wolff rearrangement took place without subsequent Cope rearrangement. Instead a vinyl cyclopropane rearrangement provided 360.

Scheme 83. Vinyl cyclopropane rearrangement to spiro-oxindole 360.
We suggested that the spiro-oxindole $\mathbf{3 6 0}$ might be an intermediate of the alkylation into C4 , wherefore $\mathbf{3 6 0}$ has been exposed to elevated temperatures of $200^{\circ} \mathrm{C}$. Unfortunately, compound $\mathbf{3 6 0}$ proved to be very stable and we had to establish another approach.

3.3.3 $3^{\text {rd }}$ approach

During the first two synthetic approaches, we had to learn, that the basic functionalisation of the core system is not as straightforward as expected. We decided to switch to a system containing an ester functionality, even though it meant an increase of synthetic steps. The key feature of this synthesis is a γ-functionalisation (362, Scheme 84), ${ }^{[146]}$ successive substitution and a cross coupling reaction to obtain pyrrolidine $\mathbf{3 6 1}$. Subsequent decarboxylation should provide the desired product 315. Cyclopropanation of 337 and 219 and successive DVCPR should yield 230. Reduction and elimination should provide the precursor of the γ functionalisation.

Scheme 84. $3^{\text {rd }}$ retrosynthetic analysis.
The synthesis started with the preparation of aldehyde $\mathbf{3 6 4}$ (Scheme 85) as the distinguishability of the two aldehydes is less difficult compared to the corresponding ester. To avoid the longer route via the allylic alcohol, a thermally induced cyclopropanation based on Subba Reddy's protocol was applied. ${ }^{[139]}$ Instead of MVK 358, acrolein (363) was heated to $95{ }^{\circ} \mathrm{C}$. Cyclopropylaldehydes 364 and 365 were obtained in 83% in a 3:2 ratio in favour of the desired cis-cyclopropylaldehyde 364. The following Wittig reaction was performed in DMSO since this solvent allowes a subsequent DVCPR at elevated temperatures. Contrary to the expectations, the olefin in the resulting product $\mathbf{3 6 7}$ has shifted into conjugation. Nevertheless, the conjugated system should not hamper the following γ-functionalisation, as LDA should be able to deprotonate an allylic position.

Scheme 85 . First synthesis of 367 with unexpected doublebond shift. a. acroleine ($363 ; 3$ equiv.), $95{ }^{\circ} \mathrm{C}, 83 \%, 3: 2$ ration 364:365, $\mathrm{b}, \mathrm{Ph}_{3} \mathrm{PCCO}_{2} \mathrm{Me}$ (1.2 equiv.), PhH, rflx $.70 \%$.

Knowing that the ester $\mathbf{3 6 6}$ (Scheme 85) rearranges to the desired product, diene $\mathbf{2 1 9}{ }^{[147]}$ was prepared and the cyclopropanation reaction has been performed in benzene (Scheme 86). The resulting product $\mathbf{3 6 6}$ was obtained in 79% yield in a 7:1 ration in favour of the cisdiastereomer. Subsequent DVCPR in DMSO yielded in 58\% cyclohepta[cd]oxindole 230. Surprisingly, the olefin in the resulting product did not shift into conjugation.

Scheme 86. Preparation of $\mathbf{2 3 0}$ via tandem cyclopropanation/DVCPR.

Nevertheless, we wanted to know what caused the olefin shift at this point. The only difference between the two DVCPR was that the Wittig route contained $\mathrm{Ph}_{3} \mathrm{PO}$ and $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Me}$. To examine whether the olefin could be shifted into conjugation with these reagents or not, $\mathbf{2 3 0}$ (Scheme 86) was exposed to the reagents in three experiments. The first contained $\mathrm{Ph}_{3} \mathrm{PO}$ (1 equiv.), the second $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Me}$ (1 equiv.) and the third a mixture of both reagents in a 1:1 mixture in DMSO. In all three cases, we were not able to observe a shift of the doublebond. In addition, the variation of equivalents and increased temperature had no influence.

To avoid the reactivity of C-3 of the oxindole, we decided to block that position by oxidation. A very easy and selective method to oxidise oxindoles at C-3 is the use of catalytic amounts of TBAF and air (Scheme 87). ${ }^{[148]}$ The resulting hydroxyl functionality should then be protected.

Scheme 87. TBAF catalysed C-3 oxidation.
When the oxidation reaction was performed, a slight decrease of polarity and the complete conversion of the substrate could be observed in about two minutes. After workup, product 367 was obtained in 74% yield (Scheme 88). Contratry to the expectations, the proton at C-3 remained. Comparing the NMR results with those of the tandem Wittig-DVCP-reaction (Scheme 85) displayed the shift of the olefin into conjugation. The nonappearance of the oxidation seems reasonable in this case, as freshly distilled THF has been used which contained no oxygen and the isomerisation proceeded much faster than oxygen could dissolve in THF.

Scheme 88. TBAF initiated doublebond shift.

Since we wanted to keep the doublebond in that position, an oxidation was no option anymore. In order to discard the oxindol C-3 position indole 373 (Scheme 89) was prepared. In this case, only NaBH_{4} was suitable for the reduction of oxindole 230, while most of the other reagents would unselectively react with both, the ester and oxindole. The resulting hemi aminal 372 was then treated with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}{ }^{[149]}$ in THF at room temperature. The resulting indole $\mathbf{3 7 3}$ was then exposed to the nosylation conditions (Table 9).

Scheme 89. Formation of indole 373 and its exposition to nosylation conditions. a. NaBH_{4} (2.2 equiv.), $-30^{\circ} \mathrm{C}, \mathrm{THF}: \mathrm{MeOH}$ (6:1), b. $\mathrm{BF}_{3}{ }^{*} \mathrm{OEt}_{2}$ (2 equiv.), MeCN, 94% over two steps, c. TBAF, THF, 65%, , d. see Table 9.

Since 362 (Scheme 89) could not be obtained, we decided to use different conditions for the enolisation (Table 9). Ester $\mathbf{3 7 3}$ was also treated with TBAF to obtain 1,4 system $\mathbf{3 7 4}$ which was also subsequently exposed to the γ-functionalisation conditions (Table 9).

Table 9. Attempts to obtain a silylenolether using 373 and 374.

Entry	Conditions	Outcome
$1^{[146 b, 150]}$	HMPA, LDA (1.1 equiv.), THF $,-78^{\circ} \mathrm{C}, \mathrm{TMSCl}(2$ equiv.), then EtOAc, $p \mathrm{NBSP}$ (1 equiv.), ZnCl_{2} (1.2 equiv.)	no reaction
$2^{[151]}$	HMPA, LDA (1.1 equiv.), THF, $-78{ }^{\circ} \mathrm{C}, \mathrm{TMSCI}$ (2 equiv.)	no reaction
$3^{[152]}$	KHMDS (1 equiv.), THF, $-78{ }^{\circ} \mathrm{C}, \mathrm{TMSCl}$ or TBSCI (1 equiv.)	no reaction
$4^{[153]}$	LDA (1.1 equiv.), THF, $0^{\circ} \mathrm{C}$ to $-78^{\circ} \mathrm{C}, \mathrm{TBSCl}$ (1.1 equiv.), HMPA (2.2 equiv.)	no reaction
$5^{[154]}$	TMSOTf or TBSOTf (1.3 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt.	no reaction
$6^{[155]}$	NaHMDS (1.5 equiv.), TBSCI or TBSOTf (2 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$	no reaction

Unfortunately, nosylation product 362 (Scheme 89) was not obtained and we had to examine whether this is an enolisation or a reagent problem. Therefore, ethyl crotonoate was transferred into the corresponding silylenol ether and then exposed to the nosylation conditions. The results were the same as R. V. Hoffman ${ }^{[1466]}$ published for the test system. It appeared that we had a general problem regarding the silyl enolether which proved to be very instable. The substrate decomposed before the reaction could be performed.

To determine the general feasibility to functionalise 373 and $\mathbf{3 7 4}$, they were exposed to different conditions (Table 10).

Entry	Substrate	Conditions	Outcome
$1^{[156]}$	374	AIBN, NBS (1.1 equiv.), CCl_{4}, reflux	decomposition
$2{ }^{[157]}$	374	SeO_{2} (1.4 equiv.), dioxane, reflux	decomposition
$3^{[157]}$	374	SeO_{2} (1.4 equiv.), $\mathrm{H}_{2} \mathrm{O}$, dioxane, reflux	decomposition
$4^{[158]}$	374	LiHMDS (1 equiv.) THF, $0^{\circ} \mathrm{C}, \mathrm{O}_{2}$	no reaction
$5^{[159]}$	374	$\mathrm{KOH}, \mathrm{MeOH}, \mathrm{rt}$.	no reaction
$6^{[160]}$	374	Br_{2} (1 equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-70{ }^{\circ} \mathrm{C}$	decomposition
$7{ }^{[161]}$	373	$m C P B A$ (2.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then TBAF (2 equiv.)	decomposition
$8^{[162]}$	373	PDC (2 equiv.), DMF	no reaction

Unfortunately, these attempts failed, making a new retrosynthetic analysis necessary.

3.3.4 $4^{\text {th }}$ approach

The key feature of the $4^{\text {th }}$ retrosynthesis to 315 (Scheme 90) is a Saegusa reaction which should generate the α, β-unsaturated ketone $\mathbf{3 7 6}$. Ketone 376 ought to be reduced to an allylic alcohol which should further be transformed into the sulphonamide 375 via a Mitsunobu reaction. A Heck reaction is supposed to provide the five membered ring and finish the carbon skeleton of $5(10 \rightarrow 9)$ abeo-ergoline alkaloids. Cyclopropanation and DVCPR cascade of diazoisatine 337 and enolether 379 should generate 378.

Scheme 90. $4^{\text {th }}$ retrosyntheic approach towards 315.

As it is known from literature, Saegusa type reactions work best using TMS-enolethers which are often instable. To avoid the decomposition, they are often prepared in situ. In this case, a TMS-enolether would not work, as it would decompose under these cyclopropanation conditions. Even if the cyclopropanation and DVCPR would succeed, the resulting product would most propably decompose to the corresponding ketone $\mathbf{3 8 0}$ (Scheme 91). Application of ketone $\mathbf{3 8 0}$ would not be easy as we were not able to predict which enol would be obtained. In case of the oxindol $\mathbf{3 8 0}$ the proton on C-3 would be problematic. However, using the corresponding indole $\mathbf{3 8 4}$ most propably enol $\mathbf{3 8 5}$ would be obtained which is not suitable for the Saegusa Ito reaction. Therefore, it was of particular interest to prepare a silylenolether that would not decompose under the cyclopropanation and DVCPR conditions.

Scheme 91. Possible enolisation products of cyclohepta[cd]ox/indole 380 and 384.

Reisig et al. ${ }^{[163]}$ showed in their studies that TBS-enolether were stable in presence of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$. They are also known to be applied in Saegusa reactions. We started the synthesis by preparing TBS-enolether 379 (Scheme 92) utilising freshly distilled MVK 358 ($81.5^{\circ} \mathrm{C}$ only), LDA, HMPA and TBSCI (Scheme 92). ${ }^{[164]}$. The cyclopropanation of 337 and 379, following Reisig's protocol, led predominantly to dimerisation. Utilising neat 337 at $65{ }^{\circ} \mathrm{C}$ with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$, provided directly cyclohepta[cd]oxindole 378 in 32% yield. This compound was instable to air and decomposed easily. In order to avoid the oxidation of oxindole C-3, we decided to use the crude reaction mixture to prepare the indole 387. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reduced with DiBAl-H which provided the hemiaminal. The obtained product was then subsequently treated with TFAA to form the desired indole 387. To suppress the hydrolysis of the TBS-enolether by the in situ formed TFA, the reaction was buffered by an excess of triethylamine. Indole 387 was obtained in an overall yield of 42\%.

Scheme 92. Preparation of Saegusa susbtrate 378 and 387. a. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}\left(1 \mathrm{~mol} \%\right.$), enolether 379 (10 equiv.), $65^{\circ} \mathrm{C}$, 32%, b. DiBAI-H (1.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to rt., c. TFAA (5 eauiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (15 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}, 42 \%$ over two steps, d. see Table 11, e. LDA, HMPA, TBSCI, THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.

To perform the Saegusa oxidation 378 and $\mathbf{3 8 7}$ (Scheme 92) were subjected to different conditions (Table 11).

Table 11. Conditions used for Saegusa oxidation of 378 and 387.

Entry	Conditions	Outcome
$1^{[165]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}\left(1.1\right.$ equiv.), $\mathrm{MeCN}, \mathrm{O}_{2}, \mathrm{rt}$.	decomposition
$2^{[166]}$	DDQ (5 equiv.), collidine (6 equiv.), PhH, rt.	decomposition
$3^{[167]}$	NBS (1.01 equiv), THF, $0^{\circ} \mathrm{C}$	SM
$4^{[168]}$	$\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ (1.1 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.	decomposition
$5^{[169]}$	IBX (2 equiv.), NMR (2 equiv.), DMSO, $45^{\circ} \mathrm{C}$	decomposition
$6^{[170]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{O}_{2}, \mathrm{DMSO}$	decomposition
$7{ }^{[171]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$ (1.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}$, rt.	traces 376
$8^{[172]}$	CsF (5 equiv.), PhSeBr (1.3 equiv.), $\mathrm{NaHCO}_{3}, \mathrm{DMF},-25^{\circ} \mathrm{C}$	no product
9	$\mathrm{Pd}(\mathrm{OAc})_{2}\left(1.5\right.$ equiv), $\mathrm{CD}_{3} \mathrm{CN}$	traces 376 \& decomposition
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$ (2 equiv.), $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}$.	< 5\% 376

Only entry 10 (Table 11) provided the product in less than 5% yield. Many conditions resulted in the decomposition of the enolether without undergoing the envisaged Saegusa oxidation. Performing the reaction in deuterated solvents allowed the visualisation of the reaction progress by NMR. It became obvious that TBS enolether $\mathbf{3 8 7}$ (Scheme 92) was instable towards
$\mathrm{Pd}(\mathrm{OAc})_{2}$ and decomposed much faster than the reaction proceeded (Table 11, Entry 9, 10; Figure 18).

Figure 18. Reaction progress of Saegusa reaction over time in $\mathrm{CD}_{3} \mathrm{CN}$.
The screening of the reaction indicated that a more stable enolether is necessary. A disadvantage of an increased stability is a decrease in reactivity which narrows down possible reagents for the reaction. We decided to prepare the TIPS enolether since it should be stable towards the cyclopropanation and DVCPR.

TIPS-enolether 218 (Scheme 93) was obtained following the same procedure as employed for the preparation of $\mathbf{3 7 9}$ (Scheme 92). Instead of the silylchloride, the corresponding triflate was utilised. The cyclopropanation gave the desired oxindole $\mathbf{2 2 2}$ in $\mathbf{3 5 \%}$ yield. Oxindole $\mathbf{2 2 2}$ was reduced by NaBH_{4} and subsequently treated with TFAA and $\mathrm{Et}_{3} \mathrm{~N}$ to obtain indole 388 in 44% over all yield.

Scheme 93. Synthesis of TIPS-enolether 218 and synthesis of TIPS Saegusa substrates $\mathbf{2 2 2}$ and 388. a. LDA, HMPA, TIPSOTf, THF, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 54 \%$, b. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1 \mathrm{~mol} \%)$, enolether 218 (1.5 equiv.), $70^{\circ} \mathrm{C}, 35 \% . \mathrm{c} . \mathrm{NaBH}_{4}$ (2 equiv.), MeOH:THF, $-78{ }^{\circ} \mathrm{C}$ to rt., d. TFAA (5 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (15 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 44 \%$ over three steps, e. see Table 12.

Both substrates, oxindole $\mathbf{2 2 2}$ (Scheme 93) and indole $\mathbf{3 8 8}$ were subjected to the Saegusa conditions (Table 12).

Table 12. Saegusa conditions using 222 and 388.

Entry	Catalyst	Reagent	Base	Solvent	Temp.	Outcome
$1^{[173]}$	$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(5 \mathrm{~mol} \%)$	$t-\mathrm{BuO}_{2} \mathrm{H}$ (5 equiv.)	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$4^{\circ} \mathrm{C}$	decomp.
$2{ }^{[173]}$	$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(5 \mathrm{~mol} \%)$	$t-\mathrm{BuO}_{2} \mathrm{H}$ (5 equiv.)	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt.	decomp.
$3^{[174]}$	TMSN 3 (2.4 equiv.) TBAF (4	PhIO (1.2 equiv.), equiv.)		$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\begin{aligned} & -5^{\circ} \mathrm{C} \\ & \text { to } \mathrm{rt} \end{aligned}$	decomp.
$4^{[175]}$	-	CAN (4 equiv.)	-	DMF	$0^{\circ} \mathrm{C}$	decomp
$5^{[172]}$	CsF (5 equiv.), Ph	SeBr (1.3 equiv.)	NaHCO_{3}	DMF	$-25^{\circ} \mathrm{C}$	SM

Again, the substrates were either re-isolated or decomposed completely. We assumed the reactivity of both, indole $\mathbf{3 8 8}$ (Scheme 93) and oxindole $\mathbf{2 2 2}$ might cause the problems. As R.B. Woodward in his total synthesis of lysergic acid, ${ }^{[176]}$ we needed to circumvent the reactivity. We decided to generate the less reactive aminal $\mathbf{3 9 0}$ (Scheme 94). Therefore, oxindole 222 has been reduced and the crude reaction mixture was exposed to $\mathrm{Ac}_{2} \mathrm{O}$ buffered by $\mathrm{Et}_{3} \mathrm{~N}$.

Scheme 94. Formation of aminal 390 and Saegusa oxidation to 391. a. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (1 mol\%), diene 218 (1.5 equiv.), benzene, $65^{\circ} \mathrm{C}, 39 \%$, b. NaBH_{4} (2 equiv.), $\mathrm{MeOH}: T H F 0^{\circ} \mathrm{C}, \mathrm{c} . \mathrm{Ac}_{2} \mathrm{O}$ (2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}, 80 \%$ over two steps, d. see entry 4 Table 13.

Aminal 390 in hands, several attempts were executed to perform the Saegusa type reaction (Table 13).

Entry	Catalyst	Reagent	Base	Solvent	Temp.	Outcome
$1^{[173]}$	$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C} 5 \mathrm{~mol} \%$	t-BuOOH 5 equiv.	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$4^{\circ} \mathrm{C}$	SM
$2{ }^{[173]}$	$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C} 5 \mathrm{~mol} \%$	t-BuOOH, 5 equiv.	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt.	SM
$3^{[174]}$	TMSN 3 2.4 equiv., PhIO 1.2 equiv., TBAF 4 equiv.			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\begin{aligned} & -5^{\circ} \mathrm{C} \\ & \text { to rt. } \end{aligned}$	SM
$4^{[175]}$	-	CAN 4 equiv.	-	DMF	$0^{\circ} \mathrm{C}$	75\% 391
$5^{[177]}$	$\mathrm{Pd}(\mathrm{OAc})_{2} 1.1$ equiv.	-	-	MeCN	rt.	SM

To our delight, we were able to isolate the desired α, β-unsaturated ketone 391 (Scheme 94) in a good yield. Furthermore, subsequent Luche reduction gave the allylic alcohol 392 in 91% yield (Scheme 95). Sulphonamide 397 needed to be prepared for the Mitsunobu reaction. We used dibromide 396 in a Gabriel synthesis to obtain the allylamine which was further protected with 2,4-dinitrotoluenesulfonic acidchloride (DNsCl). Since the proton of the nitrogen was acidic enough, Mitsunobu reaction could be performed using amide 397 to obtain 393 in 95% yield.

Scheme 95. Synthesis of Heck precursor 395. a. CAN (4 equiv.), DMF, $0^{\circ} \mathrm{C}, 75 \%$, b. $\mathrm{CeCl}_{3}{ }^{*} 7 \mathrm{H}_{2} \mathrm{O}$ (2 equiv.), NaBH_{4} (1.5 equiv.), MeOH:THF, 91%, c. amide 397 (1.05 equiv.), PPh_{3} (1.1 equiv.), DEAD (1.1 equiv.), $\mathrm{PhMe}, 0^{\circ} \mathrm{C}, 95 \%, \mathrm{~d}^{2} \mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{SH}$ (1.2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (7 equiv.), $0^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$, e. TFA (5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt.

To examine in how far the DNs deprotection could be troublesome, 393 (Scheme 95) was exposed to mercapto ethanol and triethylamine. In order to prepare indole 395, acetic acid had to be eliminated from 394. Even though the formation of the corresponding ammonium salt was expected, 394 was exposed to TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Even under refluxing conditions no
progress could be observed. By increasing the pH to nine with NaHCO_{3}, amine 394 could be re-isolated.

We changed the sequence in reverse order and obtained indole 395 in a one pot reaction in 95% yield. In order to screen more than one substrate for the cyclisation, secondary amine 395 (Figure 19), tertiary amine 398 and carbamate 399 should be employed to the Heck reaction.

395

398

399

Figure 19. Compounds used in Heck screening.

Extending the one pot indole formation-sequence by a reductive amination, 398 (Scheme 96) could be isolated in 82% yield. Therefore, the reaction mixture was diluted with methanol and formalin solution, acidified with acetic acid and finally $\mathrm{NaBH}_{3} \mathrm{CN}$ was added. Carbamate 399 was obtained in 80% yield by dissolving amine 395 in pyridine and exposing the reaction mixture to methyl chlorocarbonate.

Scheme 96. Sequence to Heck-substrates 395, 398 and 399. a. CAN (4 equiv.), DMF, $0{ }^{\circ} \mathrm{C}, 75 \%$, b. $\mathrm{CeCl}_{3} * 7 \mathrm{H}_{2} \mathrm{O}$ (2 equiv.), NaBH_{4} (1.5 equiv.), $\mathrm{MeOH}: T H F, 0^{\circ} \mathrm{C}, 91 \%, \mathrm{c}$. amide 397 (1.05 equiv.), PPh_{3} (1.1 equiv.), DEAD (1.1 equiv.), $\mathrm{PhMe}, 0^{\circ} \mathrm{C}, 95 \%$, d. TFA (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{SH}$ (1.2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (7 equiv.) 95%, e. $\mathrm{CH}_{2} \mathrm{O}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{3} \mathrm{CN}$ (3 equiv.), HOAc (5 equiv.), $0^{\circ} \mathrm{C}, 82 \%$ over three steps from $393, \mathrm{f}^{\mathrm{ClCO}}{ }_{2} \mathrm{Me}$ (1.1 equiv.), pyridine, $0^{\circ} \mathrm{C} .80 \%$.

The three substrates $\mathbf{3 9 5}$ (Scheme 96), 398 and 399 were exposed to different Heck reactionconditions (Table 14) to examine the envisaged ring-closure.

Entry	Catalyst	Conditions	Outcome
$1^{[178]}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.), DMF, $120{ }^{\circ} \mathrm{C}$	SM
$2^{[179]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol} \%)$	$\mathrm{Et}_{3} \mathrm{~N}$ (3 equiv.), AgNO_{3} (1 equiv.), DMSO, $50^{\circ} \mathrm{C}$	SM
$3^{[180]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol} \%), \mathrm{PPh}_{3}(6 \mathrm{~mol} \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2 equiv.), MeCN, rflx.	decomp.
$4^{[181]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$ (3 mol\%), $\mathrm{PPh}_{3}(6 \mathrm{~mol} \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (3 equiv.), DMF, rt.	SM
$5^{[182]}$	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(10 \mathrm{~mol} \%), \mathrm{s}-\mathrm{tBuPHOX}$ (20 Mol\%)	TMG (5 equiv.), MeCN, $80{ }^{\circ} \mathrm{C}$	decomp.
$6^{[183]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	TBAC (2 equiv.), KOAc (5.5 equiv.), DMF, $100^{\circ} \mathrm{C}$	20\%
$7{ }^{[184]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(2 \mathrm{~mol} \%)$	$\mathrm{CsOAc}\left(2\right.$ equiv.), DMA, $40^{\circ} \mathrm{C}$	SM
$7^{[184]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(2 \mathrm{~mol} \%)$	CsOAc (2 equiv.), DMA, $120^{\circ} \mathrm{C}$	decomp.
$8^{[185]}$	$\begin{gathered} {\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right](5 \mathrm{~mol} \%), \mathrm{HBF}_{4} \mathrm{P}(t \mathrm{Bu})_{3}} \\ (10 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{Cy}_{2} \mathrm{NMe}$ (2 equiv.), LiCl (1 equiv.), DMF, $100{ }^{\circ} \mathrm{C}$	decomp.
$9^{[186]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(20 \mathrm{~mol} \%)$	$\mathrm{Et}_{3} \mathrm{~N}$ (2.5 equiv.), $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ (1 equiv.), MeCN, $\mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}$	decomp.
$10^{[187]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(20 \mathrm{~mol} \%)$	$\mathrm{Et}_{3} \mathrm{~N}$ (2.5 equiv.), TBAB (1 equiv.), $\mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}$	traces

Classical Jeffrey conditions for the Heck crosscoupling were the only ones which delivered a product ($\mathbf{4 0 2}$, Scheme 97) in 20% yield. Extensive NMR analysis was necessary to elucidate the structure. Since the structure did not allow the β-hydride elimination of palladium, we expected the aromatic core to push the catalyst out of the system (Scheme 97). Whereas the aromatic system did not affect the palladium complex, it was removed via a $\mathrm{S}_{N} 2$ replacent by acetate.

Scheme 97. Heck reaction under Jeffrey conditions. Palladium is not able to undergo the β-hydride elimination. a. TBAC (2.1 equiv.), $\mathrm{CsOAc}\left(5.8\right.$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), $\mathrm{DMF}, 65^{\circ} \mathrm{C}, 25 \%$.

Kaufmann et al. ${ }^{[188]}$ described a similar case, when they treated endo, exo-bis-homobarrelene (403; Scheme 98) with iodobenzene under hydroarylation conditions. Lacking a β hydride, the palladium interacts with the Walsh orbitals of the cyclopropane which leads to the highly strained octahedral complex 405 that further undergoes a reductive elimination to form 406. Only this complex compiles the requirements for a β-hydride elimination to form 407.

Scheme 98. Hydroarylation of endo,exo bishomobarrelene (403). a. $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($2.5 \mathrm{~mol} \%$), AsPh_{3} (11 mol\%), Arl (1.5 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (3.5 equiv.), $\mathrm{HCO}_{2} \mathrm{H}$ (3 equiv.), DMF (0.3 M), $65^{\circ} \mathrm{C}, 15 \mathrm{~h}, 81 \%$.

In order to optimise the Heck reaction, different parameters were varied such as the amount of catalyst, base and additives (Table 15).

Table 15. Parameters changed in order to optimise the yield.

Entry	Catalyst	Base	Additive	Outcome
1	$\mathrm{Pd}(\mathrm{OAC})_{2}(10 \mathrm{~mol} \%)$	$\mathrm{KOAc}(5.8$ equiv.)	TBAC (2.1 equiv.)	20%
2	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	$\mathrm{CsOAc}(5.8$ equiv.)	TBAC (2.1 equiv.)	25%
3	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	$\mathrm{AgOAc}(5.8$ equiv.)	TBAC (2.1 equiv.)	15%
4	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	$\mathrm{CsOAc}(5.8$ equiv.)	TBAC (5.8 equiv.)	decomp.
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	$\mathrm{CsOAc}(5.8$ equiv.)	TBAC (1 equiv.)	10%
6	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	TBAOAc (5.8 equiv.)	TBAC (2.1 equiv.)	decomp.
7	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	TBAOAc (2.1 equiv.)	TBAC (2.1 equiv.)	decomp.
8	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	CsOAc (2.1 equiv.)	TBAC (2.1 equiv.)	8%

A slight increase of the yield has been achieved when KOAc was displaced by CsOAc (Table 15, Entry 2). The change of every other parameter caused a decrease in yield.

To enhance the yield of the reaction, the reactivity of the substrate had to be increased. The bromide had to be replaced by an iodide since vinyl iodides are much more reactive. Starting from propargylic alcohol, iodine 377 (Scheme 99) was easily obtained. After mesylation and the Gabriel synthesis, we were not able to isolate a proper amount of the amine which in
addition was sensitive to air and light. We were able to solve the isolation problem by preparing the corresponding hydrochloride. Protecting the amine with DNsCl was not possible under the conditions utilised for the corresponding bromide 397 (Scheme 96). Therefore, the substrate has been dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pyridine at $-78^{\circ} \mathrm{C}$ before DNsCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. After workup, the sulphonamide $\mathbf{3 7 7}$ was obtained which was also much more stable to air and light.

In order to save time and purification steps, we pooled the reaction sequences which also caused a slight increase in the overall yield of this sequences (Scheme 99). Tandem cyclopropanation, DVCP-reaction, subsequent reduction and protection delivered 390 in 34% yield over three steps. Further Saegusa oxidation followed by Luche reduction and Mitsunobu reaction gave 408 in 70% yield over three steps.

Scheme 99. Pooled synthesis of vinyl iodides 409, 410 and 411. a. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (1 mol) , diene 218 (1.5 equiv.), benzene, $70{ }^{\circ} \mathrm{C}$, then NaBH_{4} (2 equiv.), MeOH:THF $0^{\circ} \mathrm{C}$, then $\mathrm{Ac}_{2} \mathrm{O}$ (2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 34 \%$ over three steps, b . CAN (4 equiv.), DMF, $0^{\circ} \mathrm{C}$, then $\mathrm{CeCl}_{3}{ }^{*} 7 \mathrm{H}_{2} \mathrm{O}$ (2 equiv.), NaBH_{4} (1.5 equiv.), $\mathrm{MeOH}: T H F, 0^{\circ} \mathrm{C}$, then amide 377 (1.05 equiv.), PPh_{3} (1.1 equiv.), DEAD (1.1 equiv.), $\mathrm{PhMe}, 0^{\circ} \mathrm{C}, 70 \%$ over three steps, c . TFA (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{SH}$ (1.2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (7 equiv.) 75%, d. $\mathrm{ClCO}_{2} \mathrm{Me}$ (1.1 equiv.), pyridine, $0^{\circ} \mathrm{C} .82 \%$, e. TFA (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{SH}$ (1.2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (7 equiv.), then $\mathrm{CH}_{2} \mathrm{O}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{3} \mathrm{CN}$ (3 equiv.), HOAc (5 equiv.), $0^{\circ} \mathrm{C}, 78 \%$ over two steps.

After Mitsunobu reaction with the allylic alcohol, the resulting product was converted into the indole and the DNs group was cleaved (Scheme 99) in one pot. Again, the methylamine 411 was prepared using the extended one pot reaction (Scheme 99). Furthermore, 409 was also used to provide carbamate 410. The three compounds were exposed to the same conditions as the corresponding bromide (Table 14). Again, only the carbamate underwent the coupling in 50% yield along with CsOAc as the base (Table 15, entry 2).
The next steps to prepare 315 were the reduction of the carbamate to the methylamine, ${ }^{[189]}$ elimination of the acetate group and deprotection of the indole (Scheme 100). LAH reduction
of carbamate 402 which would also liberate the alcohol at $\mathrm{C}-10$ (utilising ergoline nomenclature ${ }^{[190]}$) led exclusively to a brown slurry where no product could be isolated from. Using DiBAl-H led to the same result. Performing the synthesis sequence in reverse order, 402 was exposed to magnesium in methanol which was treated by ultrasonic sound. Again, only decomposition of the starting material could be observed by TLC and NMR spectroscopy.

Scheme 100. If $R=M e$ a. LAH (10 equiv.), THF, rt. to reflux. If $R=\mathrm{H}$ a. DiBAI- H (3 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to rt .
b. Mg (10 equiv.), MeOH , ultrasonic sound.

As it was not possible to combine two transformations in one reaction, we decided to proceed stepwise. In the first step, the acetate should be saponificated and the resulting alcohol should be eliminated to provide the necessary olefin. In order to decide which elimination conditions we needed, it was decisive to know the relative stereochemistry of the alcohol and the allyl substituent. Therefore, we had to take a closer look at the mechanism of this Heck reaction (Scheme 97). As the allyl palladium species adds in a syn fashion to the double bond, the $\mathrm{S}_{N} 2$ reaction of the acetate has to deliver a trans relation between the acetate and the allyl substituent. This means that a syn-elimination should provide 415.

In a first step, the acetate was cleaved under basic conditions using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol treated with ultrasonic sound (Scheme 101). The desired alcohol 414 could be obtained in 75% yield. Subsequently, alcohol 414 was converted into the xanthogenate 416 to perform the Chugaev reaction. ${ }^{[191]}$

Scheme 101. a. $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.), MeOH , ultrasonic sound, 75%, b. see Table $16, \mathrm{c} . \mathrm{CS}_{2}$ (10 equiv.), NaH (5 equiv.), Mel (20 equiv.), THF 70%, d. xylene, $180^{\circ} \mathrm{C}$, no conversion.

In order to perform a syn elimination, 414 was exposed to different reagents and conditions, summarised in Table 16.

Entry	Conditions	Outcome
$1^{[192]}$	2-nitrophenyl selenocyanate (1.2 equiv.), pyridine (1 equiv.), PBu_{3}	
	(1.2 equiv.), THF, rt. then reflux	SM
$2^{[193]}$	$\mathrm{MeO}_{2} \mathrm{CNSO}_{2} \mathrm{NEt}_{3}$ (Burgess Reagent, 1.5 equiv.), PhH, reflux	SM
3	$\mathrm{DEAD}\left(1.2\right.$ equiv.), PPh_{3} (1.2 equiv), PhH, reflux	SM
4	$\mathrm{DCC}\left(2\right.$ equiv.), 4-DMAP (10 mol\%) DMF, $80^{\circ} \mathrm{C}$	SM
5	$\mathrm{TFA}\left(50\right.$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$, reflux	decomp.
$6^{[194]}$	$\left[\mathrm{Ph}_{3} \mathrm{POPPh}_{3}\right](\mathrm{OTf})_{2}\left(1.5\right.$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt	SM

To exclude a wrong determination of the relative stereochemistry, $\mathbf{4 1 4}$ (Scheme 101) was also exposed to mesylation and triflation conditions.

Also, these attempts did not deliver elimination product 415. At this point, the plan to prepare common intermediate $\mathbf{3 1 5}$ via this method had to be abandoned, as it was not possible to establish the diene system we had focused on.

In order to prepare at least one abeo-ergot alkaloid, we focused on 322 (Scheme 102). This member from the abeo-ergot alkaloid family does not contain the two double bonds. To achieve the goal, the acetate and the carbamate had to be removed and the olefin needed to be reduced.

Scheme 102. 322 from 402.
Fortunately, the first attempt to de-functionalise $\mathrm{C}-10$ at 402 (Scheme 103) has been successful, giving a moderate yield of 50% utilising $\mathrm{InBr}_{3}, \mathrm{Et}_{3} \mathrm{SiH}$ in freshly distilled trichoromethane as described in Sakai's protocol. ${ }^{[195]}$ Attempts to de-functionalise the acetate using $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN failed. Compound 417 was further exposed to LAH which led to decomposition of the starting material.

Scheme 103. Defunktionalisation of 402. a. InBr_{3} ($5 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}$ (4 equiv.), $\mathrm{CHCl}_{3}, 55^{\circ} \mathrm{C}, 50 \%$, b. LAH (10 equiv.), THF, rt. to reflux, decomposition.

As the $4^{\text {th }}$ approach also seemed to be a dead end, an extensive revision of our strategy was necessary. In this revision, a few important aspects had to be considered. The first point was to avoid the carbamate since we were not able to convert it into the methyl group. Second, a method was needed for the formation of the five-membered ring which avoided nucleophilic bases.

Having another look at the structure, we considered the synthesis of the pyrrolidine moiety a perfect target for gold catalysis. Gold tolerates many functional groups and a cation is formed as an intermediate (420). This cation should promote the deprotonation to form the desired olefin between C-9 and C-10 (Scheme 104). Therefore, the retrosynthesis was revised (Scheme 105).

Scheme 104. Proposed formation of 421 via gold catalysis.
The key step of this revised retrosynthesis (Scheme 105) is the gold catalysed 5-exo-dig cyclisation to form 315. The precursor can be obtained by a Mitsunobu reaction of 422 and 391. Alkyne 422 is easily accessed by protecting propagylamine (423) with DNsCl. Saegusa type reaction of $\mathbf{3 9 0}$ provides 391 which is further reduced under Luche conditions. Cyclopropanation and DVCPR of 337 and 218 yield 222.

Scheme 105. Revised retrosynthesis towards 315.

The revised synthesis started with a Mitsunobu reaction of Luche product 392 (Scheme 106) using DNs protected propagylamine 422 which was obtained following Chakrapani's protocol in a very good yield of $98 \% .{ }^{[196]}$ Amide 424 was exposed to $\mathrm{AuPPh}_{3}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. When the reaction was complete, the reaction mixture was immediately cooled to $0^{\circ} \mathrm{C}$ and the solvent has been removed in vacuo at that temperature. Contrary to the expectations the alkyne remained untouched. Instead, corresponding indole 419 was obtained in 95% yield.

Scheme 106. a. DNsNHpropagyl 422 (1.1 equiv.), PPh_{3} (1.2 equiv.), DEAD (1.2 equiv.), $\mathrm{PhMe}, 0^{\circ} \mathrm{C}, 95 \%, \mathrm{~b}$. $\mathrm{AuClPPh}_{3}$
($2 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}$ ($2 \mathrm{~mol} \%$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5 \mathrm{~min}, \mathrm{rt} .95 \% .421$ was not observed.

It was surmised that the reaction time has been too short, so the reaction was repeated and the reaction mixture was stirred until either 424 and 419 were consumed. The isolated product was indeed the desired 5-exo-dig 426 (Scheme 108) and not the also possible 6-endodig product 425 (Scheme 107).

Scheme 107. Formation of 5-exo-dig (421) and 6-endo-dig (425) product via gold catalysis.

Instead of the elimination product 421 (Scheme 107), acetate has been introduced at C-10 (426; Scheme 108). This is reasonable, since the reaction conditions involve acetate as an in situ nucleophile. To prove this hypothesis, 424 was treated with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to form indole 419. When the gold cyclisation was repeated, only a slight conversion could be observed after three hours. The reaction mixture was purified and 91% of substrate 419 was recovered, while the new product 427 was obtained in 4% yield. Extensive NMR analysis led to the conclusion that the residual water in the dry solvents from Acros Organics ${ }^{\circledR}$ reacted as nucleophile in this case. Repeating the reaction in freshly distilled solvent led to no conversion.

Scheme 108. Formation of 426 and 427 via gold catalysis. a. $\mathrm{AuClPPh}_{3}$ ($2 \mathrm{~mol} \%$), AgSbF_{6} ($2 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2},>15 \mathrm{~min}$, rt., b. TFA (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 92 \%$.

In order to increase the yield of 427 (Scheme 108), compound 419 and the gold catalyst were exposed to an excess of water. The best results were achieved when treating the reaction mixture with ultrasonic sound and water in dioxane. Under these conditions alcohol 427 was obtained in 52% yield (89% brsm.). It is noticeable that the reaction stops at one point at which the addition of catalyst or/and water does not cause further progress. To see if the alcohol can be eliminated or de-functionalised, 427 was exposed to different conditions (Table 16,
entry 2-6). Utilising Burgess reagent delivered traces of a product. But neither syn nor anti elimination conditions delivered the desired diene 421 (Scheme 106).

As these results were dissatisfying, we needed to investigate whether the used physical model deviated from the real structure or if the chosen methods to achieve the elimination were insufficient. Using Avogadro ${ }^{\oplus}$, we were able to calculate the energy minima of tetracycle 427 by the force field method (Figure 20). The result revealed that the system obtained by goldcyclisation is not suitable for any kind of syn-elimination, as the hydroxyl group III and the synproton I cannot take the eclipsed conformation. Furthermore, it is clearly evident from the model that any kind of $S_{N} 2$ reaction with the alcohol and its derivatives is prohibited by the sevenmembered ring.

A non-representative energy minimisation of cation 420 (Scheme 104) using Chem3D ${ }^{\circledR}$ also revealed that the empty orbital and the corresponding proton always adopt a gauche configuration so the elimination of the proton cannot take place.

Figure 20. Avogadro energy minimisation via forcefield calculation.

Therefore, once again the synthesis was focused on the preparation of $\mathbf{3 2 2}$ as it lacks the two olefins. Since the de-functionalisation of the acetate provided acceptable yields, it was decided to proceed the synthesis via 426 (Scheme 109). To improve the yield of acetate 426, it needed to be prepared under controlled conditions (Table 17).

Entry	Conditions	Outcome
1	AuPPh SbF_{6} (4 mol\%), CsOAc (20 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{U} / \mathrm{S}, 55^{\circ} \mathrm{C}$	SM
2	AuPPh $3_{3} \mathrm{SbF}_{6}$ (4 mol\%), CsOAc (10 equiv.), AcOH (5 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{U} / \mathrm{S}, 55^{\circ} \mathrm{C}$	SM
3	$\mathrm{AuPPh}_{3} \mathrm{SbF}_{6}$ (4 mol\%), AcOH (10 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{U} / \mathrm{S}, 55^{\circ} \mathrm{C}$	$\begin{gathered} 40 \% 426, \\ 6 \% 427 \end{gathered}$
4	$\begin{gathered} \mathrm{AuPPh}_{3} \mathrm{SbF}_{6}(4 \mathrm{~mol} \%), \mathrm{AcOH}\left(26 \text { equiv.), } \mathrm{Ac}_{2} \mathrm{O} \text { (16 equiv.) } \mathrm{CH}_{2} \mathrm{Cl}_{2},\right. \\ \mathrm{U} / \mathrm{S}, 55^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 90-97 \% \\ 426 \end{gathered}$

The highest yield could be obtained by the addition of acetic acid and acetic anhydride (Table 17, Entry 4). These conditions led to the lowest formation of side products. Unfortunately, the results were not reproducible while using a new batch of alkyne 419 (Scheme 109), even though there was no difference in analytical data. Since we knew that the substrate decomposed after five to ten minutes, we started the reaction and an aliquot was taken every 30 seconds from the reaction mixture and cooled it to $-78^{\circ} \mathrm{C}$. TLC control as well as crude NMR spectra revealed that the new batch was much more reactive than the first one. The reaction was complete after 60 to 120 seconds. After this timespan the degradation of the product started and proceeded quickly. Neither the substrate nor the product could be isolated after 300 seconds had passed.

Having acetate 426 (Scheme 109) in hands, we cleaved the DNs-group with thiophenole. When the reaction was complete, acetic acid was added until $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was neutralised followed by the addition of formalin solution, $\mathrm{NaBH}_{3} \mathrm{CN}$ and more acetic acid. Amine 428 was obtained in 63% yield. Under the known de-functionalisation conditions no conversion could be achieved. The reason might be the formation of a Lewis acid base pair, as the amine is a perfect electron donor while the sulphonamide or the carbamate were poor Lewis bases.

Scheme 109. Synthesis of 418. a. $\mathrm{AuPPh}_{3} \mathrm{SbF}_{6}$ (4 mol\%), AcOH (26 equiv.), $\mathrm{Ac}_{2} \mathrm{O}$ (16 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ultrasonic sound, $55^{\circ} \mathrm{C}$, $90-97 \%$, b. thiophenol (1.15 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.15 equiv.), MeCN, $0^{\circ} \mathrm{C}$, then HOAc (0.6 equiv.), $\mathrm{CH}_{2} \mathrm{O}$ (2.5 equiv.), $\mathrm{NaBH}_{3} \mathrm{CN}$ (1.1 equiv.), $\mathrm{HOAc}\left(3\right.$ equiv.), $\mathrm{H}_{2} \mathrm{O}, 63 \%, \mathrm{c} . \operatorname{lnBr} 3$ ($5 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}$ (4 equiv.), $\mathrm{CHCl}_{3}, 55^{\circ} \mathrm{C}, \mathrm{SM}$ only, d. $\operatorname{lnBr} r_{3}\left(5 \mathrm{~mol}^{2}\right), \mathrm{Et}_{3} \mathrm{SiH}$ (4 equiv.), $\mathrm{CHCl}_{3}, 55^{\circ} \mathrm{C}, 49 \%$, e. thiophenol (1.15 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.15 equiv.), MeCN, $0^{\circ} \mathrm{C}$, then $\mathrm{HOAc}\left(0.6\right.$ equiv.), $\mathrm{CH}_{2} \mathrm{O}$ (2.5 equiv.), $\mathrm{NaBH}_{3} \mathrm{CN}$ (1.1 equiv.), HOAc (3 equiv.), $\mathrm{H}_{2} \mathrm{O}$, not optimised.

Using acetate 426 under the given de-functionalisation conditions, sulphonamide 429 could be obtained in 49% yield. Cleavage of the protecting group utilising thiophenole and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and subsequent reductive amination delivered amine 418. To reduce the remained olefin, amine 418 was exposed to the conditions listed in Table 18 (Scheme 110).

Scheme 110. Preparation of 430. a. See Table 18.

Table 18. Hydrogenation conditions used on 418.

Entry	Catalyst	Solvent	H_{2}	Outcome
$1^{[197]}$	$10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%)$	$\mathrm{EtOH} / \mathrm{EtOAc}$	1 atm.	SM
2	$10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%)$	MeOH	$10-80 \mathrm{~atm}$.	SM
$3^{[198]}$	$20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(10 \mathrm{~mol} \%)$	$\mathrm{MeOH} / \mathrm{EtOAc}$	1 atm.	SM
$4^{[199]}$	$5 \% \mathrm{Pt} / \mathrm{C}(5 \mathrm{~mol} \%)$	MeOH	1 atm.	SM
5	$5 \% \mathrm{Pt} / \mathrm{C}(5 \mathrm{~mol} \%)$	MeOH	$10-80 \mathrm{~atm}$.	SM
$6^{[200]}$	$\mathrm{PtO}_{2}(5 \mathrm{~mol} \%)$	EtOAc	1 atm.	decomp.

As the given conditions did not result in the desired amine 430, we decided to de-protect the indole (Scheme 111, Table 19) before reducing of the exo-methylene group of amine 431.

Scheme 111. De-tosylation and reduction to 322. a. SeeTable 19.
Table 19. De-tosylation conditions for indole.

Entry	reagent	additive	conditions	solvent	temp.	outcome
$1^{[201]}$	Mg (10 equiv.)	-	U/S	MeOH	rt.	SM
$2^{[201]}$	Mg (10 equiv.)	$\begin{gathered} \mathrm{NH}_{4} \mathrm{Cl} \\ \text { (1 equiv.) } \end{gathered}$	U/S	MeOH	rt.	SM
$3^{[202]}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv.)	-	-	THF: MeOH	rt.	SM
$4^{[203]}$	Sml_{2} (6 equiv.)	Pyrrolidine (12 equiv.): $\mathrm{H}_{2} \mathrm{O}$ (24 equiv.)	-	THF	rt.	50\% 431
$5^{[204]}$	KOH (5 equiv.)	$\mathrm{N}_{2} \mathrm{H}_{4}$ (3 equiv.)	-	THF:MeOH	rflx.	SM

Finally, the tosyl group was cleaved utilising Sml_{2} and pyrrolidine (Entry 4; Table 19). Samarium diiodide was prepared under less conventional conditions by treating Samarium and diiodoethane in THF with ultrasonic sound at $60^{\circ} \mathrm{C}$. This foreshortened the preparation time to 20 minutes instead of 18 h .

At this point neither material nor time has been left to complete this synthesis which resulted in the halt of the project.

3.4 Additional Material

During the $4^{\text {th }}$ synthetic approach, we figured out how to circumvent the reactivity of indole and oxindol. To leave the door open for future approaches, it was decided to prepare aminal 432 and 433 (Scheme 112).

Scheme 112. Preparation of aminals 432 and 433. a. NaBH_{4} (2.2 equiv.), $\mathrm{MeOH}: \mathrm{THF}-30^{\circ} \mathrm{C}{ }^{\circ} \mathrm{C}$, then $\mathrm{Ac}_{2} \mathrm{O}$ (2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} 70 \%$ b. NaBH_{4} (2.2 equiv.), MeOH :THF $-30^{\circ} \mathrm{C}^{\circ} \mathrm{C}$, then $\mathrm{Ac}_{2} \mathrm{O}$ (2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C} 30 \%$.

Testing the conditions shown in Table 6, 7, 9 and 10 may establish new routes toward the synthesis of $5(10 \longrightarrow 9)$ abeo-ergolines based on the $1^{\text {st }}$ and $3^{\text {rd }}$ approach.

3.5 Summary and Outlook

This work examined the synthesis of $5(10 \rightarrow 9)$ abeo-ergoline derivatives 315 and 322 which are originally derived from methyl lysergate (328) in order to apply the divinylcyclopropane rearrangement to a total synthesis. The general synthetic access should lead to the privileged intermediate 315 from which the other substrates (Figure 17) would be derived from.

The synthesis of $\mathbf{3 1 5}$ starting from commercially available substrates was based on four different retrosynthetic approaches. The first was based on a Heck reaction to the core structure followed by a Hoffmann-Löffler-Freytag reaction which should close the fivemembered ring. Since it was impossible to shift the doublebond into conjugation, the route was discarded. In the second approach a selective allylic/benzylic oxidation should deliver an unsaturated ketone. Then a 1,4 addition and Heck reaction should lead to the pyrrolidine moiety. The unefficient selectivity of the reagents led to a quick dismiss of that route. The Wolff approach also failed by forming a spiro oxindole 360. The key features of the third approach were the cyclopropanation/DVCPR to 230 and a γ-functionalisation with dinosylperoxide. In this case, the formation of the necessary enolate failed so no further functionalisation could be performed.

The fourth approach was based on a cyclopropanation/DVCPR of $\mathbf{2 2 2}$ followed by a Saegusa type reaction in order to functionalise the seven-membered ring (Scheme 113). Furthermore, an amide based Mitsunobu and Heck reaction should complete the system. We were able to obtain the Heck product in a low yield in eight steps from $\mathbf{3 3 7}$. Since no β-hydride elimination was possible, palladium intermediate was substituted by acetate. Neither the elimination of the acetate nor the reduction of the carbamate to the corresponding methyl amine worked.

Scheme 113. Failed approach towards the synthesis of 315 and 322. a. TBAC (2.1 equiv.), $\operatorname{CsOAc}\left(5.8\right.$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (10 mol\%), DMF, $65^{\circ} \mathrm{C}$, b. InBr_{3} ($5 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}$ (4 equiv.), $\mathrm{CHCl}_{3}, 55^{\circ} \mathrm{C}, \mathrm{c} . \mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.), MeOH , ultrasonic.

Replacement of the vinyl halogenides by a propagylic amide and use of gold-(I) catalyst lead to the same result since the orbitals neither allow a syn, nor an anti-elimination (Scheme 114). Furthermore, an inversion of the stereogenic centre would not work as the seven membered ring blocks the backside of the corresponding alcohol. Considering that we would not be able to prepare common intermediate $\mathbf{3 1 5}$ via this route, this project should be finished by the synthesis of 322. Due to the lack of time and material, the synthesis of 322 remains unfinished with the last step missing.

Scheme 114. Missing transformation for the completed total synthesis of $\mathbf{3 2 2}$.

Future investigations should focus on the optimisation of the defunctionalisation, as it is presumed that the radical conditions lead to a ring opening and rearrangement of the bonds. Additionally, the reduction of the remaining doublebond using Crabtree's catalyst should be performed to finish the synthesis.

In order to get to $\mathbf{3 2 2}$ (Scheme 114), other gold catalysts should be tested as well as the corresponding reaction conditions.

Regarding the first three approaches, two substrates were prepared baring the reactivity of indole and oxindole (Scheme 112). Exposing them to the given conditions may answer the question whether the system is not suitable at all for these reactions or if? the typical reactivity of indole and oxindole caused the failing.

4 Thorpe-Ingold Effect on the DVCPR

"Kinetik ist wohl nicht Ihr Gebiet. Sie sind in jede meiner Fallen getappt."

Prof. Dr. Ronald Imbihl

4.1 Introduction

4.1.1 Thorpe Ingold effect

Thorpe, Ingold and Beesely reported a correlation between the change of bond angles of acyclic carbon centres and the rate constant for the formation of cyclisation products in 1915. They observed that an increase of alkyl substituents at the carbon centre causes a decrease of the internal bond angle (Figure 21). ${ }^{[205]}$ They postulated that this decreased angle moves the reactive groups closer together, facilitating the cyclisation event and stabilising the newly formed small ring.

434

436

Figure 21. Thorpe-Ingold effect.
The decrease of the inner bond angle has been proven by X-ray measurements of malonic acid derivatives. While the angle for malonic acid is 110° (Figure 22), ${ }^{[206]}$ the angle of dimethyl malonic acid is decreased to 106.2°. Subsequently, the formation of the dimethyl malonic anhydride should be favoured. On the other hand, a cyclopropyl substituent, which resembles a gem-dimethyl group, increases the angle to 118.4°.

110.0°
437

438

439

Figure 22. gem-dialkylsubstituent effect on bond angle.
Von Schleyer was the first to question this explanation in 1961. ${ }^{[207]}$ According to him, the change in bond angle of $2-3^{\circ}$ cannot explain the large increase of rate during the cyclisation. The results of Brown et al. reveal that the size of the gem-dialkyl substituents may be the reason for rate enhancement (Scheme 115). ${ }^{[208]}$ They executed experiments with differently substituted bromobutylamines in order to prepare pyrrolidines. While 442 caused a two folded and 444 a 158 folded increase of the rate constant, 448 led even to a decrease to 0.158 which is reasonable for a substrate with a leaving group in neopentylic position. On the other hand, 446, entry 4 and 6 in Table 20 exhibited a tremendous increase of the rate constant. The authors explained the result with the distribution of rotational conformations. The gemdialkyl effect favours the folded configuration instead of the "zig zag" form of the nonsubstituted chains.

Scheme 115. Relative rate of cyclisation to pyrrolidines.

Table 20. Substituents and the relative rate constant.

Entry	Substituents	$\mathrm{k}_{\text {rel }}$
1	-	1
2	1,1-dimethyl	2.2
3	2,2-dimethyl	158
4	2,2-diethyl	594
5	2,2-diisopropyl	9190
6	2,2-diphenyl	5250
7	3,3-dimethyl	0.158

Bruice et al. took another approach. ${ }^{[209]}$ They surmised the reason for the increased reactivity in reactive rotameres (Scheme 116). In their hydrolysis studies of monophenyl succinate, glutarate and their disubstituted derivatives, they concluded that substituents in β-position increase the rate for the ring closure and cause a decrease for the following ring opening. It was deduced that the β-substituents decrease the distribution of unfavourable ground state rotamers by increasing the energy of the whole system. While the unsubstituted substrates (450a; Scheme 116) favour the anti-rotamer, in case of β-gem-dialkyl substituted substrates (452a) the energy of anti and gauche rotamers is equal. Thus, the energy necessary to switch between the rotamers is decreased while the population of the reactive rotameres is increased. Therefore, the activation energy for the ring closure will also be decreased.

Scheme 116. Effect of reactive rotamers on cyclisation.

The theory of the reactive rotameres has been supported by the results of intramolecular Diels-Alder reaction experiments (Scheme 117). In the first example, the core system 454 did not react at all while 5% of the gem-dimethyl substrate 456 could undergo the reaction. ${ }^{[210]}$ Replacement of the two methyl groups by a cyclohexane (460) or two propyl groups (458) increased both yield and rate.

Scheme 117. Substituent-effect on intramolecular Diels-Alder.

Based on the hypothesis of Thorpe and Ingold, the cyclic substituent should slower the reaction compared to the corresponding dimethyl substrate as the inner bond angle is increased. Jung et al. have described similar results (Scheme 118). ${ }^{[211]}$ They developed a system allowing the obversation of the two effects and comparing them. They assumed the cyclobutyl and cyclopropyl substituents to slow the reaction if the gem-dialkyl effect is only based on angle compression. On the other Hand, the relative rates of 462a and 462b should be similar if the effect is based only on the reactive rotamere effect. The rates obtained for cyclobutyl and cyclopropyl were neither the same as 462b nor lower than entry 1, Table 21. The aforementioned results contradict the theory of Thorpe and Ingold who proposed that the rate enhancement is exclusively based on the compression of the angle as the cyclic substituents cause an angle enlargement. Furthermore, these results support those who claim that the gem-dialkyl effect is based on multiple factors.
Schemer

4.1.2 Divinylcyclopropane rearrangement

The racemisation of cyclopropanes is a generally known reaction. Rabinovitch and Schlag were able to proof the reversible cis-trans-isomerisation by heating trans-1,2-dideuteriocyclopropane to $450^{\circ} \mathrm{C}$ and quenching the reaction after passing 50% of the reaction time ${ }^{[212]}$ They were able to isolate 25% cis-, 65% trans-1,2-dideuteriocyclopropane and 8% propene. The common intermediate leading to all three products is proposed to be trimethylene (Table 22), a diradical species. Hoffmann and Hammond described the trimethylene in more detail, ${ }^{[213]}$ as they calculated three conformations for it. The three-possible species 0.0 (464a), 90.90 (464b) and 0.90 (464c) can be transferred into one another. Nevertheless, they have to overcome a rotation barrier of $8 \mathrm{kcal} / \mathrm{mol}$, indicating the π-character of 90.90 trimethylene (464b). Furthermore, Hoffmann interprets his results as a proof for the isomerisation to be a Woodward-Hoffmann controlled reaction. However, the orbital-symmetry control of this reaction could not be proven in various experiments.

Table 22. Conformations and energies of trimethylene.

Label	0.0	90.90	0.90
Energy	$44 \frac{\mathrm{kcal}}{\mathrm{mol}}$	$>52 \frac{\mathrm{kcal}}{\mathrm{mol}}$	$52 \frac{\mathrm{kcal}}{\mathrm{mol}}$

Cram on the other side was able to proof a zwitterionic intermediate (Scheme 119), depending on the substituents on the cyclopropane. ${ }^{[214]}$ Applying cyclopropanes with electron withdrawing groups to methanol at $150^{\circ} \mathrm{C}$, both the racemisation and the solvolysis product 466 were isolated.

Scheme 119. Cram's zwitterionic thermoylsis.

Divinylcyclopropanes are more feasible for the investigation of the racemisation of cyclopropanes. They offer the advantage of confined reactivity of these compounds to the bond between the two vinyl groups. Crawford et al. used (1S:2S)-trans-1,2-divinylcyclopropane ($\mathbf{1 0 0}$; Scheme 120) in order to investigate whether 0.0-trimethylene (464a) is
formed by orbital control or not. ${ }^{[215]}$ They proposed that the rate of racemisation should exceed the rate of the formation of $94\left(k_{r a c}>k_{2}\right)$ if the ring-opening and closing proceeds via a preferred mode. In all their experiments, they obtained $k_{2}>k_{r a c}$ which led them and many others to the conclusion that the isomerisation is a diradical and not an orbital controlled process.

Scheme 120. Crawford's racemisation experiments.
In opposite to Crawford, Perlberger et al. proposed not only the racemisation to occur most probably via a di-radical, but also the thermally induced Cope rearrangement itself may proceed via a radical mechanism (Scheme 121). ${ }^{[216]}$

Scheme 121. Perlberger's proposed mechanism for the formation of 471 from cis-and trans-divinylcyclopropane.
During their investigations to elucidate the mechanism of the in vivo formation of $\mathbf{4 7 3}$ and $\mathbf{4 7 5}$ (Scheme 122), 472 and 474 have been irradiated by a mercury lamp in benzene at $40^{\circ} \mathrm{C}$.

Scheme 122. In vivo synthesis of 473 and 475 by Dictyopteris.

Upon irradiation, a mixture of 471, 470 and the starting materials 467 and 468 were obtained in different ratios. The presence of $\mathbf{4 7 0}$ led them to the conclusion that the cyclisation has to proceed via a radical mechanism. It has been not concidered that the rearrangement may be caused by the isomerisation of 467 to 469 and subsequent DVCPR induced by the elevated temperature of $40^{\circ} \mathrm{C}$. Although ongoing investigations were mentioned, they remained short on experimental evidence.

4.1.3 Chemical kinetics

A general chemical reaction can be written as the following reaction equation (a):

$$
\begin{equation*}
\left|v_{A}\right| A+\left|v_{B}\right| B+\cdots \rightarrow\left|v_{C}\right| C+\left|v_{D}\right| D+\cdots \tag{a}
\end{equation*}
$$

The progress of the reaction can be observed by the alteration of the concentration depending on the time from which a rate law (b) is deduced.

$$
\begin{equation*}
r=-\frac{d[A]}{d t}=-\frac{d[B]}{d t}=k[A]^{v_{A}}[B]^{v_{B}} \tag{b}
\end{equation*}
$$

$[A]$ and $[B]$ express the concentration of the substances A and B, k the rate constant and v_{A} and v_{B} the stoichiometric coefficients. The sum of the stoichiometric coefficients implies the order of the reaction. E.g. a first order reaction, like an intramolecular divinlcyclopropane reaction, depends on the concentration of only one reactant. The reaction law simplifies to equation (c):

$$
\begin{equation*}
r=-\frac{d[A]}{d t}=k[A] \tag{c}
\end{equation*}
$$

Recognising that the reaction law is a differential equation (c), it can be transformed to an integrated reaction law (d) after separation variables.

$$
\begin{align*}
& {[A]=[A]_{0} \cdot e^{-k t}} \tag{d-1}\\
& \ln [A]=\ln [A]_{0}-k t \tag{d-2}
\end{align*}
$$

4.1.4 Arrhenius equation and Arrhenius plot

The temperature dependence of the rate constant k is given by the Arrhenius equation (e)

$$
\begin{equation*}
k=k_{o} e^{-\frac{E_{A}}{R T}} \tag{e}
\end{equation*}
$$

This shows the dependence of the rate constant on the pre-exponential factor k_{0}, the activation energy E_{A}, the universal gas constant R and the temperature T.

To determine the activation energy E_{A} equation (e) can be transferred to a logarithmic function (f):

$$
\begin{equation*}
\ln k=\ln k_{0}-\frac{E_{A}}{R T} \tag{f}
\end{equation*}
$$

Equation (f) illustrates a linear equation so if $\ln k$ is plotted again $1 / T$ a straight line will follow (Figure 3). From the slope of the curve the activation energy can be determined by using the following relation:

$$
\begin{equation*}
E_{A}=-m R \tag{g}
\end{equation*}
$$

The γ-intercept represents the pre-exponential factor k_{0}. ${ }^{[217]}$

Figure 23. Arrhenius plot.

4.2 Aim of this Project

The trans-divinylcyclopropane has long been known to be transferrable into its cis-isomer by irradiation or the increase of temperature. Based on that, the first aim of this project is to reveal that 124 (Scheme 123) is able to undergo isomerisation and subsequent Cope rearrangement employing various temperature experiments.

The second aim is the investigation of the solvent dependence of both the isomerisation and the Cope rearrangement. The results thus gained should facilitate the calculation of the rate constants and the activation energy for both partial reactions. Furthermore, we should be enabled to draw conclusions on the reaction mechanism from these results.

The third part of this project focuses on the influence of the Thorpe-Ingold effect on both partial reactions. Therefore, the two diastereomers of a nor-methyl-divinylcyclopropane have to be prepared and their reaction progress monitored utilising high temperature NMR techniques. The comparison of the rate constants of the methyl and the nor-methyl series at the same temperature should make the influence of the Thorpe-Ingold effect apparent.

4.3 Own Contribution

As the racemisation and geometrical isomerisation for all 1,2-divinylcyclopropanes is known, the examination of the isomerisation of $\mathbf{1 2 4}$ (Scheme 123) was of particular interest. This isomerisation would be advantageous as the yield of the non-selective cyclopropanation could be increased by using both diastereomers.

Scheme 123. Divinylcyclopropane rearrangement using 124.

In order to investigate the trans-rearrangement (Scheme 123), a series of experiments has been planed. Utilising benzene- d_{6} as reaction solvent allows higher reaction temperatures than chloroform $-d_{1}$. Furthermore, the lowest temperature was set at room temperature since the cis-diastereomer already rearranges at room temperature and the highest was set to $80^{\circ} \mathrm{C}$ oil-bath temperature (Table 23). Every reaction was stirred at the corresponding temperature for 90 minutes, then cooled to room temperature and submitted to NMR.

Table 23. Temperature series to achieve the conversion of 124.

Temperature	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$
Conversion	X	X	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{J}	\boldsymbol{J}	\boldsymbol{J}

Fortunately, $\mathbf{1 2 4}$ (Scheme 123) underwent the desired rearrangement at low rate at $60^{\circ} \mathrm{C}$ oilbath temperature. This is around $40^{\circ} \mathrm{C}$ higher than $\mathbf{1 1 4}$ (Scheme 124) but still much lower than a regular trans-divinylcyclopropane isomerisation and rearrangement takes place. ${ }^{[56-57]}$ Knowing both diastereomers were suitable for the rearrangement, the detection of $\mathbf{1 1 4}$ has been of particular interest, since $\mathbf{1 2 4}$ cannot react to the cyclohepta[cd]oxindole directly. Furthermore, the two diasteremoers had to be investigated regarding the isomerisation mechanism and the solvent dependence of the rate constant. Therefore, a test series was designed within which all three questions should be answered. We decided to use benzened_{6}, DMSO- d_{6} for the series of 114 and toluene $-d_{8}, \mathrm{CDBr}_{3}$ and DMSO- d_{6} for 124. As the two diastereomers did not react in the same temperature range, the reaction temperatures were set to $310 \mathrm{~K}, 320 \mathrm{~K}$ and 330 K using 114 and for 124 to $360 \mathrm{~K}, 370 \mathrm{~K}$ and 380 K .

Scheme 124. Divinylcyclopropanrearrangement in different solvents using both diastereomers.
It was known from preliminary studies performed by Silke Kayser during her bachelor thesis, that CDCl_{3} does not accelerate the divinylcyclopropane rearrangement. We decided to repeat the measurement series of CDCl_{3} if the curve characteristics would deviate significantly from the results of the other solvents.

Figure 24. Excerpt from the bachelor thesis of Silke Kayser. Reaction progress of $\mathbf{1 1 2}$ to $\mathbf{1 1 0} \mathbf{i n} \mathrm{CDCl}_{3}$ at different temperatures. Reaction for 310 K and 320 K has been aborted when the curve progression became obvious.

For the experiment $15 \mathrm{mg} \mathbf{1 1 4}$ (Scheme 124) were dissolved in the corresponding solvent and the solution was submitted to NMR. The reaction mixture was heated in the NMR-device and the spectra were acquired at the corresponding temperature in defined time intervals (Figure $25,26,27)$.

Figure 25 . Conversion of 114 at 310 K in benzene- d_{6} and DMSO- d_{6}.

Figure 26. Conversion of 114 at 320 K in benzene- d_{6} and DMSO- d_{6}.

Figure 27. Conversion of 114 at 330 K in benzene- $\mathrm{d}_{6}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, \mathrm{CDCl}_{3}$ and CDBr_{3}.

With these results in hands, the rate constants k and the activation energy E_{A} were calculated. Assuming that the divinylcyclopropane rearrangement is a first order reaction, $\ln [A]$ was plotted against the time to calculate the rate constant k at different temperatures (Figure 28). Therefore, a linear regression was carried out. Rate constant k was calculated from the slope of the curve (Table 24).

Figure 28. Calculation of the rate constants at different temperatures.

In order to display an Arrhenius plot (Figure 29), the logarithmic rate constants were plotted against $1 / T$. The activation energy (Table 25) was obtained from the slope of the curve (equation (g)).

Figure 29. Arrhenius plot with the corresponding parameters.

Table 24. Solvent and temperature dependent change of the rate constant. ${ }^{\text {a. }}$ the values of the benzene- d_{6} series at 330 K became inconsistent after 200 minutes, therefore they were excluded, ${ }^{\text {b }}$ relative rate is based on the aborted series of benzene- d_{6}.

Entry	Solvent	Temperature	rate constant $k\left[s^{-1}\right]$	relative rate
1	benzene-d ${ }_{6}$	310 K	$1.8 \times 10^{-5} \pm 8.4 \times 10^{-8}$	1
2	DMSO-d ${ }_{6}$	310 K	$4.6 \times 10^{-5} \pm 2.0 \times 10^{-7}$	2.6
3	benzene-d ${ }_{6}$	320 K	$5.7 \times 10^{-5} \pm 2.3 \times 10^{-7}$	1
4	DMSO-d ${ }_{6}$	320 K	$1.4 \times 10^{-4} \pm 9.5 \times 10^{-7}$	2.5
$5^{\text {a }}$	benzene-d6	330 K	$1.6 \times 10^{-4} \pm 1.1 \times 10^{-6}$	1
$6^{\text {b }}$	CDCl_{3}	330 K	$2.0 \times 10^{-4} \pm 2.5 \times 10^{-6}$	1.3
$7{ }^{\text {b }}$	CDBr_{3}	330 K	$3.0 \times 10^{-4} \pm 4.2 \times 10^{-6}$	1.9
$8^{\text {b }}$	DMSO-d ${ }_{6}$	330 K	$4.5 \times 10^{-4} \pm 6.9 \times 10^{-6}$	2.8

Table 25. Activation energy in different solvents.

Entry	Solvent	Activation energy $E_{A}\left[\frac{\mathrm{~kJ}}{\mathrm{~mol}}\right]$
1	DMSO-d $_{6}$	96.2 ± 1.9
2	benzene-d $_{6}$	93.5 ± 0.2

Following the Hughes-Ingold rules, ${ }^{[218]}$ the only slight increased rate by using DMSO has been expected for a pericyclic reaction. Known from experiments with barbaralane, dipolar polarisable solvents such as DMSO, HMTP and DMPU stabilise polarisable delocalised activated complexes. Compared to benzene- d_{6} the rate of rearrangement is increased by the factor of 2.2 to 2.7 (Table 24). If the reaction would proceed via a zwitterionic intermediate, the rate constant in DMSO- d_{6} would deviate from the other solvents significantly.

A noticeable result of the benzene- d_{6} series is that the activation energy for the divinylcyclopropane rearrangement is $2.7\left[\frac{\mathrm{~kJ}}{\mathrm{~mol}}\right]$ lower than for DMSO- d_{6}. In combination with the lower rates, it can be implied that benzene stabilises the transition state which lowers the energy but it is less suitable for the whole reaction.

Interestingly, we were not able to detect $\mathbf{1 2 4}$ (Scheme 125) during the reaction of $\mathbf{1 1 4}$ to $\mathbf{1 1 5}$ which we expect to be in equilibrium with 114.

The series of experiments was repeated with 124 under the previously defined conditions (Scheme 125).

Scheme 125. Proposed mechanism for the reaction of $\mathbf{1 2 4}$ to 115 with the radical intermediate 124a.

Figure 30. Conversion of 124 at 350 K in $\mathrm{DMSO}-\mathrm{d}_{6}$.

Figure 31.Conversion of 124 at 360 K in toluene- $\mathrm{d}_{8}, \mathrm{DMSO}-\mathrm{d}_{6}$, and CDBr_{3}.

Figure 32. Conversion of 124 at 370 K in toluene $-\mathrm{d}_{8}, \mathrm{DMSO}-\mathrm{d}_{6}$, and CDBr_{3}.

Figure 33. Conversion of 124 at 375 K in toluene- d_{8} and 380 K in $\mathrm{DMSO}-\mathrm{d}_{6}$, and CDBr_{3}.
Assuming the divinylcyclopropane rearrangement to be a first order reaction, $\ln [A]$ was plotted against the time to calculate the rate constant k at different temperatures (Figure 34). A linear regression was carried out and from the slope of the curve the rate constant k was calculated (Table 26).

Figure 34. Calculation of the rate constants at different temperatures

To calculate the activation energy the results were displayed in an Arrhenius plot (Figure 35). Therefore, the logarithmic rate constants k were plotted against $\frac{1}{T}$. The activation energy (Table 27) was also calculated by the slope of the curve by using equation (g).

Figure 35. Arrhenius Parameter for 124.

Table 26. Rate constants at different temperatures in different solvents. ${ }^{\text {a. }}$ relative rate has not been determined as the reaction temperature was 5 K below the other two used solvents, ${ }^{\text {b. }}$ this measurement series consists of three values.

Entry	Solvent	Temperature	rate constant $k\left[s^{-1}\right]$	relative rate
1	DMSO-d 6	350 K	$4.8 \times 10^{-5} \pm 3.9 \times 10^{-7}$	-
2	DMSO-d			
3	toluene-d ${ }_{8}$	360 K	$1.5 \times 10^{-4} \pm 1.1 \times 10^{-6}$	1
4^{a}	CDBr_{3}	360 K	$1.4 \times 10^{-4} \pm 2.9 \times 10^{-6}$	0.9
5	DMSO-d $_{6}$	370 K	$3.3 \times 10^{-4} \pm 1.2 \times 10^{-5}$	2.4
6	toluene-d $_{8}$	370 K	$4.1 \times 10^{-4} \pm 2.1 \times 10^{-5}$	1.4
7^{a}	CDBr_{3}	370 K	$5.6 \times 10^{-4} \pm 6.7 \times 10^{-6}$	1.9
8	DMSO-d $_{6}$	380 K	$9.3 \times 10^{-4} \pm 2.0 \times 10^{-5}$	1
9^{a}	toluene-d $_{8}$	375 K	$6.4 \times 10^{-4} \pm 2.9 \times 10^{-5}$	-
10^{b}	CDBr_{3}	380 K	$1.3 \times 10^{-3} \pm 3.7 \times 10^{-4}$	1.4
			1	

Table 27. Activation energy in different solvents. ${ }^{\text {a. }}$ The low activation energy might be caused by the presence of oxygen in the solution.

Entry	Solvent	Activation energy $E_{A}\left[\frac{\mathrm{~kJ}}{\mathrm{~mol}}\right]$
1	DMSO-d $_{6}$	105.8 ± 6.8
2	toluene-d	
3^{a}	CDBr_{3}	117.2 ± 5.1

Interestingly, in case of trans-compound $\mathbf{1 2 4}$ (Scheme 125) the reaction proceeds the fastest in CDBr_{3}. Under these conditions the activation energy is significantly lowered. This indicates a change in the mechanism. Again, a zwitterionic intermediate or transition state can be excluded as DMSO would stabilise it much better compared to the other two solvents. This would result in a significant increased rate constant. Hence, the isomerisation has to take place via the diradical intermediate.

The solvents, especially CDBr_{3}, have not been degassed so that radical formation has likely been induced by oxygen causing a faster reaction at relatively low temperature. This effect seems to become less important when the reaction temperature is raised.

Furthermore, it has to be mentioned that the rate constants calculated from the measurements of CDBr_{3} are inconclusive. At some point during the measurements a new signal appeared too close to the reference signal making it impossible to obtain reliable data henceforth.

Having the most suitable solvent in hands, we focused on relevance of the quaternary substitution on the cyclopropane for the divinylcyclopropane rearrangement. As we already had the data for 114 and 124 (Table 24 - 27), cis-nor-methyl 476 and the trans-nor-methyl compound 477 (Scheme 126) needed to be prepared. We knew from earlier studies that both diastereomers can be obtained by simply heating butadiene (214) and diazoisatine 118 to $40^{\circ} \mathrm{C}$ in a sealed tube. However, the diastereomers could not be separated. Therefore, we chose two different routes to prepare cis-nor-methyl compound 477 and trans-nor-methyl compound 476.

Scheme 126. Synthesis of an inseparable mixture of 476 and 477.
In order to prepare 476 (Scheme 127), we started from acid 130 and allylic alcohol. After esterification and diazo transfer, 478 was converted to cyclopropane 479. Azide 479 was reduced under Staudinger conditions and the lactone was opened using $i-\mathrm{PrMgCl}$ as base. The resulting alcohol was oxidised to aldehyde 481 using IBX, which was further converted into olefin 476 under Wittig conditions. All the reactions in this sequence delivered satisfying to very good yields and 476 could be obtained with an overall yield of 39% in a six-step linear sequence.

Scheme 127. Preparation of 476, a. DIC (1.05 equiv.), allylic alcohol (1 equiv.), 4-DMAP ($10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \% \mathrm{~b}$. ABSA (1.5 equiv.), DBU (3 equiv.), MeCN, 88%, c [(CuOTf) ${ }_{2} \mathrm{PhMe]}$ ($2 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \%$, d. $\mathrm{PBu}_{3}\left(1.1\right.$ equiv.), THF: $\mathrm{H}_{2} \mathrm{O}$, then THF, $i \mathrm{PrMgCl}\left(2.05\right.$ equiv.), 77%, e. IBX (1.2 equiv.), $\mathrm{DMSO}, 94 \%, \mathrm{f}$. $\mathrm{Ph}{ }_{3} \mathrm{PMeBr}$ (4 equiv.), NaHMDS (4 equiv.), $-78^{\circ} \mathrm{C}$ to rt , THF , 95\%,

A slightly modified protocol of Subba Reddy furnished cis-compound 477 (Scheme 128). ${ }^{[139]}$ In this case acrolein (363) was used instead of methylvinylketone to deliver a mixture of the two diastereomers (480/481). The excess of 480 was chromatographically separated in a yield of 53%, while a mixture of 481 containing $1-2 \%$ of 480 remained. Even after three column chromatographic purifications 481 could not be obtained in pure form. Finally, 477 was obtained by performing Wittig olefination on 480.

Scheme 128. Preparation of 477, a. acrolein (363; 5 equiv.), $95^{\circ} \mathrm{C}, 53 \%$, b. $\mathrm{Ph}_{3} \mathrm{PMeBr}$ (4 equiv.), NaHMDS (4 equiv.), $-78^{\circ} \mathrm{C}$ to rt, THF, 89\%.

With the two diastereomers in hands, the measurements could be executed. Therefore, a sample of 477 (Scheme 129) in DMSO- d_{6} was heated in intervals of $10^{\circ} \mathrm{C}$ to detect the reaction temperature. At $90^{\circ} \mathrm{C}$ a second spot on TLC has been detected and therefore the crude was submitted to NMR. Instead of 115, trans-nor-methyl compound 476 has been identified as the new formed product (Scheme 129). We assumed that the E_{a} for the cyclisation might be higher than for the isomerisation. A similar observation has been described by Cargle et al. during their investigations on vinylcyclopropane rearrangements in which the isomerisation was favoured over the rearrangement itself. ${ }^{[219]}$

Scheme 129. Isomerisation of 476 and 477 without divinylcyclopropane Rearrangement at $90^{\circ} \mathrm{C}$.

In order to overcome the isomerisation, the reaction temperature was set $20^{\circ} \mathrm{C}$ higher for the NMR experiments. At $110{ }^{\circ} \mathrm{C}$ both the isomerisation and the product formation could be observed in an acceptable timeframe.

For the experiments a solution of 15 mg of the corresponding diastereomer (476/477) in DMSO- $\mathrm{d}_{6}(700 \mu \mathrm{~L})$ was submitted to NMR. The measurement started, when the reaction
temperature had been reached, which is also the reason for presence of all three compounds at the beginning of each measurement.

Figure 36. Reaction progress of the divinylcyclopropane rearrangement using 476 as starting material.

Figure 37. Reaction progress of the divinylcyclopropane rearrangement using cis as starting material.
Without calculations, it becomes obvious from the curve progressions of 477 (Figure 37) that k_{2} has to be greater than k_{1} and k_{-1}, as the concentration of 477 decreases quite fast. In the same time the concentration of 476 increases just to a maximum of 13% at minute 255 . k_{-1} also has to be smaller than k_{1}, as otherwise 476 would accumulate more significantly. Even though the kinetic scheme remains, calculation of the k values here becomes a tough task as the reaction of 476 and 477 (Scheme 129) does not proceed via a first order rate law. Here we have a reaction following the quasi stationary principle which makes the equation more difficult to solve by hand.
(1) $\frac{d[c i s]}{d t}=\frac{k_{1}[\text { trans }]}{\left(k_{-1}+k_{2}\right)[c i s]}$
(2) $\frac{d[\text { trans }]}{d t}=k_{-1}[$ cis $]-k_{1}[$ trans $]$
(3) $\frac{d[p r o d]}{d t}=k_{2}[c i s]$

Rate constants k_{1} and k_{-1} were calculated from the time-concentration relation of 477 at 380 K by Professor Herzig using a self-designed Fortran-program to give $k_{1}=5.8^{-5} s^{-1}$ and $k_{-1}=$ $2.8^{-5} s^{-1}$. Furthermore Professor Zifferer could validate the rate constants utilising the program Mathematika. To confirm these results, the following consideration was made.
In Figure $37 \frac{d[\operatorname{trans}]}{d t}=0$ denotes the maximum concentration $[\text { trans }]_{M 1}$ of $476\left([476]_{M 1}=\right.$ $\left.0.122, t_{M 1}=8100 \mathrm{~s}\right)$. Because the concentration of 477 at the same time is $[\mathrm{cis}]_{M 1}=0.260$, insertion into eq. (i) furnishes a ratio of $R_{1}=\frac{[476]_{M 1}}{[477]_{M 1}}=\frac{k_{-1}}{k_{1}}=0.47$. With the above values of k_{-1} and k_{1} we obtain $\mathrm{R}_{1}=0.47$.
In Figure $36 \frac{d[477]}{d t}=0$ denotes the maximum concentration $[c i s]_{M 2}=0.22$ of 477 ($t_{M 2}=10,000 \mathrm{~s}$), and $[\operatorname{trans}]_{M 2}=0.566$ of 476 at the same time. These values introduced in equation (h) leads to

$$
\begin{equation*}
R_{2}=\frac{[\text { cis }]_{M 2}}{[\operatorname{trans}]_{M 2}}=\frac{k_{1}}{k_{-1}+k_{2}}=0.39 \tag{k}
\end{equation*}
$$

with $R_{3}=\frac{k_{2}}{k_{1}}$

$$
\begin{equation*}
R_{2}=\frac{1}{R_{1}+R_{3}} \tag{I}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
R_{3}=\frac{1-R_{1} R_{2}}{R_{2}}=\frac{k_{2}}{k_{1}}=2.09 \tag{I}
\end{equation*}
$$

With $k_{1}=5.8 \times 10^{-5} s^{-1}$ we get for $k_{2}=1.2 \times 10^{-4} s^{-1}$
As measuring k_{2} value for 114 (Scheme 125) at 380 K was not possible, it needed to be extrapolated from the obtained Arrhenius parameters.

$$
\begin{equation*}
k_{2}=e^{27.32-\frac{96177.95 \frac{J}{\mathrm{~mol}}}{8.3144 \frac{J}{K \times m o l} \times 380 \mathrm{~K}}}=4.4 \times 10^{-2} \mathrm{~s}^{-1} \tag{g}
\end{equation*}
$$

Compound	$k_{1}\left[s^{-1}\right]$	$k_{-1}\left[s^{-1}\right]$	$k_{2}\left[s^{-1}\right]$
Methyl	9.2×10^{-4}	not detectable	4.4×10^{-2}
nor	5.8×10^{-5}	2.8×10^{-5}	1.2×10^{-4}

It is remarkable that the substitution of a hydrogen by a methyl group causes an overall reactivity span of a factor of 1570 (Table 28). Comparing the rate constants for the Cope rearrangement, cis-compound $\mathbf{1 1 4}$ (Scheme 125) still reacts 367 times faster than nor-methyl compounds 476 and 477 revealing the significant influence of the methyl substituent. In theory we know that the decreased angle cannot influence the reaction to that extent. It is more likely that the effect of the reactive rotamere is decisive in this case as the acceleration is within the range.
Not less important is the comparison of the relative rates of the ring opening (k_{1} and k_{-1}; Table 28) and the Cope rearrangement (k_{2}). In case of the nor-methyl series, the rates of cis and trans configured cyclopropane do not differ greatly. Here the divinylcyclopropane rearrangement $\left(k_{2}\right)$ is 4.3 times faster than the isomerisation from cis to trans $\left(k_{-1}\right)$ and 2.1 times faster than the isomerisation from trans to cis $\left(k_{1}\right)$. In addition, the formal equilibrium constant can be obtained which means that $\mathbf{1 1 4}$ is thermodynamically more stable than $\mathbf{1 2 4}$.

$$
\begin{equation*}
K_{e q}=\frac{c i s}{\text { trans }}=\frac{1.2 \times 10^{-4} s^{-1}}{5.8 \times 10^{-5} s^{-1}}=2.1 \tag{m}
\end{equation*}
$$

In case of $\mathbf{1 2 4}$ and $\mathbf{1 1 4}$ (Scheme 125), the Cope rearrangement is 476 times faster than the isomerisation and for that reason the ring opening cannot be observed. Generally speaking, the methyl group stabilises the ring opening of the cyclopropane (rate factor 16) which is in line with enhanced radical stabilisation in 124a. On the other hand, the rate constant of the Cope rearrangement is increased overproportional making the reaction the greatest beneficiary of the methyl group.

Since aldehyde 123 (Figure 38) and 418 (Figure 39) crystallised readily, we were able to measure the change of the angles in the X-ray structure.

Figure 38. X-ray structure of 123

Figure 39. X-ray structure of 418

Table 29. Table of angles of 123 and 418.

Figure 40. Angles of 481 and 123.

The classic Thorpe-Ingold theory is primarily concerned with the change of the angles α and ε (Entry 1 and 4, Table 29). In this case the angle decreases in presence of the methyl-group by 0.9° for α and ε. This is only 30% of the maximum effect of 3° which cannot have such an influence on the rate constant.

Considering the change of angle β (Entry 2, Table 29) may give an explanation for the dramatic increase of the rate constant, if the effect is similar for 114. Here, the presence of the methyl group causes an anglecompression by 4.9°, suggesting a closer positioning of the vinyl substituent to the benzene core. This proximity guarantees a good orbital overlap causing the rearrangement to occur at room temperature.

Another aspect might be the change in the inner bond angles of the cyclopropane. In case of 123 (Table 29), ε is decreased by 0.94° to 58.16° and on the other side η widened by 1.2° to 63.5°. This imbalance of the inner bond angles of the cyclopropane may cause an increase of the ring strain, which facilitates the ring opening and therefore the isomerisation and the Cope rearrangement.

The hypothesis is supported by the deviations of the bond length (Table 30). While the bond length of an unsubstituted cyclopropane is $1.510 \AA \AA^{[220]}$ the two systems prepared reveal deviations for all three bonds. Furthermore, the differences among the two diastereomers are apparent.

Table 30. Length of the cyclopropane bonds of 123 and 418.

Entry	Label	Methyl	Nor-methyl	Difference
1	C-9;C-3	$1.577 \AA$	$1.544 \AA$	$0.033 \AA$
2	C-9;C-8	$1.501 \AA$	$1.489 \AA$	$0.012 \AA$
3	C-8;C-3	$1.497 \AA$	$1.497 \AA$	$\pm 0.000 \AA$

With the introduction of the methyl group, the bond length between $\mathrm{C}-9 ; \mathrm{C}-3$ and $\mathrm{C}-9 ; \mathrm{C}-8$ is extended compared to 418 (Table 30). In this case the lengthening of the C-9;C-3 bond by $0.033 A ̊$ causes a weakening of this bond which is also beneficial for both, the isomerisation and the Cope rearrangement.

4.4 Summary and Outlook

This project examined the influence of the gem-dialkyl effect on the divinylcyclopropane rearrangement. Introducing a methyl-group on the cyclopropane caused a tremendous increase of the reaction rate presumably attributable to two factors:

1. Thorpe-Ingold effect, more precise, the effect of the reactive rotamere. Here, the steric demand of the methyl group constrains the flexibility of the vinyl group. This increases the energy of the overall system meaning in effect that the activation energy is decreased.
2. A hyperconjugative stabilisation of the incipient endocyclic double bond in $\mathbf{1 2 4}$ by the methyl substituent.

Moreover, we were able to proof the influence of the Thorpe-Ingold effect by X-ray single crystal structure of $\mathbf{1 2 3}$ and 418. The methyl group of $\mathbf{1 2 3}$ caused an angle decrease of β by 4.9° generating proximity between the benzene core and the vinyl group and therefore it promotes the Cope rearrangement. Furthermore, a significant change of the inner bond angles of the cyclopropane was detected, leading to an increased ring strain which should promote both the isomerisation and the Cope rearrangement.

As implied in Chapter 1 the effects exerted by 114 (Figure 9) may be essential in the DMATsynthase. In the reverse prenylated tryptophan, the gem-dimethyl group may also induce a Thorpe-Ingold effect which accelerates the Cope rearrangement. The two alkyl groups also ensure that the reaction does only proceed into indole C-4. The necessity of the gem-dimethyl group in the biological system is revealed by experiments performed by Liebhold et al. Utilising 482 (Scheme 130) which cannot exert the Thorpe-Ingold effect caused the formation of a mixture of C-4 (484) and C-5 (483) prenylated products.

 $+$

Scheme 130. Liebhold's experiments with 4-DMATS and different substrates.
In order to continue this project, the experiments should be repeated in degassed solvents, to exclude the influence of oxygen on this reaction. Furthermore, benzene should be replaced by toluene to obtain more consistent results in the unipolar series as the methyl group may interfere with the reaction.

Another interesting aspect of this divinylcyclopropane rearrangement is to clarify the whereabouts of the proton on C-4. On the one hand, it can be cleaved and dissolved in the surrounding solution, not impairing the reaction. On the other hand, the C-4 proton can be delivered internally into C-3. In a first experiment the reaction should be performed under absolutely dry and aprotic conditions. If the proton is delivered internally, it should not hamper the reaction rate. If the proton is cleaved and dissolved in the solution before it reprotonates $\mathrm{C}-3$, the rate should drop or the reaction should stop at some point delivering no or decomposition products.

An additional experiment would be to perform the reaction with the deuterated derivative 485 (Scheme 131). Internal delivery would cause a significant amount of C-3 deuterated product. A drawback of this experiment is that deuterium has a different acidity and creactivity compared to protons This experiment should be only performed with protected oxindoles as the proton of the nitrogen may affect the results.

Scheme 131. Labeling experiment.
The mechanism of the isomerisation may simply be elucidated by performing the reaction in a protic and nucleophile solvent as performed by Cram (Scheme 119, Scheme 132).

Scheme 132. Solvatisation experiment.

5 Experimental
 Cope Mechanism of the DMAT-Synthase

5 Experimental Cope Mechanism of the DMAT-Synthase 135
5.1 Graphical Overview 138
5.2 General 138
5.3 Procedures 139
5.3.1 2-azidophenylacetic acid (130) 139
5.3.2 2-methylallyl 2-(2-azidophenyl)-2-diazoacetate (129) 139
5.3.3 1'-benzyl-2-(((tert-butyldimethyl-silyl)-oxy)methyl)-2-methylspiro[cyclo-propane-1,3'- indolin]-2'-one (A and B) 140
5.3.4 1'-benzyl-2-(hydroxymethyl)-2-methylspiro[cyclopropane-1,3'-indolin]-2'-one (C) 141
5.3.5 (1S,2R)-1'-benzyl-2-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (120) 1425.3.6 1'-benzyl-2-methyl-2-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (112).142
5.3.7 1-benzyl-4-methyl-2a,3-dihydro-1H-cyclohepta[cd]indol-2(6H)-one (110) 143
5.3.8 2-(((tert-butyldimethylsilyl)oxy)methyl)-2-methylspiro[cyclopropane-1,3'-indolin]-2'-one (116 and 117) 144
5.3.9 (1S,2R)-2-(hydroxymethyl)-2-methylspiro[cyclopropane-1,3'-indolin]-2'-one (D) 145
5.3.10 2-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (121) 145
5.3.11 2-methyl-2-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (114) 146
5.3.12 4-methyl-2a,3-dihydro-1H-cyclohepta[cd]indol-2(6H)-one (115) 146
5.3.13 tert-butyl 4-methyl-3,6-dihydro-1H-cyclohepta[cd]indole-1-carboxylate (126) 147
5.3.14 1-(2-azidophenyl)-5-methyl-3-oxabicyclo[3.1.0]hexan-2-one (128) 148
5.3.15 2-(hydroxymethyl)-2-methylspiro[cyclopropane-1,3'-indolin]-2'-one (127) 148
5.3.16 2-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (123) 149
5.3.17 1'-benzyl-2-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (122). 149
5.3.18 1'-benzyl-2-methyl-2-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (108) 150
5.4 Spectra 151

5.1 Graphical Overview

5.2 General

All reactions were carried out in oven-dried glassware under an argon atmosphere, unless otherwise stated. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (DCM) was distilled from CaH_{2} under argon and anhydrous THF was distilled from Na and benzophenone under argon atmosphere. Other anhydrous solvents were obtained by filtration through drying columns ($\mathrm{Et}_{2} \mathrm{O}, \mathrm{DMF}, \mathrm{CH}_{3} \mathrm{CN}$, toluene, benzene, hexane, methanol) on a GlassContour system. Reactions were magnetically and mechanically stirred and monitored by thin layer chromatography (TLC) with silica gel 60F254 plates. Flash column chromatography was performed with silica gel 60 Å of Acros under pressure. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. NMR spectra were recorded on a 400 MHz spectrometer of Bruker. Unless otherwise stated, all NMR spectra were measured in CDCl_{3} solution and referenced to the residual CHCl_{3} signal ($\left.{ }^{1} \mathrm{H}, \delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}, \delta=77.16 \mathrm{ppm}\right)$. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are given in
$\operatorname{ppm}(s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quadruplet, $m=$ multiplet, $b=$ broad signal). Assignments of proton resonance were confirmed, when possible, by correlated spectroscopy.

5.3 Procedures

5.3.1 2-azidophenylacetic acid (130)

130
2-Nitrophenylacetic acid ($10.0 \mathrm{~g}, 55.0 \mathrm{mmol}, 1$ equiv.) was reduced with Pd/C ($10 \%, 650 \mathrm{mg}$, $5.50 \mathrm{mmol}, 0.1$ equiv.) in $\mathrm{EtOH}(60 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(7.70 \mathrm{~g}, 55.0 \mathrm{mmol}, 1\right.$ equiv.) under $\mathrm{H}_{2^{-}}$ pressure (30 bar) for 18 h . After complete consumption of the starting material (TLC-control hexane:EtOAc 1:1) the crude material was dissolved in a solution of $\mathrm{NaOH}(2.20 \mathrm{~g}, 55.0 \mathrm{mmol}$, 1 equiv.) in $\mathrm{H}_{2} \mathrm{O}(36 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$ and added to a precooled solution of $\mathrm{NaNO}_{2}(3.80 \mathrm{~g}$, $55.0 \mathrm{mmol}, 1$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(14 \mathrm{~mL})$. The combined solutions were added dropwise over 2 h to a $-5^{\circ} \mathrm{C}$ precooled solution of $\mathrm{H}_{2} \mathrm{SO}_{4}\left(8.80 \mathrm{~mL}, 165 \mathrm{mmol}, 3\right.$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(172 \mathrm{~mL})$ whereas the reaction temperature should never get over $0{ }^{\circ} \mathrm{C}$. Then a solution of $\mathrm{NaN}_{3}(3.60 \mathrm{~g}$, 55.0 mmol , 1 equiv.) in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added slowly and after complete addition the reaction mixture was stirred for 30 min , quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$ and EtOAc (250 mL). The phases were separated and the aqueous layer was saturated with NaCl and extracted with EtOAc ($3 \times 200 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to afford the desired product 130 in 74% ($7.20 \mathrm{~g}, 40.1 \mathrm{mmol}$) yield as an orange/yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 3.59(s, 2 \mathrm{H}), 7.12$ (ddd, $\left.J=1.0,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.21$ (dd, J = 0.8, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (dd, $J=1.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (ddd, $J=1.5,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): $37.2,119.1,125.9,127.8,129.8,132.7,140.1,174.9 \mathrm{ppm} . \operatorname{IR}$ (neat sample): $2923,2131,1688,1285,1237,952,754 \mathrm{~cm}^{-1}$.
5.3.2 2-methylallyl 2-(2-azidophenyl)-2-diazoacetate (129)

129
Azide 130 ($2.00 \mathrm{~g}, 11.3 \mathrm{mmol}, 1$ equiv.), β-methallylalcohol ($1.00 \mathrm{~mL}, 11.9 \mathrm{mmol}, 1.05$ equiv.) and DMAP ($300 \mathrm{mg}, 2.30 \mathrm{mmol}, 0.2$ equiv.) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{~mL})$. Then DIC ($800 \mu \mathrm{~L}$,
$11.9 \mathrm{mmol}, 1.05$ equiv.) was slowly added to the solution. After complete consumption of the starting material the reaction was quenched with water and extracted with EtOAc (3 x $100 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The crude material was then purified by flash chromatography (hexane:EtOAc 20:1). The obtained 2-methallyl-2-(2-azidophenyl)acetate was used directly for the diazotation reaction. The β-methallylester (2.40 g , 10.4 mmol, 1 equiv.) and ABSA ($4.40 \mathrm{~g}, 10.9 \mathrm{mmol}, 1.05$ equiv.) were dissolved in THF (64 mL). DBU ($3.10 \mathrm{~mL}, 20.7 \mathrm{mmol}, 2$ equiv.) was added and the solution was stirred for 18 h . After complete consumption of the substrate, the reaction was hydrolysed by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc ($3 \times 250 \mathrm{~mL}$), the combined organic layers were washed with brine solution, dried over MgSO_{4} and concentrated in vacuo. The crude material was then purified by flash chromatography (hexane:EtOAc 40:1) to afford the desired product 129 in 92% ($2.50 \mathrm{~g}, 9.60 \mathrm{mmol}$) yield as a bright orange oil.
${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $1.78(\mathrm{~s}, 3 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 4.94-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.98-5.00(\mathrm{~m}, 1 \mathrm{H})$, $7.17-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 19.6,68.3,113.1,116.6,118.7,125.3,129.1,129.4,131.5,137.4,140.0,165.5 \mathrm{ppm}$. IR (neat sample): 3019, 2127, 2096, 1699, 1282, 1153, 1017, $749 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): [M] ${ }^{+}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}_{2}$ 257.0913; not found, decomposition.
5.3.3 1'-benzyl-2-(((tert-butyldimethyl-silyl)-oxy)methyl)-2-methylspiro[cyclo-propane-1,3'-indolin]-2'-one (A and B)

$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(5.00 \mathrm{mg}, 12.0 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%$) was added to a solution of diazooxindole (200 mg , $800 \mu \mathrm{~mol}$, 1 equiv.) in tert-butyldimethyl((2-methylallyl)oxy)silane (3 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mu \mathrm{~L})$. The addition was accompanied by a slow color change from orange to dark red brown and the evolution of nitrogen gas. After complete consumption of the starting material, the crude product was concentrated in vacuo and purified by flash chromatography (hexane:EtOAc 30:1) to give diastereomers \mathbf{A} and \mathbf{B} in a combined yield of 60% in a 1:1 ratio ($100 \mathrm{mg}, 240 \mu \mathrm{~mol}$ of A and $100 \mathrm{mg}, 240 \mu \mathrm{~mol}$ of B).

Diastereomer A

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-0.11(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ ($d, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.17(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{ddd}, J=1.0,7.6$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (dd, $J=0.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.10(\mathrm{ddd}, J=1.3,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.31(\mathrm{~m}$, $5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-5.4,-5.3,15.5,18.2,25.8,28.0,36.0,38.4,43.9,65.9$, 108.8, 121.4, 126.4, 127.2, 127.5, 128.9, 129.0, 136.6, 143.1, 175.8 ppm . IR (neat sample): 2928, 2854, 1706, 1464, 1360, 1094, 834, $729 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si} 407.2281$; found $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{SiLi}^{+} 413.2667$.

Diastereomer B

${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $0.06(\mathrm{~s}, 3 \mathrm{H}), 0.09,(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~d}$, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$ (d, J = $15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.15 ($\mathrm{d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (ddd, $J=0.9,7.3$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.00-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.03$ (dd, $J=1.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (ddd, $J=1.4,7.5,7.5 \mathrm{~Hz}$, 1H), $7.16-7.32(\mathrm{~m}, 5 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-5.2,17.6,18.5,26.1,29.1,35.5$, $38.2,44.0,64.1,108.8,121.2,121.7,126.5,127.3,127.4,128.8,128.9,136.6,143.5,175.9$ ppm. IR (neat sample): 2928, 2854, 1706, 1464, 1360, 1094, 834, $729 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): [M$]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si} 407.2281$; found $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{SiLi}^{+}$413.2667.

5.3.4 1'-benzyl-2-(hydroxymethyl)-2-methylspiro[cyclopropane-1,3'-indolin]-2'-one (C)

TBAF (1 m in THF, $100 \mu \mathrm{~L}, 100 \mu \mathrm{~mol}, 1$ equiv.) was added to a solution of diastereomer \mathbf{A} ($40.0 \mathrm{mg}, 100 \mu \mathrm{~mol}$, 1 equiv.) in THF (1 mL). The addition was accompanied by a colour change from red to yellow. After 10 min . another equivalent of TBAF (1 m in THF, $100 \mu \mathrm{~L}, 100 \mu \mathrm{~mol}$, 1 equiv.) was added to the solution, which was stirred for further 10 min , then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$-solution and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography (hexane:EtOAc 1:1) to afford the free alcohol C in 87% ($25.0 \mathrm{mg}, 84.0 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}) 1.92(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89$ (d, J = 12.2 Hz, 1H), 3.96 (d, J = $12.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.93(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (ddd, $J=1.0,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (ddd, $J=1.2,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 14.5,29.2$, $35.7,39.0,44.2,66.9,109.2,120.7,122.0,127.1,127.4,127.6,128.2,128.9,136.3,143.3$, 175.3 ppm . IR (neat sample): $3436,2927,1686,1438,1186,907,726,696 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$ 293.1416; found $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}$ 294.1491.

5.3.5 (1S,2R)-1'-benzyl-2-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde

 (120)

120
IBX ($110 \mathrm{mg}, 360 \mu \mathrm{~mol}, 1.05$ equiv.) was added to a solution of alcohol C ($100 \mathrm{mg}, 340 \mu \mathrm{~mol}$, 1 equiv.) in DMSO (1 mL). After 1.5 h the reaction was quenched with water, extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography (hexane:EtOAc 3:1) to afford aldehyde $\mathbf{1 2 0}$ in 95% ($94.0 \mathrm{mg}, 320 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.75(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}) 2.51(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (d, J = 15.7 Hz, 1H), 5.08 (d, J = $15.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.97(\mathrm{~m}, 1 \mathrm{H}), 7.04$ (d, J = 7.2 Hz, 1H), 7.15 (ddd $, J=0.9,7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 5 \mathrm{H}), 9.57(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 11.0, 25.9, 38.1, 43.1, 44.3, 109.2, 122.1, 122.8, 126.0, 127.4, 127.7, 127.8, 128.9, 135.9, 143.1, 173.2, 198.5 ppm. IR (neat sample): 3077, 1685, 1611, 1346, 1184, $752,700 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$292.1338; found 292.1339.

5.3.6 1'-benzyl-2-methyl-2-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (112)

A suspension of methyl triphenylphosphonium bromide ($170 \mathrm{mg}, 460 \mu \mathrm{~mol}, 3$ equiv.) in THF (0.8 mL) was cooled to $-78^{\circ} \mathrm{C}$. To this solution was added NaHMDS (2 M in THF, $230 \mu \mathrm{~L}$, $460 \mu \mathrm{~mol}, 3$ equiv.) which was accompanied by a color change to bright orange. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , then warmed up to $0^{\circ} \mathrm{C}$, stirred for further 20 min and cooled
to $-78^{\circ} \mathrm{C}$ again. Then a solution of aldehyde $\mathbf{1 2 0}(45.0 \mathrm{mg}, 150 \mu \mathrm{~mol}, 1$ equiv.) in THF (0.2 mL) was added slowly. The solution was stirred for 10 min and warmed up to $0^{\circ} \mathrm{C}$. It was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, then diluted with water, extracted with EtOAc ($3 \times 60 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography (hexane:EtOAc 3:1) to afford olefin 112 in 84% ($45.0 \mathrm{mg}, 130 \mu \mathrm{~mol}$) yield as a yellow oil.
${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}) 2.05(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (d, J = $15.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.05(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=1.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=1.2$, $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=10.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{ddd}, J=0.7,7.2$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=1.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=1.7,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.36(\mathrm{~m}$, $5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$-NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 16.5,29.7,36.7,38.9,44.2,108.8,117.0,121.3,122.1$, 126.5, 127.5, 127.6, 128.3, 128.8, 136.5, 139.5, 143.0, 175.4 ppm. IR (neat sample): 2922, 1699, 1487, 1342, 906, $725 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+} 312.1364$; found 312.1361.

5.3.7 1-benzyl-4-methyl-2a,3-dihydro-1H-cyclohepta[cd]indol-2(6H)-one (110)

Rearrangement of olefin 112 ($100 \mathrm{mg}, 350 \mu \mathrm{~mol}$) took already place at room temperature but to speed up the reaction was dissolved in benzene (1.8 mL) and was heated at $60^{\circ} \mathrm{C}$ in a sealed tube. After complete consumption the product was concentrated in vacuo and purified by flash chromatography (hexane:EtOAc 3:1) to afford the cyclisation product 110 in 55\% ($55.0 \mathrm{mg}, 190 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.79(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{dd}, \mathrm{J}=15.4,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (ddd, $J=2.9$, $4.6,16.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.19(\mathrm{dd}, \mathrm{J}=7.2,19.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, \mathrm{J}=4.8,13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.91(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06$ (dd, $J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 27.8$, $33.0,33.7,43.6,43.9,106.9,120.1,122.2,127.4,127.7,127.8,128.7,128.9,134.1,136.1$, $137.3,142.3,177.8 \mathrm{ppm}$. IR (neat sample): 2904, 1700, 1608, 1494, 1341, $982,775,726 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): [M] ${ }^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO} 289.1467$; found $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO} 290.1479$.

5.3.8 2-(((tert-butyldimethylsilyl)oxy)methyl)-2-methylspiro[cyclopropane-1,3'-indolin]-2'one (116 and 117).

$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}\left(21.0 \mathrm{mg}, 50.3 \mu \mathrm{~mol}, 0.02\right.$ equiv.) in dioxane (1 mL) was heated to $65{ }^{\circ} \mathrm{C}$ for ten minutes. To the warm solution was added TBS-alcohol $119(6 \mathrm{~mL})$ and then diazoisatine (118, $400 \mathrm{mg}, 2.51 \mathrm{mmol}, 1$ equiv.) in dioxane (8 mL). After full consumption of diazoistaine, the solvent was removed in vacuo and the crude product was purified by flash chromatography (hexane:EtOAc 4:1) to give diastereomers $\mathbf{1 1 6}$ and $\mathbf{1 1 7}$ in a combined yield of 33% in a 1.6:1 ratio ($160 \mathrm{mg}, 504 \mu \mathrm{~mol}$ of 116 and $100 \mathrm{mg}, 315 \mu \mathrm{~mol}$ of 117).

Diastereomer 116
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.98(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 1 \mathrm{H}), 9.31(\mathrm{~b}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $-5.2,-5.2,17.6,18.5,26.0,29.2,36.0,38.3,64.0,109.7,121.1,122.0$, 126.5, 129.4, 141.8, 178.6 ppm. IR (neat sample): 3228, 2926, 2855, 1711, 1471, 1345, 1227, $1106,977 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$340.1709; found 340.1693. Diastereomer 117
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-0.07(\mathrm{~s}, 3 \mathrm{H}), 0.01,(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (d, J = 7.8 Hz, 1H), 6.96 (ddd, J = 1.0, 7.5, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (ddd, J = 1.2, $7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~b}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-5.3,-5.3,15.2,18.3,25.8$, $28.1,36.3,38.5,66.0,109.5,121.3,121.8,126.5,129.5,141.2,178.0 \mathrm{ppm}$. IR (neat sample): 3228, 2926, 2855, 1711, 1471, 1345, 1227, 1106, $977 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): [M] ${ }^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Si} 317.1811$; found $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Si} 318.1865$.

5.3.9 (1S,2R)-2-(hydroxymethyl)-2-methylspiro[cyclopropane-1,3'-indolin]-2'-one (D)

TBAF (1 M in THF, $84.4 \mu \mathrm{~L}, 84.4 \mu \mathrm{~mol}, 4$ equiv.) was added to a solution of diastereomer 116 ($67.0 \mathrm{mg}, 21.1 \mu \mathrm{~mol}, 1$ equiv.) in THF (0.7 mL). After complete consumption of the startingmaterial the reaction mixture quenched with $\mathrm{NH}_{4} \mathrm{Cl}$-solution and extracted with EtOAc $(3 \times 40 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography (hexane:EtOAc 1:1) to afford the free alcohol \mathbf{D} in $86 \%(41.2 \mathrm{mg}, 20.3 \mu \mathrm{~mol})$ yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) 1.68(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~b}, 1 \mathrm{H}), 6.82-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.14$ ($\mathrm{m}, 2 \mathrm{H}$), $10.42(\mathrm{~b}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 14.7,27.4,35.5,37.1,63.7,108.9$, 120.5, 121.9, 126.1, 129.2, 142.0, 176.5 ppm . IR (neat sample): 3209, 2927, 1687, 1464, 1210, 1022, $964 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$204.1025; found $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2}$ 204.1019.
5.3.10 2-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (121)

To a solution of alcohol D ($30.0 \mathrm{mg}, 147 \mu \mathrm{~mol}, 1$ equiv.) in DMSO (0.5 mL) was added IBX ($45.4 \mathrm{mg}, 162 \mu \mathrm{~mol}, 1.1$ equiv.). The suspension was stirred for 24 h until complete consumption of the starting material. The reaction was quenched with water and extracted with $\mathrm{EtOAc}(4 \times 25 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography (hexane:EtOAc 3:1) to afford aldehyde 121 in 91% ($27.0 \mathrm{mg}, 134 \mu \mathrm{~mol}$) yield as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.71(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}) 2.48(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (d, J = 7.9 Hz, 1H), 6.98 (ddd, $J=1.0,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (d, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (ddd, $J=1.4$, $7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~b}, 1 \mathrm{H}) 9.56(\mathrm{~s}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 11.0,25.8,38.4$, $43.2,110.1,122.2,123.1,126.5,127.9,141.0,175.3,198.4 \mathrm{ppm}$. IR (neat sample): 3206, 1694,1620, 1470, 1221, $958 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$202.0868; found 202.0867.

5.3.11 2-methyl-2-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (114)

A suspension of methyl triphenylphosphonium bromide ($118 \mathrm{mg}, 328 \mu \mathrm{~mol}, 3$ equiv.) in THF (300 $\mu \mathrm{L}$) was cooled to $-78{ }^{\circ} \mathrm{C}$. To this solution was added NaHMDS (2 M in THF, $164 \mu \mathrm{~L}$, $328 \mu \mathrm{~mol}, 3$ equiv.) which was accompanied by a color change to bright orange. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , then warmed to $0^{\circ} \mathrm{C}$, stirred for further 20 min and cooled to $-78^{\circ} \mathrm{C}$ again. Then a solution of aldehyde 121 ($22.0 \mathrm{mg}, 109 \mu \mathrm{~mol}, 1$ equiv.) in THF (0.1 mL) was added slowly. The solution was stirred for 10 minutes and warmed up to $0^{\circ} \mathrm{C}$. It was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, then diluted with water, extracted with EtOAc ($3 \times$ $30 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography (hexane:EtOAc 1:1) to afford olefin 114 in 85% ($18.7 \mathrm{mg}, 92.9 \mu \mathrm{~mol}$) yield as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}) 1.97(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (dd, $J=1.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.32 (dd, $J=1.2,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, \mathrm{J}=10.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.94-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.16$ (ddd, $J=2.5,6.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.52(\mathrm{~b}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 16.4, 29.6, 37.0, 39.0, 109.3, 117.2, 121.3, 122.5, 126.6, 138.2, 139.3, 170.9 ppm. IR (neat sample): $3167,2908,1698,1619,1463,1041 \mathrm{~cm}^{-1}$. HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}$ 199.0997; found $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}$ 200.1075.
5.3.12 4-methyl-2a,3-dihydro-1H-cyclohepta[cd]indol-2(6H)-one (115)

Rearrangement of olefin 114 ($18.7 \mathrm{mg}, 92.9 \mu \mathrm{~mol}$) took already place at room temperature but to speed up the reaction was dissolved in benzene ($800 \mu \mathrm{~L}$) and was heated at $60^{\circ} \mathrm{C}$ in a sealed tube. After complete consumption the product was concentrated in vacuo and purified by flash chromatography (hexane:EtOAc 3:1) to afford the cyclisation product 115 in 58\% ($11.0 \mathrm{mg}, 54.0 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, \mathrm{J}=14.8,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, \mathrm{J}=2.8$, $4.7,16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (dd, $J=7.6,19.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (dd, J = 4.7, 12.9 Hz, 2H), 5.52 (dd, J = 1.1,
$7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=7.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}) 7.93$ (s, 1H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 27.9,33.0,33.4,43.9,107.3,120.2,122.2,127.9$, 129.5, 134.1, 137.7, 140.0, 179.7 ppm. IR (neat sample): 3167, 2908, 1698, 1619, 1463, 1041 cm^{-1}. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+} 222.0895$; found 222.0885 .
5.3.13 tert-butyl 4-methyl-3,6-dihydro-1H-cyclohepta[cd]indole-1-carboxylate (126)

Aldehyde 121 ($58.0 \mathrm{mg}, 288 \mu \mathrm{~mol}$, 1 equiv.) was dissolved in THF (1.44 mL) and Boc-anhydride ($75.0 \mathrm{mg}, 346 \mu \mathrm{~mol}, 1.2$ equiv.) was added at room temperature in one portion. The reaction mixture was stirred for 2.5 hours. After complete consumption of the starting material (TLCcontrol hexane:EtOAc 20:1) the solution was diluted with water and ethyl acetate. The layers were separated and the water phase was extracted two times with 50 mL ethyl acetate. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was then purified by flash chromatography (hexane:EtOAc 20:1) to deliver 73\% ($63.0 \mathrm{mg}, 210 \mu \mathrm{~mol}$) of the desired product (yellow foam).

A suspension of methyl triphenylphosphonium bromide ($149 \mathrm{mg}, 418 \mu \mathrm{~mol}, 2$ equiv.) in THF (4.2 mL) was cooled to $-78^{\circ} \mathrm{C}$. To this solution was added NaHMDS (2 M in THF, $210 \mu \mathrm{~L}$, $418 \mu \mathrm{~mol}, 2$ equiv.), which was accompanied by a color change to bright orange. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , then warmed up to $0^{\circ} \mathrm{C}$, stirred for further 20 min and cooled to $-78^{\circ} \mathrm{C}$ again. Then a solution of the aldehyde ($63.0 \mathrm{mg}, 210 \mu \mathrm{~mol}, 1$ equiv.) in THF (1.2 mL) was added slowly. The solution was stirred for 10 min and warmed up to $0^{\circ} \mathrm{C}$. It was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, then diluted with water, extracted with EtOAc $(3 \times 60 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The crude product was passed through a short path silica gel column and was directly subjected to the next reaction.

Crude olefin from the previous reaction was dissolved in methanol (2 mL) and cooled to $0^{\circ} \mathrm{C}$. Afterwards, sodium borohydride ($8.0 \mathrm{mg}, 210 \mu \mathrm{~mol}, 1$ equiv.) was added in one portion. The reaction mixture was stirred for 1 h . After complete consumption of the starting material the reaction was quenched with water, diluted with ethyl acetate, extracted with ethyl acetate (2 $\times 30 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by
flash chromatography (hexane:EtOAc 20:1) to deliver indole 126 in 42% ($25.0 \mathrm{mg}, 88.0 \mu \mathrm{~mol}$) yield over two steps (yellow oil).
${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $1.65(\mathrm{~s}, 9 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 6.85 (ddd, $J=1.6,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (dd, $J=0.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (dd, $J=7.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.28(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 24.8,27.4,28.4,30.5$, 32.1, 113.5, 115.4, 117.5, 120.2, 120.9, 122.5, 124.3, 124.4, 133.4, 138.1, 152.9 ppm . IR (neat sample): 2976, 1726, 1434, 1383, 1156, 1106, $940 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$ [$\mathrm{M}+\mathrm{H}]^{+} 284.1651$; found 284.1646.
5.3.14 1-(2-azidophenyl)-5-methyl-3-oxabicyclo[3.1.0]hexan-2-one (128)

128
Diazo compound 129 ($250 \mathrm{mg}, 1.00 \mathrm{mmol}$, 1 equiv.) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$. The solution was added via syringe into a solution of (CuOTf) $\mathbf{2}^{*}$ Tol $(15.0 \mathrm{mg}$, $39.0 \mu \mathrm{~mol}, 0.015$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt over ten min. The solution was stirred for 30 min until complete consumption of the starting material. The reaction mixture was then concentrated in vacuo and purified by flash chromatography (hexane:EtOAc 20:1 to 3:1) to afford 128 in 84% ($190 \mathrm{mg}, 840 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (ddd, $J=1.0,7.4,7.4 \mathrm{~Hz} 1 \mathrm{H}$), 7.20 (dd, $J=0.7$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.24\left(\mathrm{dd}, J=1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$), 7.40 (ddd, $J=1.7,7.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 15.1, 21.5, 30.6, 34.7, 73.3, 118.2, 124.2, 125.2, 130.0, 132.3, 140.9, 176.8 ppm. IR (neat sample): 2963, 2121, 1761, 1279, 1075, 1004, $751 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 252.0749$; found 252.0741.
5.3.15 2-(hydroxymethyl)-2-methylspiro[cyclopropane-1,3'-indolin]-2'-one (127)

Azide 128 ($25.0 \mathrm{mg}, 110 \mu \mathrm{~mol}, 1$ equiv.) in EtOH (2.2 mL) was reduced with Pd/C 10% (12.0 mg , $10.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) at 5 bar hydrogen gas pressure. After complete consumption of the
starting material, concentrated acetic acid ($300 \mu \mathrm{~L}$) was added to the reaction mixture and it was stirred for 18 h at $70^{\circ} \mathrm{C}$. The crude product was concentrated in vacuo and purified by flash chromatography (hexane:EtOAc 1:1 to 1:5) to afford alcohol 127 in 89% (20.0 mg , $100 \mu \mathrm{~mol})$ yield as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ - $4.10(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (ddd, $J=1.0,7.2,7.5 \mathrm{~Hz}$, 1 H), 7.17 (ddd, $J=1.5,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $9.24(\mathrm{~b}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 17.9$, 28.7, $36.8,40.5,64.7,110.0,121.9,126.9,129.3,140.7,180.0 \mathrm{ppm}$. IR (neat sample): 3172, 1690, 1465, 1223, 960, 914, $750 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$ 203.0946; found $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2}$ 204.1025.
5.3.16 2-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (123)

To a solution of alcohol 127 ($150 \mathrm{mg}, 740 \mu \mathrm{~mol}, 1$ equiv.) in DMSO (1.5 mL) was added IBX ($230 \mathrm{mg}, 810 \mu \mathrm{~mol}, 1.1$ equiv.). The suspension was stirred for 24 h until complete consumption of the starting material. The reaction was quenched with water and extracted with EtOAc ($4 \times 30 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography (hexane:EtOAc 3:1) to afford aldehyde 123 in 94% ($140 \mathrm{mg}, 700 \mu \mathrm{~mol}$) yield as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (dd, $J=7.5,10.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.04 (ddd, $J=1.0,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (ddd, $J=1.4,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$) $8.50(\mathrm{~b}, 1 \mathrm{H}), 9.91(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 12.5,28.4,40.5,41.9,110.3$, 122.1, 122.7, 126.0, 128.2, 141.9, 176.6, 201.4 ppm. IR (neat sample): 3172, 1690, 1465, 1223, $960,914,750 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$201.0790; found $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2}$ 202.0868.
5.3.17 1'-benzyl-2-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (122)

122
123 ($10.0 \mathrm{mg}, 54.0 \mu \mathrm{~mol}, 1$ equiv.) was dissolved in DMF (0.1 mL) and treated with NaH (80% in oil, $1.70 \mathrm{mg}, 60.0 \mu \mathrm{~mol}, 1.05$ equiv.) and stirred for 1 h . Benzylbromide ($30.0 \mu \mathrm{~L}, 270 \mu \mathrm{~mol}$,

5 equiv.) was added and stirred until the consumption of the substrate was complete. The reaction was quenched by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extraceted with EtOAc ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography (hexane:EtOAc 5:1) to give $\mathbf{1 2 2}$ in 80% ($13.0 \mathrm{mg}, 40.0 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (d, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.80(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}) 6.98$ (dd, $J=0.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.02 (ddd, $J=1.0,7.4$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.20 (ddd, J = 1.5, 7.4, 7.6 Hz, 1H), 7.22-7.38(m,5 H), $9.98(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 12.6, $28.6,40.2,41.8,44.4,109.6,122.1,122.4,125.4,127.5,127.9$, 128.1, 129.0, 135.8, 144.0, 174.6, 201.6 ppm. IR (neat sample) : 3077, 1685, 1611, 1346, 1184, $752,700 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): [M] calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}$ 291.1259; found $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}$ 292.1338.
5.3.18 1'-benzyl-2-methyl-2-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (108)

A suspension of methyl triphenylphosphonium bromide ($310 \mathrm{mg}, 860 \mu \mathrm{~mol}, 5$ equiv.) in THF (0.9 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$. To this solution was added NaHMDS (2 M in THF, $430 \mu \mathrm{~L}$, $860 \mu \mathrm{~mol}, 5$ equiv.), which was accompanied by a color change to bright orange. The solution was stirred for 45 min . Then a solution of aldehyde 122 ($50.0 \mathrm{mg}, 170 \mu \mathrm{~mol}, 1$ equiv.) in THF $(0.4 \mathrm{~mL})$ was added slowly. The solution was stirred for 18 h and warmed up to $-15^{\circ} \mathrm{C}$. It was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, then diluted with water, extracted with EtOAc ($3 \times$ 60 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography (hexane:EtOAc 3:1) to afford olefin 108 in 80% ($40.0 \mathrm{mg}, 140 \mu \mathrm{~mol}$) yield as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.91(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (dd, J = 1.0, $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (dd, $J=1.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=10.9,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) 6.99(\mathrm{ddd}, J=1.0$, $7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (dd, $J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (ddd, $J=1.4,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.33$ (m, 5 H) ppm. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 17.4, 31.3, 37.1, 39.2, 44.1, 109.0, 114.8, 121.4, 122.0, 126.7, 127.5, 127.6, 127.9, 128.8, 136.5, 139.3, 143.6, 175.2 ppm . IR (neat sample): $3369,2922,1697,1611,1351,1187,748 \mathrm{~cm}^{-1}$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}$ 289.1467; found $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NONa}^{+}$312.1364.

5.4 Spectra

 \sim

[^2]|

 | | | | |
| :---: | :---: | :---: | :---: | :---: |
| ID | Shift［ppm］ | J［ Hz ］ | M | Connection |
| 1 | 7.1012 | 1.2604 | 2 | $J(1,0)$ |
| | | 7.6625 | 2 | $J(1,0)$ |
| | | 7.6625 | 2 | J（1，0） |
| 2 | 7.0467 | 0.7602 | 2 | $J(2,0)$ |
| | | 7.5224 | 2 | $J(2,0)$ |
| 3 | 6.9440 | 1.0303 | 2 | $J(3,0)$ |
| | | 7.5725 | 2 | $J(3,0)$ |
| | | 7.5725 | 2 | $J(3,0)$ |
| 4 | 6.7286 | 7.6825 | 2 | $J(4,0)$ |
| 5 | 5.1676 | 15.8051 | 2 | $J(5,0)$ |
| 6 | 4.8136 | 15.9252 | 2 | $J(6,0)$ |
| 7 | 3.8986 | 10.7635 | 2 | $J(7,0)$ |
| 8 | 3.7575 | 10.8035 | 2 | $J(8,0)$ |
| 9 | 1.8620 | 4.9216 | 2 | $J(9,0)$ |
| 10 | 1.7532 | 4.7615 | 2 | $J(10,0)$ |

nnen
Connection

- ----
Shift

ID	Shift [ppm]	$\mathrm{J}[\mathrm{Hz}]$	M	Connection
1	2.0948	5.1204	2	$J(1,0)$
2	2.4796	5.1204	2	$J(2,0)$
3	6.9380	7.8513	2	$J(3,0)$
4	6.9807	1.0241	2	$J(4,0)$
		7.5099	2	$J(4,0)$
		7.5099	2	$J(4,0)$
	7.0263	6.1445	2	$J(5,0)$
6	7.2097	1.3654	2	$J(6,0)$
		7.5099	2	$J(6,0)$
		7.5099	2	$J(6,0)$

-198.427
-175.293

-141.024
-127.852
-126.495
-123.102
-110.077

	∞
	-
	$\stackrel{\sim}{n}$

$\left.\begin{array}{lllllllllllllllllll} \\ 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}\right) 10 \quad$ ppm

[^3]
-179.674

-176.828

\qquad

6 Experimental DVPR Methodology
6 Experimental DVPR Methodology 174
6.1 Graphical Overview 178
6.2 General 179
6.3 Procedures 179
6.3.1 General procedure for cyclopropanation and rearrangement with Isoprene 179
6.3.2 5-fluoro-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (203) 180
6.3.3 5-bromo-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (204) 180
6.3.4 5-chloro-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (205) 180
6.3.5 5,8-dimethyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (206) 181
6.3.6 5-methoxy-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (207) 181
6.3.7 8-methyl-5-nitro-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (208) 181
6.3.8 3-fluoro-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (209) 182
6.3.9 3-bromo-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (210) 182
6.3.10 3-chloro-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (211) 182
6.3.11 3,8-dimethyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (212) 183
6.3.12 3-methoxy-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (213) 183
6.3.13 4-methyl-2a,3-dihydro-1H-cyclohepta[cd]indol-2(6H)-one (115) 183
6.3.14 2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (220) 183
6.3.15 (1S)-4-((tert-butyldimethylsilyl)oxy)-2-methoxy-1'-tosylspiro[cyclopentane-1,3'-indolin]-
3-en-2'-one (221) 184
6.3.16 3-methylbut-2-en-1-yl 2-(2-azidophenyl)acetate (P) 184
6.3.17 3-methylbut-2-en-1-yl 2-(2-azidophenyl)-2-diazoacetate (224) 185
6.3.18 1-(2-azidophenyl)-6,6-dimethyl-3-oxabicyclo[3.1.0]hexan-2-one (225) 185
6.3.19 3-(hydroxymethyl)-2,2-dimethylspiro[cyclopropane-1,3'-indolin]-2'-one (226) 186
6.3.20 (1R,3R)-3-(((tert-butyldimethylsilyl)oxy)methyl)-2,2-dimethylspiro[cyclopropane-1,3'- indolin]-2'-one (228) 186
6.3.21 (1R,3R)-3-(hydroxymethyl)-2,2-dimethylspiro[cyclopropane-1,3'-indolin]-2'-one (226)187
6.3.22 (1R,3R)-2,2-dimethyl-2'-oxospiro[cyclopropane-1,3'-indoline]-3-carbaldehyde (Q). 188
6.3.23 (1R,3R)-2,2-dimethyl-3-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (227) 188
6.3.24 (1R,3R)-2,2-dimethyl-3-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (227) 189
6.3.25 2-(((tert-butyldimethylsilyl)oxy)methyl)allyl 2-(2-azidophenyl)acetate (R) 189
2-(((tert-butyldimethylsilyl)oxy)methyl)allyl 2-(2-azidophenyl)-2-diazoacetate (249) 189
6.3.26 (1R,5S)-1-(2-azidophenyl)-5-(((tert-butyldimethylsilyl)oxy)methyl)-3-oxabicyclo [3.1.0] hexan 2-one (251) 190
6.3.27 2-(((tert-butyldimethylsilyl)oxy)methyl)-2-(hydroxymethyl)spiro[cyclopropane-1,3'- indolin]-2'-one (253) 191
6.3.28 2-(((tert-butyldimethylsilyl)oxy)methyl)-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (J)192
6.3.29 2-(((tert-butyldimethylsilyl)oxy)methyl)-2-(1,3-dithian-2-yl)spiro[cyclopropane-1,3'- indolin]-2'-one (263). 192
6.3.30 2-(1,3-dithian-2-yl)-2-(hydroxymethyl)spiro[cyclopropane-1,3'-indolin]-2'-one (T). 193
6.3.31 2-(1,3-dithian-2-yl)-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (264) 194
6.3.32 8-(1,3-dithian-2-yl)-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (265) 194
6.3.33 Ethyl 8-(1,3-dithian-2-yl)-1-oxo-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6- carboxylate (266) 195
6.3.34 2-(bromomethyl)-2-(((tert-butyldimethylsilyl)oxy)methyl)spiro[cyclopropane-1,3'- indolin]-2'-one (U) 196
6.3.35 2-(bromomethyl)-2-(hydroxymethyl)spiro[cyclopropane-1,3'-indolin]-2'-one (255) 197
6.3.36 8-(bromomethyl)-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (261) 197
6.3.37 methyl 8-methylene-1-oxo-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6-carboxylate (259) 197
6.3.38 (E)-2-(((tert-butyldimethylsilyl)oxy)methyl)but-2-en-1-yl 2,4,6-trimethylbenzoate (W) 199
6.3.39 (E)-2-(((tert-butyldimethylsilyl)oxy)methyl)but-2-en-1-ol (248). 200
6.3.40 (E)-2-(((tert-butyldimethylsilyl)oxy)methyl)but-2-en-1-yl 2-(2-azidophenyl)-acetate (X) 200
6.3.41 (E)-2-(((tert-butyldimethylsilyl)oxy)methyl)but-2-en-1-yl 2-(2-azidophenyl)-2-diazo- acetate (250) 201
6.3.42 (1R,5S,6S)-1-(2-azidophenyl)-5-(((tert-butyldimethylsilyl)oxy)methyl)-6-methyl-3- oxabicyclo[3.1.0]hexan-2-one (252) 201
6.3.43 (1S,2R,3R)-2-(((tert-butyldimethylsilyl)oxy)methyl)-2-(hydroxymethyl)-3-methylspiro [cyclopropane-1,3'-indolin]-2'-one (254). 202
6.3.44 (1S,2S,3S)-2-(bromomethyl)-2-(((tert-butyldimethylsilyl)oxy)methyl)-3-methylspiro [cyclopropane-1,3'-indolin]-2'-one (Y) 203
6.3.45 (1S,2S,3S)-2-(bromomethyl)-2-(hydroxymethyl)-3-methylspiro[cyclopropane-1,3'- indolin]-2'-one (256). 203
6.3.46 (1S,2S,3S)-2-(bromomethyl)-3-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2- carbaldehyde (258) 204
6.3.47 8-(bromomethyl)-9-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (262) 205
6.3.48 methyl 9-methyl-8-methylene-1-oxo-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6- carboxylate (260) 205
6.4 Spectra 207

6.1 Graphical Overview

6.2 General

All reactions were carried out in oven-dried glassware under an argon atmosphere, unless otherwise stated. Commercially available anhydrous DMF, DMSO, MeCN, PhH, Pyridine THF (Acros Organics, Alfa Aesar) were used without further manipulation. Other anhydrous solvents were obtained by filtration through drying columns ($\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) on a Glass Contour system. Rhodium (II)-acetate dimer powder was obtained from Sigma-Aldrich. Reactions were magnetically and mechanically stirred and monitored by thin layer chromatography (TLC) with silica gel 60-F254 plates. Flash column chromatography was performed with silica gel 60 Å of Macherey-Nagel under pressure. Preparative TLC was performed with pre-coated TLC-plates Adamant UV_{254} of Mancherey-Nagel. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. NMR spectra were recorded on a 400 MHz spectrometer of Bruker. Unless otherwise stated, all NMR spectra were measured in CDCl_{3} solution and referenced to the residual CHCl_{3} signal $\left({ }^{1} \mathrm{H}, \delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}\right.$, $\delta=77.16 \mathrm{ppm}$). All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are given in ppm ($s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quadruplet, $m=$ multiplet, $b=$ broad signal). Assignments of proton resonance were confirmed, when possible, by correlated spectroscopy

6.3 Procedures

6.3.1 General procedure for cyclopropanation and rearrangement with Isoprene

 $\mathrm{Rh}_{2}(\mathrm{OAC})_{4}(2 \mathrm{~mol} \%)$ are heated to $40^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ in a sealed tube for five minutes. Isoprene (10 equiv.) is added followed by the corresponding diazoisatine (1 equiv.). The mixture is stirred at $40^{\circ} \mathrm{C}$ until the complete consumption of the corresponding diazooxindole and the second cyclopropane diastereomere. The solvent is subsequently removed in vacuo and the crude is purified by chromatographically.
6.3.2 5-fluoro-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (203)

203 was prepared by general procedure, starting from E, and purified chromatographically (hexane:EtOAc 3:1). 55% ($12.0 \mathrm{mg}, 55.2 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.80(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dd}, \mathrm{J}=16.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (ddd, $J=2.5$, $4.5 \mathrm{~Hz}, 16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, \mathrm{~J}=20.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, \mathrm{J}=6.8,20.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=4.4$, $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.53(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=3.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.5,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.96(\mathrm{~s}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 25.0(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}$), 27.9, 33.2, 44.9 (d, $J=2.1 \mathrm{~Hz}), 107.5(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 125.1(\mathrm{~d}, J=18.8 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=4.8 \mathrm{~Hz})$, $135.7(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 156.1(\mathrm{~d}, \mathrm{~J}=239.8 \mathrm{~Hz}), 179.4 \mathrm{ppm}$. IR (neat sample): 3177, 2920, 2852, 1700, 1664, 1629, 1320, 1301, 1240, 903, 810, $789,619 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}, 218.0981$; found, 218.0985.

6.3.3 5-bromo-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (204)

204 was prepared by general procedure, starting from \mathbf{F}, and purified chromatographically (hexane:EtOAc 4:1). 47% ($13.0 \mathrm{mg}, 47.0 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.79(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{dd}, \mathrm{J}=14.7,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, \mathrm{J}=2.7$, $4.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.54(\mathrm{~d}, \mathrm{~J}=19.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.67-3.77(\mathrm{~m}, 2 \mathrm{H}), 5.50-5.54(\mathrm{~m}, 1 \mathrm{H}), 6.63$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 27.6$, $32.5,33.4,44.5,108.9,116.5,119.6,131.1,131.9,134.3,136.9,139.3,179.0 \mathrm{ppm}$. IR (neat sample): $3261,3174,2966,2920,2855,1713,1613,1558,1451,1285,1255,1173,1039,805$, $651 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrNO}\left[\mathrm{M}+\mathrm{H}^{+}, 278.0181\right.$; found, 278.0182.

6.3.4 5-chloro-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (205)

205 was prepared by general procedure, starting from \mathbf{G}, and purified chromatographically (hexane:EtOAc 3:1). 44% ($10.3 \mathrm{mg}, 44.0 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.79(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dd}, \mathrm{J}=14.8,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, \mathrm{J}=2.6$, $4.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, \mathrm{~J}=19.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.79(\mathrm{~m}, 2 \mathrm{H}), 5.50-5.55(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 27.7$, 29.6, $33.4,44.6,108.3,119.6,126.6,128.6,131.2,134.3,135.2,138.6,179.2 \mathrm{ppm}$. IR (neat sample): $3146,3075,2974,2912,1703,1619,1486,1443,1377,1311,1280,1233,1074,916$, $792,704 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{CINO}[\mathrm{M}+\mathrm{H}]^{+}, 234.0686$; found, 234.0681.

6.3.5 5,8-dimethyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (206)

206 was prepared by general procedure, starting from \mathbf{H}, and purified chromatographically (hexane:EtOAc 4:1). 49% ($11.0 \mathrm{mg}, 49.3 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.78(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, J=16.2,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.69$ (ddd, $J=2.5,4.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 (dd, $J=7.2,19.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (d, $J=19.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (dd, $J=4.6,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.56(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ (s, 1H) ppm. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 19.2, 27.6, 29.2, 33.6, 44.5, 107.1, 129.1, 129.2, 129.9, 134.4, 136.1, $138.2,180.0$ ppm. IR (neat sample): 3208, 2964, 1704, 1620, 1471, 1321, 1295, 1253, 1203, 1154, 799, $630 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+}$, 236.1051; found, 236.1051.
6.3.6 5-methoxy-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (207)

207 was prepared by general procedure, starting from I, and purified chromatographically (hexane:EtOAc 2:1). 56% ($13.0 \mathrm{mg}, 56.0 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.79(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dd}, \mathrm{J}=14.2,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, \mathrm{J}=2.4$, $4.4,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, \mathrm{~J}=20.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 5.49-5.55(\mathrm{~m}, 1 \mathrm{H})$, $6.67(\mathrm{~s}, 2 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 25.5,27.9,33.4,44.8,56.3,106.9$, 109.4, 120.4, 126.8, 131.4, 133.3, 134.0, 152.6, 179.5 ppm . IR (neat sample): 3171, 2963, 1692, 1619, 1470, 1298, 1246, 1221, 1205, 1090, 1063, $784,631 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}, 230.1181\right.$; found, 230.1180 .

6.3.7 8-methyl-5-nitro-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (208)

208 was prepared by general procedure, starting from J, and purified chromatographically (hexane:EtOAc 1:1). 37% ($45.0 \mathrm{mg}, 184 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{dd}, \mathrm{J}=15.2,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (ddd, $J=3.0$, $5.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=5.1,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=7.6$, $18.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.59(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}$, 1H) ppm. ${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 25.5, 27.9, 33.4, 44.8, $56.3,106.9,109.4,120.4,126.8$, $131.4,133.3,134.0,152.6,179.5 \mathrm{ppm}$. IR (neat sample): $3145,2906,1713,1679,1604,1512$, 1458, 1342, 1252, 1195, 1039, 827, 734, $674 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ [M $+\mathrm{H}^{+}, 245.0926$; found, 245.0917 .

6.3.8 3-fluoro-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (209)

209 was prepared by general procedure, starting from K, and purified chromatographically (hexane:EtOAc 5:1). 41% ($9.00 \mathrm{mg}, 41.0 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{dd}, \mathrm{J}=14.9,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, \mathrm{J}=3.0$, $4.7,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=7.3,19.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=4.5$, $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.54(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=4.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79(\mathrm{~s}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 27.9,23.4,33.3,44.2(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 114.8(\mathrm{~d}$, $J=17.4 \mathrm{~Hz}), 120.2,122.5(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 126.8(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 133.1(\mathrm{~d}$, $J=3.5 \mathrm{~Hz}$), $133.4,145.6(\mathrm{~d}, J=241.5 \mathrm{~Hz}), 178.4 \mathrm{ppm}$. IR (neat sample): $3187,2920,2852,1696$, 1629, 1469, 1288, 1240, 1204, 783, 630, cm^{-1}. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}$, 218.0981; found 218.0978 .
6.3.9 3-bromo-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (210) 210 was prepared by general procedure, starting from L, and purified chromatographically (hexane:EtOAc 6:1). 52% ($14.4 \mathrm{mg}, 52.0 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.68(d d d, J=2.8,4.5,17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16(d d, J=7.5,19.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(d, J=19.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(d d, J=4.8,12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.48-5.52(m, 1 H), 6.67(d, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(d, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $27.8,32.6,33.3,45.2,99.8,119.8,123.7,130.4,130.4,134.0,136.6$, 139.3, 177.8 ppm. IR (neat sample): $3146,3075,2974,2912,1703,1619,1486,1443,1377$, 1311, 1280, 1233, 1074, 916, $792,704 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{CINO}[\mathrm{M}+\mathrm{H}]^{+}$, 234.0686; found, 234.0683.

6.3.10 3-chloro-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (211)

211 was prepared by general procedure, starting from M, and purified chromatographically (hexane:EtOAc 8:1 to $4: 1$). 52% ($12.0 \mathrm{mg}, 52.0 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dd}, \mathrm{J}=14.9,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, \mathrm{J}=2.8$, $4.7,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, \mathrm{J}=7.2,19.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=4.7$, $13.0 \mathrm{~Hz}, 1 \mathrm{H}) 5.48-5.52(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}$, 1H) ppm. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 27.9, 32.6, 33.2, 44.9, 112.3, 119.9, 123.2, 127.7, $130.5,134.0,136.0,137.6,178.1 \mathrm{ppm}$. IR (neat sample): 3146, 3075, 2974, 2912, 1703, 1619, 1486, 1443, 1377, 1311, 1280, 1233, 1074, 916, 792, $704 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{CINO}\left[\mathrm{M}+\mathrm{H}^{+}, 234.0686\right.$; found, 234.0683.

6.3.11 3,8-dimethyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (212)

212 was prepared by general procedure, starting from \mathbf{N}, and purified chromatographically (hexane:EtOAc 5:1). 53% ($11.3 \mathrm{mg}, 53.0 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{dd}, \mathrm{J}=14.2,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.69$ (ddd, $J=2.9,4.6,17.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dd, $J=7.5,19.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.66-3.79(\mathrm{~m}, 2 \mathrm{H}), 5.50-5.54$ $(\mathrm{m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 16.3,27.9,32.8,33.5,44.5,116.6,120.4,122.0,129.1,133.9,134.8,138.9$, 180.2 ppm . IR (neat sample): 3163, 3041, 2908, 2852, 1700, 1617, 1436, 1234, 1185, 799, $726 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}\left[\mathrm{M}+\mathrm{Na}^{+}, 236.1051\right.$; found, 236.1061 .

6.3.12 3-methoxy-8-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (213)

213 was prepared by general procedure, starting from O, and purified chromatographically (hexane:EtOAc 3:1). 44% ($10.0 \mathrm{mg}, 44.0 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, \mathrm{J}=14.8,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, \mathrm{J}=2.7$, $4.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.14(\mathrm{dd}, \mathrm{J}=7.5,19.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.50-5.54$ $(\mathrm{m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 25.5,27.9,33.4,44.8$, 56.3, 106.9, 109.4, 120.4, 126.8, 131.4, 133.3, 134.0, 152.6, 179.5 ppm . IR (neat sample): 3171, 2963, 1692, 1619, 1470, 1298, 1246, 1221, 1205, 1090, 1063, $784,631 \mathrm{~cm}^{-1}$. HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 230.1181$; found, 230.1180.
6.3.13 4-methyl-2a,3-dihydro-1H-cyclohepta[cd]indol-2(6H)-one (115)

115 was prepared by general procedure, starting from 118, and purified chromatographically (hexane:EtOAc 1:1). 53% ($10.0 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$) yield.

Analytical data see 5.3.12
6.3.14 2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (220)

220
220 was prepared by general procedure, starting from 118 using butadiene instead of isoprene. After cyclopropanation, the solvent was replaced by DMSO and the mixture was
heated to $110{ }^{\circ} \mathrm{C}$ until complete by TLC (hexane:EtOAc 1:1). The crude was purified chromatographically (hexane:EtOAc 3:2). 53% ($11.7 \mathrm{mg}, 63.0 \mu \mathrm{~mol}$) yield.

Analytical data see 8.3.8
6.3.15 (1S)-4-((tert-butyldimethylsilyl)oxy)-2-methoxy-1'-tosylspiro[cyclopentane-1,3'-indolin]-3-en-2'-one (221)

Diazo 337 ($103 \mathrm{mg}, 330 \mu \mathrm{~mol}, 1$ equiv) was dissolved in benzene ($300 \mu \mathrm{~L}$) and mixed with Danishefsky diene 216 ($130 \mathrm{mg}, 600 \mu \mathrm{~mol}, 1.8$ equiv). Then $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1.30 \mathrm{mg}, 3.20 \mu \mathrm{~mol}$, $1 \mathrm{~mol} \%$) was added and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 3 h . The reaction progress was monitored by thin layer chromatography. (hexane:EtOAc 6:1) The crude product was purified by flash chromatography on silica gel with hexane:EtOAc (6:1), what yielded to approximately 50% of compound 221 ($79.0 \mathrm{mg}, 160 \mu \mathrm{~mol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 2.40(\mathrm{~s} .3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, 2.47 (ddd, J = 1.9, 2.1, 16.0 Hz, 1H), 2.75 (d, J = $16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=7.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.92$ ($d, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.97(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-4.6,-4.5,18.2$, $21.8,25.7,45.1,55.9,57.2,89.7,102.5,113.4,125.0,125.5,128.0,128.8,129.4,129.8,135.2$, 138.6, 145.7, 155.9, 178.7 ppm. IR (neat sample): 1756, 1716, 1595, 1461, 1376, 1228, 1175, 1140, 1080, 957, 818, 762, $656 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 522.1746; found, 522.1746.

6.3.16 3-methylbut-2-en-1-yl 2-(2-azidophenyl)acetate (P)

Azide 130 (1.0 equiv.), prenyl alcohol (1.0 equiv.) and DMAP (0.2 equiv.) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mol} / \mathrm{L})$. Then DIC (1.05 equiv.) was slowly added to the solution. After complete consumption of the starting material, the reaction was quenched with water and extracted with EtOAc, dried over MgSO_{4} and concentrated in vacuo. The crude material was then purified by flash chromatography (hexane:EtOAc 40:1). P was obtained in $92 \%(2.55 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta\right): 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.35$ (dd, J=7.0, 7.5 Hz, 1H), 7.10-7.30(m, 3H), 7.34(m, 1H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta\right):-$ $5.3,18.5,26.0,36.8,63.8,65.3,113.0,118.3,125.0,125.7,128.9,131.7,138.8,143.2,170.8$ ppm. IR (neat sample): 2916, 2121, 1733, 1491, 1286, 1155, 965, $750 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 268.1062$; found 268.1049 .

6.3.17 3-methylbut-2-en-1-yl 2-(2-azidophenyl)-2-diazoacetate (224)

To a solution of the ester \mathbf{P} (1.0 equiv.) and ABSA (1.0 equiv.) in THF ($0.2 \mathrm{~mol} / \mathrm{L}$) DBU (2.0 equiv) was added. The solution was stirred for 18 h , then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the aqueous layer was extracted with EtOAc, the combined organic layers were washed with brine solution, dried over MgSO_{4} and concentrated in vacuo. The crude material was then purified by flash chromatography (hexane:EtOAc). $2 \mathbf{2 4}$ was obtained in yield 96% (2.70 g) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{dd}$, $J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 18.2, 25.9, 62.2, 116.8, 118.6, 118.8, 125.2, 129.1, 131.5, 137.3, 139.4, 166.0 ppm. IR (neat sample): 2917, 2126, 2091, 1698, 1280, 1242, 1151, 1008, 751 cm^{-1}.
6.3.18 1-(2-azidophenyl)-6,6-dimethyl-3-oxabicyclo[3.1.0]hexan-2-one (225)

225
Under argon, a solution of diazo 224 (1.0 equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mol} / \mathrm{L})$ was added via syringe onto a solution of [(CuOTf) $)_{2} \mathrm{PhMe}$ ($1.5 \mathrm{~mol} \%$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mol} / \mathrm{L})$ at rt. over ten minutes. The solution was stirred for 30 minutes until complete consumption of the starting material. The reaction mixture was then concentrated in vacuo and purified by flash chromatography. (hexane:EtOAc 20:1 to 3:1). 225 was obtained in $80 \%(2.13 \mathrm{~g})$ yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta\right): 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=10.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}$, $J=7.00,7.00 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta\right): 16.0,24.1,28.1,36.6,40.6,65.9$, 1758, 1287, 1173, $754 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 266.0905$; found 266.0914.
6.3.19 3-(hydroxymethyl)-2,2-dimethylspiro[cyclopropane-1,3'-indolin]-2'-one (226)

Under argon azid 225 ($660 \mathrm{mg}, 2.73 \mathrm{mmol}, 1.0$ equiv.) was dissolved in anhydrous THF (5 mL), tributylphosphine ($750 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 1.05$ equiv.) was added and the solution was stirred for 10 minutes. The crude substrate was concentrated in vacuo, dissolved in toluene (5 mL) and refluxed in a sealed tube for 10 further minutes. The crude product was concentrated in vacuo and purified by flash chromatography (hexane:EtOAc 3:1) to afford the oxindol in 80% $(470 \mathrm{mg}, 2.20 \mathrm{mmol})$ yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta\right): 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 1 \mathrm{H}), 2.66(\mathrm{dd}, \mathrm{J}=0.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}$, $J=0.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=4.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (ddd, $J=1.0,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (dd, $J=0.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}) 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta\right)$: $15.7,23.1,30.2,37.4,50.1,77.6,119.9,121.2,122.2,127.7,132.3,133.1,159.3,186.8 \mathrm{ppm}$. IR (neat sample): 2954, 1623, 1589, 1384, 956, $770 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{1} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right.$, 218.1181; found 218.1176.
6.3.20 (1R,3R)-3-(((tert-butyldimethylsilyl)oxy)methyl)-2,2-dimethylspiro[cyclopropane-1,3'-indolin]-2'-one (228)

Before the reaction could be started, compound $\mathbf{2 2 9}$ had to be filtrated through silica gel. Compound 118 ($265 \mathrm{mg}, 1.02 \mathrm{mmol}, 1$ equiv.) and compound 229 ($2.04 \mathrm{~g}, 10.2 \mathrm{mmol}, 10$ equiv.) were heated to $65^{\circ} \mathrm{C}$ and rhodium(II) acetate ($5.00 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%$) was added. The reaction progress was monitored by TLC (hexane:EtOAc 5:1). Gas evolution could be observed. A small amount of toluene for a better miscibility of polar and nonpolar reactants was added. Afterwards the temperature was increased to $80{ }^{\circ} \mathrm{C}$ and another 1.5 eq of compound $\mathbf{1 1 8}$ were dissolved in toluene and added dropwise to the red reaction mixture to
prevent dimer formation. The solvent was evaporated and the red liquid was cooled to $-5^{\circ} \mathrm{C}$ with an Ice/ NaCl -mixture for 10 minutes and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$. Subsequently trifluoroacetic acid (1 mL) was added dropwise to remove the tert-butyloxycarbonyl protecting group. The reaction mixture was neutralised with saturated aqueous bicarb solution (50 mL) and gas evolution could be observed. The aqueous phase was extracted three times with ethyl acetate. The combined organic phases were washed with brine and dried over magnesium sulfate. The solvent was evapotared in vacuo. The crude was dissolved in dichloromethane and silica gel was added. The solvent was evaporated in vaco and the product 228 was purified by flash chromatography with hexane:ethyl acetate 5:1 to receive as colorless to reddish oil in 76% ($244 \mathrm{mg}, 770 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.00-0.02(\mathrm{~m}, 6 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 2.25$ (dd, $J=6.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90 (dd, $J=8.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03 (dd, $J=8.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92, (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.96 (dd, $J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (ddd, $J=0.7,7.6$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}) 8.16(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-5.1,-5.0,17.3,18.3,21.1,25.9$, $35.7,39.9,43.4,58.2,109.7,121.2,123.7,126.3,127.6,141.5,177.4 \mathrm{ppm}$. IR (neat sample): 1700, 1621, 1469, 1237, 1105, 1025, 744, $697 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 354.1865 ;$ found, 354.1866.
6.3.21 (1R,3R)-3-(hydroxymethyl)-2,2-dimethylspiro[cyclopropane-1,3'-indolin]-2'-one (226)

Compound 228 ($224 \mathrm{mg}, 773 \mu \mathrm{~mol}, 1$ equiv.) was dissolved in THF (2.5 mL) and cooled to $0^{\circ} \mathrm{C}$ with an ice:water-bath. After 10 minutes TBAF (3.10 mL , $3.09 \mathrm{mmol}, 4$ equiv.) was added drop by drop. The red solution was stirred for 3.5 h and the reaction progress was monitored by TLC (hexane:EtOAc 1:1). The reaction mixture was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(25 \mathrm{~mL})$ and extracted with ethyl acetate. Subsequently the combined organic phases were dried over MgSO_{4} and concentrated in vacuo. The red oil was purified by flash column chromatography (hexane:EtOAc 1:1). The yellowish white solid was washed with chloroform and methanol to receive the product 226 as a white solid with 90% ($150 \mathrm{mg}, 690 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left._{6}, \delta\right): 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.68$ (m, 1H), $3.81-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{dd}, \mathrm{J}=5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.91(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.15(\mathrm{~m}$,

2H), 10.41 (s, 1H) ppm. ${ }^{13}$ C-NMR (100 MHz, DMSO-d $_{6}, \delta$): 16.7, 20.4, 33.7, 42.6, 55.6, 109.1, $120.3,123.3,125.9,127.0,142.5,176.2 \mathrm{ppm}$. IR (neat sample): 1700, 1621, 1469, 1237, 1105, 1025, 744, $697 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 240.1000$; found, 240.1000.
6.3.22 (1R,3R)-2,2-dimethyl-2'-oxospiro[cyclopropane-1,3'-indoline]-3-carbaldehyde (Q)

IBX ($56.6 \mathrm{mg}, 202 \mu \mathrm{~mol}, 1.1$ equiv.) was added to a solution of compound 226 ($40.0 \mathrm{mg}, 184$ $\mu \mathrm{mol}, 1$ equiv.) in DMSO (1.5 mL). The reaction mixture was stirred for 16 h and the progress was monitored by TLC (hexane:EtOAc 1:1). After reaction was complete, it was quenched with water and extracted with EtOAc ($4 \times 25 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure at $40^{\circ} \mathrm{C}$ bath temperature. Crude compound \mathbf{G} was purified by flash column chromatography (hexane:EtOAc $3: 1$) yielding $17.3 \mathrm{mg}(80.0 \mu \mathrm{~mol}, 43.5 \%)$ of compound \mathbf{Q} as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.68(\mathrm{~m}$, $1 \mathrm{H}), 3.81-3.87(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (dd, $J=7.6$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.93(\mathrm{~s}, 1 \mathrm{H}), 9.43(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 16.9,20.5,37.2,45.1,48.1,110.2,121.8,125.7,125.9,127.5,142.2,175.8,196.4$ ppm. IR (neat sample): 3265, 2926, 1696, 1619, 1468, 1342, 1222, 1106, 1008, 752, 737 cm^{-1}. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}, 216.1025\right.$; not found.
6.3.23 (1R,3R)-2,2-dimethyl-3-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (227)

A suspension of $\mathrm{Ph}_{3} \mathrm{PMeBr}\left(70.5 \mathrm{mg}, 200 \mu \mathrm{~mol}, 5\right.$ equiv.) in THF ($200 \mu \mathrm{~L}$) was cooled to $-78^{\circ} \mathrm{C}$ and NaHMDS (2 M in THF, $280 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$, 5 equiv.) was added slowly under inert gas conditions. The reaction mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ and for 45 min at $0^{\circ} \mathrm{C}$. The suspension was cooled to $-78^{\circ} \mathrm{C}$ again and a solution of compound $\mathbf{Q}(8.50 \mathrm{mg}, 40.0 \mu \mathrm{~mol}$, 1 equiv.) of in THF ($200 \mu \mathrm{~L}$) was added carefully and the reaction mixture was stirred for 10 \min. After warming up to $0^{\circ} \mathrm{C}$ the reaction mixture is quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with water. The aqueous layer is extracted with EtOAc ($3 \times 30 \mathrm{ml}$). The
combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure at $40^{\circ} \mathrm{C}$ bath temperature. Crude compound 227 was purified by flash column chromatography (hexane:EtOAc 1:1) yielding 7 mg ($32.0 \mu \mathrm{~mol}, 83 \%$) of compound 227 as a light yellowish solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta\right): 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, \mathrm{J}=1.7$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.22 (dd, J = 1.5, 17.2 Hz, 1H), 6.44 (dd, J = 9.6, $10.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.48 (dd, J = 9.9, $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (ddd, $J=1.0,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (dd, $J=1.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (ddd, J=1.7, $7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.74(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 15.6,23.4,37.2,47.9,109.2$, 117.4, 121.3, 121.9, 126.4, 129.6, 131.7, 141.0, 175.7 ppm . IR (neat sample): 2923, 1695, 1620, 1469, 1375, 1339, 1224, 1105, 985, 813, $752,740,687 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 214.1232$; found, 214.1228.
6.3.24 (1R,3R)-2,2-dimethyl-3-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (227)

227 was prepared by general procedure, starting from 118 and using prenylene instead of isoprene. After cyclopropanation, the solvent was replaced by DMSO and the mixture was heated to $110{ }^{\circ} \mathrm{C}$. The crude was purified chromatographically (hexane:EtOAc 1:1). 45\% ($45.1 \mathrm{mg}, 220 \mu \mathrm{~mol}$) yield.

Advice: The heating in DMSO should have induced the rearrangement, what did not appear. It is not necessary to perform.

Analytical data see: 6.3.23

6.3.25 2-(((tert-butyldimethylsilyl)oxy)methyl)allyl 2-(2-azidophenyl)acetate (R)

2-(((tert-butyldimethylsilyl)oxy)methyl)allyl 2-(2-azidophenyl)-2-diazoacetate (249)

Azide $\mathbf{1 3 0}$ ($3.50 \mathrm{~g}, 19.8 \mathrm{mmol}, 1$ equiv.), diol $\mathbf{2 4 3}$ ($4.20 \mathrm{~g}, 20.7 \mathrm{mmol}, 1.05$ equiv.) and DMAP ($506 \mathrm{mg}, 4.15 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. Then DIC ($3.90 \mathrm{~mL}, 21.8 \mathrm{mmol}$, 1.1 equiv.) was slowly added to the solution. After complete consumption of the alcohol (TLC, hexane:EtOAc 4:1) the reactionmixture was filtered over Celite ${ }^{\circ}$ and concentrated in vacuo. The crude material was then purified by flash column chromatography (hexane:EtOAc 25:1) to give the desired ester in 85% ($5.44 \mathrm{~g}, 14.5 \mathrm{mmol}$) yield as yellow oil.
${ }^{1} \mathrm{H}$-NMR (200 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H})$, $5.09(\mathrm{q}, \mathrm{J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{q}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.38(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$. HRMS (ESI) (m/z): calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}, 362.1900\right.$; found, 362.1898 .

DBU ($8.77 \mathrm{~mL}, 58.8 \mathrm{mmol}, 3.5$ equiv.) was added slowly to a solution of ester $\mathbf{R}(6.07 \mathrm{~g}$, $16.8 \mathrm{mmol}, 1$ equiv.) and ABSA ($68.1 \mathrm{~g}, 33.6 \mathrm{mmol}, 2$ equiv.) in acetonitrile (56 mL). The reaction mixture was stirred for 8 h . After complete consumption of the substrate (TLC, hexane:EtOAc 20:1; very low difference in r_{f}, the reaction was hydrolysed by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with hexane ($3 \times 100 \mathrm{~mL}$), the combined organic layers were washed with brine solution, dried over MgSO_{4} and concentrated in vacuo. The crude material was then purified by flash chromatography (hexane:EtOAc 25:1) to afford the desired product 249 in 95% ($6.12 \mathrm{~g}, 15.8 \mathrm{mmol}$) yield as bright orange oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H})$, $7.16-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 18.2,25.9,62.2,116.8,118.6,118.8,125.2,129.1,131.5,137.3,139.4,166.0 \mathrm{ppm}$. IR (neat sample): 2929, 2856, 2128, 2095, 1704, 1250, 1101, 836, $751 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 410.1624$; found, 410.1618.
6.3.26 (1R,5S)-1-(2-azidophenyl)-5-(((tert-butyldimethylsilyl)oxy)methyl)-3-oxabicyclo [3.1.0] hexan 2-one (251)

Diazoester 249 ($6.16 \mathrm{~g}, 15.9 \mathrm{mmol}$, 1 equiv.) in degased $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mathrm{~mL})$ was added to a suspension of [(CuOTf) ${ }_{2} \mathrm{PhMe}$] ($165 \mathrm{mg}, 320 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%$) in degased $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mathrm{~mL})$ via a dropping funnel over 30 minutes. The reactionmixture was heated smoothly until a gas evolution could be observed. After the complete consumption of diazoester 249 (TLC, hexane:EtOAc 20:1) the crude was concentrated in vacuo and was purified by flash column chromatography (hexane:EtOAc 10:1 to 3:1) to give the desired product as white crystals in 84% ($4.80 \mathrm{~g}, 13.4 \mathrm{mmol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-0.13(\mathrm{~s}, 3 \mathrm{H}),-0.10(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.72(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.54(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, \mathrm{J}=7.4,7.4 \mathrm{~Hz}$, 1H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-5.7,-5.6,18.2,23.5,25.8,34.0,36.3,61.8,70.5$, $118.2,123.9,125.1,130.0,131.8,141.4,176.2$ ppm. IR (neat sample): 2928, 2855, 2125, 1766, 1289, 1054, 835, $767 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 382.1563$; found, 382.1566 .
6.3.27 2-(((tert-butyldimethylsilyl)oxy)methyl)-2-(hydroxymethyl)spiro[cyclopropane-1,3'-indolin]-2'-one (253)

253
Azide 251 ($4.80 \mathrm{~g}, 12.0 \mathrm{mmol}$, 1 equiv.) was dissolved in $\mathrm{MeOH}(40 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 1.23 \mathrm{~g}$, $1.20 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added to that solution. It was stirred under H_{2} atmosphere (25 bar) for 20 minutes (TLC, hexane:EtOAc 3:1), then filtered over Celite ${ }^{\circ}$ and concentrated in vacuo. The crude was dissolved in THF (120 mL), cooled to $0^{\circ} \mathrm{C}$ and $i \operatorname{PrMgCl}(2 \mathrm{M}$ in THF, 12.6 mL , 25.2 mmol, 2.1 equiv.) was added slowly. After the complete consumption of the aniline derivative (TLC, hexane:EtOAc 3:1) the mixture was hydrolysed by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), the combined organic layers were washed with brine solution, dried over MgSO_{4} and concentrated in vacuo. The crude was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 40: 1\right)$ to obtain the desired product in 93% ($3.73 \mathrm{~g}, 11.2 \mathrm{mmol}$) yield as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-0.09(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}), 1.70(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.25$ $(\mathrm{m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{ddd}, J=2.4,6.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}$, 1H) ppm. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $-5.5,-5.4,18.2,24.7,25.8,35.7,44.5,62.5,64.2$, 109.7, 121.7, 121.9, 127.0, 128.8, 140.6, 178.1 ppm. IR (neat sample): 3498, 3169, 3066, 2956, $2886,1678,1619,1470,1442,1347,1252,1215,1175,1076,1053,1028,1010,962,866,747$, $664,629 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 356.1658$; found, 356.1659.

6.3.28 2-(((tert-butyldimethylsilyl)oxy)methyl)-2'-oxospiro[cyclopropane-1,3'-indoline]-2carbaldehyde (J)

PDC ($1.35 \mathrm{~g}, 3.60 \mathrm{mmol}, 2$ equiv.) was added to a suspension of alcohol 253 (600 mg , $1.80 \mathrm{mmol}, 1$ equiv.) and activated molecular sieves ($3 \AA 100 \mathrm{mg} / \mathrm{mmol}_{(\mathrm{PDCI})}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$. The colour changed from reddish to black brown. After the complete consumption of the starting material (TLC, hexane:EtOAc 1:1) the mixture was concentrated in vacuo and purified by flash column chromatography (hexane:EtOAc $3: 1$ to $1: 1$) to give the aldehyde as a colourless solid in 82% ($490 \mathrm{mg}, 1.48 \mathrm{mmol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.06,(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 2.33(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.63(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1H), 7.03 (ddd, J = 1.1, 7.5, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.22-7.26$ (m, 1H), 7.90 (s, 1H), $9.85(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-5.3,-5.3,18.8,24.1,26.0,40.5,48.3$, $56.3,110.0,122.4,122.9,126.2,128.8,141.4,175.7,199.9 \mathrm{ppm}$. IR (neat sample): 3217, 2954, 2929, 2886, 2856, 1703, 1621, 1471, 1347, 1254, 1219, 1108, 1007, 838, 778, 751, $644 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 354.1501$; found, 354.1500.
6.3.29 2-(((tert-butyldimethylsilyl)oxy)methyl)-2-(1,3-dithian-2-yl)spiro[cyclopropane-1,3'-indolin]-2'-one (263)

263
To a stirred mixture of aldehyde \mathbf{S} ($190 \mathrm{mg}, 573 \mu \mathrm{~mol}, 1$ equiv.) and 1,3-propanedithiol ($69.0 \mu \mathrm{~L}, 688 \mu \mathrm{~mol}, 1.2$ equiv.) in $\mathrm{MeCN}(2.9 \mathrm{~mL})$ was added $\operatorname{Pr}(\mathrm{OTf})_{3}(16.9 \mathrm{mg}, 29.0 \mu \mathrm{~mol}$, 0.05 equiv.). After stirring for 24 h (TLC, hexane:EtOAc 2:1) the mixture was diluted with EtOAc $(30 \mathrm{~mL})$ and washed with water (20 mL). The aqueous layer was washed with EtOAc (5 mL) and the combined organic layers were dried over MgSO_{4}. The crude was concentrated in vacuo and purified by flash column chromatography (hexane:EtOAc $5: 1$ to $3: 1$) to give the dithiane $\mathbf{2 6 3}$ in $\mathbf{7 5 \%}$ ($182 \mathrm{mg}, 432 \mu \mathrm{~mol}$) yield as pale yellow crystals.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 1.72-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.93$ (d, J = 5.1 Hz, 1H), 2.04-2.09 (m, 1H), 2.17 (d, J=5.1 Hz, 1H), 2.67-2.70 (m, 1H), 2.81-2.88
(m, 2H), 3.00-3.07 (m, 1H), 3.83 (d, J = $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H})$, $6.90(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (ddd, $J=1.0,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{ddd}, J=1.0,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-5.1,-4.9,18.4,26.0$, 26.1, 26.5, 31.2, 31.6, 37.9, 45.1, 50.3, 59.4, 109.5, 121.8, 123.0, 127.0, 128.3, 140.6, 176.5 ppm. IR (neat sample): $3186,2928,2898,2854,1691,1622,1470,1422,1252,1230$, 1100, $835,777,747,647 \mathrm{~cm}^{-1}$. HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 444.1463$; found, 444.1464.
6.3.30 2-(1,3-dithian-2-yl)-2-(hydroxymethyl)spiro[cyclopropane-1,3'-indolin]-2'-one (T)

To a $0{ }^{\circ} \mathrm{C}$ cold solution of HF (70% in pyridine, $2.57 \mathrm{~mL}, 102 \mathrm{mmol}, 120$ equiv.) in pyridine
 in THF (3 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes before the ice bath was removed. After the complete consumption of the starting material (TLC, hexane:EtOAc 3:1) the mixture was pured onto saturated NaHCO_{3} solution, the aqueous layer was extracted with EtOAc (3x 25 mL), the combined organic layers were successifely washed with saturated CaCl_{2} solution, HCl solution ($1 \mathrm{M}, 2 \times 50 \mathrm{~mL}$) and water before they were dried over MgSO_{4} and concentrated in vacuo. The crude was used without further purification. The NMR sample was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 30: 1\right)$.
${ }^{1} \mathrm{H}$-NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 1.67-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.12(\mathrm{~m}, 1 \mathrm{H})$, $2.09(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.89(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{ddd}, \mathrm{J}=2.4,12.6,14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (ddd, $J=1.0,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19 (ddd, $J=1.3,7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): 26.7, 27.2, 32.0, 32.2, 39.1, 45.5, 51.1, 59.5, 110.8, 112.6, 123.6, 128.1, 129.2, 143.0, 178.9 ppm . IR (neat sample): $3235,2934,2898,1695,1621,1470$, 1343, 1275, 1207, 1029, 1207, 909, 753, 733, $649 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}_{2},[\mathrm{M}]^{+}, 330.0598$; found, 330.0597 .
6.3.31 2-(1,3-dithian-2-yl)-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (264)

$\mathrm{SO}_{3} \cdot \mathrm{Py}\left(32.0 \mathrm{mg}, 200 \mu \mathrm{~mol}, 4\right.$ equiv.) was dissolved in a $0^{\circ} \mathrm{C}$ cold solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{DMSO}$ ($500 \mu \mathrm{~L}, 1: 1$). Alcohol $\mathbf{T}(15.4 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 1$ equiv.) was added in one portion to the cold solution followed by $\mathrm{NEt}_{3}(32.0 \mu \mathrm{~L}, 250 \mu \mathrm{~mol}, 5$ equiv.). The mixture was stirred for 1.5 h at $0^{\circ} \mathrm{C}$ before it was quenched by addition of water, diluted with EtOAc and poured onto HCl solution ($0.2 \mathrm{M}, 10 \mathrm{~mL}$). The phases were separated and the aqueous layer was extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, concentrated in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc 1:1) to give aldehyde 264 as a white solid in 86% ($13.2 \mathrm{mg}, 43.3 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}$-NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.75-1.85(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.58(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.94(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.06(\mathrm{~m}, 1 \mathrm{H}), 5.24$ (s, 1H), 6.89 (d, J = 7.7 Hz, 1H), 6.96 (ddd, J = 1.0, 7.7, 7.7 Hz, 1H), 7.05 (d, J = 7.5 Hz, 1H), 7.21 (ddd, J=1.0, 7.7, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.72(\mathrm{~s}, 1 \mathrm{H}), 9.83(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 24.3$, $25.2,32.3,31.3,39.7,44.7,49.5,109.7,122.4,124.0,125.1,128.2,140.8,174.4,195.1 \mathrm{ppm}$. IR (neat sample): 3274, 2902, 1698, 1616, 1469, 1336, 1274, 1109, 1028, 1015, $752 \mathrm{~cm}^{-1}$. HRMS premier (ESI) (m / z): calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}_{2},[\mathrm{M}+\mathrm{Na}]^{+}, 328.0442$; found, 328.0450.
6.3.32 8-(1,3-dithian-2-yl)-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (265)

NaHMDS (2 m in THF, $43.4 \mu \mathrm{~L}, 86.8 \mu \mathrm{~mol}, 2.5$ equiv.) was added to a $-78^{\circ} \mathrm{C}$ cold suspension of Methyltriphenylphosphonium bromide ($29.4 \mathrm{mg}, 86.8 \mu \mathrm{~mol}, 2.5$ equiv.) in THF ($100 \mu \mathrm{~L}$). The mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 10 minutes before the temperature was raised to $0^{\circ} \mathrm{C}$ and the mixture was stirred for further 60 minutes (colour change from pale yellow to bright yellow). The ylide was cooled to $-78{ }^{\circ} \mathrm{C}$ and aldehyde $\mathbf{2 6 4}$ ($10 \mathrm{mg}, 32.7 \mu \mathrm{~mol}, 1$ equiv.) in THF ($200 \mu \mathrm{~L}$) was added. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 5 minutes before the temperature was again raised to $0^{\circ} \mathrm{C}$. After the complete consumption of the aldehyde (TLC, hexane:EtOAc

1:1) the reaction was quenched by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4}. The crude was concentrated in vacuo, dissolved in $\mathrm{CDCl}_{3}(700 \mu \mathrm{~L})$ and heated to $50^{\circ} \mathrm{C}$ (reaction progress by NMR). After the reaction was complete the crude was concentrated in vacuo and purified by preparative TLC (hexane:EtOAc 2:1) to obtain the rearranged product in 71% ($7.00 \mathrm{mg}, 23.1 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $1.77-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.45(\mathrm{~m} 1 \mathrm{H})$, $2.82-3.09(\mathrm{~m}, 5 \mathrm{H}), 3.38$ (ddd, $J=1.6,7.0,20.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=4.2,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (dd, J = 2.1, 20.3 Hz, 1H), 4.49 (s, 1H), $6.00-6.05(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ $25.5,31.9,32.0,33.5,44.2,56.4,107.3,122.5,126.0,128.1,129.2,136.3,136.4,140.0$, 178.5 ppm . IR (neat sample): 3210, 2922, 2852, 1704, 1619, 1462, 1421, 1316, 1277, 1249, 1083, 1015, 909, 774, 735, $628 \mathrm{~cm}^{-1}$. HRMS (ESI) $\left(\mathrm{m} / \mathrm{z}\right.$): calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NOS}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 326.0649; found, 326.0652.

6.3.33 Ethyl 8-(1,3-dithian-2-yl)-1-oxo-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6carboxylate (266)

TMS-Ethylacetate ($20.3 \mu \mathrm{~L}, 111 \mu \mathrm{~mol}$, 2.6 equiv.) was added to a solution of LiHMDS (1 m in THF, $106 \mu \mathrm{~L}, 106 \mu \mathrm{~mol}, 2.5$ equiv.) in THF ($200 \mu \mathrm{~L}$) at $-78^{\circ} \mathrm{C}$. After stirring for 30 minutes at $-78^{\circ} \mathrm{C}$ a solution of aldehyde $\mathbf{2 6 4}(13.0 \mathrm{mg}, 42.6 \mu \mathrm{~L}, 1$ equiv.) in THF ($400 \mu \mathrm{~L}$) was added. After complete consumption of the starting material (2 h) (TLC, hexane:EtOAc 2:1) the reaction was quenched by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc (3x 20 mL), the combined organic layers were dried over MgSO_{4} and the solvent was removed in vacuo. The crude was dissolved in benzene- $\mathrm{d}_{6}(600 \mu \mathrm{~L})$ and heated to $40{ }^{\circ} \mathrm{C}$ for 20 h . The reaction progress was observed by NMR and TLC (hexane:EtOAc 1:1). After the complete consumption of the olefin the crude was purified by preparative TLC (hexane:EtOAc 2:1) to obtain the rearrangement product 266 in 75% ($12.0 \mathrm{mg}, 32.0 \mu \mathrm{~mol}$) yield in an inseparable diasteromeric mixture of 10:1.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.23(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.83-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.15(\mathrm{~m}, 1 \mathrm{H})$, $2.34-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.98(\mathrm{~m}, 4 \mathrm{H}), 3.07(\mathrm{dd}, J=4.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=4.6,12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{dd}, J=1.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=2.8,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}$, 1H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.2,14.3,25.5,31.6,32.0,43.5,51.4,56.3,61.8,108.8$, 123.2, 124.0, 128.3, 129.9, 133.9, 139.3, 140.5, 170.9, 178.5 ppm . IR (neat sample): 2929, 2856, 2122, 1736, 1585, 1491, 1454, 1288, 1252, 1154, 1104, 1063, 1006, 834, 775, 749, $667 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}_{2}\left[\mathrm{M}+\mathrm{H}^{+}, 376.1041\right.$; found, 376.1031.
6.3.34 2-(bromomethyl)-2-(((tert-butyldimethylsilyl)oxy)methyl)spiro[cyclopropane-1,3'-
indolin]-2'-one (U)

A solution of alcohol $\mathbf{2 5 3}$ ($590 \mathrm{mg}, 1.77 \mathrm{mmol}, 1$ equiv.) and carbon tetrabromide (645 mg , $1.95 \mathrm{mmol}, 1.1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Powdered triphenyl phosphine ($510 \mathrm{mg}, 1.95 \mathrm{mmol}, 1.1$ equiv.) was added in portions over 5 minutes with vigorous stirring. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ until the complete consumption of the alcohol (TLC, hexane:EtOAc 1:1, 20 minutes). The crude was concentrated in vacuo and purified by flash column chromatography (hexane:EtOAc 7:1) to give bromide \mathbf{U} in 79% ($552 \mathrm{mg}, 1.39 \mathrm{mmol}$) yield as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.91(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.01(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (ddd, $J=1.0,7.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (d, J = 7.5 Hz, 1H), 7.21 (ddd $J=1.4,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right):-5.3,18.3,25.9,28.4,33.8,38.2,42.3,61.8,109.9,121.8,122.2,127.4,127.8,141.1$, 176.5 ppm . IR (neat sample): 3218, 2951, 2927, 2882, 2855, 1702, 1667, 1625, 1469, 1345, 1252, 1229, 1095, 896, 834, 773, 731, $653 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{SiBr}[\mathrm{M}$ $+\mathrm{Naj}^{+}, 418.0814 ;$ found, 418.0796 .
6.3.35 2-(bromomethyl)-2-(hydroxymethyl)spiro[cyclopropane-1,3'-indolin]-2'-one (255)

A solution of TBS-ether $\mathrm{L}\left(498 \mathrm{mg}, 1.26 \mathrm{mmol}, 1\right.$ equiv.) in THF (8 mL) was added to a $0^{\circ} \mathrm{C}$ cold solution of hydrogenfluoride (70% in pyridine, $3.80 \mathrm{~mL}, 151 \mathrm{mmol}, 120$ equiv.) in pyridine $(5 \mathrm{~mL})$ and THF (4 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h before the ice bath was removed. The mixture was stirred at room temperature until the complete consumption of the starting material (TLC, hexane/EtOAc 3:1). The crude was poured onto saturated NaHCO_{3} solution, the aqueous layer was extracted with EtOAc ($3 x 75 \mathrm{~mL}$), the combined organic layers were successively washed with saturated CaCl_{2} solution, $\mathrm{HCl}(1 \mathrm{M}, 2 \times 100 \mathrm{~mL})$ and water before they were dried over MgSO_{4} and concentrated in vacuo to give the free alcohol as white crystals in 98% ($346 \mathrm{mg}, 1.23 \mathrm{mmol}$) yield. The substrate was used without further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 1.89(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(3.92$, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.99 (ddd, $J=1.0,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (ddd, J = 1.3, $7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 28.9,34.0,39.3,42.6,61.5,111.0,122.6$, 123.3, 128.4, 143.4, 144.9, 178.5 ppm. IR (neat sample): 3499, 3169, 3066, 2962, 2886, 1679, 1619, 1470, 1443, 1348, 1303, 1275, 1214, 1175, 1053, 1012, $963,748,664,629 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{Na}]^{+}, 303.9949$; found, 303.9935.
6.3.36 8-(bromomethyl)-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (261)
6.3.37 methyl 8-methylene-1-oxo-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6carboxylate (259)

IBX ($84.6 \mathrm{mg}, 302 \mu \mathrm{~mol}, 1.2$ equiv.) was added to a solution of alcohol 255 ($71.0 \mathrm{mg}, 252 \mu \mathrm{~mol}$, 1 equiv.) in DMSO ($840 \mu \mathrm{~L}$). After the complete consumption of the starting material (TLC, hexane:EtOAc 1:1) water was added to the reaction. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4}. The solvent was removed in vacuo and the product was used without further purification

Methyltriphenylphosphonium bromide ($102 \mathrm{mg}, 286 \mu \mathrm{~mol}, 4$ equiv.) in THF ($250 \mu \mathrm{~L}$) was cooled to $-78{ }^{\circ} \mathrm{C}$ before NaHMDS (2 M in THF, $143 \mu \mathrm{~L}, 286 \mu \mathrm{~mol}, 4$ equiv.) was added. The suspension was stirred for 10 minutes at $-78{ }^{\circ} \mathrm{C}$ before the temperature was raised to $0^{\circ} \mathrm{C}$. During this time the colour of the suspension changed from pale yellow to bright yellow and the majority of the Wittig reagent dissolved. After stirring for 30 minutes at $0{ }^{\circ} \mathrm{C}$ the temperature was lowered to $-78^{\circ} \mathrm{C}$ and aldehyde \mathbf{V} ($20.0 \mathrm{mg}, 71.4 \mu \mathrm{~mol}, 1$ equiv.) in THF $(500 \mu \mathrm{~L})$ was added. The mixture was stirred for 10 minutes before the temperature was raised again to $0{ }^{\circ} \mathrm{C}$. After the complete consumption of aldehyde \mathbf{V} (TLC, hexane:EtOAc 3:1) the reaction was hydrolysed by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and the crude was concentrated in vacuo ($\mathrm{T} \leq 20^{\circ} \mathrm{C}$). The crude was filtered over a short column (pentane: $\mathrm{Et}_{2} \mathrm{O}$ 1:1), concentrated in vacuo, dissolved in benzene $-\mathrm{d}_{6}(700 \mu \mathrm{~L})$ and heated to $40^{\circ} \mathrm{C}$ for 8 h . The reaction progress was observed by NMR. After the rearrangement was complete, the crude was purified by flash column chromatography (hexane:EtOAc 1:1) to give the desired product in 76% ($15.0 \mathrm{mg}, 54.0 \mu \mathrm{~mol}$) yield.

Compound 261

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.33-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{ddd}, J=2.5,4.3,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (dd, $J=6.9,20.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=4.5,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=20.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.05(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-6.01(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{dd}, \mathrm{J}=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 30.9,33.6,42.6$, $43.8,107.7,122.4,127.1,128.2,129.2,134.7,135.9,140.3,179.0 \mathrm{ppm}$. IR (neat sample): 3160, 2964, 1695, 1615, 1461, 1289, 1260, 1207, $780,632 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{CINO}\left[\mathrm{M}+\mathrm{H}^{+}, 234.0686\right.$; found, 234.0681.

Compound 259

A suspension of aldehyde \mathbf{V} ($4.60 \mathrm{mg}, 16.4$ umol, 1 equiv.) and Methyl (triphenylphosphoranylidene)acetate ($6.60 \mathrm{mg}, 19.7 \mu \mathrm{~mol}, 1.2$ equiv.) in benzene ($160 \mu \mathrm{~L}$) was warmed to $50^{\circ} \mathrm{C}$. After the complete consumption of the starting material (TLC, hexane:EtOAc 1:1) the temperature was raised to $60^{\circ} \mathrm{C}$. The mixture was stirred at that temperature until the rearrangement was complete (TLC, hexane:EtOAc 1:1). The crude was purified by preparative TLC (hexane:EtOAc, 1:1) to give the desired rearrangement product in 93% (3.90 mg , $15.3 \mu \mathrm{~mol})$ yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.46(\mathrm{dd}, J=13.0,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (dd, $J=2.4,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 5.52(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=1.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 1 \mathrm{H}) 7.96(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 44.8, $52.6,10.4,123.6,127.6,128.0,128.9,129.5,130.3,139.9,140.0$, $142.8,169.3,178.3 \mathrm{ppm}$. IR (neat sample): $3185,1711,1615,1437,1330,1245,1217,1084$, 984, 923, 793, 747, $628 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}, 256.0974\right.$; found, 256.0975 .
6.3.38 (E)-2-(((tert-butyldimethylsilyl)oxy)methyl)but-2-en-1-yl 2,4,6-trimethylbenzoate (W)

Ester 247 ($12.8 \mathrm{~g}, 46.1 \mathrm{mmol}, 1$ equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(230 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. DiBAl-H (1 m in hexane, $102 \mathrm{~mL}, 102 \mathrm{mmol}, 2.2$ equiv.) was added via dropping funnel. After complete addition, the mixture was allowed to stir for 3 h at $-78^{\circ} \mathrm{C}$ before it was quenched by saturated Rochelle-salt solution. The mixture was stirred over night; the phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic phases were washed with brine solution, dried over MgSO_{4} before they were concentrated in vacuo.

The crude was dissolved with imidazole ($7.11 \mathrm{~g}, 105 \mathrm{mmol}, 2.4$ equiv.) in DMF (35 mL) and cooled to $0^{\circ} \mathrm{C}$. TBSCl ($7.87 \mathrm{~g}, 52.2 \mathrm{mmol}, 1.2$ equiv.) in DMF (9 mL) was added slowly. After complete consumption of the starting material (TLC, hexane:EtOAc 4:1) the mixture was quenched by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The product was extracted with hexane: $\mathrm{Et}_{2} \mathrm{O}$ (10:1, $3 \times 100 \mathrm{~mL})$, the combined organic phases were washed with water, then brine solution, before they were dried over MgSO_{4}, filtered off and concentrated in vacuo. The crude was purified by flash column chromatography (hexane:EtOAc 15:1 to 10:1) to obtain the TBS-ether \mathbf{W} in 85% ($14.2 \mathrm{~g}, 39.2 \mathrm{mmol}$) yield as colourless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.78$ (ddd, $\left.\mathrm{J}=1.4,1.4,7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.28$ $(\mathrm{s}, 9 \mathrm{H}), 4.17(\mathrm{dd}, J=1.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 5.82(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right):-5.2,13.4,18.5,19.9,21.3,26.1,59.9,65.7,126.6,128.5,131.2$, 134.1, 135.2, 139.3, 170.4 ppm. IR (neat sample): 2954, 2929, 2856, 1726, 1463, 1382, 1253, 1167, 834, $773,667 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 385.2975$; found, 385.2172.

6.3.39 (E)-2-(((tert-butyldimethylsilyl)oxy)methyl)but-2-en-1-ol (248)

To a $0{ }^{\circ} \mathrm{C}$ cold solution of ester $\mathbf{W}\left(6.00 \mathrm{~g}, 16.5 \mathrm{mmol}, 1\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(83 \mathrm{~mL})$ was slowly added Methyllithium (1.6 m in $\mathrm{Et}_{2} \mathrm{O}, 82.7 \mathrm{~mL}, 49.6 \mathrm{mmol}, 3$ equiv.). The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2 h until complete consumption of the starting material (TLC, hexane:EtOAc 5:1). The crude was quenched by carefully addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (200 mL) before it was diluted with water $(300 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude was purified by flash column chromatography (hexane:EtOAc 15:1 to 5:1) to get the monoprotected diol 248 in 93% ($3.32 \mathrm{~g}, 15.3 \mathrm{mmol}$) yield as colourless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{br}, 1 \mathrm{H})$, $4.21(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 5.57(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-5.3,13.1$, 18.4, 26.0, 59.8, 68.4, 124.1, 137.7 ppm . IR (neat sample): 3338, 2929, 2857, 1486, 1253, 1101, 1059, 1004, 834, 775, $669 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$, 239.1443; found, 239.1438 .
6.3.40 (E)-2-(((tert-butyldimethylsilyl)oxy)methyl)but-2-en-1-yl 2-(2-azidophenyl)-acetate (X)

Azide 130 ($2.85 \mathrm{~g}, 16.1 \mathrm{mmol}, 1.05$ equiv.), diol 248 ($3.32 \mathrm{~g}, 15.3 \mathrm{mmol}, 1$ equiv.) and DMAP ($370 \mathrm{mg}, 3.07 \mathrm{mmol}, 0.2$ equiv.) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(31 \mathrm{~mL})$. Then DIC (2.99 mL , $16.9 \mathrm{mmol}, 1.1$ equiv.) was slowly added to the solution. After complete consumption of the alcohol (TLC, hexane:EtOAC 4:1) the reactionmixture was filtered over Celite ${ }^{\ominus}$ and concentrated in vacuo. The crude material was then purified by flash column chromatography (hexane:EtOAc 25:1) to give the desired ester in 94% ($5.44 \mathrm{~g}, 14.5 \mathrm{mmol}$) yield as pale yellow oil.
${ }^{1} \mathrm{H}-$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.6(\mathrm{~s}, 2 \mathrm{H}), 4.08$ (s, 2H), $4.69(\mathrm{~s}, 2 \mathrm{H}), 5.76(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{ddd}, J=1.2,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1 H), 7.22 (dd, $J=1.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (ddd, $J=1.2,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}, \delta\right):-5.3,13.2,18.5,26.1,36.7,60.2,65.3,118.3,124.9,125.9,126.1,128.9,131.6$, 134.0, 138.8, 171.1 ppm. IR (neat sample): 2953, 2929, 2856, 2121, 1736, 1491, 1453, 1288, 1453, 1288, 1251, 1153, 1104, 1064, 834, 775, $749,667 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 398.1876$; found, 398.1880.
6.3.41 (E)-2-(((tert-butyldimethylsilyl)oxy)methyl)but-2-en-1-yl 2-(2-azidophenyl)-2-diazoacetate (250)

250
DBU ($7.23 \mathrm{~mL}, 48.4 \mathrm{mmol}, 3.5$ equiv.) was added slowly to a solution of ester $\mathbf{X}(5.00 \mathrm{~g}$, $13.8 \mathrm{mmol}, 1$ equiv.) and $\operatorname{ABSA}(6.65 \mathrm{~g}, 27.7 \mathrm{mmol}, 2$ equiv.) in acetonitrile (46 mL). The reaction mixture was stirred for 8 h . After complete consumption of the substrate (TLC, hexane:EtOAc 20:1; very low difference in r_{f}, the reaction was hydrolysed by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with hexane ($3 \times 100 \mathrm{~mL}$), the combined organic layers were washed with brine solution, dried over MgSO_{4} and concentrated in vacuo. The crude material was then purified by flash chromatography (hexane:EtOAc 25:1) to afford the desired product $\mathbf{2 5 0}$ in 91% ($5.05 \mathrm{~g}, 12.6 \mathrm{mmol}$) yield as bright orange oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.76(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H})$, $4.83(\mathrm{~s}, 2 \mathrm{H}), 5.79(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{ddd}, \mathrm{J}=1.4,7.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (dd, J = 1.4, 8.2 Hz, 1H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-5.3,13.3,18.5,26.1,60.3$, 65.4, 116.7, 118.6, 125.3, 126.3, 129.1, 129.2, 131.5, 134.0, 137.3, 165.7 ppm. IR (neat sample): 2953, 2929, 2856, 2126, 2092, 1739, 1702, 1493, 1369, 1349, 1281, 1240, 1151, 1101, 1009, 835, 776, 751, $684 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$, 424.1781; found, 424.1774.
6.3.42 (1R,5S,6S)-1-(2-azidophenyl)-5-(((tert-butyldimethylsilyl)oxy)methyl)-6-methyl-3-oxabicyclo[3.1.0]hexan-2-one (252)

252
A solution of diazoester 250 ($4.00 \mathrm{~g}, 9.96 \mathrm{mmol}, 1$ equiv.) in degased $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added to a suspension of the [(CuOTf) $)_{2} \mathrm{PhMe}$ ($155 \mathrm{mg}, 300 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%$) in degased $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(100 mL) via a dropping funnel. After the complete consumption of the starting material (TLC, hexane:EtOAc 20:1) the crude was concentrated under reduced pressure and was purified by flash column chromatography (hexane:EtOAc 10:1 to 3:1) to give the desired product as white crystals in 74% ($2.74 \mathrm{~g}, 7.34 \mathrm{mmol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-0.12(\mathrm{~s}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, 1.92 (br, 1H), 3.42 (br, 1H), 3.61 (br, 1H), 4.29 (d, J = $9.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.60(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dd, $J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{ddd}, J=1.6,7.8$, $7.8 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta$): $-5.7,8.0,18.2,23.6,25.8,39.2,40.2,62.8,66.6$, 118.3, 124.8, 126.0, 129.7, 132.0, 141.1, 173.4 ppm. IR (neat sample): 2954, 2931, 2897, 2857, $2124,2093,1494,1453,1290,1256,1290,1256,1081,1026,838,778,754 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 396.1719$; found, 396.1721.
6.3.43 (1S,2R,3R)-2-(((tert-butyldimethylsilyl)oxy)methyl)-2-(hydroxymethyl)-3-methylspiro [cyclopropane-1,3'-indolin]-2'-one (254)

Azide 250 ($2.74 \mathrm{~g}, 7.34 \mathrm{mmol}, 1$ equiv.) was dissolved in $\mathrm{MeOH}(37 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(10 \%$, 0.1 equiv.) was added to that solution. It was stirred under H_{2} atmosphere (25 bar) for 20 minutes (TLC, hexane:EtOAc 3:1), then filtered over Celite ${ }^{\circ}$ and concentrated in vacuo. The crude was dissolved in THF (73 mL), cooled to $0{ }^{\circ} \mathrm{C}$ and $i \mathrm{PrMgCl}(7.70 \mathrm{~mL}, 15.4 \mathrm{mmol}$, 2.1 equiv.) was added slowly. After the complete consumption of the aniline derivative (TLC, hexane:EtOAc 3:1) the mixture was hydrolysed by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), the combined organic layers were washed with brine solution, dried over MgSO_{4} and concentrated in vacuo. The crude was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 40: 1\right)$ to obtain the desired product in 87% (2.22 g , 6.40 mmol) yield as a white solid.
${ }^{1} \mathrm{H}$-NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $2.10(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.46 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}) 6.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.99(\mathrm{~m}, 2 \mathrm{H}), 7.16$ (ddd, $J=3.0,5.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-5.4,-5.4,7.3,18.1$, 25.8, $34.8,37.2,46.2,59.0,65.5,109.6,121.4,121.4,126.6,141.1,176.6 \mathrm{ppm}$. IR (neat
sample): $3207,2953,2929,2885,2856,1739,1693,1470,1365,1346,1228,1086,1086,837$, $777,739 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 370.1807$; found, 370.1818.
6.3.44 (1S,2S,3S)-2-(bromomethyl)-2-(((tert-butyldimethylsilyl)oxy)methyl)-3-methylspiro [cyclopropane-1,3'-indolin]-2'-one (Y)

To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol 254 ($562 \mathrm{mg}, 1.62 \mathrm{mmol}, 1$ equiv.) and $\mathrm{CBr}_{4}(1.07 \mathrm{~g}, 3.23 \mathrm{mmol}$, 2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6.5 \mathrm{~mL}\right.$) was added PPh_{3} ($848 \mathrm{mg}, 3.23 \mathrm{mmol}$, 2 equiv.) in one portion. After complete consumption of the starting material (45 min , TLC hexane:EtOAc 1:1) the reaction mixture was poured onto water $(100 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude was purified by flash column chromatography (hexane:EtOAc 7:1 to 4:1) to give the desired product as white solid in 85% ($685 \mathrm{mg}, 1.97 \mathrm{mmol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}), 1.53(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $2.22(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}) 6.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (ddd, $J=1.0,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (ddd, $J=1.3,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta):-5.3,-5.3,6.8,18.2,25.8,31.2,35.8,39.4,45.8,62.3,109.6,121.6,121.7,126.9,128.9$, $140.7,175.6 \mathrm{ppm}$. IR (neat sample): 3203, 2953, 2929, 2884, 2856, 1739, 1692, 1620, 1470, 1365, 1253, 1218, 1104, 1087, 836, 776, 740, $666 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{SiBr}[\mathrm{M}+\mathrm{Na}]^{+}, 432.0970$; found 432.0966 .
6.3.45 (1S,2S,3S)-2-(bromomethyl)-2-(hydroxymethyl)-3-methylspiro[cyclopropane-1,3'-indolin]-2'-one (256)

TBAF (1 m in THF, $1.52 \mathrm{~mL}, 1.52 \mathrm{mmol}, 1.2$ equiv.) was added to a $0{ }^{\circ} \mathrm{C}$ cold solution of TBSether $\mathbf{Y}(520 \mathrm{mg}, 1.27 \mathrm{mmol}, 1$ equiv.) in THF (6.5 mL). After 10 minutes the cooling bath was removed and the mixture was allowed to stir for 12 h . After the complete consumption of the starting material (TLC, hexane:EtOAc 3:1) the reaction was quenched by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with $\operatorname{EtOAc}(3 \times 50 \mathrm{~mL})$, the combined organic layers
were dried over MgSO_{4} and the crude was concentrated in vacuo. After purification by flash column chromatography (hexane:EtOAc 1:1) the alcohol was obtained as white solid in 84% ($315 \mathrm{mg}, 1.38 \mathrm{mmol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 1.48(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.29(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (d, J = 7.7 Hz, 1H), 6.97 (ddd, J = 1.1, 7.6, $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (ddd, J = 1.1, $7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 7.0,31.3,36.9,40.6,46.3,62.1,110.6$, $122.5,122.8,127.9,129.8,142.9,177.3 \mathrm{ppm}$. IR (neat sample): $3295,2969,1739,1683,1613$, 1486, 1338, 1261, 1229, 1085, 1021, 700, $665 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrNO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}, 296.0286$; found, 296.0283 .
6.3.46 (1S,2S,3S)-2-(bromomethyl)-3-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2carbaldehyde (258)

IBX (113 mg, $405 \mu \mathrm{~mol}, 1.2$ equiv.) was added to a solution of alcohol 256 ($100 \mathrm{mg}, 338 \mu \mathrm{~mol}$, 1 equiv.) in DMSO ($560 \mu \mathrm{~L}$). After the complete consumption of the starting material (TLC, hexane:EtOAc 1:1) water was added to the reaction. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over MgSO_{4}. The solvent was removed in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc 2:1) to give the aldehyde in 90% ($89 \mathrm{mg}, 303 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.62(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.99(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, 1 H), 4.61 (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.99 (ddd, $J=1.4,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22 (ddd, $J=1.4,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.49(\mathrm{~s}, 1 \mathrm{H}), 9.63(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 6.1, 25.7, 33.4, 42.8, 50.6, 109.9, 122.4, 123.2, 126.0, 128.1, 140.6, 173.5, 196.1 ppm. IR (neat sample): 3200, 3057, 2929, 1691, 1618, 1469, 1423, 1260, 1232, 1190, 1153, 1098, 1036, 1012, 860, 750, 736, $661 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{Br}[\mathrm{M}$ $+\mathrm{H}]^{+}, 294.0130$; found, 294.0133.
6.3.47 8-(bromomethyl)-9-methyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (262)

Methyltriphenylphosphonium bromide ($48.0 \mathrm{mg}, 133 \mu \mathrm{~mol}$, 2.5 equiv.) in THF ($200 \mu \mathrm{~L}$) was cooled to $-78{ }^{\circ} \mathrm{C}$ before NaHMDS (2 M in THF, $67.0 \mu \mathrm{~L}, 133 \mu \mathrm{~mol}, 2.5$ equiv.) was added. The suspension was stirred for 10 minutes at $-78{ }^{\circ} \mathrm{C}$ before the temperature was raised to $0^{\circ} \mathrm{C}$. During this time the colour of the suspension changed from pale yellow to bright yellow and the majority of the Wittig reagent dissolved. After stirring for 30 minutes at $0{ }^{\circ} \mathrm{C}$ the temperature was lowered to $-78{ }^{\circ} \mathrm{C}$ and aldehyde $\mathbf{2 5 8}$ ($15.7 \mathrm{mg}, 53.4 \mu \mathrm{~mol}, 1$ equiv.) in THF $(300 \mu \mathrm{~L})$ was added. The mixture was stirred for 10 minutes before the temperature was raised again to $0^{\circ} \mathrm{C}$. After the complete consumption of aldehyde $\mathbf{2 5 8}$ (TLC, hexane:EtOAc 3:1) the reaction was hydrolysed by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and the crude was concentrated in vacuo ($\mathrm{T} \leq 20^{\circ} \mathrm{C}$). The crude was filtered over a short column (pentane: $\mathrm{Et}_{2} \mathrm{O}$ 1:1), concentrated in vacuo, dissolved in $\mathrm{CDCl}_{3}(700 \mu \mathrm{~L})$ and heated to $40^{\circ} \mathrm{C}$ for 8 h . The reaction progress was observed by NMR. After the complete olefin has rearranged, the crude was purified by flash column chromatography (hexane:EtOAc 1:1) to give the desired product in $77 \%(12.0 \mathrm{mg}, 41.1 \mu \mathrm{~mol})$ yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.81(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.26-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, \mathrm{J}=5.6$, $21.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=21.2 \mathrm{~Hz}, 1 \mathrm{~Hz}), 4.03(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=3.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15 (dd, $J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.72(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 15.8,34.6$, 35.1,41.3, 49.7, 107.2, 122.5, 126.3, 127.2, 128.1, 135.2, 140.4, 178.2 ppm. IR (neat sample): 3157, 2965, 1702, 1618, 1456, 1294, 1255, 1206, 781, $630 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NOBr}[\mathrm{M}+\mathrm{Na}]^{+}, 314.0156$; found, 314.0157.
6.3.48 methyl 9-methyl-8-methylene-1-oxo-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6carboxylate (260)

260

A suspension of aldehyde 258 ($14.1 \mathrm{mg}, 48.0 \mu \mathrm{~mol}, 1$ equiv.) and methyl(triphenylphosphoranylidene)acetate ($17.6 \mathrm{mg}, 52.7 \mu \mathrm{~mol}, 1.1$ equiv.) in benzene ($480 \mu \mathrm{~L}$) was warmed to $45^{\circ} \mathrm{C}$. After the complete consumption of the starting material (TLC, hexane:EtOAc 3:1) the temperature was raised to $60^{\circ} \mathrm{C}$. The mixture was stirred at that temperature until the rearrangement was complete (TLC, hexane:EtOAc 1:1). The crude was purified by preparative TLC (hexane:EtOAc, 1:1) to give the desired rearrangement product in 93% (12.0 mg , $44.6 \mu \mathrm{~mol})$ yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.67(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.40-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}$, 1H), 3.89 (s, 3H), 6.87 (d, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.48 (s, 1H), $5.50(\mathrm{~s}, 1 \mathrm{H}) 7.18-7.22$ (m, 2H), 7.25 (dd, $J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 16.3,40.1,49.2,42.6$, 109.4, 123.2, 126.1, 126.8, 128.0, 128.6, 130.6, 139.0, 140.9, 148.5, 169.5, 178.5 ppm. IR (neat sample): $3260,2963,1707,1615,1448,1321,1234,1087,1003,910,798,733,635 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 292.0950$; found, 292.0947.

6.4 Spectra

203

203

204

205

$\stackrel{+}{\sim}$
$\stackrel{\stackrel{n}{\sim}}{\sim} \stackrel{\infty}{\sim} \stackrel{-}{\sim}$
206
$\stackrel{\infty}{\stackrel{\infty}{\sim}}$

J [Hz]	M	Connection
7.8425	2	$J(1,0)$
7.8826	2	$J(2,0)$
4.6215	2	$J(3,0)$
12.7842	2	$J(3,0)$
19.4463	2	$J(4,0)$
7.1623	2	$J(5,0)$
19.4463	2	$J(5,0)$
2.4708	2	$J(6,0)$
4.5115	2	$J(6,0)$
16.9955	2	$J(6,0)$
16.1653	2	$J(7,0)$
16.1653	2	$J(7,0)$

ID	Shift [ppm]	J [Hz]	M	Connection
1	6.9837	7.8425	2	$J(1,0)$
2	6.6570	7.8826	2	$J(2,0)$
3	3.7156	4.6215	2	$J(3,0)$
		12.7842	2	$J(3,0)$
4	3.4936	19.4463	2	$J(4,0)$
5	3.3924	7.1623	2	$J(5,0)$
		19.4463	2	$J(5,0)$
6	2.6911	2.4708	2	$J(6,0)$
		4.5115	2	$J(6,0)$
		16.9955	2	$J(6,0)$
7	2.1857	16.1653	2	$J(7,0)$
		16.1653	2	$J(7,0)$

$\begin{array}{r}138.17 \\ -136.08 \\ -134.44 \\ -129.86 \\ 129.16 \\ 129.14 \\ -120.17 \\ \hline\end{array}$

震

208

-143.90
-134.75
-134.07
-131.43
-126.37
-119.00
-107.38

$\stackrel{m}{\square}$
$\dot{\infty}$
$\stackrel{-}{1}$
\mid

$0 \stackrel{\stackrel{\rightharpoonup}{r}}{\stackrel{\sim}{r}}$

210

ID	Shift [ppm]	J [Hz]	M	Connection
1	7.2156	8.2027	2	$J(1,0)$
2	6.6722	8.2027	2	$J(2,0)$
3	3.8318	4.7615	2	$J(3,0)$
		12.6441	2	$J(3,0)$
45	3.6829	19.1262	2	$J(4,0)$
	3.1638	7.5024	2	$J(5,0)$
		19.4663	2	$J(5,0)$
6	2.6836	2.8009	2	$J(6,0)$
		4.5215	2	$J(6,0)$
		16.9655	2	$J(6,0)$

\qquad

-177.76

∞
$\stackrel{\infty}{\infty}$
$\stackrel{\circ}{1}$

$\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

211

-178.09

212

:

$\underbrace{n}_{n} \quad \stackrel{\infty}{n} \quad \underset{\sim}{\sim}$

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \end{array}$

ID	Shift [ppm]	J [Hz]	M		Connection
1	7.5472	1.5405	2		$J(1,0)$
		8.0226	2		$J(1,0)$
2	5.3798	7.1223	2		$J(2,0)$
		7.1223	2		$J(2,0)$
3	4.7411	7.1623	2		$J(3,0)$

-62.161

$\stackrel{\square}{\dot{6}}$

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \end{array}$

227

-47.91
-37.21
-23.44
-15.61

ID	Shift [ppm]	J [Hz]	M	Connection
1	7.3861	7.2747 7.2747	2 2	$J(1,0)$ J J
2	7.2572	7.5649	2	$J(2,0)$
3	4.5410	8.9658	2	$J(3,0)$
4	4.3670	9.2660	2	$J(4,0)$
5	3.6411	11.1673	2	$J(5,0)$
6	3.4796	11.3474	2	$J(6,0)$
7	1.7164	5.0633	2	$J(7,0)$
8	1.3870	5.1433	2	$J(8,0)$

$<{ }_{-5.45}^{-5.38}$
-

(BSO

263

$\stackrel{\substack{\infty \\ \infty \\ \infty \\ \stackrel{\infty}{+} \\ \stackrel{\rightharpoonup}{1} \\ \hline}}{ }$

$--5.26$

60.8LT

gin	
¢்ற்	¢ ¢ ¢ ¢
-	

$\underbrace{\sim}$

\qquad

$=_{42.82}^{43.57}$
$=33.59$
$=30.85$

 248

-68.33
-59.77
-26.00
-18.37
-13.06
-5.28
$\stackrel{\infty}{\sim}$

Nom
-65.34
-60.20
-36.74
-26.05
-18.52
-13.23
$--5.28$
${ }^{N_{3}} \mathrm{X}$

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

$\begin{array}{lll}\substack{\infty \\ \Gamma} & 0 \\ 0 \\ 0 & 0 \\ \mid & 0 \\ \mid & \mid\end{array}$
$--5.27$

[^4]

252

$\stackrel{N}{n}$

[^5]

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

$\stackrel{\infty}{\stackrel{\infty}{n}} \stackrel{-}{\stackrel{-}{-}}$

-178.20

7 Experimental
$5(10 \rightarrow 9)$ abeo-Ergoline Project
7 Experimental 5(10园 9)abeo-Ergoline Project 252
7.1 Graphical Overview 256
7.2 General 257
7.3 Procedures 257
7.3.1 6.2.4 2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (335) 257
7.3.2 6.2.5 2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-ol (Z) 258
7.3.3 6.2.6 2-tosyl-6,9-dihydro-2H-cyclohepta[cd]indole (333) 258
7.3.4 6.2.7 2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (433) 259
7.3.5 Methyl (E)-3-((1R,2S)-2'-oxo-1'-tosylspiro[cyclopropane-1,3'-indolin]-2-yl)acrylate (AA) . 262
7.3.6 Methyl 1-oxo-2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6-carboxylate (..... (230). 262
7.3.7 Methyl 1-hydroxy-2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6-carboxylate (AB) 263
7.3.8 Methyl 1-acetoxy-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6-carboxylate (43) (432) 264
7.3.9 Alternative route to Cyclopropane AA 264
7.3.10 (1R,2R)-2'-oxo-1'-tosylspiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (364) 265
7.3.11 Methyl 1-oxo-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6-carboxylate (3 (367) 266
7.3.12 Methyl 2-tosyl-6,9-dihydro-2H-cyclohepta[cd]indole-6-carboxylate (373). 266
7.3.13 Methyl 2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indole-6-carboxylate (374). 267
7.3.14 8-((tert-butyldimethylsilyl)oxy)-2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1- one (378) 268
7.3.15 2-tosyl-8-((triisopropylsilyl)oxy)-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (222) 268
7.3.16 2-tosyl-8-((triisopropylsilyl)oxy)-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (390) 269
7.3.17 8-oxo-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (391) 270
7.3.18 8-hydroxy-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (392) 271
7.3.19 8-((N-(2-bromoallyl)-2,4-dinitrophenyl)sulfonamido)-2-tosyl-2,8,9,9a-tetrahydro-1H- cyclohepta[cd]indol-1-yl acetate (393) 271
7.3.20 8-((2-bromoallyl)amino)-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (394) 272
7.3.21 N -(2-bromoallyl)-2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-amine (395) 273
7.3.22 N -(2-bromoallyl)-N-methyl-2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-amine (398) 274
7.3.23 methyl (2-bromoallyl)(2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-yl)carbamate (399) 275
7.3.24 8 -((N-(2-iodoallyl)-2,4-dinitrophenyl)sulfonamido)-2-tosyl-2,8,9,9a-tetrahydro-1H- cyclohepta[cd]indol-1-yl acetate (408) 275
7.3.25 N -(2-iodoallyl)-N-methyl-2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-amine (411). 276
7.3.26 N -(2-iodoallyl)-2,4-dinitro-N-(2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-
yl)benzenesulfonamide (AD) and N -(2-iodoallyl)-2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8- amine (409) 277
7.3.27 N -(2-iodoallyl)-2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-amine (409) 278
7.3.28 Methyl (2-iodoallyl)(2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-yl)carbamate (410) 278
7.3.29 methyl (6R,6aS,9aS)-6-acetoxy-7-methylene-2-tosyl-6,6a,7,8,9a,10- hexahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indole-9(2H)-carboxylate (402) 279
7.3.30 methyl (6R,6aS,9aS)-6-hydroxy-7-methylene-2-tosyl-6,6a,7,8,9a,10- hexahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indole-9(2H)-carboxylate (414) 280
7.3.31 methyl (6R,6aS,9aS)-7-methylene-6-(((methylthio)carbonothioyl)oxy)-2-tosyl-
6,6a,7,8,9a,10-hexahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indole-9(2H)-carboxylate (416) .. 280
7.3.32 8-((2,4-dinitro-N-(prop-2-yn-1-yl)phenyl)sulfonamido)-2-tosyl-2,8,9,9a-tetrahydro-1H- cyclohepta[cd]indol-1-yl acetate (424) 281
7.3.33 (6R,6aS,9aS)-9-((2,4-dinitrophenyl)sulfonyl)-7-methylene-2-tosyl-2,6,6a,7,8,9,9a,10- octahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indol-6-yl acetate (426) 282
7.3.34 2,4-dinitro-N-(prop-2-yn-1-yl)-N-(2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8- $y l) b e n z e n e s u l f o n a m i d e ~(419) ~$ 282
7.3.35 (6R,6aS,9aS)-9-((2,4-dinitrophenyl)sulfonyl)-7-methylene-2-tosyl-2,6,6a,7,8,9,9a,10- octahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indol-6-ol (427) 283
7.3.36 (6R,6aS,9aS)-9-((2,4-dinitrophenyl)sulfonyl)-7-methylene-2-tosyl-2,6,6a,7,8,9,9a,10- octahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indol-6-yl acetate (426) 284
7.3.37 (6R,6aS,9aS)-9-methyl-7-methylene-2-tosyl-2,6,6a,7,8,9,9a,10- octahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indol-6-yl acetate (428) 285
7.3.38 (6aS,9aS)-9-((2,4-dinitrophenyl)sulfonyl)-7-methylene-2-tosyl-2,6,6a,7,8,9,9a,10- octahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indole (429) 286
7.3.39 (6aS,9aS)-9-methyl-7-methylene-2-tosyl-2,6,6a,7,8,9,9a,10- octahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indole (418) 287
7.3.40 (6aS,9aS)-9-methyl-7-methylene-2,6,6a,7,8,9,9a,10-
octahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indole (431) 288
7.4 Spectra 291

7.1 Graphical Overview

7.2 General

All reactions were carried out in oven-dried glassware under an argon atmosphere, unless otherwise stated. Commercially available anhydrous DMF, DMSO, MeCN, PhH, Pyridine THF (Acros Organics, Alfa Aesar) were used without further manipulation. Other anhydrous solvents were obtained by filtration through drying columns ($\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) on a Glass Contour system. Rhodium (II)-acetate dimer powder was obtained from Sigma-Aldrich. Reactions were magnetically and mechanically stirred and monitored by thin layer chromatography (TLC) with silica gel 60-F254 plates. Flash column chromatography was performed with silica gel 60 Å of Macherey-Nagel under pressure. Preparative TLC was performed with pre-coated TLC-plates Adamant UV_{254} of Mancherey-Nagel. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. NMR spectra were recorded on a 400 MHz spectrometer of Bruker. Unless otherwise stated, all NMR spectra were measured in CDCl_{3} solution and referenced to the residual CHCl_{3} signal $\left({ }^{1} \mathrm{H}, \delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}\right.$, $\delta=77.16 \mathrm{ppm}$). All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are given in ppm ($s=\operatorname{singlet}, d=$ doublet, $t=$ triplet, $q=$ quadruplet, $m=$ multiplet, $b=$ broad signal). Assignments of proton resonance were confirmed, when possible, by correlated spectroscopy.

7.3 Procedures

7.3.1 6.2.4 2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (335)

Diazo 337 ($2.00 \mathrm{~g}, 6.40 \mathrm{mmol}, 1$ equiv.) was dissolved in the butadiene in toluene (3.60 g , $63.9 \mathrm{mmol}, 10$ equiv.) and the $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(13.9 \mathrm{mg}, 3.20 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%$) was added to the sealed tube. The solution was heated to $80^{\circ} \mathrm{C}$ for two days. The solid turned to light pink. The solvent was removed in vacuo and the solid dissolved in DMSO (10 mL) and stirred for 36 h at $90^{\circ} \mathrm{C}$. The solution was poured on water and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with water, dried over MgSO_{4} and the solvent was removed in vacuo. The crude was purified by flash column chromatography (hexane:EtOAc 5:1) and gave the Oxindole $335(500 \mathrm{mg}, 1.60 \mathrm{mmol})$ with a yield of 25%.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.06(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~m}, 4 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=$ $4.3,1 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{t}, \mathrm{J}=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=8.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}-\mathrm{NMR}(100$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.8,29.6,33.7,44.7,111.7,124.7,125.9,126.5,127.7,128.0,128.4,129.9$, 135.4, 137.8, 138.6, 145.7, 175.3 ppm . IR (neat sample): 1756, 1597, 1452, 1371, 1188, 1177, $1126,1090,960,879,813,799,779,738,703,663 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): calc for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 326.0827$; found 326.0826.
7.3.2 6.2.5 2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-ol (Z)

Oxindole 335 ($300 \mathrm{mg}, 885 \mu \mathrm{~mol}, 1$ equiv.) was dissolved in $\mathrm{MeOH}: T H F(5: 1,2.3 \mathrm{~mL}$), cooled to $-30^{\circ} \mathrm{C}$ and stirred for 4 h until TLC (hexane:EtOAc 1:1) showed complete reaction and no side product. $\mathrm{NH}_{4} \mathrm{Cl}$-solution was added and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, the combined organic layers were washed with water and dried over MgSO_{4}. The solvent was removed in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc 1:1) to give the tricyclic hemi-aminal \mathbf{Z} as a white solid ($139 \mathrm{~g}, 406 \mu \mathrm{~mol}$) with a yield of 69%.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 1.82(\mathrm{~s}, 1 \mathrm{H}) 1.85(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dd}, \mathrm{J}=19.1,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.12$ (dd, $J=12.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.32 (d, $J=19.3 \mathrm{~Hz}, 2 \mathrm{H}$), $5.29(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta$): 21.1, 29.4, 33.4, 44.1, 111.9, 124.3, 125.5, 126.7, 128.6, 129.7, 136.48, 137.8, 139.3, 145.1 ppm . IR (neat sample): 1756. 1597, 1453, 1371, 1189, 1177, 1126, 1090, 961, 813, 799, 778, 739, 703, $663 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): calc for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$, 342.4250; not found.
7.3.3 6.2.6 2-tosyl-6,9-dihydro-2H-cyclohepta[cd]indole (333)

To a $-20^{\circ} \mathrm{C}$ cold solution of hemiaminal $\mathbf{Z}(1.37 \mathrm{~g}, 4.00 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH} 2 \mathrm{Cl} 2(40 \mathrm{~mL})$ was successively added $\mathrm{Et}_{3} \mathrm{~N}$ ($2.80 \mathrm{~mL}, 20.0 \mathrm{mmol}, 5$ equiv.) and TFAA ($1.20 \mathrm{~mL}, 8.80 \mathrm{mmol}$, 2.2 equiv.). When the reaction was complete by TLC (hexane:EtOAc 3:1) it was quenched by addition of bicarb solution, the phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, concentrated in
vacuo and the crude was purified by flash column chromatography (hexane:EtOAc 15:1 to 5:1) to give the desired product in 90% ($1.16 \mathrm{~g}, 3.60 \mathrm{mmol}$) as white crystals.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.05$ (m, 2H), $6.91(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, \mathrm{J}=7.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}$, 2 H), 7.76 (m, 2H) ppm. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 21.7, 24.8, 32.2, 112.0, 119.7, 120.6, 121.8, 124.8, 126.9, 129.1, 129.9, 130.7, 131.0, 132.8, 135.8, 144.8 ppm. IR (neat sample): 2927, 1724, 1597, 1428, 1369, 1260, 1176, 1131, 1107, 1090, 1018, 905, 811, 753, 713, 666 cm^{-1}. HRMS (ESI) (m / z): calc for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}, 346.0878$; found 346.0880.
7.3.4 6.2.7 2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (433)

The crude hemi aminal \mathbf{Z} ($250 \mathrm{mg}, 732 \mu \mathrm{~mol}, 1$ equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}$ ($370 \mathrm{mg}, 3.70 \mathrm{mmol}, 5$ equiv.) was added and the mixture was stirred for 5 min . Then $\mathrm{Ac}_{2} \mathrm{O}$ ($307 \mathrm{mg}, 1.50 \mathrm{mmol}, 2$ equiv.) was added and the stirring continued for 4 h until the reaction was completed by TLC (hexane:EtOAc 5:1). The mixture was poured on water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and washed with 50% bicarbonate-solution. The solvent was removed in vacuo. The crude was purified by flash column chromatography (hexane:EtOAc 5:1), giving compound 433 ($198 \mathrm{mg}, 600 \mu \mathrm{~mol}$) as a yellow-white solid with a yield of 56%.
${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta$): $1.64(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{dd}, \mathrm{J}=18.4,7.10 .1$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) 6.67(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 20.6,21.0,31.0,33.0,48.3,91.3,113.2,123.9,125.7,127.0,127.4,128.7,129.8$, $132.8,136.5,138.8,140.4,144.0,169.8 \mathrm{ppm}$. IR (neat sample): 2920, 1732, 1598, 1457, 1373, 1357, $1238,1220,1168,1157,1091,1014,957,808,773,744,702,675,656 \mathrm{~cm}^{-1}$. HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: calc for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}, 406.1089\right.$; found 406.1086.

6.2.8 2-acetyl-1'-tosylspiro[cyclopropane-1,3'-indolin]-2'-one (358)

358
Diazo 337 ($400 \mathrm{mg}, 1.30 \mathrm{mmol}, 1$ equiv.) was dissolved in the methylvinylketone (358 mg , $5.10 \mathrm{mmol}, 4$ equiv.) and the solution was heated with an oil bath to $95^{\circ} \mathrm{C}$ for 20 hours until complete by TLC (hexane:EtOAc 3:1). The solvent was removed in vacuo and the crude was purified via flash column chromatography (hexane:EtOAc 4:1), giving a total yield of 95% of ketone compound 39 ($441 \mathrm{mg}, 1.24 \mathrm{mmol}$). The cis-Isomer 358 could be gained with a yield of 42\% (277 mg, $780 \mu \mathrm{~mol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR} 358$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 1.96 (dd, $J=8.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15 ($\mathrm{s}, 3 \mathrm{H}$), 2.17 ($\mathrm{dd}, \mathrm{J}=7.8$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{dd}, \mathrm{J}=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.99$ (dd, $J=8.3,3.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR} 358\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.8,21.9,32.0,35.5,41.6$, 113.6, 122.9, 124.5, 124.8, 128.1, 128.6, 130.0, 135.3, 139.5, 146.0, 173.5, 200.8 ppm. IR (neat sample): 1748, 1713, 1596, 1464, 1374, 1339, 1307, 1247, 1189, 1175, 1131, 1089, 1057, 960, 907, $813,726,689,661 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): calc for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}, 378.0776$; found 378.0776.

6.2.9 2-(2-diazoacetyl)-1'-tosylspiro[cyclopropane-1,3'-indolin]-2'-one (357)

The 98% HMDS ($171 \mathrm{mg}, 1.10 \mathrm{mmol}, 1.3$ equiv.) was dissolved in dry THF (2.1 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. The n-BuLi (2.5 m in hexane, $70.3 \mathrm{mg}, 1.10 \mathrm{mmol}, 1.3$ equiv.) was added and the solution was stirred for 10 min at $0^{\circ} \mathrm{C}$. Then, it was cooled to $-78^{\circ} \mathrm{C}$ again. The ketone 358 ($300 \mathrm{mg}, 800 \mu \mathrm{~mol}, 1$ equiv.) was dissolved in dry THF (1.7 mL) and added drop wise to the solution. The colour changed from yellow to brown and the stirring was continued for 40 min at $-78^{\circ} \mathrm{C}$. The $2,2,2$-TFETFA ($235 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.4$ equiv.) was added. After the reaction was complete by TLC (hexane:EtOAc 5:1), it was warmed to $0^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}$ ($46.2 \mathrm{mg}, 2.5 \mathrm{mmol}, 3$ equiv.) was added and the mixture stirred for 1 hour. $\mathrm{Et}_{3} \mathrm{~N}\left(878 \mathrm{mg}, 8.40 \mathrm{mmol}, 10\right.$ equiv.) and Ns_{3}
($583 \mathrm{mg}, 2.50 \mathrm{mmol}, 3$ equiv.) were added and the mixture stirred for 2 hours at $40^{\circ} \mathrm{C}$. When the reaction was complete by TLC (hexane: $\mathrm{EtOAc} 3: 1$), $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added and the organic phase was washed with $10 \% \mathrm{NaOH}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude was purified by flash colum chromatography (hexane:EtOAc 5:1) and gave the diazoketone 357 ($214 \mathrm{mg}, 560 \mu \mathrm{~mol}$) with a yield of 70%.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.64(\mathrm{dd}, \mathrm{J}=8.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{dd}, \mathrm{J}=7.64 .5$, $\mathrm{Hz}, 1 \mathrm{H}), 2.39(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}) 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=$ $8.1,8.0,1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 21.2,40.1,55.8,113.6,123.8,124.7,128.5,128.5,129.8,136.3$, 140.2, 145.3 ppm . IR (neat sample): 3094, 2100, 1750, 1625, 1598, 1462, 1399, 1379, 1336, 1299, 1242, 1189, 1175, 1140, 1088, 1064, 961, 906, 809, $775,747,702,690,665 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): calc for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}, 404.0681$; found 404.0680.

6.2.10 1'-tosylspiro[cyclopentane-1,3'-indolin]-3-ene-2,2'-dione (360)

360
The DiazoKetone 357 ($20.0 \mathrm{mg}, 52.4 \mu \mathrm{~mol}$, 1 equiv.) was dissolved in dry THF ($500 \mu \mathrm{~L}$) and the AgOBz ($1.20 \mathrm{mg}, 5.20 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) was dissolved in the $\mathrm{Et}_{3} \mathrm{~N}(21.8 \mathrm{~mL}, 157 \mu \mathrm{~mol}, 3$ equiv.). The $\mathrm{Ag}_{2} \mathrm{OBz}$ in $\mathrm{Et}_{3} \mathrm{~N}$ was added dropwise to the solution. The colour changed from yellow to blackish brown. When the reaction was complete by TLC (hexane:EtOAc 2:1) the mixture was filtered through a plug of celite, the solvent was removed in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc 2:1) to give spirooxindole $\mathbf{3 6 0}$ ($13.9 \mathrm{mg}, 39.3$ $\mu \mathrm{mol})$ in 75% yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.05(\mathrm{dd}, J=9.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=8.5,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{~m}, 4 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.9,40.8,60.2,114.4,122.2,125.4,128.2$, 129.6, 129.9, 131.8, 135.1, 140.5, 145.9, 165.3, 172.6, 200.6 ppm . IR (neat sample): 1755, 1709, 1595, 1462, 1376, 1233, 1189, 1176, 1141, 1083, 960, 824, 787, 753, 733, 689, 659 cm^{-1}. HRMS (ESI) (m/z): calc for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 354.0722$; not found.

7.3.5 Methyl (E)-3-((1R,2S)-2'-oxo-1'-tosylspiro[cyclopropane-1,3'-indolin]-2-yl)acrylate (AA)

Diazo 337 ($1.00 \mathrm{~g}, 3.20 \mathrm{mmol}, 1$ equiv.) and the Diene 219 ($1.60 \mathrm{~g}, 14.4 \mathrm{mmol}, 4.5$ equiv.) were stirred in benzene (4.8 mL) in a tube and rhodium(II)acetate ($14 \mathrm{mg}, 30 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%$) was added. The tube was sealed and the mixture was heated up to $80^{\circ} \mathrm{C}$. After 20 min the colour changed to dark-red and strong gas development occurred. After 1 h TLC showed full consumption of the starting material and the solvent was removed in vacuo. The crude product was purified by column chromatography on silica gel (hexane:EtOAc 3:1) to give a mixture of two diastereomers in a ratio of 7:1 in favour of compound AA (1.00 g, 2.50 mmol , 79\%) as a pale brownish solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 8.26(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{td}, J=8.3$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{td}, \mathrm{J}=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ - $6.33(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{dd}, \mathrm{J}=15.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$, $1.57(d d, J=9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{dd}, J=7.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right)$: $173.4,165.6,145.2,142.3,140.3,136.4,129.8,128.4,128.2,125.9,124.8,124.5,121.5,114.2$, 51.1, 35.7, 34.8, 24.5, 21.1 ppm . IR (neat sample): 1742, 1715, 1652, 1595, 1462, 1433, 1371, $1307,1262,1237,1214,1188,1172,1138,1090,1073,1061,1017,978,963,924,907,865$, 809, $769,756,744,733,702,688,666 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$, 420.0882; found 420.0887 .

7.3.6 Methyl 1-oxo-2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6-carboxylate (230)

Cyclopropane AA ($1.40 \mathrm{~g}, 3.5 \mathrm{mmol}$, 1 equiv.) was dissolved in DMSO $(20 \mathrm{~mL})$ and the mixture was stirred at $100^{\circ} \mathrm{C}$ until complete consumption of the starting material (ca. 2 h). Water was added and the mixture was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with sodium bicarbonate solution and brine. After the solvent was
removed in vacuo, the crude product was purified by column chromatography on silica gel (hexane:EtOAc 3:1) yielding 230 as colourless solid ($810 \mathrm{mg}, 2.10 \mathrm{mmol}, 58 \%$).
${ }^{1}{ }^{1}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $2.08(\mathrm{qdd}, J=2.3,12.9,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{td}, J=$ $5.5,17.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.65(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{dd}, J=4.8,13.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.32(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (ddd, $J=2.2,7.0,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (ddd, $J=1.7,6.1,12.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.96 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 (dd, $J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 21.9, 29.1, 44.0, 51.4, 52.9, 113.1, 123.8, 125.6, 128.1, 128.3, $128.6,129.8,129.9,134.8,135.3,139.2,145.8,171.8,175.0 \mathrm{ppm}$. IR (neat sample): 2955, $1753,1725,1600,1452,1379,1311,1272,1250,1231,1211,1190,1177,1141,1086,1008$, $995,960,908,876,810,782,746,703,664 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 420.0882$; found 420.0880.

7.3.7 Methyl 1-hydroxy-2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6-carboxylate (AB)

Oxindole $\mathbf{2 3 0}$ ($400 \mathrm{mg}, 1.0 \mathrm{mmol}, 1$ equiv.) was dissolved in THF (1.7 mL) and methanol $(8.3 \mathrm{~mL})$ and the solution was cooled to $-30^{\circ} \mathrm{C}$. Sodium boron hydride ($84 \mathrm{mg}, 2.2 \mathrm{mmol}, 2.2$ equiv.) was added and the mixture was stirred until TLC showed complete consumption of the starting material. The reaction was quenched with saturated ammonium chloride solution and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over sodium sulfate and the solvent was removed in vacuo. After purification with column chromatography on silica gel (hexane: ethyl acetate 3:1) AB was received as a white solid ($348 \mathrm{mg}, 0.87 \mathrm{mmol}$, 87\%).

HRMS (ESI) (m/z): calc. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}, 422.1038\right.$; found 420.1039. IR (neat sample): $3443,2953,1724,1599,1456,1433,1350,1251,1216,1158,1088,991,924,874,812,771$, $746,705,661 \mathrm{~cm}^{-1}$.

7.3.8 Methyl 1-acetoxy-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6-carboxylate (432)

Hemi-aminal AB ($250 \mathrm{mg}, 630 \mu \mathrm{~mol}$, 1 equiv.) was dissolved in dichloromethane ($630 \mu \mathrm{~L}$) and the mixture was cooled to $-25^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}(350 \mu \mathrm{~L})$ was added and the mixture was stirred for 5 min . Acetic anhydride ($120 \mathrm{LL}, 1.3 \mathrm{mmol}, 2.1$ equiv.) was added dropwise and the reaction was stirred until TLC showed complete consumption. The reaction was quenched with sodium bicarbonate solution and was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with brine and dried over sodium sulfate. Purification by column chromatography on silica gel (hexane:EtOAc 5:1, $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded 432 as a colourless solid ($220 \mathrm{mg}, 0.50 \mathrm{mmol}, 80 \%$).

Due to the acidity of the silica gel, a part of 432 decomposed to indole $\mathbf{3 7 4}$ during purification, although triethyl amine was added to decrease the acidity.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 7.79(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{dd}, J=$ $11.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20 (dddd, J = 13.0, 11.4, 8.3, $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.76 (s, 3H), 1.49 (s, 3H), $1.47-$ $1.41(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.03(\mathrm{~m}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta$): 169.3, 165.5, 143.6, 143.5, 139.9, 136.4, 133.1, 132.1, 129.3, 128.4, 128.2, 127.1, 125.1, 114.0, 91.4, 51.1, 47.3, 36.3, 24.9, 20.7, 20.1 ppm. IR (neat sample): 2951, 1714, 1597, 1447, 1361, 1275, 1256, 1211, 1186, 1166, 1087, 1063, 1009, 924, 881, 815, 798, 747, 706, $666 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calc. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}, 464.1144$; found 464.1144 .

7.3.9 Alternative route to Cyclopropane AA

Starting from the diazo-isatin 337, the carben-insertion was performed under thermic conditions with acroleine (363), which lead to a mixture of 364 and its diastereomer. Wittigreaction of 364 with the $\mathrm{Ph}_{3} \mathrm{PCCO}_{2} \mathrm{Me}$ (1.05 equiv.) worked quantitatively and lead to the cyclopropane AA.
7.3.10 (1R,2R)-2'-oxo-1'-tosylspiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (364)

Diazo 337 ($2.00 \mathrm{~g}, 6.40 \mathrm{mmol}, 1$ equiv.) and acroleine ($2.20 \mathrm{~mL}, 31.9 \mathrm{mmol}, 5$ equiv.) were stirred in a sealed tube and the mixture was heated to $95^{\circ} \mathrm{C}$. After 3 h the reaction was complete and remaining acroleine was removed in vacuo. The crude product was purified by column chromatography on silica gel (hexane:EtOAc 3:1) yielding two diastereomers in a 1.1:1 mixture in favour of 364 as a beige solid ($1.55 \mathrm{~g}, 4.60 \mathrm{mmol}, 72 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 9.48(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.99(\mathrm{td}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.83-$ $5.76(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{ddd}, \mathrm{J}=8.6,7.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{dd}, \mathrm{J}=7.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.85$ (dd, J = 8.7, 5.4 Hz, 1H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 195.3,172.3,145.5,140.0,136.0$, 129.8, 128.6, 128.5, 127.9, 124.7, 118.8, 114.2, 41.2, 34.8, 23.0, 21.1 ppm . IR (neat sample): $2951,1746,1706,1595,1436,1414,1371,1243,1213,1187,1172,1135,1088,1031,1001$, $962,924,903,856,814,799,755,703,689,665 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): calc. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 364.0619$; found 364.0622.
(1R,2S)-2'oxo-1'tosylspiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (AC)

${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 8.61(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{p}), 8.25(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03(\mathrm{td}, \mathrm{J}=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{td}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{td}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{dd}, J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{dd}$, $J=8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right) .194 .0,172.6,145.4,140.3,136.2,129.8$, 128.6, 128.6, 128.4, 124.5, 123.1, 113.9, 40.6, 36.0, 21.2, 20.6 ppm. IR (neat sample): 2950, 1740, 1716, 1597, 1494, 1463, 1414, 1373, 1297, 1244, 1213, 1189, 1174, 1140, 1090, 1077, 1024, 1003, 960, 924, 905, 861, 816, 799, 756, 704, 681, $662 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): calc. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}, 364.0619$; found 364.0619.

7.3.11 Methyl 1-oxo-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indole-6-carboxylate (367)

A solution of TBAF in THF ($1 \mathrm{M}, 0.5 \mathrm{~mL}$) was degassed by freeze-pump-thaw and Oxindole $\mathbf{2 3 0}$ ($200 \mathrm{mg}, 500 \mu \mathrm{~mol}, 1$ equiv.) was added. The solution turned red and was stirred for 30 min under nitrogen. After TLC showed completion the reaction was quenched with saturated ammonium chloride solution and was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over sodium sulfate and the solvent was removed in vacuo. Purification by column chromatography on silica gel (hexane:EtOAc 4:1) gave 367 as colourless solid ($150 \mathrm{mg}, 370 \mu \mathrm{~mol}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 8.14(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H})$, $7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}$, 1H), 2.04-1.90(m, 1H), 1.76 (s, 3H), 1.42 (ddtd, J = 12.4, 9.8, 5.8, 5.1, $2.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.36-1.28 (m, 1H) ppm. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta$): 175.4, 166.3, 145.2, 143.5, 139.4, 136.5, 132.7, 132.0, 129.8, 128.6, 128.5, 127.5, 126.0, 113.2, 51.5, 43.2, 34.3, 26.5, 21.2 ppm. IR (neat sample): 2951, 1756, 1717, 1597, 1583, 1443, 1433, 1374, 1433, 1374, 1271, 1247, 1223, 1186, 1176, 1132, 1076, 1018, 973, 934, 805, 791, 737, 700, $662 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}, 420.0882$; found 420.0878 .

7.3.12 Methyl 2-tosyl-6,9-dihydro-2H-cyclohepta[cd]indole-6-carboxylate (373)

Ester $\mathbf{2 3 0}$ ($150 \mathrm{mg}, 376 \mu \mathrm{~mol} 1$ equiv.) was dissolved completely in THF ($750 \mu \mathrm{~L}$) at room temperature. $\mathrm{MeOH}(3 \mathrm{~mL}$) was added, what caused the precipitation of a fluffy white solid. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and NaBH_{4} was added in one portion. After 10 minutes at $0{ }^{\circ} \mathrm{C}$ the mixture became a clear solution. TLC (hexane:EtOAc 1:1) showed the complete consumption of the starting material. The reaction was quenched by addition of water. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with brine solution, dried over $\mathrm{MgSO}_{\text {a }}$ and the solvent was removed in vacuo. The crude was
dissolved in $\mathrm{MeCN}(2 \mathrm{~mL})$ and the solution was cooled to $-30^{\circ}{ }^{\circ} \mathrm{C} \mathrm{BF}_{3}{ }^{*} \mathrm{OEt}_{2}(95.0 \mu \mathrm{~L}, 751 \mu \mathrm{~mol}$, 2 equiv.) was added in one portion, the cooling bath was removed and the solution was stirred until complete by TLC (hexane:EtOAc 1:1, 5 min) the reaction was quenched by addition of water, the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with brine solution, dried over MgSO_{4} and concentrated in vacuo. The crude was purified by flash column chromatography (hexane:EtOAc 2:1) to give the desired product as yellowish oil in in 94% ($129 \mathrm{mg}, 338 \mu \mathrm{~mol}$) yield over two steps.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.36(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{ddd}, J=0.8,6.9,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{tdd}, J=$ $1.3,5.3,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-6.21(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.7,25.7,49.2,52.5,113.1,118.6,121.5,122.0,124.7,127.0$, 129.0, 129.9, 130.0, 130.2, 135.5, 135.9, 145.0, 172.4 ppm. IR (neat sample): 2950, 1713, $1597,1493,1435,1414,1357,1245,1210,1167,1137,1087,1050,1002,924,812,795,742$, $703,666 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}, 404.0932$; found 404.0931 .
7.3.13 Methyl 2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indole-6-carboxylate (374)

A solution of TBAF in THF ($1 \mathrm{M}, 1 \mathrm{~mL}$) was degassed by freeze-pump-thaw and indole 13 ($110 \mathrm{mg}, 290 \mu \mathrm{~mol}, 1$ equiv.) was added as solution in THF (1 mL). The reaction was stirred until TLC showed completion and was then quenched with saturated ammonium chloride solution. The mixture was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$), the combined organic phases were dried over sodium sulfate and the solvent was removed in vacuo. Purification by column chromatography on silica gel (hexane:EtOAc $4: 1$ with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) gave indole 374 as a colourless solid ($70 \mathrm{mg}, 180 \mu \mathrm{~mol}, 65 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 8.31-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 1 \mathrm{H})$, $7.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{k}), 7.17(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.39$ $-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 168.8,144.5$, $141.1,136.4,136.3,134.2,129.8,128.8,128.6,126.9,125.5,124.8,124.2,122.3,113.7,51.6$, 27.7, 25.9, 21.0 ppm . IR (neat sample): 2950, 1713, 1597, 1493, 1435, 1414, 1357, 1245, 1210,

1167, 1137, 1087, 1050, 1002, 924, 812, 795, 742, $703,666 \mathrm{~cm}^{-1}$. HRMS (ESI) (m/z): calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$, 404.0932; found 404.0931.
7.3.14 8-((tert-butyldimethylsilyl)oxy)-2-tosyl-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1one (378)

Diazo 337 ($200 \mathrm{mg}, 638 \mu \mathrm{~mol}, 1$ equiv.) and dien 379 ($118 \mathrm{mg}, 638 \mu \mathrm{~mol}, 1$ equiv.) were dissolved in benzene ($50 \mu \mathrm{~L}$). Rhodium (II) acetate ($2.82 \mathrm{mg}, 6.00 \mu \mathrm{~mol}, 1 \mathrm{~mol}$) was added and the mixture was heated to $50^{\circ} \mathrm{C}$. The reaction was stirred for 2.5 hours until no gas development could be observed. The product was purified by flash column chromatography (hexane:EtOAc 100:1) to give the product as a yellow oil. ($191 \mathrm{mg}, 382 \mu \mathrm{~mol}, 60 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 2.10(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.7$, $15.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.42(\mathrm{~s}, 3 \mathrm{H}), 2,68(\mathrm{ddd}, J=4.9,2.8,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=8.1,18.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.59 (dd, $J=2.6,18.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (dd, $J=5.0,12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03 (dd, $J=2.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (d, J=7.8 Hz, 1H), 7.24 (dd, J=7.8, 7.8 Hz, 1H), $7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) 7.76(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$ 7.97 (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-4.5,-4.3,18.0,21.8,25.7,29.7$, $34.37,42.47,104.6,111.6,124.36,126.9,128.1,128.7,129.9,135.4,138.0,138.5,145.8$, 148.9, 175.0 ppm.
7.3.15 2-tosyl-8-((triisopropylsilyl)oxy)-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (222)

Enol 218 ($8.46 \mathrm{~g}, 37.4 \mathrm{mmol}, 2.25$ equiv.) and diazo 337 ($5.20 \mathrm{~g}, 16.6 \mathrm{mmol}, 1$ equiv.) were stirred at $70^{\circ} \mathrm{C}$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(73.0 \mathrm{mg}, 166 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%)$ was added. The mixture was stirred until complete by TLC (hexane:EtOAc 5:1). The crude was purified by flash column chromatography (hexane:EtOAc 25:1) to give the desired [cd]oxindole 222 in 39% (3.26 g , 6.37 mmol) yield as yellow solid. 38% ($3.24 \mathrm{~g}, 14.3 \mathrm{mmol}$) of the TIPSEnol 218 could be recovered. The author wants to mention that the crude does not need to be purified for
further reaction.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.01-1.14(\mathrm{~m}, 21 \mathrm{H}) .2 .15(\mathrm{dd}, \mathrm{J}=14.9,14.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, 2.75 (ddd, $J=2.7,5.0,16.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dd, $J=8.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (dd, $J=4.9,18.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.68(d d, J=4.9,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$, (ddd, $J=2.4,2.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (dd, $J=7.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 17.7,18.2,21.9,29.6,34.3,42.4,103.5,111.6,124.3$, 126.9, 128.1, 128.7, $129.9,135.5,138.0,138.5,145.8,149.2,175.1 \mathrm{ppm}$. IR (neat sample): 2944, 2866, 1751, 1660, 1606, 1455, 1367, 1306, 1243, 113, 1143, 1090, 883, 868, 815, 776, $727,660 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}, 534.2110$; found 534.2110.

7.3.16 2-tosyl-8-((triiiopropylsilyl)oxy)-2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (390)

390
Oxindole 222 ($9.61 \mathrm{~g}, 17.3 \mathrm{mmol}, 1$ equiv.) was dissolved in THF before MeOH was added. The solution was cooled to $-20^{\circ} \mathrm{C}$ and a white solid started to precipitate. $\mathrm{NaBH}_{4}(1.30 \mathrm{~g}$, $34.6 \mathrm{mmol}, 2.2$ equiv.) was added in one portion. The mixture was stirred until complete by TLC (hexane:EtOAc 5:1) [the author wants to mention to use vanillin stain. A side product is formed with nearly the same Rf as the starting material. It colors yellow while the substrate is blue.] The mixture was quenched by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, the combined organic layers were washed with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the crude was used without further purification.

The crude was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$, cooled to $-20^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(12.0 \mathrm{~mL}, 86.7 \mathrm{mmol}$, 5 equiv.) was added. After stirring for 5 minutes $\mathrm{Ac}_{2} \mathrm{O}$ ($4.90 \mathrm{~mL}, 34.7 \mathrm{mmol}, 2$ equiv.) was added and the reaction mixture was allowed to stir over night while warming to rt . When the reaction was complete by TLC (hexane:EtOAc 5:1) the crude was poured into water, the phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($1 \times 100 \mathrm{~mL}$). The combined organic layers were a successively washed with 50% bicarb solution, $\mathrm{NH}_{4} \mathrm{Cl}$ solution and brine before they were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the crude was purified by flash column chromatography to give 390 as off-white solid in 80% slowly. The solid should appear immediately.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.93-1.06(\mathrm{~m}, 21 \mathrm{H}), 1.32(\mathrm{dd}, J=15.2 \mathrm{~Hz}, 15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}$, 3 H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.55$ (ddd, $J=3.8,3.8,16.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dd, $J=8.9,17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.30 (dd, $J=4.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=2.3,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.80$ (d, J = 7.6 Hz, 1H), 7.17 (dd, J = 7.8, $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.6,18.1,21.3,21.7,29.1,35.8$, 45.6, 91.1, 103.7, 112.8, 123.3, 127.2, 128.8, 129.9, 131.7, 135.6, 138.9, 139.3, 144.6, 149.3, 170.1 ppm. HRMS (ESI) (m/z): calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{NO}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}, 578.2372$; found 578.2372.
7.3.17 8-oxo-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (391)

391
In two batches of same size! The triisopropylsilyl enol ether 390 ($3.78 \mathrm{~g}, 7.40 \mathrm{mmol}, 1$ equiv.) was dissolved in anhydrous dimethylformamide ($75 \mathrm{~mL}, 0.1 \mathrm{M}$) and cooled with stirring to $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Ceric ammonium nitrate ($16.1 \mathrm{~g}, 39.4 \mathrm{mmol}, 4$ equiv.) was then added in five portions over ca. 20 min . The resulting bright orange solution was then stirred for an additional 3 h (TLC, hexane:EtOAc 5:1). The reaction mixture was then poured into water and extracted with diethyl ether ($5 \times 100 \mathrm{~mL}$). The combined organic phases were washed with saturated NaHCO_{3} solution, brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to afford a pale yellow oil. Purification by flash chromatography on silica gel (hexane:EtOAc 3:1 to 1:1) gave the desired ketone 391 in 80% ($2.17 \mathrm{~g}, 5.50 \mathrm{mmol}$) yield as yellowish solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.05-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.40(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=0.9,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.2,21.7$, $44.3,45.6,90.3,116.6,126.2,127.4,129.8,130.1,131.1,131.4,131.6,134.6,139.6,140.2$, 145.2, 169.9, 197.1 ppm. HRMS (ESI) (m/z): calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}, 420.0882$; found 420.0882 .
7.3.18 8-hydroxy-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (392)

To a solution of ketone 391 ($1.58 \mathrm{~g}, 3.98 \mathrm{mmol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 mL) was added MeOH (70 mL) and $\mathrm{CeCl}_{3}{ }^{*} 7 \mathrm{H}_{2} \mathrm{O}$ ($2.96 \mathrm{~g}, 7.95 \mathrm{mmol}, 2$ equiv.). After stirring for 10 minutes the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and NaBH_{4} ($221 \mathrm{mg}, 5.96 \mathrm{mmol}, 1.5$ equiv.) was added slowly. When the reaction was complete by TLC (hexane:EtOAc 2:1) the reaction was quenched by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 75 \mathrm{~mL})$. The combined organic layers were washed with water and brine solution before they were dried over MgSO_{4} and concentrated in vacuo. The crude was purified by flash column chromatography (hexane:EtOAc 1:1) to give the desired allylic alcohol 391 in 91\% ($1.44 \mathrm{~g}, 3.60 \mathrm{mmol}$) yield as white solid. (The crude can be used without further purification.) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.48(\mathrm{q}, \mathrm{J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.37$ (s, 3H), $2.40-2.45$ (m, 1H), 3.24 (dd, J = 3.3, $12.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.58-4.71$ (m, 1H), 5.72 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.3,21.7,35.8,45.4,70.7,91.3,114.0,125.6,126.6$, 127.5, 129.0, 129.7, 130.0, 132.0, 134.3, 134.7, 139.5, 144.9, 170.3 ppm . IR (neat sample): 1710, 1597, 1424, 1359, 1291, 1237, 1174, 1137, 1088, 1035, 907, 810, 794, 727, 675, 657 cm^{-1}.
7.3.19 8-((N-(2-bromoallyl)-2,4-dinitrophenyl)sulfonamido)-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (393)

DEAD ($135 \mu \mathrm{~L}, 854 \mu \mathrm{~mol}, 1.1$ equiv.) in toluene ($400 \mu \mathrm{~L}$) was added dropwise to a $0^{\circ} \mathrm{C}$ cold suspension of allylic alcohol 392 ($310 \mathrm{mg}, 776 \mu \mathrm{~mol}, 1$ equiv.), sulphonamide 397 (300 mg , $815 \mu \mathrm{~mol}, 1.1$ equiv.) and PPh_{3} ($262 \mathrm{mg}, 854 \mu \mathrm{~mol}, 1.1$ equiv.) in benzene (8 mL). Since the substrates hardly dissolved in benzene the reaction took six hours. Solvent was removed in
vacuo when the reaction was complete by TLC (hexane:EtOAc 1:1). The crude was purified by flash column chromatography (hexane:EtOAc 6:1 to 3:1) to give the desired product 393 in 87% (505 mg, $677 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.64$ (qd, $\mathrm{J}=6.6,13.7 \mathrm{~Hz}, 1 \mathrm{H}$). $2.11(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.66$ (td, $J=5.4,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.51(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{dd}, \mathrm{J}=4.8,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53$ (dd, $J=2.2,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.88(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.27-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{dd}, J=2.2,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.49(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.2,21.8,29.8,41.8,45.8,54.0$, $57.0,90.8,114.7,120.1,120.4,124.6,126.2,127.2,128.2,129.4,130.0,130.2,130.4,132.0$, 132.5, 133.7, 134.5, $138.8,140.0,145.3,148.1,150.0,170.1 \mathrm{ppm}$. IR (neat sample): 3363 , $3114,1630,1597,1538,1430,1411,1347,1246,1167,1153,1093,905,894,830,749,735$, 707, $659 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{Na}]^{+}, 769.0250$; found 769.0230.

7.3.20 8-((2-bromoallyl)amino)-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (394)

Thiophenol ($59.0 \mu \mathrm{~L}, 835 \mu \mathrm{~mol}, 1.2$ equiv.), followed by $\mathrm{Et}_{3} \mathrm{~N}(289 \mathrm{mg}, 2.09 \mathrm{mmol}, 3$ equiv.) were added to a $0^{\circ} \mathrm{C}$ cold solution of sulphonamide 393 ($520 \mathrm{mg}, 696 \mu \mathrm{~mol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(7 \mathrm{~mL})$. The reaction mixture was stirred until complete by TLC (hexane:EtOAc 1:1) and the solvent was removed in vacuo. The crude was purified by flash column chromatography (hexane:EtOAc: $\mathrm{Et}_{3} \mathrm{~N}$ 100:100:1) to obtain the desired product 394 in 71% ($256 \mathrm{mg}, 495 \mu \mathrm{~mol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 1.14(\mathrm{qd}, \mathrm{J}=3.3,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.35(\mathrm{~m}, 1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.79-5.84(\mathrm{~m}, 2 \mathrm{H}), 6.40$ (d, J = $12.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.48 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.47$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 21.3, 21.7, 34.4, 45.0, $53.2,54.4,92.4,113.4,118.4,118.5$, 125.3, 127.5, 128.3, 128.5, 129.9, 131.6, 132.7, 132.9, 135.0, 139.5, 144.7, 170.3 ppm. IR (neat sample): $1749,1628,1586,1451,1358,1212,1168,1095,1017,907,806,733,658 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SBr}[\mathrm{M}+\mathrm{Na}]^{+}$, 539.0616; found, 539.0618.
7.3.21 N-(2-bromoallyl)-2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-amine (395)

TFA ($205 \mu \mathrm{~L}, 2.70 \mathrm{mmol}, 4$ equiv.) was added to a $-78^{\circ} \mathrm{C}$ cold solution of acetate 393 (505 mg , $676 \mu \mathrm{~mol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$. When the reaction was complete by TLC (hexane:EtOAc 2:1) it was cooled to $-10{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$ ($656 \mu \mathrm{~L}, 4.73 \mathrm{mmol}, 7$ equiv.) was added, followed by mercaptoethanol ($65.0 \mu \mathrm{~L}, 810 \mu \mathrm{~mol}$, 1.2 equiv.). The temperature was raised to $0^{\circ} \mathrm{C}$. After the complete consumption of the starting material (TLC, hexane:EtOAc 2:1) the reaction mixture was concentrated in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc 2:1) to give the amine 395 in 95% yield ($292 \mathrm{mg}, 639 \mu \mathrm{~mol}$) as yellowish oil.

H-NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 1.64(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.65(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 3.24-3.29(\mathrm{~m}, 1 \mathrm{H})$, $5.29(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, \mathrm{J}=4.4,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, \mathrm{J}=1.5,11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.48$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.83 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 (dd, $J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H})$, $7.66(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 21.0,33.0$, $55.2,55.4,113.2,116.9,121.0,123.4,124.8,125.1,126.9,128.6,128.7,129.3,129.9,131.5$, 133.8, 136.1, 136.2, 136.8, 144.5 ppm. IR (neat sample): 2919, 2850, 1705, 1463, 1364, 1259, 1176, 1089, $798,664 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SBr}[\mathrm{M}+\mathrm{H}]^{+}, 457.0585$; not found.
7.3.22 N -(2-bromoallyl)-N-methyl-2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-amine (398)

398
TFA ($256 \mu \mathrm{~L}, 3.37 \mathrm{mmol}, 4$ equiv.) was added to a $-78^{\circ} \mathrm{C}$ cold solution of acetate $393(630 \mathrm{mg}$, $842 \mu \mathrm{~mol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.5 \mathrm{~mL})$ and the reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$. When the reaction was complete by TLC (hexane:EtOAc 2:1) it was cooled to $-10{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$ ($820 \mu \mathrm{~L}, 5.90 \mathrm{mmol}, 7$ equiv.) was added, followed by mercaptoethanol ($72.0 \mu \mathrm{~L}, 1.01 \mathrm{mmol}$, 1.2 equiv.). The temperature was raised to $0{ }^{\circ} \mathrm{C}$. After the complete consumption of the starting material (TLC, hexane:EtOAc 2:1), the reaction mixture was diluted with MeOH $(8.5 \mathrm{~mL})$, the reaction mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{AcOH}(240 \mu \mathrm{~L}, 4.21 \mathrm{mmol}, 5$ equiv.), formalin solution (37% in water, 3.3 mL) and $\mathrm{NaBH}_{3} \mathrm{CN}(159 \mathrm{mg}, 4.21 \mathrm{mmol}$,) were added successively. During the reaction, a precipitate could be observed that disappeared when the reaction proceeded. When the reaction was complete by TLC (hexane:EtOAc 2:1) the reaction mixture was poured into HCl solution (1 m) and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, the combined organic layers were washed successively with bicarb solution, water and brine solution before they were dried over MgSO_{4} and concentrated in vacuo. The crude was purified by flash column chromatography (hexane:EtOAc $4: 1$ to $2: 1$) to give the desired methylamine 398 in 82% ($324 \mathrm{mg}, 687 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 1.64(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.42,(\mathrm{ddd}, \mathrm{J}=1.8,10.8,14.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.76 (d, J = 13.7 Hz, 1H), 3.02 ($q, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.26 (ddd, J = 2.3, 5.7, $10.8 \mathrm{~Hz}, 1 \mathrm{H}$),5.39 (d, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{ddd}, J=1.3,3.5,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=2.4$, $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, \delta\right): 21.0,28.8,37.6,61.9,65.6,113.1,117.3,121.4,122.7,124.7,125.1,127.0,129.1$, 129.3, 129.8, 131.7, 133.0, 135.5, 136.3, 136.3, 144.5 ppm. IR (neat sample): 2924, 1749, $1629,1595,1423,1359,1213,1163,1110,1088,1016,906,818,800,752,734,704,659$ cm^{-1}
7.3.23 methyl (2-bromoallyl)(2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-yl)carbamate (399)

Methyl chloroformate ($55.0 \mu \mathrm{~L}, 703 \mu \mathrm{~mol}, 1.1$ equiv.) was added dropwise to a $-10^{\circ} \mathrm{C}$ cold solution of amine 395 ($292 \mathrm{mg}, 639 \mu \mathrm{~mol}, 1$ equiv.) in pyridine ($640 \mu \mathrm{~L}$). Since the acid chloride became solid at that temperature it was allowed to warm up slowly. (The author wants to mention, that warming to room temperature causes a heavy exothermic reaction) When the reaction was complete by TLC (hexane:EtOAc 2:1) the crude was cooled to room temperature or below. It was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and successively washed with $\mathrm{HCl}(1 \mathrm{~m}, 2 \times 25 \mathrm{~mL})$, bicarb solution and brine. The organic phase was dried over MgSO_{4}, concentrated in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc $4: 1$ to $3: 1$) to give the carbamate 399 in 80% ($265 \mathrm{mg}, 514 \mu \mathrm{~mol}$) yield as brownish foam.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.98-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.76(\mathrm{~m}, 1 \mathrm{H}) 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.96$ (ddd, J = 1.2, 3.5, 12.1 Hz , $1 \mathrm{H}), 6.5(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=7.8$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 21.7,33.2^{(\mathrm{HSQC})}, 53.1,53.8^{(\mathrm{HSQC})}, 57.4,113.0,120.0,122.7,124.8,125.0,127.0,128.6$, $130.0,130.6,135.5,135.6,145.1,156.6^{(\mathrm{HMBC})}$ ppm. IR (neat sample): 2953, 1699, 1596, 1453, 1360, 1255, 1173, 1138, 1111, 1088, 1046, 914, 797, 771, 752, $662 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SBr}[\mathrm{M}+\mathrm{Na}]^{+}, 537.0460$; found, 537.0459.
7.3.24 8-((N-(2-iodoallyl)-2,4-dinitrophenyl)sulfonamido)-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (408)

DEAD ($190 \mu \mathrm{~L}, 1.20 \mathrm{mmol}, 1.2$ equiv.) in toluene ($800 \mu \mathrm{~L}$) was added dropwise to a $0^{\circ} \mathrm{C}$ cold suspension of allylic alcohol 392 ($400 \mathrm{mg}, 1.00 \mathrm{mmol}, 1$ equiv.), sulphonamide 377 (455 mg ,
$1.10 \mathrm{mmol}, 1.1$ equiv.) and PPh_{3} ($315 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.2$ equiv.) in toluene (10.0 mL). Solvent was removed in vacuo when the reaction was complete by TLC (hexane:EtOAc 1:1). The crude was purified by flash column chromatography (hexane:EtOAc 6:1 to $3: 1$) to give the desired product 408 in 88% ($662 \mathrm{mg}, 886 \mu \mathrm{~mol}$) yield. The excess of the sulphonamide $\mathbf{3 7 7}$ could also be re-isolated 9% ($40.0 \mathrm{mg}, 96.8 \mu \mathrm{~mol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.59-1.67(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.64$ (ddd, J=5.5, $5.5,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.48(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=4.6,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.52(\mathrm{dd}, J=2.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 3 \mathrm{H})$, $7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{dd}, J=2.2,8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.49(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.3,21.8,41.8,45.7,57.0$, $57.9,90.8,105.1,114.7,120.1,124.6,126.2,127.3,128.5,129.4,130.0,130.2,130.4,132.0$, $132.6,133.8,134.7,138.8,140.1,145.3,170.0 \mathrm{ppm}$. IR (neat sample): $3102,1734,1596,1538$, $1453,1351,1216,1164,1093,1012,906,851,813,733,659 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{2} \mathrm{I}[\mathrm{M}+\mathrm{Na}]^{+}, 817.0111$; found 817.0107.
7.3.25 $\mathrm{N}-(2-i o d o a l l y l)-\mathrm{N}-m e t h y l-2-t o s y l-8,9-d i h y d r o-2 \mathrm{H}-c y c l o h e p t a[c d] i n d o l-8-a m i n e ~(411) ~$

TFA ($250 \mu \mathrm{~L}, 3.33 \mathrm{mmol}, 4$ equiv.) was added to a $-25^{\circ} \mathrm{C}$ cold solution of acetate 408 (662 mg , $833 \mu \mathrm{~mol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ and the reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$. When the reaction was complete by TLC (hexane:EtOAc 2:1) it was cooled to $-10^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$ ($810 \mu \mathrm{~L}, 5.83 \mathrm{mmol}, 7$ equiv.) was added, followed by mercaptoethanol ($78.0 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$, 1.2 equiv.). The temperature was raised to $0{ }^{\circ} \mathrm{C}$. After the complete consumption of the starting material (TLC, hexane:EtOAc 2:1) the reaction mixture was diluted with $\mathrm{MeOH}(9 \mathrm{~mL})$ and formaldehyde solution (37% in $\mathrm{H}_{2} \mathrm{O}, 3.2 \mathrm{~mL}$) before it was acidified with acetic acid ($240 \mu \mathrm{~L}, 4.17 \mathrm{mmol}, 5$ equiv.) and treated with $\mathrm{NaBH}_{3} \mathrm{CN}(157 \mathrm{mg}, 2.50 \mathrm{mmol}, 3$ equiv.) which was added in one portion. When the reaction was complete by TLC (hexane:EtOAc 2:1) the reaction mixture was concentrated in vacuo and purified by flash column chromatography
(hexane:EtOAc 6:1) to give the desired product 411 in 75% ($324 \mathrm{mg}, 625 \mu \mathrm{~mol}$) yield as a dark yellow foam.
${ }^{1} \mathrm{H}$-NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.82(\mathrm{dd}, \mathrm{J}=12.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.29(\mathrm{~m}, 3 \mathrm{H})$, $3.57(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=2.2,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, 2 H), $7.84(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.7,29.0,37.9,62.1,65.0$, $112.1,112.7,121.2,122.3,124.5,124.9,126.6,127.0,128.9,129.0,130.0,135.4,135.4,135.5$, 135.6, 145.0 ppm. IR (neat sample): 2793, 1597, 1424, 1361, 1298, 1187, 1175, 1137, 1111, 1089, 1034, 911, 810, 753, $733,670 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SI}[\mathrm{M}+\mathrm{H}]^{+}$, 519.0603; found 519.0606.
7.3.26 N-(2-iodoallyl)-2,4-dinitro-N-(2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8yl)benzenesulfonamide (AD) and N -(2-iodoallyl)-2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-amine (409)

AD

409 Ts

TFA ($510 \mu \mathrm{~L}, 6.70 \mathrm{mmol}, 4$ equiv.) was added to a $-78^{\circ} \mathrm{C}$ cold solution of acetate $408(1.33 \mathrm{~g}$, 1.68 mmol , 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ and the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$. When the reaction was complete by TLC (hexane:EtOAc 2:1) it was cooled to $-10{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$ ($1.63 \mathrm{~mL}, 11.8 \mathrm{mmol}, 7$ equiv.) was added, followed by mercaptoethanol ($140 \mu \mathrm{~L}, 2.01 \mathrm{mmol}$, 1.2 equiv.). The temperature was raised to $0^{\circ} \mathrm{C}$. After the complete consumption of the starting material (TLC, hexane:EtOAc 2:1) the reaction mixture was concentrated in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc 2:1) to give amine 409 in 70% yield ($590 \mathrm{mg}, 1.17 \mathrm{mmol}$) as yellowish brown oil. (The author wants to mention that the free amine decomposes quickly so the conversion to the carbamate should be performed quickly.)

Indole AD

${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $2.36(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=10.7,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15$ (d, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.36 ($\mathrm{d}, \mathrm{J}=16.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.86 ($\mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.81 (dd, $J=3.1$, $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 6.48-6.53(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.38$
$(\mathrm{s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{dd}, J=2.0$, $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.7,33.7,57.5,58.6$, 105.9, 113.5, 118.3, 120.1, 123.5, 125.2, 125.2, 126.3, 127.0128.4, 129.2, 129.7, 130.2, 130.7, 131.4, 134.0, 135.3, 135.4, 139.1, 145.3, 148.1, 150.0 ppm . IR (neat sample): 2926, 1598, 1552, 1539, 1426, 1363, 1302, 1165, 1141, 1089, 917, 812, $745,664 \mathrm{~cm}^{-1}$. HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2} \mid[\mathrm{M}+\mathrm{Na}]^{+}, 756.9900$; found 756.9903.
7.3.27 N-(2-iodoallyl)-2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-amine (409)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.65(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.67(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H}), 3.24-3.29(\mathrm{~m}, 1 \mathrm{H})$, $5.56(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=4.4,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=1.3,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}$, $J=8.0, H z, 2 H), 6.83(d, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.0,33.0,55.1$, 58.9, 113.0, 113.2, 121.0, 123,4, 124.7, 125.1, 128.6, 128.8, 129.3, 131.5, 136.2, 136.2, 136.8, 144.4 ppm. IR (neat sample): 1597, 1424, 1360, 1295, 1264, 1175, 1137, 1088, 913, 810, 795, 733, 702, $661 \mathrm{~cm}^{-1}$. HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SI}[\mathrm{M}+\mathrm{H}]^{+}, 505.0447$; found 505.0447.
7.3.28 Methyl (2-iodoallyl)(2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8-yl)carbamate (410)

To a solution of amine $409\left(215 \mathrm{mg}, 426 \mu \mathrm{~mol}\right.$, 1 equiv.) in pyridine ($450 \mu \mathrm{~L}$) at $0^{\circ} \mathrm{C}$ was added Chlorameisensäuremethylester ($43.0 \mu \mathrm{~L}, 554 \mu \mathrm{~mol}, 1.3$ equiv.). The acidchlorid became instantly solid. The reaction mixture was allowed to warm to $5^{\circ} \mathrm{C}$. When the reaction was complete by TLC (hexane:EtOAc 1:1) the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and quenched by pouring into $\mathrm{HCl}(1 \mathrm{~m})$. The phases were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$, the combined organic layers were washed with bicarb solution, water and brine solution, before they were dried over MgSO_{4}. The crude was concentrated in vacuo and purified by flash column chromatography (hexane:EtOAc $3: 2$ to $2: 1$) to give the desired carbamate 410 as off white foam in 82% ($197 \mathrm{mg}, 350 \mu \mathrm{~mol}$) yield. .
${ }^{1} \mathrm{H}-$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6} 340 \mathrm{~K}, \delta\right): 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, J=11.4, $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=3.4,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}$, $J=2.7,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO- $\left._{6}, 340 \mathrm{~K}, \delta\right): 21.4,53.0,57.4,108.5,112.8,120.5,123.5,125.0,125.5,125.9,127.1$, 127.9, 128.5, 130.7, 130.8, 135.0, 135.3, 135.8, 145.8 ppm . IR (neat sample): 2952, 1697, 1538, 1454, 1361, 1235, 1165, 1089, 1046, 1012, 944, 914, 798, 751, $662 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SI}[\mathrm{M}+\mathrm{Na}]^{+}, 585.0321$; found 585.0323.
7.3.29 methyl ($6 \mathrm{R}, 6 \mathrm{aS}, 9 a \mathrm{~S}$)-6-acetoxy-7-methylene-2-tosyl-6,6a,7,8,9a,10-hexahydropyrrolo-[3',2':5,6]cyclohepta[1,2,3-cd]indole-9(2H)-carboxylate (402)

lodide 402 ($20.0 \mathrm{mg}, 35.6 \mu \mathrm{~mol}, 1$ equiv.) TBAC ($21.0 \mathrm{mg}, 74.7 \mu \mathrm{~mol}, 2.1$ equiv.), CsOAc ($40.0 \mathrm{mg}, 206 \mu \mathrm{~mol}, 5.8$ equiv.) were stirred in degased 1,4-Dioxane ($100 \mu \mathrm{~L}$) for 10 minutes. $\mathrm{Pd}(\mathrm{OAc})_{2}(800 \mu \mathrm{~g}, 3.60 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ was added and the reaction mixture was stirred at 55 to $60^{\circ} \mathrm{C}$ for 2 hours. When the reaction was complete by TLC (hexane:EtOAc 1:1) it was quenched by addition of water. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} concentrated in vacuo and purified by flash column chromatography (hexane:EtOAc 3:2 to 1:1) to give the desired product 402 in 52% yield ($8.70 \mathrm{mg}, 17.6 \mathrm{mmol}$) as orange brown oil.
${ }^{1} \mathrm{H}-$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 380 \mathrm{~K}, \delta$): 2.06, ($\mathrm{s}, 3 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 3.78$ (dd, $J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.85 (dd, $J=2.2,8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.14 ($\mathrm{d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.13(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=85 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO$d_{6}, 380$ K, $\left.\delta\right): 20.2,20.3,49.0,50.5,51.3,59.2,74.8,108.2,113.1,116.3,119.7,123.5,124.0$, 125.7, 129.2, $129.5,130.2,134.3,134.6,144.2,144.6,153.4,168.5 \mathrm{ppm}$. IR (neat sample): $1737,1697,1597,1448,1358,1223,1176,1105,1090,1017,959,907,812,758,702,665$ cm^{-1}. HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$, 517.1409; found 517.1407.
7.3.30 methyl ($6 \mathrm{R}, 6 a \mathrm{~S}, 9 a \mathrm{~S}$)-6-hydroxy-7-methylene-2-tosyl-6,6a,7,8,9a,10-
hexahydropyrrolo[3', $\left.2^{\prime}: 5,6\right]$ cyclohepta[1,2,3-cd]indole-9(2H)-carboxylate (414)

Acetate 402 ($100 \mathrm{mg}, 202 \mu \mathrm{~mol}, 1$ equiv.) and Mg ($24.3 \mathrm{mg}, 1.01 \mathrm{mmol}, 5$ equiv.) were suspended in $\mathrm{MeOH}(2 \mathrm{~mL})$ and the reaction mixture was treated with ultrasonic. When the reaction was complete by TLC (hexanes:EtOAc 1:1) the solid was filtered off, the curde was concentrated in vacuo and purified by preparative TLC (hexane:EtOAc 1:2) to give the desired product 414 in 55% ($50.0 \mathrm{mg}, 111 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.95-4.05(\mathrm{~m}, 9 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 5.07$ (s, 1H), 5.11 (d, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ ($\mathrm{d}, \mathrm{J}=8.04 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 27.0,29.8,50.9,52.3,52.6,60.1,74.5$, 109.2, 113.7, 120.5, 122.1, 123.5, 124.7, 126.8, 129.9, 135.6, 144.9 ppm.
7.3.31 methyl (6R,6aS,9aS)-7-methylene-6-(((methylthio)carbonothioyl)oxy)-2-tosyl-
$6,6 a, 7,8,9 a, 10$-hexahydropyrrolo[$\left.3^{\prime}, 2^{\prime}: 5,6\right]$ cyclohepta $[1,2,3$-cd]indole-9(2H)-
carboxylate (416)

To a $0{ }^{\circ} \mathrm{C}$ cold suspension of $\mathrm{NaH}(60 \%, 13.3 \mathrm{mg}$, $332 \mu \mathrm{~mol}$, 5 equiv.), in THF (1.5 mL), was added $\mathrm{CS}_{2}(40.0 \mu \mathrm{~L}, 663 \mu \mathrm{~mol}, 10$ equiv.) and alcohol 414 ($30 \mathrm{mg}, 66.3 \mu \mathrm{~mol}, 1$ equiv.) in THF (1.7 mL). After stirring for 90 minutes, $\operatorname{Mel}(83.0 \mu \mathrm{~L}, 1.33 \mathrm{mmol}, 20$ equiv.) was added and the reaction mixture was stirred for further 60 minutes. The reaction was quenched by the addition of water, the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with brine solution and dried over MgSO_{4}. The solvent was removed in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc 1:1) to give the desired product 416 as colourless oil in 69% ($25.0 \mathrm{mg}, 46.1 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left._{6}, 380 \mathrm{~K}, \delta\right): 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{qd}, \mathrm{J}=2.0,15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.25(\mathrm{qd}, \mathrm{J}=1.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, \mathrm{J}=3.4,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.87(\mathrm{~m}$, $2 \mathrm{H}), 4.58(\mathrm{td}, J=3.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{qd}, J=2.2,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}$,
$J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.07(\mathrm{~s}, 3 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 3.65-3.92(\mathrm{~m}, 6 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H})$, $4.87(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.22(\mathrm{~s}, 3 \mathrm{H})$, $7.33(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 1.2, 19.4, 21.7, 27.1, 29.8, 49.4, 51.3, 52.5, 60.4, 85.0, 109.7, 114.8, 120.0, 124.5, 125.7, 126.8, 128.9, 130.0, 135.7, 145.0, 154.8, 215.0 ppm. IR (neat sample): 2366, 1699, 1449, 1361, 1175, $1138,1090,869,812,757,671,663 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$, 565.0902; found 565.0904.
7.3.32 8-((2,4-dinitro-N-(prop-2-yn-1-yl)phenyl)sulfonamido)-2-tosyl-2,8,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-yl acetate (424)

424
DEAD ($60.0 \mu \mathrm{~L}, 376 \mu \mathrm{~mol}$, 1.2 equiv.) in toluene ($100 \mu \mathrm{~L}$) was added dropwise to a suspension of alcohol 392 ($125 \mathrm{mg}, 313 \mu \mathrm{~mol}, 1$ equiv.), sulphonamide $\mathbf{4 2 2 (1 0 0 \mathrm { mg } , 3 4 4 \mu \mathrm { mol } , 1 . 1 \text { equiv.) }}$ and $\mathrm{PPh}_{3}\left(100 \mathrm{mg}, 376 \mu \mathrm{~mol}, 1.2\right.$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h until complete by TLC (hexane:EtOAc 1:1). The solvent was removed in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc 3:1) to give the desired product 424 as a pale yellow foam in 98% ($205 \mathrm{mg}, 308 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.62$ (ddd, $\left.J=6.3,13.4,13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{t}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{td}, J=4.9,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=2.3,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4,28$ (d, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}$), $4.59-4.65(\mathrm{~m}, 1 \mathrm{H}), 5.86$ (dd, $J=4.7,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.59 (dd, $J=2.2,11.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.26-7.28$ (m, 2H), 7.30 (dd, J = 8.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.33(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.53$ ppm. ${ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 20.4, 21.8, 29.8, 33.5, 34.6, 58.4, 74.3, 78.7, 91.3, 113.5, $118.4,120.0,123.5,125.1,126.2,127.0,128.5,129.8,130.2,131.1,131.2,133.8,135.2,135.4$, 139.5, 145.3, 148.3, 150.0 ppm.

7.3.33 (6R,6aS,9aS)-9-((2,4-dinitrophenyl)sulfonyl)-7-methylene-2-tosyl-2,6,6a,7,8,9,9a,10-octahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indol-6-yl acetate (426)

$\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}(300 \mu \mathrm{~g}, 600 \mathrm{nmol}, 2 \mathrm{~mol} \%)$ and $\mathrm{AgSbF}_{6}(210 \mu \mathrm{~g}, 600 \mathrm{nmol}, 2 \mathrm{~mol} \%)$ were stirred in degased and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{~L})$. To the blue/purple solution was added enyne $\mathbf{4 2 4}$ (20.0 mg , $30.0 \mu \mathrm{~mol}, 1$ equiv.).

1. if reaction is concentrated after 5 minutes only elimination of acetic acid takes place quantitatively to give 419.
2. reaction time up to 15 minutes gives the ring closure product containing the acetate in benzylic position.

The crude was concentrated in vacuo and purified by flash column chromatography (hexane:EtOAc 2:1) to give product 426 in 25% ($5.00 \mathrm{mg}, 7.50 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{J}=1.7,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}$, $J=5.4,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (ddd, $J=1.5,6.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}),(\mathrm{d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{dd}, \mathrm{J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=2.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 3 \mathrm{H})$, $7.70(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.50(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 21.5,21.7,29.6,51.4,53.5,63.6,76.4,110.9,114.6,118.7,120.1,124.3,124.9$, $125.3,126.2,126.9,129.6,129.8,130.1,132.0,135.2,135.5,138.3,142.9,145.3,148.4,150.0$, 169.8 ppm. IR (neat sample): 2924, 2854, 1730, 1661, 1598, 1537, 1461, 1351, 1260, 1167, 1088, 1017, 797, 736, 702, $665 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 689.0988; found 689.0991 .
7.3.34 2,4-dinitro-N-(prop-2-yn-1-yl)-N-(2-tosyl-8,9-dihydro-2H-cyclohepta[cd]indol-8yl)benzenesulfonamide (419)

TFA ($23.0 \mu \mathrm{~L}, 300 \mu \mathrm{~mol}, 4$ equiv.) was added to a $-78^{\circ} \mathrm{C}$ cold solution of acetate $\mathbf{4 2 4}(50.0 \mathrm{mg}$, 75.0 mmol, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(750 \mu \mathrm{~L})$. After stirring for 10 minutes the reaction mixture was
allowed to warm to $0{ }^{\circ} \mathrm{C}$. When the reaction was complete by TLC (hexane:EtOAc 2:1) the reaction mixture was poured into bicarb solution, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4} and the solvent was removed in vacuo. The crude was purified by flash column chromatography (hexane:EtOAc 3:1) to give the desired product 419 as pale yellow semi solid 92%.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.23(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.39(\mathrm{~m}, 2 \mathrm{H}), 4.19$ (dd, $J=2.4,18.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.35(\mathrm{dd}, J=2.4,18.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{ddd}, J=3.2,3.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}$, $J=2.8,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=2.4,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 2 \mathrm{H})$, 7.26-7.29(m, 1H), $7.39(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.45$ (dd, $J=2.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$: $21.8,33.5,34.7,58.5,74.3,78.7,113.5,118,4,120.0,123.5,125.1,126.2,127.0,128.5,129.8$, 130.2, 131.1, 131.2, 133.8, 135.3, 135.5, 139.2, 145.3, 148.2, 150.0 ppm. IR (neat sample): 1597, 1551, 1537, 1349, 1165, 1140, 1087, 1041, 902, 812, 734, 702, 671, $662 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, ~ 629.0777$; found 629.0775.
7.3.35 (6R,6aS,9aS)-9-((2,4-dinitrophenyl)sulfonyl)-7-methylene-2-tosyl-2,6,6a,7,8,9,9a,10octahydropyrrolo[3', 2':5,6]cyclohepta[1,2,3-cd]indol-6-ol (427)

For preparation of the catalyst $\mathrm{Au}(\mathrm{I})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}(6.50 \mathrm{mg}, 13.2 \mu \mathrm{~mol})$ and $\mathrm{AgSbF}_{6}(4.53 \mathrm{mg}$, $13.2 \mu \mathrm{~mol})$ were added in a glovebox to a flame dried Schlenk flask which was sealed with a rubber septum. After unloading from the glovebox dry and degased $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added and the reaction mixture was stirred under exclusion of light until a purple suspension has been formed.

The catalyst solution ($350 \mu \mathrm{~L}, 2 \mathrm{~mol} \%$) was added to a solution of alkyne 419 (78.0 mg , $129 \mu \mathrm{~mol}, 1$ equiv.) in degased and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$ followed by dioxane:water (5:1, 200 $\mu \mathrm{L}$). The reaction mixture treated with ultrasonic until no further conversion could be observed. The solvent was removed in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc 3:1 to 3:2) to give the desired product 427 in 52% (41.5 mg , $66.4 \mu \mathrm{~mol}$) as yellow oil and the substrate $419 \mathrm{in} 37 \%$ ($29.0 \mathrm{mg}, 47.8 \mu \mathrm{~mol}$) yield.
${ }^{1} \mathrm{H}$-NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~d}$, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{ddd}, J=2.3,6.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}) 7.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.48 ($\mathrm{dd}, J=2.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.7,29.2,53.5,53.5,63.7$, 110.4, 114.3, 119.1, 120.1, 122.9, 123.9, 125.0, 126.1, 126.9, 129.1, 130.1, 131.9, 134.0, 135.2, $135.6,138.5,143.8,145.2,148.2,150.0 \mathrm{ppm}$. IR (neat sample): $2355,1730,1597,1553,1539$, 1434, 1359, 1249, 1167, 1137, 1090, 907, $745,671,663 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$, 647.0882; found 647.0883.
7.3.36 (6R,6aS,9aS)-9-((2,4-dinitrophenyl)sulfonyl)-7-methylene-2-tosyl-2,6,6a,7,8,9,9a,10-octahydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indol-6-yl acetate (426)

For preparation of the catalyst $\mathrm{Au}(\mathrm{I})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}(18.0 \mathrm{mg}, 36.4 \mu \mathrm{~mol})$ and $\mathrm{AgSbF}_{6}(18.0 \mathrm{mg}$, $52.4 \mu \mathrm{~mol}$) were added in a glovebox to a flame dried Schlenk flask which was sealed with a rubber septum. After unloading from the glovebox dry and degased $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added and the reaction mixture was stirred for 10 minutes under exclusion of light.

The reaction has been performed in $33 \mu \mathrm{~mol}$ batches.
Procedure A: To a suspension of alkyn 419 ($20.0 \mathrm{mg}, 33.0 \mu \mathrm{~mol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($500 \mu \mathrm{~L}$) was added a solution of acetic acid ($50.0 \mu \mathrm{~L}, 857 \mu \mathrm{~mol}, 26$ equiv.) and acetic anhydride ($50.0 \mu \mathrm{~L}, 528 \mu \mathrm{~mol}, 16$ equiv.) followed by the gold catalyst solution ($200 \mu \mathrm{~L}, 2.40 \mu \mathrm{~mol}$, $7 \mathrm{~mol} \%)$. The vessel was sealed and treated with ultrasonic at $55^{\circ} \mathrm{C}$. The suspension became a yellow solution, then orange finally black brown suspension. When the reaction was complete by TLC (hexane:EtOAc 3:1) the solvent was removed in vacuo and the crude was purified by flash column chromatography (toluene:EtOAc 10:1) to give the desired product 426 in 90 to 97% yield ($20 \mathrm{mg}, 32.0 \mu \mathrm{~mol}$).

Advice:

Product crystalizes on column if hexane is used.
repeat the column if necessary otherwise defunctionalization will not work.

Procedure B: If A gives just baseline spot and a red solution.

To a suspension of alkyn 419 ($20.0 \mathrm{mg}, 33.0 \mu \mathrm{~mol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mu \mathrm{~L})$ was added acetic acid ($50.0 \mu \mathrm{~L}, 857 \mu \mathrm{~mol}, 26$ equiv.) and acetic anhydride ($50.0 \mu \mathrm{~L}, 528 \mu \mathrm{~mol}, 16$ equiv.). The reaction mixture was treated with ultrasonic at $40^{\circ} \mathrm{C}$ for 3 minutes. Gold catalyst solution ($200 \mu \mathrm{~L}, 2.40 \mu \mathrm{~mol}, 7 \mathrm{~mol} \%$) was added, the vessel was sealed and treated with ultrasonic at $40{ }^{\circ} \mathrm{C}$. The reaction mixture became light red after 60 to 120 seconds. TLC control (hexane:EtOAc 2:1) of the reaction showed complete consumption of the starting material. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. And the solvent was removed in vacuo at room temperature (no water bath). Purification was performed by flash column chromatography (hexane:toluene:EtOAc 3:1:1-1:1:1) to give 426 in 90 to 97% yield. An increased temperature during workup causes further reaction which leads to decomposition.
7.3.37 (6R,6aS,9aS)-9-methyl-7-methylene-2-tosyl-2,6,6a,7,8,9,9a,10-octahydropyrrolo-[3',2':5,6]cyclohepta[1,2,3-cd]indol-6-yl acetate (428)

Thiophenol ($7.00 \mu \mathrm{~L}, 69.0 \mu \mathrm{~mol}, 1.15$ equiv.), followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(23.0 \mathrm{mg}, 69.0 \mu \mathrm{~mol}$, 1.15 equiv.) were added to a $0^{\circ} \mathrm{C}$ cold solution of sulphonamide 426 ($40.0 \mathrm{mg}, 60.0 \mu \mathrm{~mol}$, 1 equiv.) in MeCN (1.2 mL). The reaction mixture was stirred until complete by TLC (hexane:EtOAc 1:1). Acetic acid ($2.0 \mu \mathrm{~L}, 36.0 \mu \mathrm{~mol}, 0.6$ equiv.) was added. When no further gas evolution could be observed formaldehyde solution (37% in water: $\mathrm{MeOH}, 13.0 \mu \mathrm{~L}$, $150 \mu \mathrm{~mol}, 2.5$ equiv.) was added. The reaction mixture was stirred at the same temperature for 10 minutes before $\mathrm{NaBH}_{3} \mathrm{CN}(4.00 \mathrm{mg}, 66.0 \mu \mathrm{~mol}, 1.1$ equiv.) and acetic acid ($10.0 \mu \mathrm{~L}$, $180 \mu \mathrm{~mol}, 3$ equiv.) were added. When the reaction was complete by TLC (EtOAc:Hexane: 7N NH_{3} in MeOH 200:100:3) the reaction mixture was neutralised with bicarb (solid), solvent was removed in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc: $7 \mathrm{~N} \mathrm{NH}_{3}$ in MeOH 100:100:1) to give the desired product 428 in 63% (17.0 mg , $37.7 \mu \mathrm{~mol})$ yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.79-3.06(\mathrm{~m}, 3 \mathrm{H})$, $3.29-3.48(\mathrm{~m}, 3 \mathrm{H}), 5.00(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16 - $7.22(\mathrm{~m}, 3 \mathrm{H}) 2,7.33(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.6,21.7,25.6,39.7,51.1,61.6,67.6,107.5,114.0,120.9$, $122.8,124.1,124.3,126.9,129.9,130.4,135.7,135.8,144.8,146.2,169.9 \mathrm{ppm}$.
7.3.38 (6aS, 9aS)-9-((2,4-dinitrophenyl)sulfonyl)-7-methylene-2-tosyl-2,6,6a,7,8,9,9a,10-octa-hydropyrrolo[3',2':5,6]cyclohepta[1,2,3-cd]indole (429)

Acetate 426 ($10.0 \mathrm{mg}, 15.0 \mu \mathrm{~mol}, 1$ equiv.) was dissolved in freshly distilled $\mathrm{CHCl}_{3}(150 \mu \mathrm{~L})$. $\mathrm{InBr}_{3}(300 \mu \mathrm{~g}, 700 \mathrm{~nm}, 5 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{SiH}(10.0 \mu \mathrm{~L}, 60.0 \mu \mathrm{~mol}, 4$ equiv.) was added and the reaction mixture was treated with ultrasonic at $55^{\circ} \mathrm{C}$. First the suspension became a clear solution, then yellow suspension and the reaction is complete when the suspension becomes orange (TLC, hexane:EtOAc 3:2). The crude was purified by flash column chromatography (toluene:EtOAc 30:1) to give the desired product 429 in 49% ($4.50 \mathrm{mg}, 7.40 \mu \mathrm{~mol}$) yield.

Advidce:

1) The substrate has to be absolutely pure
2) The solvent has to be freshly distilled
3) Aqueous workup caused drop of yield.
4) Hexane for column chromatography cause crystallization on column.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta\right): 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{dd}, \mathrm{J}=1.2,8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.25 (dd, $J=4.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{dd}, J=2.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{q}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{q}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ $(d, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{dd}, J=2.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta\right): 21.6,30.0,33.8,47.7,53.7,64.7,108.9,113.0,120.8$, $121.5,123.9,124.4,124.5,126.3,127.7,127.7,127.8,131.0,131.4,133.0,134.5,135.7,135.9$, 137.2, 146.8, 147.8 ppm . IR (neat sample): 2956, 2924, 2854, 1697, 1597, 1450, 1374, 1360, $1264,1175,1131,1088,894,812,733,702,670 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 631.0933 ;$ found, 631.0934 .
7.3.39 (6aS,9aS)-9-methyl-7-methylene-2-tosyl-2,6,6a, 7,8,9,9a,10-octahydropyrrolo-[3',2':5,6]cyclohepta[1,2,3-cd]indole (418)

Thiophenol ($8.00 \mu \mathrm{~L}, 75.6 \mu \mathrm{~mol}, 1.15$ equiv.), followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(25.0 \mathrm{mg}, 75.6 \mu \mathrm{~mol}$, 1.15 equiv.) were added to a $0^{\circ} \mathrm{C}$ cold solution of sulphonamide 429 ($40.0 \mathrm{mg}, 65.7 \mu \mathrm{~mol}$, 1 equiv.) in MeCN (1.3 mL). The reaction mixture was stirred until complete by TLC (hexane:EtOAc 1:1). Acetic acid ($2.30 \mu \mathrm{~L}, 39.4 \mu \mathrm{~mol}, 0.6$ equiv.) was added. When no further gas evolution could be observed formaldehyde solution (37% in water/MeOH, $15.0 \mu \mathrm{~L}$, $164 \mu \mathrm{~mol}, 2.5$ equiv.) was added. The reaction mixture was stirred at the same temperature for 10 minutes before $\mathrm{NaBH}_{3} \mathrm{CN}(4.50 \mathrm{mg}, 72.3 \mu \mathrm{~mol}, 1.1$ equiv.) and acetic acid ($11.3 \mu \mathrm{~L}$, $197 \mu \mathrm{~mol}, 3$ equiv.) were added. When the reaction was complete by TLC (EtOAc:Hexane: 7N NH_{3} in MeOH 200:100:3) the reaction mixture was neutralised with bicarb (solid), solvent was removed in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc: $7 \mathrm{~N} \mathrm{NH}_{3}$ in MeOH 100:100:1) to give the desired product 418. Yield is not optimised.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta\right): 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.92 (dd, J = 9.1, 14.8 Hz, 1H), 3.02-3.04 (m, 2H), 3.11 (dd, J = 3.5, $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (dd, $J=9.3,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=20.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{dd}, \mathrm{J}=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta\right): 21.6,27.2,35.2,40.3,48.1,62.5,69.6$, 105.4, 112.5, 123.0, 124.1, 125.9, 127.7, 131.0, 132.0, 135.9, 135.9, 136.6, 146.6 ppm. IR (neat sample): 2929, 1734, 1596, 1454, 1433, 1361, 1211, 1176, 1133, 1090, 1044, 883, 813, 765, $671 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right.$, 393.1637; found, 393.1638.
7.3.40 (6aS,9aS)-9-methyl-7-methylene-2,6,6a,7,8,9,9a,10-octahydropyrrolo[3', $\left.2^{\prime}: 5,6\right]$ -cyclohepta[1,2,3-cd]indole (431)

Preparation of SmI_{2} :

1) Diiodomethane was dissolved in $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was successively washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (3x), water and brine soltuion. The organic layer was dried over MgSO_{4} and the solvent was removed in vacuo at room temperature to give a white solid.
2) Sm ($76.7 \mathrm{mg}, 510 \mu \mathrm{~mol}, 1$ equiv.) and diiodoethane ($129 \mathrm{mg}, 459 \mu \mathrm{~mol}, 0.9$ equiv.) were suspended in dry THF (4.6 mL). The Schlenktube was sealed with a rubber septum and the reaction mixture treated with ultrasonic at $50^{\circ} \mathrm{C}$ until it became a deep blue solution (15 min.).

Indole 418 ($1.00 \mathrm{mg}, 2.60 \mu \mathrm{~mol}, 1$ equiv.) was dissolved in a solution of $\mathrm{Sml}_{2}(153 \mu \mathrm{~L}$, $15.3 \mu \mathrm{~mol}, 6$ equiv.). After stirring the reaction mixture for 20 seconds, water (830 nL , $46.0 \mu \mathrm{~mol}, 18$ equiv.) was added followed by pyrrolidine ($2.50 \mu \mathrm{~L}, 30.6 \mu \mathrm{~mol}, 12$ equiv.). Stirring the solution for some minutes caused the formation of a white precipitate. TLC (EtOAc:Hexane: $7 \mathrm{~N} \mathrm{NH}_{3}$ in MeOH 100:100:1) control showed the complete consumption of the starting material. The crude was concentrated in vacuo at room temperature and purified by TLC (EtOAc:Hexane: $7 \mathrm{~N} \mathrm{NH}_{3}$ in MeOH 100:100:1) to give the desired product 431 in 50\% yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta\right): 2.72(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{dd}, \mathrm{J}=7.7,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=7.4$, $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H})$, $5.23(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.22$ ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $9.20(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta\right): 24.1,33.1,38.3,45.5,59.7$, 71.6, 108.3, 109.8, 110.8, 119.5, 122.6, 123.1, 126.4, 131.5, 136.7 ppm.

HSQC

${ }^{\mathbf{1}} \mathrm{H}[\mathrm{ppm}]$	${ }^{\mathbf{1 3}} \mathrm{C}[\mathrm{ppm}]$
$2.71(\mathbf{1 5})$	38.3
$3.35 \& 3.57(\mathbf{8})$	24.1
$3.25 \& 3.50(\mathbf{1 1)}$	33.1
$3.60(\mathbf{1 0})$	45.5
$3.63 \& 3.79(\mathbf{1 4)}$	59.7
$3.96(\mathbf{9})$	71.6
$5.25(\mathbf{1 3})$	110.8
$6.77(\mathbf{5})$	119.5
$7.01(\mathbf{6})$	122.6
$7.12(\mathbf{2})$	123.1
$7.22(\mathbf{7})$	109.8

HMBC

${ }^{1} \mathrm{H}$ [ppm]	${ }^{13} \mathrm{C}$ [ppm]	${ }^{1} \mathrm{H}$ [ppm]	${ }^{13} \mathrm{C}$ [ppm]
2.71 (15)	59.7 (14), 71.6 (9)	6.77 (5)	$\begin{gathered} 33.2(11), 109.8(7), 122.6(6), \\ 126.4(4) \end{gathered}$
3.25 (11)	$\begin{gathered} 45.5(10), 71.6(9), 119.5(5) \\ 126.4(4), 131.5(3 a) \end{gathered}$	7.01 (6)	$\begin{gathered} 109.8(7), 119.5(5), 131.5(3 a), \\ 136.7(7 a) \end{gathered}$
3.35 (8)	$\begin{gathered} 45.5(10), 71.6(9), 108.3,(3) \\ 123.1(2), 126.4(4) \end{gathered}$	7.12 (2)	108.3 (3), 126.4 (4), 136.7 (7a)
3.79 (14)	45.5 (10), 71.6 (9)	7.22 (7)	119.5 (5), 126.4 (4)
5.25 (13)	45.5 (10), 59.7 (14)		

7.4 Spectra

-175.33

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.33,145.71,138.64,137.80,135.44,129.89,128.44,127.99$,
127.67, 126.52, 125.92, 124.70, 111.68, 77.48, 77.16, 76.84, 44.66, 33.70, 29.56, 21.84.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D} 6$) $\delta 174.81,145.07$, $139.32,137.79,136.48$, 132.90, 132.28, 129.72 , ${ }^{1}$ C NMR (101 MHz, $\left.\mathrm{C}_{6} \mathrm{D} 6\right) ~ \delta 174.81,145.07,139.32,137.79,136.48,132.90,132.28,129.72$

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90
 $\delta(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\stackrel{\sim}{\sim}$	Name	Shift $[\mathrm{ppm}]$	H's	Integral	Class	$\left.{ }^{\text {J }} \mathrm{Hz}\right]$
	A (s)	2.34	3	3.00	5	
	C (d)	3.47	2	1.98	d	6.24
	B (d)	3.60	2	1.96	d	6.59
	$\mathrm{D}(\mathrm{m})$	6.05	2	1.92	m	
$\begin{array}{l\|l\|} \hline A & (s) \\ 2 & 34 \\ \hline \end{array}$	E (d)	6.91	1	0.94	d	7.48
	F (dd)	7.15	1	0.95	dd	7.60, 7.92
	G (s)	7.20	1	0.92	5	
	H(d)	7.23	2	1.90	d	4.79
	1 (m)	7.76	2	2.32	m	

-

$\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}$

${ }^{13}{ }^{13}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.77,135.78,135.66,132.82,131.04,130.77,129.93,129.11$, $126.94,124.76,121.83,120.59,119.65,111.98,77.48,77.16,76.84,32.24,24.82,21.69$.

160	150	140	130	120	110	100	90	$\underset{\delta(\mathrm{ppm})}{80}$	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D} 6$) $\delta 169.77,144.03,140.39,138.81,136.46,132.80,129.79,128.65$,
$128.30,128.06,127.82,127.43,126.97,125.73,123.86,113.16,91.31,48.34,33.03,31.04$,
21.04, 20.64.

170	160	150	140	130	120	110	100	$90_{\delta(\mathrm{ppm})}^{80}$	70	60	50	40	30	20	10	0	-

	D (m)	Name	Shift [ppm]	H's	Integral	Class	J [Hz]
	7.13	F (dd)	1.96	1	1.07	dd	4.49, 8.41
$\begin{gathered} \hline \text { B (dd) } \\ 7.99 \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{C} \text { (d) } \\ 7.33 \\ \hline \end{array}$	$\mathrm{G}(\mathrm{s})$	2.15	3	3.02	s	
		H (dd)	2.17	1	1.06	dd	4.49, 7.75
		$\mathrm{E}(\mathrm{s})$	2.43	3	3.11	5	
		A (dd)	2.96	1	1.00	dd	8.07,8.07
		D (m)	7.13	2	2.03	m	
		C (d)	7.33	3	2.75	d	8.15
		B (dd)	7.99	3	3.01	dd	3.61,8.31

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.81,173.51,145.95,139.54,135.33,129.99,128.55,128.08$,
$124.80,124.53,122.92,113.56,77.48,77.36,77.16,76.84,41.58,35.54,32.04,21.88,21.78$.

200	190	180	170	160	150	140	130	120	110	$\begin{array}{c}100 \\ \delta(\mathrm{ppm})\end{array}$	80	80	70	60	50	40	30	20	10

150	140	130	120	110	100	90	80 $\delta(\mathrm{ppm})$	60	50	40	30	20	10	0	-10

(

$\stackrel{\circ}{\circ}$

222

$\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} \mathrm{ppm}$

ID	Shift [ppm]	J [Hz]	M	Connection
1	7.6883	8.2757	2	$J(1,0)$
2	7.4620	8.0358	2	$J(2,0)$
3	7.2377	8.2757	2	$J(3,0)$
4	7.1753	7.9158	2	J (4, 0)
		7.9158	2	$J(4,0)$
5	6.8041	7.7959	2	$J(5,0)$
6	6.4417	3.8780	2	$J(6,0)$
7	6.2099	12.3935	2	$\mathrm{J}(7,0)$
8	5.7233	12.4335	2	$\mathrm{J}(8,0)$
9	3.2373	3.2983	2	$J(9,0)$
		12.0537	2	$J(9,0)$
10	1.4830	11.9271	4	$\mathrm{J}(10,0)$

立立itit

-170.35

-45.38
-35.77
$<\begin{array}{r}21.68 \\ \\ \hline\end{array}$

[^6]

393

m
$\stackrel{\sim}{m}$

394

$\left.\begin{array}{lllllllllllllllll}190 & 180 & 170 & 160 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}\right) 10$
(2)

395

398

399

べへ

	$\stackrel{\sim}{\infty}$
ベ®	

$411{ }^{\text {Ts }}$

$\stackrel{+}{\stackrel{\rightharpoonup}{\mathrm{N}}} \stackrel{\mathrm{m}}{\mathrm{m}}$

AD

ID	Shift [ppm]	J [Hz]	M	Connection
1	7.8163	8.5824	2	$J(1,0)$
2	7.7995	7.8622	2	$J(2,0)$
3	7.3769	8.2223	2	$\mathrm{J}(3,0)$
4	7.3141	7.8922	2	$J(4,0)$
		7.8922	2	$J(4,0)$
5	7.1303	7.5021	2	$J(5,0)$
6	6.5215	2.6708	2	$J(6,0)$
		12.2135	2	$J(6,0)$
7	6.3209	1.6205	2	$J(7,0)$
8	6.0448	3.3910	2	$J(8,0)$
		12.0334	2	$J(8,0)$
9	5.8519	1.4404	2	$J(9,0)$
10	4.4004	8.4624	2	$J(10,0)$
11	4.1280	16.3246	2	$J(11,0)$
12	4.0562	17.0448	2	$J(12,0)$
13	3.2565	11.3732	2	$J(13,0)$
		13.9540	2	$J(13,0)$
14	3.1867	14.2840	2	$J(14,0)$

$\stackrel{m}{\stackrel{m}{i}}$

Anzeige 380 K

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

$\stackrel{6}{\circ}$
$\stackrel{-}{7}$
$\stackrel{1}{\sim}$
i

	m	$\bigcirc{ }^{\circ} \mathrm{L}$	F	$\xrightarrow{\curvearrowleft}$	
	-	$\stackrel{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	¢imjo	
-				\\|1	

[^7]

419 Ts

427

ID	Shift [ppm]	J [Hz]	M	Connection
1	7.8491	8.2757	2	$J(1,0)$
2	7.7316	8.2757	2	$J(2,0)$
3	7.1067	7.2762	2	$J(3,0)$
4	6.1663	5.3572	2	$J(4,0)$
5	5.0013	14.1126	2	$J(5,0)$

426

$\begin{array}{llllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

429

418

8 Experimental Thorpe Ingold Effect on the DVCPR
8 Experimental Thorpe Ingold Effect on the DVCPR 337
8.1 Graphical Overview 341
8.2 General 341
8.3 Procedures 342
8.3.1 allyl 2-(2-azidophenyl)acetate (AE) 342
8.3.2 allyl 2-(2-azidophenyl)-2-diazoacetate (478) 342
8.3.3 (1R,5S)-1-(2-azidophenyl)-3-oxabicyclo[3.1.0]hexan-2-one (479) 343
8.3.4 (1R,2S)-2-(hydroxymethyl)spiro[cyclopropane-1,3'-indolin]-2'-one (AF). 343
8.3.5 (1R,2S)-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (481) 344
8.3.6 (1R,2R)-2-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (476) and (1R,2S)-2- vinylspiro[cyclopropane -1,3'-indolin] -2'-one (477) 345
8.3.7 (1R,2R)-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (480) 346
8.3.8 2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (115) 346
8.4 Crystalographic Data 347
8.5 Spectra 351

8.1 Graphical Overview

8.2 General

All reactions were carried out in oven-dried glassware under an argon atmosphere, unless otherwise stated. Commercially available anhydrous DMF, DMSO, MeCN, PhH, Pyridine THF (Acros Organics, Alfa Aesar) were used without further manipulation. Other anhydrous solvents were obtained by filtration through drying columns ($\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) on a Glass Contour system. Rhodium (II)-acetate dimer powder was obtained from Sigma-Aldrich. Reactions were magnetically and mechanically stirred and monitored by thin layer chromatography (TLC) with silica gel 60-F254 plates. Flash column chromatography was performed with silica gel $60 \AA \AA$ of Macherey-Nagel under pressure. Preparative TLC was performed with pre-coated TLC-plates Adamant UV_{254} of Mancherey-Nagel. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. NMR spectra were recorded on a 400 MHz spectrometer of Bruker. Unless otherwise stated, all NMR spectra were measured in CDCl_{3} solution and referenced to the residual CHCl_{3} signal $\left({ }^{1} \mathrm{H}, \delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}\right.$, $\delta=77.16 \mathrm{ppm}$). All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are given in ppm ($s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quadruplet, $m=$ multiplet, $b=$ broad signal). Assignments of proton resonance were confirmed, when possible, by correlated spectroscopy.

8.3 Procedures

8.3.1 allyl 2-(2-azidophenyl)acetate (AE)

DIC ($99.0 \mu \mathrm{~L}, 630 \mu \mathrm{~mol}, 1.05$ equiv.) was added to a stirred suspension of acid 130 (106 mg , $600 \mu \mathrm{~mol}, 1$ equiv.), allylalcohol ($41.0 \mu \mathrm{~L}, 600 \mu \mathrm{~mol}, 1$ equiv.) and 4-DMAP (7.30 mg , $60.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.20 \mathrm{~mL})$. The solvent was removed in vacuo when the reaction was complete by TLC (hexane:EtOAc 10:1). The crude was purified by flash column chromatography (hexane:EtOAc 15:1) to give the desired ester AE in 92% ($120 \mathrm{mg}, 553 \mu \mathrm{~mol}$) yield as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 3.64(\mathrm{~s}, 2 \mathrm{H}), 4.62$ (ddd, J = 1.4, 1.4, $5.5 \mathrm{~Hz}, 2 \mathrm{H}$), 5.23 (ddd, J = 1.2, $2.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.29 (ddd, J = 1.5, 3.1, 17.2 Hz, 1 H), 5.92 (dddd, J = 5.7, 5.7, 10.5, 17.2 Hz , 1 H), 7.11 (ddd, J = 1.4, 7.5, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 , (dd, J = 1.0, $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.24(d d, J=1.4,7.5 \mathrm{~Hz}$, 1 H), 7.34 (ddd, $\mathrm{J}=1.4,7.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 36.7,65.7,118.3$, $118.4,125.0,125.8,128.9,131.6,132.2,138.8,170.9 \mathrm{ppm}$.
8.3.2 allyl 2-(2-azidophenyl)-2-diazoacetate (478)

Allylester AE ($1.14 \mathrm{~g}, 5.26 \mathrm{mmol}, 1$ equiv.) and ABSA ($1.90 \mathrm{~g}, 7.89 \mathrm{mmol}, 1.5$ equiv.) were dissolved in MeCN (18 mL). DBU ($2.36 \mathrm{~mL}, 15.8 \mathrm{mmol}$, 3 equiv.) was added and the solution was stirred until complete by TLC (hexane:EtOAc 15:1). The reaction was hydrolysed by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 70 \mathrm{~mL})$, the combined organic layers were washed with brine solution, dried over MgSO_{4} and concentrated in vacuo. The crude material was then purified by flash chromatography (hexane:EtOAc 20:1) to afford the desired product 478 in 88% ($1.12 \mathrm{~g}, 4.16 \mathrm{mmol}$) yield as bright orange oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 4.74(d, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(q d, J=1.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(q d$, $J=1.5,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (dddd, J = 5.5, 5.5, 10.7, $17.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.17-7.21(m, 2 \mathrm{H}), 7.35$
$(d d d, J=1.2,7.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(d d, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$ $65.8,116.6,118.4,118.6,125.3,129.3,131.5,132.3,137.4,165.5 \mathrm{ppm}$. IR (neat sample): $2128,2095,1700,1493,1367,1282,1244,1154,1104,1021,936,753 \mathrm{~cm}^{-1}$

8.3.3 (1R,5S)-1-(2-azidophenyl)-3-oxabicyclo[3.1.0]hexan-2-one (479)

479
Diazo compound 478 (1.24 g , 5.10 mmol , 1 equiv.) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (145 mL). The solution was added via dropping funnel into a solution of (CuOTf) $)_{2} * T o l(53.0 \mathrm{mg}, 102 \mu \mathrm{~mol}$, 2 mol\%.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(145 \mathrm{~mL})$ at rt over 30 minutes. The solution was stirred until complete by TLC (hexane:EtOAc 3:1). The reaction mixture was then concentrated in vacuo and purified by flash chromatography (hexane:EtOAc 5:1 \rightarrow 3:1) to afford 479 in 75% (938 mg , 3.82 mmol) yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 1.31(d d, J=4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(d d, J=5.1,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26 (ddd, J = 4.6, 4.6, 8.0 Hz, 1 H), 4.32 (d, J = 9.2 Hz, 1 H), $4.62(d d, J=4.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (ddd, J = 1.0, 7.5, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.18(d d, J=0.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(d d, J=1.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (ddd, J = 1.9, 7.7, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 16.7,25.2,30.0,68.5,118.1$, 124.9, 125.6, 129.8, 131.5, 140.5, 176.0 ppm . IR (neat sample): 2127, 1749, 1492, 1451, 1371, 1283, 1263, 1142, 1111, 1058, 1041989, 921, 743, $703,626 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}, 238.0592\right.$; found, 238.0598.
8.3.4 (1R,2S)-2-(hydroxymethyl)spiro[cyclopropane-1,3'-indolin]-2'-one (AF)

$\mathrm{PBu}_{3}(900 \mu \mathrm{~L}, 3.60 \mathrm{mmol}, 1.1$ equiv.) was added to a stirred solution of azide 479 (705 mg , 3.28 mmol, 1 equiv.) in THF: $\mathrm{H}_{2} \mathrm{O}$ ($11 \mathrm{~mL} ; 10: 1$). The reaction mixture was stirred for 15 minutes, before it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4} and concentrated in vacuo. The crude was dissolved in anhydrous THF (30 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{iPrMgCl}(2 \mathrm{M}$ in THF, $3.60 \mathrm{~mL}, 6.20 \mathrm{mmol}, 2.05$ equiv.) was added slowly to the solution. The reaction was allowed to stir for 10 minutes, before it was quenched by addition of water. The aqueous layer was
extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4}, concentrated in vacuo and the crude was purified by flash column chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 30: 1$ to $15: 1$) to give the spirooxindol $\mathbf{A F} 77 \%$ ($483 \mathrm{mg}, 2.56 \mathrm{mmol}$) yield as white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta\right) 1.49(\mathrm{dd}, J=4.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (dd, $\left.J=4.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.03-2.11(m, 1 \mathrm{H}), 3.73-3.84(m, 2 \mathrm{H}), 4.60(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.12$ (ddd, $J=2.6,6.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 10.46(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO-d $\left._{6}, \delta\right) 22.3,30.0,35.2,57.0,108.9,118.6,120.9,126.3,131.5,141.2,176.5$ ppm. IR (neat sample): 2459, 2349, 1680, 1614, 1467, 1347, 1199, 1126, 1019, 977, 909, 750, 637 cm^{-1}. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 212.0687$; found, 212.0688 .

8.3.5 (1R,2S)-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (481)

481
To a solution of alcohol AF ($400 \mathrm{mg}, 2.11 \mu \mathrm{~mol}, 1$ equiv.) in DMSO (4 mL) was added IBX ($710 \mathrm{mg}, 2.54 \mu \mathrm{~mol}, 1.2$ equiv.). The suspension was stirred for 18 h until complete consumption of the starting material. The reaction was quenched with water and extracted with EtOAc ($4 \times 25 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 30: 1\right)$ to afford aldehyde 481 in 94% ($373 \mathrm{mg}, 199 \mu \mathrm{~mol}$) yield as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta\right) 2.24(d d, J=4.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(d d, J=4.8,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.62 (ddd, J = 6.9, 6.9, 8.2 Hz, 1 H), 6.89 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.96 (ddd, 1.4, 7.5, 7.5 Hz, 1 H), $7.03(d, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(d d d, J=1.4,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.52(d, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.77(s$, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}\right.$, δ) 21.6, 35.8, 109.6, 119.8, 121.6, 127.7, 128.3, 141.8, 175.1, 199.5 ppm. IR (neat sample): 3231, 1696, 1621, 1486, 1344, 1194, 1159, 998, 749, 694, $643 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}, 188.0712\right.$; found, 188.0714 .
8.3.6 (1R,2R)-2-vinylspiro[cyclopropane-1,3'-indolin]-2'-one (476) and (1R, 2S)-2-vinylspiro-[cyclopropane-1,3'-indolin] -2'-one (477)

General procedure for Olefination.

A suspension of methyl triphenylphosphonium bromide (4 equiv.) in THF (0.4 m) was cooled to $-78^{\circ} \mathrm{C}$. To this solution was added NaHMDS (2 M in THF, 4 equiv.), which was accompanied by a colour change to bright orange. The solution was stirred for 45 minutes at room temperature before it was cooled to $-78{ }^{\circ} \mathrm{C}$ again. Then a solution of aldehyde 481/480 (1 equiv.) in THF (0.4 M) was added slowly. The solution was stirred for 15 minutes at $-78^{\circ} \mathrm{C}$, then the cooling bath was removed and the reaction was allowed to stir for another 60 minutes. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, then diluted with water, extracted with EtOAc ($3 \times$), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography (hexane:EtOAc 3:1) to afford olefin 476 in 9% yield as white solid. Olefin 477 in was obtained in 89% yield as white solid.

Trans ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 1.94(d d, J=4.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(d d, J=4.9,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50(q, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(d d, J=1.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(d d, 1.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (ddd, 9.9, 9.9, $17.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.83(d, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(d, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (ddd, 1.1, 7.6, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(d d d, J=1.2,7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(s, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, §) $24.9,33.9,37.6,109.4,116.9,118.3,122.0,126.8,130.9,133.9,140.3,176.5 \mathrm{ppm}$. IR (neat sample): $3078,3030,2855,1689,1622,1492,1436,1358,1267,1229,1172,1113,1060$, 1017, 982, 906, 786, 747, 677, $641 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$, 186.0919; found, 186.0919.
${ }^{\mathrm{CIS}}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 1.69(d d, J=4.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(d d, J=4.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ $(q, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(d d d, J=0.7,1.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (ddd, J = 1.0, 1.5, 16.9 Hz, 1 H), 5.83 (ddd, J = 7.9, 10.2, 17.1 Hz, 1 H), $6.92(d, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.02(m, 2 \mathrm{H}), 7.20$ (ddd, $J=1.4,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 23.3,33.9,35.8,110.1$, $119.1,121.4,121.7,127.0,128.1,133.4,141.4,178.7$ ppm.
8.3.7 (1R,2R)-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde (480)

A suspension of diazo 118 ($1.00 \mathrm{~g}, 6.00 \mathrm{mmol}, 1$ equiv.) in freshyls distilled acrolein (2.10 mL , $31.0 \mathrm{mmol}, 5$ equiv.) was heated in a sealed tube to $95^{\circ} \mathrm{C}$. After 60 minutes the reaction mixture was cooled to room temperature. Excess of acroleine was removed in vacuo. The crude was purified by flash column chromatography (hexane:EtOAc 3:2) to give the desired aldehyde 480 in $53 \% ~(620 \mathrm{mg}, 3.30 \mathrm{mmol}$) yield as white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 2.15(d d, J=4.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(d d, J=4.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (ddd, J = 3.2, 7.6, 8.4 Hz, 1 H), $6.96(d, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(d d, J=7.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(d$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 7.22-7.26(m, 1 \mathrm{H}), 8.35(s, 1 \mathrm{H}), 9.71(d, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right) 210.3,36.3,39.5,110.1,122.4,122.8,125.6,128.1,141.1,175.9,195.9 \mathrm{ppm}$. IR (neat sample): $3257,1705,1620,1469,1362,1220,1168,752 \mathrm{~cm}^{-1}$. HRMS (ESI) (m / z): calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 210.0531$; found, 210.0532.

8.3.8 2,6,9,9a-tetrahydro-1H-cyclohepta[cd]indol-1-one (115)

General procedure for the rearrangement

A solution of the corresponding olefin 476 or $\mathbf{4 7 7}$ ($10.0 \mathrm{mg}, 54.0 \mu \mathrm{~mol}, 1$ equiv.) in DMSO- d_{6} $(700 \mu \mathrm{~L})$ was heated to 383.15 K in the NMR. The measurement started when the probe reached the desired temperature. After complete consumption of the starting material, the crude was added to water, the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), the combined organic layers were dried over MgSO 4 , concentrated in vacuo and the crude was purified by flash column chromatography (hexane:EtOAc 3:2) to obtain the desired product 115 in 93% ($9.3 \mathrm{mg}, 50.2 \mu \mathrm{~mol}$) yield as yellow foam.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 2.19-2.27(m, 1 \mathrm{H}), 2.83(d, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, \mathrm{J}=6.5$, $19.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.87(m, 2 \mathrm{H}), 5.67-5.73(m, 1 \mathrm{H}), 5.75-5.82(m, 1 \mathrm{H}), 6.75-6.80(\mathrm{~m}$, $2 \mathrm{H}), 7.11(d d, J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 29.1,34.0$, 45.0, 107.6, 122.5, 126.2, 127.1, 127.9, 129.6, 137.5, 140.5, 180.1 ppm . IR (neat sample):

3018, 2914, 1699, 1615, 1459, 1318, 1288, 1248, 1166, 939, 757, 730, $632 \mathrm{~cm}^{-1}$. HRMS (ESI)
(m / z) : calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 186.0919$; found, 186.0917.

8.4 Crystalographic Data

Bondlength of (1S,2S)-2-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde

Number	Atom1	Atom2	Type	Polymeric	Cyclicity	Length	SybylType
1	N1	H1	Unknown	no	acyclic	0.90(2)	1
2	N1	C2	Unknown	no	cyclic	1.352(2)	un
3	N1	C7A	Unknown	no	cyclic	1.402(2)	un
4	O1	C2	Unknown	no	acyclic	1.230(2)	2
5	02	C10	Unknown	no	acyclic	1.206(2)	2
6	C2	C3	Unknown	no	cyclic	1.510(2)	1
7	C3	C3A	Unknown	no	cyclic	1.482(2)	1
8	C3	C8	Unknown	no	cyclic	1.497(2)	1
9	C3	C9	Unknown	no	cyclic	1.577(2)	1
10	C3A	C4	Unknown	no	cyclic	1.383(2)	un
11	C3A	C7A	Unknown	no	cyclic	1.397(2)	un
12	C4	H4	Unknown	no	acyclic	0.99(2)	1
13	C4	C5	Unknown	no	cyclic	1.392(2)	un
14	C5	H5	Unknown	no	acyclic	1.00(2)	1
15	C5	C6	Unknown	no	cyclic	1.384(2)	un
16	C6	H6	Unknown	no	acyclic	1.00(2)	1
17	C6	C7	Unknown	no	cyclic	1.393(2)	un
18	C7	H7	Unknown	no	acyclic	0.95(2)	1
19	C7	C7A	Unknown	no	cyclic	1.380(2)	un
20	C8	H81	Unknown	no	acyclic	1.00(2)	1
21	C8	H82	Unknown	no	acyclic	1.02(2)	1
22	C8	C9	Unknown	no	cyclic	1.501(2)	1
23	C9	C10	Unknown	no	acyclic	1.485(2)	1
24	C9	C11	Unknown	no	acyclic	1.503(2)	1
25	C10	H10	Unknown	no	acyclic	1.01(2)	1
26	C11	H111	Unknown	no	acyclic	0.92(3)	1
27	C11	H112	Unknown	no	acyclic	0.97(3)	1
28	C11	H113	Unknown	no	acyclic	0.89(4)	1

Bondangles of (1S,2S)-2-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde

Number	Atom1	Atom2	Atom3	Angle
1	H1	N1	C2	122(1)
2	H1	N1	C7A	126(1)
3	C2	N1	C7A	111.7(1)
4	N1	C2	01	125.8(1)
5	N1	C2	C3	107.0(1)
6	01	C2	C3	127.2(1)
7	C2	C3	C3A	104.6(1)
8	C2	C3	C8	119.0(1)
9	C2	C3	C9	119.4(1)
10	C3A	C3	C8	127.6(1)
11	C3A	C3	C9	122.9(1)
12	C8	C3	C9	58.37(9)
13	C3	C3A	C4	133.8(1)
14	C3	C3A	C7A	107.1(1)
15	C4	C3A	C7A	119.1(1)
16	C3A	C4	H4	122(1)
17	C3A	C4	C5	118.9(1)
18	H4	C4	C5	119(1)
19	C4	C5	H5	118(1)
20	C4	C5	C6	121.0(2)
21	H5	C5	C6	121(1)
22	C5	C6	H6	121(1)
23	C5	C6	C7	121.0(1)
24	H6	C6	C7	118(1)
25	C6	C7	H7	123(1)
26	C6	C7	C7A	117.1(1)
27	H7	C7	C7A	120(1)
28	N1	C7A	C3A	109.5(1)
29	N1	C7A	C7	127.7(1)
30	C3A	C7A	C7	122.8(1)
31	C3	C8	H81	115(1)
32	C3	C8	H82	117(1)
33	C3	C8	C9	63.5(1)
34	H81	C8	H82	115(1)
35	H81	C8	C9	119(1)
36	H82	C8	C9	118(1)
37	C3	C9	C8	58.16(9)
38	C3	C9	C10	115.0(1)
39	C3	C9	C11	119.5(1)
40	C8	C9	C10	116.1(1)
41	C8	C9	C11	120.8(1)
42	C10	C9	C11	115.3(1)
43	02	C10	C9	123.1(2)
44	02	C10	H10	119(1)

45	C9	C10	H10	$118(1)$
46	C9	C11	H111	$113(2)$
47	C9	C11	H112	$112(2)$
48	C9	C11	H113	$111(2)$
49	H111	C11	H112	$101(2)$
50	H111	C11	H113	$113(3)$
51	H112	C11	H113	$105(3)$

Bondlength of (1R,2S)-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde							
Number	Atom1	Atom2	Type	Polymeric	Cyclicity	Length	SybylType
1	O1	C2	Unknown	no	acyclic	1.228(5)	2
2	N1	H1	Unknown	no	acyclic	0.860	1
3	N1	C2	Unknown	no	cyclic	1.350(5)	un
4	N1	C7a	Unknown	no	cyclic	1.403(5)	un
5	O 2	C10	Unknown	no	acyclic	1.204(6)	2
6	C4a	C3	Unknown	no	cyclic	1.481(5)	1
7	C4a	C7a	Unknown	no	cyclic	1.392(5)	un
8	C4a	C4	Unknown	no	cyclic	1.395(5)	un
9	C2	C3	Unknown	no	cyclic	1.507(5)	1
10	C3	C9	Unknown	no	cyclic	1.544(5)	1
11	C3	C8	Unknown	no	cyclic	1.497(6)	1
12	C7a	C7	Unknown	no	cyclic	1.376(6)	un
13	C9	H9	Unknown	no	acyclic	0.980	1
14	C9	C10	Unknown	no	acyclic	1.475(6)	1
15	C9	C8	Unknown	no	cyclic	1.489(6)	1
16	C7	H7	Unknown	no	acyclic	0.930	1
17	C7	C6	Unknown	no	cyclic	1.376(6)	un
18	C4	H4	Unknown	no	acyclic	0.930	1
19	C4	C5	Unknown	no	cyclic	1.397(6)	un
20	C5	H5	Unknown	no	acyclic	0.930	1
21	C5	C6	Unknown	no	cyclic	1.389(6)	un
22	C10	H10	Unknown	no	acyclic	0.930	1
23	C8	H81	Unknown	no	acyclic	0.969	1
24	C8	H82	Unknown	no	acyclic	0.971	1
25	C6	H6	Unknown	no	acyclic	0.930	1

Bondangles of (1R,2S)-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carbaldehyde				
Number	Atom1	Atom2	Atom3	Angle
1	H1	N1	C2	123.9
2	H1	N1	C7a	123.9
3	C2	N1	C7a	112.2(3)
4	C3	C4a	C7a	107.5(3)
5	C3	C4a	C4	132.6(3)
6	C7a	C4a	C4	119.9(3)
7	01	C2	N1	125.9(3)
8	01	C2	C3	127.4(3)
9	N1	C2	C3	106.7(3)
10	C4a	C3	C2	104.7(3)
11	C4a	C3	C9	122.7(3)
12	C4a	C3	C8	123.9(3)
13	C2	C3	C9	121.4(3)
14	C2	C3	C8	120.8(3)
15	C9	C3	C8	58.6(3)
16	N1	C7a	C4a	108.9(3)
17	N1	C7a	C7	128.8(4)
18	C4a	C7a	C7	122.3(4)
19	C3	C9	H9	116.2
20	C3	C9	C10	119.9(3)
21	C3	C9	C8	59.1(3)
22	H9	C9	C10	116.2
23	H9	C9	C8	116.2
24	C10	C9	C8	117.0(4)
25	C7a	C7	H7	121.0
26	C7a	C7	C6	118.0(4)
27	H7	C7	C6	121.1
28	C4a	C4	H4	121.2
29	C4a	C4	C5	117.6(4)
30	H4	C4	C5	121.2
31	C4	C5	H5	119.4
32	C4	C5	C6	121.3(4)
33	H5	C5	C6	119.4
34	O 2	C10	C9	123.6(4)
35	02	C10	H10	118.2
36	C9	C10	H10	118.2
37	C3	C8	C9	62.3(3)
38	C3	C8	H81	117.6
39	C3	C8	H82	117.5
40	C9	C8	H81	117.5
41	C9	C8	H82	117.5
42	H81	C8	H82	114.7
43	C7	C6	C5	121.0(4)
44	C7	C6	H6	119.5

8.5 Spectra

$\stackrel{?}{i}$
47
$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { pp }\end{array}$

ID	Shift [ppm]	J [Hz]	M	Connection
1	7.3862	1.8806	2	$J(1,0)$
		7.6825	2	$J(1,0)$
		7.6825	2	$J(1,0)$
2	7.3007	1.5405	2	$J(2,0)$
		7.6625	2	$J(2,0)$
3	7.1796	0.8603	2	$J(3,0)$
		8.0226	2	$J(3,0)$
4	7.1393	1.0303	2	$\mathrm{J}(4,0)$
		7.5124	2	$J(4,0)$
		7.5124	2	$J(4,0)$
5	4.6243	4.7816	2	$J(5,0)$
		9.2230	2	$J(5,0)$
67	4.3240	9.2030	2	$J(6,0)$
	2.2647	4.6115	2	$J(7,0)$
		4.6115	2	$J(7,0)$
		8.0126	2	$J(7,0)$
8	1.6968	5.1217	2	$J(8,0)$
		7.8425	2	$J(8,0)$
9	1.3060	4.7816	2	$J(9,0)$
		4.7816	2	$J(9,0)$

J
0
\vdots
-
-
1
$\left.\right|_{0} ^{\circ}$
479

\bullet
$\stackrel{0}{0}$
\bullet
$\stackrel{-1}{1}$
1
$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

ID	Shift [ppm]	J [Hz]	M	Connection
1	7.1241	2.5608	2	$J(1,0)$
		6.1420	2	$J(1,0)$
		7.6825	2	$J(1,0)$
234	6.8543	7.8425	2	$J(2,0)$
		5.4618	3	$J(3,0)$
	$\begin{aligned} & 4.6033 \\ & 1.7292 \end{aligned}$	4.0813	2	$J(4,0)$
		8.8829	2	$J(4,0)$
5	1.4899	4.0813	2	$J(5,0)$
		7.8425	2	$J(5,0)$

$\underset{\sim}{\text { inm }} \underset{\sim}{\text { mim }}$

on
--
$0)$
$0)$
$0)$
$0)$
$0)$
$0)$
$0)$
$0)$
$0)$

N
$\stackrel{\sim}{6}$

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
480

	Shift $[\mathrm{ppm}]$	$J \quad[\mathrm{~Hz}]$
	9.7098	3.0810
2	7.1432	7.4824
3	7.0138	7.5625
4		7.8025
5	6.9606	7.5224
	2.9408	3.1610
		7.5825
6	2.3249	4.4427
7		7.3424
7	2.1460	4.7816
		8.5428

M	Connection
2	$J(1,0)$
2	$J(2,0)$
2	$J(3,0)$
2	$J(3,0)$
2	$J(4,0)$
2	$J(5,0)$
2	$J(5,0)$
2	$J(5,0)$
2	$J(6,0)$
2	$J(6,0)$
2	$J(7,0)$
2	

480

位

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

\bullet
\vdots
$\stackrel{\bullet}{\bullet}$
$\stackrel{1}{7}$

$\begin{array}{lllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

$\stackrel{\infty}{\infty}$
 \qquad
\qquad

$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \end{array}\right\|$		웅우우움	-	¢			$\|$8	(\%)	(\%)		
9	8	7	6	5	4	3		2		1	0 ppm

\bullet
$\stackrel{0}{\infty}$
$\stackrel{\infty}{\Gamma}$
$\stackrel{-}{1}$

$\left.\right|_{1} ^{-\infty} \stackrel{m}{m}_{\infty}^{\infty}$

9 List of Schemes
Scheme 1. Indole alkaloid biosynthesis starting from (-)-secologanine (10) 6
Scheme 2. Biosynthesis of Ergotamine. Dashed arrows display not confirmed steps. a. DmaW(prenyltransferase), b. EasF (N-methyltransferase), c. EasE/EasC(oxidoreductase/catalase), d. EasE/EasC (oxidoreductase/catalase), $-\mathrm{CO}_{2}$ e. EasD(oxidase), f. imin condensation, spontaneous, g. EasG (reductase), h. p450(monooxigenase), i. 2x CloA (monooxigenase), j. spontaneous/isomerase, k. LPS1 (D-lysergyl-peptide synthase 1), LPS2 (D-lysergyl-peptide synthase 2). ${ }^{[21]}$............................. 9
Scheme $3 .{ }^{14} \mathrm{C}$ labelling experiment by Floss et al. 10
Scheme 4. Further feeding experiment using mevalonate with (5S)- and (5R)-[2- $\left.{ }^{13} \mathrm{C}, 5-{ }^{2} \mathrm{H} 1\right]$.10
Scheme 5. Feeding experiments to show the preservation of the stereochemical information.11
Scheme 6. Direct $S_{N} 2$ prenylation of tryptophan 11
Scheme 7. Tanner's PIX experiment in order to show the existence of an allyl cation 12
Scheme 8. Proposed mechanism of prenylation of indole C-4 via a [3,3]-sigmatropic rearrangement 12
Scheme 9. Biosynthetic hypothesis of Arigoni \& Wenkert. A. 38, 45\%, 37, 37\% yield 12
Scheme 10. Proposed mechanism with a sigmatropic rearrangement. In the K174 mutant a lysine was mutated to alanine and gave only a reverse-prenylated pre Cope product and not 4-DMAT. 14
Scheme 11. Poulter's experiment with 4 substituted tryptophan. 14
Scheme 12. Charge accelerated aza-Claisen rearrangement. a. TFA (5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$., 16 h , 84\%. 15
Scheme 13. Prenylation of C-4 by Rainier et al. using HgCl_{2}. a. dimethylvinyl diazoacetate (2 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ ($5 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 88 \%$, b. HgCl_{2} (4 equiv.), $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN}, 85 \%$. 16
Scheme 14. Thermal Cope rearrangement of vinyl group from C-3 to C-4. a. PhMe, reflux, 5 h, 89\%, b. PhMe, reflux, 5d, 57 12\% and 58 72\% yield. 16
Scheme 15. Viswanathan's biomimetic 4-DMAT synthesis. a. 1,3 dimethylpiperazine (0.6equiv.), NCS (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then $\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}$ (24 mol\%), prenyl alcohol (2equiv.), $12 \mathrm{~h}, \mathrm{~b} . \mathrm{DMAc}, 155^{\circ} \mathrm{C}, 55 \mathrm{~h}, \mathrm{c}$. phosphate buffer (pH 8.8), $150 \mathrm{~W}, 150^{\circ} \mathrm{C}, 40 \mathrm{~min}$.
Scheme 16. [1,3]-shift when nitrogen is not protected. a. 1,3 dimethylpiperazine (0.6 equiv.), NCS (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{O}^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then $\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}$ ($24 \mathrm{~mol} \%$), prenyl alcohol (2 equiv.), 12 h, b. DMAc, $155^{\circ} \mathrm{C}, 55 \mathrm{~h}, \mathrm{c}$. phosphate buffer (pH 8.8), $150 \mathrm{~W}, 150^{\circ} \mathrm{C}, 40 \mathrm{~min} ~ 17$
Scheme 17. Mechanism of Cope and Claisen rearrangement. 17
Scheme 18. Thermal conversion of meso-3, 4-dimethylhexa-1,5-dien (66). 18
Scheme 19. Thermal conversion of racemic 3,4-dimethylhexa-1,5-dien (71) 19
Scheme 20. Formation of 1,4-cycloheptadiene (90) at $-50^{\circ} \mathrm{C}$. 21
Scheme 21. Transition state of the divinylcyclopropane cyclisation. ${ }^{[55]}$ 22
Scheme 22. cis-trans isomerisation of hindered divinylcyclopropanes. 22
Scheme 23. Biradical mechanism of the cis-trans-isomerisation of 100 and 89 23
Scheme 24. Total synthesis of Tremulenoide A. a. $\mathrm{Rh}_{2}\left(\mathrm{OC}_{8} \mathrm{H}_{17}\right)_{4}$, hexane, reflux. b. $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, c. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$. 23
Scheme 25. Gritsch DVCPR precursor synthesis. a. $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 90 \%$, b. TsNHNH 2 , $\mathrm{MeOH}, 60^{\circ} \mathrm{C}, 80 \%, \mathrm{c} . \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, 73 \%, \mathrm{c} . \mathrm{Rh}_{2}(\mathrm{OAc})_{4}$, isoprene, reflux, 69% 27
Scheme 26. Divinylcyclopropane rearrangement on the test system. a. MeLi, THF, $-78{ }^{\circ} \mathrm{C}$, then PhH reflux. 27
Scheme 27. Formation of the two DVCPR products. a. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ isoprene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, b. MeLi, THF, then reflux. 28
Scheme 28. Retrosynthesis for the bioinspired system. 29
Scheme 29. Selective synthesis of cis and trans diastereomer. a. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(3 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $60 \%, 1: 1116$ and 117 (33% if R=H), b. TBAF (2 equiv.), THF, 87%, c. IBX (1.05 equiv.), DMSO, 95% (91% if $\mathrm{R}=\mathrm{H}$), d. $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (3 equiv.), NaHMDS (3 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$ to 0 ${ }^{\circ} \mathrm{C}, 84 \%\left(85 \%\right.$ if $\mathrm{R}=\mathrm{H}$). E. PhH, $60^{\circ} \mathrm{C}, 55 \%(58 \%$ if $\mathrm{R}=\mathrm{H}$). 30
Scheme 30. Formation of indole 126. a. $\mathrm{Boc}_{2} \mathrm{O}$ (1.2 equiv.), THF, then $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (2 equiv.), NaHMDS (2 equiv.), THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, then NaBH_{4} (1 equiv.), $\mathrm{MeOH}, 0^{\circ} \mathrm{C}, 42 \%$ 30
Scheme 31. Retrosynthesis of cis-selective route. 31
Scheme 32. Selective synthesis of trans-olefin 108. a. β-methallyl-alcohol (1.05 equiv.), DMAP($20 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then ABSA (1.05 equiv.), DBU (2 equiv.), THF, 92% over two steps, b.$(\mathrm{CuOTf})_{2} \bullet \mathrm{Tol}(1.5 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2} 84 \%, \mathrm{c} . \mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%), \mathrm{H}_{2}$ (5 bar), EtOH then HOAc,reflux. 89\%, d. IBX (1.1 equiv.), DMSO, 94%, e. NaH (1.05 equiv.), BnBr (5 equiv.), DMF,80%, f. $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (5 equiv.), NaHMDS (5 equiv.), THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 80 \% \ldots ~ 31$
Scheme 33. Mercuration of indoles. a. $\mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{AcOH}, \mathrm{rt}$, then NaCl 40
Scheme 34. Thalliation of 3-substituted indole 140. a. $\mathrm{Tl}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{3}$, TFA, rt. 40
Scheme 35. Mechanism of the Witkop cyclisation. 41
Scheme 36. Total synthesis of Dramacidin E (133). a. hv, $254 \mathrm{~nm}, \mathrm{MeCN}$. 41
Scheme 37. Friedel-Crafts reaction providing cyclohepta[cd]indole. a. $\mathrm{SOCl}_{2}, \mathrm{CHCl}_{3}$, steambath, b. $\mathrm{AlCl}_{3}, \mathrm{DCE}, \mathrm{rt}, 24 \%$ over two steps 41
Scheme 38. [3 + 2] aproach to cyclus 157. a. DiBAl-H, PhMe, then, MeNHOH, NaOMe, PhH, reflux, 56\% 42
Scheme 39. Cyclohepta[cd]indole synthesis by Moody's thermolysis route. a. $\mathrm{Me}_{2} \mathrm{~S}^{+} \mathrm{OCH}_{2}{ }^{-}$, DMSO, $55^{\circ} \mathrm{C}$, b. $\mathrm{NaN}_{3}, \mathrm{LiCl}, \mathrm{DMF}, 65^{\circ} \mathrm{C}, \mathrm{c} . \mathrm{SOCl}_{2}$, pyridine, rt., d. mesitylene, reflux. 42
Scheme 40. First reported palladium catalysed synthesis of cychlohepta[cd]indoles. a. 1. $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv.), (PhO$)_{3} \mathrm{P}(12 \mathrm{~mol} \%), \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{MeCN}, 85^{\circ} \mathrm{C}$. 42
Scheme 41. Heck reaction in the synthesis of cyclohepta[cd]indoles. a. $\mathrm{ClOCC}_{2} \mathrm{H}_{4} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{CO}_{2} \mathrm{Me}$,$\mathrm{AlCl}_{3}, 54 \%$, b. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{TFA}, 54 \%$, c. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{DMF}^{2} \mathrm{Et}_{3} \mathrm{~N}, 100^{\circ} \mathrm{C}, 7 \mathrm{~h}, 67 \%$.43
Scheme 42. Annelation of 170 via radical reaction. a. $\mathrm{ClCH}_{2} \mathrm{COCl}, \mathrm{AlCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{EtOCS}_{2} \mathrm{~K}$, acetone, b. allyl-compound, lauroyl peroxide (10 mol\%), DCE: PhCl, reflux, 77\%, c. lauroyl peroxide (1.25 equiv.), PhCl , reflux, 54\%. 43
Scheme 43. Dithiocarbonate group transfer. b. see Scheme 42 43
Scheme 44. Garg's indolyne cyclisation. a. NaNH_{2} (10.5 equiv.), t - BuOH , (3.5 equiv.), THF, rt., 46\%. 44
Scheme 45. Nemoto`s platinum catalysed synthesis of cyclohepta[cd]indoles. a. [Pt(dba) ${ }_{3}$] (5 mol\%), DPEphos (6 mol\%), DMSO, $100^{\circ} \mathrm{C}$, 16 h, $42-91 \%$, b. TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 12 \mathrm{~h}, 61$ - 99\%. 44
Scheme 46. Positions to be substituted for the DVCPR. 47
Scheme 47. Sandmeyer isatine synthesis. 48
Scheme 48. First attempts on short route toward cyclohepta[cd]oxindoles. a. Isoprene (10 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{~mol} \%)$, sealed tube, reflux. b. Isoprene (10 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (2 mol\%), reflux. 48
Scheme 49. a. butadiene (10 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (2 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then DMSO reflux., 54%, b. Isoprene (10 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (2 mol\%), reflux, 53\%, c. Denishefsky diene (1.2 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (2 mol\%), neat, $70^{\circ} \mathrm{C}, 50 \%$. 50
Scheme 50. Selective preparation of 226. prenyl -alcohol (1 equiv.), DMAP (20 mol\%), DIC (1.05equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$, b. ABSA (1.05 equiv.), DBU (2 equiv.), THF, 96%, c. (CuOTf) ${ }_{2} \bullet$ Tol (1.5mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2} 80 \%$, d. PBu_{3} (1.05 equiv.), THF then PhMe, reflux. 80%51
Scheme 51. a. prenylene (10 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ ($2 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then DMSO reflux., 45%, b. TBS-prenyl alcohol (10 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (2 mol\%), reflux, 53\%, c. TBAF (4 equiv.), THF, $0^{\circ} \mathrm{C}, 71 \%$, d. IBX (1.1 equiv.), DMSO, 44\%, e. $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (5 equiv.), NaHMDS (5 equiv.), THF, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt} ., 83 \%$ 51
Scheme 52. Possible transition states for cyclopropanation 52
Scheme 53. NTs diazoisatine (1 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1 \mathrm{~mol} \%)$, diene 218 (1.5 equiv.), $\mathrm{PhH}, 65^{\circ} \mathrm{C}$,$39 \%$, b. NTs diazoisatine (1 equiv.), 219 (4.5 equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ ($1 \mathrm{~mol} \%$), $\mathrm{PhH}, 80^{\circ} \mathrm{C}$, thenDMSO, $100^{\circ} \mathrm{C}, 33 \%$ over two steps52
Scheme 54. Use of bis-allylic diols for the synthesis of cyclohepta[cd]oxindole and cyclohepta[b]indoles 52
Scheme 55. Retrosyntheic analysis for the use of diols in a selective synthesis 53
Scheme 56. Synthesis of diol 243. a. Imidazole (2.5 equiv.), TBSCl (2.5 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, b. DiBAl-H (3 equiv.), $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 90 \%$ over two steps.53
Scheme 57. Synthesis of diol 248. a. DABCO (5 mol\%), 7d, rt, 92\%, b. PPh_{3} (1.2 equiv.), mesitoicacid (1.2 equiv.), DEAD (1.2 equiv.), THF, $-42^{\circ} \mathrm{C}, 75 \%$, c. DiBAI-H (2.2 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$${ }^{\circ} \mathrm{C}$, d. Imidazole (2.4 equiv.) TBSCl (1.2 equiv.), DMF, $0^{\circ} \mathrm{C}$, 85% over two steps, e. MeLi (3equiv.), $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 93 \%$53
Scheme 58. Selective synthesis of 259, 260, 261 and 262. a. 130 (1 equiv.), 4-DMAP (20 mol\%),$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, b. ABSA (2 equiv.), DBU (3.5 equiv.), MeCN, 86\% 250 over two steps, $81 \% 249$over two steps, c (CuOTf) ${ }_{2} \mathrm{PhMe}(3 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 74 \%$ 252, 84% 251, d. $\mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%)$,$\mathrm{H}_{2}$ (25 bar), EtOH, then i - PrMgCl (2.1 equiv.), THF, $0^{\circ} \mathrm{C}$, $87 \% 254$ over two steps, $93 \% 253$over two steps54

Scheme 59. CBr_{4} (1.1-2 equiv.), PPh_{3} (1.1-2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}$, f. $\mathrm{R}=\mathrm{Me}$, TBAF (1.2 equiv.), THF, $0^{\circ} \mathrm{C}, 72 \% 256$ over two steps; f. $\mathrm{R}=\mathrm{H} H \mathrm{HF}^{*}$ pyridine (120 equiv.), pyridine, $\mathrm{THF}, 0^{\circ} \mathrm{C}$, $77 \% 255$ over two steps, g. IBX (1.2 equiv.), DMSO, h. $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Me}$ (1.1-1.2 equiv.), 45 $-60^{\circ} \mathrm{C}, 84 \%$ 259/260 over two steps, i. $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (2.5-4 equiv.), NaHMDS ($2.5-4$ equiv.), $-78^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}, 69 \% \mathbf{2 6 2}, 68 \% 261$ over two steps55

Scheme 60. a. PDC (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MS} 3 \AA$, b. $\mathrm{HSC}_{3} \mathrm{H}_{6} \mathrm{SH}$ (1.2 equiv.), $\operatorname{Pr}(\mathrm{OTf})_{3}(5 \mathrm{~mol} \%$), MeCN, 62% over two steps, c. $\mathrm{HF} \bullet$ pyridine (120 equiv.), pyridine, $\mathrm{THF}, 0^{\circ} \mathrm{C}, \mathrm{d} . \mathrm{SO}_{3} \bullet \mathrm{pyr}$.
(4 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (5 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{DMSO}(1: 1), 0^{\circ} \mathrm{C}, 86 \%$ over two steps, e. $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}(2.5$equiv.), NaHMDS (2.5 equiv.), THF, -78 to $0^{\circ} \mathrm{C}$, then $\mathrm{PhH} 50^{\circ} \mathrm{C}, 71 \%$ over two steps, f. $\alpha-$TMS-ethylacetate (2.6 equiv.), LiHMDS (2.5 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{C}_{6} \mathrm{D}_{6} 40{ }^{\circ} \mathrm{C}$, 75%over two steps.. 56
Scheme 61. Cyclopropanation of Danishefsky diene using Fisher carbenes. Following DVCPR works for both diastereomers. a. $25^{\circ} \mathrm{C}$, benzene, 2d, $26840 \%, 27023 \%$, b. $90^{\circ} \mathrm{C}, 3 \mathrm{~h}$, quant 57
Scheme 62. Cyclopropanation/divinylcyclopropane rearrangement using Danishefsky diene.58
Scheme 63. Theoretical inversion of diastereoselectivity by increasing steric demand of the catalyst. a. $\mathrm{Rh}_{2} \mathrm{~L}$ (1 mol\%), neat or benzene, heat 58
Scheme 64. Wang's Lewis acid catalysed cyclopropanation. a. Pd(OAc) 2 ($5 \mathrm{~mol} \%$), PhMe 80 ${ }^{\circ} \mathrm{C}, \mathrm{b} . \mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol} \%$), Ligand (6 mol\%), DCE, rt., 10d, c. $80^{\circ} \mathrm{C}$ 59
Scheme 65. Wang's route used on oxindole 271. a. $\mathrm{Pd}(\mathrm{OAc})_{2}\left(5 \mathrm{~mol} \%\right.$), $\mathrm{PhMe}, 80^{\circ} \mathrm{C}$. 59
Scheme 66. Davies thermal cyclopropanation. a. $\mathrm{PhCF}_{3}, 102{ }^{\circ} \mathrm{C}, 86: 14 \mathrm{dr}, 85 \%, \mathrm{~b} . \mathrm{PhCF}_{3}, 102$ ${ }^{\circ} \mathrm{C}, ~ 92: 8 \mathrm{dr}, 72 \%$ 59
Scheme 67. Cyclopropanation using Davies conditions. a. $\mathrm{PhCF}_{3}, 102{ }^{\circ} \mathrm{C}$ 60
Scheme 68. The first two total syntheses of Taxol ${ }^{\circledR}$ (295) by Holton and Nicolaou 63
Scheme 69. Krüger's synthesis of sarpagine alkaloids via common intermediate 65
Scheme 70. Jürjens' hybrid 305 from ansamitocin (306) with the aromatic element of geladanamycin (304) 65
Scheme 71. a. $\mathrm{NaBH}_{4}, \mathrm{BF}_{3} \bullet \mathrm{OEt}_{2}, \mathrm{THF},-30^{\circ} \mathrm{C}$, then $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{KOH}, \mathrm{THF}, 40-50{ }^{\circ} \mathrm{C}$, then MeOH , reflux, b. $\mathrm{CH}_{3} \mathrm{COCl}$, pyridine, rt., c. POCl_{3}, pyridine: HCl , pyridine, $40-50{ }^{\circ} \mathrm{C}$, d. NaOH , $\mathrm{MeOH}, \mathrm{rt}$. 67
Scheme 72. a. DBU, DMF, $10^{\circ} \mathrm{C}, \mathrm{b}$. $\mathrm{MsOH}, i-\mathrm{PrOH}, \mathrm{hv}, \mathrm{c} . \mathrm{POCl}_{3}$, pyridine, then $\mathrm{NaBH}_{4}, \mathrm{DMSO}$, d. $\mathrm{KOH}, \mathrm{MeI}, \mathrm{DMSO}$, e.NBS, dioxane, $40^{\circ} \mathrm{C}$, f. MeSSMe, $\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, then -35 ${ }^{\circ} \mathrm{C}$, g. $\mathrm{Br}_{2}, \mathrm{HOAc}, \mathrm{rt} . \mathrm{h} . \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$; EtOH, i. $\mathrm{NaBH}_{4}, \mathrm{TFA}, 10^{\circ} \mathrm{C}, \mathrm{j} . \mathrm{Ac} 2 \mathrm{O}$, pyridine, $50^{\circ} \mathrm{C}, \mathrm{k}$. fuming $\mathrm{HNO}_{3}, \mathrm{HOAc}$, rt., then dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$, reflux, $\mathrm{I} . \mathrm{SnCl}_{2}, \mathrm{EtOH}, 70^{\circ} \mathrm{C}$, then $\mathrm{NOBF}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}$, then $120^{\circ} \mathrm{C}$, o-dichlorobenzene, then dil. $\mathrm{KOH}, \mathrm{EtOH}$, reflux. m. $\mathrm{Br}_{2}, \mathrm{HOAc}$, rt., then dil. $\mathrm{KOH}, \mathrm{EtOH}$, reflux 67
Scheme 73. Advantage of advanced intermediate 315 69
Scheme 74. First retrosyntheic approach towards 315 71
Scheme 75. Formation of 220/338 and isomerisation of the olefin to 339/340. a. butadiene(10 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then DMSO reflux., 54%, b. see Table 671
Scheme 76. Expected isomerisation of the alkene using indole 341. a. NaBH_{4} (2 equiv.), MeOH:THF $0^{\circ} \mathrm{C}$, then TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 84 \%$, b. see Table 6 73
Scheme 77. $2^{\text {nd }}$ retrosynthetic approach towards 315 73
Scheme 78. Preparation of DVCPR product 338, formation of indole 341 and subsequent allylic oxidation. a. butadiene (10 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Rh}_{2}(\mathrm{OAc})_{4}\left(1 \mathrm{~mol} \%\right.$), then $\mathrm{DMSO} 110^{\circ} \mathrm{C}, 54 \%$. b. see Table 7, c. NaBH_{4} (2 equiv.), THF:MeOH $0^{\circ} \mathrm{C}$, then TFAA $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 84 \%$, 74
Scheme 79. Li's allylic oxidation with DDQ. a. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{TFA}, \mathrm{rt}, 95 \%$, b. $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, reflux, then $\mathrm{Cr}_{2} \mathrm{Cu}_{2} \mathrm{O}_{5}$, quinolone, $200^{\circ} \mathrm{C}, 85 \% \mathrm{c}$. DDQ, THF, $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 91 \%$ 75
Scheme 80. Tandem Wolff-Cope rearrangement with an option for a Norrish type I reaction.a. $\mathrm{AgOBz}(10 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}\left(1\right.$ equiv.), THF, $45^{\circ} \mathrm{C}$, ultrasonic; alternative hv, 254 nm , THF,rt., b. hv 310 nm, PhH, rt, 72\%76
Scheme 81. Variations of the retrosynthesis for the Wolff-Cope tandem reaction 76
Scheme 82. a. MVK 358 (3 equiv.), $95^{\circ} \mathrm{C}$, 10 min . 95\% total yield, b. HMDS (1.3 equiv.), THF, - $78{ }^{\circ} \mathrm{C}$, nBuLi (1.3 equiv.), then THF $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}$ (1.4 equiv.), short workup, then $\mathrm{Et}_{3} \mathrm{~N}$ (10 equiv.), Ms_{3} (3 equiv.), THF $16 \mathrm{~h}, 70 \%$ at 2 mmol scale, c . see Table 8. 76
Scheme 83. Vinyl cyclopropane rearrangement to spiro-oxindole 360 77
Scheme 84. $3^{\text {rd }}$ retrosynthetic analysis. 78
Scheme 85 . First synthesis of $\mathbf{3 6 7}$ with unexpected doublebond shift. a. acroleine (363; 3equiv.), $95{ }^{\circ} \mathrm{C}, 83 \%, 3: 2$ ration $\mathbf{3 6 4 : 3 6 5 , ~ b , ~} \mathrm{Ph}_{3} \mathrm{PCCO}_{2} \mathrm{Me}(1.2$ equiv.), $\mathrm{PhH}, \mathrm{rflx} .70 \%$.79
Scheme 86. Preparation of $\mathbf{2 3 0}$ via tandem cyclopropanation/DVCPR. 79
Scheme 87. TBAF catalysed C-3 oxidation 80
Scheme 88. TBAF initiated doublebond shift. 80
Scheme 89. Formation of indole $\mathbf{3 7 3}$ and its exposition to nosylation conditions. a. NaBH_{4} (2.2 equiv.), $-30^{\circ} \mathrm{C}$, THF:MeOH (6:1), b. $\mathrm{BF}_{3}{ }^{*} \mathrm{OEt}_{2}$ (2 equiv.), MeCN, 94% over two steps, c. TBAF, THF, 65%, d. see Table 9. 81
Scheme 90. $4^{\text {th }}$ retrosyntheic approach towards 315. 82
Scheme 91. Possible enolisation products of cyclohepta[cd]ox/indole 380 and 384 83
Scheme 92. Preparation of Saegusa susbtrate 378 and 387. a. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (1 mol\%), enolether379 (10 equiv.), $65^{\circ} \mathrm{C}, 32 \%$, b. DiBAI-H (1.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to rt., c. TFAA (5 eauiv.),
$\mathrm{Et}_{3} \mathrm{~N}$ (15 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 42 \%$ over two steps, d. see Table 11, e. LDA, HMPA, TBSCI, THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$

Scheme 93. Synthesis of TIPS-enolether 218 and synthesis of TIPS Saegusa substrates 222 and 388. a. LDA, HMPA, TIPSOTf, THF, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 54 \%$, b. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (1 mol\%), enolether 218 (1.5 equiv.), $70^{\circ} \mathrm{C}, 35 \%$. c. NaBH_{4} (2 equiv.), MeOH:THF, $-78^{\circ} \mathrm{C}$ to rt., d. TFAA (5 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (15 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}, 44 \%$ over three steps, e. see Table 12. 85

Scheme 94. Formation of aminal 390 and Saegusa oxidation to 391. a. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1 \mathrm{~mol} \%)$, diene 218 (1.5 equiv.), benzene, $65^{\circ} \mathrm{C}, 39 \%$, b. NaBH_{4} (2 equiv.), MeOH:THF $0^{\circ} \mathrm{C}, \mathrm{c} . \mathrm{Ac}_{2} \mathrm{O}$ (2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}, 80 \%$ over two steps, d. see entry 4 Table $13 . . .86$ Scheme 95. Synthesis of Heck precursor 395. a. CAN (4 equiv.), DMF, $0^{\circ} \mathrm{C}, 75 \%$, b. $\mathrm{CeCl}_{3} * 7 \mathrm{H}_{2} \mathrm{O}$ (2 equiv.), NaBH_{4} (1.5 equiv.), $\mathrm{MeOH}: T H F, 91 \%$, c. amide 397 (1.05 equiv.), $\mathrm{PPh}_{3}(1.1$ equiv.), DEAD (1.1 equiv.), $\mathrm{PhMe}, 0^{\circ} \mathrm{C}, 95 \%$, d. $\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{SH}\left(1.2\right.$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (7 equiv.), 0 ${ }^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$, e. TFA (5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}$ to rt.87

Scheme 96. Sequence to Heck-substrates 395, 398 and 399. a. CAN (4 equiv.), DMF, $0^{\circ} \mathrm{C}, 75 \%$, b. $\mathrm{CeCl}_{3} * 7 \mathrm{H}_{2} \mathrm{O}$ (2 equiv.), NaBH_{4} (1.5 equiv.), $\mathrm{MeOH}: T H F, 0^{\circ} \mathrm{C}, 91 \%$, c. amide 397 (1.05 equiv.), PPh_{3} (1.1 equiv.), DEAD (1.1 equiv.), $\mathrm{PhMe}, 0^{\circ} \mathrm{C}, 95 \%$, d. TFA (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{SH}\left(1.2\right.$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (7 equiv.) 95\%, e. $\mathrm{CH}_{2} \mathrm{O}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{3} \mathrm{CN}$ (3 equiv.), $\mathrm{HOAc}\left(5\right.$ equiv.), $0^{\circ} \mathrm{C}, 82 \%$ over three steps from 393 , f. $\mathrm{ClCO}_{2} \mathrm{Me}$ (1.1 equiv.), pyridine, $0^{\circ} \mathrm{C} .80 \%$. 88

Scheme 97. Heck reaction under Jeffrey conditions. Palladium is not able to undergo the β hydride elimination. a. TBAC (2.1 equiv.), CsOAc (5.8 equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), DMF, $65^{\circ} \mathrm{C}, 25 \%$.

89
Scheme 98. Hydroarylation of endo,exo bishomobarrelene (403). a. $\mathrm{Pd}(\mathrm{OAc})_{2}$ (2.5 mol\%), AsPh_{3} (11 mol\%), $\mathrm{Arl}\left(1.5\right.$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (3.5 equiv.), $\mathrm{HCO}_{2} \mathrm{H}$ (3 equiv.), $\mathrm{DMF}(0.3 \mathrm{M}), 65{ }^{\circ} \mathrm{C}$, 15 h, 81\%

90
Scheme 99. Pooled synthesis of vinyl iodides 409, 410 and 411. a. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1 \mathrm{~mol} \%$), diene 218 (1.5 equiv.), benzene, $70^{\circ} \mathrm{C}$, then NaBH_{4} (2 equiv.), MeOH:THF $0^{\circ} \mathrm{C}$, then $\mathrm{Ac}_{2} \mathrm{O}(2$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}, 34 \%$ over three steps, b. CAN (4 equiv.), DMF, $0^{\circ} \mathrm{C}$, then $\mathrm{CeCl}_{3} * 7 \mathrm{H}_{2} \mathrm{O}$ (2 equiv.), NaBH_{4} (1.5 equiv.), $\mathrm{MeOH}: \mathrm{THF}, 0^{\circ} \mathrm{C}$, then amide 377 (1.05 equiv.), PPh_{3} (1.1 equiv.), DEAD (1.1 equiv.), PhMe, $0^{\circ} \mathrm{C}, 70 \%$ over three steps, c . TFA (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{SH}$ (1.2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (7 equiv.) 75%, d. $\mathrm{ClCO}_{2} \mathrm{Me}(1.1$ equiv.), pyridine, $0^{\circ} \mathrm{C} .82 \%$, e. TFA (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{SH}$ (1.2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}(7$
equiv.), then $\mathrm{CH}_{2} \mathrm{O}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{3} \mathrm{CN}$ (3 equiv.), HOAc (5 equiv.), $0^{\circ} \mathrm{C}, 78 \%$ over two steps 91
Scheme 100. If $R=M e$ a. LAH (10 equiv.), THF, rt to reflux. If $R=H$ a. DiBAl-H (3 equiv.) $\mathrm{CH}_{2} \mathrm{Cl} 2$, $-78^{\circ} \mathrm{C}$ to rt. b. Mg (10 equiv.), MeOH , ultrasonic. 92
Scheme 101. a. $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.), MeOH , ultrasonic. 75%, b. see Table 16, c. CS_{2} (10 equiv.), NaH (5 equiv.), $\mathrm{Mel}\left(20\right.$ equiv.), THF 70%, d. xylene, $180^{\circ} \mathrm{C}$, no conversion. 92
Scheme 102. 322 from 402. 93
Scheme 103. Defunktionalisation of 402. a. InBr_{3} ($5 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}$ (4 equiv.), $\mathrm{CHCl}_{3}, 55^{\circ} \mathrm{C}, 50 \%$, b. LAH (10 equiv.), THF, rt to reflux, decomposition. 94
Scheme 104. Proposed formation of 421 via gold catalysis. 94
Scheme 105. Revised retrosynthesis towards 315 95
Scheme 106. a. DNsNHpropagyl 422 (1.1 equiv.), PPh_{3} (1.2 equiv.), DEAD (1.2 equiv.), PhMe, 0 ${ }^{\circ} \mathrm{C}, 95 \%$, b. $\mathrm{AuClPPh}_{3}$ (2 mol\%), AgSbF_{6} (2 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5 \mathrm{~min}$, rt. 95%. 421 was not observed. 95
Scheme 107. Formation of 5-exo-dig and 6-endo-dig product via gold catalysis. 96
Scheme 108. Formation of 426 and 427 via gold catalysis. a. $\mathrm{AuClPPh}_{3}$ ($2 \mathrm{~mol} \%$) AgSbF_{6} (2 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2},>15 \mathrm{~min}$, rt., b. TFA (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 92 \%$ 96
Scheme 109. Synthesis of 418. a. $\mathrm{AuPPh}_{3} \mathrm{SbF}_{6}$ (4 mol\%), AcOH (26 equiv.), $\mathrm{Ac}_{2} \mathrm{O}$ (16 equiv.)$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ultrasonic, $55^{\circ} \mathrm{C}, 90-97 \%$, b. thiophenol (1.15 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.15 equiv.), MeCN,$0^{\circ} \mathrm{C}$, then HOAc (0.6 equiv.), $\mathrm{CH}_{2} \mathrm{O}$ (2.5 equiv.), $\mathrm{NaBH}_{3} \mathrm{CN}$ (1.1 equiv.), HOAc (3 equiv.),$\mathrm{H}_{2} \mathrm{O}, 63 \%, \mathrm{c} . \mathrm{InBr}_{3}$ (5 mol\%), $\mathrm{Et}_{3} \mathrm{SiH}$ (4 equiv.), $\mathrm{CHCl}_{3}, 55^{\circ} \mathrm{C}$, SM only, d. InBr_{3} (5 mol\%),$\mathrm{Et}_{3} \mathrm{SiH}$ (4 equiv.), $\mathrm{CHCl}_{3}, 55^{\circ} \mathrm{C}, 49 \%$, e. thiophenol (1.15 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.15 equiv.),MeCN, $0^{\circ} \mathrm{C}$, then HOAc (0.6 equiv.), $\mathrm{CH}_{2} \mathrm{O}$ (2.5 equiv.), $\mathrm{NaBH}_{3} \mathrm{CN}$ (1.1 equiv.), HOAc (3equiv.), $\mathrm{H}_{2} \mathrm{O}$, not optimised.99
Scheme 110. Preparation of 430. a. See Table 18 99
Scheme 111. De-tosylation and reduction to 322. a. SeeTable 19 100
Scheme 112. Preparation of aminals 432 and 433. a. NaBH_{4} (2.2 equiv.), MeOH:THF $-30^{\circ} \mathrm{C}{ }^{\circ} \mathrm{C}$,then $\mathrm{Ac}_{2} \mathrm{O}$ (2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C} 70 \%$ b. NaBH_{4} (2.2 equiv.), $\mathrm{MeOH}: \mathrm{THF}$ -$30{ }^{\circ} \mathrm{C}{ }^{\circ} \mathrm{C}$, then $\mathrm{Ac}_{2} \mathrm{O}$ (2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} 30 \%$101
Scheme 113. Failed approach towards the synthesis of 315 and 322. a. TBAC (2.1 equiv.), $\mathrm{CsOAc}\left(5.8\right.$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{DMF}, 65^{\circ} \mathrm{C}, \mathrm{b} . \mathrm{InBr}_{3}$ ($5 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{SiH}$ (4 equiv.), $\mathrm{CHCl}_{3}, 55^{\circ} \mathrm{C}, \mathrm{c} . \mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.), MeOH , ultrasonic.
Scheme 114. Missing transformation for the completed total synthesis of 322 104
Scheme 115. Relative rate of cyclisation to pyrrolidines. 108
Scheme 116. Effect of reactive rotamers on cyclisation 108
Scheme 117. Substituent-effect on intramolecular Diels-Alder. 109
Scheme 118. IMDA with different substituents. 109
Scheme 119. Cram's zwitterionic thermoylsis. 110
Scheme 120. Crawford's racemisation experiments. 111
Scheme 121. Perlberger's proposed mechanism for the formation of 471 from cis- and trans- divinylcyclopropane. 111
Scheme 122. In vivo synthesis of 473 and 475 by Dictyopteris. 111
Scheme 123. Divinylcyclopropane rearrangement using 124 117
Scheme 124. Divinylcyclopropanrearrangement in different solvents using both diastereomers. 118
Scheme 125. Proposed mechanism for the reaction of $\mathbf{1 2 4}$ to $\mathbf{1 1 5}$ with the radical intermediate 124a. 122
Scheme 126. Synthesis of an inseparable reaction mixture of 476 and 477 126
Scheme 127. Preparation of 476, a. DIC (1.05 equiv.), allylic alcohol (1 equiv.), 4-DMAP (10 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \% \mathrm{~b}$. ABSA (1.5 equiv.), DBU (3 equiv.), MeCN, 88\%, c. (CuOTf) 2 PhMe (2 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \%$, d. PBu_{3} (1.1 equiv.), $\mathrm{THF}: \mathrm{H}_{2} \mathrm{O}$, then $\mathrm{THF}, \mathrm{iPMgCl}$ (2.05 equiv.), 77%, e. IBX (1.2 equiv.), DMSO, 94%, f. $\mathrm{Ph}_{3} \mathrm{PMeBr}\left(4\right.$ equiv.), NaHMDS (4 equiv.), $-78{ }^{\circ} \mathrm{C}$ to rt, THF, 95\%, 126
Scheme 128. Preparation of 477, a. acrolein (363; 5 equiv.), $95^{\circ} \mathrm{C}, 53 \%$, b. Ph 3 PMeBr (4 equiv.), NaHMDS (4 equiv.), $-78^{\circ} \mathrm{C}$ to rt, THF, 89%. 127
Scheme 129. Isomerisation of $\mathbf{4 7 6}$ and $\mathbf{4 7 7}$ without divinylcyclopropane Rearrangement at 90 ${ }^{\circ} \mathrm{C}$. 127
Scheme 130. Liebhold's experiments with 4-DMATS and different substrates 133
Scheme 131. Labeling experiment. 134
Scheme 132. Solvatisation experiment. 134

10 List of Figures
Figure 1. Skeletal types of monoterpenoid indole alkaloids 5
Figure 2. Structure of Euchinulin (13) and (-)-Notoamide B (14) 6
Figure 3. Structure motifs of neurotransmitters mimicked by ergot alkaloids 7
Figure 4. Examples for ergot alkaloids with medicinal application. 7
Figure 5. Michaelis complex of DMSPP (an unreactive DMAP P analogon, left side, whiteorange) and L-tryptophan in the active site of the 4-DMATS. The L-tryptophan is stabilisedby two residues seen on the right side, Glu and Lys. and schematic dimensional sketch ofthe Michaelis complex. The distances between the two reaction partners are given. Theorientation of the components already indicates a favoured reverse prenylation of the C-3.13
Figure 6. Bend bonds with an increased angle 19
Figure 7. Walsh orbitals 20
Figure 8. Preparation of 1,1-disubstituted cyclopropanes. ${ }^{[49]}$ 20
Figure 9. Comparison between our bio-inspired system and the proposed natural intermediate 28
Figure 10. Single crystal X-ray structure of 123 32
Figure 11. Reactivity of 108 in contrast to 112 at $60^{\circ} \mathrm{C}$ 32
Figure 12. Known cyclohepta[cd]indoles. 39
Figure 13. Isatines that should be used in the synthesis of cyclohepta[cd]indoles 47
Figure 14. Dienes used in the Cyclopropanation-DVCP tandem reaction 49
Figure 15. Four aromatic integrals of spiro-oxindole 221 and characteristic signal pattern for DVCPR-products 51
Figure 16. The two general concepts in total synthesis. ${ }^{[105]}$ 64
Figure 17. 5(10 $\rightarrow 9$)abeo-ergoline derivatives 66
Figure 18. Reaction progress of Saegusa reaction over time in $C D_{3} C N$. 85
Figure 19. Compounds used in Heck screening 88
Figure 20. Avogadro energy minimisation via forcefield calculation 97
Figure 21. Thorpe-Ingold effect. 107
Figure 22. gem-dialkylsubstituent effect on bond angle 107
Figure 23. Arrhenius plot 114
Figure 24. Excerpt from the bachelor thesis of Silke Kayser. Reaction progress of 112 to $\mathbf{1 1 0}$ inCDCl_{3} at different temperatures. Reaction for 310 K and 320 K has been aborted whenthe curve progression became obvious.118
Figure 25 . Conversion of 114 at 310 K in benzene- d_{6} and $\mathrm{DMSO}-\mathrm{d}_{6}$ 119
Figure 26. Conversion of 114 at 320 K in benzene- d_{6} and $\mathrm{DMSO}-\mathrm{d}_{6}$ 119
Figure 27. Conversion of 114 at 330 K in benzene- $\mathrm{d}_{6}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, \mathrm{CDCl}_{3}$ and CDBr_{3} 119
Figure 28. Calculation of the rate constants at different temperatures 120
Figure 29. Arrhenius plot with the corresponding parameters. 120
Figure 30. Conversion of 124 at 350 K in DMSO-d d_{6} 122
Figure 31.Conversion of 124 at 360 K in toluene- $\mathrm{d}_{8}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}$, and CDBr_{3} 122
Figure 32. Conversion of 124 at 370 K in toluene- $\mathrm{d}_{8}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$, and CDBr_{3} 123
Figure 33. Conversion of 124 at 375 K in toluene- d_{8} and 380 K in $\mathrm{DMSO}^{2} \mathrm{~d}_{6}$, and CDBr_{3} 123
Figure 34. Calculation of the rate constants at different temperatures 124
Figure 35. Arrhenius Parameter for 124 124
Figure 36. Reaction progress of the divinylcyclopropane rearrangement using 476 as starting material 128
Figure 37. Reaction progress of the divinylcyclopropane rearrangement using cis as startingmaterial128
Figure $38 . \mathrm{X}$-ray structure of 123 131
Figure 39. X-ray structure of 418 131
Figure 40. Angles of 481 and 123 131

11 List of Tables

Table 1. Yields achieved with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (2 mol\%) from different sources using different diazoisatines with isoprene (10 equiv.) at $40^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a sealed tube............................. 49
Table 2. Approaches toward the cyclopropanation of Danishefsky diene. 50
Table 3. Conditions used in order to form the oxindole under non-acidic conditions 54
Table 4. Oxidation of 253 55
Table 5. Olefination of 264. 56
Table 6. Conditions and catalysts used for the isomerisation of the olefin. 72
Table 7. Conditions used for allylic oxidation of 338 and 341 74
Table 8. Reaction conditions used on 357 in order to undergo a Wolff, DVCP rearrangement cascade. 77
Table 9. Attempts to obtain a silylenolether using 373 and 374 81
Table 10. Conditions in order to functionalise 373 and 374. 82
Table 11. Conditions used for Saegusa oxidation of 378 and 387 84
Table 12. Saegusa conditions using 222 and 388. 86
Table 13. Conditions for Saegusa type reaction. 87
Table 14. Conditions used for Heck reaction. 89
Table 15. Parameters changed in order to optimise the yield. 90
Table 16. Elimination conditions used for 414. 93
Table 17. Conditions for the synthesis of acetate 426. 98
Table 18. Hydrogenation conditions used on 418 99
Table 19. De-tosylation conditions for indole 100
Table 20. Substituents and the relative rate constant. 108
Table 21. Substituents and the relative rate constant. 109
Table 22. Conformations and energies of trimethylene. 110
Table 23. Temperature series to achieve the conversion of 124. 117
Table 24. Solvent and temperature dependent change of the rate constant. ${ }^{\text {a. the values of the }}$ benzene $-\mathrm{d}_{6}$ series at 330 K became inconsistent after 200 minutes, therefore they were excluded, ${ }^{\text {b }}$ relative rate is based on the aborted series of benzene- d_{6}. 121
Table 25. Activation energy in different solvents. 121
Table 26. Rate constants at different temperatures in different solvents. ${ }^{\text {a. relative rate has not }}$ been determined as the reaction temperature was 5 K below the other two used solvents, ${ }^{\text {b. }}$ this measurement series consists of tree values. 125
Table 27. Activation energy in different solvents. ${ }^{\text {a. The low activation energy might be caused }}$ by the presence of oxygen in the solution.125
Table 28. relative rate constants at 380 K in DMSO. 130
Table 29. Table of angles of 123 and 418. 131
Table 30. Length of the cyclopropane bonds of 123 and 418 132

12 List of Abbreviations

Å	Angstrom
д	NMR: chemical shift
Δ	heating to reflux
5-HT	5-hydroxytryptamine
4-DMATS	4-dimethylallyltryptophan synthase
ABSA	4-acetamidobenzenesulfonyl azide
Ac	acetyl
AIBN	azobisisobutyronitrile
Anth	anthracene
Ar	aryl
Bn	benzyl
Boc	tret-butoxycarbonyl
Bu	butyl
CAN	Ceric ammonium nitrate
cod	1,5-cyclooctadiene
d	day; NMR: dublett
DABCO	1,4-diazabicyclo[2.2.2]octane
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
dba	dibenzylideneacetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	dicyclohexycarbodiimide
DCE	dichloroethane
DEAD	diethyl azodicarboxylate
decomp.	decomposition
DIC	diisopropoxycarbodiimide
DiBAI-H	diisobutylaluminiumhydride
DIPA	diisoproylamine
DIPEA	diisopropylethylamine
DMAc	dimethylacetylamide
DMAP	4-dimethylaminopyridine
DMAPP	Dimethylallyl pyrophosphate
DMAT	dimethylallyltryptophan
DMF	dimethylformamide
DMP	Dess-Martin periodinane; 3,5-dimethylpyrazole
DMPU	1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone
DMSO	dimethylsulfoxide
DMSPP	dimethylallyl-S-thiolodophosphate
DPEphos	bis[(2-diphenylphosphino)phenyl]ether
DVCP	divinylcyclopropane
DVCPR	divinylcyclopropane rearrangement
EDG	electron donating group
ESI	MS: electron spray ionization
Et	ethyl
equiv.	equivalent
EWG	electron withdrawing group
g	gram
HMTP; HMPA	hexamethylphosporamide
Hz	Hertz
hv	irradiation with light
IBX	2-iodoxybenzoic acid
IMDA	intramolecular Diels-Alder
$i-\mathrm{Pr}$	iso-propyl
IR	infrared spectroscopy
J	coupling constant
K	Kelvin; equilibrium konstant
k	rate constant
LAH	lithium aluminium hydride
LDA	lithium diisopropylamide

LiHMDS	lithium hexamethydisilazane
LSD	lyseric acid diethylamide
M	any metal
$m C P B A$	metha-chloroperbenzoic acid
Me	methyl
MeCN	acetonitrile
MeOH	methanol
MHz	mega Hertz
min	minute
Ms	methane sulfonic acid
NaHMDS	sodium hexamethyldisilazane
NBS	N -bromosuccinimide
nm	nano meter
NMR	nuclear magnetic resonance spectroscopy
Pd/C	palladium on charcoal
PDC	pyridinium dichromate
PG	protecting group
Ph	phenyl
PhCl	chlorobenzene
PhH	benzene
PhMe; Tol	toluene
PIFA	[bis(trifluoroacetoxy)iodo]benzene
PIX	positional isotopic exchange experiment
PNO	pyridine- N -oxide
ppm	parts per million
rflx.	heating to relfux
rt.	room temperature
s	second; NMR: singulett
SAM	(S)-adenosylmethionine
SM	starting material
T	temperature
t	time; NMR: triplett
TBABr	tetra-n-butylammonium bromide
TBAF	tetra-n-butylammonium fluoride
TBAI	tetra-n-butylammonium iodide
${ }^{t} \mathrm{Bu}$	tert-butyl
TBS	tert-butyldimethylsilyl
TBHP	tetrabutyl hydroperoxide
TEA	triethylamine
Tf	triflate
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
TFETFA	trifluoroethyl trifluoroacetate
THF	tetrahydrofurane
TIPS	triisopropylsilyl
TMS	trimethylsilyl
Ts	toluenesulfonic acid
U/S	sltrasonic sound
X	any halogen

13 References

[1] a) H. R. S. K. Mother, M. Luckner, Biochemistry of alkaloids 1985, VCH, Weinheim; b) H. J. Knolker, Alkaloids Chem Biol 2016, 76, Elsevier.
[2] A. Gossauer, Struktur und Reaktivität der Biomoleküle 2006, Verlag Helvetica Chimica Acta. [3] a) M. H. M. V. Kisakürek, J. D. Phillipson, M. H. Zenk, Indole and Biologically Related Alkaloids 1980, p. 11, Acedemic Press London; b) M. H. M. V. Kisakürek, Alkaloids. Chemical and biological perspectives 1983, 1, John Wiley and Sons, New York.
[4] a) M. H. Zenk, Journal of Natural Products 1980, 43, 438-451; b) J. D. P. J. Stöckigt, M. H. Zenk, Indole and Biologically Related Alkaloids 1980, p 113, Academic Press, London.
[5] J. M. Finefield, J. C. Frisvad, D. H. Sherman and R. M. Williams, Journal of Natural Products 2012, 75, 812-833.
[6] a) T. W. Stone, Brain. Res. 1974, 72, 177-180; b) M. G. Buzzi and M. A. Moskowitz, Cephalalgia 1991, 11, 165-168.
[7] M. S. Sanders-Bush E, The Pharmacologic Basis of Therapeutics. 2006, 11th ed. New York, NY: McGraw-Hill 297-315.
[8] K. S. S. Markowitz, M.A. Moskowitz, Cephalalgia 1988, 8.2, 83-91.
[9] A. N.J.A. de Groot, P. W. J. van Dongen, T. B. Vree, Y. A. Hekster and J. van Roosmalen, Drugs 1998, 56, 523-535.
[10] P. Lyons, R. Plattner and C. Bacon, Science 1986, 232, 487-489.
[11] K. W. Lange, Drugs \& Aging 1998, 13, 381-389.
[12] a) S. M. Li, Nat Prod Rep 2010, 27, 57-78; b) J. A. Read and C. T. Walsh, J Am Chem Soc 2007, 129, 15762-15763; c) D. J. Edwards and W. H. Gerwick, J Am Chem Soc 2004, 126, 1143211433; d) N. Steffan, A. Grundmann, W. B. Yin, A. Kremer and S. M. Li, Current Medicinal Chemistry 2009, 16, 218-231.
[13] S.-M. Li, Phytochemistry 2009, 70, 1746-1757.
[14] a) S. L. Lee, H. G. Floss and P. Heinstein, Arch. Biochem. Biophys. 1976, 177, 84-94; b) H. F. Tsai, H. Wang, J. C. Gebler, C. D. Poulter and C. L. Schradl, Biochem. Biophys. Res. Commun. 1995, 216, 119-125; c) I. A. Unsold and S. M. Li, Microbiology 2005, 151, 1499-1505; d) Y. Ding, R. M. William and D. H. Shermann, J. Biol. Chem. 2008, 48, 11032-11044.
[15] a) A. P. Kozikowski, J. P. Wu, M. Shibuya and H. G. Floss, Journal of the American Chemical Society 1988, 110, 1970-1971; b) M. Shibuya, H. M. Chou, M. Fountoulakis, S. Hassam, S. U. Kim, K. Kobayashi, H. Otsuka, E. Rogalska, J. M. Cassady and H. G. Floss, Journal of the American Chemical Society 1990, 112, 297-304.
[16] a) J. C. Gebler, A. B. Woodside and C. D. Poulter, Journal of the American Chemical Society 1992, 114, 7354-7360; b) L. Y. P. Luk and M. E. Tanner, Journal of the American Chemical Society 2009, 131, 13932-13933.
[17] a) H. Otsuka, F. R. Quigley, D. Groeger, J. A. Anderson and H. G. Floss, Planta Med. 1980, 40, 109-119; b) M. Kobayashi and H. G. Floss, The Journal of Organic Chemistry 1987, 52, 43504352; c) A. P. Kozikowski, C. Chen, J. P. Wu, M. Shibuya, C. G. Kim and H. G. Floss, Journal of the American Chemical Society 1993, 115, 2482-2488; d) D. Groger and H. G. Floss, Alkaloids 1998, 50, Academic Press, 171-218.
[18] O. Rigbers and S.-M. Li, Journal of Biological Chemistry 2008, 283, 26859-26868.
[19] N. Lorenz, J. Olšovská, M. Šulc and P. Tudzynski, Applied and Environmental Microbiology 2010, 76, 1822-1830.
[20] K. E. Goetz, C. M. Coyle, J. Z. Cheng, S. E. O’Connor and D. G. Panaccione, Current Genetics 2011, 57, 201-211.
[21] D. Jakubczyk, J. Z. Cheng and S. E. O'Connor, Nat Prod Rep 2014, 31, 1328-1338.
[22] a) P. Pachlatko, C. Tabacik, W. Acklin and D. Arigoni, Chimia 1975, 29, 526; b) P. Pachelatko, PhD Thesis 1975, ETH Zürich.
[23] M. Westermaier and H. Mayr, Organic Letters 2006, 8, 4791-4794.
[24] E. Wenkert and H. Sliwa, Bioorganic Chemistry 1977, 6, 443-452.
[25] a) A. Kremer, L. Westrich and S.-M. Li, Microbiology 2007, 153, 3409-3416; b) I. A. Unsöld and S.-M. Li, Microbiology 2005, 151, 1499-1505.
[26] U. Metzger, C. Schall, G. Zocher, I. Unsöld, E. Stec, S.-M. Li, L. Heide and T. Stehle, Proceedings of the National Academy of Sciences 2009, 106, 14309-14314.
[27] L. Y. P. Luk, Q. Qian and M. E. Tanner, Journal of the American Chemical Society 2011, 133, 12342-12345.
[28] K. M. Depew, S. P. Marsden, D. Zatorska, A. Zatorski, W. G. Bornmann and S. J. Danishefsky, Journal of the American Chemical Society 1999, 121, 11953-11963.
[29] J. D. Rudolf, H. Wang and C. D. Poulter, Journal of the American Chemical Society 2013, 135, 1895-1902.
[30] a) Q. Qian, PhD Thesis 2015, University of British Columbia Vancouver; b) M. E. Tanner, Natural Product Reports 2015, 32, 88-101.
[31] J. M. Roe, R. A. Webster and A. Ganesan, Org Lett 2003, 5, 2825-2827.
[32] a) N. Takamatsu, S. Inoue and Y. Kishi, Tetrahedron Letters 1971, 12, 4661-4664; b) M. A. Cooper, M. A. Lucas, J. M. Taylor, A. D. Ward and N. M. Williamson, Synthesis 2001, 2001, 0621-0625; c) G. Lai and W. K. Anderson, Tetrahedron 2000, 56, 2583-2590; d) L. G. Beholz and J. R. Stille, The Journal of Organic Chemistry 1993, 58, 5095-5100; e) G. Lai and W. K. Anderson, Tetrahedron Letters 1993, 34, 6849-6852; f) P. Barmettler and H.-J. r. Hansen, Helvetica Chimica Acta 1990, 73, 1515-1573; g) S. Jolidon and H.-J. Hansen, Helvetica Chimica Acta 1977, 60, 978-1032; h) M. Schmid, H.-J. r. Hansen and H. Schmid, Helvetica Chimica Acta 1973, 56, 105-124.
[33] a) F. L. Carnahan and C. D. Hurd, Journal of the American Chemical Society 1930, 52, 45864595; b) C. D. Hurd and W. W. Jenkins, The Journal of Organic Chemistry 1957, 22, 1418-1423; c) S. Marcinkiewicz, J. Green and P. Mamalis, Tetrahedron 1961, 14, 208-222; d) H. Scheurer, J. Zsindely and H. Schmid, Helvetica Chimica Acta 1973, 56, 478-489; e) D. V. Prasad and M. Darbarwar, Synthetic Communications 1988, 18, 881-887; f) K. C. Majumdar and T. Bhattacharyya, Tetrahedron Letters 2001, 42, 4231-4233.
[34] A. M. Nyong and J. D. Rainier, J Org Chem 2005, 70, 746-748.
[35] N. Voute, D. Philp, A. M. Slawin and N. J. Westwood, Org Biomol Chem 2010, 8, 442-450.
[36] K. Thandavamurthy, D. Sharma, S. K. Porwal, D. Ray and R. Viswanathan, J Org Chem 2014, 79, 10049-10067.
[37] A. C. Cope and E. M. Hardy, Journal of the American Chemical Society 1940, 62, 441-444.
[38] H. Jiao and P. v. R. Schleyer, Angewandte Chemie 1995, 107, 329-332.
[39] M. Dollinger, W. Henning and W. Kirmse, Chemische Berichte 1982, 115, 2309-2325.
[40] R. Gompper and W.-R. Ulrich, Angewandte Chemie 1976, 88, 298-300.
[41] W. v. E. Doering and W. R. Roth, Tetrahedron 1962, 18, 67-74.
[42] R. K. Hill and N. W. Gilman, Chemical Communications (London) 1967, 619.
[43] A. Freund, Journal fuer Praktische Chemie 1882, 26, 367-377.
[44] G. Gustavson, Journal f r Praktische Chemie 1887, 36, 300-303.
[45] H. N. C. Wong, M. Y. Hon, C. W. Tse, Y. C. Yip, J. Tanko and T. Hudlicky, Chemical Reviews 1989, 89, 165-198.
[46] A.-H. Li, L.-X. Dai and V. K. Aggarwal, Chemical Reviews 1997, 97, 2341 -2372.
[47] a) R. E. Taylor, F. C. Engelhardt and H. Yuan, Organic Letters 1999, 1, 1257-1260; b) R. E. Taylor, M. J. Schmitt and H. Yuan, Organic Letters 2000, 2, 601-603; c) R. E. Taylor, F. C.

Engelhardt, M. J. Schmitt and H. Yuan, Journal of the American Chemical Society 2001, 123, 2964-2969; d) R. E. Taylor, M. K. Ameriks and M. J. LaMarche, Tetrahedron Letters 1997, 38, 2057-2060.
[48] a) W. Beck and K. Z. Schloter, Naturforsch. 1978, 33b, 1214-1222; b) M. L. H. Green, M. Ishaq and R. N. Whiteley, Journal of the Chemical Society A: Inorganic, Physical, Theoretical 1967, 1508; c) E. J. Crawford, C. Lambert, K. P. Menard and A. R. Cutler, Journal of the American Chemical Society 1985, 107, 3130-3139; d) Y. C. Lin, D. Milstein and S. S. Wreford, Organometallics 1983, 2, 1461-1463.
[49] P. J. Gritsch, Master Thesis 2010, Vienna University of Technology.
[50] P. Yates, Journal of the American Chemical Society 1952, 74, 5376-5381.
[51] M. C. Pirrung and A. T. Morehead, Journal of the American Chemical Society 1996, 118, 8162-8163.
[52] I. V. Shishkov, F. Rominger and P. Hofmann, Organometallics 2009, 28, 1049-1059.
[53] E. Vogel, Angewandte Chemie 1960, 72, 4-26.
[54] a) E. Vogel, K.-H. Ott and K. Gajek, Justus Liebigs Annalen der Chemie 1961, 644, 172-188;
b) W. von E. Doering and W. R. Roth, Tetrahedron 1963, 19, 715-737; c) J. M. Brown, B. T.

Golding and J. J. Stofko, Journal of the Chemical Society, Chemical Communications 1973,
319b; d) J. M. Brown, B. T. Golding and J. J. Stofko, Journal of the Chemical Society, Perkin Transactions 2 1978, 436; e) M. P. Schneider and J. Rebell, Journal of the Chemical Society, Chemical Communications 1975, 283a.
[55] S. Kruger and T. Gaich, Beilstein J Org Chem 2014, 10, 163-193.
[56] M. P. Schneider and A. Rau, Journal of the American Chemical Society 1979, 101, 44264427.
[57] T. Sasaki, S. Eguchi and M. Ohno, The Journal of Organic Chemistry 1972, 37, 466-469.
[58] W. V. E. Doering and W. R. Roth, Angewandte Chemie 1963, 75, 27-35.
[59] H. M. L. Davies and B. D. Doan, The Journal of Organic Chemistry 1998, 63, 657-660.
[60] P. J. Gritsch, PhD Thesis 2015, LU Hannover.
[61] C. Marti and E. M. Carreira, J Am Chem Soc 2005, 127, 11505-11515.
[62] D. D. Schwarzer, P. J. Gritsch and T. Gaich, Angewandte Chemie International Edition 2012, 51, 11514-11516.
[63] J. Yang, H. Song, X. Xiao, J. Wang and Y. Qin, Organic Letters 2006, 8, 2187-2190.
[64] C. 881251, contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data request/cif.
[65] a) C. D. Smith, J. T. Zilfou, K. Stratmann, G. M. Patterson and R. E. Moore, Molecular Pharmacology 1995, 47, 241-247; b) X. Zhang and C. D. Smith, Molecular Pharmacology 1996, 49, 288-294.
[66] R. J. Capon, F. Rooney, L. M. Murray, E. Collins, A. T. R. Sim, J. A. P. Rostas, M. S. Butler and A. R. Carroll, Journal of Natural Products 1998, 61, 660-662.
[67] S. Mantegani, L. Baumer, E. Brambilla, C. Caccia, M. C. Fornaretto, R. A. McArthur and M. Varasi, European Journal of Medicinal Chemistry 1998, 33, 279-292.
[68] G. W. Kirby and S. W. Shah, Chemical Communications (London) 1965, 381a.
[69] a) P. J. Harrington and L. S. Hegedus, The Journal of Organic Chemistry 1984, 49, 2657-
2662; b) Q. Zheng, Y. Yang and A. R. Martin, Tetrahedron Letters 1993, 34, 2235-2238; c) M. A. Brown and M. A. Kerr, Tetrahedron Letters 2001, 42, 983-985.
[70] a) R. A. Hollins, L. A. Colnago, V. M. Salim and M. C. Seidl, Journal of Heterocyclic Chemistry 1979, 16, 993-996; b) M. Somei, F. Yamada, M. Kunimoto and C. Kaneko, Heterocycles 1984,

22, 797; c) M. Somei, T. Hasegawa and C. Kaneko, Heterocycles 1983, 20, 1983; d) M. Somei and F. Yamada, Heterocycles 1987, 26, 1173.
[71] a) O. Yonemitsu, P. Cerutti and B. Witkop, Journal of the American Chemical Society 1966, 88, 3941-3945; b) P. J. Gritsch, C. Leitner, M. Pfaffenbach and T. Gaich, Angew Chem Int Ed Engl 2014, 53, 1208-1217.
[72] K. S. Feldman and P. Ngernmeesri, Org Lett 2011, 13, 5704-5707.
[73] T. Nagasaka and S. Ohki, CHEMICAL \& PHARMACEUTICAL BULLETIN 1977, 25, 3023-3033.
[74] F. C. Uhle, Journal of the American Chemical Society 1949, 71, 761-766.
[75] W. Oppolzer, J. I. Grayson, H. Wegmann and M. Urrea, Tetrahedron 1983, 39, 3695-3705.
[76] C. J. Moody, A. L. Beck and W. J. Coates, Tetrahedron Letters 1989, 30, 4017-4018.
[77] L. S. Hegedus, M. R. Sestrick, E. T. Michaelson and P. J. Harrington, The Journal of Organic Chemistry 1989, 54, 4141-4146.
[78] D. C. Horwell, P. D. Nichols, G. S. Ratcliffe and E. Roberts, The Journal of Organic Chemistry 1994, 59, 4418-4423.
[79] Y. Murakami, Y. Yokoyama, H. Matsushima, M. Takashima and T. Suzuki, Heterocycles 1997, 46, 133.
[80] T. Kaoudi, B. Quiclet-Sire, S. Seguin and S. Z. Zard, Angewandte Chemie International Edition 2000, 39, 731-733.
[81] a) X. Tian, A. D. Huters, C. J. Douglas and N. K. Garg, Organic Letters 2009, 11, 2349-2351; b) A. D. Huters, K. W. Quasdorf, E. D. Styduhar and N. K. Garg, Journal of the American Chemical Society 2011, 133, 15797-15799; c) N. A. Weires, E. D. Styduhar, E. L. Baker and N. K. Garg, Journal of the American Chemical Society 2014, 136, 14710-14713; d) K. W. Quasdorf, A. D. Huters, M. W. Lodewyk, D. J. Tantillo and N. K. Garg, Journal of the American Chemical Society 2012, 134, 1396-1399.
[82] Y. Suzuki, Y. Tanaka, S.-i. Nakano, K. Dodo, N. Yoda, K.-i. Shinohara, K. Kita, A. Kaneda, M. Sodeoka, Y. Hamada and T. Nemoto, Chemistry - A European Journal 2016, 22, 4418-4421.
[83] T. Sandmeyer, Helvetica Chimica Acta 1919, 2, 234-242.
[84] M. P. Doyle, J. H. Griffin, V. Bagheri and R. L. Dorow, Organometallics 1984, 3, 53-61.
[85] a) M. T. Crimmins and D. L. Jacobs, Organic Letters 2009, 11, 2695-2698; b) J. Robertson, J. W. P. Dallimore and P. Meo, Organic Letters 2004, 6, 3857-3859; c) S. J. Danishefsky and N. Mantlo, Journal of the American Chemical Society 1988, 110, 8129-8133.
[86] a) J. C. Gilbert and J. Yin, Tetrahedron 2008, 64, 5482-5490; b) H. M. R. Hoffmann and J. Rabe, Angewandte Chemie International Edition in English 1983, 22, 795-796; c) B. M. Trost, Y. Hu and D. B. Horne, Journal of the American Chemical Society 2007, 129, 11781-11790.
[87] A. B. Charette and B. Côté, Tetrahedron Letters 1993, 34, 6833-6836.
[88] A. R. Daniewski and W. Wojciechowska, The Journal of Organic Chemistry 1982, 47, 29932995.
[89] W. Yuan, R. J. Berman and M. H. Gelb, Journal of the American Chemical Society 1987, 109, 8071-8081.
[90] D. S. Kemp, D. J. Kerkman, S.-L. Leung and G. Hanson, The Journal of Organic Chemistry 1981, 46, 490-498.
[91] a) P. G. Baraldi, M. A. Tabrizi, D. Preti, A. Bovero, F. Fruttarolo, R. Romagnoli, N. A. Zaid, A. R. Moorman, K. Varani and P. A. Borea, J Med Chem 2005, 48, 5001-5008; b) P. V. Reddy, K. C. Jensen, A. D. Mesecar, P. E. Fanwick and M. Cushman, J Med Chem 2012, 55, 367-377. [92] A. Otto and J. Liebscher, Journal of Heterocyclic Chemistry 2000, 37, 891-894.
[93] M. S. Kim, Y. W. Kim, H. S. Hahm, J. W. Jang, W. K. Lee and H. J. Ha, Chem Commun (Camb) 2005, 3062-3064.
[94] W. Youngsaye, J. T. Lowe, F. Pohlki, P. Ralifo and J. S. Panek, Angew Chem Int Ed Engl 2007, 46, 9211-9214.
[95] S. K. De, Synthesis 2004, 2837-2840.
[96] J. J. Liu, Y. Wang, Z. Ma, M. Schmitt, L. Zhu, S. P. Brown, P. J. Dransfield, Y. Sun, R. Sharma, Q. Guo, R. Zhuang, J. Zhang, J. Luo, G. R. Tonn, S. Wong, G. Swaminath, J. C. Medina, D. C. Lin and J. B. Houze, ACS Med Chem Lett 2014, 5, 517-521.
[97] a) W. D. Wulff, D. C. Yang and C. K. Murray, Journal of the American Chemical Society 1988, 110, 2653-2655; b) W. D. Wulff, W. E. Bauta, R. W. Kaesler, P. J. Lankford, R. A. Miller, C. K. Murray and D. C. Yang, Journal of the American Chemical Society 1990, 112, 3642-3659.
[98] S. Chen, J. Ma and J. Wang, Tetrahedron Letters 2008, 49, 6781-6783.
[99] S. R. Ovalles, J. H. Hansen and H. M. Davies, Org Lett 2011, 13, 4284-4287.
[100] M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon and A. T. McPhail, Journal of the American Chemical Society 1971, 93, 2325-2327.
[101] J. Goodman and V. Walsh, The Story of Taxol: Nature and Politics in the Pursuit of an Anti-Cancer Drug, Cambridge University Press, 2001, p.
[102] a) R. A. Holton, C. Somoza, H. B. Kim, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith and S. Kim, Journal of the American Chemical Society 1994, 116, 1597-1598; b) R. A. Holton, H. B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith and S. Kim, Journal of the American Chemical Society 1994, 116, 1599-1600.
[103] K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan and et al., Nature 1994, 367, 630-634.
[104] a) T. Gaich and P. S. Baran, The Journal of Organic Chemistry 2010, 75, 4657-4673; b) P. A. Wender, Nat Prod Rep 2014, 31, 433-440; c) J. B. Hendrickson, Journal of the American Chemical Society 1975, 97, 5784-5800.
[105] S. Krüger, PhD Thesis 2016.
[106] S. Krüger and T. Gaich, European Journal of Organic Chemistry 2016, 2016, 4893-4899.
[107] G. Jürjens, PhD Thesis 2014.
[108] A. C. Smith and R. M. Williams, Angew Chem Int Ed Engl 2008, 47, 1736-1740.
[109] J. F. Harrod and A. J. Chalk, Journal of the American Chemical Society 1964, 86, 17761779.
[110] S. Hanessian, S. Giroux and A. Larsson, Org Lett 2006, 8, 5481-5484.
[111] T. Ohmura, Y. Yamamoto and N. Miyaura, Organometallics 1999, 18, 413-416.
[112] D. E. Portlock, D. Naskar, L. West, W. L. Seibel, T. Gu, H. J. Krauss, X. S. Peng, P. M. Dybas, E. G. Soyke, S. B. Ashton and J. Burton, Tetrahedron Letters 2003, 44, 5365-5368.
[113] H. J. Lim, C. R. Smith and T. V. RajanBabu, J Org Chem 2009, 74, 4565-4572.
[114] a) C. C. Silveira, E. L. Larghi, S. R. Mendes, A. B. J. Bracca, F. Rinaldi and T. S. Kaufman, European Journal of Organic Chemistry 2009, 2009, 4637-4645; b) V. I. Hugo, T. Masenya and I. R. Green, Synthetic Communications 2006, 36, 1631-1636; c) C. B. de Koning, I. R. Green, J. P. Michael and J. R. Oliveira, Tetrahedron 2001, 57, 9623-9634; d) C. B. de Koning, R. G. F. Giles, I. R. Green and N. M. Jahed, Tetrahedron 2003, 59, 3175-3182.
[115] S. K. Sharma, V. K. Srivastava and R. V. Jasra, Journal of Molecular Catalysis A: Chemical 2006, 245, 200-209.
[116] J. M. Warrington and L. Barriault, Org Lett 2005, 7, 4589-4592.
[117] P. Golborn and F. Scheinmann, Journal of the Chemical Society, Perkin Transactions 1 1973, 2870.
[118] E. J. Corey and J. W. Suggs, The Journal of Organic Chemistry 1973, 38, 3224-3224.
[119] R. Cramer and R. V. Lindsey, Journal of the American Chemical Society 1966, 88, 35343544.
[120] J. J. Oltvoort, C. A. A. Van Boeckel, J. H. De Koning and J. H. Van Boom, Synthesis 1981, 1981, 305-308.
[121] M. Furber and L. N. Mander, Journal of the American Chemical Society 1987, 109, 63896396.
[122] L. A. Paquette, T. Z. Wang and H. Vo Nha, Journal of the American Chemical Society 1993, 115, 1676-1683.
[123] T. Nagamitsu, T. Sunazuka, R. Obata, H. Tomoda, H. Tanaka, Y. Harigaya, S. Omura and A. B. Smith, The Journal of Organic Chemistry 1995, 60, 8126-8127.
[124] K. A. Parker and A. Dermatakis, The Journal of Organic Chemistry 1997, 62, 6692-6696.
[125] Y. Zou, C. H. Chen, C. D. Taylor, B. M. Foxman and B. B. Snider, Org Lett 2007, 9, 18251828.
[126] D. H. R. Barton and D. Crich, Tetrahedron 1985, 41, 4359-4364.
[127] K. Mori and H. Takaishi, Liebigs Annalen der Chemie 1989, 1989, 939-943.
[128] A. E. Greene and M. T. Edgar, The Journal of Organic Chemistry 1989, 54, 1468-1470.
[129] B. A. Sparling, D. C. Moebius and M. D. Shair, J Am Chem Soc 2013, 135, 644-647.
[130] M. E. Jung and T. W. Johnson, Tetrahedron 2001, 57, 1449-1481.
[131] K. C. Nicolaou, Q. Y. Toh and D. Y. Chen, J Am Chem Soc 2008, 130, 11292-11293.
[132] O. F. Jeker and E. M. Carreira, Angew Chem Int Ed Engl 2012, 51, 3474-3477.
[133] J. Q. Yu and E. J. Corey, J Am Chem Soc 2003, 125, 3232-3233.
[134] B. J. Albert, A. Sivaramakrishnan, T. Naka, N. L. Czaicki and K. Koide, J Am Chem Soc 2007, 129, 2648-2659.
[135] K. C. Nicolaou, T. Montagnon, P. S. Baran and Y. L. Zhong, Journal of the American Chemical Society 2002, 124, 2245-2258.
[136] K. Yamane, H. Yamamoto and M. Nitta, The Journal of Organic Chemistry 2002, 67, 81148122.
[137] K. Li, L. R. McGee, B. Fisher, A. Sudom, J. Liu, S. M. Rubenstein, M. K. Anwer, T. D. Cushing, Y. Shin, M. Ayres, F. Lee, J. Eksterowicz, P. Faulder, B. Waszkowycz, O. Plotnikova, E. Farrelly, S. H. Xiao, G. Chen and Z. Wang, Bioorg Med Chem Lett 2013, 23, 1238-1244.
[138] R. Sarpong, J. T. Su and B. M. Stoltz, J Am Chem Soc 2003, 125, 13624-13625.
[139] G. Karthik, T. Rajasekaran, B. Sridhar and B. V. S. Reddy, Tetrahedron Letters 2014, 55, 7064-7067.
[140] a) M. Uwamori, A. Saito and M. Nakada, The Journal of Organic Chemistry 2012, 77, 5098-5107; b) R. L. Danheiser, R. F. Miller, R. G. Brisbois and S. Z. Park, The Journal of Organic Chemistry 1990, 55, 1959-1964.
[141] H. Xu, W. Zhang, D. Shu, J. B. Werness and W. Tang, Angew Chem Int Ed Engl 2008, 47, 8933-8936.
[142] a) S. Motallebi and P. Müller, Helvetica Chimica Acta 1993, 76, 2803-2813; b) H. Xu, W. Zhang, D. Shu, J. B. Werness and W. Tang, Angewandte Chemie 2008, 120, 9065-9068.
[143] J. J. Gajewski and M. J. Chang, Journal of the American Chemical Society 1980, 102, 75427545.
[144] D. A. Evans, S. J. Miller and M. D. Ennis, The Journal of Organic Chemistry 1993, 58, 471485.
[145] J. T. Su, R. Sarpong, B. M. Stoltz and W. A. Goddard, 3rd, JAm Chem Soc 2004, 126, 2425.
[146] a) R. V. Hoffman and B. S. Severns, The Journal of Organic Chemistry 1996, 61, 55675573; b) R. V. Hoffman and H. O. Kim, The Journal of Organic Chemistry 1991, 56, 1014-1019. [147] a) M. P. Schneider and M. Goldbach, Journal of the American Chemical Society 1980, 102, 6114-6116; b) H.-J. Liu and N. H. Al-Said, Heterocycles 1997, 46, 203.
[148] B. R. Buckley and B. Fernández D.-R, Tetrahedron Letters 2013, 54, 843-846.
[149] T. Kurihara, M. Hanakawa, S. Harusawa and R. Yoneda, Chemical \& Pharmaceutical Bulletin 1986, 34, 4545-4553.
[150] T.-H. Chan and P. Brownbridge, Journal of the Chemical Society, Chemical Communications 1979, 578.
[151] I. Fleming, J. Goldhill and I. Paterson, Tetrahedron Letters 1979, 20, 3205-3208.
[152] D. S. Huang and J. F. Hartwig, Angew Chem Int Ed Engl 2010, 49, 5757-5761.
[153] S. E. Denmark, G. L. Beutner, T. Wynn and M. D. Eastgate, J Am Chem Soc 2005, 127, 3774-3789.
[154] M. F. Ibad, O. U. Abid, M. Adeel, M. Nawaz, V. Wolf, A. Villinger and P. Langer, J Org Chem 2010, 75, 8315-8318.
[155] G. Symkenberg and M. Kalesse, Org Lett 2012, 14, 1608-1611.
[156] R. Liu, P. Zhang, T. Gan and J. M. Cook, The Journal of Organic Chemistry 1997, 62, 74477456.
[157] H. J. Bestmann and R. Schobert, Angewandte Chemie 1985, 97, 784-785.
[158] H. W. Chen, R. T. Hsu, M. Y. Chang and N. C. Chang, Org Lett 2006, 8, 3033-3035.
[159] F. J. Aladro, F. M. Guerra, F. J. Moreno-Dorado, J. M. Bustamante, Z. a. D. Jorge and G. M. Massanet, Tetrahedron 2001, 57, 2171-2178.
[160] V. Blanchot-Courtois, M. Fétizon and I. Hanna, Tetrahedron Letters 1992, 33, 5061-5064.
[161] A. Jenmalm, W. Berts, Y.-L. Li, K. Luthman, I. Csoeregh and U. Hacksell, The Journal of Organic Chemistry 1994, 59, 1139-1148.
[162] M. D'Auria, A. De Mico, F. D'Onofrid and A. Scettri, Synthesis 1985, 1985, 988-990.
[163] B. Frey, J. Schnaubelt and H.-U. Reisig, Eur. J. Org. Chem. 1999, 1377-1385.
[164] W. Kirmse and U. Mrotzeck, Chemische Berichte 1988, 121, 485-492.
[165] F. Diaba, A. Mmartinez-Laporta, G. Coussanes, I. Fernandez and J. Bonjoch, Tetrahedron 2014.
[166] J. H. Rigby, A. Kotnis and J. Kramer, The Journal of Organic Chemistry 1990, 55, 50785088.
[167] a) H. J. M. Gijsen, K. Kanai, G. A. Stork, J. B.P.A. Wijnberg, R. V. A. Orru, C. G. J. M. Seelen, S. M. van der Kerk and A. de Groot, Tetrahedron 1990, 46, 7237-7246; b) K. A. Holland and I. D. Rae, Australian Journal of Chemistry 1987, 40, 687-692.
[168] P. A. Manis and M. W. Rathke, The Journal of Organic Chemistry 1981, 46, 5348-5351.
[169] L. Zhu, C. Zhou, W. Yang, S. He, G. J. Cheng, X. Zhang and C. S. Lee, J Org Chem 2013, 78, 7912-7929.
[170] L. Zhou, Y. Yao, W. Xu and G. Liang, J Org Chem 2014, 79, 5345-5350.
[171] F. M. Hauser and Y. Caringal, The Journal of Organic Chemistry 1990, 55, 555-559.
[172] R. K. Boeckman, Jr., M. R. Del Rosario Ferreira, L. H. Mitchell, P. Shao, M. J. Neeb and Y. Fang, Tetrahedron 2011, 67, 9787-9808.
[173] J.-Q. Yu, H.-C. Wu and E. J. Corey, Organic Letters 2005, 7, 1415-1417.
[174] a) P. Magnus, A. Evans and J. Lacour, Tetrahedron Letters 1992, 33, 2933-2936; b) P.
Magnus, J. Lacour, P. A. Evans, P. Rigollier and H. Tobler, Journal of the American Chemical Society 1998, 120, 12486-12499.
[175] P. A. Evans, J. M. Longmire and D. P. Modi, Tetrahedron Letters 1995, 36, 3985-3988.
[176] E. C. Kornfeld, E. J. Fornefeld, G. B. Kline, M. J. Mann, D. E. Morrison, R. G. Jones and R.
B. Woodward, Journal of the American Chemical Society 1956, 78, 3087-3114.
[177] S. Hiraoka, S. Harada and A. Nishida, Tetrahedron Letters 2011, 52, 3079-3082.
[178] S. Inuki, S. Oishi, N. Fujii and H. Ohno, Org Lett 2008, 10, 5239-5242.
[179] K. Karabelas and A. Hallberg, The Journal of Organic Chemistry 1988, 53, 4909-4914.
[180] H. Henniges, F. E. Meyer, U. Schick, F. Funke, P. J. Parsonb and A. de Meijere, Tetrahedron 1996, 52, 11545-11578.
[181] M. Pfau, I. Jabin and G. Revial, Journal of the Chemical Society, Perkin Transactions 1 1993, 1935.
[182] W. Kong, Q. Wang and J. Zhu, J Am Chem Soc 2015, 137, 16028-16031.
[183] J. H. Rigby, R. C. Hughes and M. J. Heeg, Journal of the American Chemical Society 1995, 117, 7834-7835.
[184] B. S. Lane and D. Sames, Org Lett 2004, 6, 2897-2900.
[185] A. L. Hansen, J. P. Ebran, M. Ahlquist, P. O. Norrby and T. Skrydstrup, Angew Chem Int Ed Engl 2006, 45, 3349-3353.
[186] J.-F. Nguefack, V. Bolitt and D. Sinou, The Journal of Organic Chemistry 1997, 62, 68276832.
[187] J.-F. Nguefack, V. Bolitt and D. Sinou, Tetrahedron Letters 1996, 37, 59-62.
[188] a) J. Storsberg, M.-L. Yao, N. Ocal, A. de Meijere, A. E. W. Adam and D. E. Kaufmann, Chemical Communications 2005, 5665-5666; b) J. C. Namyslo, J. Storsberg, J. Klinge, C. Gärtner, M.-L. Yao, N. Ocal and D. E. Kaufmann, Molecules 2010, 15.
[189] P. N. Confalone and E. M. Huie, The Journal of Organic Chemistry 1987, 52, 79-83.
[190] P. L. Schiff, American Journal of Pharmaceutical Education 2006, 70, 98.
[191] J. Magolan, C. A. Carson and M. A. Kerr, Org Lett 2008, 10, 1437-1440.
[192] M. E. Weiss and E. M. Carreira, Angew Chem Int Ed Engl 2011, 50, 11501-11505.
[193] A. B. Smith, E. G. Nolen, R. Shirai, F. R. Blase, M. Ohta, N. Chida, R. A. Hartz, D. M. Fitch, W. M. Clark and P. A. Sprengeler, The Journal of Organic Chemistry 1995, 60, 7837-7848.
[194] J. McCauley, Synlett 2012, 23, 2999-3000.
[195] a) N. Sakai, T. Moriya and T. Konakahara, The Journal of Organic Chemistry 2007, 72, 5920-5922; b) N. Sakai, K. Fujii and T. Konakahara, Tetrahedron Letters 2008, 49, 6873-6875.
[196] a) K. A. Pardeshi, S. R. Malwal, A. Banerjee, S. Lahiri, R. Rangarajan and H. Chakrapani, Bioorganic \& Medicinal Chemistry Letters 2015, 25, 2694-2697; b) Y. Kuroda, S. Harada, A. Oonishi, Y. Yamaoka, K.-i. Yamada and K. Takasu, Angewandte Chemie International Edition 2015, 54, 8263-8266.
[197] C. H. Heathcock, J. A. Stafford and D. L. Clark, The Journal of Organic Chemistry 1992, 57, 2575-2585.
[198] S. Dorich, J. R. Del Valle and S. Hanessian, Synlett 2014, 25, 799-804.
[199] S. E. Denmark and R. Y. Baiazitov, The Journal of Organic Chemistry 2006, 71, 593-605.
[200] a) R. G. Salomon, N. D. Sachinvala, S. R. Raychaudhuri and D. B. Miller, Journal of the American Chemical Society 1984, 106, 2211-2213; b) A. Y. Hong and B. M. Stoltz, Angewandte Chemie International Edition 2012, 51, 9674-9678.
[201] a) M. H. and M. M., Heterocycles 1989, 29, 783-794; b) B. Nyasse, L. Grehn and U. Ragnarsson, Chemical Communications 1997, 1017-1018.
[202] J. S. Bajwa, G.-P. Chen, K. Prasad, O. Repič and T. J. Blacklock, Tetrahedron Letters 2006, 47, 6425-6427.
[203] T. Ankner and G. Hilmersson, Organic Letters 2009, 11, 503-506.
[204] Y. Liu, L. Shen, M. Prashad, J. Tibbatts, O. Repič and T. J. Blacklock, Organic Process Research \& Development 2008, 12, 778-780.
[205] M. E. Jung, Synlett 1990, 1990, 186-190.
[206] A. J. Kirby and G. J. Lloyd, Journal of the Chemical Society, Perkin Transactions 2 1976, 1753.
[207] P. von Ragué Schleyer, Journal of the American Chemical Society 1961, 83, 1368-1373.
[208] R. F. Brown and N. M. Van Gulick, The Journal of Organic Chemistry 1956, 21, 1046-1049.
[209] a) T. C. Bruice and U. K. Pandit, Journal of the American Chemical Society 1960, 82, 58585865; b) T. C. Bruice and W. C. Bradbury, Journal of the American Chemical Society 1965, 87, 4838-4845; c) F. C. Lightstone and T. C. Bruice, Journal of the American Chemical Society 1994, 116, 10789-10790; d) T. C. Bruice and W. C. Bradbury, Journal of the American Chemical Society 1965, 87, 4846-4850; e) T. C. Bruice and W. C. Bradbury, Journal of the American Chemical Society 1968, 90, 3808-3812.
[210] D. D. Sternbach, D. M. Rossana and K. D. Onan, Tetrahedron Letters 1985, 26, 591-594.
[211] a) M. E. Jung and J. Gervay, Tetrahedron Letters 1988, 29, 2429-2432; b) M. E. Jung and J. Gervay, Journal of the American Chemical Society 1991, 113, 224-232.
[212] a) B. S. Rabinovitch, E. W. Schlag and K. B. Wiberg, The Journal of Chemical Physics 1958, 28, 504; b) E. W. Schlag and B. S. Rabinovitch, Journal of the American Chemical Society 1960, 82, 5996-6000.
[213] a) H. Seki, The Journal of Chemical Physics 1968, 48, 1866; b) S. W. Benson, The Journal of Chemical Physics 1961, 34, 521; c) R. Hoffmann, Journal of the American Chemical Society 1968, 90, 1475-1485.
[214] G. C. Levy, J. D. Cargioli and W. Racela, Journal of the American Chemical Society 1970, 92, 6238-6246.
[215] a) R. J. Crawford and T. R. Lynch, Canadian Journal of Chemistry 1968, 46, 1457-1458; b) M. Arai and R. J. Crawford, Canadian Journal of Chemistry 1972, 50, 2158-2162.
[216] W. Pickenhagen, F. Näf, G. Ohloff, P. Müller and J.-C. Perlberger, Helvetica Chimica Acta 1973, 56, 1868-1874.
[217] G. Wedler, Lehrbuch der Physikalischen Chemie, 6. Auflage Weihnheim 2012.
[218] E. D. Hughes and C. K. Ingold, Journal of the Chemical Society (Resumed) 1935, 244.
[219] M. R. Willcott and V. H. Cargle, Journal of the American Chemical Society 1967, 89, 723724.
[220] a) J. G. Hamilton and W. E. Palke, Journal of the American Chemical Society 1993, 115, 4159-4164; b) F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, Journal of the Chemical Society, Perkin Transactions 2 1987, S1; c) A. de Meijere, Angewandte Chemie International Edition in English 1979, 18, 809-826.
[221] a) M. Liebhold, X. Xie and S. M. Li, Org Lett 2012, 14, 4882-4885; b) M. Liebhold and S. M. Li, Org Lett 2013, 15, 5834-5837.

14 Acknowledgment

An dieser Stelle bin ich froh die Möglichkeit zu haben einer ganzen Menge Menschen zu danken, die ihren Beitrag zum Gelingen dieser Arbeit geleistet haben.

Ich möchte mich in erster Linie bei Prof. Dr. Tanja Gaich bedanken, die mir die Durchführung dieser Arbeit in ihrer Arbeitsgruppe ermöglicht hat. Insbesondere möchte ich dafür danken, dass mir viel Eigenständigkeit gewährt wurde („Halte nie jemanden davon ab einen Versuch durchzuführen"), aber auch viel Unterstützung sowohl praktischer als auch in theoretischer Art.

Herrn Prof. Dr. Marx und Herrn Prof. Dr. Winter gilt mein Dank für die Übernahme der Zweitprüferschaft, sowie des Prüfungsvorsitzes.

Weiter möchte ich Herrn Prof. Dr. Mulzer, Herrn Prof. Dr. Zifferer sowie Herrn Prof. Dr. Herzig von der Universität Wien für Ihre Hilfestellung bei der Berechnung der physikalisch chemischen Daten, sowie auch bei der Strukturierung der Experimente danken.

Herrn Dr. Wiebke danke ich für die Röntgenstrukturanalyse meiner Moleküle.

Dr. Thomas Huhn, Angelika Früh, Malin Bein und Milena Quentin möchte ich für den warmen Empfang der Arbeitsgruppe in Konstanz danken und für ihre tatkräftige Unterstützung.

Ein sehr großes Dankeschön gilt den NMR Abteilungen der Universitäten Hannover und Konstanz für die geduldige Durchführung der hochtemperatur-NMR Experimente (Jörg, Monika und Dagmar) sowie für die großzügige Hilfe von Anke Friemel und Ulrich Haunz bei der Aufklärung meiner zum Teil ungewöhnlichen Produkte.

Der Arbeitsgruppe Wittmann danke ich für die freundliche Begrüßung auf L8, sowie für die Hilfsbereitschaft der einzelnen Mitglieder sowohl im in chemischen als auch in verwaltungstechnischen Fragen.

Den Arbeitsgruppen des OCl Hannover danke ich für die konstruktive Zusammenarbeit und die Hilfsbereitschaft insbesondere in der Anfangszeit der Arbeitsgruppe Gaich (Chemikalien, Infrastruktur, Gerätschaften).

Meinen beiden Kollegen Dr. Ruben Eckermann und Dr. Philipp J. Gritsch möchte ich dafür danken, dass sie mir den Einstieg in die Doktorarbeit erleichtert haben und auch immer ein offenes Ohr für allerlei Fragen hatten. Beide standen mir auch immer mit Rat und Tat zur Seite wenn es denn schon wieder irgendwelche Ungereimtheiten gab. Sie haben in Zeiten einer Glückssträhne auch dafür gesorgt, dass ich die Bodenhaftung nicht verloren habe.

Dr. Magnus Pfaffenbach und Dr. Sebastian Krüger für die vielen Unterhaltungen mit variierendem Inhalt, sowie dafür, dass beide gezeigt haben wie Publikationen am Fließband entstehen.

Konstantin Samarin danke ich dafür, dass er ein sehr guter Laborkollege und Freund war in der vergangenen Zeit. Für den „fancy shit" den wir zusammen gemacht haben, (auch der Sprung von der Brücke), die zum Teil aberwitzigen Zugfahrten und Feierabende.

Dr. Christian Leitner (The Brain) möchte ich dafür danken, dass er sein Wissen und seine Erfahrung in der Chemie mit mir geteilt hat, aber für die Kaschemmen-Abende und seine ehrliche Art.

Ein weiteres großes Dankeschön geht an Dr. Gerrit (Kim) Jürjens für seine geduldige Art sowie dafür, dass er mir die Schönheit der organischen Synthesechemie nahegebracht hat und für die weisen Worte nach Möglichkeit immer „fancy shit" Reaktionen auszuprobieren (Dinge passieren eben).

Silke Kayser danke ich für ihren Einsatz in Sachen physikalische Chemie wie auch für ihre Freundschaft.

Christa Gerlinger und Michael Breunig, den beiden Ex-Tommies möchte ich für die Zeit danken in der wir Kollegen sein durften sowie auch für ihre Gastfreundschaft und Spontanität.

Milena Quentin, Kristina Struckmeier und Monika Griese danke ich dafür, dass sie für den Wohlfühlfaktor in der Universität gesorgt haben und mir jede Menge Arbeit abgenommen haben.

Maximilian Häfner und Cora L. Dieterich danke ich für den stetigen Nachschub an Material und Daten, sowie für ihren positiven Beitrag zur Labor- und Arbeitsgruppenatmosphäre uvm.

Angelika Früh möchte ich noch zusätzlich danken, dass sie immer ein offenes Ohr für mich hatte, für Kaffee und Kuchen und dafür, dass sie mir durch ihre Arbeit sehr viel Entlastung gegeben hat. Danke, dass ich dich kennen lernen durfte.

Milena Quentin danke ich für ihren beherzten Einsatz, Ordnung in die Gruppe zu bringen und dass sie immer für mich ansprechbar war (ganz gleich was es war). Mach weiter so und bleib wie du bist.

Den Korrektoren meiner Dissertation, welche akribisch Seite für Seite dieser Arbeit durchgegangen sind gilt ebenfalls ein großes Dankeschön: Kristina Lohre, Margaretha Meyer, Dr. Michael Richter, Dr. Gerrit Jürjens und Silke Kayser.

Den Mitgliedern der Arbeitsgruppe Plettenburg möchte ich dafür Danken, dass sie zum Gelingen des Disputationsvortrages geholfen haben, im besonderen Gerrit, Wiebke und Ardalan.

Meinen ehemaligen Mitbewohnern (Sophie Löhr, Sebastian Rikker, Simone Winkler, Stefano Woerner, Nicholas D’ademo) und den assoziierten (Marvin, Gabi, Lucie, Ronny, Elisabeth) des „Haus am See" möchte ich für die sehr schöne Zeit in Egg danken und dass das Einleben in die süddeutsche Kultur fast reibungslos vonstattenging. Danke, dass es euch gibt.

Insbesondere möchte ich meinen Eltern und Geschwistern danken. Ich danke euch für eure bedingungslose Unterstützung während meines Studiums und auch dafür, dass ihr mir die Kraft gegeben habt all das zu machen, was ich mir vorgenommen habe.

Zuletzt möchte ich meinem Linchen danken, für ihre Geduld, Unterstützung und ihre Liebe. Danke, dass du für mich da bist.

15	CV
04.2012-05.2017	Ph. D. student
	Gottfried-Wilhelm-Leibniz Universität Hannover, Prof. Dr. Tanja Gaich, (since 07.2015 Universität Konstanz)
09.2011-03.2012	Master Course Medicinal- and Natural Product Chemistry
	Gottfried-Wilhelm-Leibniz Universität Hannover
	1. Semester with Overall Grade 1.4
	Master thesis (Prof. Dr. Tanja Gaich): "Application of the
	Divinylcyclopropane Rearrangement in the Indole Alkaloid
	Synthesis."
03.2011-08.2011	ERASMUS Studenten Austausch
	Jagiellonian University, Krakow, Poland
	Prof. Dr. Jacek Mlynarski, 1. Semester
	Project: "Direct Aldol Reaction of Pyruvic Derivatives; Catalytic
	Attempt to Synthesise Ulosonic Acids."
10.2009-02.2011	Master Course Medicinal- and Natural Product Chemistry
	Gottfried-Wilhelm-Leibniz Universität Hannover
	3. Semester
10.2006-09.2009	Bachelor Course Chemistry
	Gottfried-Wilhelm-Leibniz Universität Hannover
	6. Semester, Graduation with Overall Grade 2.4
	Bachelor thesis (Prof. Dr. Andreas Kirschning): "Synthese von 3-
	Amino-5-prop-2-inylbenzoesäure für die mutasynthetische Nutzung
	am Ansamitocin- und Geldanamycinproduzenten."

[^0]: Scheme 9. Biosynthetic hypothesis of Arigoni \& Wenkert. A. 38, 45\%, 37, 37\% yield.

[^1]: Scheme 57. Synthesis of diol 248. a. DABCO (5 mol\%), 7d, rt., 92\%, b. PPh_{3} (1.2 equiv.), mesitoic acid (1.2 equiv.), DEAD (1.2 equiv.), THF, $-42^{\circ} \mathrm{C}, 75 \%$, c. DiBAI-H (2.2 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, d. Imidazole (2.4 equiv.) $\mathrm{TBSCl}\left(1.2\right.$ equiv.), DMF, $0^{\circ} \mathrm{C}$, 85% over two steps, e. MeLi (3 equiv.), $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 93 \%$.

[^2]:

[^3]: $\begin{array}{lllllllllllllll} & 180 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60\end{array}$

[^4]: $\begin{array}{llllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^5]: $\begin{array}{llllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^6]: $\begin{array}{lllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

[^7]: $\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

