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Abstract (German) 

Integrierte photonische Sensorsysteme bestehen aus miniaturisierten, massen-

produktionstauglichen Bauelementen, die sich einerseits die ausgereifte Halb-

leitertechnologie zu Nutze machen, und die sich andererseits aus dem Baukas-

ten vorhandener photonischer Komponenten bedienen, welche insbesondere für 

Telekommunikationsanwendungen entwickelt wurden. Integrierte photonische 

Sensorsysteme kombinieren einen integrierten photonischen Schaltkreis (pho-

tonic integrated circuit, PIC), optoelektronische Lichtquellen und Photodetek-

toren, sowie elektronische Komponenten für die Signalerzeugung und Signal-

verarbeitung. Die optoelektronischen Komponenten sind entweder direkt auf 

dem PIC integriert oder sind externe Komponenten, in beiden Fällen wird das 

Licht in Wellenleiter auf dem PIC ein- und anschließend wieder ausgekoppelt. 

In solch einem System dient der PIC als Sensorelement, welches so entworfen 

wird, dass sich die optische Transmission mit hoher Sensitivität von den zu de-

tektierenden Änderungen in seiner Umgebung beeinflusst wird. Ein wichtiges 

Beispiel ist ein biochemischer Sensor-PIC, welcher über Wellenleiter mit funk-

tionalisierten Wellenleiteroberflächen die Adsorbtion von Molekülen detektie-

ren kann. Eine Besonderheit ist, dass hierfür keine Markierung der zu detektie-

renden Molekülgruppen wie z.B. Floureszenzfarbstoffe notwendig sind, 

weshalb solche Verfahren als „label-free“ bezeichnet werden. Durch die Kom-

paktheit der entsprechenden Sensorelemente können eine Vielzahl von Senso-

ren parallel innerhalb eines einzelnen Chips auf einer Fläche im Bereich von 

nur einem Quadratmillimeter realisiert werden. 

Gegenstand der vorliegenden Arbeit ist eine ganzheitliche Betrachtung von in-

tegrierten photonischen Sensorsystemen auf mehreren Abstraktionsebenen. Die 

Betrachtung beinhaltet eine detaillierte Analyse des photonischen Wellenleiter-

designs auf der untersten Abstraktionsebene, des photonischen Schaltungsde-

signs und des Systemdesigns inklusive der Elektronik, der Lichtquellen und der 

Photodetektoren auf der mittleren Abstraktionsebene, sowie eine Analyse des 

Ansteuer- sowie Ausleseverfahrens um hochpräzise, eindeutige Messdaten zu 

generieren auf der obersten Abstraktionsebene. Ein besonderes Augenmerk 
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liegt hierbei auf der Optimierung der Leistungsfähigeit auf der Gesamtsysteme-

bene, sowie auf der Kompensation von unvermeidbaren Variationen der Kom-

ponenteneigenschaften, welche unweigerlich mit einer Massenproduktion so-

wie mit einem energieeffizienten Sensorbetrieb unter realistischen 

Umgebungsbedingungen einhergehen. 

Nach einem kurzen Überblick über wesentliche Ergebnisse dieser Arbeit folgt 

in den Kapiteln 1 bis 6 die eigentliche Abhandlung der Inhalte. Die darauffol-

genden Anhänge beinhalten weiterführende konzeptionelle und mathematische 

Details sowie Verzeichnisse der Literaturangaben, der Akronyme, der verwen-

dete mathematischen Symbole, der Figuren, der Tabellen und der Publikatio-

nen. Im Anschluss daran folgt eine Danksagung sowie ein Lebenslauf des Au-

tors. Teile dieser Arbeit wurden bereits in Patenten [P1], [P2], internationalen 

Fachjournalen [J1], [J2], sowie in einem Konferenzbeitrag [C1] publiziert.  

Die Hauptkapitel 1 bis 6 dieser Arbeit sind wie folgt strukturiert: 

 

Kapitel 1 gibt eine Einführung in das Gebiet der integrierten photonischen 

Sensorsysteme und behandelt hierbei optische Sensoren, relevante Anwendun-

gen und die Entstehung der integrierten photonischen Technologie aus der 

elektronischen Halbleiterindustrie. Weiterhin wird der Umfang der in dieser Ar-

beit durchgeführten Analyse aufgezeigt. 

Kapitel 2 stellt die mathematischen und konzeptionellen Grundlagen inte-

grierter photonischer Sensorsysteme zusammen und behandelt hierbei die Pro-

pagation von elektromagnetischen Wellen in photonischen Wellenleitern und 

den wellenleiterbasierten Sensormechanismus über den effektiven Brechungs-

index einer optischen Mode. Weiterhin bietet es einen umfassenden Überblick 

über das komplette Sensorsystem ausgehend von phasensensitiven photoni-

schen Schaltkreisen über die wichtigsten Systemkomponenten und deren tech-

nologischen Herausforderungen bis hin zu einer Gegenüberstellung der geläu-

figsten Systemkonfigurationen und Auslesekonzepte. 



 

ix 

Kapitel 3 analysiert das Design integrierter photonischer Wellenleiter für 

Sensoranwendungen. Dieses Kapitel bietet physikalische Einsichten und um-

fängliche Designleitlinien, mit Hilfe derer für eine bestimmte Messaufgabe eine 

passende photonische Integrationsplattform, ein Wellenleitertypus, eine Mo-

denfamilie sowie eine optimierte Wellenleitergeometrie ausgewählt werden 

können. Grundlage hierfür ist die Wechselwirkung einer geführten Wellen-

leitermode mit einer Änderung des Wellenleiterquerschnittes, die durch die zu 

bestimmende Messgröße hervorgerufen wird. Diese Wechselwirkung wird 

quantitativ durch den Feldinteraktionsfaktor beschrieben. 

Kapitel 4 analysiert die Leistungsfähighkeit und die Limitierungen des ge-

samten photonischen Systems inklusive der phasensensitiven photonischen 

Schaltkreise, der Lichtquellen und Photodetektoren, sowie des elektrischen An-

steuer- sowie Ausleseverfahrens. Ein besonderes Augenmerk liegt hierbei auf 

Systemen, welche für eine kosteneffiziente Großserienproduktion ausgelegt 

wurden. Hierbei spielen insbesondere Variationen der Komponenteneigen-

schaften eine Rolle, welche unweigerlich mit einer Massenproduktion sowie ei-

nem energieeffizienten Sensorbetrieb unter realistischen Umgebungsbedinun-

gen einhergehen.  

Kapitel 5 stellt ein besonders robustes photonisches Sensorsystem vor, wel-

ches, basierend auf den Erkenntnissen aus den Kapiteln 3 und 4, für Sensoran-

wendungen außerhalb idealisierter Laborbedingungen und explizit für eine 

Großserienproduktion geeignet ist. Basierend auf einem integrierten Mach-

Zehnder-Interferometer mit drei um 120° phasenverschobenen Ausgangssigna-

len wird ein spezielles Ansteuer- und Ausleseverfahren demonstriert, welches 

eine instantane Selbstkalibration und eine jederzeit eindeutige Phasenmessung 

ermöglicht.  

Kapitel 6 fasst die wesentlichen Ergebnisse und Schlussfolgerungen zusam-

men und identifiziert offene Herausforderungen für eine erfolgreiche Kommer-

zialisierung integrierter photonischer Sensorsysteme.  
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Abstract 

Integrated photonic sensor systems consist of miniaturized, mass-producible de-

vices that leverage mature semiconductor fabrication technology as well as a 

well-established ecosystem of photonic components developed primarily for 

telecommunication applications. Integrated photonic sensor systems combine a 

photonic integrated circuit (PIC) that contains waveguide-based sensor compo-

nents, opto-electronic light sources and detectors that can be integrated on the 

PIC or that can be coupled to the PIC from outside, and electronic components 

for signal generation and signal processing. Within this system, the PIC serves 

as the sensing element, designed to provide an optical transmission that sensi-

tively depends on changes of the environmental parameter that have to be de-

tected. A prominent example is a biochemical sensor PIC that exploits label-

free detection of molecules binding specifically to a functionalized waveguide 

surface. Due to the compactness of the sensor PIC, it is rather straightforward 

to realize a multitude of parallel sensors on a single chip, with footprints of the 

order of a square millimeter. 

This work aims at a holistic treatment of integrated photonic sensor systems 

over all levels of abstraction. It comprises a detailed analysis of photonic wave-

guide design on the lowest level, of the photonic circuit design to optimize the 

optical response and of the system design including electronics, light sources 

and detectors on an intermediate level, as well as of the readout design geared 

towards obtaining precise and unambiguous measurement results on the highest 

level of abstraction. A special emphasis is put on system-level performance op-

timization as well as on managing unavoidable variations of optical components 

that are inherently linked to mass production and energy-efficient system oper-

ation under realistic environmental conditions. 

After a brief review of the major achievements in the introductory part of the 

thesis, Chapters 1-6 contain the main contents of this work. The subsequent ap-

pendices contain conceptual and mathematical details, lists of bibliographic ref-

erences, acronyms, mathematical symbols, figures, tables and publications. The 

thesis concludes with acknowledgements and a curriculum vitae of the author. 
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Parts of this thesis have been published in patents [P1][P2], in international 

journals [J1][J2], and in a conference contribution [C1]. The main sections are 

structured as follows: 

 

Chapter 1 gives a general introduction to the field of integrated photonic sen-

sor systems by discussing the advantages of optical sensors, relevant applica-

tions, and the emergence of integrated photonic technologies from the electronic 

semiconductor industry, and by summarizing the scope of the analysis provided 

in this work. 

Chapter 2 provides the mathematical and conceptual fundamentals of inte-

grated photonic sensor systems by discussing propagation of electro-magnetic 

signals in photonic waveguides, the mechanism of waveguide-based effective 

refractive index sensing, and a sensor system overview reviewing phase-sensi-

tive photonic circuits, core system components and associated technological 

challenges, as well as sensor system configurations and readout concepts. 

Chapter 3 analyzes the design of integrated photonic waveguides for sensing 

applications and provides physical insights and comprehensive design guide-

lines for the selection of appropriate photonic integration platforms, waveguide 

types, mode families, and optimized waveguide geometries geared towards a 

specific measurement task. The analysis builds upon the interaction of a wave-

guide mode with a particular change of the waveguide properties, which is 

caused by the environmental parameter of interest. The strength of this interac-

tion is quantified by the so-called field interaction factor. 

Chapter 4 analyzes the performance and limitations of the entire photonic 

sensor system, including the phase-sensitive photonic circuits, light sources and 

detectors, as well as the electrical readout. A special focus is on systems that are 

geared towards cost-efficient mass-production and large-scale deployment and 

that are able to handle variations of components that are inherently linked to 

mass production and energy-efficient system operation under realistic condi-

tions. 



 

xiii 

Chapter 5 presents a particularly robust photonic sensor system viable for 

large-scale sensor applications outside a controlled laboratory environment by 

aggregating the insights gained by the analyses in Chapters 3 and 4. Based on 

an integrated Mach-Zehnder interferometer with three 120°-phase-shifted out-

put signals, a specific operation and readout concept is demonstrated that offers 

instantaneous self-calibration and unambiguous phase readout. 

Chapter 6 summarizes the work with its key findings and conclusions and 

identifies remaining challenges for a successful commercialization of integrated 

photonic sensor systems.  

Abstract
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Achievements 

In this thesis, the role of photonic integrated circuits in fully integrated sensor 

systems is analyzed. The three main fields of research are waveguide design 

for photonic sensors [J1], sensor-system analysis, performance estimation, 

and design [J2], as well as robust calibration and readout schemes using a 

1×3 Mach-Zehnder Interferometer (MZI) [C1][P2]. The following list 

briefly summarizes the main achievements in each research field.  

Waveguide design for photonic sensors 

Design guidelines: Based on a mathematical model of light propagation in sen-

sor waveguides, comprehensive waveguide design guidelines for specific 

surface-sensing tasks are formulated. This represents the first broadly ap-

plicable analysis capable of covering different photonic integration plat-

forms, different waveguide types, and different mode families [J1]. 

Explanation of waveguide sensitivity trends: The main dependencies of wave-

guide properties on geometrical and material parameters are identified and 

explained. It is shown that they result from the scaling laws of Maxwell’s 

equations, from the effect of field enhancement, as well as from waveguide 

cladding asymmetry [J1]. 

Introduction of a broadly applicable surface sensitivity quality metric: With 

this metric, the influence of surface layers of different thicknesses and re-

fractive indices on mode propagation can be evaluated [J1]. 

Computationally efficient recipe:    For calculating the influence of surface layer 

variations on mode propagation in integrated waveguides, a numerically ef-

ficient technique is introduced that relies on field interaction integrals via a 

perturbation approach applied to a single numerical simulation [J1]. 

Sensor system analysis, limits and design guidelines 

Holistic system model for waveguide-based photonic sensor systems: A com-

prehensive quantitative model of waveguide-based photonic sensor systems 

is formulated, which enables a consistent analysis and a broad benchmark 

of the performance of different sensor concepts and specific technical im-

plementations [J2]. 
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Analysis of the impact of laser frequency noise on sensors based on high-Q ring 

resonators and Mach-Zehnder interferometers: The system model also 

comprises the impact of laser frequency noise, which eventually limits the 

viability of high-Q ring resonators in sensing applications. MZI-based sen-

sors with approximately balanced arm lengths are much more robust with 

respect to frequency noise of non-ideal laser sources. The importance of this 

aspect is demonstrated by using the frequency-noise spectrum of a vertical-

cavity surface emitting laser (VCSEL) as a particularly efficient and low-

cost light source for integrated sensor systems [J2]. 

Sensitivity and limit of detection benchmark: The model allows to benchmark 

the performance of ring resonators and Mach-Zehnder interferometers as 

the most common photonic sensor circuits when used within a fully inte-

grated photonic sensor system under realistic operation conditions [J2]. 

Comprehensive sensor system design guidelines: Based on the findings, com-

prehensive guidelines for the selection of appropriate system components 

and sensor circuit design are formulated. Furthermore, sensitivity and noise 

trends are traced back to fundamental physical effects. The findings were 

summarized in an educational MATLAB application [J2]. 

Calibration and readout of a 1×3 Mach-Zehnder interferometer (MZI) 

Mathematical description of a 1×3 MZI-based sensor system. A qualitative 

model of a 1×3 MZI-based sensor is formulated that accounts for compo-

nent non-idealities and readout [C1]. This model builds the base for a patent 

application [P2]. 

Robust sensor calibration concept for 1×3 MZI-based sensor system. Based 

on the model, a strategy is formulated that enables an instantaneous self-

calibration during sensor operation and that can hence eliminate impair-

ments such as temperature drift, strain, pressure, humidity, or aging 

[C1][P2]. 

Robust sensor readout concept for 1×3 MZI-based sensor system. As an ad-

ditional feature of the 1×3 MZI-based sensor system, a technique is intro-

duced that allows for endless phase unwrapping and thereby provides abso-

lute, unambiguous measurements. This technique is key to applications 

where the observed process is happening faster than the sampling frequency 

or where the device is turned off and on between several measurements 

[C1][P2]. 
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1 Introduction 

Sensors are devices that detect changes of an environment and convert them to 

an output signal, which is either visualized directly or processed further to con-

trol connected actuators. The steep rise of microelectronics and micromechanics 

in the last decades has led to improvements in size, affordability, and accuracy 

of such sensors. As a consequence, sensors have become ubiquitous devices that 

add intelligence to everyday objects such as cars, smartphones and homes, or 

that control complex processes in manufacturing, medicine, mobility, and ro-

botics. 

Light is the basis for a multitude of free-space and fiber-based optical sensors 

such as refractometers, media sensors, environmental sensors for temperature 

or humidity, mechanical sensors for strain or acoustics, as well as chemical or 

biological sensors. Optical sensors can passively probe analytes without the use 

of currents or direct physical contact. In addition, optical biological sensors can 

enable label-free detection of certain analytes without prior attachment of fluo-

rescent markers or radioactive isotopes. However, at present, optical sensors 

still rely on highly versatile and sensitive optical systems that are typically built 

from macroscopic, discrete components, a fact which often results in rather 

bulky bench-top photonic sensor systems. 

These limitations can be overcome by integrated photonic sensor systems, 

which harness the tremendous capabilities of highly advanced semiconductor 

fabrication technology. Integrated photonic sensor systems offer outstanding 

miniaturization, massive functional parallelization, and cost-efficient mass-pro-

duction using ultra-robust processes along with co-integration and co-packag-

ing with readily available (opto-)electronic components.  

When it comes to large-scale deployment of efficient optical sensors, silicon-

based photonic integration platforms are of particular interest, as they can ex-

ploit the enormous technology push of the mature complementary metal-oxide 

semiconductor (CMOS) fabrication processes. The advance of integrated pho-
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tonics technology is driven mainly by an application pull from the ever-increas-

ing bandwidth demands of the telecommunication industry. Tremendous effort 

is put into maturing silicon photonics by optimizing and expanding the photonic 

integrated circuit (PIC) component portfolio that so far comprises mainly pas-

sive waveguides, couplers, splitters, combiners, or electro-optic modulators. 

The high refractive index contrast of the silicon photonics platform enables 

small feature sizes and hence small device footprints, however, the indirect 

bandgap of silicon impedes monolithic integration of silicon-based light 

sources. As a consequence, the silicon-based PIC technology is often comple-

mented by the integration of (or coupling to) light sources and detectors based 

on other materials. Today, integrated photonic technology is offered commer-

cially via foundry services and associated photonic process design kits (PDK). 

Within this work, the PIC technology will be used to realize integrated pho-

tonic sensor systems, with a special focus on waveguide-based sensors that rely 

on a change of the effective refractive index of a waveguide mode. This change 

of the effective refractive index leads to a phase shift, which is commonly trans-

lated into a measurable change of the optical output power via on-chip phase-

sensitive photonic circuits such as resonators or interferometers. Other sensing 

principles such as absorption, Raman scattering, or surface plasmon resonance 

spectroscopy are not considered here. In the framework of our research, we 

model the entire integrated photonic sensor system including light sources and 

detectors, optical coupling interfaces, on-chip waveguides and phase-sensitive 

photonic circuits, analog-to-digital converters, as well as the sensor operation 

and signal read-out. A special emphasis is put on component and system per-

formance optimization, as well as on managing unavoidable variations of dif-

ferent sensor components that are inherently linked to mass production and en-

ergy-efficient system operation under realistic environmental conditions. 
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The design of an entire integrated photonic sensor system requires a compre-

hensive understanding on three levels of abstraction, namely  

i) waveguide design, which is key to select the appropriate waveguide 

for a given sensing task, 

ii) system design, which is instrumental to lay out the system compo-

nents for a given sensitivity and limit-of-detection target, and 

iii) readout design, which allows the operator to obtain precise and un-

ambiguous measurement data. 

A visualization of an integrated photonic sensor system including the three fo-

cus areas of this work is shown in Fig. 1.1. 

 

Fig. 1.1. Integrated photonic sensor system and focus areas of this thesis. The holistic de-

sign of an integrated photonic sensor system requires a comprehensive understanding on three 

levels of abstraction, namely (i) waveguide design, (ii) system design, and (iii) readout design, 

which are discussed extensively in Chapter 3, Chapter 4 and Chapter 5, respectively. 

 1 Introduction
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2 Fundamentals: Integrated photonic 
sensor systems 

This chapter introduces the fundamentals of waveguide-based integrated pho-

tonic sensor systems. It starts with the mathematical description of electro-mag-

netic wave propagation in photonic waveguides in Section 2.1. The basic sens-

ing principle via the effective refractive index of a propagating waveguide mode 

is introduced in Section 2.2, including a closer look at evanescent-field sensing. 

Section 2.3 gives a system-level overview of integrated photonic sensors. It in-

troduces the two main phase-sensitive photonic circuit types, resonators and in-

terferometers, followed by a discussion of core components and associated tech-

nological challenges. It continues with a comparison of attractive sensor system 

configurations focusing on the choice and the control of the optoelectronic light 

sources, detectors and sensor circuits, and concludes with a short overview of 

sensor readout concepts. 

2.1 Electro-magnetic wave propagation in 
photonic waveguides 

Waveguide-based integrated photonic sensor systems rely on electro-magnetic 

waves in the optical regime, typically in the visible (VIS), the near-infrared 

(NIR), or the mid-infrared spectrum (MIR). Different sensor applications ben-

efit from different sections of the electro-magnetic spectrum, and hence require 

suitable material systems that are capable of efficiently guiding light in the re-

spective wavelength range. This section describes the propagation of electro-

magnetic waves in photonic waveguides including the key modal characteristics 

relevant for sensing. 

2.1.1 Plane waves in homogeneous optical media 

The general behavior of electro-magnetic fields is described by Maxwell’s 

equations, which comprise the four coupled partial differential equations 
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In these equations, E and H are the vectorial electric and magnetic fields, D is 

the dielectric displacement, B the magnetic flux density, and J and ρ are the 

electric current and charge densities, respectively. In general, each quantity is a 

function of time t and space, described by the position vector 
T( , , )x y zr . In 

optics, we assume the absence of currents  0J  and free carriers  0  , as 

well as non-magnetic materials  r 1  . The constitutive relations can be writ-

ten with the help of the electric vacuum permittivity ε0, the magnetic vacuum 

permeability μ0 and the electric polarization P as 
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0
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, , , .
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 (2.2) 

For now, we assume a linear, time-invariant system and time-harmonic solu-

tions of the form      ,, exp j tt  E r E r  and      ,, exp j tt  H r H r  

with complex vectorial electric and magnetic fields  ,E r  and  ,H r , 

where 2πf   is the angular frequency. We can then reformulate Eqs. (2.2) to 
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µ 
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

B r H r
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 (2.3) 

Here,  ,r r  is the complex relative dielectric constant, which is linked to the 

complex refractive index  ,n r  via    2
, ,rn  r r . In isotropic, spatially 

homogeneous   r , 0 r  and lossless materials  n n , Maxwell’s equa-

tions can be written as 
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By taking the curl of the first two lines in Eq. (2.4), and with the help of the 

identity curlcurl graddiv divgrad X X X, the second-order linear partial dif-

ferential wave equations can be derived. Using the vacuum propagation con-

stant 0k c  where 0 01c   is the speed of light, and with the scalar prop-

agation constant    0k n   , the so-called Helmholtz Equations for the 

electric and magnetic fields can be written as 
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The general solutions to the Helmholtz Equations in (2.5) can be written as  
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 (2.6) 

Here,  0 ,E r  and  0 ,H r  are the electric and magnetic amplitudes of the 

fields at the angular frequency ω. The vectorial propagation constant 

    ˆ  β e  points into the propagation direction of the wave, which is given 

by the unit vector ê , see Fig. 2.1 for 
T

z (0,0,1)e . Since  div , 0 E r  and 

 div , 0 H r , the direction of propagation defined by  β  is perpendicular 

to the electric and magnetic field vectors  0 ,E r  and  0 ,H r . Solutions of 

this form are called plane waves, as the wavefronts are planes that are perpen-

dicular to the direction of propagation. 
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Fig. 2.1. Propagation of a plane electro-magnetic wave in an isotropic, homogeneous optical 

medium. The direction of propagation, here in z-direction, is dictated by the propagation vector 

β, and is perpendicular to the electric-field vector E as well as to the magnetic-field vector H. 

The vectors E, H, and β form a right-handed system.  

Note that the time-averaged energy flow follows the same direction as β , and 

can be calculated by taking the real part of the complex Poynting vector  

        *
.Re

1
, Re , ,

2
  

 
  

 
r E rS H r  (2.7) 

Lossy optical media can be approximated by a complex effective refractive in-

dex jn n   . The real part of n  corresponds to the regular refractive index n 

of the material. The negative imaginary part is the extinction coefficient 

 02k  , which is linked to the material loss coefficient α via the vacuum 

propagation constant 0k . The resulting non-zero imaginary part of the complex 

propagation constant 2j     leads to a decay term in the electro-mag-

netic fields and the optical power consequently decays exponentially with 

 ˆexpP  e r . 

2.1.2 Waveguide modes 

As opposed to free-space optics, integrated photonic waveguides are designed 

to confine the electro-magnetic waves within a certain waveguide cross section 

in order to couple, route, and read-out the optical signal in a defined space on a 

photonic integrated circuit (PIC). From a ray-optic perspective, the confinement 

of the electro-magnetic waves in the waveguide core is achieved by exploiting 

the effect of total internal reflection in an arrangement of materials with differ-

ent refractive indices, just as in optical fibers. The simplest version is a so-called 

slab waveguide, which consists of stacks of thin layers of different materials, 
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Fig. 2.2. Mode propagation in a slab waveguide. (a) The material stack of a slab waveguide 

consists of a waveguide core with refractive index n1 and height h, as well as a lower and an 

upper cladding with refractive indices n2 and n3, respectively. The refractive index profile is con-

stant along the x- and z-direction. (b) Due to the differences in refractive indices, total internal 

reflection occurs for rays in the waveguide core hitting the cladding interfaces at angles larger 

than the critical angle θc. The light is hence confined primarily to the waveguide core and effec-

tively travels in z-direction. (c) Depending on the angular frequency ω and the refractive index 

profile n(r,ω), a discrete number of guided eigenmodes can propagate in the waveguide. Shown 

here is the magnitude of the electric field component xE  of the first three transverse electric 

(TE) modes. Each guided mode comprises an evanescent portion within the waveguide cladding 

in the vicinity of the cladding interfaces. The x- and y-directions are parallel and perpendicular 

to the substrate of the integrated photonic waveguide, respectively, and form a right-handed co-

ordinate system. 

effectively creating a lower and an upper cladding around the central waveguide 

core. Fig. 2.2(a) depicts such a slab waveguide with a refractive-index profile 

( )n r , which is uniform in x- and z-direction. Rays in the waveguide core hitting 

the cladding interfaces at angles larger than the critical angle 

 
2,3 2,3 1c arcsin n n   of total internal reflection will be confined to the core 

and hence effectively travel along the z-direction, see Fig. 2.2(b).  

In contrast to the ideal optical media described in Eq. (2.4), Line 2, photonic 

waveguides are hence not spatially homogeneous, but are rather characterized 

by a distinct complex refractive index profile ( , )n r . The two coupled differ-

ential Maxwell equations from Eq. (2.4) and the associated wave equations 

from Eq. (2.5) can hence be reformulated as 
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 (2.9) 

For integrated photonic waveguides with a refractive index profile ( , )n r  that 

is invariant or periodic in z-direction, the wave equations (2.9), together with 

boundary conditions, define eigenvalue problems. We are looking for solutions 

where the eigenfunctions  ,E r  and  ,H r  exhibit modal field profiles that 

are confined in x- and y-direction, and where the propagation in z-direction is 

defined by the corresponding eigenvalue    . In standard slab, strip, or slot 

waveguides, the refractive index profile is invariant in z-direction. The associ-

ated modal field profiles  0 , ,x y E  and  0 , ,x y H  remain constant up to a 

phase shift. The eigenfunctions for a propagation in z-direction are hence of the 

form 
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 (2.10) 

Depending on the angular frequency ω and the refractive index profile  ,n r  

of the waveguide, a discrete number of guided modes can propagate in the 

waveguide. For typical planar waveguides on a PIC, these guided modes can be 

classified in two mode families: 

Quasi-TE modes: (Quasi) transverse electric polarized, where the domi-

nant component of the electric field is oriented parallel to the substrate 

(strong Ex and Hy, weak Ey and Hx, minor Ez and Hz); or 

Quasi-TM modes (Quasi) transverse magnetic polarized, where the domi-

nant component of the magnetic field is oriented parallel to the substrate 

(strong Hx and Ey, weak Hy and Ex, minor Ez and Hz). 

Fig. 2.2(c) shows the magnitude of the Ex component of the first three TE modes 

throughout the slab waveguide. Each guided mode comprises an evanescent 

portion within the waveguide cladding, which decays exponentially for .y   
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2.1.3 Modal effective refractive index, loss, and thermo-
optic coefficient 

For waveguides with core dimensions of the order of the wavelength in the core 

material, a non-negligible portion of the modal electric and magnetic fields of a 

guided mode is located outside of the waveguide core in the nearby cladding 

regions. This field portion is evanescent along y and x, i.e., it decays decay ex-

ponentially with increasing distance from the waveguide core. The share of the 

evanescent field within the total modal field increases with smaller waveguide 

core dimensions, and depends on the waveguide core and cladding refractive 

indices. The complex propagation factor   of such a waveguide mode is hence 

not only affected by the material properties of the waveguide core, but also by 

the material properties of the surrounding cladding regions. In contrast to plane 

waves in homogeneous media with a complex bulk refractive index n  of a ho-

mogeneous material, a waveguide mode has a complex effective refractive index  

 e 0 ee j .n nk    (2.11) 

Here, the effective refractive index ne and the effective extinction coefficient κe 

are determined by the material properties and the modal field distribution in the 

waveguide core as well as in the cladding regions. From now on, the effective 

loss originating from κe is denoted as the modal loss α, where the subscript “e” 

is omitted. Furthermore, a guided mode exhibits a thermo-optic coefficient 

TOC d dn T , which describes the dependency of the material refractive index 

n on temperature T, which is a function of both the core and cladding material 

properties. It is important to note that all three effective modal characteristics, 

ne, α and TOC, differ for different modes in the same physical waveguide, which 

makes the selection of the right mode and polarization essential for designing 

an efficient sensor circuit. 
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Fig. 2.3. Effective refractive index determination with Marcatili’s method. The rectangular 

strip waveguide is sliced into five regions of interest, where the majority of the modal field is 

concentrated. The modal propagation is calculated based on the wavenumber k1 in the core region 

(1), as well as the wavenumbers of two slab modes defined by infinitely extended refractive index 

profiles of the cross-sections 2-1-3 and 4-1-5, respectively. 

The quantitative calculation of the effective refractive index of a waveguide 

mode is non-trivial. In rectangular strip waveguides, it can be approximated, 

e.g., by using Marcatili’s method [1], see Fig. 2.3. Here, Maxwell’s equations 

are solved serially, starting in the waveguide core (1) to obtain the wavenumber 

1k , followed by solving them for two infinitely extended slab waveguides based 

on the refractive index profiles in x- and y-direction at the cross-sections (2-1-3), 

yielding 2-1-3k  and (4-1-5), yielding 4-1-5k . The modal fields in the hatched cor-

ner regions are ignored. The effective refractive index e M 0n k  of the over-

all waveguide can then be calculated via Marcatili’s approximation of the modal 

propagation constant as 2 2 2 2
M 1 2-1-3 4-1-5k k k   . 

In practice, modern computer-based mode solvers such as Lumerical MODE 

[2] are used to calculate the effective refractive index of a waveguide mode far 

more accurately. As an example, Fig. 2.4 shows the calculated magnitude 
2

E  

of the complex electric mode fields of the fundamental TE0 and TM0 modes of 

a rectangular strip waveguide. Typical sensing waveguide parameters were cho-

sen, i.e., a wavelength of λ = 1550 nm, a width w = 450 nm, a height 

h = 220 nm, and a material stack consisting of a silicon (Si, nSi = 3.48) wave-

guide core, supported by a silicon dioxide (SiO2, nSiO2 = 1.44) buried oxide 

(BOX) bottom cladding, and a water (H2O, nH2O = 1.31) top cladding. It can be 

seen that for the TE0 mode, a large portion of the field propagates inside the 

waveguide core, which has a much larger refractive index than the cladding. 

The field of the TM0 mode extends further into the cladding, and the effective 

refractive index is hence influenced more by the refractive index of the cladding 
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Fig. 2.4. Effective-refractive-index determination via numerical simulations. A typical rec-

tangular silicon strip waveguide with dimensions w×h = 450×220 nm², featuring a buried silicon 

oxide (BOX) as the bottom cladding, and water as the top cladding. The fundamental modes in 

TE and TM polarization differ heavily in their electric field distributions |E|², and consequently 

in their modal effective refractive index, as shown by these calculations from Lumerical MODE. 

 

Fig. 2.5. Field distribution of a silicon strip waveguide for various widths. As an example, 

the fundamental quasi-TE mode is shown for a bottom SiO2 cladding and a H2O top cladding. 

Due to the asymmetric cladding refractive index, the fields get pushed into the lower cladding 

for ultra-narrow waveguides. The wider the waveguide, the more the fields are confined to the 

waveguide core. 

materials. As a consequence e,TE e,TMn n , which can be explained by a mix of 

the flat waveguide shape as well as the effect of field enhancement. For the TE 

polarization, an enhancement of the electric field xE  exists at the WG sidewalls 

because the normal component    2
0x x xnD x E  of the displacement must 

be continuous, while for TM polarization this field enhancement is to be seen 

at the top and at the bottom WG surfaces. 

The impact of the waveguide dimensions on the modal fields is visualized in 

Fig. 2.5. For the same materials as in Fig. 2.4, the field distributions |E|² for a 

waveguide height of 340 nm and for various waveguide widths w from 

100…600 nm are plotted. It can be seen that for wide waveguide cores with 
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w > 400 nm, the TE0 mode is strongly confined to the core. Narrower wave-

guide cores provide only weak guiding. If the core is too narrow, the mode can-

not be guided. Higher-order modes can also be used for sensing applications, 

but the corresponding minimum waveguide dimensions and bend radii are 

larger, which reduces the achievable PIC density. 

The field distribution of a waveguide mode is not only affected by the wave-

guide geometry as visualized in Fig. 2.5, but also by the frequency, see Appen-

dix A.4 for details. As a consequence, the frequency-dependent refractive indi-

ces of the different materials are all incorporated in the dispersion relation 

   . The dispersion relation can be linearly approximated by expanding 

    in a Taylor series around the central frequency of a narrow-band optical 

spectrum and taking only the first two terms. For homogeneous materials and 

for waveguide modes, the group refractive index ng and the effective group re-

fractive index neg can then by written as  
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 (2.12) 

These group refractive indices represent the ratio of the speed of light c and the 

(effective) group velocity v(e)g, which describes the envelope velocity of a pulse 

propagating in the dispersive material (waveguide). The effective group refrac-

tive index neg of a waveguide mode is used to calculate spectral properties of 

photonic circuits such as the free spectral range of a resonator or an interferom-

eter. 

Fig. 2.6 depicts the important effective modal characteristics ne, neg, adB/L and 

TOC, exemplarily for a silicon strip waveguide on a silicon dioxide BOX, op-

erated at a wavelength of 1550 nm. Several common waveguide geometries are 

shown, each for the fundamental TE0 as well as TM0 mode. In a typical sensing 

application, a waveguide with a virtually lossless silicon dioxide top cladding 

is used for routing, while the oxide is removed in the sensor area and the sensor 

waveguide is exposed to a lossy water top cladding.  
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In Fig. 2.6(a), it can be seen that wider and higher waveguides have a larger 

field portion in the high-index waveguide core and hence a larger effective re-

fractive index ne. Moreover, modes in ultra-narrow waveguides are only weakly 

guided in the core, and the associated ne approaches the bulk n of the respective 

cladding material. For sensor waveguides that aim at a large field overlap with 

the top cladding, different waveguide core aspect ratios are beneficial for the 

fundamental quasi-TM and quasi-TE modes. 

In Fig. 2.6(b), the effective group refractive index neg is shown, which is af-

fected both by waveguide dispersion as well as by material dispersion of the 

core and cladding materials. In Fig. 2.6(c), the modal power loss α of different 

waveguides is shown. Note that based on the modal power loss α, given in 

[1/m], we can calculate the field attenuation adB and hence the power attenuation 

(a²)dB in decibels and its relation to the modal loss α as  
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 (2.13) 

It can be seen that the absorption in bulk Si and SiO2 at 1550 nm is close to zero. 

However, the effective modal loss of the fundamental TE and TM modes in a 

waveguide with a H2O top cladding with 
2

1
H O 990m   can be substantial, 

and peaks at widths where a large portion of the mode field is located in the 

aqueous top cladding.  

Furthermore, Fig. 2.6(d) shows that the TOC of the silicon waveguides with a 

SiO2/H2O cladding are rather similar. For the displayed waveguide modes, the 

lines are mostly overlaying and the difference is ≲10-5
 K

-1. Athermal wave-

guides (or interferometers) can be designed by selecting a geometry where the 

effective TOC (and/or TOC difference in an interferometer) is zero. 
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Fig. 2.6. Effective modal characteristics of a waveguide mode. Examples for a silicon strip 

waveguide on a silicon dioxide BOX operated at λ = 1550 nm, see Fig. 2.4. A silicon dioxide top 

cladding (SiO2, non-transparent lines) is used for routing waveguides, whereas an aqueous top 

cladding (H2O, semi-transparent lines) can be used in sensing sections. Results are plotted for the 

fundamental TE0 (solid lines) and TM0 (dotted lines) modes. (a) Effective refractive index ne. 

Wider and higher waveguides have a larger field portion in the high-index waveguide core and 

hence a larger ne. Modes in narrower waveguides are only weakly guided in the core, and the 

associated ne approaches the bulk n of the respective cladding materials. The fundamental TM0 

and TE0 modes benefit from different aspect ratios of the waveguide when it comes to maximiz-

ing the field overlap with the top cladding for sensing applications. (b) Effective group refrac-

tive index neg, affected by both waveguide dispersion as well as material dispersion of the core 

and cladding materials. (c) Modal loss α. Absorption in bulk Si and SiO2 at 1550 nm is close 

to zero. However, the modal loss with an H2O top cladding can be substantial and peaks at widths 

where a large portion of the mode field is found in the top cladding. (d) Thermo-optic coeffi-

cient TOC. The TOC of the waveguides with a SiO2/H2O cladding is similar, the plotted lines 

overlap for most of the displayed widths. Athermal waveguides can be designed by choosing a 

geometry where the effective TOC is zero. In an interferometer, the TOC of the sensor and ref-

erence arm can be matched to get a temperature-independent phase difference.  



2.1  Electro-magnetic wave propagation in photonic waveguides 

17 

2.1.4 Bloch modes in periodic waveguides 

Waveguides for sensing applications can benefit from structures with refractive 

index profiles that are not constant in the direction of propagation. A prominent 

example of such a waveguide is based on a sub-wavelength grating (SWG, 

[3]-[8]). Such a waveguide exhibits a periodic dielectric structure along the di-

rection of propagating with period a, i.e.,    r r r r a  and hence a periodic 

refractive index    n n r r a , which is inserted into the wave equations (2.9)

. According to Bloch’s theorem, the corresponding eigenfunctions  ,E r  and 

 ,H r  of such a structure exhibit a periodic part  ,u r with underlying 

waveguide period a and can be written as 
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These eigenmodes of the periodic waveguide are called Bloch modes and ex-

hibit a distinct Bloch propagation vector  B β  and an associated Bloch effec-

tive refractive index  e,Bn  , which in combination with the period length a  

defines the operating mode of the waveguide. Periods that are much larger than 

the Bragg wavelength, i.e.,  e,B2na , will lead to a diffraction of light out 

of the waveguide, which is exploited, e.g., via diffraction grating couplers that 

are used to couple the light out of a photonic integrated circuit. For smaller pe-

riods around the Bragg wavelength, the waveguides act as Bragg gratings and 

hence reflect the light, which is used, e.g., in distributed Bragg reflectors. For 

periods even smaller than the Bragg wavelength, the waveguides are operated 

in the sub-wavelength regime. Here, the mode can propagate through the wave-

guide without diffraction and reflection. The period can then be used as an ad-

ditional geometric parameter, e.g., to tailor the field distribution for specific 

sensing properties, which is analyzed in detail in Chapter 3. 
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2.2 Waveguide-based sensing 

In Section 2.1, the fundamental properties of waveguide modes and important 

modal characteristics have been introduced. This section describes how a wave-

guide can be used as the core element of an integrated photonic sensor.  

2.2.1 Principle of effective refractive index sensing 

Equations (2.10) and (2.11) show that mode propagation in a waveguide is dic-

tated by the (complex) propagation constant  . Consequently, at a fixed angular 

frequency ω, any changes in the (complex) effective refractive index 

e ee jn n    and hence changes of either the effective refractive index ne or the 

effective extinction coefficient κe will alter the mode propagation. As an exam-

ple, the refractive index n of the waveguide core or cladding materials can 

change with stress or temperature. Furthermore, changes to the waveguide ge-

ometry, e.g., in the case of suspended, movable waveguides [9], will affect the 

field distribution and hence the effective refractive index ne. One of the most 

common sensing applications with integrated photonic waveguides, however, 

leaves the waveguide core geometry as well as the waveguide and BOX mate-

rials unchanged, and instead relies on a changeable top cladding. A change in 

the top cladding modifies the effective modal characteristics ne or κe due to the 

interaction with the evanescent portion of the guided mode fields. Such a 

changeable cladding can be realized, e.g., by exposing the waveguide core to an 

aqueous solution with a variable refractive index, or by supplying molecules in 

the solution that can adsorb to a functionalized surface on the waveguide core, 

as shown in Section 2.2.2 and discussed in detail in the analysis presented in 

Chapter 3. 

The remainder of this work focuses on sensing applications, where changes in 

the effective refractive index ne dominate over changes in the extinction coeffi-

cient κe. Sensors focusing on a variable loss such as absorption spectroscopy 

can also be realized in integrated waveguides, but will not be addressed in this 

work. 
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2.2.2 Evanescent-field homogeneous and surface sensing 

A simple waveguide-based sensing application employs fully-cladded wave-

guides with a stress or temperature-dependent effective refractive index. Be-

yond that, deliberately exposing a part of the waveguide to the environment 

enables a variety of additional attractive sensing applications that can probe the 

optical properties or contents of different media such as liquids or gases. These 

sensing variants make explicit use of the evanescent field of a waveguide mode 

and can be classified as either homogeneous sensing or surface sensing. 

In the homogeneous sensing case, a plain waveguide core on a BOX is exposed 

to a homogeneous medium as the top cladding, see Fig. 2.7(a). Note that the 

waveguide core in a sensor waveguide can also be realized as a suspended 

waveguide to further increase the overlap of the evanescent field with the target 

medium. However, for simplicity, this work will always assume a waveguide 

core supported by a BOX. If the waveguide geometries are chosen such that a 

substantial portion of the evanescent field extends into the top cladding, changes 

ΔnM in the refractive index of the homogeneous medium will lead to a change  

 

Fig. 2.7. Homogeneous sensing and surface sensing. a) For homogeneous sensing, the plain 

waveguide core is exposed to a homogeneous medium of refractive index nM. Through the eva-

nescent field of the waveguide mode, changes ΔnM in the refractive index of the homogeneous 

medium affect ne. b) Surface sensing relies on target molecules that that are provided by a 

background medium and that are adsorbed on the waveguide core surface. By functionalizing the 

waveguide core surface with dedicated capture agents, the sensing process can be restricted to 

specific target analytes. 
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Δne of the effective refractive index of the waveguide mode accordingly. Ho-

mogeneous sensing is usually unspecific, i.e., the change cannot be traced back 

to a specific substance in the medium. 

In the surface sensing case, the target analyte is not the homogeneous medium 

as such, but rather target molecules that are contained in the homogeneous me-

dium, see Fig. 2.7(b). In this case, the waveguide core surface can be function-

alized with dedicated binding agents such that only specific molecules of inter-

est can attach. Again, if the waveguide geometry is chosen accordingly, the field 

overlap with the surface layer leads to a substantial change Δne if enough mol-

ecules adsorb on the surface. 

Waveguides on PIC are usually passivated, to avoid environmental impact, typ-

ically via an all-around oxide cladding. Homogeneous and surface sensing 

hence typically requires dedicated sensitive waveguide regions, where the oxide 

cladding is locally removed. Any change Δne within such a sensitive waveguide 

region of length L will introduce an accumulated phase offset 0 eLk n     to 

the propagating mode, see Fig. 2.8. 

 

Fig. 2.8. Principle of waveguide-based refractive index sensing via the evanescent field. In 

a sensitive waveguide region, the passivating top cladding is removed to expose the waveguide 

core to the analyte. In the case of surface sensing, the waveguide core surface is functionalized 

such that specific molecules can be adsorbed. The target molecules are delivered by a background 

medium such as an aqueous solution. The evanescent field of the waveguide mode overlaps with 

the molecular layer on the core surface, thereby changing the modal effective refractive index. 

After a length L, this leads to an accumulated phase offset Δφ = -k0ΔneL that depends on the 

modal field overlap with as well as on the refractive index and thickness of the adsorbed molec-

ular layer. 
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2.3 Sensor system overview 

This section provides a system-level overview of integrated photonic sensors. 

To make use of sensor waveguides as introduced in Section 2.2, phase-sensitive 

photonic circuits such as resonators or interferometers are required that translate 

a phase shift into a measurable change of the optical output power, see Sec-

tion 2.3.1. A fully integrated photonic sensor system comprises additional core 

components, which are discussed in Section 2.3.2 together with technological 

challenges associated with their implementation. Section 2.3.3 concludes the 

fundamentals section by discussing possible sensor operation and readout con-

cepts based on different combinations of light sources, sensor circuits and pho-

todetectors. 

2.3.1 Phase-sensitive photonic circuits 

Waveguide-based sensing via the effective refractive index ne is not possible 

with a standalone waveguide connected to a light source and a photodetector, 

as the phase change 0 eLk n     caused by a change Δne of the modal effec-

tive refractive index cannot be measured directly. Instead, a phase-sensitive 

photonic circuit is required that translates Δφ into measurable changes ΔPo of 

the optical output power. The most prominent phase-sensitive circuits in inte-

grated photonic sensor systems can be classified as resonators and interferome-

ters. Two generic examples of these classes are depicted in Fig. 2.9, namely ring 

resonators (RR [10]) and Mach-Zehnder interferometers (MZI [11]).  

In both examples, a laser provides an optical signal with frequency 0k c  

and power Pi. For the resonator in Fig. 2.9(a), this signal is coupled into a wave-

guide resonator with a circumference L and a variable effective refractive index 

ne + Δne. For the interferometer in Fig. 2.9(b), the signal is split by a multi-mode 

interference (MMI) coupler into a reference arm and a sensor arm. The two 

waveguide arms can exhibit an initial length offset ΔL, as well as an effective 

refractive index offset Δne,0, caused for example by different cladding materials. 

The sensor arm contains the targeted measurement quantity Δne. The two sig-

nals are combined in a second MMI, where they superimpose, such that an ad-

ditional change Δne in the sensor arm leads to a measurable change of the output 
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power Po. The (idealized) optical power transmissions o iT P P  are plotted 

within [-π,π] of the respective operating points OP,RR  and OP,MZI .  

For a ring resonator (RR) with a high quality factor Q, the transmission T(φRR) 

shows a Lorentzian resonance with depth T̂  and full-width at half-maximum 

FWHM,RR , while for a single-output Mach-Zehnder interferometer (MZI), the 

transmission T(φMZI) is sinusoidal with amplitude ˆ 2T , i.e.,  
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Fig. 2.9. Phase-sensitive photonic circuits. The most prominent phase-sensitive circuits in in-

tegrated photonic sensor systems can be classified into resonators and interferometers, which are 

drawn schematically including idealized optical transfer functions. (a) For ring resonators, light 

is coupled from a bus waveguide into a resonator waveguide with, which is subject to a refractive 

index change Δne that is to be detected. For high quality factors, the optical transmission T(φRR) 

exhibits a sharp Lorentzian resonance. By proper choice of the wavelength, the sensor operating 

point φOP,RR can be adjusted to the vicinity of the resonance. (b) In Mach-Zehnder interferom-

eters, the light is split into a reference arm and a sensor arm with variable Δne. After signal com-

bination via interference, the optical transmission T(φMZI) follows a sinusoidal shape. Splitting 

and combining of light is accomplished by multi-mode interference (MMI) couplers. 
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Note that the operating point OP,MZI  of the interferometer can be set to zero by 

matching the optical path lengths via e,0 en LnL   , in which case the group 

delay  g,MZI MZI eg eg 0n LLn c         and hence the frequency 

dependency of the optical power transmission vanishes. In contrast, the operat-

ing point OP,RR  and hence the group delay g,RR RR egn cL       of the 

resonator is fixed, leading to an unavoidable frequency dependence. Chapter 4 

extensively reviews integrated photonic phase-sensitive circuits. 

2.3.2 Core components and technological challenges 

This section discusses the core components and associated technological chal-

lenges in an integrated silicon photonic sensor system, as visualized in Fig. 2.10. 

 

Fig. 2.10. Core components and associated technological challenges of a silicon photonic 

sensor system. The main subsystem in an integrated photonic sensor system is a PIC contain-

ing monolithically integrated structures (blue) such as passive couplers, splitters, waveguides, 

combiners, or active modulators (not shown). The associated technological challenges are de-

noted in grey. Light sources and photodetectors can either be monolithically integrated on the 

PIC or coupled to the PIC from outside. Within a sensitive region (yellow), the waveguide inter-

acts with the environment. Depending on the sensing task, this can be accomplished, e.g., by 

locally removing the waveguide passivation cladding and by functionalizing the waveguide core 

surface to selectively interact with the target analyte. Special attention has to be paid to the as-

sembly and packaging of the overall photonic sensor system, especially to the precise and stable 

alignment of external light sources and detectors, to the thermal management for avoiding inter-

action with the sensing process, as well as to a potential integration with micro-fluidic systems. 
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Light source As of today, no efficient and mass-producible silicon-based 

light source is available for the silicon photonics integration platform due to 

silicon’s indirect bandgap. Consequently, a light source such as a vertical-cavity 

surface-emitting laser (VCSEL) or distributed feedback (DFB) laser is typically 

coupled to the silicon PIC, which is fabricated on a more suitable photonic in-

tegration platform such as III-V-based photonics [12]-[15]. One possibility is to 

have the III-V chip completely separate from the silicon PIC while the optical 

connection is realized, e.g., via a free-space, optical fiber or photonic wire bond 

connection [16]. Another possibility is to attach the III-V light source directly 

to the silicon PIC via, e.g., flip-chip bonding [17], transfer printing [18] or a 

direct monolithic integration – in a hybrid approach, the silicon photonic circuit 

itself can be part of the laser [19],[20]. These approaches differ in various as-

pects such as their possible output powers, their coupling efficiency, their cool-

ing requirements, and the required alignment precision and manufacturing pro-

cesses. Amon these, the use of an external VCSEL is a particularly energy-

efficient and low-cost solution. 

Monolithic PIC Several photonic components can be monolithically inte-

grated on a single PIC, see blue colored components in Fig. 2.10. This enables 

densely integrated and complex photonic circuits, comprising many sensor ele-

ments such as Mach-Zehnder interferometers, shown here, or ring resonators. 

The basic building blocks comprise passive components such as couplers, here 

drawn as grating couplers, waveguides for routing, as well as multi-mode inter-

ference (MMI) or directional couplers for signal splitting and combining. For 

these components, it is important to use highly mature fabrication processes 

providing minimal process variance, low surface roughness and few defects, in 

order to achieve low insertion losses and small back-reflections for each com-

ponent, which ultimately improves the signal-to-noise ratio and hence the de-

tection limit of the sensor system. Optionally, the PIC can be complemented by 

electrically controlled components, which are not drawn on the passive PIC in 

Fig. 2.10. Prominent examples are waveguide sections with a tunable effective 

refractive index known as phase modulators. Sensors with such modulators en-

able advanced signal processing methods, see Chapter 5. 
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Optional surface functionalization A sensor PIC additionally requires a sen-

sitive waveguide region, see yellow area, in which the waveguide interacts with 

the environment. Depending on the sensing task, this can be accomplished, e.g., 

by locally removing the passivation cladding, and by functionalizing the wave-

guide core surface to selectively interact with the target analyte. Technologi-

cally, it can be challenging to fabricate robust a surface functionalization that 

can withstand rough environmental conditions. Massively parallel sensor sys-

tems rely on fabrication processes that can provide a multitude of different sur-

face functionalizations localized at the various sensitive regions on the PIC. 

Photodetector The optical output signals are coupled to monolithically inte-

grated or external photodetectors, and the output signals are processed further 

in the electrical domain. For the silicon photonics integration platform, mono-

lithically integrated detectors can be realized with state-of-the-art germanium 

detectors [21], or by coupling strategies of external detectors [12],[13],[15] as 

listed in the light source paragraph. 

Assembly and packaging Special attention has to be paid to the assembly 

and packaging of the overall photonic sensor system, especially to the precise 

and stable alignment of external light sources and detectors, to the thermal man-

agement to avoid interaction with the sensing process, and to the potential inte-

gration of micro-fluidic systems. 

2.3.3 Sensor system configurations 

This section discusses the most relevant sensor system configurations based on 

different light sources, sensor PIC, and light-detection mechanisms, as visual-

ized in Fig. 2.11. 

Light sources The left-hand column of Fig. 2.11 shows three types of light 

sources with different optical power spectral densities  
iPS  : A broadband 

light source such as a light emitting diode (LED) or a superluminescent light 

emitting diode (SLED) with a wide frequency spectrum around its central fre-

quency ω0, a tunable laser with a narrow linewidth, but with a tunable central 

frequency ω0, and a static laser, again featuring a narrow linewidth, but operated 

at a fixed frequency ω0.  
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Fig. 2.11. Sketch of photonic sensor system configurations. The different configurations are 

based on different combinations of light sources, photonic sensor circuits on the PIC, and light 

detection mechanisms. Note that the dotted lines are of limited practical viability in integrated 

photonic sensor systems, while the stars mark the most promising configurations. 

Note that by employing an on-chip tunable filter such as a tunable resonator in 

combination with a SLED, the rather broadband light source can effectively be 

converted into a tunable light source, at the cost of throwing away valuable 

power. 

PIC sensors The central column of Fig. 2.11 shows resonant and interfero-

metric sensors that are integrated on the PIC, with a typical Lorentzian and si-

nusoidal optical power transmission T(ne) based on the effective refractive in-

dex ne, which can change during a measurement. In addition, tunable versions 

of both resonators and interferometers are included, which allow to modify the 
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operating point. Tunable PIC sensors use dedicated waveguide sections within 

the sensor circuit that, on top of the actual sensor operation, modify the effective 

refractive index profile and hence alter mode propagation. This refractive index 

profile modification can be achieved, e.g., thermally via heaters [22], electri-

cally via free-carrier injection [23] or electro-optic materials [24], or mechani-

cally by actuating suspended structures via electrostatics [9], which is well 

known from micro-electro-mechanical systems (MEMS). The non-tunable sen-

sors are hence denoted as “static” to distinguish them from their “tunable” coun-

terparts. 

Light detectors The right-hand column of Fig. 2.11 shows two optical detec-

tion schemes based on a spectrometer and on individual photodiodes. Spectrom-

eters split up the optical output signal into its spectral components and hence 

automatically deliver the optical output power spectral density 

o i
)( ) ( )(P PS TS     depending on the measurand ne. In contrast, individual 

photodiodes, or photodiode arrays in the form of image sensors or cameras as 

commonly used in laboratories, only record the time-dependent optical output 

power 
oo )(PP S d    integrated over the whole spectrum. 

The colored lines, denoted as 1(a)-1(c) for broadband light sources, 2(a)-2(b) 

for tunable lasers, and 3(a)-3(c) for static, fixed-frequency lasers in Fig. 2.11, 

indicate possible photonic sensor system configurations. Note that the dotted 

lines are of limited practical viability in integrated photonic sensor systems, as 

described in the subsequent paragraphs. 

Configuration 1(a) uses a broadband light source such as an LED, assumed 

to deliver constant input power spectral density 
i i i00( ( ))P P PS S S    within 

the relevant spectral features of the static high-Q resonator used as the sensing 

element. For resonant sensors, the optical transmission also shows a Lorentzian 

spectral transmission T(ω), which shifts with ne. By recording the spectral re-

sponse and by tracking changes of the sensor resonance frequency res e1 n 

via Lorentzian fits, changes Δne of the effective refractive index in the sensor 

waveguide can be determined with good accuracy. The complete optical output 

spectral density    
o i0P PS S T   is recorded by a spectrometer for each meas-

urement point ne. This readout concept is extremely popular for integrated pho-

tonic sensors in bench-top experiments due to the availability of precise and fast 
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spectrometers in optical laboratories. However, integrating a high-resolution 

spectrometer with a reasonably small footprint on a PIC is rather challenging. 

Configuration 1(b) exchanges the resonator in 1(a) for an interferometer. For 

interferometric sensors, the spectral transmission    MZI1 cosT     is si-

nusoidal and depends on the group delay difference g MZI     between 

the interfering signals. As a consequence, to obtain useful data from a spectral 

readout of such an interferometer, a reasonably large group delay has to be en-

sured. As an example, the operating point φOP,MZI could be chosen so that at least 

one free spectral range gFSR 1   fits within the usable spectrum of the light 

source. 

The use of a spectrometer at the sensor output to measure the spectrally resolved 

optical output power as detailed in Configurations 1(a) and 1(b) can be omitted 

and replaced by simpler photodiodes in three cases: 

Frequency-tunable laser: The spectral response of the sensor can be obtained 

from sequential photodiode measurements during a frequency sweep of the la-

ser, as described in Configurations 2(a) and 2(b). 

Phase-tunable sensor: A tunable waveguide section is embedded within the 

sensor element. By deliberately tuning the sensor response, the transmission 

features and hence the measurand ne can be traced with simple power measure-

ments, see Configurations 3(b) and 3(c). 

Completely static sensor operation: Active tuning can be omitted completely 

if the spectrum of the light source is narrow compared to the spectral features 

of the sensor. If a suitable operating point can be attained without such tuning, 

transmission changes originating from changes of the refractive index ne can 

directly be measured by photodiodes. Note that MZI are more suitable for such 

a static operation in two ways. First, by adjusting the group delays of the inter-

ferometer arms, more broadband light sources can be used while keeping the 

sensitivity towards ne. Second, the MZI readout can be designed to be operating-

point independent, see Chapter 5. These non-tuned configurations based on 

simple photodiode measurements are described in Configurations 1(c) and 3(a). 
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Configuration 1(c) takes the opposite approach of Configuration 1(b), in that 

the interferometer is deliberately designed to be independent on frequency 

within the selected input bandwidth. This is achieved by eliminating the group 

delay difference τg between the interfering signals leading to   0T T  . As the 

spectral information is irrelevant in this case, a simple measurement of the op-

tical output power 
oo )(PP S d    via a photodiode suffices, and hence the 

spectrometer can be omitted. Under these assumptions, this configuration be-

haves similarly to Configuration 3(a), which uses a laser with a fixed center 

wavelength in combination with a static interferometer, as described in detail 

below. 

Configuration 2(a) replaces the broadband light source in the resonator con-

cept 1(a) with a tunable laser with center frequency ω0 as the input light source. 

As a consequence, the spectrometer used to record the spectral characteristics 

of the resonator can be omitted and replaced by a simple photodiode. For the 

measurement, the output power oP  is recorded during a frequency sweep of the 

of the tunable laser, which allows to reconstruct the Lorentzian transmission 

spectrum of the ring resonator. It has to be noted that the frequency sweep has 

to happen much faster than the actual sensing process so that en  is approxi-

mately constant within one sweep period and the reconstructed spectrum is not 

deformed. Alternatively, the need to record a full spectrum and fitting a Lo-

rentzian can be bypassed by implementing a feedback loop to control the laser 

frequency, e.g., in a way that minimizes the optical output power. This operating 

point corresponds to the resonance condition of the resonator, i.e., the laser fre-

quency is tracking the resonance shifts. Implementations based on this config-

uration are extensively reviewed within this thesis, see Chapters 4 and 5. 

Configuration 2(b) replaces the static resonator from Configuration 2(a) with 

a static interferometer, but is otherwise identical insofar that the spectral infor-

mation is obtained by a series of photodiode power measurements, which are 

linked to a frequency sweep of a tunable laser. Note that, as in Configuration 

1(b), this concept can only provide additional information if the interferometer 

transmission exhibits a pronounced frequency-dependence within the tuning 

range of the laser, which requires a reasonably large group delay between the 

interfering signals. Although interferometric photonic sensor systems are rather 
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designed to suppress frequency noise by setting small group delays, the addi-

tional information provided by this concept can be used to vastly improve the 

robustness of the sensor readout by enabling instantaneous sensor calibration 

and endless phase unwrapping, as described in detail in Section 5.3. 

Configuration 3(a) utilizes a static laser as the input light source that emits 

at a fixed frequency ω0 in conjunction with a static interferometer as the sensing 

element and a simple photodiode for the recording of the output power. This is 

the simplest configuration from a hardware complexity perspective and hence 

represents a very attractive scenario for mass-deployable integrated photonic 

sensor systems. As a consequence, it is marked with a star in Fig. 2.11. This 

configuration is possible since interferometers deliver a well-known sinusoidal 

transmission T(Δne) depending on the measurand Δne. Extracting the arbitrary 

output power amplitude A, e.g., from a reference channel measurement, is hence 

sufficient to reconstruct the effective index change via  e oarcsinn P A . 

Note: On the contrary, the Lorentzian dependency of the optical transmission 

on T(Δne) of a high-Q resonator is far more complex than the sinusoidal form 

in an interferometer. To reconstruct Δne in a resonator, information on the Q-

factor, resonance frequency and insertion loss have to be known, which requires 

some sort of frequency or effective refractive index sweep. The reconstruction 

from a single power measurement is hence much less reliable. Furthermore, the 

Lorentzian resonance region represents only a small subset of the otherwise flat 

spectral response of high-Q resonators. For imperfect resonators and laser 

sources that cannot be spectrally matched by design, it is hence highly likely 

that the spectrum of the laser and resonator are not overlapping. The configura-

tion of a static resonator driven by a static light source and read out with a single 

photodiode is hence not part of this comparison. 

Configuration 3(b)  combines the attractive sensing properties of a resonator, 

see Chapter 4, with a simple fixed-frequency light source. This is achieved by 

a tunable resonator that can be used to overlap the laser emission and the spec-

tral features of the resonator, i.e., the resonator response is tuned towards the 

frequency ω0 of the light source. From there, calibration routines enable the 

extraction of the spectral features of the Lorentzian resonance, which can sub-

sequently be used to reconstruct the effective index change Δne from power 
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measurements using a simple photodiode. Alternatively, a feedback loop can be 

used to directly search for the resonance frequency by minimizing the optical 

output power, as described in Configuration 2(a). Technologically, however, 

fabricating a resonant sensor that is both tunable, e.g., via a thermal tuner, and 

simultaneously sensitive to the environment, e.g., via surface functionalization, 

without harmful interaction between these two mechanisms, poses additional 

fabrication and hardware complexity challenges. 

Configuration 3(c) uses a fixed-frequency light source in combination with 

a tunable interferometer and a simple photodiode power measurement. As in 

Configuration 2(b), the additional signal information gained from the tuning 

around the operating point can provide huge benefits by enabling instantaneous 

sensor calibration, as described in detail in Section 5.3. The difference to Con-

figuration 2(b) is that the tunability is moved from the laser light source to the 

interferometer on the PIC. This has several distinct advantages. First, for a given 

photonic integration platform, the realization of an on-chip tuning mechanism 

can be much easier than integrating a reliable frequency-tunable laser. Second, 

the frequency of integrated lasers is often tuned via their current, leading to a 

parasitic power modulation that has to be accounted for in the signal processing. 

Third, when relying on tuning of the laser emission frequency, the interferom-

eter has to include a large group delay difference between the interfering signals 

to provide sufficiently strong spectral features within the laser tuning range. 

This makes the circuit less robust to frequency noise, see Chapter 4. Fourth, due 

to the typical layout of on-chip interferometers such as Mach-Zehnder interfer-

ometer structures, the regions for sensing and tuning can be spatially separated 

on the PIC to avoid interference of the two physical mechanisms. This config-

uration offers an exceptionally good trade-off between design and readout sim-

plicity and potent performance, and is hence marked with a star in Fig. 2.11. 

2.3.4 Sensor readout concepts 

This section highlights four generic sensor readout concepts that can be em-

ployed to determine the ring resonator phase RR 0 e OP,RRn Lk     or the 

MZI phase difference MZI 0 e OP,MZILk n     with one of the sensor system 

configurations introduced in Section 2.3.3. For RR, L represents the round-trip 
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length, while for MZI, L represents the arm lengths. The four sensor-readout 

concepts will be briefly discussed in the following paragraphs, an extensive 

analysis of the most attractive readout concepts is given in Chapters 4 and 5. 

Readout concept 1 – Calibrated measurement For this sensor readout con-

cept, the optical output power spectrum    o RR i RR RRP PT   of the ring res-

onator sensor or    o MZI i MZI MZIP PT   of the Mach-Zehnder interferometer 

sensor is measured once before performing the actual measurement. The results 

can be used directly as a look-up table to map subsequent power measurements 

to the phase information. The spectrum is obtained by deliberately tuning the 

phase in the operating point φOP,RR or φOP,MZI by ±π, e.g., by using dedicated 

waveguide sections that can modulate the phase. Alternatively, a suitable Lo-

rentzian fit (for RR) or sinusoidal fit (for MZI) can be applied to obtain an ide-

alized optical transmission function  RR RRT   or  MZI MZIT  , respectively. 

With such a fit, measurements of Po can be mapped to Δne via  

 I
1 1o o

RR MRR MZZI
i i

, .
P P

T T
P P

     
    

   
 (2.16) 

Note that this readout concept is viable if a deliberate phase tuning is possible 

and if there is no drift expected that could corrupt the calibrated transmission 

throughout the duration of an experiment. The time-resolution of this readout 

concept is limited directly by the photodiode sampling frequency. 

Readout concept 2 – Repeated spectral phase measurements As for the 

calibrated measurement, this sensor readout concept also requires that the sen-

sor phase can be tuned deliberately. However, in this concept, this phase tuning 

is performed repeatedly during the experiment. As a consequence, each meas-

urement in fact consists of a whole phase spectrum instead of a single power 

measurement. By applying a subsequent fit to each measured spectrum, the 

phase information can be retrieved with larger precision compared to the ex-

traction from a single data point. For example, the spectral fit can be used to 

determine a characteristic spectral feature such as a resonance condition at 

φRR = 2πm for integer m = 1,2,3,… in a ring resonator, resulting in a minimized 

output power, or a constructive interference condition at φMZI = 2πm in a single-

output Mach-Zehnder interferometer, resulting in a maximized output power.  
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Note that a finely resolved phase sweep improves precision and robustness, but 

the time-resolution of this readout concept is now limited by the sweep duration 

and requires additional signal processing. 

Refractive index extraction from phase measurements: For systems operating 

with a fixed-frequency light source, a phase sweep can only be realized by tun-

ing the initial effective refractive index ne,0 in a tunable waveguide section. Per-

forming such a phase sweep yields the optical transmission  RR RRT   or 

 MZI MZIT   that are required to extract the phases RR  or MZI  as in Eq. (2.16) . 

Two measured phase values RR OP,RR   or MZI OP,MZI   can directly be 

used to calculate the change Δne of the effective refractive index as  

 

  

  

RR OP,RR e,0
0

e

MZI OP,MZI e,0
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
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

  (2.17) 

However, if the phase sweep is realized by tuning the angular frequency ω of 

the light source, the frequency dependency of the effective refractive index em-

bodied in the dispersion relation     has to be taken into account. As shown 

in Eq. (2.12), the first two terms of a Taylor expansion of the dispersion relation 

    yield the effective group refractive index eg e en n n    . Because 

of the frequency tuning, Eq. (2.17) has to be rewritten and phase measurements 

derived from Eq. (2.16) yield the differences of the effective group refractive 

indices egn  instead of Δne,  
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  (2.18) 

Readout concept 3 – Continuous tracking of spectral features For this 

readout concept, the phase is initially tuned deliberately to a characteristic spec-

tral feature, e.g., to a RR resonance at φRR = 0 in a ring resonator, resulting in 

the lowest possible output power, or to a MZI interference condition at φMZI = 0 
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in a single-output Mach-Zehnder interferometer, resulting in the highest possi-

ble output power. A feedback control is established that continuously tracks 

such a spectral feature by readjusting the active phase tuning as soon as the 

output power measurement changes in a certain direction. In this case, the feed-

back control signal is used to extract phase changes, which can then be pro-

cessed to determine Δne (if the phase is tuned in the sensor itself at a constant 

frequency ω, see Eq. (2.17)) or Δneg (if the phase is tuned via the laser ω, see 

Eq. (2.18)). 

In order to improve sensitivity, the sensor operating point should be located at 

a spectral feature that maximizes the output power change o eP n   for a given 

change of the effective refractive index Δne. This is achieved by tuning the 

phase φOP,RR or φOP,MZI in the operating point to the inflection point of the Lo-

rentzian or sinusoidal optical power transmission  RR RRT   or  MZI MZIT   of 

the ring resonators or Mach-Zehnder interferometers. In contrast to an operation 

at the extrema of the transmission, the operation in the inflection points maxim-

izes o eP n  . In order to find this specific operating point, a small phase mod-

ulation can be applied in combination with another feedback control loop that 

continuously maximizes the amplitude of the corresponding output power mod-

ulation.  

Readout concept 4 – Direct phase measurement Deliberate phase tuning or 

tracking of spectral features can be avoided in Mach-Zehnder interferometers, 

if the MZI is terminated, e.g., by a 3×3 multi-mode interference (MMI) coupler. 

Here, the sensor and the reference arm of the MZI are connected to the top and 

bottom input ports of the 3×3 MMI, leaving the central input port unconnected. 

The optical power Po,ν in each of the three MMI coupler output ports ν can be 

calculated by superimposing the complex electrical fields o,s,E   and o,r,E  ν 

originating from the sensor and reference arm, respectively. Photodiodes with 

responsivity R translate these optical output powers into three output currents, 

which can be written as a column vector  
T

o o,1 o,2 o,3, ,R P P P I . In the ideal 

case, the three currents are phase-shifted by 120° and have the same amplitude, 

as detailed in Chapter 5. Applying the 2×3 Clarke transformation matrix MC, 

known from the analysis of electrical three-phase circuits, onto the output cur-

rents Io, we obtain two 90° phase-shifted in-phase and quadrature signals 
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      
T T

I Q MZI MZI, cos ,sinS S   . These signals can then be used directly to 

determine the actual phase difference φMZI by calculating the argument of the 

artificial signal I Qj ,S S S   

 

  

 

 

    MZI

2

o, o,s, o,r, o,s, o,r,o,

T

o o,1 o,2 o,3

MZI

I

C o MZI
Q

MZI

j
I Q MZI MZI

M

*
,

, , ,

2
1 cos1 1

31
2 2

1 cos ,
3 3

0 2
1 cos2 2

3

j c i

π

π

e ,os j s n

P E E E E E

R P P P

S

S

S S S

    









 



   

 

  
    

      
     
             

  

    

I

M I

 ZI arg .S

 (2.19) 

With this readout concept, phase-tuning mechanisms such as dedicated tunable 

waveguide sections or tunable lasers can be eliminated. In addition, it allows 

sensing independently of the operating point and hence provides uniform sen-

sitivity and noise characteristics throughout the measurement range. Further-

more, it solves the issue of ambiguity within [-π,π] of simple transfer functions. 

The time-resolution is again limited only by the photodiode sampling fre-

quency, and no feedback control mechanisms have to be employed. This 

readout concept can be extended to enable an instantaneous sensor calibration 

and an endless phase unwrapping to obtain unambiguous signals, which is dis-

cussed in detail in Chapter 5.  
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2.4 Summary: Fundamentals 

This section introduced the basic concepts of integrated photonic sensor sys-

tems. The analysis focused on integrated waveguide-based sensor elements. The 

mathematical foundation for photonic mode propagation in such waveguides 

was derived from Maxwell’s equations with certain boundary conditions. Key 

modal characteristics such as the effective refractive index, the effective refrac-

tive group index, the loss, and the thermo-optic coefficient were introduced and 

visualized for typical sensing waveguides. The sensing principle based on 

changes of the effective refractive index of a photonic waveguide mode was 

reviewed. Surface sensing and homogeneous sensing were introduced, which 

both utilize the overlap of the evanescent field with a cladding medium of var-

iable refractive index, and which represent two of the most prominent variants 

of integrated photonic sensors.  

The photonic waveguide was subsequently introduced as the central sensing el-

ement within a fully integrated photonic sensor. Here, on the system level, the 

fundamental properties of phase-sensitive photonic circuits were discussed, 

which transduce changes of the effective refractive index into measureable 

changes of the optical output power. Furthermore, the core components and the 

associated technological challenges required in such a sensor system were re-

viewed. With the information on mode propagation, the sensing principle, and 

the system components at hand, a thorough discussion on benefits and draw-

backs of a variety of sensor system configurations is performed. It is highlighted 

that the combination of a fixed-frequency laser, a (possibly tunable) Mach-

Zehnder interferometer, and a simple photodiode output can be a particular at-

tractive configuration due to the simplicity of the design, hardware implemen-

tation and signal processing. The chapter was concluded by briefly discussing 

sensor readout concepts that compare several spectral readout concepts. As a 

highly attractive option, we identify a direct readout concept that does not re-

quire any active tuning of operating point. This is achieved by employing a tri-

ple-output MZI in combination with a Clarke transformation that directly yields 

a signal with in-phase and quadrature signal components. 
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3 Sensor optimization by waveguide 
design 

This chapter analyzes the design of integrated photonic waveguides for sensing 

applications. Based on the field-interaction factor of the waveguide mode with 

a particular region of the waveguide cross section, this chapter provides physi-

cal insights and comprehensive design guidelines for the selection of appropri-

ate photonic integration platforms, waveguide types, mode families, and wave-

guide geometries targeting a given measurement task.  

The following section is taken from the publication [J1]. In order to fit the struc-

ture and layout of this document, it was adapted accordingly. Appendices asso-

ciated with this manuscript can be found in Appendix A. 

Note that two authors contributed equally to this publication. The initial Ansatz 

and scope, as well as the concluding evaluation, interpretation and discussion 

were performed jointly. For the development of the methods and results, the 

focus of the author of this thesis was on the analytical mathematical model, 

while the focus of Daria Kohler was on the simulations. 
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Abstract: Waveguide-based biochemical sensors exploit detection of target 

molecules that bind specifically to a functionalized waveguide surface. For op-

timum sensitivity, the waveguide should be designed to mediate maximum in-

fluence of the surface layer on the effective refractive index of the guided mode. 

In this chapter, we define a surface sensitivity metric which quantifies this im-

pact and which allows to broadly compare different waveguide types and inte-

gration platforms. Focusing on silicon nitride and silicon-on-insulator (SOI) as 

the most common material systems, we systematically analyze and optimize a 

variety of waveguide types, comprising simple strips, slot and double slot struc-

tures, as well as sub-wavelength gratings (SWG). Comparing the highest 

achievable surface sensitivities, we provide universal design guidelines and 

physically interpret the observed trends and limitations. Our findings allow to 

select the appropriate WG platform and to optimize sensitivity for a given meas-

urement task. 

https://doi.org/10.1364/OE.26.019885
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3.1 Introduction 

Waveguide-based optical sensors are used in a variety of applications such as 

label-free detection of chemical or biological analytes that specifically bind to 

functionalized waveguide (WG) surfaces [4],[5],[25]-[32]. Such sensors exhibit 

large potential for miniaturization and cost-efficient mass production, utilizing 

established photonic integration platforms such as silicon or silicon nitride. Sen-

sor schemes are most commonly based on interferometers, e.g., in Mach-

Zehnder and Young configuration [26],[28],[29],[32],[33], or on resonant de-

vices, such as ring, disk and Bragg resonators [4]-[6],[25],[26],[29]-[32],[34]–

[38], which can be further enhanced by exploiting the Vernier effect [39]. Ena-

bling large effective interaction lengths with the analyte, these sensor structures 

combine high sensitivity with small device footprint and lend themselves to 

high-density integration into massively parallel arrays. 

The sensor principle relies on an optical WG that guides a mode which signifi-

cantly extends into the cladding medium that surrounds the WG core. The in-

teraction between the optical mode field and the varying surface layer properties 

alters the effective refractive index by en and thus the optical phase shift accu-

mulated during propagation. The strength of this effect is expressed by the so-

called surface sensitivity, which, in combination with the effective-index sensi-

tivity from the phase measurement of the underlying resonator or interferome-

ter, determines the overall sensitivity. Proper optimization of the WG towards 

high surface sensitivities is hence key for realizing high-performance sensors. 

Over the last years, various approaches for optimizing special types of WG were 

published, both for surface sensing [5],[7],[29],[32],[36]–[40] and for detection 

of bulk refractive index changes in the WG cladding (homogeneous sensing) 

[4],[5],[7],[25],[26],[30],[31],[36],[37],[39],[40]. However, these investiga-

tions are often limited to specific WG types and geometries on certain material 

platforms, such as silicon [4],[5],[25],[26],[29]–[31],[33]–[35],[37],[40],[41], 

silicon nitride (Si3N4) [29],[32],[33],[38],[42] and polymers [33],[40]. It is 

hence impossible to broadly compare the highest achievable surface sensitivi-
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ties across different WG types and integration platforms. Moreover, most sen-

sitivity analyses consider only a specific type of surface layer with prescribed 

refractive index. 

In this chapter, we define a universal surface sensitivity that is broadly applica-

ble to layers of different thicknesses and refractive indices. Focusing on Si3N4 

and Si as the most common integration platforms, we systematically analyze a 

wide variety of WG types, comprising simple strip WG, slot and double slot 

WG, as well as sub-wavelength grating (SWG) WG. For each of these WG 

types, we identify the optimum geometry for both TE and TM polarization, and 

we compare the highest achievable surface sensitivities, taking into account im-

plementation limitations that are associated with state-of-the art fabrication 

technologies. The focus of our analysis is on WG types that can be reliably 

mass-produced by optical lithography and single-etch structuring of WG on 

solid substrate layers. Note that even higher sensitivities can be achieved by 

more sophisticated WG concepts comprising ultra-small features [43] or sus-

pended WG sections [9]. These schemes, however, require dedicated fabrica-

tion processes, which are not yet accessible through scalable foundry processes. 

Exploiting the scalability of Maxwell’s equations with respect to refractive in-

dex and geometry, we derive and physically explain general trends and design 

rules to corroborate the numerical results. Our findings can be used as design 

guidelines to select the appropriate WG platform and to optimize sensitivity for 

a given measurement task. 

3.2 Scope 

3.2.1 Basic sensing principle: Wave propagation and 
effective refractive index 

For illustrating the basic sensing principle, we regard homogeneous sensing 

with a waveguide core embedded in an infinitely extended cladding medium. 

First, we define a few quantities: The propagation of monochromatic plane 

waves with vacuum wavelength   in a homogenous medium is determined by 



3.2  Scope 

41 

the propagation constant 0nk   (refractive index n , vacuum propagation con-

stant 0 2πk  ). Dielectric WG consist of a high-refractive index core core( )n  

and a low-refractive index cladding medium ( Mn ). For integrated optical WG 

made from silicon or silicon nitride, the core is usually supported by a buried 

oxide layer (BOX, bottom cladding) with refractive index BOXn . The evanes-

cent parts of the WG mode, which are essential for the sensing process, extend 

into the cladding region. The actual field distribution in the various materials 

determines the WG propagation constant  , which can be expressed by an ef-

fective refractive index e 0n k . If the refractive index of the WG cladding 

changes, β and hence en  are modified, which impacts the phase shift 

e 0L n k L      accumulated over a propagation length L . Due to the large 

optical frequencies, a change of en  is measured with high accuracy. For a given 

WG length L , the measured phase shift can be referred to a change en of the 

effective index, which finally allows sensing a change of the cladding index. 

The larger en  becomes for a certain cladding index change, the more sensitive 

the device becomes. 

3.2.2 Parameters for WG-based sensing 

Numerous parameters determine how sensitive en  reacts on a cladding index 

change Mn . Fig. 3.1 summarizes the essential design elements for a WG: The 

material platform, the WG type, the polarization, and the WG geometry. 

 

Fig. 3.1. Essential design elements for maximizing surface sensitivity. For each combina-

tion of (a) material platform, (b) WG type and (c) polarization, the optimum (d) geometry can 

be determined, observing reasonable technological constraints. 
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Platform Common integration platforms for optical sensors rely on a layer 

stack of a silicon (Si) or silicon nitride (Si3N4) device layer on a several mi-

crometer thick BOX (SiO2) as a bottom cladding, mechanically supported by a 

Si substrate. WG are structured in the device layer, and the BOX thickness is 

chosen to avoid leakage into the high-refractive index silicon substrate as well 

as to optimize grating coupler efficiency. While Si WG are operated in the near 

infrared (NIR), 3 4Si N  WG are suitable for operation across the complete visible 

(VIS) and NIR spectrum. As the target media for biosensors are usually pro-

vided in the form of aqueous solutions, sensor operation at VIS wavelengths is 

much less impaired by water absorption than in the NIR. However, a large 

wavelength allows relaxed WG fabrication accuracies, and reduces scattering 

loss due to WG roughness. In this chapter, we thus consider Si WG operated at 

NIR telecom wavelengths around 1550 nm, where low-cost laser sources are 

readily available, as well as 3 4Si N  WG operated at 600 nm as an example of 

low-wavelength sensors, Fig. 3.1(a). 

Waveguide type For both integration platforms, we study four typical WG 

types, denoted as strip, slot, double slot and subwavelength grating (SWG) WG, 

Fig. 3.1(b). The last three types require significantly smaller feature sizes than 

the strip WG and thus lead to more challenging fabrication processes. We con-

centrate on single-mode WG, combining stable operation with high surface sen-

sitivity. 

Polarization We study the fundamental mode of both (quasi-)TE and 

(quasi-)TM polarization, Fig. 3.1(c). The term (quasi-)TE refers to the case 

where the dominant transverse electric field component is oriented parallel to 

the substrate. Similarly, (quasi-)TM denotes a configuration in which the dom-

inant transverse magnetic field component is parallel to the substrate. For the 

TE polarization, an enhancement of the electric field xE  exists at the WG side-

walls because the normal component    2
0x x xnD x E  of the displacement 

must be continuous, while for TM polarization this field enhancement is to be 

seen at the top and at the bottom WG surfaces. 

Geometry For all combinations of platform, WG type and polarization, we 

study the impact of the WG geometry in terms of height, width, and length 

(SWG only) of WG features, Fig. 3.1(d). Three standard device layer heightsh



3.3  Methods 

43 

of 220 nm, 250 nm and 340 nm are considered for Si WG structured on silicon-

on-insulator (SOI) wafers. Wafers for structuring Si3N4 WG are available with 

a maximum Si3N4 thickness of several hundred nanometers, if stoichiometric 

growth is important, and we therefore consider typical WG heights h of 200 nm, 

300 nm and 400 nm. For all WG types, we vary the overall width w  in steps of 

10 nm. For slot and double-slot WG, we additionally vary the slot width slotw  

in four steps. For SWG WG, we vary the period a  and the spacing gapd  between 

the WG elements, which can also be quantified by the fill factor 

 gapFF a d a  . We chose a minimum feature size of 80nm to meet com-

mercial technological conditions. 

In the following, we define the surface sensitivity as a quantitative metric and 

maximize it by varying the various WG parameters. Given a certain sensor ap-

plication, this data set allows to find the optimum design for a WG-based sensor. 

3.3 Methods 

3.3.1 Sensitivity of waveguide surfaces with respect to 
attached molecules 

In WG-based sensing, two basic approaches are commonly used, which are 

compared in Fig. 3.2. For so-called homogeneous sensing, a bare WG core is 

exposed to a typically aqueous homogeneous target medium with refractive in-

dex Mn , Fig. 3.2(a). For surface sensing, a WG core is functionalized such that 

target molecules from an aqueous solution can bind to the core forming a sur-

face layer with effective thickness SLt  and refractive index SLn , Fig. 3.2(b). 

For homogeneous sensing, a change in Mn  causes a change eΔn of the effective 

index. This change is the stronger the more the mode optical field extends into 

the target medium. Homogeneous sensing is usually unspecific, i.e., eΔn  cannot 

be traced back to a specific substance in the target medium if it is unknown 

which constituent is actually changing.  

For surface sensing, the refractive index Mn  of the aqueous solution remains 

essentially fixed, while the molecules, bound to the surface layer, influence the  
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Fig. 3.2. Plain and functionalized strip WG on a buried silicon oxide (BOX) layer. (a) Ho-

mogeneous sensing. The aqueous target medium with refractive index Mn forms the homogene-

ous cladding of the WG core. A variation of Mn  leads to a change in the effective refractive 

index of a guided mode. (b) Surface sensing. The refractive index Mn of the aqueous cladding 

solution remains constant. Target objects such as molecules, cells, vesicles or other corpuscles 

attach to the WG core, often mediated by a specific surface functionalization. The effect on the 

wave propagation is modelled with a surface layer (SL) having a refractive index SLn  and an 

effective layer thickness SLt . The effective layer thickness takes into account the size of the 

target objects as well as the ratio of occupied binding sites. 

optical mode. By functionalizing the WG surface with dedicated capture agents, 

surface sensing can be used for specific detection of certain target analytes.  

The change eΔn is the stronger, the more the optical field is concentrated within 

the surface layer. The definition of an effective layer thickness SLt  accounts for 

a possibly inhomogeneous distribution of target molecules within the surface 

layer. With biological samples, this effective thickness is in the nanometer 

range, and SLn is typically around 1.5. For the remainder of this chapter, we 

concentrate on surface sensing, offering a wide variety of applications. We are 

hence interested in the detailed influence of the surface layer on the electric and 

magnetic field distribution. 

Fig. 3.3 and Fig. 3.4 show the simulated electric field magnitudes of the funda-

mental quasi-TE mode of strip, slot and double slot WG, and for subwavelength 

grating WG, respectively. Details on the simulation parameters can be found in 

Appendix A.1. White contours mark the surface layer where molecules bind, 

leading to a change of the local refractive index. A higher field concentration in 

these regions increases the surface sensitivity.  
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Fig. 3.3. Simulated electric field magnitudes of the fundamental quasi-TE mode in different 

WG geometries with height h  and total width w . White contours mark the surface layer on the 

WG core. The larger the field strength in this region is, the larger the surface sensitivity becomes. 

The surface layer is disregarded for the field calculation. (a) Strip WG. The surface layer ex-

periences only moderate field strengths. (b) Slot WG. A large field strength is located in the 

surface layers of the slot. (c) Double slot WG. The field strength in each of the two slots is 

smaller than for a single slot, but the relevant surface layer area has doubled. 

 

Fig. 3.4. Section of a subwavelength grating (SWG) WG and simulated electric field magni-

tudes of the fundamental quasi-TE mode. Compared to a strip WG, the surface layer area per unit 

length of the WG is increased. (a) Schematic of a SWG WG with width w , height h , period 

a  and gap size gapd . The pink arrow marks the direction of propagation. Specific cross-sections 

0z  , 0y  , 0x   are indicated with colored planes. Front, Top and Side mark the associated 

views. (b)-(d) Electric field magnitudes. White contours mark the surface layers on the WG 

core, which are disregarded for the field calculation. The larger the field strength in this region 

and the larger the surface, the bigger the surface sensitivity becomes. (b) Front view at 0z  . 

The surface layer experiences only moderate field strengths. (c) Top view at 0y  . Large field 

strengths (red areas) occur at the vertical edges of the blocks. (d) Side view at 0x  . Moderate 

field strengths are found at surfaces const.z   
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While in a typical strip WG, Fig. 3.3(a), a large portion of the power is located 

inside the WG core, slot and double slot WG concentrate the power between the 

rails, Fig. 3.3(b) and (c). This means that the surface layer experiences higher 

field strengths in slotted WG, leading to a larger en  compared to a strip WG. 

SWG WG are composed of a multitude of individual WG elements, thus in-

creasing the surface layer area per unit length of the WG. Fig. 3.4(a) shows a 

section of a SWG WG with three periods along the propagation axis (pink ar-

row). For determining the surface sensitivity, a 3D elementary cell has to be 

simulated using periodic boundary conditions in the axial direction [44]. The 

three colored planes mark the cross sections where the field distributions of 

Fig. 3.4(b-d) are plotted. In Fig. 3.4(c), high field strengths (red regions) are 

located at the vertical edges of the blocks. 

3.3.2 Surface sensitivity and field perturbation approach 

In the following, we define the surface sensitivity (surf)S as a quality metric for 

quantifying which WG design leads to the potentially highest overall sensor 

sensitivity. In order to obtain (surf )S  for a specific WG with a specific surface 

layer, a full simulation of the WG with and without the surface layer would be 

required. This would include various combinations of surface layer properties 

like layer refractive index SLn and layer thickness SLt  and thus requires a mul-

titude of high-resolution simulations to resolve the surface layer with a thick-

ness in the range of a few nanometers. Exploring the whole parameter space as 

discussed in Section 3.2 and Fig. 3.2 would hence be a time-consuming and 

probably unrealistic endeavor. 

To overcome this problem we use a perturbation approach. To this end, we per-

form a single finite-element method (FEM) simulation of a bare WG for each 

WG geometry, store the resulting fields and compute the influence of an addi-

tional surface layer using a field interaction factor. This technique is only valid 

for small perturbations, i.e., the modal field does not change significantly with 

the surface layer, and hence the effective refractive index en  changes only 

slightly, too. In our case, binding events of molecules change the refractive in-
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dex of a surface layer of thickness SLt  from Mn  to SLn , where SLn  is the refrac-

tive index of the attached molecules and Mn  denotes the background refractive 

index of the solution. The conditions for the perturbation approach hold, if ei-

ther the thickness is small – then the refractive index change SL Mn n  can be 

larger – or if SL Mn n  is small, in which case SLt  can be larger. 

We will first consider the general case of a z-variant SWG WG. According to 

Eq. (A.10) and Eq. (A.11) in Appendix A.3, the local perturbation in the surface 

layer can be translated into a change 
(surf)
en  of the effective refractive index via 

the field interaction factor  LSL St , 
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Note that the field interaction factor  LSL St  in Eq. (3.1) is different from the 

intensity-related field confinement factor 
(conf )

SLi W W , because it describes 

also slow-light propagation, see Eq. (A.6). For computing LSL SΓ ( )t , we simu-

late the fields of a unit cell for a bare SWG WG without surface layers, and 

integrate 
2

E  over the fictitious surface layer volume SLV  within that unit cell 

of length a . The result is proportional to the electric energy SLW  in the surface 

layer per unit cell, Eq. (A.3) and Eq. (A.6) for SLi  , normalized to the cross-

sectional power P  of Eq. (A.1). The integral in the denominator extends over 

the entire (x,y)-plane. 

For z-invariant WG such as strip, slot, or double slot structures, Eq. (3.1) can 

be simplified by exploiting the fact that the integral over 
2

E  is invariant 

along z. Simplifying the volume integral in the numerator, we obtain 
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for the special case of z-invariant WG. We use Eq. (3.2) to analyze  SSL LΓ t  

for a set of widely different silicon strip WG geometries, operated in quasi-TE 

polarization, see in Fig. 3.5(a) “Perturbation”. As a comparison, we extract the 

numerically exact values    (sim) (surf, sim)
SL e SL MSL t n n n     from 

(surf, sim)
en  

obtained by FEM simulations of quasi-TE fields that include the actual surface 

layers, and plot them in Fig. 3.5(a) with a dashed line “Simulation”. The agree-

ment is very good except for large surface layer thicknesses tSL on narrow and 

high WG. In this case, the majority of the field is contained within the surface 

layers, violating the assumption of a small field perturbation. The electric field 

outside the core decays approximately exponentially. For a penetration depth 

much larger than SLt , the decay of the field magnitude and of the power within 

the surface layer can be approximated by a linear function. As a consequence, 

SL  in Fig. 3.5(a) exhibits a region where it depends linearly on SLt . 

We now want to define a sensing sensitivity that is – in the framework of the 

perturbation approach – independent of the surface layer thickness. This can be 

achieved by looking at the derivative  (surf)
e SLn t  at SL 0t  . Because SLn  

influences the result, we define the surface sensitivity as the derivative of the 

field interaction factor with respect to the surface layer thickness, 
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Within the framework of the perturbation approach, the surface sensitivity 
(surf)S is independent of both the thickness and the refractive index of the surface 

layer, thus providing a universal guideline for a sensor design. To confirm this, 

we calculate the derivatives SL SLt   for the same WG types as used in 

Fig. 3.5(a), and plot them semi-logarithmically in Fig. 3.5(b) in a range 

SL (1 350)nmt  . We see that SL SLt   is constant for very small 

0 r ( )( )    r r , owing to the approximately linear dependence of SL  on 

SLt  in this region. We extrapolate the curve to SL 0t  , where the computation 

fails due to the finite spatial discretization. In Fig. 3.5(b) these extrapolated val-

ues are marked with filled circles and denoted by (surf)S , see Eq. (3.2) and 

Eq. (3.3).  
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Fig. 3.5. Validation of perturbation model and definition of surface sensitivity 
(surf)S  for a 

set of widely different silicon strip WG geometries propagating quasi-TE fields, see legend. 

(a) Field interaction factor SL  in surface layer of thickness SLt . For each geometry, we compare 

SL  computed with a perturbation approach (based on a single FEM simulation without a surface 

layer) with (sim)
SL  obtained from numerically exact calculations (FEM simulations with different 

surface layers). For small SLt , the agreement is very good. For large SLt  (marked by ) and 

SL Mn n , the field interaction factor SL  approaches M  and thus the homogeneous sensitivity 
(hom)S . (b) The surface sensitivity 

SL

(surf)
SL SL

t
S t


   allows an easy comparison of dif-

ferent WG, irrespective of the actual surface layer properties. 

Note that a WG design for best homogeneous sensitivity 

 
SL

(hom)
M SLlim

t
S


     is not necessarily optimum when it comes to sur-

face sensing, see Eq. (A.12) in Appendix A.3 for rigorous definition of (hom)S . 

This can be inferred by comparing (hom)S  of the two top strip WG in Fig. 3.5(a) 

(blue and red arrows) to the corresponding (surf)S  of the same WG in Fig. 3.5(b) 

(blue and red dots at SL 0t  ): A larger homogeneous sensitivity does not lead 

to a difference in surface sensitivity. In sensing applications, the desired meas-

urement quantity is the effective surface layer thickness SLt . From a measure-

ment of eΔn  and for known bulk refractive indices SLn  and    n n r r , SLt  

can be inferred from (3.3). A proper choice of the WG then maximizes (surf)S  

and therefore the measurement sensitivity for SLt . 

3.4 Results 

We extract the surface sensitivity (surf)S according to Section 3.3.2 for all kinds 

of WG outlined in Section 3.2.2. For each TE- or TM-operated WG core in 

Si3N4 or alternatively in Si, a few typical values of heights h , slot widths slotw , 
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periods a  and fill factors FF are considered. For each combination of these pa-

rameters, the total WG width w  (see Fig. 3.3) is then optimized to obtain opti-

mum surface sensitivity (surf)
optS . To this end, the WG width is swept with a step 

size of 10 nm. The range of w  was chosen to maintain single-mode operation 

and to avoid substrate leakage for a BOX thickness of 2μm . The following WG 

surface sensitivity analysis relates to Si3N4 cores operated in the VIS (Section 

3.4.1) as well as to Si cores operated in the NIR (Section 3.4.2).  

3.4.1 Silicon nitride with visible wavelengths 

For Si3N4 strip WG operated at a vacuum wavelength of 600 nm, Fig. 3.6(a) 

displays the surface sensitivity (surf)S  as a function of the WG width w  for three 

different WG heights h  and for both polarizations. Surface sensitivity generally 

benefits from large electric field strengths in the region of the surface layer as 

indicated in Fig. 3.3. Within their single-mode range, each WG shows a maxi-

mum (surf)
optS  at a distinct width optw , marked by  for TE and by  for TM. 

Any deviation from this optimum width optw reduces the interaction factor of 

the mode field with the surface layers, e.g., by concentrating the modal field to 

the WG core in the case of large w , or by spreading the mode field over a wider 

cladding region for small w . In the second case, a large portion of the modal 

field propagates in the BOX, where it cannot contribute to sensing. In 

Fig. 3.6(b), the extracted optw  (green, left vertical axis) and the corresponding 
(surf)
optS  (magenta, right vertical axis) are plotted as a function of the WG height 

h . The largest (surf)
optS  are found for large h  and small w  for both polarizations, 

with TE operation being more sensitive than TM operation. In the TE case, the 

two sides of the WG exploit the field enhancement, and only a small portion of 

the mode propagates in the BOX, see Section 3.5.2 for a detailed discussion. 

We apply the same procedure to TE-operated 3 4Si N  slot and double slot WG 

and plot the results in Fig. 3.7. As for the strip WG, the sensitivity increases for 

higher WG. Decreasing WG width first leads to increasing sensitivity, which 

drops again as the width becomes too small and the mode extends far into the 

cladding, Fig. 3.7(a). Smaller slot widths increase the field strength in the slot, 

Fig. 3.7(b). This, together with the growth of the total core surface as compared 

to a strip WG, increases (surf)S .  



3.4  Results 

51 

The slot WG behaves as two strip WG if aslot r ilw w . In this case, each of the 

strips carries half the power of the slot WG and both the optimum rail width and 

the optimum sensitivity converge to those of a single optimum strip WG, see 

top light green line () and light magenta line () in Fig. 3.7(b).The double slot 

WG behaves like three separate strip WG if aslot r ilw w . In this case, each strip 

carries one third of the power of the slot WG. As before, both the optimum rail 

width and the optimum sensitivity converge to those of a single optimum strip 

WG, see top light green line () and light magenta line () in Fig. 3.7(c) and in 

Fig. 3.7(d). 

 

Fig. 3.6. Optimization of Si3N4 strip WG. (a) Surface layer sensitivity 
(surf)S  of Si3N4 strip 

WG for three standard heights h  as a function of WG width w  in TE and TM operation. For 

decreasing WG width, the sensitivity first increases to its maximum value and then drops. The 

drop is caused by the fact that the mode extends far into the cladding or is even lost to the substrate 

for very small WG widths. The optimum sensitivities 
(surf)
optS  at the corresponding optimum widths 

optw  are marked by dots and triangles. (b) Comparison of optimum WG width (green, left axis) 

and optimized surface sensitivity (magenta, right axis) as a function of WG height. High and 

narrow WG (blue markers) are most sensitive. 
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Fig. 3.7. Optimization of Si3N4 TE-operated slot and double slot WG. (a,c) Surface layer 

sensitivity j( , ) ( ) tt e H r H r  of Si3N4 slot and double slot WG for a height of h  = 400 nm as a 

function of rail width w  for different slot widths. For decreasing rail width, the sensitivity first 

increases to its maximum value and then drops. The drop is caused by the fact that the mode 

extends far into the cladding or is even lost to the substrate for very small rail widths. The opti-

mum sensitivities 
(surf)
optS  at the corresponding optimum widths optw  are marked by dots. 

(b,d) Optimized geometries for slot and double slot Si3N4 WG. Sensitivities are larger for small 

slot widths and higher WG, the fabrication of which is limited by technological constraints. The 

light solid lines indicate the limits for slotw   (light green and light magenta). 
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3.4.2 Silicon with near-infrared wavelengths 

For silicon WG operated in the NIR at 1550nm  , we apply the same tech-

nique as described in Section 3.4.1 for extracting the optimized widths optw  and 

sensitivities (surf)
optS . In Fig. 3.8(a), we display the surface sensitivity (surf)S  of a 

strip WG with different heights h  and polarizations as a function of the strip 

width w . As for Si3N4 strip WG, Fig. 3.6(a), we see a sensitivity maximum 

within the range of single-mode operation. The TE sensitivity exhibits a pro-

nounced maximum when varying the WG width, whereas the maximum of the 

TM sensitivity is much less pronounced, Fig. 3.8(a).  

We extract the optimum sensitivity and find that, similar to Si3N4, the TE sen-

sitivity can be optimized by choosing a high WG with a narrow width, while 

the optimum TM sensitivity depends only weakly on the WG height, Fig. 3.8(b). 

This is in contrast to the findings for the Si3N4 WG, Fig. 3.6(a) and Fig. 3.6(b). 

We attribute this to the fact that the refractive index of Si is significantly larger 

than that of Si3N4 and hence the asymmetry introduced by the underlying BOX 

is less significant for the case of Si WG. Consequently, for the WG heights h  

under consideration and for small w , the TM modal field does not extend into 

the BOX as strongly as for the Si3N4 WG. Regarding Si slot and double slot 

WG, Fig. 3.8(c) and Fig. 3.8(d), the trends for optimum WG parameters are 

similar to those of Si3N4 WG, Fig. 3.7, and thus the same conclusions as in Sec-

tion 3.4.1 can be drawn. 

For achieving better sensitivities, completely different WG structures in form 

of sub-wavelength gratings (SWG) were proposed [4],[6],[7], see Fig. 3.4. For 

a systematic comparison to strip and slot WG, we calculate and optimize the 

surface sensitivities of SWG WG, see Fig. 3.9. Fig. 3.9(a), left y-axis, shows 

the results obtained from two exemplary families of TE-operated SWG, which 

share the same period a , but differ in height h , and feature three different fill 

factors (50%, 60%, 70%, differing in opacity). For the smaller WG height 

( 220nmh  , black lines) the sensitivity does not depend strongly on the WG 

width. Strip and slotted WG show a fast decrease of sensitivity for widths larger 

than wopt, since the fields become smaller at the sensitive sidewalls and upper 

surfaces and are more confined to the core. 
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Fig. 3.8. Optimization of Si strip, slot and double slot WG. (a),(b) Surface layer sensitivity 
(surf)S  for Si strip WG with three standard heights h  as a function of WG width w  in TE and 

TM operation. For decreasing WG width, the sensitivity first increases to its maximum value and 

then drops. The drop is caused by the fact that the mode extends far into the cladding or is even 

lost to the substrate for very small WG widths. The optimum sensitivities 
(surf)
optS  at the corre-

sponding optimum widths optw  are marked by dots and triangles in (a) and compared in (b). For 

TE polarization, high and narrow WG yield the best results. For TM, no pronounced sensitivity 

gain is observed for higher WG. (c),(d) Optimized geometries for slot and double slot Si WG. 

The sensitivity increases for smaller slot widths and higher WG, the fabrication of which is lim-

ited by technological constraints. The light solid lines indicate the limits for slotw   (light 

green and light magenta), which correspond to the case of individual strip WG as shown in (b). 

Compared to Si3N4, operated in the VIS, the Si rails, operated in the NIR, are typically 100 nm 

wider while the sensitivity is slightly larger. 

This effect is less pronounced in the SWG WG, since the sensitive surface in 

between the individual blocks are still experiencing high field strengths. The 

maximum sensitivity shifts to smaller w, when the FF increases. This is to be 

expected: If the FF becomes larger, the effective refractive index increases and  



3.4  Results 

55 

 

Fig. 3.9. Optimization of Si sub-wavelength grating (SWG) WG. (a) Sensitivity of two 

SWG WG families with different heights, but common period 300nma   as a function of WG 

width w for varying fill factors FF. Black lines with various shadings stand for a WG height of 

220nmh  . In this case, the sensitivity does not change significantly with w. For higher SWG 

WG ( 300nmh  , blue lines), the sensitivity traces do not exhibit an optimum before entering 

into the so-called slow-light regime, where the sensitivity is dominated by a largely increased 

effective group index egn  (dotted lines for two different heights for FF 50% ). For these traces, 

we choose the inflection points (blue crosses) to define reasonable sensor designs that are not 

subject to the impairments associated with slow-light operation. Note that this does not represent 

an optimum in a strict mathematical sense. (b) Overview of optimized SWG WG sensitivities 

and geometries outside the slow-light regime for different heights, periods, and fill factors. As a 

trend, the sensitivity increases for high WG and small gap size gap (1 FF)d a  . Sensitivities 

obtained from inflection points at the transition to slow-light operation are again marked by blue 

crosses. Note that the traces for FF = 70% and a = 200 nm or a = 250 nm do not appear in the 

plot since the associated gap sizes are below the minimum feature size of 80 nm. 

the modal field is stronger confined to the SWG “core”. For a sufficient influ-

ence of the analyte, the field must then extend into the SWG “cladding”, which 

is achieved by decreasing the WG width.  

Interestingly, for higher SWG WG ( 340nmh  , blue lines), no optimum sen-

sitivity within the observed range of w  is found. Instead, the sensitivity in-

creases strongly for larger FF and wider WG. This increase is caused by a de-

crease of the group velocity: Larger FF and increased w  lead to an increase of 

the Bragg wavelength associated with the SWG structure. Once the Bragg 

wavelength comes close to the operation wavelength of the sensor, the device 

enters the so-called slow-light regime [8], which is characterized by a greatly 

reduced group velocity and a greatly increased effective group index egn . 
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This leads to strong interaction of the guided mode with the surface layer and 

hence to a sharp increase of the sensitivity even though the field confinement 
(conf)
i  of the surface layer does not significantly increase, see Appendix A.3, 

Eq. (A.3). Note, however, that operation in the slow-light regime strongly in-

creases the detrimental impact of environmental influences and fabrication tol-

erances [45] on mode propagation. Amongst others, the sensitivity and the op-

tical propagation loss can vary significantly, such that reproducible device 

properties and hence a reliable sensor read-out are difficult to obtain in practice. 

This susceptibility to tiny changes can be seen exemplarily for the sensitivity of 

WG operating in the slow-light regime, Fig. 3.9(a), which is why we exclude 

them from the following discussion. For sensitivity traces entering into the 

slow-light regime without showing a pronounced maximum in Fig. 3.9(a), we 

choose the inflection points (blue crosses) to define reasonable sensor designs 

that are not subject to the impairments associated with slow-light operation 

without being optimum in a strict mathematical sense. Note that there is no dis-

tinct transition from “normal” SWG operation to the slow-light regime and that 

a strict classification is therefore difficult. The choice of the inflection point is 

motivated by the fact that it marks the width at which the influence of the in-

creased effective group index egn  starts dominating over the impact of the field 

confinement factor 
(conf) , Eq. (A.6) in Appendix A.3, and dotted lines for two 

different heights for FF 50% , see Fig. 3.9(a). 

The optimal sensitivities of the SWG WG and those obtained for the transition 

to the slow-light regime are summarized in Fig. 3.9(b), indicating again a gen-

eral sensitivity increase with WG height. Sensitivities obtained from inflection 

points at the transition to slow-light operation are marked by blue crosses. As a 

trend, ( )E r  increases for small gap (1 FF)d a  . 

3.4.3 Comparison of optimized sensitivities 

As a summary of the last two subsections, we compare the sensitivities for the 

Si3N4 platform in the VIS (λ = 600 nm) and for the Si platform in the NIR 

(λ = 1550 nm). In Fig. 3.10, we display the optimized surface layer sensitivities 
(surf)
optS  of four WG types (strip, slot, double slot, SWG) with optimized widths 

optw  and three different heights h  for each platform. The left (right) panel 
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shows the results for TE (TM) polarization. Three SWG positions are empty 

because either the gap size is below the minimum feature size of 80 nm, or be-

cause the structures do not support a well-guided WG mode (“poor waveguid-

ing”). 

Generally, WG operated in TE polarization tend to be more sensitive than their 

TM-operated counterparts are. Taking into account technological constraints 

such as a minimum feature size, the sensitivity of sophisticated WG designs can 

be increased by approximately a factor of two compared to a simple optimized 

strip WG. Moreover, slotted WG exhibit higher surface sensitivities than strip 

and SWG WG do. Generally, the silicon platform exhibits higher sensitivities 

than the silicon nitride platform, which can be attributed to the fact that a higher 

index contrast leads to a smaller penetration depth into the WG cladding and 

hence to a stronger interaction with a thin surface layer. Larger WG heights tend 

to be generally better. For the silicon photonic platform, a sensitivity improve-

ment of a factor of four can be achieved by using optimum double slot WG 

operating in TE polarization instead of non-optimum standard strip WG featur-

ing, e.g., WG dimensions of 2450 220nmw h    for TM operation. A detailed 

physical explanation of these trends is given in Section 3.5.2. 

3.5 Discussion 

For a better understanding of the trends summarized in Fig. 3.10, we first dis-

cuss in Section 3.5.1 the influence of the cladding asymmetry and we introduce 

universal scaling laws of Maxwell’s equations that allow generalizing the find-

ings to other wavelengths and material platforms. Subsequently, Section 3.5.2 

explains in detail the trends when varying platform, operating wavelength, po-

larization, and WG geometry. Section 3.5.3 discusses our results in view of an 

overall sensor performance, including the impact of mode loss and analyte de-

livery as well as a practical instruction on finding global sensitivity optima. 
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3.5.1 Physical interpretation — Cladding asymmetry and 
scaling laws 

Cladding asymmetry We consider WG cores that are supported by a SiO2 

substrate (BOX) and are surrounded by an aqueous medium. Since the refrac-

tive index of SiO2 is larger than that of water, the cladding of the WG is asym-

metric. It is hence impossible to increase the interaction of the guided light with 

the functionalized surface of the WG core by indefinitely reducing the core di-

mensions. Any attempt to do so will predominantly increase the fraction of the 

mode fields in the BOX, which do not contribute to sensing, and therefore de-

crease the fraction in the surface layer, leading to a decrease of surface sensitiv-

ity. 

Scaling laws According to Appendix A.4, Table A.1, line (1), scaling the ge-

ometry of a WG by g  while simultaneously scaling the operating frequency 

by ω g1   leads to a simple geometrical scaling of the eigenfunctions of the 

electric and magnetic fields by a factor of g . This effect has no impact on the 

homogeneous sensitivity, since the relative portion of the mode fields in the 

cladding medium remains the same. However, the surface sensitivity Eq. (3.3) 

as defined by a derivative with respect to the layer thickness SLt  scales by g1 .  

The optimum surface sensitivity of a WG with fixed RI profile hence scales pro-

portionally to frequency and requires an inverse scaling of the geometry. 

Furthermore, scaling the refractive index profile of a WG by n  while simulta-

neously scaling the operating frequency by ω n1   does not change the dis-

tributions of the electric and the magnetic field. Note, however, that the ratio of 

the electric-field eigenfunction ( )E r  and the magnetic field eigenfunction ( )H r  

must be scaled by a factor of n1  , see Eq. (A.15) and the corresponding dis-

cussion. In total, this leaves the sensitivity unchanged, see Appendix A.4, Ta-

ble A.1, line (2). The optimum surface sensitivity of a WG with fixed geometry 

does not change for a scaling of the RI profile along with an inverse scaling of 

the frequency. 
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3.5.2 Trends for increased surface sensitivity 

High index-contrast platform The surface sensitivity is maximized by an 

increased field concentration at the core surface that is in contact with the ana-

lyte-delivering aqueous medium. For a given wavelength, the surface sensitivity 

tends to increase if the refractive index ratio core Mn n  between core and clad-

ding is increased. This is caused by the fact that the enhancement of surface-

normal electric-field components is proportional to the square  
2

core Mn n  of 

the index ratio. Similarly, the surface sensitivity increases when the refractive 

index profile is scaled up by a factor of n > 1 while the geometry is scaled 

down by g n1   to maintain the same operating frequency, see Appen-

dix A.4, Table A.1, line (4). 

Short operating wavelength For a given platform, higher surface sensitivi-

ties can be achieved with shorter wavelengths. The geometry of the WG has to 

be chosen guided by the scaling law in Appendix A.4, Table A.1, line (1). A 

Si3N4 WG operated in the VIS will achieve a higher optimized surface sensitiv-

ity than an up-scaled Si3N4 WG operated in the NIR. 

 

Fig. 3.10. Comparison of the optimized sensitivity for the Si3N4 platform in the VIS 

(λ = 600 nm) and for the Si platform in the NIR (λ = 1550 nm). We consider four WG types with 

three standard heights, operated in TE and TM polarization. Sensitivity can be increased by 

higher WG cores, by using Si rather than 3 4Si N , and by TE-operation instead of TM. The three 

more advanced WG types (slot, double slot and SWG) offer an enhancement of up to a factor of 

two compared to TE strip WG, coming at the cost of a more complex fabrication process. Some 

SWG WG are excluded either because the gap size is below 80 nm (“small feature size”), or 

because the structures do not support a well-guided WG mode (“poor waveguiding”). Typical 

slot, double slot and SWG WG do not benefit from TM operation. 
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When comparing optimized Si3N4 WG operated in the VIS with Si WG in the 

NIR, we see similar sensitivities, see Fig. 3.10. This is due to a combination of 

scaling the operating frequency along with WG geometry and an increase of the 

index contrast, which have contrary effects on the surface sensitivity that par-

tially cancel each other. However, optimized WG in the high index-contrast Si 

platform will be as good as or better than those in the Si3N4 platform, as the 

limitation caused by the cladding asymmetry is more severe for lower core re-

fractive indices. 

TE polarization The TE-mode sensitivity generally outperforms that of the 

TM-mode. For high index-contrast WG as considered in this work, the surface 

sensitivity is dominated by regions exhibiting a large field enhancement due to 

field discontinuities at the core-cladding interface. In the case of strip WG and 

of vertical-slot WG, TE mode operation exploits more of these surfaces show-

ing a field enhancement compared to TM mode operation, where the interface 

to the bottom oxide cladding (BOX) does not contribute to the sensitivity. 

It has to be noted that in typical telecom applications, WG with large widths 

and small heights are used (e.g., 2450 220nmw h   ). These established WG 

geometries are often directly transferred to sensing applications. For these WG 

and for improper choices of WG widths exceeding 400 nm, the TM-polarized 

mode may exhibit higher sensitivity than the TE, see Fig. 3.8(a). However, un-

der the assumption that the width w is chosen properly, TE-polarized modes 

exhibit optimized sensitivities. If an application demands Si WG operated with 

TM polarized light, SWG WG are best, see Fig. 3.10. 

Enlarged surface Larger core surfaces can generally lead to higher sensitiv-

ities. This is exploited by slot, double slot and SWG WG, which introduce ad-

ditional sensor surfaces compared to strip WG. For slot and double slot WG 

operated in TE polarization, these additional surfaces lead to an enhancement 

of the dominant transvers electric-field component and can hence further in-

crease surface sensitivity, see Fig. 3.3. For SWG WG, the enhancement at the 

additional surfaces between the blocks affects the weaker longitudinal electric-

field component, Fig. 3.4. The sensitivity gain of SWG WG is hence smaller 

than that of slot and double slot WG and depends only weakly on the polariza-

tion. 
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Narrow waveguides Optimized sensing WG have a narrower core than typi-

cal routing WG designed for low-loss light transport. Narrow WG increase the 

sensitivity for both TE and TM polarization. When narrowing the WG, the sen-

sitive area of the surface layer remains essentially constant for TE polarization, 

but the surface field strength initially increases. For very small WG widths, the 

modal field expands into the cladding and the field interaction with the surface 

layer decreases, hence reducing surface sensitivity. For TM polarization, an ad-

ditional effect comes into play: When reducing the WG width, the top surface, 

containing high field strengths due to the field discontinuity, becomes smaller, 

while the overall field strengths at the core surface become more dominant as 

the mode expands into the cladding. This interplay leads to a less pronounced 

optimum with respect to the WG width than for TE polarization, see Fig. 3.6 

and Fig. 3.8. 

High waveguides Higher WG cores outperform thinner WG cores. Higher 

WG cores reduce the relative portion of the fields located in the BOX (cladding 

asymmetry). Since this area does not contribute to sensing, less field strength in 

the BOX leads to larger sensitivities. In addition, and especially for the TE 

mode, higher WG cores enlarge the sensitive sidewall regions that are subject 

to field enhancement. 

Small slot widths and gap sizes Smaller slot widths and gap sizes generally 

increase the sensitivity. For slot WG, the sensitivity gain for TE is more pro-

nounced than for TM polarization. 

3.5.3 Overall sensor system performance and the impact of 
mode loss 

It is important to note that, when implementing these WG into functional sen-

sors, the overall system performance will also depend on additional aspects that 

are outside the scope of our current analysis. One of the most important aspects 

is the propagation loss of the optical mode: Adsorption of target molecules to 

the WG surface is usually measured by recording the phase shift accumulated 

over a certain propagation length L . In technical implementations of sensors, 
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the phase measurement accuracy depends on the precision with which ampli-

tudes can be measured in an interference setup. This precision and ultimately 

the detection limit of the sensor system decreases with increasing propagation 

losses, which, like the sensitivity, depends on WG platform, type, polarization 

and geometry. A rigorous system optimization would ideally have to take into 

account all these effects to account for mutual trade-offs and to find a global 

optimum of the WG design. This, however, would require a quantitative rela-

tionship between the WG geometry and the associated power propagation loss 

 exp L  characterized by the loss constant  , which is impossible to state in 

a general and reliable manner across different integration platforms. 

For finding optima for the overall system sensitivity sysS  for a specific sensor 

implementation, we need to know three dependencies: The surface sensitivity 
(surf )S  as a function of the WG geometry, provided in this chapter, the WG loss 

constant   as a function of the WG geometry, which must be experimentally 

determined for the specific WG type and technology, and the influence of this 

loss on the effective-index sensitivity    g g'  , ' H r E r , which translates 
(surf )
en  into a measurable output signal, e.g., a current [10],[25],[28]. If the 

linewidth of the light source is neglected, the overall system sensitivity can be 

expressed by the product of the surface sensitivity and the effective-index sen-

sitivity 

  (surf)
sys e .S S S   (3.4) 

The results presented in this chapter can hence serve both as guidelines for iden-

tifying and selecting promising WG designs and as quantitative measures to 

determine the overall system sensitivity sysS  once the technology-dependent 

loss constant   and the architecture-specific relationship  eS   are known. 

Another aspect that may influence the overall performance of practical sensors 

is the analyte delivery to the sensor surface. In this context, narrow gaps or other 

high aspect-ratio voids tend to have less exchange with the surrounding liquid 

or might even not be accessible to large target objects such as cells or cellular 

vesicles. In these cases, simple strip WG geometries might exhibit advantages 

in comparison to more complex concepts featuring narrow strips and slots.  
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3.6 Summary: Photonic sensor waveguides 

We have performed a comparative study of different WG types for application 

in label-free detection of chemical or biological analytes that specifically bind 

to functionalized WG surfaces. To this end, we have introduced the so-called 

surface sensitivity (surf )S  as a general quality metric that is broadly applicable 

to surface layers of different thicknesses and refractive indices. This metric al-

lows to optimize the WG design and to compare the fundamentally achievable 

sensor performances across different WG types and integration platforms. We 

specify optimized WG designs along with the corresponding surface sensitivi-

ties for the most common WG parameter combinations. We also introduce and 

explain a computationally efficient recipe for applying the methodology to ad-

ditional WG types that are not covered by our current study. 

The following key findings result from our study: First, sensitivity trends can 

be explained by the interplay of a cladding asymmetry, the scaling laws of Max-

well’s equations and the effect of field enhancement. Second, WG with opti-

mum surface sensitivities are typically high and narrow, are fabricated on high-

index contrast platforms and operated in TE polarization. Third, the surface sen-

sitivity of highly sophisticated WG such as slot, double slot or sub-wavelength 

grating exceeds that of optimized strip WG by a factor of two, and that of stand-

ard telecom strip WG by a factor of four if realistic feature size constraints are 

observed. 
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4 Sensor optimization by system 
design 

This chapter analyzes the performance and limitations of the entire photonic 

sensor system, including the phase-sensitive photonic circuits, light sources and 

detectors, as well as the electrical readout. A special focus is laid on systems 

that are geared towards cost-efficient production and large-scale deployment, 

including variation of component parameters that are inherently linked to mass 

production and energy-efficient system operation under realistic conditions. 

The following sections are taken from the publication [J2]. In order to fit the 

structure and layout of this document, they were adapted accordingly. Appen-

dices associated with this manuscript can be found in Appendix B. 

  



4  Sensor optimization by system design 

66 

[start of publication [J2]] 

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing 

Agreement 

Integrated phase-sensitive photonic sensors: A system design tutorial 

Advances in Optics and Photonics 13(3), 584-642 (2021) 

DOI: 10.1364/AOP.413399 

Johannes Milvich1,2,*, Daria Kohler1, Wolfgang Freude1 and Chris-

tian Koos1,3 

1 Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute 

of Technology (KIT), Engesserstr. 5, 76131 Karlsruhe, Germany 
2 Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272 Renningen, Ger-

many 
3 e-mail: christian.koos@kit.edu 
* Corresponding author: johannes.milvich@bosch.com 

Abstract: Photonic integration has seen tremendous progress over the previous 

decade, and several integration platforms have reached industrial maturity. This 

evolution has prepared the ground for miniaturized photonic sensors that lend 

themselves to efficient analysis of gaseous and liquid media, exploiting large 

interactions lengths of guided light with surrounding analytes, possibly medi-

ated by chemically functionalized waveguide surfaces. Among the various sen-

sor concepts, phase-sensitive approaches are particularly attractive: Offering a 

flexible choice of the operation wavelength, these schemes are amenable to 

large-scale integration on mature technology platforms such as silicon photon-

ics or silicon nitride (Si3N4) that have been developed in the context of tele- and 

data-communication applications. This paves the path towards miniaturized and 

robust sensor systems that offer outstanding scalability and that are perfectly 

suited for high-volume applications in life sciences, industrial process analytics, 

or consumer products. However, as the maturity of the underlying photonic in-

tegrated circuits (PIC) increases, system-level aspects of mass-deployable sen-

sors gain importance. These aspects include, e.g., robust system concepts that 

can be operated outside controlled laboratory environments as well as readout 

https://doi.org/10.1364/OA_License_v1
https://doi.org/10.1364/OA_License_v1
https://doi.org/10.1364/AOP.413399


4  Sensor optimization by system design 

67 

schemes that can be implemented based on low-cost light sources, without the 

need for benchtop-type tunable lasers as typically used in scientific demonstra-

tions. 

It is thus the goal of this tutorial to provide a holistic system model that allows 

to better understand and to quantitatively benchmark the viability and perfor-

mance of different phase-sensitive photonic sensor concepts under the stringent 

limitations of mass-deployable miniaturized systems. Specifically, we explain 

and formulate a generally applicable theoretical framework that allows for a 

quantitatively reliable end-to-end analysis of the overall signal chain. Building 

upon this framework, we identify and explain the most important technical pa-

rameters of the system, comprising the photonic sensor circuit, the light source, 

the detector, as well as the readout and control scheme. We quantify and com-

pare the achievable performance and the limitations that are associated with 

specific sensor structures based on Mach-Zehnder interferometers (MZI) or 

high-Q optical ring resonators (RR), and we condense our findings by formu-

lating design guidelines both for sensor concepts. As a particularly attractive 

example, we discuss an MZI-based sensor implementation, relying on a verti-

cal-cavity surface-emitting laser (VCSEL) as a power-efficient low-cost light 

source in combination with a simple and robust readout and control scheme. In 

contrast to RR-based sensor implementations, MZI can be resilient to laser fre-

quency noise, at the cost of a slightly lower sensitivity and a moderately in-

creased footprint. To facilitate the application of our model, we provide a 

Matlab-based application that visualizes the underlying physical principles and 

that can be readily used to estimate the achievable performance of a specific 

sensor system. The system-level design considerations are complemented by an 

overview of additional aspects that are important for successful sensor-system 

implementation such as the design of the underlying waveguides, photonic sys-

tem assembly concepts, and schemes for analyte handling. 
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4.1 Introduction 

Waveguide-based photonic sensors lend themselves to precise and highly sen-

sitive analysis of a wide range of gaseous and liquid media [25]–[30], exploiting 

large interaction lengths of guided light with the surrounding analyte [46], pos-

sibly mediated by functionalized waveguide surfaces [47]–[49]. Utilizing estab-

lished photonic integration platforms such as silicon photonics [50]–[53] or sil-

icon nitride [54]–[57], photonic sensors are amenable to miniaturization and 

cost-efficient mass production and allow for massively parallel integration of 

multiplexed arrays on a single photonic chip [58]. Over the previous years, such 

devices have found their way into first commercial products [59]–[66], and this 

evolution will continue: Driven by the need for ubiquitous data acquisition in 

an increasingly connected world, often described by internet-of-things (IoT) 

scenarios, research efforts in the field of photonic sensors have intensified, and 

the application areas of such devices steadily expand. However, most of the 

associated proof-of-concept experiments are still performed in controlled labor-

atory environments, often relying on benchtop-type measurement equipment 

such as highly stable tunable lasers or high-resolution spectrometers for opera-

tion and readout. While these demonstration have shown impressive results 

[25],[26],[29],[30],[46]–[49], the question arises to which extent the associated 

performance can be transferred to highly integrated mass-deployable sensor 

systems that rely on, e.g., non-ideal light sources with limited emission power 

that suffer from environmental influences such as thermal drift, and that are 

subject to noise as well as limited resolution of analog-to-digital converters 

(ADC). 

It is thus the goal of this tutorial to introduce and explain a comprehensive 

model for waveguide-based photonic sensor systems that allows to estimate the 

impact of the various non-idealities on the overall system performance and that 

can be used for comparing and designing sensor systems for operation under 

real-world constraints. Building upon the existing literature, we focus our anal-

ysis on phase-sensitive schemes, which are particularly attractive for highly 

scalable low-cost systems: In contrast to absorption-based spectroscopic sen-

sors, where the operation wavelength is dictated by the spectral characteristics 

of the respective analytes, phase-sensitive concepts are much more flexible with 
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respect to the readout wavelength. This allows to choose operating wavelengths 

for best compatibility with highly mature integration platforms such as silicon-

on-insulator or silicon nitride that have been developed in the context of data- 

and telecommunication applications. In our analysis, we investigate different 

implementations of ring resonators (RR) and Mach-Zehnder interferometers 

(MZI), which represent the most widely used concepts for phase-sensitive inte-

grated photonic sensors. As a particularly attractive scenario, we consider the 

use of vertical-cavity surface-emitting lasers (VCSEL) as compact and efficient 

light sources, along with simple photodiodes for detection. We experimentally 

verify our theoretical models, provide design guidelines, and quantify achieva-

ble performance parameters of the various sensor concepts. We find that high-Q 

RR, while showing excellent performance in laboratory experiments, are par-

ticularly prone to laser frequency noise, which turns out to dictate the limit of 

detection (LoD) when using mass-producible semiconductor lasers with lin-

ewidths in the MHz range. In contrast to that, properly designed MZI-based 

sensors are much less sensitive to laser frequency noise while offering simple 

operation along with detection limits that can well compete with those of high-Q 

micro-resonators. Along with the paper, we provide a Matlab application that 

allows to estimate and compare the sensitivity and LoD of different sensor-sys-

tem implementations based on noise parameters of the light source and the de-

tection system. 

This paper is structured as follows: Section 4.2 gives a brief overview of the 

state of the art of waveguide-based photonic sensors and the associated com-

mercial products. Section 4.3 introduces a generic mathematical description of 

phase-sensitive sensor systems along with the model used for deriving the sen-

sitivity and the associated LoD. Section 4.4 provides a quantitative analysis of 

the sensitivity and the LoD of typical RR- and MZI-based sensor implementa-

tions. In Section 4.5, we experimentally validate the model regarding the impact 

of laser frequency-noise on the LoD, using a low-cost 1550 nm VCSEL as a test 

device and a bench-top tunable light source (TLS) as a reference. Section 4.6 

condenses the key findings of the analysis into a set of guidelines for sensor 

design. Section 4.7 provides an overview of additional aspects that are im-

portant for a successful implementation of integrated photonic sensor systems 

and that are covered in the broader literature. An overall summary is found in 
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Section 4.8. Details and mathematical descriptions of the signal and noise mod-

els are given in Appendices B.1…B.6. 

4.2 Waveguide-based photonic sensors: State of 
the art and commercial products 

This tutorial builds on the existing scientific literature and introduces a model 

that allows to estimate the performance of miniaturized phase-sensitive pho-

tonic sensor systems. As a starting point for this analysis, the following para-

graphs provide an overview of the literature related to waveguide-based pho-

tonic sensors and of commercial products that rely on such devices.  

On the scientific side, waveguide-based photonic sensors have been subject of 

intensive research activities over the previous decade, and the number of publi-

cations is steadily increasing. A comprehensive overview of the current state of 

the art can be found in several scientific review articles, e.g., by Luan et al. for 

silicon photonic biosensors using label-free detection techniques [67], by Zou 

et al. for mid-infrared silicon photonic waveguides and devices [68], by 

Makarona et al. for point-of-need bioanalytics based on planar optical interfer-

ometry [69], or by Gavela et al. for silicon photonic biosensors [70]. These re-

view papers provide an overview of concepts and experimental demonstrations 

of integrated sensors along with a comparison of experimentally demonstrated 

performances in terms of sensitivity and LoD. Application demonstrations 

range from classical refractive-index (RI) sensors to biosensors that exploit 

chemically functionalized waveguide surfaces for label-free detection of cells, 

bacteria, viruses, or biomolecules such as proteins or nucleic acids. 

Fostered by such research, waveguide-based sensors have found their way into 

first commercial products. Prominent examples are handheld trace-gas sensors 

based on absorption spectroscopy [59],[60] or disposable sensor chips for bio-

diagnostics that exploit resonance shifts in photonic crystals [61]–[64] or in 

highly multiplexed RR arrays [58],[65],[66]. This evolution will continue, and 

highly scalable miniaturized sensor systems will gain importance, building the 

base for ubiquitous data acquisition in an increasingly connected world. In this 
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context, rapid transition from proof-of-concept laboratory demonstrations to 

commercially viable sensor systems is key. In the following sections, we focus 

on integrated phase-sensitive photonic sensors, and we introduce a quantita-

tively reliable model that accounts for the constraints of highly scalable minia-

turized systems operated under realistic field conditions. This model provides a 

fundamental understanding of concepts, design options and trade-offs for such 

systems and builds the base for important system-design decisions regarding the 

selection of the photonic circuits and the specifications of the corresponding 

optoelectronic components. 

4.3 Sensor system model and performance 
parameters 

In the following, we introduce a high-level description of the sensor-system 

model (Section 4.3.1), and subsequently evaluate the sensor performance to de-

termine the sensor-system sensitivity (Section 4.3.2) as well as the sensor-sys-

tem limit of detection (Section 4.3.3). 

4.3.1 Sensor system description 

The generic concept of an integrated phase-sensitive photonic sensor system is 

illustrated in Fig. 4.1(a). The system combines a photonic sensor chip with elec-

tronic control and readout circuits. In view of technically and commercially vi-

able sensor systems, we focus our analysis on phase-sensitive concepts that rely 

on simple optical power measurements rather than on more demanding spec-

trally resolved detection techniques [71]. Note, however, that the fundamental 

concepts, performance trade-offs, and design choices outlined in this analysis 

can be transferred to spectrally resolved detection techniques as well, which 

ultimately also rely on power measurements. As a consequence, sensor concepts 

that are based on, e.g., tracking of spectral features such as resonances of ring 

resonators [72], Bragg gratings [73], or photonic crystals [63], are ultimately 

subject to detection limits that are similar to the ones estimated from our analy-

sis. 
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Fig. 4.1. Concept and model of an integrated phase-sensitive photonic sensor system. 

(a) Artist’s view, comprising a photonic sensor chip with laser light sources and detectors (‘Pho-

tonics’), along with electronic control and readout circuits (‘Electronics’). (b) Principle of a 

photonic effective-index sensor. Within a sensitive waveguide region (magenta), an environmen-

tal change Δenv (yellow) is converted into a change en  of the effective modal refractive index 

via the waveguide sensitivity env e envnS   , and this effective-index change leads to a phase 

shift   along the sensitive waveguide region. In a phase-sensitive photonic circuit such as a 

Mach-Zehnder interferometer (MZI), this phase shift leads to a change of the optical power trans-

mission o iT P P , which is defined as the ratio of the optical output power Po and the effective 

input power iP . The effective-index sensitivity e eS T n    is defined as the ratio of the power-

transmission change ΔT and the effective-index change Δne. (c) Propagation of signal and noise 

quantities through the sensor system. All electronic and photonic stages add noise to the respec-

tive electrical currents I, optical powers P, or optical frequencies ω. The limit of detection (LoD) 

of the sensor system can be quantified by the 3σ-deviation of the reconstructed effective refrac-

tive index Δne,r. All noise-related quantities are denoted by a subscript “n”. 

As an example for an integrated phase-sensitive photonic sensing element, the 

illustration in Fig. 4.1(a) shows an MZI with long waveguide spirals in each 

arm. The MZI is part of a photonic integrated circuit (PIC) that is connected to 

laser sources and detectors via grating couplers , see top level ‘Photonics’ of the 

stack in Fig. 4.1(a). Note that the MZI is just an example – the model developed 
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in the following can be generally applied to MZI and RR-based sensors. Simi-

larly, the illustration in Fig. 4.1(a) shows a vertical-cavity surface-emitting laser 

(VCSEL) as a particularly simple light source that can be operated with small 

pump currents and that can be efficiently fabricated in large quantities [74]. On 

the bottom level ‘Electronics’, the system comprises laser drivers, photodetector 

readout electronics and analog-to-digital converters (ADC), as well as digital 

signal processing (DSP) circuits for electrical signal generation and evaluation. 

Depending on the integration level, the ADC and the DSP circuits may be real-

ized from discrete components on a printed circuit board (PCB), as a monolithic 

field-programmable gate array (FPGA), or as an application-specific integrated 

circuit (ASIC, shown in Fig. 4.1(a)). 

4.3.2 Sensor system sensitivity 

A simplified schematic of the sensor PIC in the form of an MZI is illustrated in 

Fig. 4.1(b). A certain region of the PIC, indicated by a yellow area with a ma-

genta waveguide section, is exposed to the environment to record a change Δenv 

of an environmental parameter and to convert it into a change en  of the effec-

tive modal index. We define this conversion as the waveguide sensitivity 

env e envnS   . The effective-index change en  is then translated into a phase 

shift in the corresponding MZI arm and thus leads to a change ΔT of the optical 

power transmission factor o iT P P  between the sensor input power iP  and the 

sensor output power oP  on the PIC. The magnitude of the transmission change 

ΔT for a given effective-index change en  is quantified by the effective-index 

sensitivity e eS T n   . The transmission change ΔT results in a measurable 

power change o iP TP   at the output, 
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 (4.1) 

The system sensitivity sysS  is defined as the output power change oP  with re-

spect to environmental changes env  and is governed by three main factors: The 
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effective optical input power iP , the waveguide sensitivity envS , and the effec-

tive-index sensitivity eS . These quantities are described in more detail in the 

following paragraphs. 

4.3.2.1 Effective optical input power Pi 

 The signal level is described by the effective optical input power iP , which is 

obtained by multiplying the physical output power LDP  of the laser diode with 

the optical power transmission factors of the coupling interface between the la-

ser and the sensor PIC, of the lossy on-chip circuits, as well as of the PIC-de-

tector interface. In other words: The effective optical input power accounts for 

all optical excess losses that result from non-idealities of the various sensor 

components such as coupling losses in chip-chip interfaces or propagation 

losses in on-chip transport waveguides, but not the unavoidable loss that results, 

e.g., from destructive interference at the MZI output because this is accounted 

for by the power transmission factor o iT P P . We quantify all these excess 

losses by a single power transmission factor η < 1,  

 i LD.P P  (4.2) 

The effective optical input power can hence be improved either by increasing 

the laser power or by decreasing the excess loss of the various components. This 

calls for advanced photonic assembly concepts and for efficient light-source in-

tegration, see Section 4.7 for further details.  

4.3.2.2 Waveguide sensitivity Senv 

The waveguide sensitivity envS  describes the dependence of the effective modal 

index change Δne on a change Δenv of an environmental parameter, caused, e.g., 

by a change of the waveguide’s surrounding medium, by adsorption of analyte 

molecules to the waveguide surface, or by a change of temperature or stress 

within the waveguide. For a given operating point, the waveguide sensitivity 

can be approximated by the associated derivative, 

 e
env

env

.
n

S



  (4.3) 
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Note that the optimization of integrated waveguides with respect to the wave-

guide sensitivity Senv is a major subject in its own right [25],[30],[75],[76]. A 

brief discussion of the various design options and of the associated state of the 

art can be found in Section 4.7.  

For a refractive-index sensor, env  is given by the refractive index Mn  of the 

medium that surrounds the waveguide. In this case, the waveguide sensitivity 

envS  can directly be linked to the so-called bulk phase sensitivity M ,S n    

which is often given in radians per refractive index unit (RIU) [67]. This bulk 

sensitivity quantifies the phase shift 0 eL nk     accumulated in a sensor 

waveguide of length L upon a change Mn  of the surrounding medium, 

 e
0 0 env

M M

.
n

S k L k LS
n n




  



 
 (4.4) 

In this relation, 0k c  is the vacuum propagation constant of the light, where 

ω denotes the angular frequency of the optical wave, and where the vacuum 

speed of light is denoted as c. For resonator-based refractive-index sensors, the 

bulk sensitivity can also be expressed by the shift res  of a resonance wave-

length per refractive-change Mn  of the surrounding medium, 

 res
,RR env

M eg

.
n

S S
n



 


   (4.5) 

Here, eg e enn n     is the effective group refractive index. Note that using 

wavelength-related bulk sensitivities for MZI is somewhat more intricate, since 

it is strongly dependent on the asymmetry of the interferometer arms, see Ap-

pendix B.1 for a more detailed discussion. 

In the following analysis, we consider the waveguide design and hence the 

waveguide sensitivity Senv to be fixed. For a better comparability of the different 

sensor concepts, independently of the underlying waveguide design, we con-

sider en  as the physical quantity to be measured in the following sections, 

without further discussing its origin and its quantitative relationship to the actual 

change Δenv of an environmental parameter. We are further only interested in 

refractive-index sensors in which Δenv predominantly affects the real part of the 
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refractive index at the wavelength of interest while leaving the imaginary part, 

i.e., the waveguide loss, virtually unchanged. This is in contrast to absorption-

based detection techniques, which rely on the molecular absorption properties 

at specific wavelengths and therefore often require light sources at dedicated 

wavelengths. 

4.3.2.3 Effective-index sensitivity Se 

For a given set of laser, waveguide, photodetector, and assembly technologies, 

the effective optical input power Pi according to Eq. (4.2) and the waveguide 

sensitivity Senv in Eq. (4.3) are fixed. The remaining degree of freedom in 

Eq. (4.1) hence lies in the photonic sensor circuit design, which defines the ef-

fective-index sensitivity Se, i.e., the ratio of the change of the power transmis-

sion T and the underlying change of the effective index, 

 o
e

e e i

.
PT

S
n n P

  
   
   

 (4.6) 

To quantify Se we need to consider the phase shift 0 eL nk     that the optical 

signal accumulates during propagation through the sensitive waveguide of 

length L, see Fig. 4.1(b) for an exemplary illustration for an MZI-based sensor. 

Note that our model is based on wave propagation of the form   exp j ,t z   

where e 0kn   is the propagation constant of the guided mode. The phase shift 

  is converted into a change of the sensor output power ΔPo by either an 

interferometric or a resonant circuit – the corresponding relations depend on the 

underlying sensor concept and on the respective operating point, see Section 4.4 

for a more detailed analysis. In general, the optical power transmission T of the 

integrated MZI or RR fundamentally depends on the modal power loss coeffi-

cient α and on the associated optical amplitude transmission factor 

 2exp La    of the sensitive waveguide section. Like Senv, the modal power 

loss coefficient α depends on the waveguide technology and geometry, and is 

hence regarded as a constant parameter for the optimization of the sensor sys-

tem. This is a valid approach for all cases in which the sensor waveguide design 

is dictated by other constraints arising, e.g., from the underlying fabrication pro-

cesses. In case the sensor waveguide design and hence α and Senv can be varied, 

a joint optimization of the system sensitivity sys i e envS PS S  can be performed. 
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In this case, an adaptation of the waveguide design will simultaneously affect 

the environmental sensitivity Senv and the effective-index sensitivity Se and may 

hence allow for an ideal trade-off that optimizes the overall system perfor-

mance. This is, e.g., useful in applications where the evanescent field of the 

waveguide mode interacts with an absorbing analyte such that an increase of 

Senv is unavoidably accompanied by an increase of the absorption loss, which 

usually results in a decreased effective-index sensitivity Se [30],[75]. 

4.3.3 Sensor system limit of detection 

The schematic signal propagation of the sensor system is depicted in Fig. 4.1(c) 

and comprises currents iI  and oI , at the input of the drive laser and at the sensor 

output, as well as optical signals with angular frequency ω and powers iP  and 

oP  at the input and the output of the photonic section, see Table 4.1 for a sum-

mary of the symbols. The digitized signal of the ADC at the sensor output is 

described by a quantized photocurrent qI . All signal quantities are random var-

iables  i i o o q,, , , ,x I PP I I  with mean x , fluctuation δx x x   and variance 
2 2.x x   The output signal of the system is a reconstructed value e,rn  of the 

actual effective-refractive-index change en , which is distorted by the accumu-

lated noise contributions. 

The output signal of each stage contains noise that originates from previous 

stages, as well as uncorrelated random noise n  with mean n 0   and variance 

n
n

2 2
   generated in the stage itself. The noise propagation through a specific 

stage can be described by a linearized transfer function in the respective oper-

ating point. As an example, the overall stochastic variance 
o

2
P  of the photonic 

sensor output power oP  can be approximated by 

 
o o,n i

2 2
22 2 2 2o o

o o
i

.P P P

P P
P P

P
   



 
    

 
 (4.7) 

In these relations, the overbar X  denotes the expectation value of the respective 

expression X, while o iP P   and oP    represent the linearized transfer func-

tions between the sensor input power Pi and frequency ω to the sensor output 

power Po in its operating point. The total variance 
o

2
P  in Eq. (4.7) consists of a 
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sum of three uncorrelated noise terms, where 
o,n

2 2
o,nP

P   represents the additive 

noise originating from the sensor stage as such, while the other two terms de-

scribe the propagation of the noisy optical power and frequency with variances 

i

2
P  and 2

  from the previous stage. Applying the same noise propagation 

scheme to all other stages in the system, we obtain an accumulated reconstruc-

tion variance 
e,r

2
Δn  of the reconstructed effective refractive index e,r .n  This 

variance finally dictates the useful sensor resolution, and it defines the limit of 

detection LoD [25] as 

 
e,rΔ .LoD 3 n  (4.8) 

A quantitative analysis of each noise source in Table 4.1, of the associated error 

propagation, and of the respective impact on the total LoD is given in Sec-

tion 4.4.3. 

Table 4.1: Description of signal variables and noise contributors in a highly integrated 

photonic sensor system. The cumulated noise in the reconstructed effective refractive in-

dex Δne,r leads to a certain limit of detection.  

Signals  Noise 

Ii Laser input current  (electrical) Ii,n Laser driver current noise 

Pi Sensor input power  (optical) Pi,n Laser intensity noise 

ω Angular frequency (optical) ωn Laser frequency noise 

Po Sensor output power  (optical) Po,n Temperature-induced fluctuation 

of sensor output power 

Io Photodetector output current  (electrical) Io,n Photocurrent shot noise and  

additional detector noise  

Iq ADC output current  (digital) Iq,n ADC quantization noise 

Δne,r Reconstructed  

effective refractive index  

(digital) LoD Limit of detection (
e,rΔ3 n ) 
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4.4 Quantitative analysis of integrated phase-
sensitive photonic sensor systems 

With the overall sensor model described in Section 4.3 at hand, we can now 

perform a quantitative analysis of the performance of sensor systems based on 

different photonic circuits such as ring resonators and Mach-Zehnder interfer-

ometers. We first introduce the photonic sensor concepts and analytical models 

(Section 4.4.1), which allows us to determine the effective-index sensitivity Se 

(Section 4.4.2). The corresponding mathematical relations are summarized in 

Table 4.2 and Table 4.3. Finally, we estimate and compare the limit of detection 

LoD (Section 4.5) for each RR- and MZI-based sensor implementation, which 

is summarized comprehensively in Table 4.4. Further mathematical details are 

provided in Table B.2 and Table B.3 in the Appendix. 

4.4.1 Photonic sensor concepts and analytical models 

In the following, we consider three different photonic sensor implementations 

of both ring resonators (RR, Section 4.4.1.1) as well as Mach-Zehnder interfer-

ometers (MZI, Section 4.4.1.2 ), as illustrated in Fig. 4.2. In each of these two 

sections, we introduce the sensor concepts, explain the sensing process, high-

light key parameters, and derive the generic optical power transmission T, 

which is used as a basis for the subsequent sensitivity and LoD calculations. 

4.4.1.1 Ring resonators 

For RR-based sensor implementations, three different readout approaches are 

illustrated in Fig. 4.2(a). The first approach relies on a ring resonator in a so-

called “all-pass configuration” [72], in which the ring is coupled to a single bus 

waveguide, which serves both as an input and an output port (RRAP; associated 

elements indicated by solid lines). In the second implementation, another bus 

waveguide is coupled to the ring to tap a drop signal from the resonator that is 

detected by a single photodiode (add-drop ring resonator, RRAD) – the additional 

elements to RRAP are indicated by dotted lines. 
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Fig. 4.2. Schematic of common phase-sensitive integrated photonic sensors. A laser 

launches an optical signal into a single-mode on-chip waveguide. All waveguide sections within 

a sensitive region (yellow) are subject to an effective-refractive-index change en  resulting from 

a change env  of an environmental parameter. The index change is translated into a measurable 

change of one or more optical output powers, which are recorded by photodiodes (PD). The cor-

responding change of the optical power transmission functions  eT n  depends on the specific 

implementation of the respective sensor circuit. Different implementations of photonic sensors 

are shaded in grey. (a) Sensor implementations based on ring resonators, comprising an all-

pass ring resonator (RRAP) with a single through port (solid lines), an add-drop ring resonator 

(RRAD) having an additional drop-port bus waveguide (dotted lines), and a balanced-detection 

add-drop ring resonator (RRBD) that relies on the difference signal between the through port and 

the drop port (dashed lines). The associated optical power transmission factors AP ,T  AD,T ,T  and 

AD,DT  depend on the coupling to and from the resonator as given by the amplitude transmission 

1  and 2  of the coupling sections, on the round-trip length L, and on the round-trip amplitude 

transmission factor a. Analytic expressions for the various power transmission factors are given 

in Eqs. (4.10) and (4.12), and in Appendix B.2. (b) Sensor implementations based on Mach-

Zehnder interferometers: A 12 multimode interference (MMI) coupler splits the input signal 

into a reference and a sensor arm. Propagation through these arms leads to different phase shifts 

r  and s  at the input of the 21, 22, or 33 MMI coupler that is used to recombine the signals 

in the MZI with 1 (MZI1), 2 (MZI2) or 3 output ports (MZI3), respectively. For the 33 MMI 

coupler, the signals are fed to the first and the last input port, whereas the second is left uncon-

nected. In general, the optical power transmission factors depend on the arm lengths L and L+ΔL 

of the sensing and the reference arm, on the amplitude transmission factors a, which we assume 

to be identical for both arms, on the effective refractive index e e e,0n n n    of the sensor arm, 

and on its counterpart en  for the reference arm, see Eqs. (4.11) and (4.12).  

The third implementation also comprises a drop waveguide but uses a pair of 

balanced detectors (BD) to extract the difference signal of optical powers at the 

through port and at the drop port (RRBD) – the additional elements to RRAD are 

indicated by dashed lines. All these implementations have specific advantages: 
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The RRAP concept is attractive due to its simple design and high resonator Q-

factor, which leads to a high sensitivity, RRAD allow to multiplex several rings 

on a single bus waveguide, and RRBD simplify the feedback control to maintain 

the operating point of highest effective-index sensitivity, as detailed in Section 

4.4.2.3. 

Sensing in ring resonators relies on detecting a change en  of the effective re-

fractive index within the sensitive region, depicted in yellow in Fig. 4.2(a), 

which comprises the ring resonator. The corresponding phase shift 0 eΔk L n  in 

a resonator with round-trip length L causes a phase change with respect to the 

round-trip phase shift OP,RR  in the operating point. This additional phase shift 

modifies the overall round-trip phase RR , 

 
RR 0 e OP,RR

OP,RR 0 e

,

,

Δk L n

k Ln

 










 (4.9) 

which then leads to a change of the optical power transmission T, see Appen-

dix B.2.  

Key parameters are the operating point, characterized by the round-trip phase 

shift OP,RR 0 e ,k Ln    the round-trip optical amplitude transmission 

 2exp La   , as well as the amplitude transmission 1  and 2  and the cor-

responding cross-coupling amplitude transmission 1  and 2  at the coupling 

sections of the through and the drop port. The round-trip length L also dictates 

the free spectral range (FSR) FSR,RR  of the ring resonator, which corresponds 

to the frequency increment that increases the magnitude of the round-trip phase 

shift 0 ek Ln  by 2π and which is given by the reciprocal of the round-trip group 

delay , FSR,RRg,RR OP RR eg 1n cL       . 

In the following, we assume lossless coupling sections, 2 2 2 2
1 1 2 2 1       , 

which are not affected by the change en  of the effective index of the wave-

guide mode in the sensing region. Based on these parameters, we can calculate 

the optical power transmission as a function of the effective index change en  

and hence the ring resonator phase RR , see also Section 4.4.2 and Appen-

dix B.2 for further details,  
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 (4.10) 

4.4.1.2 Mach-Zehnder interferometers 

For MZI-based sensor implementations, we consider three typical two-arm im-

plementations as illustrated in Fig. 4.2(b), featuring 12 multi-mode interfer-

ence (MMI) coupler for splitting the input power in a sensor arm passing the 

sensitive region (depicted in yellow) and in a reference arm (depicted in green). 

For simplicity, we assume both arms to have the same power transmission, and 

we only consider the phase-shift difference in the following calculations.  

The effective-refractive-index change en  causes a phase shift 0 eΔk L n  in the 

sensor arm and modifies the phase difference MZI s r     of the optical sen-

sor and reference signals entering the 21 (MZI1), 22 (MZI2) or 33 MMI 

couplers (MZI3). All MMI couplers are assumed to be lossless with ideal split-

ting ratios for equal output powers. In absence of an effective-refractive-index 

change in the sensitive region, e 0n  , the optical signals in the reference and 

in the sensor arm experience a phase difference OP,MZI , which determines the 

MZI operating point. The phase difference OP,MZI  of the operating point may 

be caused either by a geometric length difference ΔL between the reference and 

the sensor arm or by a difference e,0n  of the effective refractive index that 

occurs even in absence of an environmental change env . The overall phase 

difference at the output of the two arms may hence be written as 
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For the MZI, the free spectral range (FSR) FSR,MZI  corresponds to the spec-

tral period of the transmission fringes and is given by the reciprocal of the group 

delay difference  g,MZI OP,MZI eg,0 eg FSR,RR1n nL L c         . 

The phase difference OP,MZI  in the MZI operating point may be adjusted by 

design, e.g., via the geometric length difference ΔL of the two arm lengths, or 

by using different waveguide designs in the two arms that allow to adjust the 

effective refractive index offset e,0n . These methods may be combined with a 

dynamic operating-point adjustment, e.g., by implementing electronically or 

thermally controlled phase shifters in the MZI arms, or by tuning the laser fre-

quency ω, see Section 4.4.2.3. Note that the operating point OP,MZI  of the 

interferometer can be set to zero independently of the operating wavelength by 

matching the optical path lengths via e,0 en LnL   . In this case, the group de-

lay difference g,MZI 0   vanishes, thereby eliminating the frequency depend-

ency of the optical power transmission.  

The extra outputs of the MZI2 and MZI3 implementations help in data pro-

cessing [77],[78] at the cost of an increased readout complexity. Specifically, 

the three output currents of the MZI3 can be processed by a Clarke transfor-

mation [79] to reduce the three output signals to a pair of signals that represent 

the in-phase and the quadrature-phase components of a complex signal with 

phase angle MZI . This allows to make the sensor sensitivity independent of the 

operating point and further allows to eliminate directional signal ambiguity 

[80]. Note that, in principle, further output ports may added. This, however, 

only increases the complexity of the photonic circuit without improving the sen-

sor performance any further. Three output ports may hence be considered an 

ideal trade-off between implementation complexity and functionality. A study 

on fundamental limits and design considerations for a coherent phase-readout 

of different kinds of MZI-based sensors can be found in [81]. 
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Independent of the specific implementation, the change en  of the effective re-

fractive index leads to a change ΔT of the optical power transmission at the MZI 

outputs, which is finally evaluated. Key parameters are the phase difference 

OP,MZI  in the operating point, the length L of the sensitive waveguide section, 

and the amplitude transmission factors a of the MZI arms. For a two-arm MZI 

having a 1×2 multi-mode interference (MMI) coupler for splitting the power 

into the two arms and a lossless    MMI coupler (µ = 2, 3, …) with the first 

and the last input port connected to the MZI arms for recombining the signals, 

the general optical power transmission T for the νth output port (ν = 1…µ) can 

be written as  

 
 

2

,MZI MZI

1 π
1 sin 2π mod ,2 ,

2

2,3, , 1 .
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T µ

µ µ
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 (4.12) 

In this relation, MZI  denotes the phase difference of the optical signals entering 

the two ports of the output MMI, see Eq. (4.11), 
2a  is the power transmission 

factor of the MZI arms, and  mod ,2  refers to the remainder of the Euclidean 

division of µ by 2. The power transmission factor 
2a  is assumed to be the same 

for both interferometer arms. Note that the overall power transmission ,MZIT
  

of the different MZI output ports 1   reveals a sinusoidal dependence on 

the phase difference MZI . These sinusoidals are offset in phase by constant 

increments 2π  , which is a direct consequence of the distinct phase relations 

in    MMI couplers [82]. Note also that, for MZIµ with µ > 1, combination 

of the signals in the    MMI coupler does not introduce any additional 

power loss. This is different for an MZI terminated by a 21 MMI (µ = 1), for 

which lossless combination of the signals is only possible for constructive in-

terference at MZI π  (2 )m m   . In this case, the optical power transmission 

can be written as 

   
1

2

,MZI MZI1 cos .
2

a
T    (4.13) 

Note that in our further analysis, the power transmission factor 
2a  is assumed 

to be the same for both interferometer arms. 
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4.4.2 Effective-index sensitivity 

In this section, we analytically maximize the effective-index sensitivity of the 

RR- and MZI-based sensor implementations in Fig. 4.2 by optimizing the sen-

sor operating point as well as the circuit design parameters, i.e., the round-trip 

length and coupling coefficients for RR, and the arm length for MZI. As a base-

line, we use the generic optical power transmission T from Eq. (4.10) and 

Eq. (4.12) derived in the previous two sections, and we assume a set of techno-

logically fixed parameters, namely the vacuum propagation constant k0 of the 

light source as well as the effective index en  and the modal power loss coeffi-

cient α of the sensor waveguide. 

In order to quantify and to compare the effective-index sensitivity of all sensor 

implementations, we start by extending the optical power transmission T by de-

fining an effective opto-electronic transmission τ and sensitivity e,S   (Sec-

tion 4.4.2.1). This allows for a comparison with concepts that are relying on 

signals from multiple outputs (RRBD, MZI2, MZI3) by including the combination 

of the digitized photodetector currents Iq. Based on τ, we quantify the optoelec-

tronic effective-index sensitivity e,S   (Section 4.4.2.2), where we find general 

analytical expressions for both RR and MZI. With this sensitivity model at hand, 

we determine optimum operating points OP,opt  (Section 4.4.2.3) of each sensor 

and derive the peak sensitivity e, ,peakS   as a function of the remaining design 

parameters. We further provide details on the operating point control in fully 

integrated photonic sensor systems. We exploit e, ,peakS   to analytically find op-

timum design parameters (Section 4.4.2.4), in particular for the MZI arm length 

and for the round-trip length and the amplitude transmission 1 , 2  of the cou-

pling sections in case of RR. We further formulate requirements regarding the 

laser diode linewidth FWHM,LD  that are associated with highly sensitive 

measurements in RR- and MZI-based sensor circuits. Finally, we perform a 

quantitative comparison of the optoelectronic effective-index sensitivity 

e, ,maxS   for each RR- and MZI-based sensor implementation (Section 4.4.2.5). 
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4.4.2.1 Optoelectronic transmission and optoelectronic effective-index 

sensitivity 

In sensor systems relying on signals from multiple outputs (RRBD, MZI2, MZI3), 

further processing steps such as additions or subtractions are required in the 

electronic or digital domain to obtain the output signal. To include these steps 

in our model, we extend the optical power transmission T of all sensor types by 

defining an effective optoelectronic transmission  

  , .f T    (4.14) 

The effective optoelectronic transmission  comprises the additional processing 

steps of the analog or digitized electric signals as well as the overall electric 

readout responsivity ℜ, which accounts for the photodiode responsivity and for 

the gain of any electrical readout amplifiers. For simplicity, we assume the same 

frequency-independent electric readout responsivity ℜ for the various output 

ports of the photonic sensor circuits. In analogy to Eq. (4.6), we can then define 

an optoelectronic effective-index sensitivity  

 e,
e

S
n







 (4.15) 

that refers to the optoelectronic transmission τ rather than to the optical trans-

mission T. For sensor circuits with only one output (RRAP, RRAD, MZI1), the 

optoelectronic transmission  can be obtained from the optical transmission T 

by a simple multiplication with the electric readout responsivity , T  , 

and Eq. (4.15) simplifies to e, eS S  . For sensor circuits with multiple out-

puts (RRAP, RRAD, MZI1), further processing of the acquired and digitized pho-

tocurrents Iq is involved, leading to additions and subtractions of the respective 

optical power transmission factors. The effective optoelectronic transmission τ 

of the three RR and the three MZI circuits are shown in Column 2 of Table 4.2. 

For the case of MZI3, the phase difference between the MZI arms can be ex-

tracted by merging the three readout signals into a complex-valued optoelec-

tronic transmission function τ and by determining its argument, see last row of 

Table 4.2. 
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Table 4.2: Effective optoelectronic transmission τ of the different of RR-based and 

MZI-based sensor implementations as defined in Fig. 4.2. For each sensor implementa-

tion indicated in Column 1, Column 2 gives a general expression for the optoelectronic trans-

mission , assuming the same electric readout responsivity ℜ for each output. The relations 

in Column 3 refer to the simplified  for an effective-refractive-index change Δne, which are 

derived in Appendices B.2-B.3. These relations depend on the normalized output contrast ̂

in Column 4 as a parameter. For the ring resonators, we assume that the device is operated at 

its optical resonance frequency, i.e., OP,RR π  ( )2 m m   , in the absence of an effective-

index change (Δne = 0). Choosing am optimum operating point according to Section 4.4.2.3 

corresponds to a simple shift of the effective optoelectronic transmission characteristics  

along Δne. 

Sensor 

impl. 

Effective optoelectronic transmission τ 
Output contrast ̂ R  

General Simplified 

RRAP 
APRR APT R  

2

e

eg

1

0

Δ

1

ˆ
1

2
1

Q

n

n



 
 
 
 
 

 
  

     
   
 
 

  

 

 

2

1

2

1

1
1

a

a









 

RRAD 
ADRR ADDT R  

  
 

2 2
1 2

2

1 2

1 1

1

a

a

 

 

 


 

RRBD  
BDRR AD ADDT T  R  

 

2 2
1 2

2

1 2

( 1)(

1

1)( 1)aa

a

 

 

 




 

MZI1 1 1MZI 1,MZIT R    e 0 OP,MZIˆ / 2  1 cos Δn k L     ²a  

MZI2  
2 2 2MZI 2,MZI 1,MZIT T  R   e 0 OP,MZIˆ / 2 sin Δn k L    2 ²a  

MZI3 
 

 
3 3 3 3

3 3

MZI 2,MZI 3,MZI 1,MZI

3,MZI 1,MZI

2

j 3

T T T

T T

   

 

R

R
   e 0 OP,MZIeˆ / 2 xp j Δn k L     2 ²a  

4.4.2.2 Sensitivity analysis of RR- and MZI-based sensors  

In the following, we develop quantitative models for the effective optoelec-

tronic transmission and the optoelectronic effective-index sensitivity of RR- and 

MZI-based sensors. For the three RR-based implementations, we assume that 

the rings have identical round-trip lengths L, modal power loss coefficients α, 

and effective group refractive indices eg e enn n     and thus identical in-

trinsic Q-factors Qi, which are defined as the product of the cavity resonance 

frequency res  and the photon lifetime c , 

 0
i res c eg .

k
Q n 


   (4.16) 
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In the subsequent analysis, we consider different coupling strengths of the ring 

resonator to the single (RRAP) or the pair (RRAD, RRBD) of bus waveguides, 

which we quantify by the quality ratio iQc Q Q  of the loaded Q-factor Q and 

the intrinsic, unloaded Q-factor Qi , 

 i ., 1Q QQ c Q c   (4.17) 

For loaded high-Q ring resonators, the power transmission characteristics can 

be approximated by a Lorentzian for the drop ports, and by its complement to 

unity transmission for the through ports. This is done by a Taylor approximation 

of the cosine term    
2

RR RR rescos 1 / 2    in Eq. (4.10) for small offsets 

RR RR res     of the round-trip phase from that the nearest resonance 

res π  (2 )m m   , i.e., for RR 1 , see Appendix B.3 for details. For the 

remainder of this subsection, we assume for simplicity that the ring resonator is 

operated at its optical resonance frequency res  in the absence of an effective 

index change, i.e., for e 0n  , and we consider the change of the effective op-

toelectronic transmission  as a function of en . The dependence of the effec-

tive optoelectronic transmission τ on the effective index change en  is then 

given by the simplified Lorentz-based optoelectronic transmission functions in 

the third column of Table 4.2 for the RRAP, the RRAD, and the RRBD implemen-

tation. In Section 4.4.2.3, we will consider the choice of the optimum operating 

point given by a phase offset OP,RR , which is adjusted by tuning the laser 

away from the resonance frequency of the ring. This simply corresponds to a 

horizontal shift of the effective optoelectronic transmission characteristics – the 

transmission characteristics for any other operating point OP,RR  can be ob-

tained by replacing en  in Rows 2, 3, and 4 of Table 4.2 through 

 e OP,RR 0Ln k . Note that, when using the Lorentzian approximation, the 

effective optoelectronic transmission characteristics of a ring-based sensor are 

fully defined by two simple parameters: The resonance depth or output contrast

̂  and the resonance width eg,FWHM,RR egn Qn   with respect to effective-in-

dex change en , see also Table B.3 in Appendix B.3.  

Based on these models, Fig. 4.3(a) shows the effective optoelectronic transmis-

sion τ as a function of an effective index change en  for the various RR-based 

sensor implementations. For the RRAP and the RRAD, we investigate the case of 
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critical coupling (superscript “CC”) as well as an under-coupled (superscript 

“UC”) implementation, for which the coupling to the through and drop port is 

chosen to maximize the sensitivity in the optimum operating point, see Sec-

tion 4.4.2.4. The two black lines in Fig. 4.3(a) correspond to the critically cou-

pled RRAP CC
AP(RR ,  solid black line, Q 1 2)c   and to its under-coupled counter-

part UC
AP(RR , dashed black line, Q 2 3).c   Similarly, the two red lines 

correspond to RRAD, again critically coupled CC
AD(RR ,  solid red line, Q 1 4)c   

and under-coupled ( UC
ADRR , dashed red line, Q 1 3).c   For the RRBD, we only 

consider an under-coupled implementation ( UC
BDRR , solid blue line, Q 1 3),c   

which simultaneously maximizes sensitivity and leads to perfect power trans-

mission balancing of the two output ports in the optimum operating point. 

 

Fig. 4.3. Optoelectronic transmission τ and optoelectronic effective-index sensitivity Se,τ of 

the different sensor implementations based on RR and MZI. (a) Effective optoelectronic 

transmission τ of RR-based implementations. [Remaining figure caption on the following page]  
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[Continuation of Fig. 4.3 caption] For better comparability, all rings are assumed to have the 

same round-trip length L, the same modal power loss coefficient α, the same effective group 

refractive index neg, and thus the same intrinsic Q-factor Qi. We plot the diagrams for a critically 

coupled all-pass ring resonator (
CC
APRR ,  solid black line) and for its under-coupled counterpart (

UC
APRR , dashed black line), for a critically coupled and for an under-coupled add-drop ring reso-

nator each with a single photodetector 
CC
AD(RR , solid red line, and 

UC
ADRR , dashed red line), and 

for an under-coupled add-drop ring resonator with balanced detection at the output (
UC
BDRR , solid 

blue line), for which the photonic circuit is identical to that of 
UC
ADRR .  The results are normalized 

by the electric readout responsivity ℜ, which is assumed to be the same for the various outputs. 

For single-output sensors, the quantity T    gives the optical transmission. Relevant trans-

mission changes happen around the resonance for 0 eg ien k Qn    . For simplicity, we 

assume that, in the absence of an effective-index change e( 0),n   the devices are operated at 

an optical resonance frequency, i.e., OP,RR π  ( )2 m m   . The transmission characteristics for 

any other operating point defined by a non-zero phase offset OP,RR  can be deduced from the 

plots by shifting the abscissa by  OP,RR 0 .k L  (b) Effective optoelectronic transmission of 

single-, double-, and triple-output Mach-Zehnder interferometers (MZI1, MZI2, MZI3; black, red 

and blue lines). Solid lines correspond to the individual outputs; dash-dotted lines show combined 

effective optoelectronic transmissions. The trace plotted for MZI3 refers to the magnitude of the 

complex effective optoelectronic transmission obtained from the last row of Table 4.2. For sim-

plicity, we assume identical arm lengths and that, in the absence of an effective-index change 

e( 0),n   the phase shifts in the MZI two arms are identical or differ by an integer multiple of 

2π, OP,MZI π  ( ).2 m m   The transmission characteristics of any other operating point defined 

by a non-zero phase offset OP,MZI  can be deduced from the plots by shifting the abscissa by 

 OP,MZI 0 .k L  (c, d) Optoelectronic effective-index sensitivity   e, e1S n     of RR 

and MZI, normalized by the electric readout responsivity ℜ. For single-output sensors, 

e, e.S S   Peak sensitivities e, ,peakS   in the optimum operating point are marked with crosses 

in all subfigures. Quantitative values can be found in Table 4.3. The trace for MZI3 again refers 

to the magnitude of the complex optoelectronic effective-index sensitivity obtained from the last 

row of Table 4.2. In this case, e,S   is independent of the operating point. 

The sensitivity e,S  , Fig. 4.3(c), is obtained by taking the derivative of the ef-

fective optoelectronic transmission τ with respect to the effective-index change 

en , see Eq. (4.15). Qualitatively, the effective optoelectronic transmissions of 

RRAP show steeper slopes with respect to en  and thus a higher peak sensitivity 

e, ,peakS   compared to those of RRAD and RRBD. This can be understood from the 

fact that both RRAD and RRBD require a second waveguide to be coupled to the 

ring, which decreases the loaded Q-factor and hence reduces the slope of the 

Lorentzian that approximates the resonance. Furthermore, slightly under-cou-

pled resonators outperform critically-coupled ring resonators. 
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We also formulate simplified expressions for the optoelectronic transmission τ 

of the various MZI-based sensor implementations, see third column of Ta-

ble 4.2, which have been derived from Eqs. (4.11), (4.12) and (4.13). It can be 

seen that the output contrast of the MZI1 is only half of all other MZIµ versions, 

see Column 4 of Table 4.2. Fig. 4.3(b) shows the corresponding effective opto-

electronic transmission τ as a function of the effective index change en . We 

limit our consideration to the range    e 0π; π Ln k  , exploiting the fact 

that the transmission characteristics are periodic with respect to en , where the 

period is given by the effective-index increment that increases the MZI phase 

difference MZI  by 2. For the case of MZI2 (MZI3), we additionally indicate 

the individual contributions MZI2i (MZI3i) of the various MMI coupler outputs 

1,2   ( 1,2,3  ) in dashed lines. This leads to a pair of sinusoidals that are 

phase-shifted by π in case of MZI2 and to three sinusoidals that are phase-shifted 

by 2π 3  for MZI3. Note that for MZI3, the optoelectronic transmission is a com-

plex number, see Column 3, last row in Table 4.2, for which we plot the mag-

nitude only. The MZI sensitivity shown Fig. 4.3(d) is again obtained by taking 

the derivative of the effective optoelectronic transmission τ with respect to the 

effective-index change en . Note that for the plots in Fig. 4.3(b) and (d), we 

assume operating points for which the phase difference of the two arms corre-

sponds to an integer multiple of 2π,  OP,MZI 2π  m m   . The transmission 

characteristics of any other operating points defined by a non-zero phase offset 

OP,MZI  can be deduced from the plots by shifting the abscissa by 

 OP,MZI 0Lk . 

4.4.2.3 Optimum operating points and peak sensitivity 

For ring resonators, the optimum operating points offering the peak sensitivity 

e, ,peakS   can be found at the inflection points of the Lorentzian that approxi-

mates the optical power transmission in the vicinity of the resonance frequency 

res.  Using the relations summarized in Appendix B.3, Table B.3, we can cal-

culate the phase offset in the optimum operating point of a ring resonator as 

 OP,RR,opt

1
.

2 3 Q

L

c


   (4.18) 
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In a typical experiment, a resonance is found by either tuning the input laser 

frequency or the effective refractive index of the waveguide in the resonator 

until minimum (RRAP) or maximum (RRAD) power transmission is achieved. 

From this resonance condition, the optimum operating point can be reached ei-

ther through a frequency offset  OP,RR,opt res 2 3Q   or through a refrac-

tive index offset  e,OP,RR,opt eg 2 3Qn n , see Table B.3 in Appendix B.3. 

For MZI1 and MZI2, the operating points for peak sensitivity e, ,peakS   can be 

found accordingly, leading to phase offsets 

 
1

OP,MZI,opt

2

0 for MZI ,
π

Δ + π
2 for MZI .

2






  


 (4.19) 

The effective optoelectronic transmissions of MZI1, MZI2 and MZI3 are drawn 

in solid lines. For MZI3, the sensitivity is again a complex number for which we 

only plot the magnitude. Due to the advantageous signal combination, the mag-

nitude of the sensitivity does not depend on the operating point for MZI3.  

With the optimum operating points at hand, we can now formulate relations for 

the associated peak sensitivity. To this end, we first express the peak sensitivi-

ties of RR- and MZI-based sensor implementations in terms of the output con-

trast ̂  between minimum and maximum transmission of the respective device, 

as specified in the last column of Table 4.2, 

 

0
Q
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e, ,peak

0

3 3
2 3 2 3   for RR,

8 8 α
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ˆ ˆ

ˆ
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

 







 



 (4.20) 

To derive these relationships, we assumed again that the power transmission of 

the ring resonators can be approximated by a Lorentzian for the drop ports, and 

by its complement to unity transmission for the through ports, see Eq. (B.3) and 

(B.4) as well as Table B.3 of Appendix B.3. For RR, the output contrast ̂  rep-

resents the amplitude of this Lorentzian, which is equivalent to the resonance 
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depth, and iQc Q Q  refers to the ratio of the loaded Q-factor Q and the intrin-

sic, unloaded Q-factor i ,Q  see Eq. (4.17). For MZI1 and MZI2, ̂  is given by the 

peak-to-peak swing of the effective transmission τ when tuning the MZI phase 

difference MZI  over 2. For MZI3, ̂ is calculated by summing over the output 

contrasts of the individual output ports. 

Note that maintaining the optimum operating point of sensors based on RR, 

MZI1, or MZI2 is not a trivial task. In many cases of practical interest, the fab-

rication process of the sensor PIC is imperfect, such that it is impossible to re-

liably set the optimum operation point by design. In this case, a method to ac-

tively tune the system to OP,RR,opt  or OP,MZI,opt  is required. Furthermore, 

the operating points are affected by long-term drifts, caused for example by 

temperature or degradation effects. As a consequence of these drifts, measure-

ment of absolute quantities over extended periods of time is usually much harder 

than detecting abrupt changes. As an example, relative measurements are usu-

ally sufficient for biosensors that detect binding events of target analytes to 

functionalized waveguide surfaces, which typically occur over time scales of a 

few minutes [66]. In contrast to that, long-term monitoring of absolute gas con-

centrations crucially relies not only on robust sensor calibration, but also on 

effective elimination of drift phenomena. To this end, it is necessary to equip 

the sensor system with appropriate stabilization mechanisms and/or feedback 

loops that can dynamically adjust tuning parameters to maintain the optimum 

operating point. This tuning can rely on, e.g., waveguide sections with thermal 

or free-carrier-injection phase shifters, a technique which is applicable to both 

MZI and RR. For RR and asymmetric MZI with non-zero group delay differ-

ence  g,MZI eg,0 egn Ln cL  , the operating point may also be set by tun-

ing the laser frequency. This is not an option in the case of symmetric MZI with 

zero or very small group-delay differences, which lead to an FSR 

FSR,MZI g,MZI1   that exceeds the tuning range of the underlying light 

source. On the other hand, sensor systems based on symmetric MZI are less 

sensitive to laser frequency noise, see Section 4.4.3 for details. 

For the balanced detection schemes such as in the RRBD and MZI2 sensor im-

plementations, the associated feedback loop to control these tuning elements is 

simple, as the effective optoelectronic transmission τ in the optimum operating 
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point is always exactly zero. The feedback control loop just has to minimize τ, 

and hence does not require any reference bias. It can be designed without 

knowledge of the expected signal levels, which may even vary over time.  

For MZI1, RRAP and RRAD, a more sophisticated feedback loop is required to 

tune to the optimum operating point. As an example, a small phase modulation 

can be employed that can easily be extracted at the sensor output. In the opti-

mum operating point, the modulation amplitude at the senor output reaches a 

maximum, since the phase sensitivity is maximized along with the optoelec-

tronic effective-index sensitivity. The feedback control loop has then to main-

tain the maximum modulation amplitude at the output. 

For the MZI3-based implementation, the sensitivity is independent of the oper-

ating point, which renders active feedback control unnecessary and thus vastly 

reduces system complexity. Moreover, a large dynamic range at constant sensi-

tivity can be obtained by unwrapping the measured phases, provided that the 

acquisition bandwidth at the sensor output is fast enough to continuously track 

the phase change. Combining an unbalanced MZI3 with a sufficiently large 

modulation of the operation wavelength allows for endless phase unwrapping 

even if the signal is not tracked continuously [80]. 

4.4.2.4 Optimum design parameters for overall maximum sensitivity 

In the preceding sections, we have calculated the transmission functions and the 

extended effective optoelectronic transmission functions that define the effec-

tive-index sensitivities for a set of selected sensor implementation examples. 

We found that each sensor can be tuned to an optimum operating point that 

offers highest sensitivity towards changes of the effective refractive index in the 

sensitive regions, see Eq. (4.20). We will now expand our consideration and 

globally optimize the sensor design to identify the fundamental sensitivity limit 

that can be achieved for a given technology-specific modal power loss coeffi-

cient α and a given operating wavelength 02π .k   In this consideration, the 

only remaining design parameters are the arm length L for the MZI and the 

round-trip length L along with the amplitude transmission 1 , 2  of the cou-

pling sections for the RR. In the following, we analytically optimize these pa-

rameters based on Eq. (4.20) to obtain a maximum sensitivity, where, for the 
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case of ring resonators, ρ and L are also encoded in Qc  and ̂ . We only discuss 

the results in the subsequent paragraphs – the mathematical details of this opti-

mization are given in Appendix B.4. 

Ring resonator coupling coefficients The top panel of Fig. 4.4(a) shows the 

peak optoelectronic effective-index sensitivity e, ,peakS   of an all-pass ring reso-

nator (RRAP) tuned to the optimum operating point relative to the maximum 

achievable peak optoelectronic effective-index sensitivity e, ,maxS   as a function 

of the amplitude transmission 1  of the coupling section between the ring and 

the bus waveguide. Notably, e, ,maxS   is achieved for an under-coupled ring res-

onator ( 1 a  ) and not for critical coupling ( 1 a  ). For the add-drop con-

figuration (RRAD), e, ,peakS   depends on the amplitude transmission 1  and 2  

of the through port and drop port coupling sections and is plotted as a colored 

contour map in the bottom panel of Fig. 4.4(a). Also here, e, ,maxS   is found in a 

slightly under-coupled (UC) regime 1 2( ),a    yielding a roughly 20% 

higher peak sensitivity compared to the critically coupled (CC) case 1 2( ).a   

The characteristics for the add-drop configuration with balanced detection 

(RRBD) are the same as for RRAD. 

Device length Fig. 4.4(b) shows the peak sensitivities of different RR- and 

MZI-based sensor implementations as a function of the attenuation .L  For 

MZI, an optimum arm length of opt 1L   can be found. This optimum results 

from the fact that large arm lengths increase the accumulated phase shift but 

decrease the optical power transmission and hence the output contrast. Exploit-

ing the full potential of low-loss waveguide technologies through MZI-based 

sensors hence requires large device footprints. For RR, we consider different 

implementations based on all-pass (RRAP), add-drop (RRAD), and balanced-de-

tection (RRBD) schemes. We consider both critically coupled (CC) and under-

coupled (UC) implementations, see Table 4.3 for the exact choice of the ampli-

tude transmission 1  and 2  of the coupling sections. Irrespective of the exact 

RR-based sensor implementation, the sensitivity is essentially length-independ-

ent for 1L , provided that the coupling coefficients are adapted to the re-

spective value of  exp 2La    as indicated in Fig. 4.4(a). Note that 1L  

is typically the case for ring resonators with radii on the order of tens of mi-

crometers realized on state-of-the-art integration platforms.  
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Fig. 4.4. Design optimization for maximum peak optoelectronic effective-index sensitivity 

and comparison of sensor implementations. (a) Influence of the amplitude transmission 1  

and 2  of the through-port and drop-port coupling sections on the peak optoelectronic effective-

index sensitivity e, ,peakS   of all-pass (RRAP, top panel) and add-drop (RRAD, bottom panel) RR 

with indications of over-coupled (OC), under-coupled (UC), and critically-coupled (CC) regimes. 

e, ,peakS   is normalized to its maximum peak value e, ,maxS   for the respective configuration. The 

characteristics for the add-drop configuration with balanced detection (RRBD) are that same as 

for RRAD. For the RRAP configuration, critical coupling is achieved for 1 a  . For the RRAD and 

RRBD configuration, critical coupling requires 1 2a  , indicated by a dashed line in the lower 

panel. (b) Influence of RR round-trip length (red) and MZI arm length (blue) on the peak ef-

fective-index sensitivity e, ,peak ,S   normalized by the electric readout responsivity ℜ. Optimum 

device lengths are marked with crosses. Note that for the case of RR in a certain coupling state, 

the effective-index sensitivity is essentially independent of the round-trip length L as long as the 

round-trip attenuation is small, 1.L  For MZI, an optimum arm length of opt 1L   can be 

found. [Remaining figure caption on the following page]  
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[Continuation of Fig. 4.4 caption] (c) Sensitivity fading caused by frequency noise of the drive 

laser, quantified by a finite linewidth. We consider Lorentzian as well as Gaussian emission spec-

tra, which are characterized by their full widths at half maximum FWHM,LD.  For RR, 

FWHM,LD  imposes a lower practical limit on the spectral width FWHM,RR  of the resonance 

and hence leads to an upper limit of the usable Q-factor for a given laser source. Note that these 

limitations do not apply to MZI, since FSR,MZI  can always be made arbitrarily large by match-

ing the group delay in the two arms. (d) Comparison of the peak effective-index sensitivity 

e, ,peakS   and the fundamentally achievable maximum peak effective-index sensitivity e, ,maxS   

for the various sensor concepts. All sensitivities are given as fractions of 0k   and are ultimately 

limited the modal power loss coefficient α. Note that higher wavenumbers 0k  do generally not 

increase the optoelectronic effective-index sensitivity e,S  : For a given quantum efficiency of 

the photodetector, the electric readout responsivity ℜ is inversely proportional to the photon en-

ergy and hence to the vacuum wavenumber 0 ,k c  which exactly cancels the influence of 0k  

on e, .S   For a given waveguide technology, MZI can ultimately perform almost as well as RR 

while being insensitive to the laser linewidth. For MZI as well as under-coupled (UC) ring reso-

nators, the graph indicates the maximum peak effective-index sensitivities e, ,maxS   that can be 

achieved. These implementations are marked with a white asterisk (). 

Note that our considerations did so far not take into account any non-idealities 

of the drive laser such as frequency noise, quantified by a non-zero linewidth, 

which can lead to a fading of the sensitivity. In the following, we consider laser 

sources with non-zero linewidths. To cover the range of practically relevant line 

shapes, we perform the analysis for both Lorentzian and Gaussian line shapes, 

see Appendix B.4 for details. The results are shown in Fig. 4.4(c). We can ob-

serve a fading of the optoelectronic effective-index sensitivity if the laser lin-

ewidth FWHM,LD  approaches the full width at half maximum FWHM,RR  of 

the ring resonance or the MZI free spectral range FSR,MZI . As a rule of thumb, 

the laser linewidth should be kept two orders of magnitude smaller than the 

spectral features of the sensor transmission characteristics. Specifically, for 

high-Q RR, the laser linewidth becomes a particularly crucial parameter and 

may set an upper limit for usable ring resonator Q-factors for a laser with a 

given linewidth. Note that, besides the decreased optoelectronic effective-index 

sensitivity, laser frequency noise can also add to the overall noise of the readout 

signal, thereby impairing the limit of detection – see Section 4.4.3.4 for a more 

detailed discussion. Note also that MZI are not subject to any fundamental lim-

itations related to the laser linewidth: By matching the group delays in the two 
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arms, the MZI FSR FSR,MZI  can always be made much larger than any prac-

tically relevant laser linewidth. 

4.4.2.5 Sensitivity comparison of optimized sensor implementations 

Assuming optimum device lengths optL  and amplitude transmission factors 

1,opt  and 2,opt  of the RR coupling sections, and neglecting detrimental effects 

that result from non-zero laser linewidths, we can calculate the peak optoelec-

tronic effective-index sensitivity e, ,peakS   and the fundamentally achievable 

maximum peak optoelectronic effective-index sensitivity e, ,maxS   of the various 

sensor concepts, see Appendix B.4 for details. The results are indicated in 

Fig. 4.4(d), and the corresponding sensor parameters are summarized in Ta-

ble 4.3. The right-hand part of Fig. 4.4(d) shows the maximum peak effective-

index sensitivity e, ,maxS   of MZI with optimized arm lengths in different output 

configurations. The more complex implementations MZI2 and MZI3 allow to 

enhance e, ,maxS   by using appropriate combinations of the output signals. Spe-

cifically, MZI2 use a balanced detection of two complementary photodiode cur-

rents, which allows to double e, ,maxS   compared to MZI1. Moreover, balanced 

detection leads to zero effective transmission OP  in the optimum operating 

point and thereby simplifies feedback control for operating point stabilization. 

MZI3 provide the same sensitivity as MZI2 and are additionally insensitive with 

respect to the operating point [78],[80], eliminating the need of a feedback con-

trol for operating-point stabilization. The left-hand part of Fig. 4.4(d) shows 

e, ,peakS   of typical RR-based sensor implementations.  

For the same ring cavity, the RRAP implementation generally outperforms the 

corresponding RRAD concept by a factor of 4 due to the increased power loss 

introduced by the additional waveguide that is coupled to the RRAD resonator. 

For both implementations, optimized under-coupled (UC) operation leads to the 

maximum peak effective-index sensitivity e, ,max ,S   which outperforms the best 

e, ,maxS   of critically coupled (CC) operation by roughly 20%. For RRAD, the 

optimized under-coupled sensors are furthermore easier to reliably fabricate due 

to symmetric coupling gaps of the two tapping bus waveguides. The RRBD ex-

ploits both the drop- and through-ports and increases e, ,maxS   by a factor of 3 

compared to only using the drop-port. 



4.4  Quantitative analysis of integrated phase-sensitive photonic sensor systems 

99 

Table 4.3: Peak optoelectronic effective-index sensitivity Se,τ,peak and maximum peak 

optoelectronic effective-index sensitivity Se,τ,max along with corresponding optimized de-

sign parameters for the various RR- and MZI-based sensor implementations. For the 

ring resonators (RR), we assume a given vacuum wavenumber k0 and modal power loss co-

efficient α and calculate the peak optoelectronic effective-index sensitivity e, ,peakS   in the 

optimum operating point for different implementations based on all-pass (RRAP), add-drop 

(RRAD), and balanced-detection (RRBP) schemes as defined in Fig. 4.2. The quantity

 exp 2a L  denotes the round-trip amplitude transmission factor. The maximum peak 

optoelectronic effective-index sensitivity e, ,maxS   is obtained for the under-coupled (UC) im-

plementations, indicated by an asterisk () in the last column. For the critically-coupled (CC) 

implementations of RRAP and RRAD, the peak sensitivity e, ,peakS   is smaller than for the UC 

implementation. The parameters a, 1  and 2  fully define the quality ratio Q ic Q Q  of the 

RR, see Eq. (4.17), as well as the effective output contrast ̂  and the effective optoelectronic 

transmission OP  for RR and MZI in the respective optimum operating point. For the MZI, 

we choose the optimum arm length 1 .L   

 optL  1,opt  2,opt  Qc  
̂


 

OP


  

e, ,peakS 


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1
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e
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e

k


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a Note that due to the complex-valued transmission τ of MZI3, we specify OP  . 

Moreover, UC
BDRR  implementations allow to push the effective transmission OP  

in the optimum operating point to zero, which simplifies feedback control for 
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operating-point stabilization. Note that the optoelectronic effective-index sen-

sitivity e,S   of an integrated phase-sensitive sensor can generally not be in-

creased by using shorter operation wavelengths and hence larger wavenumbers 

0k c , even though the normalization of the vertical axis by 0k   might 

suggest this: For a given quantum efficiency of the photodetector, the electric 

readout responsivity ℜ is inversely proportional to the photon energy and hence 

to the vacuum wavenumber, which exactly cancels the effect that the phase 

change is proportional to 0k . 

Comparing broadly the various RR- or MZI-based sensor implementations, we 

find that the maximum peak effective-index sensitivity 1
e, ,maxS     is ulti-

mately dictated by the modal power loss coefficient α. This can be intuitively 

understood: In RR, the ratio 0k   is directly linked to the Q-factor since 

0 i eg ,Q nk    see Eq. (4.16), and hence the slope of the Lorentzian resonance, 

see Eq. (4.20). In MZI, 0k   is related to the fundamental design trade-off be-

tween phase sensitivity and output contrast. The fundamental dependency of 

e, ,maxS  on 0k  is eliminated due to the electric readout responsivity ℜ, which 

accounts for the photodiode responsivity for the gain of any electrical readout 

amplifier, as well as for processing steps of the analog or digitized electric sig-

nals. 

4.4.3 Limit of detection 

In Section 4.4.2, we have compared the different RR- and MZI-based sensor 

implementations in terms of their sensitivity towards a change en  of the effec-

tive refractive index in the sensitive waveguide region. We will now quantify 

and compare the limit of detection LoD, i.e., the smallest refractive-index 

change en  that can be detected by the various sensors. To this end, we assume 

that all deterministic influences can be eliminated by proper technology control, 

device design, and calibration, and we thus disregard fabrication errors and the 

corresponding waveguide/component errors or splitter/coupler/detector imbal-

ances as well as absolute sensor temperature or stress. Note that controlling the 

impact of these deterministic errors is a complex task in its own right, and a 

wide range of approaches has been explored in the literature. Apart from im-
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proved fabrication processes [83],[84] and error prediction [85], photonic com-

ponents can be designed specifically for increased tolerance with respect to fab-

rication errors [86]. Moreover, waveguides or waveguide pairs in interferometer 

arms can be designed to minimize temperature effects [86]–[89], and on-chip 

as well as off-chip reference structures can be employed to compensate for en-

vironmental drift [66],[90]. Factory calibration mechanisms can account for 

variations in the fabrication process [91], and advanced readout concepts and 

signal processing can dynamically recalibrate the sensor system at runtime [80]. 

Consequently, the remaining unavoidable measurement uncertainty and the as-

sociated LoD of the photonic sensor system is associated only with stochastic 

noise sources, which we analyze in the following paragraphs. 

The noise-propagation model is illustrated in Fig. 4.5. As noise sources n , we 

consider laser frequency and intensity (power) noise n  and i,nP  with variances 

n
n

2 2
   and 

i,n i,n
2 2
P

P  , which partially result from noise i,nI  of the laser drive 

current, see Fig. 4.1(c). Note that our model treats the laser frequency and in-

tensity (power) noise n  and i,nP  as statistically independent random variables 

and does not account for the exact dependence of these quantities on the drive-

current noise i,n .I  This is illustrated by dashed lines in Fig. 4.5. We further in-

clude temperature fluctuations n  between the sensor and the co-integrated ref-

erence structure on the photonic chip, which are characterized by a variance 
n

2


. In the model shown in Fig. 4.1(c), these temperature fluctuations are accounted 

for via a temperature-induced fluctuation o,nP  with variance 
o,n

o,n
2 2
P

P   of the 

optical sensor output power oP . At the detector side, we consider the photocur-

rent shot noise s,nI  with variance 
s,n

s,n
2 2
I

I   as well as additional photodetector 

noise NEP,nI  with variance 
NEP,n NEP,n

2 2
I

I  , quantified by the so-called noise-

equivalent power (NEP). Both of these noise currents contribute towards the 

total output-photocurrent noise Io,n with variance 
o,n

o,n
2 2
I

I  , see Fig. 4.1(c) and 

in Fig. 4.5. We further account for quantization noise introduced by analog-to-

digital conversion of the photocurrent, described by a quantization-noise current 

q,nI  with variance 
q,n

q,n
2 2
I

I  . All these noise sources 

 n n n i,n s,n NEP,n q,n; ; ; ; ;P I I I    are treated as random variables with zero 

mean n 0   that have associated variances 
n

2 2
n  . Note that the subscript 

“n” in these quantities refers to newly added noise in a certain stage of the sensor 

signal chain, in contrast to the noise that was accumulated from previous stages 
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and that is denoted by symbols without subscript “n”, see Eq. (4.7). In the fol-

lowing, we assume for simplicity a unity propagation factor through the ADC, 
2

q o 1I I  , and add all three detection-related current noise variances to ob-

tain the variance 
q s,n NEP,n q,n

2 2 2 2
I I I I      of the quantized output current q.I  

The propagation of these noise quantities and of the associated noise variances 

n

2
 through the system is illustrated in Fig. 4.5. Each noise variance 

n

2
  is as-

sociated with a noise propagation factor W  that describes the propagation of 

n

2
  through the sensor system to the overall variance 

e,r

2
Δn of the reconstructed 

effective-refractive-index change e,rn . In the illustration of Fig. 4.5, each noise 

propagation W  is associated with a solid trace of the respective color that con-

nects the variance of the respective noise source (colored ellipse) to the overall 

variance 
e,r

2
Δn (green ellipse). 

 

Fig. 4.5. Illustration of the noise propagation. The individual noise quantities 

 n n n i,n s,n NEP,n q,n; ; ; ; ;P I I I    with associated additive noise variances 
n

2
 , indicated by 

filled colored ellipses, propagate through different stages of the sensor system and contribute to 

cumulative noise variances of the intermediate quantities 
e

2
n , 

2
 , 

o

2
P , 

o

2
I and 

q

2
I , all indi-

cated by white ellipses. For simplicity, we assume all noise quantities to be uncorrelated, such 

that the variances of the respective contributions towards the overall reconstruction variance 

e,r

2
Δn  may simply be added, see Eq. (4.21). We consider laser frequency noise n  (brown) and 

intensity (power) noise i,nP  (dark green) with variances 
n

n
2 2
   and 

i,n i,n
2 2
P

P  , neglecting a 

potential correlation of these quantities, which might result from their joint dependence on laser 

drive current noise Ii,n with variance 
i,n i,n

2 2
I

I  . We further consider temperature fluctuations n  

(purple) between the sensor and the co-integrated reference structure on the photonic chip, which 

feature a variance 
n

2
 .  [Remaining figure caption on the following page]  
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[Continuation of Fig. 4.5 caption] At the detector side, our model includes the photocurrent 

shot noise s,nI  with variance 
s,n

s,n
2 2
I

I   as well as additional photodetector noise NEP,nI  with 

variance 
NEP,n NEP,n

2 2
I

I  , quantified by the so-called noise-equivalent power (NEP), both contrib-

uting towards the total photocurrent noise Io,n at the sensor output with variance 
o,n

o,n
2 2
I

I   (ma-

genta). We further account for quantization noise introduced by the digital-to-analog conversion 

of the photocurrent Io, described by the quantization noise current q,nI  with variance 
q,n

q,n
2 2
I

I   

(blue). The noise propagation factors W  from each noise variance 
2
  to the reconstruction 

variance 
e,r

2
Δn  (light green) of the effective refractive index Δne,r are depicted by solid traces of 

the color associated with the respective noise source. The various noise propagation factorsW  

are obtained by multiplying the linearized small-signal power transmission factors of the stages 

along the respective noise path. These small-signal power transmission factors of the various 

stages are indicated in arrow-shaped ochre fields, with simplified expressions in grey next to the 

respective field. The calculation of the noise propagation factors W  and W  can be simplified 

by skipping the explicit calculation of the error propagation via the intermediate quantities 
2
 , 

o

2 ,P  
o

2
I  and 

q

2
I , but instead taking the detour indicated by the dotted lines. To this end, we 

first translate the temperature fluctuations n  or the frequency noise fluctuations n  into equiv-

alent fluctuations of the effective refractive index ne, which are then propagated to the cumulative 

variance 
q

2
I  of the quantized output current by re-using the results from the sensitivity calcula-

tions of Section 4.4.2, 
2 2

q e i e,I PSn   . As this term cancels with the term 
2

i e,PS 


 asso-

ciated with the reconstruction of the effective-index change Δne,r from the quantized output cur-

rent Iq, we obtain simple expressions for the impact of these two noise sources on the associated 

reconstruction variance, 
e n

2
Δ ,
2 2TOCn     and 

e n

2 2 2
,Δ eg( )n n     (RR), and 

e ,
2
Δ 0n    

(MZI with group-delay-matched arms). 

Assuming that the various noise sources are statistically independent, the over-

all variance 
e,r

2
Δn can thus be expressed as a sum of the variances 

n

2
  weighted 

with the corresponding noise propagation factors W , 

 

 
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I

 (4.21) 

In this relation, the contribution of an individual noise source n  to the uncer-

tainty of the reconstructed effective refractive index e,rn  is quantified by the 

associated reconstruction variances 
e,r n

2 2
Δ ,n W    .  



4  Sensor optimization by system design 

104 

Table 4.4: Quantification of various noise sources along with the corresponding noise 

propagation factors as defined in Eq. (4.21) and Fig. 4.5. The columns refer to different 

noise sources n  within the sensor system, which contribute to the total limit of detection 

(LoD). The second and the third row relate to analytic descriptions of the individual noise 

variances 
n

2
  at their origin and to the corresponding noise propagation factors W  through 

the sensor system to the reconstructed value of the effective-index change. The subsequent 

rows describe the associated reconstruction variances 
e,r

2
,n   that contribute to the uncer-

tainty of e,rn  and that thus quantify the minimum detectable refractive-index change. Note 

that these reconstruction variances are split up into base expressions for each noise source, 

which are identical for all sensor implementations, fourth line, as well as into imple e,rn

mentation-dependent multiplication factors, which show the implementation-specific impair-

ments for the operating points according to Table 4.3. For RR, impairments by laser fre-

quency noise are unavoidable. In case of MZI, the impact of laser frequency noise can be 

diminished by using symmetric devices with matched group delays in the two interferometer 

arms, leading to a zero multiplication factor, indicated by an asterisk (*).  
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1  
eg,0 eg

0 (*)

L
n n

L

 
   
 



 
1  4e  4e  4  

2MZI  0  2e  2e  4  

3MZI  0  2e  6e  8 3  
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In order to quantify the total LoD according to Eq. (4.8), we calculate the 3σ-

deviation of the reconstructed effective refractive index e,rn  that results from 

the various noise contributions according to Eq. (4.21).The following sections 

are dedicated to the detailed quantification of all discussed noise-related terms, 

i.e., the noise variances 
n

2
  (Section 4.4.3.1), the corresponding noise propa-

gation factors W  (Section 4.4.3.2), as well as the associated reconstruction var-

iances 
e,r

2
Δ ,n   (Section 4.4.3.3). This allows us to perform a quantification and 

comparison of the limit of detection LoD (Section 4.4.3.4) for each RR- and 

MZI-based sensor implementation. The mathematical details on the noise vari-

ances, noise propagation factors and reconstruction variances are summarized 

in Table 4.4. 

4.4.3.1 Noise variances 

Regarding temperature variations, we assume that the absolute temperature of 

the sensor can be accounted for by proper stabilization, calibration and refer-

encing [88], and that the sensor and the reference structures are based on wave-

guides with negligible differences in thermo-optic coefficients (TOC) [89]. 

Note that, in general, on-chip temperature variations do not affect MZI and RR 

alike. For MZI, the temperature-dependent behavior of the power splitter at the 

input and the power combiner at the output, typically realized as multimode 

interference (MMI) or directional couplers, as well as of the waveguides in the 

sensor and reference arms have to be taken into account. For the couplers, care-

ful design can at least reduce the impact of temperature fluctuations, whereas 

temperature-induced shifts of the phase difference between sensor and reference 

arms can be largely suppressed by balancing arm lengths and waveguide TOC. 

In case of a balanced MZI with athermal couplers, the output signal is not dis-

torted by absolute temperature drifts that affect both arms alike, as the MZI 

reference arm inherently acts as a temperature reference. For RR, the tempera-

ture-dependent properties of the coupling section as well as of the sensor wave-

guide within the resonator have to be taken into account, which can again both 

be reduced via athermal designs. However, in contrast to MZI, there is no con-

figuration that inherently compensates the temperature dependence of the phase 

shift in the RR waveguide, and a dedicated reference RR has to be added for 

independent measurement of the temperature-dependent behavior. The data 
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measurement from the reference structure can then be used for compensating 

the temperature dependence, e.g., by suitable feedback control or signal pro-

cessing techniques. In general, sensor and reference waveguides should be 

routed in close proximity and with good thermal coupling to one another, ideally 

using interleaved circuit layouts that eliminate the impact of on-chip tempera-

ture gradients [92]. In addition, further temperature-reference structures can be 

included on a chip or package level to eliminate the impact of global tempera-

ture offsets by appropriate signal processing techniques. 

As a consequence, stochastic on-chip temperature fluctuations remain as the 

only noise contribution. These fluctuations are quantified by the variance 
n

2
  

of the temperature difference between the photonic sensor and the correspond-

ing reference structure, which contribute to output-power fluctuations o,nP  of 

the sensor. For MZI, 
n

2
  relates to the variance of the temperature difference 

between the two interferometer arms, whereas for RR, 
n

2
  represents the vari-

ance of the temperature difference between the sensor ring and the correspond-

ing reference ring. 

Regarding laser frequency fluctuations, it is not possible to state a universal 

analytical expression for 
n

2
  since frequency-noise spectra of integrated lasers 

differ strongly. In theory, the variance 
n

2
 of the laser frequency fluctuation can 

be obtained by integrating the one-sided laser frequency noise spectrum F( )S f  

over the relevant frequency interval  obs1/ ,T f , where obsT  denotes the overall 

observation during a complete set of measurements while f  denotes the elec-

tronic acquisition bandwidth of the sensor system, see also Eq. (B.16) in Ap-

pendix B.5. In practice, however, this approach is hard to apply, since the laser 

frequency noise spectrum F( )S f  usually increases strongly towards small Fou-

rier frequencies 0f   such that the integral diverges for obsT  . Specifi-

cally, real lasers without frequency stabilization are typically subject to slow 

frequency drift, which leads to an additional 1 f  -part in the frequency noise 

spectrum, where γ typically lies between 0 and 2 [93]. For most sensor systems 

with typical acquisition bandwidths f  in the kHz or the lower MHz range, the 

contribution of this 1 f  -part dominates the variance 
n

2
 of the frequency fluc-

tuations, while the spectrally white frequency-noise background can be ne-

glected. As a consequence, the intrinsic linewidth of the laser source, which is 
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given by the spectrally white component of the frequency-noise, is often not a 

relevant metric for laser sources in integrated phase-sensitive photonic sensors. 

For a given laser source, the frequency fluctuations usually have to be measured 

individually using, e.g., a heterodyne technique, see Appendix B.5 for details.  

The variance of the laser output power fluctuation is denoted as 
i,n

2
P  and can 

be calculated from the relative intensity noise (RIN) spectrum RIN( )S f , which 

is often expressed in dB Hz-1 [94]. Note that for the typically small electronic 

acquisition bandwidths f  employed in sensing applications, the RIN spectrum 

is mostly flat. The input power variance can hence be approximated as 

i,n

2 2
i RINΔP P f  , where the quantity RIN refers to the constant, one-sided 

spectral density RIN( )S f  in the limit of low frequencies and is a commonly used 

performance metric for lasers. Note that both 
i,n

2
P  and 

n

2
  may sensitively de-

pend on the fluctuations of the laser drive current as well as on temperature 

fluctuations of the laser, in which case the respective variances may be corre-

lated. For simplicity, we neglect this effect in our analysis. 

The variance 
o,n

2
I  of the photodetector output current fluctuations comprises 

both the photocurrent shot noise as well as additional noise contributions of the 

detector circuit such as thermal noise and dark-current shot noise, which, for a 

given device, are often quantified by the noise-equivalent power (NEP). For a 

given internal noise level, the NEP specifies the optical input power of the pho-

todetector that leads to a signal-to-noise ratio of one at the output. Photocurrent 

shot noise is characterized by the variance 
s,n

2
e o2 ΔI q I f  , here expressed as a 

function of the average output current oI  in the operating point, the acquisition 

bandwidth f  and the elementary charge eq  [95]. In contrast to that, the NEP-

related current noise is independent of the actual signal level and features a var-

iance 
NEP,n

2 2 2NEP ΔI f   [96]. In this relation,  denotes the electric readout 

responsivity that accounts for the responsivity of the photodetector and for any 

optional subsequent amplifiers, see Section 4.4.2.1. Furthermore, f  is the 

electronic acquisition bandwidth, and the NEP level, specified in W Hz ,  is 

assumed to be constant within 0 .f f    

Finally, we consider quantization noise originating from a finite ADC resolution 

of N bits, which does not depend on the acquisition bandwidth .f  The quanti-
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zation process introduces an erroneous current q,nI  characterized by the associ-

ated variance 
q,n

2 2LSB /12I   [97], where LSB is the quantization step corre-

sponding to the least significant bit as defined by the ADC range as well as 

resolution N. Since we need to tune the sensors to the optimum operating point, 

and since we assume that we cannot reliably set the initial operating point by 

design, the ADC has to cover the whole range from zero output current to max-

imum output current o,maxI  at each output port, and thus o,maxLSB 2 NI  . 

The equations required to calculate the noise variances 
n

2
  for all noise sources 

n  are listed in Row 2 of Table 4.4. The noise variance models above show 

that the acquisition bandwidth f  is a major factor for the noise analysis. The 

measurement bandwidth is connected to the integration time intT  and to the min-

imum required sampling frequency sf  by  int .21 1s ffT     Except for 

quantization noise, choosing an appropriate integration time is hence crucial for 

the sensor performance. The relations shown in Row 2 of Table 4.4 indicate that 

the noise variances 
i,n

2
P , 

s,n

2
I and 

NEP,n

2
I  of the laser RIN as well as of the pho-

todetector shot noise and NEP decrease for smaller acquisition bandwidths f  

or longer integration times intT , i.e., longer averaging pays off and can eventu-

ally render the impact of these noise sources insignificant. In contrast to this, 

the stochastic processes describing temperature and laser frequency noise are 

not mean free, thus leading to reconstruction variances that eventually grow 

with longer integration times. This can be quantified by the respective Allan 

variances [98], which exhibit typical bathtub-like characteristics when plotted 

as a function of integration time. To obtain reliable results for measurements 

with long observation times obsT , the non-stationary portions of these noise 

sources have to be eliminated by suitable stabilization or referencing systems. 

A detailed discussion with respect to laser frequency noise can be found in Ap-

pendix B.6. 

4.4.3.2 Noise propagation factors 

The noise propagation factors W  for each noise source n  can be obtained 

following the concept of the noise propagation model described in Fig. 4.5, 

where we again use linear approximations for all transmission functions in the 

respective operating point. The resulting noise propagation factors are specified 

in Table 4.4, Row 3.  
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To explain these relations, let us first consider the propagation factor 
sI

W  related 

to photodetector shot noise with variance
s,n

2
I , see Column 5 in Row 3 of Ta-

ble 4.4, which translates into an equivalent reconstruction variance 

e,r s s,ns

2
,

2
n I II W    of the reconstructed effective-refractive-index change e,rn , 

see also Fig. 4.5. For calculating the noise-propagation factor 
sI

W , we exploit 

the fact that changes of the effective index are related to changes of the output 

current via the optoelectronic effective-index sensitivity o e i e,n SI P    , see 

last column of Table 4.3 for the corresponding expressions of the various sensor 

implementations. The reconstruction algorithm of a properly calibrated sensor 

exactly inverts this relationship such that the contribution 
e,r s

2
Δ ,σ n I of the shot 

noise to the variance of the reconstructed effective-index change e,rn  can be 

expressed as 
e,r s s,n

22 2
Δ , i e,σ  n I I PS  . The overall noise propagation factor can 

thus be written as 
s

2

i e,IW PS 


 . This noise propagation factor does not only 

apply to shot noise, but can generally be used to calculate the contribution of 

any current noise to the uncertainty of the reconstructed effective refractive in-

dex e,rn , 
s q NEPI I IW W W  , see Columns 6 and 7 in Row 3 of Table 4.4. In the 

case of laser RIN, the associated noise propagation factor 

o

22 2

RIN i e,IW W PS  


   additionally contains the squared magnitude of 

the effective optoelectronic transmission 
2

 , which describes the translation of 

the input-power variance 
i

2
P  to a contribution towards the variance 

o

2
I  of the 

sensor output current oI , see Column 4 in Row 3 of Table 4.4. Hence, all four 

noise sources considered so far, i.e., laser intensity noise, photodiode shot noise, 

photodiode NEP noise, as well as quantization noise, have a noise propagation 

factor that is proportional to i ,

2

ePS 


. For these noise contributions, a large 

sensitivity always helps to reduce the associated LoD.  

The remaining noise sources are on-chip temperature fluctuations n  and laser 

frequency noise n , see Columns 2 and 3 in Row 3 of Table 4.4. Both effects 

have direct impact on the phases RR  and MZI  according to Eqs. (4.9) and 

(4.11). For these noise sources, the noise propagation factors W  and W  are 

finally independent of the sensitivity-related term i ,

2

ePS  . 

In the case of temperature fluctuations, the noise propagation factor W  can be 

obtained by calculating the relationship between a temperature-difference fluc-

tuation n  and the corresponding fluctuation e, TOC nn    of the effective-
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index difference between the sensor and the reference waveguide. The propa-

gation of this effective-index perturbation e,n   to the output current oI  and 

the subsequent propagation through the reconstruction algorithm are given by 
2

i e, PS   and 
2

i e, PS 


, respectively, such that the net effect cancels. This leads 

to a noise propagation factor e
2 22 2

i , i e,   TOC = TOCW PS PS  


  as indicated 

in Row 3, Column 2 of Table 4.4. In the graphical illustration of the noise-prop-

agation model in Fig. 4.5, this corresponds to a detour in the noise-propagation 

path as illustrated by the purple dashed line, which directly connects the vari-

ance 
e

2
n  of the refractive-index difference with the variance 

q

2
I  of the quan-

tized output current. The propagation factor W  for laser frequency noise can 

be obtained in a similar way by considering the associated shift of the sensor 

operating point OP . To this end, we again calculate the equivalent effective-

refractive-index change e,n   that would lead to the same operating-point 

phase shift OP  as a laser frequency shift n . The two quantities are related 

by       
1

e, OP e OP 0 OPΔ Δ 1n nn n k L       


         . The prop-

agation of the effective-index perturbation e,n   to the output current oI  and 

the subsequent propagation through the reconstruction algorithm does again not 

have any overall effect, thus leading to a noise propagation factor 

   
2 2

0 OP1W k L     , see Column 3 in Row 3 of Table 4.4 as well as 

brown dashed signal propagation in Fig. 4.5. For RR, this simplifies to 

 
2

eg ,W n   where  eg e ed dn n n   denotes the group refractive index 

of the waveguide mode that is subject to the frequency fluctuation. In the case 

of MZI, the frequency dependence OP,MZI    of the phase difference in the 

operating point can be approximated by OP,MZI OP,MZI eg e( ) ( ),n n        

see Eq. (B.11) in Appendix B.6. 

4.4.3.3 Reconstruction variances 

With the help of the noise variances 
n

2
  and the noise propagation factors W

explained in the previous two paragraphs, we now calculate the individual con-

tributions 
e,r n

2 2
Δ ,n W     of each noise source n  to the overall reconstruc-

tion variance 
e,r

2
Δn  of the reconstructed effective refractive index in the sensi-

tive region. For better comparison, we split up the results into noise-type-

specific base expressions, which are identical for all sensor implementations, 
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fourth row of Table 4.4, as well as into sensor-implementation-dependent mul-

tiplication factors, subsequent rows of Table 4.4.  

It is important to note that the reconstruction variances 
e,r

2
Δ ,n   depend on the 

operating point and that the implementation-dependent factors shown in Ta-

ble 4.4 are only valid in the optimum operating points, as defined in Eq. (4.18) 

for RR and Eq. (4.19) for MZI. In these operating points, we can use specific 

values for the optoelectronic transmission OP   and the optoelectronic effec-

tive-index sensitivity e, e, ,peakS S   or e, e, ,maxS S  , see Table 4.3. Outside 

the optimum operating point, the reconstruction variances 
e,r

2
Δ ,n   can be ob-

tained by calculating τ and e,S   from the generic transmission according to 

Eqs. (4.10) and (4.12) along with the relations of τ according to Table 4.2, Col-

umn 2. Note that in the case of multi-output implementations such as the MZI2, 

MZI3 and RRBD, the implementation-dependent factors of the reconstruction 

variances 
e,r

2
Δ ,n   can include covariance terms that result from correlations of 

the noise in the different output signals. As an example, the current fluctuations 

of the different output signals caused by laser RIN are correlated, while the cur-

rent fluctuations originating from the NEP or the shot noise of the various pho-

todetectors are not. 

Regarding laser frequency noise, impairments are unavoidable for RR-based 

sensor implementations. In contrast to this, the impact of laser frequency noise 

in MZI-based schemes can be diminished by using symmetric devices with 

matched group delays in the two interferometer arms, leading to a zero multi-

plication factor as indicated by an asterisk in Table 4.4. 

4.4.3.4 LoD comparison of optimized sensor implementations 

With a fully quantified noise analysis according to Table 4.4 at hand, we now 

compare the different sensor implementations and discuss the impact of each 

noise source on the associated LoD. The results of this analysis are visualized 

in Fig. 4.6. In a first step, we analyze the contributions of the different noise 

sources to the LoD – the results are plotted in the first row and denoted as 

Fig. 4.6(a). We then compare how the individual sensor and readout implemen-

tations are affected by each noise source – this is shown in the second row and 

denoted as Fig. 4.6(b). Finally, we quantitatively estimate typical contributions 
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of the various noise sources to the LoD and identify dominating effects for each 

sensor implementation, see Fig. 4.6(c). 

LoD as a function of noise-source parameters The individual contributions 

e,r

2
Δ ,n   of the various noise source n  to the overall variance 

e,r

2
Δn of the re-

constructed effective-index difference e,rΔn  can be used to calculate the associ-

ated individual LoD contributions 
e,rΔ ,LoD 3 n  , each of which corresponds 

to the sensors’ total LoD in case all other noise sources are negligible. If several 

noise sources are relevant, the overall LoD can be calculated as the square root 

of the sum of squares of the individual LoD, where we assume for simplicity 

that the various noise sources are statistically independent,  

 2LoD= LoD . (4.22) 

 

Fig. 4.6. Limit of detection (LoD) for measured effective-refractive-index changes in 

various RR- and MZI-based sensor implementations.  [Remaining figure caption on the fol-

lowing page] 
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[Continuation of Fig. 4.6 caption] The individual contributions LoD  of the various noise 

sources n  are calculated using the equations in Table 4.4 and are plotted in Columns 1…5. 

Assuming for simplicity that the noise sources n  are statistically independent, the overall LoD 

can be calculated as the square root of the sum of squares of the individual LoD ,  see Eq. (4.22)

. The LoD ,  resulting from noise sources that directly affect the signal level are proportional to 

0k , which is set to 5
0 5 10k    in this plot. For LoD  originating from laser frequency 

noise, we assume eg 4n   to quantify the impact on RR-based sensor implementations. The 

choice for 0k  and egn  reflect the situation for typical silicon photonic waveguides. For 
s

LoDI  

originating from photodetector shot noise, we assume perfect photodiodes with  eq  , 

and we assume an acquisition bandwidth of 100 Hz.f   (a) Individual LoD  contributions 

of the various noise sources n  plotted for the 
CC
APRR  sensor implementation as a reference. 

Dotted magenta lines indicate typical cases found in integrated sensors. The impact of tempera-

ture fluctuations between sensor and reference structures is plotted for two different thermo-optic 

coefficients (TOC), see Column 1. The impact of photodetector shot noise and noise-equivalent 

power are plotted as a function of the effective optical input power iP  defined in Eq. (4.2) for 

three different noise-equivalent power (NEP) levels, see Column (4). Depending on iP  and NEP, 

the device is either shot-noise-limited or NEP-limited.  (b) LoD impairments of various sensor 

implementations with respect to the 
CC
APRR  considered as a reference case in Subfigure (a). The 

LoD impairments of these implementations differ from that of the 
CC
APRR  by constant factors, 

which are indicated by colored bars. A missing bar indicates that the respective sensor imple-

mentation is not prone to this specific noise source. Temperature fluctuations have the same im-

pact on all sensor implementations. Laser frequency noise is a problem only for RR-based sen-

sors. For MZI, the impact on the LoD can be mitigated by matching the group delay of the sensor 

and reference arm, which effectively decouples the effective-index sensitivity from a sensitivity 

towards frequency noise. Laser intensity noise can be mitigated by sensor implementations using 

multiple output ports that measure power differences rather than absolute levels. For the photo-

detector noise sources, we consider the two extreme cases of shot-noise limitation (lower bar) 

and NEP limitation (upper bar). For quantization noise, the ADC ranges are scaled to capture the 

full contrast of the respective current. (c) LoD bottlenecks of the various sensor implementa-

tions compared on a logarithmic color scale for the typical noise parameters marked by dashed 

magenta lines in Subfigure (a). For these parameters, noise sources affecting the sensor wave-

guide phase, i.e., sensor temperature variations and, in case of RR-based implementations, laser 

frequency fluctuations, have the largest impact on the LoD, whereas the impact of intensity, pho-

todetector and quantization noise is manageable. 

The individual LoD  are plotted for all noise sources in Fig. 4.6(a), each as a 

function of typical underlying noise variances and/or other key parameters of 

the associated noise source. According to Table 4.4, the LoD  of all noise 

sources which directly affect the signal level, i.e., the laser intensity noise 
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n i,n )( P  , the PD shot noise ( n s,nI  ) and NEP ( n NEP,nI  ), and the quan-

tization noise ( n q,nI  ), are all proportional to 0 .k  For the plots in 

Fig. 4.6(a), we assume a rather large 5
0 105k   , which corresponds to a 

silicon waveguide with 10 dB/cm at λ = 1.55 µm. As a comparison, a silicon 

nitride waveguide with 2.3 dB/cm at λ = 0.6 µm yields 6
0 105k    and thus 

reduces the contributions of these four noise sources by an order of magnitude. 

We assume an effective group refractive index of eg 4n   for the sensor wave-

guides, which is a typical number in silicon photonics and which is only relevant 

for the frequency-noise-related LoD , see third column of Table 4.4. We fur-

ther assume an acquisition bandwidth of Δf = 100 Hz, which generally impacts 

all but the quantization-noise-related 
q

LoD .I  Note that the contribution LoD  

of temperature fluctuations also depends on the acquisition bandwidth, even if 

we do not account for a quantitative relationship in our model. Furthermore, we 

assume perfect photodiodes with a quantum efficiency of one, which are only 

affected by photodetector shot noise. Regarding the effective optical input 

power iP , we do not make any assumption in the context of Fig. 4.5(a) but treat 

it as a variable parameter that can change over many orders of magnitude, see 

Fig. 4.5(a), Column 4. The effective input power iP  is only relevant for the con-

tributions 
s

LoDI  and 
NEP

LoDI  from photodetector shot noise and NEP noise, 

while the LoD contributions of all other noise sources are independent of i.P  

For the sake of visual clarity, we restrict our analysis of the various LoD  in 

Fig. 4.6(a) to only one sensor implementation, namely a critically coupled all-

pass ring resonator ( CC
APRR ), which serves as a reference for the subsequent dis-

cussion. For all other sensor implementations, the LoD  are either zero or they 

follow the same trends and lie within the same order of magnitude, such that 

they can be quantified by a simple multiplier, see discussion of Fig. 4.6(b) be-

low. The five plots in Fig. 4.6(a) allow to quickly estimate the LoD contribu-

tions LoD  of the various noise sources and to formulate requirements for in-

dividual sensor system components if a certain target LoD has to be achieved. 

Dotted magenta lines and crosses indicate noise-source parameters and the cor-

responding LoD  found in typical integrated sensors and serve as reference for 

a specific case study, see discussion of Fig. 4.6(c) below. 
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In Fig. 4.6(a), Column 1, the LoD impact of temperature fluctuations between 

sensor and reference structures is plotted for two different thermo-optic coeffi-

cients, 
4 1TOC 10  K   [99] and 

5 1TOC 10  K   [100], which are typical 

magnitudes for silicon and silicon nitride waveguides, respectively. Note that 

the TOC is not just the thermo-optic coefficient of the core material but refers 

to the effective thermo-optic coefficient of the overall waveguide, i.e., the ratio 

of an effective-index change and the associated temperature change. The corre-

sponding LoD contribution scales as 
n

LoD TOC   . Column 2 and Col-

umn 3 of Fig. 4.6(a) show the LoD contribution of the laser frequency and in-

tensity noise, which scale as 
n

LoD    and 
i i,n iLoD RINΔ ,P P P f   

respectively. The combined impact of photodetector shot noise and various lev-

els of photodetector noise-equivalent power (NEP) are plotted in Column 4 of 

Fig. 4.6(a) as a function of the effective input power i.P  Note that the effective 

optical input power iP  does not directly correspond to the power of the under-

lying laser diode, but additionally accounts for all optical excess losses that re-

sult from non-idealities of the various sensor components such as coupling 

losses in chip-chip interfaces or propagation losses in on-chip transport wave-

guides, see Section 4.3.2 and Eq. (4.2). The device is either shot-noise-limited 

for large iP  or small NEP with a 
s iLoD ΔI f P , or it is NEP-limited for small 

iP  or large NEP with a NEP iLoD Δf P . The critical input power iP  that 

marks the crossover between the shot-noise-limited and NEP-limited regime 

depends on the NEP level. In most sensor realizations, either one or the other 

can be neglected. Column (5) of Fig. 4.6(a) shows the LoD contribution of 

quantization noise as a function of the number of ADC bits N, which scales with 

q
.LoD 2 N

I
  

LoD comparison of the different sensor implementations In Fig. 4.6(a), we 

have analyzed the LoD contributions for the CC
APRR  reference sensor implemen-

tation. Fig. 4.6(b) shows how the various other sensors types perform in relation 

to this reference. The relative impact of the various noise sources is described 

by colored bars, where a bar length of 1 corresponds to the LoD of the CC
APRR  

reference, and where a missing bar indicates that this sensor implementation is 

not prone to this specific noise source. As an example, the identical bar lengths 

in Column 1 of Fig. 4.6(b) indicate that the relative temperature differences be-
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tween sensor and reference structures have the same impact on all sensor im-

plementations. This is a consequence of the fact that temperature-induced fluc-

tuations of the effective-index difference between sensor and reference structure 

cannot be separated from the sensor signal itself, irrespective of the underlying 

sensor implementation. Column 2 of Fig. 4.6(b) compares the impairments with 

respect to laser frequency noise. Here, we observe a distinct advantage of the 

MZI-based sensor implementations compared to their RR-based counterparts. 

In MZI, the group delay of the two arms can be matched such that the optical 

phase at the output of the arms is always perfectly correlated, since the corre-

sponding signals were emitted by the same light source at the same instant of 

time. When bringing these signals to interference, any phase or frequency noise 

of the light source cancels. Note that this phenomenon is independent of the 

absolute group delay in each arm. It is hence possible to simultaneously max-

imize the optoelectronic effective-index sensitivity e,S   by selecting the opti-

mum sensor arm length opt 1L  , and mitigating the effects of laser frequency 

fluctuations by adapting the group delay of the reference arm to that of the meas-

urement arm. For all MZI-based sensors, LoD  is hence zero, see lower part of 

Fig. 4.6(b), Column 5. This decoupling of optoelectronic effective-index sensi-

tivity e,S   and sensitivity towards frequency noise is not possible in RR, which 

rely on interference of portions of incoming light with portions of light of pre-

vious round-trips, all of which were emitted by the light source at different in-

stants of time and hence feature uncorrelated phases. Tailoring the optoelec-

tronic effective-index sensitivity e,S   by appropriate choice of the round-trip 

length thus unavoidably affects the impact of frequency noise. As consequence, 

the LoDω increases in proportion to the optoelectronic effective-index sensitiv-

ity e, .S   This effect is independent of the detection scheme and the Q-factor of 

the coupled cavity, i.e., all RR-based sensor implementations are equally im-

paired by laser frequency noise, see upper part of Column 5 of Fig. 4.6(b). Note 

that, while the sensitivity of a RR-based sensor implementation can always be 

increased by a higher Q-factor, the LoD is eventually limited by the frequency 

noise of the laser source. Increasing the resonator Q-factor hence becomes in-

effective once LoDω dominates the overall LoD. The comparison of the sensor 

implementations with respect to laser RIN is shown in Column 3 of Fig. 4.6(b). 

It turns out that sensors that use multiple output ports and thus measure power 



4.4  Quantitative analysis of integrated phase-sensitive photonic sensor systems 

117 

differences rather than absolute levels can mitigate the impact of RIN if the 

operating point is chosen correctly. Furthermore, we find that the RRAP imple-

mentations outperform their respective RRAD counterparts, mainly due to the 

higher optoelectronic effective-index sensitivity. For the photodetector noise 

sources shown in Column (4) of Fig. 4.6(b), relative impairments for the two 

extreme scenarios, i.e., the shot-noise-limited regime as well the NEP-limited 

regime are shown by a pair of narrower bars for each sensor type. The relative 

impairments attributed to these two cases of photodetector noise differ slightly 

for the sensor implementations, e.g., due to the different implementation-de-

pendent sensitivities, the different number of photodetectors, and the different 

average power levels on each photodetector. Due to its superior sensitivity, the 

RRAP again features a comparatively low LoD contribution. The effect of quan-

tization noise on the sensor implementations is shown in Column (5) of 

Fig. 4.6(b) and is almost identical for all sensor implementations. The slight 

differences here are caused again by the implementation-dependent sensitivity 

differences, combined with a scaled ADC range that matches the implementa-

tion-specific maximum output current o,max i
ˆI P T  of each detector, where T̂  

is the optical output contrast of each individual output port which can be calcu-

lated from Eq. (4.10) and Eq. (4.12), see for example Table B.2 in Appen-

dix B.2 for ring resonators. 

Identification of typical LoD limitations In order to identify the noise 

source that dominates the total LoD, we indicate in Fig. 4.6(c) the magnitude of 

the individual LoDζ for typical noise parameters. These noise parameters and 

their impact on the various LoDζ of the CC
APRR  are indicated by dashed magenta 

lines in Fig. 4.6(a). The colors in Fig. 4.6(c) indicate the order of magnitude of 

the respective LoD contribution. 

It can be seen in Column 1 of Fig. 4.6(c) that fluctuations of the temperature 

difference between sensor and reference structures may have substantial impact 

on the LoD, both for MZI and RR. The displayed 6LoD 3 10
   is obtained 

for 
n

10 mK  , which assumes a typical distance between sensor and refer-

ence structures of 100 µm along with random temperature gradients with a 

standard deviation of the order of 1 K/cm and TOC of the order of 10-4 K-1, 

roughly corresponding to the TOC of a silicon waveguide [99]. The detrimental 
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effects of temperature differences between on-chip sensor and reference struc-

tures can be mitigated by different measures. First, sensor and reference struc-

tures should be positioned as close to each other as possible, for example by 

designing the MZI arms as interleaved spiral waveguides [101], or by using 

similar techniques for nesting ring resonators with non-circular shapes. Second, 

the exposure of the sensing and reference structures to potential temperature 

changes should be matched. For example, a microfluidic channel that might 

transport a fluid with a different temperature as the PIC itself, and that is flowing 

over the sensitive waveguide area, should also flow over the reference wave-

guide area, and the reference waveguide should not be shielded from these tem-

perature effects by isolating claddings. Third, the geometry and/or materials of 

the sensor and reference waveguides can be adjusted to lower the effective 

thermo-optic coefficient [102],[103]. 

The effect of laser frequency fluctuations as the second noise source that di-

rectly affects the phase shift in the sensor waveguide is shown in Column 2 of 

Fig. 4.6(c). We find that frequency fluctuations cause a large 5LoD 10
  in 

RR-based sensor implementations. For our estimation, we assume a typical 

value of 
n

6/ 10     , which roughly corresponds to a laser operating at 

1.55 µm with a long-term standard deviation of the emission frequency of 

n
 2 100 M zπ  H  , see Appendix B.6. Note that these rather large fluctua-

tions are usually dominated by the low-frequency part of the laser’s frequency 

noise spectrum and may hence be much larger than its intrinsic linewidth, which 

is given by the spectrally white component of the frequency noise spectrum, see 

Section 4.4.3.1 and Appendix B.5 for details. As mentioned above, the impact 

of laser frequency noise on MZI-based sensor implementations can be mitigated 

completely by matching the group delays of the two interferometer arms, which 

allows to decouple the effective index sensitivity from the sensitivity towards 

frequency fluctuations. For the typical noise levels considered in our analysis, 

laser frequency fluctuations are the most prominent limitation for the LoD of 

RR-based sensor implementations, emphasizing the importance of stable laser 

drive currents and temperature control. It might additionally be necessary to 

include a frequency stabilization mechanism that can at least compensate for 

the slow frequency drift. However, implementing such a mechanism into a 
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highly integrated sensor system requires additional technical effort and might 

represent a challenge for low-cost solutions. 

Columns 4 and 5 of Fig. 4.6(c) indicate that the intensity noise of typical lasers 

as well as the typical photodetector noise levels only play a minor role for the 

chosen example of an integrated photonic sensor with 5
0 5 10k   . This is 

mainly due to the fact that the respective LoD scale with the square root of the 

acquisition bandwidth, and typical acquisition bandwidths are rather small in 

sensing applications as compared to those used in telecommunication applica-

tions. In our example, we use a laser with a rather large RIN of -120 dB/Hz and 

an acquisition bandwidth of 100 Hzf  , which corresponds to 

i,n

5
i/ RINΔ 10P P f    and an associated low 

i

9LoD 10P
 . At the same ac-

quisition bandwidth, a typical photodetector with 12NEP 10 W Hz  that re-

ceives roughly 1 µW (-30 dBm) of optical power would still allow the system 

to achieve a low 
NEP S

2 2 8LoD LoD 10I I
  . When it comes to the selection of 

an appropriate ADC, the required analog operating range plays a crucial role. 

In our calculations, we assume that the ADC have to be capable of covering the 

whole output contrast range of the sensor to allow for reliably tuning to the 

desired operating point. If the fabrication tolerances allow setting the operating 

point reliably by design and if tuning is always possible, the analog operating 

range of the ADC can be reduced, and the impact of quantization noise on the 

LoD can be reduced further. In our example shown in Column (5) of Fig. 4.6(c), 

a 12-bit ADC that covers the whole output current range leads roughly to 

q

8LoD 3 10I
  . 

4.5 Experimental validation of the impact of laser 
frequency noise 

In Section 4.4, we identified laser frequency noise as the dominant LoD contri-

bution of typical RR-based sensor implementations using non-ideal light 

sources. This aspect and the associated quantitative model are verified experi-

mentally in this section. To this end, we use the measurement setup depicted in 

Fig. 4.7(a). We use an external laser (LAS) at a wavelength of around 1.54 µm 

to drive an under-coupled add-drop ring resonator sensor ( ADRR ), realized as 
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a silicon photonic integrated circuit (PIC). To investigate the influence of laser 

frequency noise, we first perform the experiment with a benchtop-type, highly 

stable tunable light source (TLS). We then compare the results obtained with 

the TLS to those obtained with a pigtailed VCSEL as an example for a particu-

larly simple light source type that may be used in low-cost integrated sensors. 

In both cases, the lasers and the PIC are temperature-stabilized to remove the 

impact of thermal drift. Light is coupled to and from the PIC via optical fibers 

and an on-chip grating couplers (GC). At the output of the PIC, light is send to 

an external photodetector (PD). We use an oscilloscope (OSC) to record and 

digitize the resulting photocurrent and store it for offline analysis of the signal 

and the noise contributions. Note that an erbium-doped fiber amplifier (EDFA, 

not shown in Fig. 4.7(a) ) was used after the sensor PIC to compensate for the 

rather high grating coupler losses and to ensure a sufficiently high power level 

at the input of the high-speed photodiode (Finisar XPDV120R) that was used in 

this experiment. We verified that the EDFA, which was followed by a bandpass 

filter with a 2-nm passband to suppress amplified spontaneous emission (ASE) 

noise, did not have any impact on the investigation towards frequency-noise 

sensitivity of this sensor. 

In our experiments, we first capture the light at the drop port of the add-drop 

ring resonator and measure the associated photocurrent for different operating 

point offsets OP,RR  in the vicinity of a ring resonance at 

 res 2πm m    by adjusting the laser frequency. In the case of the 

VCSEL, the emission frequency was tuned via the injection current. In each 

operating point, we record the time-dependent output current and extract the 

mean photocurrent q ,I  blue crosses in Fig. 4.7(b) and (c), as well as its standard 

deviation 
qI , red crosses. In our measurements, we use an acquisition band-

width of f = 500 kHz and an observation time of obs 1 ms.T   We verified that, 

for the investigated operating points, the ASE of the EDFA did not impact the 

photocurrent noise to a relevant degree. We then fit a Lorentzian resonance 

model of an ADRR ,  see Table B.3 in Appendix B.3, to the measured mean pho-

tocurrents q ,I  see solid blue line in Fig. 4.7(b) and (c). In these fits, we use the 

peak transmission, the Q-factor, and the resonance frequency res  as fit param-

eters, while the effective group refractive index egn  is obtained from an inde-
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pendent transmission measurement of the resonator. Both the mean photocur-

rent qI  and its standard deviation 
qI  are normalized to the maximum current 

measured in resonance, which is given by q i ,ˆ ˆI P  where iP  denotes the effec-

tive optical input power and where ̂  refers to the optoelectronic transmission 

on resonance. 

 

Fig. 4.7. Experimental validation of the model for laser frequency noise and relative 

intensity noise (RIN). (a) Measurement setup consisting of a tunable laser (LAS), a sensor PIC 

containing an under-coupled add-drop ring resonator ( ADRR ), an external photodetector (PD), 

and an oscilloscope (OSC). The optical connections from and to the silicon PIC are realized with 

optical fibers and grating couplers (GC) designed for 1550 nm. The overall insertion loss of the 

PIC amounts to 15.5 dB, including fiber-chip coupling losses of 6 dB per GC. An erbium-doped 

fiber amplifier (EDFA, not shown) is used after the sensor PIC to compensate for these losses 

and to ensure a sufficiently high power level at the input of the high-speed PD (Finisar 

XPDV120R) (b, c) Normalized mean output current  q i ˆI P  (left axes, blue) and normalized 

output-current standard deviation  
q i ˆI P   (right axes, red) of the 

UC
ADRR  drop port, shown at 

different operating point offsets OP,RR  in the vicinity of a resonance at res π .2 m   The ex-

periment is performed twice – once with a TLS (b) and once with a VCSEL (c), which differ with 

respect to their frequency stability. The crosses denote measured data points, which were ob-

tained by recording the output currents, whereas the solid blue lines are Lorentzian resonance fits 

and the solid red lines are fits to the transmission and noise-propagation models derived in Sec-

tion 4.4. [Remaining figure caption on the following page] 
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[Continuation of Fig. 4.7 caption] The optimum operating point OP,RR,opt  of highest optoe-

lectronic effective-index sensitivity is marked with dotted lines. For operation with a TLS, the 

output current noise follows the optoelectronic transmission τ. In contrast to this, the output cur-

rent noise of the VCSEL-operated 
UC
ADRR  follows the shape of the optoelectronic effective-index 

sensitivity e, .S   This indicates that, in the given measurement setup, the TLS-driven sensor is 

mainly impaired by relative intensity noise (RIN) of the optical power coupled to the device. 

Note that, for our experiment, this RIN is not dominated by the laser source, but by temporal 

fluctuations of the power coupling efficiency at the PIC input, which amounts to approximately 

1 % in both experiments. In contrast to this, laser frequency fluctuations are found to be the dom-

inant noise source for the VCSEL-driven sensor. The frequency fluctuations extracted from these 

experiments amount to 435 MHz for the VCSEL and to 10 MHz for the TLS and are in fair 

agreement with independent measurements of the frequency noise characteristics, see Appen-

dix B.5. 

In a next step, we analyze the operating-point-dependent current deviations, 

where significant differences between the VCSEL and the TLS-based measure-

ment can be seen. The most prominent difference is that in the case of the 

VCSEL-based experiment, the current noise is much larger and follows the 

characteristic shape of the optoelectronic effective-index sensitivity e,S  , 

which corresponds to the magnitude of the slope of the frequency-dependent 

optical transmission, see Fig. 4.3(c). In contrast to that, the current noise meas-

ured in the TLS-based experiment rather seems to follow the shape of the opto-

electronic transmission τ, see Fig. 4.3(b). Note that in both cases, the current 

deviation strongly depends on the operating point, and we may hence assume 

that the photodetector NEP as well as quantization noise can be neglected – both 

effects would lead to a constant noise background which is independent of the 

operating point. Moreover, we neglect shot noise, which is irrelevant at the 

power levels of typically i 1 µWP   measured in our experiment, and we ex-

clude sensor thermal noise due to the temperature stabilization of the sensor 

PIC. The only remaining noise sources are hence intensity noise of the optical 

signal coupled to the PIC and laser frequency noise. According to Fig. 4.5 and 

Table 4.4, in the case of an ADRR , only intensity noise at the sensor input is 

translated to the output current via the optoelectronic transmission T  , 

while frequency noise is translated to the output current via e, eS S  . The 

output current deviations can hence be modeled by the square root of the sum 

of the respective variances, 
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 (4.23) 

For fitting the measured operating-point-dependent current deviations 
qI  to 

Eq. (4.23), we re-use the values of the optoelectronic transmission τ and its peak 

̂ , the corresponding Q-factor, the optoelectronic effective-index sensitivity 

e, ,S   the resonance frequency res , and the effective group refractive index 

egn  , which are obtained from the fit of the measured mean photocurrents qI , 

as well as from the independent transmission measurement, and only vary the 

relative-intensity-noise level RIN and the laser frequency deviations   as free 

parameters. For the TLS experiment, see solid red line in Fig. 4.7(b), we find a 

rather small TLS frequency fluctuation of 
n

π 10 M z2 H   , which is in fair 

agreement with the directly measured value of 
n

π 23 M z2 H   , see Appen-

dix B.5. The output current noise is hence dominated by RIN. Using an acqui-

sition bandwidth of Δf = 500 kHz, we find a relative intensity noise level of 
10 1RIN 2  10 Hz   (- 97 dB Hz-1) for the optical power coupled to the PIC, 

which equals 
i,n i/ RINΔ 1%P P f   . This value is clearly higher than the 

typical RIN levels expected from benchtop-type TLS, and we therefore attribute 

the optical power fluctuations to the measurement setup, in particular to me-

chanical vibrations affecting the coupling from the fibers to the PIC. This is 

confirmed by repeating the coupling experiments with different lasers and by 

observing that the RIN level of the optical signal at the PIC output does not 

depend on the laser source. In the VCSEL-based experiment, we fit the same 

noise model of Eq. (4.23) based on Table 4.4 to the measured current devia-

tions, see solid red line in Fig. 4.7(c). We use the same RIN level of 
10 12  10 Hz   (- 97 dB Hz-1) as in the TLS experiment, which leaves only the 

laser frequency fluctuation   as a free parameter. An optimum fit is obtained 

for of 
n

π 435 MHz2  , which is again in fair agreement with the directly 

measured value of 
n

π 175 MHz2  , see Appendix B.5. Note that even 

though the optimum operating point OP,RR,opt  exhibits the highest current 

noise, it does not yield the worst LoD: Since both the current fluctuations caused 
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by laser frequency noise and the sensitivity increase in proportion to e,S  , the 

LoD is independent on the operating point as long as laser frequency noise is 

the dominant impairment. 

4.6 Guidelines for sensor design 

Based on the sensitivity and noise analysis detailed in the preceding sections, 

we formulate guidelines for designing integrated phase-sensitive photonic sen-

sor systems that combine high sensitivity and low limit of detection with man-

ageable technical complexity. All guidelines are summarized in a practical ex-

ample of a favorable sensor design that relies on readily available optic and 

electronic components. 

4.6.1 Sensitivity 

The effective-index sensitivity    e e e o iS n T n P P      of all discussed 

sensor implementations is proportional to 0k  , see Table 4.3, and can hence 

be increased by operation at high wavenumbers 0k c and by decreasing the 

modal power loss coefficient α. In contrast to this, the optoelectronic effective-

index sensitivity e, eS S   can generally not be increased by using shorter 

larger wavenumbers 0k c  since, for a given quantum efficiency of the pho-

todetector, the electric readout responsivity ℜ is inversely proportional to the 

photon energy and hence to the vacuum wavenumber, see Section 4.4.2.5. Still, 

for sensing of analytes in aqueous solutions, short wavelengths in the visible 

range offer the advantage that absorption loss occurring in the evanescent por-

tion of the guided field is less of a problem than for near-infrared (NIR) wave-

lengths. When it comes to blood analysis, photonic sensors largely rely on the 

so-called therapeutic window between 600 nm and 1100 nm, which offers a 

good compromise between pronounced hemoglobin absorption at shorter wave-

lengths and strong water absorption at longer wavelengths [104]. Once the 

wavelength is fixed, the appropriate implementation of the sensor concept 

should be chosen. Amongst the various sensor implementations discussed in 

this paper, simple all-pass ring resonators with a single bus waveguide in a 

slightly under-coupled operation ( UC
APRR ) exhibit the highest sensitivity, see 
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Fig. 4.4, but may be prone to laser frequency noise, see also subsequent para-

graph. In contrast to this, rather simple Mach-Zehnder interferometers provide 

comparable sensitivity if their arm length is adapted to the modal loss, i.e., 

1L  , see Fig. 4.4 and do not suffer from laser frequency noise. This comes 

at the cost of an increased footprint, which can be reduced by using interleaved 

spirals in the interferometer arms, thereby also minimizing temperature differ-

ences between the sensor and the reference arms. Note that, in practical imple-

mentations of sensor systems, the package size and cost are usually not domi-

nated by the sensor waveguide structures themselves but rather by peripheral 

components such as electronic readout circuits and by the assembly processes. 

The footprint of MZI-based sensor structures should hence not play an im-

portant role unless massively parallel sensor arrays are required.  

4.6.2 Limit of detection 

The limit of detection offered by integrated sensor systems that are built from 

standard components and that are subject to typical environmental conditions is 

dominated by the two noise sources that directly induce a phase shift in the 

sensor waveguide: On-chip temperature fluctuations and laser frequency noise. 

Stochastic on-chip temperature differences between sensor and reference wave-

guides lead to impairments in ring resonators and Mach-Zehnder interferome-

ters alike. These impairments can be reduced by proper waveguide design and 

routing, sensor layout, and temperature control. Laser frequency noise is mainly 

a problem for ring resonators and can be mitigated completely in Mach-Zehnder 

interferometers by design. In fact, for RR-based sensor implementations oper-

ated by a light source with a given linewidth, there is an upper limit of the Q-

factor, beyond which the LoD will not improve further with higher Q. MZI 

hence allow to build high-sensitivity sensors with low-cost light sources and 

without complex frequency stabilization schemes. Compared to on-chip tem-

perature fluctuations and laser frequency noise, the impact of noise sources that 

directly affect the signal level at the sensor output is usually less problematic, 

see Fig. 4.6(a). This applies, e.g., to laser relative intensity noise, to photode-

tector shot noise and to additional photodetector noise quantified by the NEP, 

as well as to quantization noise. Note that the LoD contribution of these four 

noise sources is automatically reduced by the optoelectronic effective-index 
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sensitivity, see Section 4.4.3.2. The LoD contribution of the photodetector shot 

noise, the additional photodetector noise quantified by the NEP, and the quan-

tization noise sources are reduced by increasing the effective input power iP .  

4.6.3 Readout 

We find that balanced detection schemes allow to eliminate the impact of RIN 

on the LoD, see Fig. 4.6(b), and to simplify the feedback control that stabilizes 

the operating point, both for MZI and RR-based sensor implementations. For 

MZI, balanced detection additionally allows to exploit the full optical power 

that is available at the device output and therefore doubles the sensitivity com-

pared to single-output implementation, see Fig. 4.4(d). In contrast to that, bal-

anced detection in RR-based sensor implementations necessarily requires a sec-

ond output port, which reduces the Q-factor of the ring. This has a detrimental 

effect on the sensitivity, which is only partially compensated for by the fact that 

the full output power is used, see Fig. 4.4(d). Regarding MZI, using a triple-

output configuration does not increase the sensitivity compared to its dual-out-

put counterpart, Fig. 4.4(d). However, in combination with a detection scheme 

based on a Clarke transformation, triple-output MZI allow to directly extract the 

phase difference of the two interferometer arms independently of the operating 

point and thereby eliminate the need for operating-point stabilization, thus 

vastly reducing the system complexity. Regarding the LoD contribution of the 

photodetectors, the triple-output MZI provides the same performance as its dou-

ble-output counterpart provided that all detectors are operated at the shot-noise 

limit, Fig. 4.6(b). For NEP-limited operation, the photodetector-related LoD 

contribution of the triple-output MZI is increased by a factor of 3  relative to 

the double-output scheme due to the noise in the additional detector. Note that 

using an optical hybrid with four detectors at the MZI output does not bring any 

additional benefit but further increases the complexity of the sensor PIC. Spe-

cifically, a quadruple-output MZI provides the same overall performance as a 

triple-output device in case of shot-noise limited operation and increases the 

photodetector-related LoD contribution by an additional factor of 4 3  for 

NEP-limited operation. We hence identify a triple-output MZI as an ideal trade-

off between the complexity of the optical chip, the complexity of the electronic 

control and readout circuits, and the LoD performance. 



4.6  Guidelines for sensor design 

127 

4.6.4 Favorable sensor implementation 

With these findings, we now propose a favorable sensor design that combines a 

triple-output MZI with readily available optical and electronic components. The 

system is illustrated in Fig. 4.8(a). We consider a laser operating in the visible 

regime at 600 nm (green box) and an effective input power iP  including all cou-

pling losses of 10 µW, which can be easily achieved with low-cost VCSEL and 

state-of-the-art optical coupling approaches. The laser has a RIN of -120 dB/Hz 

and a frequency noise standard deviation of 
n

π 20 M z2 H   . The wave-

guides are based on silicon nitride and exhibit a low propagation loss of 3 dB/cm 

along with a TOC of approximately 10-5 K-1. The MZI arms are length-opti-

mized, mm1 15L   , and matched with respect to the optical group delay 

such that the frequency noise of the laser does not play a role. The waveguides 

are routed as two interleaving spirals, marked in blue/yellow in Fig. 4.8, which 

ensures small temperature differences between the arms. For a waveguide spac-

ing of 5 µm and an on-chip temperature gradient of 1 K/cm, we estimate typical 

values of 
n

0.5 mK   for the mean temperature differences between the ref-

erence and the measurement arm. The sensor PIC footprint fits into an on-chip 

area of 400 × 400 µm². The three photodetectors, illustrated as red boxes, have 

a responsivity of 0.4 A/W and a NEP of 1010 W Hz . The corresponding out-

put currents are digitized with 10-bit ADC at an acquisition bandwidth of 

100 Hz, and the phase shifts can be extracted by a Clarke transformation, see 

Table 4.2, which is performed in an ASIC shown below the PIC. With these 

assumptions, which are summarized on the right-hand side of Fig. 4.8(b), the 

sensor can achieve a limit of detection of LoD = 10-6 for the effective-index 

fluctuations. This LoD is dictated by the NEP of the photodetectors, which 

leaves room for further improvement. We also provide a MATLAB application 

[105] that allows to estimate the performance for other sensor concepts and de-

vice specifications. 
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Fig. 4.8 Analysis of a favorable implementation of a highly integrated photonic sensor, 

based on readily available optical and electronic components. (a) Graphical illustration of 

the sensor concept, relying on a SiN-based triple-output MZI (MZI3) with optimally balanced 

arms that are folded into each other, fed by a power-efficient low-cost VCSEL at a wavelength 

of 600 nm. The scheme is insensitive to laser frequency and intensity noise and minimizes the 

impact of temperature fluctuations, does not require any operating-point stabilization or tuning 

and thus lends itself to highly scalable, technically robust sensor systems. (b) Specifications of 

the various sensor components used for the performance estimation. Other sensor concepts and 

device specifications can be analyzed by a MATLAB application that is based on the model 

described in this paper and that can be accessed in [105]. 

4.7 Further design aspects: Waveguide design, 
assembly, and analyte handling 

Besides the system-level design aspects explained in the previous sections, suc-

cessful implementation of an integrated photonic sensor device requires consid-

eration of additional aspects. This includes, e.g., the design of the underlying 

waveguides for maximum sensitivity envS  with respect to environmental param-

eters, photonic system assembly concepts that allow to efficiently complement 

the sensor PIC with light sources and detectors, and schemes for handling of 

liquid or gaseous analytes relying, e.g., based on co-integration of micro-fluidic 

systems. In the following sections, we provide a brief overview of these aspects 

that have been intensely discussed in the in the literature over the previous years. 
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4.7.1 Waveguide design and surface functionalization 

Optimization of integrated waveguides with respect to the waveguide sensitivity 

envS , see Eq. (4.3) , is an important subject in its own right. In general, the 

waveguide sensitivity envS  can be maximized by proper choice of waveguide 

type, material, and geometry, thereby enhancing the interaction of the guided 

optical mode with the medium that is subject to the change env  of the environ-

mental parameter of interest. In most cases, this parameter is either the refractive 

index of a homogeneous medium that surrounds the waveguide core or the 

thickness, possibly in combination with the refractive index, of a thin layer of 

analyte molecules that specifically bind to a functionalized surface of the wave-

guide core. Such surface sensing applications allow for highly multiplexed de-

tection of analytes in massively parallel sensor arrays [65],[66], but crucially 

rely on robust processes that permit to selectively functionalize individual sen-

sor elements without any degradation of or cross-reaction with differently func-

tionalized sensor areas [106]-[110]. 

Waveguides with high sensitivity envS  can be realized on different material plat-

forms such as silicon-on-insulator [50]–[53] or silicon nitride [54]–[57], where 

both quasi-TE or quasi-TM waveguide modes are exploited, possibly along with 

slot-waveguide concepts [48] or sub-wavelength grating (SWG) structures 

[111],[112], see Refs. [25],[30],[75] for an overview. A particularly compre-

hensive overview of sensor waveguide designs covering different waveguide 

types, polarizations and wavelengths can be found in the reviews [25],[30]. A 

detailed discussion of the benefits of slot and sub-wavelength grating wave-

guides compared to strip waveguides can be found in [75]. Reference [75] pro-

vides detailed geometrical design guidelines along with a comparative study of 

a variety of silicon-on-insulator and silicon-nitride waveguide types that are 

specifically geared towards detection of target molecules bound to a function-

alized waveguide surface. 
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4.7.2 Photonic system assembly and light-source 
integration 

Photonic sensor systems crucially rely on techniques that allow to efficiently 

combine sensor PIC, typically made from of indirect-bandgap silicon-on-insu-

lator or silicon-nitride waveguides, with light sources based on direct-bandgap 

III-V compound semiconductors. Importantly, these techniques should offer a 

path towards compact and reliable assemblies that are amenable to industrial 

mass production. One option is to use monolithically co-integrated laser 

sources, realized, e.g., through heterogeneous integration of III-V epitaxial lay-

ers that are transferred to pre-structured silicon-based PIC [12]–[15],[113]–

[115] and that are then collectively processed on a wafer level. While this ap-

proach stands out due to good scalability, it requires highly developed front-end 

fabrication processes, and is thus mainly suited for high-volume applications. 

Alternatively, readily processed VCSEL or DFB lasers may be transferred to 

passive PIC by micro transfer printing [116] or by conventional flip-chip bond-

ing [117]. These concepts offer higher flexibility with respect to the underlying 

light sources and sensor PIC, but often rely on high-precision assembly tech-

niques with limited throughput. When it comes to efficient co-integration on a 

package level, 3D-printed micro-lenses [118] or so-called photonic wire bonds 

[119],[120] may open a path towards fully automated assembly of compact 

multi-chip systems with outstanding flexibility and performance. Similarly, op-

tions for efficiently implementing photodetectors on sensor PIC range from 

monolithic integration of germanium detectors on silicon photonic waveguides 

[21] to heterogeneous integration of III-V layers [15] and to transfer-printed 

III-V photodetectors [121]. The decision of the optimal light-source integration 

and system assembly concept heavily depends on the desired applications and 

in particular on the expected production volumes.  

4.7.3 Analyte handling and microfluidics 

Besides the opto-electronic system concept and the associated technological im-

plementation, the delivery of the gaseous or liquid analytes to the sensing area 

is a key aspect in case of chemical sensors. In many cases, this calls for efficient 
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co-integration with advanced micro-fluidic systems [122]–[124]. A comprehen-

sive review of optofluidic integration can be found in [67], which discusses sev-

eral microfluidic systems that are co-integrated with PIC-based sensors and that 

rely on the two primarily used materials, namely polydimethylsiloxane (PDMS) 

and on the negative-tone photoresist SU-8. In general, the PIC can be co-inte-

grated with standalone pre-processed microfluidic chips [125], or the microflu-

idic structures can be processed on a wafer scale directly on the PIC [126]. In 

addition, digital microfluidics [127], a platform for manipulation of micro-

droplets based on the electrowetting effect, can be co-integrated with PIC 

[128]–[131]. Digital microfluidic systems allow for a precise spatial and tem-

poral control over microdroplets, offering transporting, mixing and splitting 

functions for lab-on-chip applications. 

4.8 Summary: Photonic sensor systems 

We have developed a holistic model for integrated phase-sensitive photonic sen-

sors that allows to consistently analyze and to broadly benchmark the perfor-

mance of different sensor concepts and technical implementations. Our model 

covers the entire signal chain from the light source through the sensor PIC and 

the photodetectors to the analog-to-digital converters (ADC) while accounting 

for the non-idealities of each component. We perform an in-depth performance 

analysis of different sensor systems with respect to their sensitivity and their 

limit of detection (LoD), considering in particular the limitations of highly in-

tegrated, mass-deployable sensor systems that rely on non-ideal components 

and that are operated outside a controlled laboratory environment. We examine 

the potential and the limitations of different sensor implementations based on 

ring resonators and Mach-Zehnder interferometers, and we extract globally op-

timized design parameters and optimum operating points for each implementa-

tion. We find that resonator-based sensors are particularly prone to laser fre-

quency noise and validate the underlying theoretical model by experimentally 

investigating impact of frequency noise on a ring-resonator-based sensor. Based 

on our analysis, we formulate design guidelines and estimate the achievable 

performance for different sensor implementations. The key insights are merged 

into a specific proposal for a particularly attractive sensor design that relies on 
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a triple-output Mach-Zehnder interferometer in combination with readily avail-

able low-cost light sources and photodetectors. We further provide a MATLAB-

based tool that incorporates the full model developed here that can be readily 

used to estimate the achievable performance of a specific sensor system based 

on ring resonators or Mach-Zehnder interferometers. 
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5 Towards robust sensor systems: The 
fault-tolerant 1×3 Mach-Zehnder 
interferometer 

Chapters 3 and 4 describe the process of finding suitable waveguide and sensor 

system designs based on the most viable options of state-of-the-art photonic 

technology. In the sensitivity and noise analysis in Chapter 4, Mach-Zehnder 

interferometers were identified as versatile and robust sensor variants, espe-

cially when used in mass-deployable integrated photonic sensor systems using 

readily available sensor components and fabrication technologies. This chapter 

explores in detail the specific sensor implementation of a 1×3 Mach-Zehnder 

interferometer with a single optical input and three optical output ports, see 

[132],[133]. The analysis provides a detailed model of the complete sensor and 

focuses on adequate signal generation and processing strategies, which aim at 

overcoming drawbacks of simple single-output MZI sensors and hence at deliv-

ering the most accurate and reliable sensor signal based on imperfect systems. 

 

Fig. 5.1. Schematic of the 1×3 MZI integrated photonic sensor. A laser launches an optical 

signal into a single-mode waveguide. A 12 multimode interference (MMI) coupler splits the 

signal into a reference and a sensor arm. All waveguide sections within a sensitive region (yel-

low) are subject to an effective-refractive-index change Δne as a consequence of an environmen-

tal change Δenv. This causes different phase shifts φr and φs at the end of the arms, where the two 

signals are combined by a 33 MMI coupler where two input and three output ports are con-

nected. The index change Δne is hence translated into a measurable change of the three optical 

output powers, which is recorded by three photodiodes (PD). In general, the frequency-dependent 

optical power transmission factors Tν,MZI3 (ν ϵ{1,2,3}) depend on the arm lengths L and L+ΔL, on 

the amplitude transmission factors a (here identical), and on the effective refractive indices 

ne + Δne + Δne,0 of the sensor and ne of the reference arm. 
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5.1 Drawbacks of a single-output Mach-Zehnder 
interferometer sensor 

Although Mach-Zehnder interferometers with a single output port are widely 

used to measure phase differences in integrated photonic sensors, they exhibit 

several severe drawbacks, which are illustrated in Fig. 5.2 and described in de-

tail in this section. 

Fringe-order ambiguity Due to the periodic nature of the optical transmis-

sion function T with respect to the absolute MZI phase difference φMZI
 = φr - φs, 

different fringe orders cannot be distinguished by simply measuring the trans-

mission at any given time. As a consequence, the phase difference cannot be 

determined on an absolute scale, but only within an unambiguity period of 2π. 

In addition, proper tracing of changes of the phase difference is only possible if 

it is assured that the phase difference cannot change by more than π between 

any subsequent measurements, see Fig. 5.3. 

 

Fig. 5.2. Drawbacks of a conventional single-output MZI1. The optical transmission varies 

sinusoidally with respect to the phase difference φMZI
 = φr - φs between the two MZI arms. The 

signal is hence ambiguous for different fringe orders at integer multiples m of 2π, as well as 

directionally ambiguous within a single 2π-period. The sensitivity towards phase changes is fur-

thermore fading at multiples of π. The actual amplitude and phase transmission properties can 

have static errors, e.g., due to fabrication inaccuracies, and dynamic errors, e.g., due to tempera-

ture-dependent properties. Furthermore, tolerances in the fabrication process can cause device-to 

device variations, requiring additional calibration. 
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Fig. 5.3. Fringe-order ambiguity between subsequent sampling times. The phase difference 

φMZI is measured with the sampling frequency fs. If the time difference s s1t f  between two 

measurement samples (hatched areas) is large compared to the rate of the phase difference evo-

lution within the experiment, jumps in the fringe order cannot be tracked, and a proper phase 

unwrapping is impossible. This is especially relevant if one wants to compare independent meas-

urements taken at different times, e.g., after turning the sensor off and on again, or if the change 

within a single measurement occurs at a rate that exceeds the bandwidth of the acquisition elec-

tronics. 

This is especially relevant if one wants to compare independent measurements 

taken at different times, e.g., after turning the sensor off and on again, or if the 

change within a single experiment happens at a rate that exceeds the bandwidth 

of the measurement setup.  

Directional ambiguity For single-output MZI, the optical transmission is 

even ambiguous within a single fringe order, reducing the unambiguity range to 

π. For example, when starting a measurement without a phase difference be-

tween the MZI arms, the constructive interference will lead to a peak optical 

output power. Changes of the optical transmission from that starting point do 

not indicate the direction of the underlying phase change. 

Sensitivity fading For phase differences that are multiples of π, i.e., at the 

extrema of the optical transmission, changes in the phase differences do not lead 

to a measureable change in the optical transmission to a first-order approxima-

tion. The sensitivity is hence a function of the operating point. As a conse-

quence, additional signal processing or an active operating point regulation is 

required to maintain a constant sensitivity. 
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Fig. 5.4. Measured amplitude and phase errors of the outputs of 1×3 MZI. (a) MZI3 con-

taining a 3×3 MMI with relatively low amplitude and phase errors. (b) MZI3 containing a 3×3 

MMI with high amplitude and phase errors. (1) The envelope of the transmission spectra of the 

three output ports of Device (a) peak at the design wavelength of 1550 nm, whereas the envelopes 

of the spectra of Device (b) show different peaks (2) Uniform power splitting can be observed 

around the design wavelength for Device (a), while the ouput ports of Device (b) exhibit vastly 

different transmission levels. (3) Device (a) shows phase errors of several mrad compared to 

the ideal phase shifts around the design wavelength, while Device (b) exhibits massive distor-

tions. 

Amplitude and phase errors and device variations Due to imperfect fabri-

cation or environmental effects such as thermal drift, the MZI response can ex-

hibit static or dynamic amplitude or phase errors. In addition, different sensors, 

even if fabricated on the same chip, can vary from device to device, which 

makes a direct comparison of measurements even more complicated. As an ex-

ample, Fig. 5.4 shows the measured characterization of two 1×3 MZI termi-

nated by 3×3 MMI couplers. The top row shows intensity spectra over a range 
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of 50 nm for two clearly imperfect MZI. The relative amplitudes as well as 

phase errors shown in the second and third row can be significant, especially far 

away from the design wavelength. As a consequence, sophisticated calibration 

processes have to be established to extract reliable information from the meas-

ured signals. 

Note that the use of a dual-output MZI2 employing a 2×2 MMI coupler increases 

the sensitivity as shown in Chapter 4, but does not solve the fundamental draw-

backs of a single-output MZI. 

5.2 Enhanced triple-output Mach-Zehnder 
interferometer sensor model 

The following sections analyzes in detail a 1×3 MZI sensor designed and oper-

ated with strategies that combat all drawbacks depicted in Section 5.1. This is 

mainly achieved by using the information contained in the three output signals 

to construct a complex artificial signal S , which contains the full phase infor-

mation. This allows for an exact reconstruction of the measurement signal MZI,  

which is independent of the actual operating point. To this end, the complex 

signal S  has to be constructed in a way so that the measurement data is retrieved 

in the shape of Euler’s formula as 

     MZIj
I Q MZI MZIcosj j sin e .S S S       (5.1) 

Obtaining this phase information is not possible with single-output or dual-out-

put MMI couplers, as the respective output powers are proportional to 

 MZIcos1   and  MZIsin  . On the other hand, four or more output ports 

are also widely used [134] to obtain the phase information as shown in 

Eq. (5.1) . However, no additional information as in the case of the triple-output 

MZI is obtained, making the 1×3 MZI sensor concept the simplest and smallest 

device that allows for a full phase reconstruction. 

This Section is structured as follows: A key component for this 1×3 MZI sensor 

concept is a 3×3 multimode interference (MMI) coupler with three input and 

output ports, which is placed at the output of the MZI sensor and reference arms, 
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see Section 5.2.1. Section 5.2.2 describes the complete mathematical model of 

the 1×3 MZI sensor concept in matrix notation. Based on such a device, the 

three optical output ports are read out by photodiodes, digitized, and processed 

further via a Clarke transformation, see Section 5.2.3. With this readout con-

cept, the phase difference measurement is enhanced substantially, and draw-

backs of directional ambiguity as well as sensitivity fading are eliminated. In 

Section 5.2.4, it is shown that the output of this sensor can be used to calibrate 

the response and hence eliminate the impact of amplitude errors, phase errors, 

as well as device-to-device variations. 

5.2.1 Model of a 3×3 multi-mode interference coupler 

The key to obtaining the full phase-difference information between the sensor 

and reference arm of the MZI is the use of a 3×3 MMI coupler, see Fig. 5.5(a).  

The single-mode waveguides of the two interferometer arms are connected to 

the top (In1) and the bottom (In3) input port of the 3×3 MMI coupler, where 

they expand into a multi-mode region. Details on MMI coupler design can be 

found in [135],[136]. For a 3×3 MMI coupler, the centers of the three input and 

output ports are located at MMI,3 3 MMI,3 33,0, 3W W     for a total width 

MMI,3 3W  , although they can be positioned a little further out to account for an 

effective width [135]. The single-mode waveguides can be tapered towards the 

MMI coupler to improve operation, see Fig. 5.5(b). The width MMI,3 3W   is cho-

sen as small as possible to minimize device footprint, but large enough to ac-

commodate enough guided modes in the multi-mode region, and large enough 

to account for the minimum feature sizes of the fabrication technology, espe-

cially at the regions between the waveguide ports. Based on the selected width, 

the length of the multi-mode region is chosen so that the three output ports lie 

on the self-imaging plane, i.e., MMI,3 3 π out π3 /L L N L   . To obtain 

 π 0 1L     , the propagation constants 0 1,   of the two lowest-order 

quasi-TE or quasi-TM modes in the multi-mode region have to be calculated, 

e.g., via a numerical simulation. Note that the wider the MMI coupler, the longer 

πL  – for a compact device footprint, finding the smallest MMI,3 3W   is essential.  
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Fig. 5.5. Properties of a 3×3 Multi-Mode Interferometer. (a) Schematic of the 6-port device 

with complex transmission coefficients mnt  leading from the input n to the output m. The central 

input port is not connected in the two-arm MZI. In symmetric devices, the t-parameters for the 

straight, center and cross transmission can be grouped as 1t , 2t  and 3t . (b) Simulation of the 

electric field magnitude in the MMI when an electric field is launched into a single input port 

shows the multi-mode self-interference pattern that leads to an equal power transmission into 

each output port. (c) The magnitude of the simulated t-parameters slightly differs from the ideal 

case of 1 3  around the design wavelength λD. (d) The phase transmission simulation shows 

the phases of the electric field at the three output channels. Around the design wavelength, the 

relative phase differences between the channels come close to the ideal values of o1-o2 π  , 

o2-o3 π 3   and o3-o1 2π 3  .  

After the multi-mode region at πL , the three output ports channel the electro-

magnetic waves back into three single-mode waveguides, which are subse-

quently routed to photodiodes and digitized in ADC for further signal pro-

cessing. 

The transmission from an input port n to an output port m can be described by 

complex t-parameters j
e mn

mnmnt a


  with electric field amplitude coefficients 

amn as well as a phase coefficients φmn. In symmetric devices, the t-parameters 

for the straight, center and cross transmission can be clustered as 1t , 2t  and 3t . 

For visualization, Fig. 5.5(b) shows the self-interference pattern in the multi-
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mode region when only one input is active, which leads to an equal power split-

ting in the three output ports if the MMI is designed correctly. As a result, 

Fig. 5.5(c) and Fig. 5.5(d) show simulation results of the amplitude and phase 

transmission of the three output ports around a certain design wavelength D  

using a 2.5D simulation with the software Lumerical. The amplitudes differ 

only slightly from the ideal 1 3  splitting ratio as long as the operating wave-

length is sufficiently close to the targeted design wavelength D . When an elec-

tric field is launched into a top input port of the 3×3 MMI coupler, the phase 

differences of the electro-magnetic fields between the three output ports are 

o1-o2 11 21 π=    , o2-o3 21 31 π 3      and o3-o1 31 11 2π 3      

in the ideal case. Real devices are subject to phase errors.  

In a t-parameter transfer matrix notation, the complex electric field transmission 

matrix MMI,ot  of the 3×3 MMI coupler at the output can be written as an ele-

ment-wise Hadamard product (denoted by “○” as opposed to the scalar product 

“∙”) of an amplitude matrix MMI,oa  (containing mna ) and a complex phase ma-

trix 
MMI,o

φ  (containing j
e mn ) as 

 

1311 12

2321 22

31 32 33

jj j
11 12 1311 12 13

jj j
21 22 2321 22 23

j j j
31 32 33 31 32

MMI,oMMI,o MMI

33

,o

e e e

e e e .

e e e

a a at t t

t t t a a a

t t t a a a

 
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  

  
  

    
       

φt a  

  (5.2) 

Note that contrary to the optical power transmission T in the previous sections, 

these complex transmission factors mnt  as well as the corresponding complex 

transmission matrix t  concern the electrical field amplitude and phase. 

Further information is added to the electric field transmission matrix by splitting 

the coefficients into an ideal part, denoted with the superscripts id, and error 

contributions, denoted with the superscripts err, which are again connected via 

the Hadamard product “○” as  
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  (5.3) 

The product of the first two matrices represents the ideal transmission 
d
MMI,o
i

t  

and consist of the ideal amplitude transmission matrix 
d

MMI,o
i

a  with 

MMI,
id id

o 1 3 ,mn n ma a   , and the ideal phase matrix 
d

MMI,o

i
φ  with phase 

shifts of 0, -π and 2π/3 on the main diagonal, the ±1 diagonal and the ±2 diago-

nal, respectively. The last two matrices contain non-ideal error terms, in the 

absence of errors both simplify to matrices of ones. The amplitude error matrix 
r

MMI,o
er

a , consists of the coefficients 
mna , while the phase error matrix 

r

MMI,o

er
φ  

consists of the coefficients 11jδ
e

 , where δ mn  is the phase error term. These 

error matrices are especially important for the calibration part in Section 5.2.4. 

A transmission matrix can hence be expressed either by a Hadamard product of 

the ideal and the error matrices, or by a Hadamard product of the amplitude and 

phase matrices, i.e., 

 
id errid errid err id err

id err
 

a aa φ a φ φ φ

t t t a φ  (5.4) 

In the case of a two-arm MZI, the central input port of the 3×3 MMI is unused, 

and hence the central column of these matrices can be omitted, which leads to 

a simplified 2×3 matrix 
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 (5.5) 
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Note that for an ideal MMI coupler without amplitude errors, i.e., δ 1mna  , and 

without phase errors, i.e., δ 0mn  , the error terms can be omitted since both 
r

MMI,o
er

a  and 
r

MMI,o

er
φ  are matrices of ones. 

5.2.2 Model of a 1×3 Mach-Zehnder interferometer 

The PIC model of the 1×3 MZI starts with a single-mode waveguide connected 

to a 1×2 MMI coupler with transmission MMI,it  at the MZI input. Here, the 

signals are split into a sensor and a reference arm, the respective transmission 

can be described by a 2×2 matrix Armst . The sensor and reference signals are 

subsequently connected to the top and bottom input ports of a symmetric 3×3 

MMI coupler, where they superimpose each other. The transmission to the three 

output ports can hence be described by the simplified MMI,ot  from Eq. (5.5). 

Subsequently, the three optical signals are routed via single-mode waveguides 

to individual photodetectors. The electrical field transmission 
3MZIt  from the 

complex electrical field amplitude at the input iE  to the three complex electri-

cal field amplitudes at the output oE  is sketched in Fig. 5.6. It can be written in 

general form as a matrix multiplication via 

 
3 iMZI MMI,o MMI,iArmso E t E t t t  (5.6) 

 

Fig. 5.6. Schematic model of a 1×3 Mach-Zehnder interferometer. The complex electrical 

field amplitude at the input iE  carried by a single-mode waveguide is split into a sensor arm and 

a reference arm by a 1×2 multi-mode interference (MMI) coupler with electric field transmission 

MMI,it . The sensing operation modifies the transmission Armst  in the MZI arms. The two signals 

are combined in a 3×3 MMI, where the central input port remains unused. The transmission ma-

trix to the three single-mode output waveguides can hence be simplified to 3×2 transmission 

matrix MMI,ot . The total transmission from the complex electrical field amplitude at the input iE  

to the three complex electrical field amplitudes at the output represented by the 3×1 matrix oE  

is denoted as 
3MZIt . 
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The derivation of the general optical transfer function of the 1×3 MZI can be 

found in Appendix C.1. In the ideal case without any MMI amplitude or phase 

errors, and for identical power loss in the two MZI arms, i.e., s ra a a  , each 

output channel 1,2,3   contains the superposition of the electrical fields from 

the sensor and the reference arms, ,
id

,
id

o,s, o r i 6E E E a   , as derived from 

Eq. (C.5) in Appendix C.1. As a result, in the ideal case, the corresponding op-

tical output powers   
2

o, o,s, o,r, o,s, o

*

,o
id id id id idi

,
d

r,
1 1

2 2
P E E E E E          of 

the three output channels can be expressed by the 3×1 matrix id
oP  as 

  

MZI

2i
MZI

MZ

o

I

id

2
1 cos

3

1 cos .
3

2
1 cos

3

π

π

P
a







  
   

  
  
 

     
  

P  (5.7) 

It can be seen that the cosinusoidal dependence of the three ideal optical output 

powers id
oP  on the phase difference MZI  are phase-shifted by 2π/3 or 120° with 

a maximum output power of   2
i2 3 Pa  in each channel. 

5.2.3 Signal processing via a Clarke Transformation to 
eliminate directional ambiguity and sensitivity fading 

From the output ports of the 3×3 MMI coupler, the three optical signals are 

routed to three photodiodes with responsivities  
T

1 2 3, ,R R RR . Here, the op-

tical fields are converted into electrical output currents, i.e., 
2

oo o I R P R E . For the remainder of this work, identical responsivities 

1 2 3R R R R    are assumed, however, non-idealities can of course be in-

cluded in the calculation. The three output currents  
T

o 1 2 3, ,I I II  are shown 

in Fig. 5.7(a) for an ideal system without amplitude and phase errors, and in 

Fig. 5.7(d) for exaggerated amplitude and phase errors in the individual compo-

nents. 
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Fig. 5.7. Clarke transformation for complex phase extraction in 1×3 MZI. (a) Ideal 120°-

phase-shifted output currents  
T

o 1 2 3, ,I I II  in an amplitude- and phase-error-free MZI. (b) A 

Clarke transformation of the three output currents yields the two signals 

      
T T

I Q C o MZI MZI, cos ,sinS S   M I . (c) These signals are used in the artificial signal 

 I MZIj exp jQS S S    . The phase difference MZI  is extracted via  MZI arg S  . (d)-

(f) Identical signal processing for an MZI with amplitude and phase errors yields erroneous sig-

nals. The extracted phase difference err
MZI  will contain significant errors unless the system is 

properly calibrated. 

The advantage of the 1×3 MZI is the possibility to directly measure a complex 

phasor, from which the desired phase can be extracted. To this end, signals con-

taining the in-phase component  MZIcos   and the quadrature component 

 MZIsin  of the MZI phase difference φMZI need to be available simultaneously, 

see Eq. (5.1). It can be shown that the three cosine terms contained in the ideal 

optical output powers id
oP  in Eq. (5.7) can be rewritten as a function of 

    
T

MZI MZIcos ,sin  and a corresponding 3×2 transformation matrix, which 

is from now on denoted as T
C


M : 
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 (5.8) 

This shows that the superimposition of the electrical fields of the sensor and 

reference arms already contains the required signals     
T

MZI MZIcos ,sin  . 

However, they are transformed by the 3×3 MMI coupler via T
C


M , which con-

tains the arguments of the ideal phase terms 
id

MMI,o
,φ   2 3,0,2 3π π , as well 

as the arguments δmn of the error phase terms 
err

MMI,o
φ . More specifically, the 

first column of T
C


M  contains cosine functions, the second column contains sine 

functions of the phase shifts φnm in the real device. The arguments are identical 

in both columns, and are obtained by taking the difference of the arguments of 

the first and last column of the reduced 3×3 MMI coupler phase matrix 
MMI,o

,φ  

see Eq. (5.5), which correspond to the phase shifts introduced by the MMI to 

the signal from the sensor and reference arm, respectively.  

When measuring the three output currents, all that needs to be done is to trans-

form the three 120°-phase-shifted currents back to the two 90°-phase-shifted 

signals. This is realized via the Clarke transform, which is well known from 

electrical three-phase systems. The standard Clarke transformation matrix can 

be written as 
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sin sin 0 si
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M  (5.9) 

It can be seen that the signal transformation matrix T
C


M  is corresponding to the 

transposed Clarke transformation matrix T
CM  if the 3×3 MMI coupler contains 

no phase errors. Including phase errors, the MZI hence performs a modified, 

non-ideal transposed Clarke transform T
C


M . This notation can be used to re-

write the three output currents from the 1×3 MZI sensor in a simpler form as 
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 (5.10) 

Without knowing the phase errors of the 3×3 MMI, a typical signal-processing 

algorithm applies the ideal Clarke Transformation CM  to the three output cur-

rents Io, which creates the two signals 

   
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M I

M R a a
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 (5.11) 

In the ideal case without phase and amplitude errors, denoted by superscripts id, 

this can be simplified to 
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 (5.12) 

The result is plotted in Fig. 5.7(b), showing the two ideal signals id
IS  and 

id
QS  as 

pure cosine and sine functions with equal amplitudes and without any offset. 

From these two signals, the ideal version 
id

S  of the complex signal S  is con-

structed, which directly contains the actual MZI phase difference φMZI 

 MZIj2id id id
I Q i

1
j e .

2
S S S PRa


    (5.13) 

This signal is plotted in the complex plane in Fig. 5.7(c) and resembles a perfect 

circle with radius 2
i 2PRa , from which the phase difference can easily be re-

constructed by calculating the argument 
id

S . More specifically, the argument is 

calculated by applying the two-argument arctangent function to the imaginary 

and real parts of 
id

S , i.e., 
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

   (5.14) 

If non-idealities such as amplitude and phase errors of the 3×3 MMI coupler are 

considered, it applies a non-ideal transposed Clarke Transformation to the elec-
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trical fields. As a result, the output signals  d
T

id i
I Q,S S  do not resemble the cen-

tered circle in the complex plane. Instead,  d
T

id i
I Q,S S  can be expressed by a 

generic elliptical equation 
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  (5.15) 

In contrast to the ideal case, the non-ideal  
T

I Q,S S -signals do have a non-zero 

translational offset vector  
T

I,0 Q,0,S SOS , which is caused by non-zero am-

plitude errors 
err
o,sa and 

err
o,ra  as defined in Eq. 5.9. Note that this offset is inde-

pendent of any phase errors. Furthermore, the ideal circular shape described by 

      
T T

I Q MZI MZI, cos ,sinS S    is only present if the 2×2 transformation 

matrix TR is a diagonal matrix with 
2

I,cos Q,sin i 2S S PRa   and 

I,sin Q,cos 0S S  , see Eq. (5.12). In all other, non-ideal cases, TR rotates and 

stretches the circle into an ellipse via amplitude and phase errors, respectively. 

The result with exaggerated amplitude and phase errors is shown in Fig. 5.7(f). 

In this case, the phase difference cannot be extracted by taking the argument of 

the complex signal as in the ideal case of Eq. (5.14), and a calibration is re-

quired, which is described in detail in the following Section 5.2.4. 

In the ideal case, this phase reconstruction from the artificial complex signal S  

combats several of the drawbacks mentioned in Section 5.1. This is visualized 

in Fig. 5.8, where the phase extraction process of single-, double- and triple-

output MZI1-3 is compared. In the following, these benefits are briefly described. 

Doubled signal unambiguity range While fringe-order ambiguity is still 

present, the directional ambiguity problem is solved by taking the argument of 

the corresponding complex signals, as this function returns values between –π 

and π and hence doubles the unambiguity range.  
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Fig. 5.8. Typical phase extraction in 1×1, 1×2 and 1×3 MZI1-3. (b.0) This simulation resem-

bles a typical experiment where the phase φMZI rises and settles at around 3π. (a.1)-(a.3) Output 

currents Io and (b.1)-(b.3) extracted phase differences φMZI for the three MZI versions. (b.1)-

(b.2) Several drawbacks of MZI1 and MZI2 are labeled in the plots, as explained in Section 5.1. 

First, an operating-point-dependent sensitivity and signal-to-noise ratio complicates signal pro-

cessing. Second, the unambiguity range is limited to a span of π due to directional ambiguity. In 

addition, due to the absence of distinct phase jumps at the [0, π] rails in MZI1 or the [-π/2, π/2] 

rails in MZI2, the phase unwrapping process is unreliable. (b.3) The MZI3 readout concept re-

moves the directional ambiguity and hence doubles the unambiguity range to a span of 2π, pro-

vides a constant sensitivity and mostly constant SNR, and enables a reliable phase unwrapping 

process during signal processing. However, the problem of fringe order ambiguity as well as the 

impact of device errors such as amplitude and phase errors cannot be removed without further 

calibration, which leads to the indicated, wobbly phase evolution depicted in (b.3). 
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Reliable phase unwrapping In a continuous measurement, where the sam-

pling rate is much faster than any potential fringe order change in the sensor 

system, this elimination of directional ambiguity also makes the phase unwrap-

ping process a lot more reliable. More specifically, in single- and double-output 

MZI, at the corner of a fringe-order jump, it cannot be differentiated if the fringe 

order actually jumped or if the signal just changed direction. In contrast to that, 

the described phase extraction of the 1×3 MZI shows pronounced 2π-jumps 

when changing the fringe order.  

Sensitivity independent of operating point The phase sensitivity in the 1×3 

MZI readout concept is constant, which makes the sensor effectively operating-

point independent. This is an important factor, since no active operating point 

control is required, which vastly simplifies the sensor design, operation, and 

signal processing. In MZI1 and MZI2, the signal-to-noise ratio (SNR) is operat-

ing-point-dependent. The constant sensitivity in MZI3 solves this issue, see 

Chapter 4.  

Amplitude and phase errors – not solved yet As shown in the second row 

of Fig. 5.7 and the last plot in Fig. 5.8, the problems occurring with non-ideal 

devices that introduce amplitude and phase errors as well as corresponding de-

vice-to-device variations are not yet solved by simply employing the triple-out-

put MMI coupler in combination with the Clarke transformation. However, the 

measurement data obtained from this readout concept can be used for a calibra-

tion of the device, which will be discussed in the next Section 5.2.4. 

5.2.4 Calibration process based on phase measurements to 
eliminate amplitude and phase errors 

In the previous section, it was shown that the use of a triple-output 1×3 MZI 

eliminates the drawbacks of directional ambiguity and sensitivity fading, with 

the additional benefit of having a reliable phase unwrapping mechanism. How-

ever, non-ideal photonic integrated circuit components can introduce substantial 

amplitude or phase errors in the system. In this case, the simple readout proce-

dure of performing a Clarke Transformation on the raw current data, followed 

by calculating the argument of S  to extract the phase difference of the MZI, 
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will produce erroneous data, as was shown in Fig. 5.7. This is the case since the 

Clarke transformation expects the underlying  
T

I Q,S S -signals to describe a 

perfect circle in the complex plane. To solve this problem, a calibration process 

is required that accounts for the amplitude and phase errors of the system. In 

this section, all errors are assumed static without any change during operation 

of the sensor. As a consequence, the calibration has to be done only once. This 

concept is extended to an instantaneous calibration during sensor operation in 

Section 5.3.1. 

In Section 5.2.3, it was shown that a non-ideal MZI3 includes amplitude and 

phase errors. As a result, the simple phase extraction mechanism based on the 

argument of the artificial signal  I Q MZIexpj jS S S     becomes errone-

ous. The ideal circle generated by S  in the complex plane is instead subject to 

an offset vector OS as well as a 2×2 transformation matrix TR that transform 

the ideal circle into an ellipse, see Eq. (5.15). If the argument is calculated from 

this signal, the extracted phase difference is distorted compared to the actual 

data, which is visualized in the first column of Fig. 5.9. 

In order to calibrate the device, the distorted ellipse has to be mapped back to 

the ideal, centered circle before extracting the phase difference. This mapping 

process requires a sufficiently large number of data points to identify the crucial 

parameters of the ellipse, which means that measurement data spanning a whole 

2π-period of phase differences is ideal. Fig. 5.9 shows in detail the required ge-

ometric transformation steps to obtain a centered circle. 
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Fig. 5.9. Calibration of 1×3 MZI via geometric transformation. The transformation is per-

formed on the 2D  
T

I Q,S S  data and visualized in the complex plane. In ideal devices, 
id id
I Q

id
jS S S   leads to a perfectly centered circle, and simply calculating the argument of id

S

results in the actual ideal MZI phase difference id
MZI . In MZI3 with amplitude or phase errors, 

I QjS S S   resembles a distorted ellipse, which can be scaled on its width and height, rotated, 

and offset from the origin. The calibration process relies on a transformation of the ellipse into 

the ideal centered unit circle by first translating the ellipse to the center, rotating the ellipse, scal-

ing the width and the height, and then derotating the resulting circle back to its initial orientation, 

see first row from left to right. The second row plots the measured phase MZI  versus the actual 

phase difference id
MZI . Without errors, this is a straight line (see black line), while distortions 

can be seen for erroneous systems (red line). From left to right, the various transformation steps 

were applied to the erroneous  
T

I Q,S S  before calculating  MZI arg S  . It can be seen that all 

four geometrical transformation steps are required in order to properly calibrate the device. 

Mathematically, the important parameters of the ellipse are identified first. To 

that end, an efficient geometric ellipse-fitting algorithm based on a least squares 

fit is employed, such as [137]. Given a set of 2D  
T

I Q,S S -data, the algorithm 

returns fits of the ellipse parameters, denoted with superscripts fit, such as the 

offsets in SI- and SQ-direction, 
fit
I,0S  and 

fit
Q,0S , the ellipse width in SI- and SQ-

direction, fit
Ir and 

fit
Qr , as well as the orientation angle fit , see Fig. 5.9. A total 

of four transformation matrices based on these fit parameters are applied on the 

measured  
T

I Q,S S -signals to obtain a calibrated dataset, denoted with the su-

perscripts cal, 
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 (5.16) 

First, the translational offset is removed by subtracting the 2×1 translation vec-

tor MT from the measured data so that the ellipse is centered. Second, the ellipse 

is rotated by a 2×2 rotation matrix MR using the rotation angle α so that the two 

ellipse axes align with the coordinate system. Third, the ellipse is scaled via the 

diagonal 2×2 matrix MS so that a unit circle with constant radius is obtained. 

Note that for the phase extraction, the radius of the scaled circle does not play a 

role. Fourth, the circle is rotated back by the inverse of MR to its initial orienta-

tion so that the information contained in φMZI is not corrupted. 

Note that by comparing the fitted translation matrix MT with the error offset 

matrix OS from Eq. (5.15), and/or by comparing the combined transformation 

RR
1

S


M M M  with the error transformation matrix TR, information on the am-

plitude and phase error properties of the system can be obtained. However, in 

this case, the scaling should not transform the ellipse into the unit circle with 

1,r   but rather into a circle with a radius of 2 2ir PRa  as calculated in 

Eq. (5.12). This value can be obtained, e.g., from the sum of the three measured 

output currents. Alternatively, the currents could be normalized by the total 

power before entering the signal processing, which results in the same effect. 
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5.3 Enhanced triple-output Mach-Zehnder 
interferometer readout method 

The previous sections demonstrated the capabilities of a 1×3 MZI. It was shown 

that the readout concept is able to eliminate the drawbacks of directional ambi-

guity and sensitivity fading, and that phase unwrapping can be performed reli-

ably. However, the issue of fringe order ambiguity remains to be solved. Fur-

thermore, it was shown that the readout process enables a calibration process 

that can eliminate static amplitude and phase errors introduced to the MZI re-

sponse by non-ideal components. However, the calibration requires measure-

ment data spanning at least the equivalent of a 2π period of the phase difference 

and hence a dedicated, controlled calibration process. Furthermore, dynamic 

amplitude or phase errors changing during the sensor operation are not covered 

by such a one-time calibration method. Consequently, an instantaneous sensor 

calibration method is required.  

This section demonstrates how the MZI3 readout concept derived in the previ-

ous sections can be enhanced to solve both tasks, i.e., instantaneous calibration 

and removal of fringe-order ambiguity. Both solutions rely on an active phase 

modulation of the MZI phase difference during the sensor operation. This phase 

modulation can for example be achieved by using a frequency-tunable laser as 

the input light source, or by adding dedicated waveguide sections to the MZI 

arms that can shift the phase, e.g., thermally via heaters, electrically via free-

carrier injection, or mechanically by actuating suspended structures via electro-

statics [9], which is well-known from micro-electro-mechanical systems 

(MEMS). 

First, Section 5.3.1 describes a method that enables a dynamic, instantaneous 

sensor calibration during the actual sensor operation. As a consequence, the sen-

sor signal extraction is extremely robust with respect to environmental changes 

such as thermal drift, which otherwise heavily affects integrated photonic sensor 

systems. Second, Section 5.3.2 describes how the frequency-modulated output 

data can be used to perform an endless phase unwrapping in order to extract an 

absolute phase difference. As a consequence, experiments can be evaluated in 

which the sampling rate is not sufficient to track the process dynamics, i.e., in 
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which two subsequent measurements can lead to a phase shift larger than 2π. 

Furthermore, independent measurements taken at different points in time, such 

as after turning on and off measurement devices, can be compared quantita-

tively. 

5.3.1 Phase modulation for instantaneous sensor 
calibration 

The phase extraction of a 1×3 MZI using a 3×3 MMI coupler at the output works 

smoothly only in absence of significant amplitude or phase errors of the pho-

tonic components such as the MMI couplers. In this ideal case, the desired 

measurand, i.e., the phase difference φMZI between the two propagating modes 

at the ends of the two single-mode MZI waveguide arms can directly be ex-

tracted by evaluating the argument of the complex artificial measurement signal 

 I Q MZIj exp jS S S    , which resembles a perfect circle in the complex 

plane, see Fig. 5.7 and Eq. (5.13). It was shown in Section 5.2.3 that non-ideal 

photonic components lead to a transformation of that circle towards an offset, 

rotated and scaled ellipse, in which case the argument of S  does not correspond 

to the measurand φMZI anymore. To solve this issue, Section 5.2.4 demonstrated 

a calibration process that relied on identifying the underlying transformation 

parameters. With these parameters at hand, the ellipse can be geometrically 

transformed into an ideal unit circle, so that the argument of S  once again cor-

responds to the measurand φMZI. As a result, the calibration effectively elimi-

nates the impact of amplitude and phase errors of the photonic components. This 

technique works best if the geometric parameters of the ellipse in the complex 

plane are accurately known, which requires measurement data spanning in the 

best case a whole 2π-period. For a static operation with a fixed input laser fre-

quency and without dedicated phase shifters in the MZI arms, such data sets 

cannot be created actively by tuning the sensor system, but instead would have 

to rely on a 2π phase shift generated during the sensor operation as such. As a 

consequence, the required measurement data has to be generated during an of-

fline calibration procedure, which is often done by the manufacturer in the form 

of a so-called factory calibration. For example, a tunable reference laser could 

be connected to the PIC, or the PIC could be placed on an external tunable 
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heater, while the tuning range is chosen such that the MZI phase difference ex-

periences a total phase shift of around 2π. The corresponding output currents 

have to be carefully evaluated for the calibration purpose. The issue with a one-

time factory calibration is that it only eliminates static errors, resulting, e.g., 

from such non-ideal components. Dynamic errors such as those originating 

from thermal drift, stress, humidity, or aging effects cannot be covered by such 

a one-time calibration. 

In order to perform a dynamic sensor calibration, a method is required that cre-

ates the 2π phase shift during the actual sensor operation. Such an active phase 

modulation can for example be achieved by adding dedicated tunable wave-

guide sections for phase modulation, e.g., via heaters [22], free-carrier injection 

[23], electro-optic materials [24], or MEMS [9]. These tunable waveguide sec-

tions can be spatially separated from the sensitive region on a sensor PIC in 

order to avoid interference of the two physical effects. Another option to ac-

tively perform a phase modulation within the MZI sensor, but without adding 

additional tunable waveguide sections, is to use a frequency-tunable laser as the 

input light source. However, this requires a certain pre-built imbalance between 

the two MZI waveguide arms, i.e., a certain group delay between the interfering 

signals, which ensures that the frequency tuning range is enough to produce a 

2π phase shift at the interferometer output. Note that this increases the suscep-

tibility to frequency noise, as demonstrated in Chapter 4. In the following, the 

concept is demonstrated via active laser frequency modulation, which has the 

benefit that it can be evaluated on a completely passive PIC. 

To visualize the instantaneous calibration approach, Fig. 5.10 illustrates a po-

tential measurement obtained with a frequency-modulated laser. On the top left, 

Fig. 5.10(a) shows two periods TP of the sinusoidal laser-frequency modulation 

with amplitude ̂  and modulation frequency P1 T  around the center fre-

quency 0 , i.e.,  

    0
ˆ sin .t t     (5.17) 

The imbalance between the MZI sensor and reference arm is chosen so that the 

frequency modulation leads to a modulation of the phase difference MZI
ˆ π   at 

the end of the two arms. For equal arm lengths, this means  
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 (5.18) 

Here, Δneg is the difference of the effective group refractive index between the 

two arms, c is the vacuum speed of light, and L is the physical path length that 

is identical for both arms. 

 

Fig. 5.10. Instantaneous sensor calibration in 1×3 MZI via phase modulation a) A laser 

frequency modulation leads to a MZI phase modulation of roughly ±π, if the group delay between 

the two interferometer arms is adjusted accordingly, see Eq. (5.18). b) The periodic modulation 

of the phase difference leads to a periodic modulation of the output currents at the three photo-

detectors. c) Artificial complex signal I QjS S S   obtained by a Clarke transformation of the 

three output currents. In the presence of amplitude and phase errors, the resulting measurement 

points lie on an ellipse rather than on an ideal unit circle. If the modulation depth is chosen to be 

around ±π, the number of data points is sufficient to perform a geometric ellipse fit and to subse-

quently transform the measured data points into a unit circle, which effectively calibrates the 

sensor output and eliminates amplitude and phase errors. With an active phase modulation, such 

a calibration can be performed within each modulation period and hence enables a continuous 

calibration during sensor operation. d) Extracted phase with and without the dynamic phase 

calibration. With calibration, a pure sinusoidal phase is obtained. The mean value, indicated by 

a grey solid line, represents the desired measurement value. Without calibration, the extracted 

phase is distorted and the mean value is offset, see dashed grey line. 
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As an example, for a laser with a modulation depth of 1 nm or roughly ~1.2 THz 

and a common MZI arm length of 15 mm, the two waveguides in the MZI arms 

need to have at least an offset in their effective group indices of eg 0.08n  , if 

the phase modulation amplitude is to exceed π. 

Due to the laser frequency modulation and the arm imbalance, the phase differ-

ence is oscillating with the same modulation frequency   as the input laser 

around a mean value MZI  within one modulation period TP. Note that this mean 

value is used as the actual measurement signal and should hence change at a 

rate much slower than the modulation frequency Ω, i.e., MZI  should be approx-

imately constant within one modulation period TP. Therefore, the phase modu-

lation frequency has to be chosen according to the rate of the processes that are 

evaluated within a certain experiment. The corresponding phase modulation can 

be written as 

  MZI MZI MZI siˆ n t      (5.19) 

The three corresponding output currents Io originating from such a phase mod-

ulation are shown in Fig. 5.10(b), where the periodic modulation is clearly vis-

ible. Using the Clarke transform as described in Section 5.2.3, these currents 

can be transformed into the two signals IS  and QS , which are plotted in 

Fig. 5.10(c). Due to amplitude and phase errors, the measurement values have 

an elliptical form, see dotted red line in Fig. 5.10(c). In addition, the ellipse is 

not completely closed, since the phase modulation amplitude in this example 

was chosen to be slightly lower than π for visual clarity of start and end. 

With these data and the ellipse-fitting calibration process from Section 5.2.4 at 

hand, the periodic phase modulation therefore enables an instantaneous sensor 

calibration. To that end, the fitting and calibration process is performed within 

each individual phase modulation period TP, as depicted by the solid red line in 

Fig. 5.10(c). It can be seen that the extracted phase oscillates around the mean 

value of the phase difference MZI  that represents the actual measurement signal 

and that is depicted in grey on the opposite side of the small opening in the 

circle. 
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Fig. 5.10(d) depicts the reconstructed phase calculated via the argument of 

 I Q MZIj exp jS S S     from Fig. 5.10(c) for two modulation periods TP, 

without and with application of the instantaneous calibration process. It can be 

seen that with the calibration, the reconstructed phase oscillates sinusoidally 

(capped by the ±π rails that requires a phase unwrapping process) with the mod-

ulation frequency Ω around a mean value 
cal
MZI , which represents the desired 

measurement signal. Note that 
cal
MZI  is calculated after the unwrapping process. 

In this example, the oscillating part of the reconstructed phase MZI̂  is only used 

for the instantaneous calibration and can be filtered out for the actual phase 

evaluation. In contrast, it can be seen in Fig. 5.10(d) that the extracted phase 

from the uncalibrated data is distorted. In this case, the mean value MZI  shows 

a distinct offset, which would result in an erroneous measurement. 

5.3.2 Laser frequency modulation for absolute phase 
measurements via endless phase unwrapping 

In addition to an instantaneous sensor calibration, the phase modulation tech-

nique introduced in the previous section can serve a second purpose. By accu-

rately recording the amplitude of the intentionally oscillating MZI phase differ-

ence MZI̂ , the integer fringe order m can be determined without knowledge of 

prior signal evolution. As a consequence, an endless phase unwrapping can be 

performed to determine the fringe order m and hence the absolute MZI phase 

difference beyond the unambiguity range [-π,π] . This is useful, e.g., to obtain 

comparable measurements after turning a device off and on again, or to obtain 

valid results for experiments that contain fast process dynamics such that relia-

ble tracking becomes impossible during some period of the measurement.  

In the following, the same frequency modulation  0
ˆ sin t     of the in-

put laser as well as the associated modulation of the MZI-internal phase differ-

ence are assumed as in the previous section, see Fig. 5.11(a). The interferometer 

has common arms lengths L to simplify the analysis. For visualization, the MZI 

phase difference φMZI is modified from around 10π up to around 15π in 

Fig. 5.11(b). This simulates a phase change caused by the experiment itself and 

approximately covers the fringe orders 5,6,7m  , where the fringe order 0m  
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corresponds to an absolute phase difference φMZI in the range [-π,π] . The result-

ing phase difference MZI  can be separated into two parts as 
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The first quantity is the mean (“DC”) phase difference MZI , which can be ob-

tained, e.g., by introducing a band-stop or low-pass filter to remove the phase 

modulation caused by the frequency modulation. MZI  is characterized by the 

mean angular frequency 0  and the phase delay 
MZI MZI 0 e .n L c      

The second quantity is the amplitude MZI̂  of the oscillating (“AC”) part of the 

phase difference. The pure phase oscillation can be obtained, e.g., by introduc-

ing a band-pass filter at the modulation frequency. MZI̂  is characterized by the 

angular frequency modulation depth ̂  and the group delay 

g,MZI MZI eg .n cL        

It is important to note that MZI  and hence both MZI  and  MZI sˆ in t   are al-

ways wrapped signals yielding phases between [-π,π] , i.e., 

  MZI MZI modπ π2π    . The key to solving this fringe order ambiguity 

lies in a phase unwrapping mechanism, which adds a π2  offset, if a phase 

jump π  is detected between two subsequent measurements. The robustness of 

this process depends on the pace of the phase evolution compared to the sam-

pling frequency fs. More specifically, assuming a sampling frequency fs that is 

large enough and a phase evolution φMZI that is slow enough so that the differ-

ences between all adjacent phase-difference measurements are ensured to be 

smaller than π, i.e., MZI,q+1 MZI,q π , 1,2,3,...q    , the phase unwrapping al-

gorithm can correctly track the phase evolution from measurement start to end. 

Applying the phase unwrapping process directly to the DC phase difference 

MZI  has two significant drawbacks. First, the initial phase difference at the be-

ginning of the measurement can only be disambiguated within [-π,π] . Second, 

as soon as the constraint MZI,q+1 MZI,q π    is violated at any time during the 
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experiment, the phase unwrapping becomes erroneous and there is no way to 

reference the measurement again. As a consequence we do not apply phase un-

wrapping to MZI , see Fig. 5.11(c). 

Applying the phase unwrapping process instead to the modulated phase part 

 MZI sˆ in t   yields valid results within all modulation periods, where 

MZI,q+1 MZI,q π    can guaranteed. For these modulation periods, the cor-

rectly unwrapped version of  MZI sˆ in t   can easily be band-pass-filtered at the 

modulation frequency to obtain MZI̂ . As for MZI , the unwrapping process will 

fail within modulation periods where MZI,q+1 MZI,q π    is violated. How-

ever, it is possible to reference the system and thus recover the “lost” infor-

mation on how many fringe orders m have actually been jumped between any 

of these invalid adjacent measurement pairs. This requires that the pace of the 

phase evolution eventually relaxes in order to ensure a valid phase unwrapping 

within at least one modulation period, from which a valid MZI̂  can then be 

calculated. From Eq. (5.20), we can use any valid MZI̂  throughout an experi-

ment to directly estimate the absolute, referenced fringe order 
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In Eq. (5.21) the function    round sgn 0.5x x x       rounds to the nearest 

integer (away from zero), which accounts for the fact that for our MZI3 readout 

MZI  is wrapped to [-π,π] . The actual phase MZI  is than calculated by com-

bining the measured DC phase MZI , which delivers the finely-resolved but 

wrapped phase within [-π,π] , with the fringe-order 2πm, which is calculated 

according to Eq. (5.21) from the unwrapped AC phase MZI̂ . In sum, see 

Fig. 5.11(d), the absolute, referenced phase difference is calculated as  

 MZI MZI π .2 m    (5.22) 

Note further that in order to reliably distinguish a fringe order m from adjacent 

fringe orders, the phase resolution res
MZI  of the measurement setup must be 

better than the amplitude difference between two neighboring fringe orders, i.e., 
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As an example, for a laser operating at a wavelength of 1.55 µm with a tuning 

range of ± 1 nm, a phase resolution of 4 mrad is required. This is typically only 

possible with robust calibration mechanisms, such as the one described in Sec-

tions 5.2.4 and 5.3.1. If such a fine phase resolution can be achieved, this ap-

proach solves the last remaining integrated MZI sensor drawback of fringe order 

ambiguity. The impact of laser frequency modulation and potentially associated 

power modulation is discussed in detail in Appendix C.2. 

 

Fig. 5.11. Endless phase unwrapping in 1×3 MZI via frequency modulation. (a) An inten-

tional phase modulation is obtained via a frequency modulation of the laser input signal around 

ω0 with modulation depth ̂  and modulation frequency Ω. (b) An additional sensor phase dif-

ference MZI  between the two MZI arms simulates the course of an experiment. (c) In sum, 

the measured phase consists of a mean value MZI  and a sinusoidally modulated value with am-

plitude MZI̂ . The mean phase MZI  can be finely resolved within [–π, π] by using the readout 

strategy derived in the last sections. If a robust phase unwrapping algorithm is possible within 

one modulation period, the amplitude of the modulated phase MZI̂  is proportional to the absolute 

group delay g,MZI  and can hence be used to estimate the current fringe order m. (d) The end-

lessly unwrapped phase as a sum of MZI  and the extracted fringe order 2πm. Note that the re-

quired phase resolution to distinguish individual fringe orders depends on the laser modulation 

depth.  
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5.4 Instantaneous sensor calibration and 
extraction of endlessly unwrapped phase in 
MZI 

In the following, we show an experimental demonstration of the enhanced tri-

ple-output MZI readout.  

The following section is taken from the publication [C1]. In order to fit the 

structure and layout of this document, it was adapted accordingly. 

 

[start of publication [C1]] 

© 2017 IEEE. Reprinted with permission 
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We demonstrate a robust concept for instantaneous extraction of fringe order 

and unwrapped phase in integrated Mach-Zehnder sensors without continuous 

tracking. The scheme exploits a frequency-modulated probe laser and a 33 

MMI at the sensor output and allows for continuous self-calibration and high-

resolution phase detection. 
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5.4.1 Introduction 

Waveguide-based optical sensors are used in a variety of applications such as 

label-free detection of chemical or biological analytes using functionalized 

waveguide surfaces. Such sensors exhibit a large potential for miniaturization 

and cost-efficient mass production utilizing established photonic integration 

platforms such as silicon and silicon nitride. Sensor schemes based on Mach-

Zehnder interferometers (MZI) are particularly attractive, enabling large inter-

actions lengths with the analyte and allowing probing with broadband optical 

sources such as low-cost vertical-cavity surface-emitting lasers (VCSEL). How-

ever, for an effective application of MZI-type sensors in fully integrated sys-

tems, robust and simple detection schemes are required, which overcome com-

mon problems such as fringe order ambiguity, ambiguity of phase shift 

direction, and sensitivity fading [138]. 

Here we demonstrate a novel readout scheme for MZI-type sensors that merge 

2×3 multi-mode interference (MMI) couplers to combine the fields at the output 

of the two interferometer arms with frequency-modulation of the probing 

VCSEL. This scheme has two distinct advantages: First, it compensates fabri-

cation errors and environmental influences such as temperature or humidity by 

an online self-calibration during sensor operation. Second, it allows to instanta-

neously extract the MZI fringe order for an endless unwrapping of the phase 

difference of the MZI arms – without continuous tracking of the phase evolu-

tion. The viability of the scheme is demonstrated by measuring the unwrapped 

phase differences in a thermally tuned silicon photonic MZI, the arms of which 

are clad with materials having different thermo-optic coefficients (TOC). We 

believe that the demonstrated scheme will pave the path towards robust and 

highly scalable integrated photonic sensor systems. 

5.4.2 The concept 

The basic concept of our readout scheme is illustrated in Fig. 1. The MZI sensor 

is operated with a laser, which is sinusoidally modulated in frequency (left-most 

column) [11]. The MZI delivers a phase difference φMZI(t) between its two arms, 

and a 33 MMI coupler with an unconnected central input port combines the 
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fields of the interferometer arms such that the detected output intensities, repre-

sented by detector currents I1…3(t), have a phase shift of 120° between adjacent 

arms [132],[133]. A Clarke transformation is applied to these currents to extract 

the complex quantity ( j 1  ) 

   I Q 2 3 1 3 1j 2 j 3 2S S S I I I I I       , which is proportional to 

 MZIexp j  [132]. Compared to the response of an MZI with a single-output 

MMI, the intensity of which changes in proportion to  2
MZI 2sin  , access to 

the full phase difference information in the complex plane eliminates major im-

pediments: Directional ambiguity is resolved by numerically computing argu-

ment of S  via the two-parameter arctangent function  Q Iatan2 ,S S , which also 

removes sensitivity fading for phase differences at multiples of π. If measure-

ment data spanning more than 2π are available, deterministic imbalances such 

as amplitude and phase errors of the MMI or the photodiodes can be eliminated 

by performing an online transformation of the erroneous data in the complex 

plane, consisting of a translation, a rotation and a scaling of the ellipsoidal data 

for matching the unit circle [132]. 

The sinusoidal frequency modulation    0
ˆ sint t     at angular fre-

quency Ω with peak deviation ̂  from the laser frequency ω0 serves two pur-

poses: First, by setting ̂  to cover the free spectral range of the MZI, we reach 

the required 2π data span within each modulation period and can thus perform 

a self-calibration at any point, be it continuous or at device start-up. Calibration 

improves the phase resolution, as it eliminates not only fixed imbalances but 

also dynamic drifts. Second, the absolute fringe order m can be determined by 

correlating the resulting peak phase deviation MZI̂  at the modulation frequency 

Ω to the peak deviation ̂  via       MZI 0 e egrou ˆnd 2 ˆm n n       , 

where MZI̂  is obtained from  MZI t  through band-pass filtering or lock-in de-

tection. The finely resolved phase  MZI t , which lies within the current fringe 

order between –π and π, can be extracted from the DC part of  MZI .t  Com-

bining these outputs thus allows a full phase reconstruction as 

MZI MZI π2 m   . 
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Fig. 5.12 Schematic of the sensor concept including a frequency-modulated laser, an integrated 

MZI sensor featuring a 2×3 field combiner at the output, here experiencing a linear increase in 

phase difference φMZI over time, as well as photodetectors. The three output currents I1-3 are dig-

itized and subject to a Clarke transformation, yielding the complex signal I QjS S S  . In this 

representation, an ellipse fit to the unit circle by rotation and scaling is performed for a continuous 

self-calibration, allowing to reliably extract the phase difference MZI  in erratic and dynamically 

changing environments. The absolute fringe order is obtained from the time-varying phase signal 

at the modulation frequency, while a finely resolved MZI  within the current fringe order is ob-

tained from the DC part of the phase signal. Together, this yields an absolute, unambiguous, and 

finely resolved estimate of the phase difference. 

5.4.3 Experiments 

 

Fig. 5.13. Comparison of continuous and local phase extraction by introducing a phase im-

balance with a slow temperature sweep. (a) Continuous phase extraction with an arbitrary start-

ing point and phase unwrapping tracks relative phase differences MZI . The red indicators, how-

ever, are calculated from the local extraction, where only a limited number of modulation periods 

at (1) and (2) are used to first reference and calibrate the device at the current operating point, 

and then (b) subsequently extract the modulated phase. (c) The extrema of the phase at the 

modulation frequency MZI̂  are used to extract the fringe order, while MZI  (dotted lines) is used 

to precisely locate the phase within –π and π. 
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We implemented the proposed concept using a VCSEL driven by a modulated 

current source, allowing for a deep frequency modulation of several hundred 

GHz within microseconds. We use a fiber array to couple light to and from an 

MZI, integrated on a standard silicon photonic platform having 220 nm of de-

vice layer thickness. For detection, we use external photodiodes, the currents of 

which are recorded by a sampling oscilloscope for further processing. The phase 

difference  MZI t  of the MZI arms is modified by heating the samples, thereby 

exploiting different TOC in the claddings of the MZI arms. Fig. 5.13(a) depicts 

the evolution of the unwrapped phase difference extracted from a continuous 

measurement. This evolution follows the imposed temperature profile. In com-

parison, the red indicators in Fig. 5.13(a) show absolute phase estimates ob-

tained from a limited number of modulation periods using the above readout 

scheme, without knowing the phase evolution. Three modulation periods at (1) 

and (2) are shown in Fig. 5.13(b) after the Clarke transformation (ellipsoids, 

dotted) and after the respective calibration (circles). The extracted phase is 

shown in Fig. 5.13(c), where  1,2
ˆ t  determines the fringe order, and  MZI t  

the location within a fringe. The results are in perfect agreement with the values 

obtained from continuously tracking the phase evolution. 

5.4.4 Conclusion 

Using the proposed readout scheme, endlessly unwrapped MZI phase differ-

ences can be extracted without prior knowledge of the signal and without a con-

tinuous tracking of fringe order transitions. This allows monitoring of fast pro-

cesses such as molecular binding or a sudden large refractive index change 

common in sensing applications. In addition, the scheme enables long-term ex-

periments with arbitrary sensor down times, or sequential interrogation of mul-

tiple sensors in conjunction with a comparison on an absolute scale 

[end of publication [C1]] 
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5.5 Summary: The 1×3 Mach-Zehnder 
interferometer as a sensor 

This section introduced a sensor concept that is particularly attractive for 

standalone integrated photonic sensor systems. As a matter of fact, the sensor 

fabrication and hence the component properties as well as the environmental 

conditions during sensor operation will always be imperfect, thereby making a 

self-calibration mechanism indispensable. Furthermore, sensors that need to de-

liver measurement signals that can be unambiguously compared to previous 

measurements, such as in the case of resuming a measurement after turning the 

sensor off and on again, crucially rely on readout concepts that deliver an abso-

lute measurement of the phase difference. 

This section introduced a Mach-Zehnder interferometer (MZI) with three 120° 

phase-shifted output signals. It was shown that the core element of this MZI, a 

3×3 multi-mode interference (MMI) coupler, effectively performs an inverse 

Clarke transformation on the electrical fields that contain the full phase infor-

mation. A corresponding readout concept based on the Clarke transform was 

introduced that delivers operating-point-insensitive phase information. It was 

shown that this data basis in combination with a phase modulation provides so-

lutions to both the calibration and the referencing challenges. 
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6 Summary and outlook 

This thesis provides an in-depth investigation of waveguide-based photonic in-

tegrated sensors, with special emphasis on robust mass-producible systems. 

Special emphasis is put on the sensor robustness towards component non-ideal-

ities, which are inherently linked to mass production and energy-efficient sys-

tem operation under realistic environmental conditions. Although the techno-

logical focus is on the silicon photonics integration platform as a particularly 

attractive option, most of the results are formulated generically and can hence 

be transferred to other photonic integration platforms as well. The thesis pro-

vides a holistic treatment of integrated photonic sensor systems by analyzing 

each level of abstraction from the bottom up, i.e., 

 the fundamental physical sensing process as such (Chapter 2),  

 the photonic sensor waveguides (Chapter 3),  

 the phase-sensitive photonic circuits (Chapter 4),  

 the electro-optical sensor system (Chapter 4), and 

 the sensor readout and signal-processing concept (Chapter 5). 

In-depth summaries of each level of abstraction are given at the ends of the 

respective chapters, i.e., in Chapters 2.4, 3.6, 4.8 and 5.5. The main insights can 

be summarized as: 

Fundamental physical sensing process: Integrated photonic sensor systems 

that are based on detecting changes of the effective refractive index of a wave-

guide mode enable a multitude of attractive sensing applications based on a sin-

gular sensing mechanism. With state-of-the-art technologies, a dense integra-

tion of such waveguide-based sensors can be realized, which paves the path 

towards multi-dimensional sensor systems with a small form factor. 

Photonic sensor waveguides: Easy-to-fabricate strip waveguides with rec-

tangular cross-sections are the de-facto standard in integrated photonics. At the 

cost of an increased fabrication complexity due to reduced feature sizes, ad-

vanced photonic sensor waveguide variants show distinct benefits for sensing 
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applications. In particular, sub-wavelength grating waveguides enable excellent 

control over the modal field overlap with sensing regions of interest, both for 

homogeneous and for surface sensing, and can hence increase the sensitivity 

roughly by a factor of four compared to strip waveguides. 

Phase-sensitive photonic circuits: In the direct comparison between resona-

tors and Mach-Zehnder interferometers, both optimized for delivering the high-

est sensitivity of the optical power transmission towards changes of the effective 

refractive index, resonators with high quality factors exhibit double the sensi-

tivity compared to interferometers. For resonators, a slight under-coupling from 

the bus waveguide to the resonator is favored, while for interferometers, an op-

timized arm length as a function of waveguide loss trades off phase sensitivity 

with output signal swing. 

Fully integrated sensor systems: Mach-Zehnder interferometers show dis-

tinct advantages if non-ideal system components are considered, that would typ-

ically be used in mass-produced sensor systems. If temperature effects can be 

compensated for by proper system design, the system limit of detection is dic-

tated by the contribution of laser frequency noise. In contrast to resonators, MZI 

can be designed to eliminate that noise contribution, and are hence substantially 

favored from a noise perspective. 

Sensor readout concept: From the sensor readout perspective, MZI have fur-

ther distinct advantages that make them favorable for application in integrated 

photonic sensor systems compared to resonators. This is especially pronounced 

in the fault-tolerant 1×3 MZI variant, which works independently of the oper-

ating point and hence eliminates the need for active tuning. In combination with 

tuning, it even offers instantaneous self-calibration during sensor operation to 

compensate for component non-idealities. Furthermore, 1×3 MZI allow for end-

less phase unwrapping that permits to measure the phase differences in the MZI 

arms on an absolute scale. 

From a top-down perspective, this thesis confirms the notion that integrated 

photonics are well suited for mass-deployable integrated sensor systems. By 

following the design guidelines for photonic waveguides, phase-sensitive pho-
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tonic circuits, opto-electronic sensor systems as well as the system readout con-

cept that are elaborated within this thesis, ultra-sensitive and particularly robust 

sensor systems can be designed exploiting existing state-of the art photonic fab-

rication technology and components.  

A particularly attractive sensor system with a large sensitivity, low limit of de-

tection, and robust operation has been experimentally validated in the course of 

this thesis. It comprises a tunable laser in the visible light regime, a 1×3 Mach-

Zehnder interferometer realized on a silicon nitride photonic integration plat-

form, an array of photodiodes, and a readout and calibration mechanism based 

on the Clarke transformation. 

The system components and the photonic integrated circuit technology required 

for the discussed sensor systems are readily available. However, for a large-

scale commercial implementation, several challenges are remaining that need 

to be resolved. The three most crucial challenges are: 

Waveguide functionalization:  A reliable fabrication process, which gener-

ates a well-controlled sensor waveguide surface functionalization, is needed for 

surface sensing in medical or life-science applications. For sensors with multi-

ple different functionalizations, the process has to be able to specifically pattern 

different areas on the photonic integrated circuit without any unwanted impair-

ments of the surface-layer quality. In addition, the waveguide functionalization 

as such has to be robust and withstand aging, caused, e.g., by permanent expo-

sure to humidity and temperature changes over the lifetime of the sensor. 

Light-source integration: Providing a low-noise light source that is effi-

ciently coupled to the photonic integrated circuit to obtain a large signal-to-

noise ratio. For the advanced readout concepts, well-controlled tunability is re-

quired.  

Assembly and packaging: Providing a robust assembly and packaging pro-

cess. This comprises, amongst others, robustness towards alignment errors, a 

well-balanced thermal management of the different system components, and the 

integration of micro-fluidics. 
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A. Sensor optimization by waveguide 
design 

The following Appendices A.1-A.4 are taken from the appendices of the publi-

cation [J1]. They were adapted to fit the structure and layout of this document. 

Note that two authors contributed equally to this publication. The initial Ansatz 

and scope, as well as the concluding evaluation, interpretation and discussion 

were performed jointly. For the development of the methods and results, the 

focus of the author of this thesis was on the analytical mathematical model, 

while the focus of Daria Kohler was on the simulations.  

J. Milvich, D. Kohler, W. Freude, and C. Koos, "Surface sensing with 

integrated optical waveguides: a design guideline", Optics Express 

26(16), 19885-19906 (2018)  

[start of appendices of publication [J1]]  

A.1 Simulation parameters and mesh 
considerations 

In the following, we describe the relevant parameters used for the simulation, 

which are performed with CST (Computer Simulation Technology GmbH) Mi-

crowave Studio. Modal fields of the WG are calculated in the frequency domain. 

Simulation boundaries in the cross-section are perfectly absorbing. The compu-

tational mesh is tetrahedral, and an ultra-fine mesh is required around the WG 

core to obtain accurate field data within the surface layers. The field interaction 

factor SL  is well described by a linear approximation for SLt  smaller than the 

penetration depth, see Fig. 3.5. The surface sensitivity (surf )S  can be reliably 

extracted from the derivative SLSLΓ t   at SL 0t   by a linear extrapolation of 

data within the first 10 nm, see Fig. 3.5(b). We have found that a mesh size of 

< 3 nm around the WG core region is sufficient. The choice of the mesh size in 

the cladding region was left to the program. The simulation area had a total size 
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of 4 µm × 4 µm, where the bottom half of the simulation region was occupied 

by the 2 µm-thick BOX. For WG significantly narrower than optw , the WG 

mode is not well-confined to the core anymore, and much larger simulation 

windows are required. These results were omitted from the discussion, but lie 

at non-practical WG geometries far away from any sensitivity optimum 

(Fig. A.1). The refractive indices were assumed to be Si 3.48n  , 
2H O 1.33n  , 

2SiO 1.44n   for NIR light and 
3 4Si N 2.01n  , 

2H O 1.33n  , 
2SiO 1.46n   for VIS 

light. 

A.2 TM simulations waveguide geometries 

 

Fig. A.1. Simulated electric field magnitudes of the fundamental quasi-TM mode in different 

WG types with height h  and total width w . White contours mark the surface layer on the WG 

core, which is disregarded for the field calculation. Surface sensitivity generally benefits from 

large electric field strengths in the region of the surface layer. (a) Strip WG. Large portion of 

the fields is lost to the non-sensitive interface between core and BOX. (b),(c) Slot WG and 

double slot WG. In contrast to the TE-Mode (Fig. 3.3) there is no enhancement of the electrical 

field in the slot. The surface layer at the top of the core and in the slot experiences only moderate 

field strengths. 

A.3 Propagation and sensitivity in waveguides 

In the following discussion we assume a positive time dependence  exp j t . 

The complex vectorial electric mode field  ,E r  and magnetic mode field 

 ,H r  depend on angular frequency   and position vector r . We assume 

dispersive dielectric and non-magnetic materials that could be periodic along z  

with a period a . The propagation constant is   and the effective refractive in-

dex is e 0n k , 0k c . Within each region, all refractive indices and all 

other parameters of the material are assumed constant. The various regions are 

denoted by a subscript i . 
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Cross-sectional power, stored energy, and field confinement factor The 

cross-sectional power P associated with a guided mode is constant along the 

propagation direction z  (unit vector ze ) if losses are neglected. This is true 

even if the WG geometry varies periodically in the direction of propagation, as 

in the case of SWG WG. The cross-sectional power is expressed by the real part 

of the time-averaged complex Poynting vector in the direction of propagation, 

integrated over the WG cross-section A  with d d dA x y , 

  *
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1
d

2
.
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P A   E eH  (A.1) 

The time-averaged stored energy per unit length is obtained by an integration 

of the modal electric and magnetic energy densities over a unit cell volume V 

[139]. The expression can be simplified with the help of the space-dependent 

material group index gn nn      and with the identity 
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Note that in this relation, W is a length-related energy density with unit J/m and 

denotes the ratio of stored energy within a WG section, e.g., a unit cell, and the 

length of the section, e.g., the unit cell length a. For z-invariant WG, the volume 

element is simply d dV a A . 

The field confinement factor (conf )
i  represents the ratio of the mode energy in 

a partial volume iV  related to the energy in the total volume V  of a unit cell, 
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Inside any partial volume iV , the refractive indices in  and the associated group 

refractive index g,in  are constant. Summing the partial field confinement factors 

over all partial volumes results in 1 because ii
V V . 

Variation theorem, effective group index, and field interaction factor The 

influence of small perturbations on the propagation constant   can be exam-

ined by extending a variation theorem [[139], Eq. (2.2.73)] for dielectric WG, 

     2 2

0 r 0

1
d ,

4
V

V
aP

        E H  (A.4) 

where  0 r   and  0  denote the perturbations. If we introduce only a 

frequency perturbation   at a fixed dielectric profile, we find that the effec-

tive group index eeg en nc n         is proportional to the ratio of 

the total energy W  per unit cell length, and the power P, 
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Here,  0 01Z c  is the free-space wave impedance. Combining Eq. (A.3) and 

Eq. (A.5) we define the field interaction factor 
(

eg
conf

g,
)

ii in n    of a certain 

WG region denoted by subscript i, 
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Note that the definition of 
(

eg
conf

g,
)

ii in n    is equivalent to the definition 

of e ii n n    as the ratio of a local refractive index change in  in region i 

and the associated change en  of the effective modal index en , see next section. 

The effective group index can be expressed by a sum of the partial field inter-

action factors i  multiplied with the respective material group indices. The field 

interaction factor is determined by the relative mode energy (conf )
i  in region i  

and by the time the mode dwells in that region, expressed by the effective modal 
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group index egn , which can be larger than g,in . This is exploited in slow-light 

applications. For this case, the field interaction factor can become larger than 

one. 

Dielectric profile perturbation and definition of sensitivities If the 3D re-

fractive index profile ( )n r  with  , ,x y zr  of a WG is changed by a small 

amount    n n r r , the associated change of the propagation constant   

can be calculated with the perturbation approach, Eq. (A.4). A small refractive 

index change  n r  corresponds to a change    0 r    r r  in electric 

permeability, where [140]: 

             
2 2

r 2    n nn n n     r r r r r r  (A.7) 

Typical index differences are in the order of 0.1 0.2n  , which justifies the 

approximation in Eq. (A.7). For homogeneous sensing, only the refractive index 

of the aqueous cladding medium (partial volume Mi  ) in the volume MV  

changes by Mn , see Fig. 3.2(a), 
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For surface sensing, we consider a thin surface layer (partial volume SLi  ) of 

refractive index ( ' )H r  around the WG core, which locally replaces the aque-

ous medium with refractive index Mn . The refractive index change is confined 

to and constant within the surface layer volume SLV  of thickness SLt , see 

Fig. 3.2(b), 
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We introduce the perturbations defined by Eqs. (A.7)-(A.9) at a fixed frequency 

into the general variation theorem of Eq. (A.4). Since the permittivity perturba-

tion is limited to SLV  in the case of surface sensing, the change of the propaga-

tion constant (surf)  can be expressed as 
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Similarly, for homogeneous sensing, the permittivity perturbation is limited to 

MV , the change of the propagation constant (hom)  is obtained from Eq. (A.10) 

by replacing the superscript “(surf)” by “(hom)” and by integrating over MV  

instead of SLV . A direct link between Δβ and the field interaction factor   from 

Eq. (A.6) is observed. For a sensor, it is important how the effective modal in-

dex en  changes with respect to the local refractive index perturbation n . For 

surface (homogeneous) sensing, we have 
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 (A.11) 

For our sensitivity analyses, we calculate the field interaction factors for a WG 

by numerically calculated mode fields. We directly define the homogeneous 

sensitivity (hom)S  to be identical with the corresponding field interaction factor 

M , measuring the impact of the refractive index perturbation Mn  within 

       n1' '  E r H r E r H r  on the effective modal index en . We fur-

ther define the surface sensitivity (surf)S  as the derivative of the field interaction 

factor SL  (surface layer volume SLV ) with respect to the surface layer thick-

ness SLt , 
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A.4 Scaling laws of Maxwell’s equations 

We consider dielectric media, which are assumed lossless, isotropic, linear and 

non–magnetic at the (angular) frequencies 2πf   of interest. The vacuum 

speed of light is denoted by c . The (real) relative permittivity r ( ) r  is linked to 

the refractive index n  by 2
r n  . Reshaping Maxwell’s equations for harmonic 

solutions of the form j( , ) ( ) tt e E r E r  and j( , ) ( ) tt e H r H r , we find the 

wave equations for the magnetic and electric fields [141], 
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 (A.13) 

Equation (A.13), together with boundary conditions, defines an eigenvalue 

problem, where ω is the angular eigenfrequency and ( )H r  and ( )E r  are the 

corresponding eigenfunctions of the wave equations. 

Scaling the geometry. If the geometry of the WG is scaled by a factor g 0  , 

i.e., g' r r ,    r r g'  r r  and 
gcurl' curl  , the magnetic field equation 

(A.13) can be expressed as 
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 (A.14) 

An equivalent equation holds for the electric field. For the scaled WG, we find 

the same eigenfunctions    g g'  , ' H r E r  as in Eq. (A.13); we only have to 

scale the argument 
g' r r  together with the associated angular eigenfre-

quency ω'   with ω g1   [142]. 
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Scaling the refractive index. If we know the solutions for a WG with dielectric 

structure 2
r ( ) ( )n r r , and we look for the results of a WG with 2

r'( ) ' ( ),n r r  

where the refractive index is scaled everywhere with a real constant n  accord-

ing to n'( ) ( )n n r r  and 2
r r n'( ) ( )  r r , we find for the magnetic field equa-

tion 
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The eigenfunctions ( )H r  remain unchanged, but the associated angular eigen-

frequencies are scaled to ω'   with ω n1   [142]. The electric field 

equation can be formulated equivalently. Note that the relative ratio of the elec-

tric-field eigenfunction ( )E r  and the magnetic field eigenfunction ( )H r  must 

be scaled by a factor of n1   to still satisfy the Maxwell’s curl equations that 

link the electric to the magnetic field and vice versa, 

       n' ' 1  E r H r E r H r . 

Scaling the geometry and the refractive indices. If we scale both the geome-

try with g  and the refractive indices with n , e.g., g' r r , 
2

r nr g('( ) )    r r  and 
gcurl' curl  , we find for the magnetic field equa-

tion 
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The eigenfunction ( ' )H r remains unchanged with scaled arguments, and the 

associated angular eigenfrequencies are scaled to ω'   with 

ω n g .)1 (    The electric field equation can be written equivalently. Note 

that the relative ratio of the electric-field eigenfunction ( )E r  and the magnetic 

field eigenfunction ( )H r  must be scaled by a factor of n1   to still satisfy the 

Maxwell’s curl equations that link the electric to the magnetic field and vice 

versa,        n' ' 1  E r H r E r H r . 

If the frequency   remains unchanged, the geometry and the refractive indices 

must scale inversely with g n1  , so that the eigenfunction ( ' )H r remains 

unchanged. The relative ratio of the electric-field eigenfunction ( )E r  and the 
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magnetic field eigenfunction ( )H r  must again be scaled by a factor of n1   to 

       n' ' 1  E r H r E r H r . 

Impact on homogeneous and surface sensing. For comparison of Si3N4 WG 

in the VIS and Si WG in the NIR, we are especially interested in the impact of 

simultaneously scaling the refractive indices, the geometry and the frequency 

on the homogeneous sensitivity 
(hom)

MS   and the surface sensitivity 
(surf )

SL SLS t   . The different scaling operations and results are summa-

rized in Table A.1. 

In the case of scaling the geometry and accordingly the frequency with remain-

ing refractive indices, the numerical value of the ratio of the integrals in SL  

remains constant, see Eq. (A.6) and therefore the homogeneous sensitivity re-

mains unchanged, o'(hom) (h m)S S . However, due to the scaled surface layer 

thickness SL Lg S't t , the surface sensitivity scales according to 
(surf ) (surf ) (su

g
rf )

SL SL ω' 'S t S S     , see Table A.1, line (1). 

In the case of scaling the refractive indices and accordingly the frequency with 

remaining geometry, the numerical value of the ratio of the integrals in SL  

remains constant, as the ratio of the eigenfunctions scales with 

       n' ' 1  E r H r E r H r . Therefore the homogeneous and surface 

sensitivity do not change, see Table A.1, line (2). 

If the geometry and the refractive index of the WG is scaled, the frequency must 

be scaled accordingly, with ω n g )1 (   . Under the premises of the scaled 

ratio of the eigenfunctions, the numerical value of the ratio of the integrals in 

SL  remains constant, and therefore (surf)S  scales with g1   due to the scaled 

surface layer thickness SL Lg S't t , see Table A.1, line (3). 

In the case of scaling the refractive indices with constant frequency, the geom-

etry has to be scaled according to ωg 1   in order to keep the eigenfunctions 

but with scaled ratio. The homogeneous sensitivity is again not changing, while 

the surface sensitivity scales with gn ω 1   , see Table A.1, line (4). 
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Table A.1. Impact of scaling the frequency, geometry and refractive index on the ho-

mogeneous and surface sensitivities. 

a Geome-

try 

'r  

Refr. in-

dex 

'n  

Fre-

quency 

'  

Scaling law 

 

Hom.  

sensitiv-

ity 
(hom)'S  

Surf.  
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(surf )'S  
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r  nn  ω  
nω 1   (hom)S  (surf)S  (2) 

gr  nn  ω  ω n g )1 (    (hom)S  
(surf)

gS   (3) 

gr  nn    g n1   (hom)S  
(surf)

gS   (4) 

 

[end of appendices of publication [J1]]  
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B. Sensor optimization by system 
design 

The following Appendices B.1-B.6 are taken from the appendices of the publi-

cation [J2]. They were adapted to fit the structure and layout of this document. 

[J2] J. Milvich, D. Kohler, W. Freude, and C. Koos, "Integrated phase-

sensitive photonic sensors: A system design tutorial", Advances in Optics 

and Photonics 13(3), 584-642 (2021) 

[start of appendices of publication [J2]]  

B.1 Wavelength-related bulk sensitivity of RR and 
MZI 

For refractive-index (RI) sensors, the sensor waveguide is described by the 

waveguide sensitivity env e M ,S n n   corresponding to the ratio of the change 

en  of the effective RI of the waveguide mode and the underlying change 

env Mn    of the RI of the medium that surrounds the waveguide, see 

Eq. (4.3) . This sensitivity may alternatively be defined [25],[30],[67],[72] 

change of a resonance wavelength λres of a RR or the change of a transmission-

fringe wavelength λfri of an MZI with respect to a RI change Mn . The use of 

wavelength-related bulk sensitivities is useful for, e.g., sensors that rely on spec-

tral readout concepts, which can be realized by employing tunable lasers or 

broadband light sources in combination with spectrometers. In such readout 

concepts, the wavelengths of spectral characteristics such as λres or λfri serve as 

the measurement quantity, estimated via signal processing from recorded spec-

tra. 

Resonances or transmission fringes occur at constant RR round-trip phases RR  

according to Eq. (4.9) or MZI phase differences MZI  according to Eq. (4.11), 

which are usually equal to integer multiples of 2π, i.e.,  RR e res, 2π mn    or 

 MZI e fri, 2π mn   . We can thus derive the wavelength sensitivities Sλ by 
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calculating the wavelength shifts   that is needed to compensate a certain 

effective RI change e env MSn n  , 
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Inserting Eqs. (4.9) and (4.11) in Eq. (B.1) leads to the wavelength sensitivities 

Sλ for RR and MZI, 
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Note that the wavelength sensitivity Sλ,MZI of MZI can be tuned deliberately by 

changing the optical path lengths of the interferometer arms and hence the group 

delay. Specifically, for an MZI with perfectly matched group delays in the two 

arms, eg,0 eg 0L n Ln   , Sλ,MZI approaches infinity, while the wavelength-de-

pendent interference fringes disappear. 

B.2 Optical power transmission of ring resonators 

The optical power transmission characteristics of all-pass and add-drop RR can 

be expressed by the round-trip amplitude transmission factor  exp 2La   , 

the amplitude transmission ρ1 and ρ2 of the coupling zones, as well as the round-

trip phase shift RR 0 e OP,RR ,nk L    see Fig. 4.2(a) and Eq. (4.9). In these 

relations, α is the modal power loss coefficient, L is the round-trip length, 

0k c  denotes the vacuum propagation constant of light at angular frequency 

ω, and en  is the modal effective refractive index of the waveguide mode in the 

sensitive region. The mathematical expressions for the various power transmis-

sion characteristics are shown in Column 2 of Table B.2, details on the deriva-

tion can be found in the literature, see, e.g., [72]. 
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Table B.2: Generic optical power transmission characteristics of ring resonators. 

Note that the output contrast max minT̂ T T   in Column 5 was approximated by assuming 

high-finesse ring resonators, which, for off-resonance operation, leads to negligible power 

loss for the through-ports (Tmax  1) and to negligible power transmission for the drop port 

of ADD resonators (Tmin  0). The relations were derived based on the assumption of lossless 

coupling sections 2 2 2 2
1 1 2 2 1       , see Section 4.4.1.1 and Fig. 4.2. 
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The label ‘AP’ in Column 1 denotes the single output port (“through port”) of 

an all-pass RR, while ‘ADT’ and ‘ADD’ refer to the through port and the drop 

port of an add-drop RR, respectively. In addition, we specify the minimum and 

the maximum of the frequency-dependent optical power transfer function, Tmin 

and Tmax, as well as an approximation for the corresponding optical output con-

trast max minT̂ T T   and the Q-factor, see Columns 3…6 of Table B.2. 

B.3 Details on the simplified ring resonator sensor 
model 

The sensitivity optimization in Section 4.4.2 is performed by finding the oper-

ating point in which a change en  of the effective refractive index and the as-

sociated change ΔφRR of the ring-resonator round-trip phase shift leads to a max-

imum change ΔT of the optical power transmission. This operating point can be 

found by identifying the extrema of the derivative of the relations in Column 2 

of Table B.2 with respect to φRR. For simplicity, we assume high-finesse RR 
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and approximate the original transmission equations for the various output ports 

in Column 2 of Table B.2 by Lorentzian functions TLor in the vicinity of the 

resonances given by res π  (2 )m m   , 

 R

Lor RR
RR
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where the Lorentzian function is given by 
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The Lorentzian approximation is obtained by using the relation 

   
2 2

RR RR res RRcos 1 / 2 1 / 2        for RR RR res 1      in the 

equations given in Table B.2, Column 2. With these approximations, the reso-

nance depth and the resonance width remain as the only two parameters, which 

are both easily obtained experimentally – in contrast to the coupling and loss 

parameters ρ1, ρ2, and a. Specifically, the resonance depth can be analytically 

described by the optical output contrast T̂ , and the full width at half maximum 

(FWHM) of the resonance can be calculated from the Q-factor, see Table B.2, 

Column 6 and of Table B.3, Column 3. Note that the Lorentzian approximation 

is valid only for high-finesse resonators with αL ≪ 1 and leads to errors of less 

than 1% for as long as  2exp 0.65La    . A worst-case attenuation of 

α ≃ 1000 m-1 corresponding to water absorption at λ = 1550 nm in a ring with a 

radius of 70 µm in a silicon photonic waveguide e( 3)n   would still be com-

patible with this approximation. 

The Lorentzian as a function of ΔφRR = φRR – φres can also be expressed as a 

function of a frequency offset Δω = ω – ωres or of an effective-refractive-index 

offset e e e,resn n n   from the respective value at resonance, as displayed in 

Rows 3 and 4 of Table B.3. For each of these quantities, we can specify a 

FWHM of the associated Lorentzian resonance, see Column 3 of Table B.3. In 

these relations, eg e enn n     is the effective group refractive index at the 
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resonance frequency ωres defined by    res rese 2πLn c m m    . Note 

that for αL ≪ 1, the loaded Q-factor Q can be expressed as the ratio of the res-

onance frequency and the frequency FWHM [143] and can be linked through a 

ratio coefficient cQ to the intrinsic, unloaded Q-factor Qi, 

 res 0
Q i Q eg

FWHM,RR

.
Δ

k
Q c Q c n



 
    (B.5) 

Note that the relations given in Table B.3 are general and can be adapted to the 

various sensor implementations by using the corresponding Q-factor Q, quality 

ratio cQ, and optical output contrast ˆT    according to Eqs. (4.16) and (4.17) 

as well as to Table 4.3. Note also that for sensor implementations based on crit-

ically-coupled and under-coupled ring resonators as defined in Table 4.3, the 

quality ratio cQ of the all-pass resonator is twice that of an add-drop resonator 

and can be expressed by the respective optical output contrast ,T  

 CC,UC CC,UC
AP ADQ,RR Q,RR

1 1
2 .

2

T̂
c c

 
   (B.6) 

For both critically-coupled and under-coupled resonator add-drop RR, the opti-

cal output contrast T̂  of the through-port is twice that of the drop-port.  
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Table B.3: Lorentzian approximation of the optical power transmission of a ring reso-

nator close to a resonance. Column 2 shows the optical power transmission TLor that al-

lows to approximate the true power transmission T according to Table B.2, Column 2 through 

Eq. (B.4). The variable x refers to a small offset of the phase, the frequency, or the effective 

refractive index with respect to its on-resonance value,  RR e .Δ ,Δ ,Δx n   Column 3 

specifies the full-width at half-maximum (FWHM) with respect to the associated quantity, 

where the quality ratio cQ refers to the ratio of the loaded Q-factor Q and the intrinsic, un-

loaded Q-factor Qi, cQ = Q /Qi < 1, see Eq. (4.17). Columns 4 and 5 finally give the respective 

optimum detuning related to the inflection point of the Lorentzian, which features the highest 

slope and thus offers the highest sensitivity with respect to changes of the phase, the fre-

quency or the effective refractive index. All these quantities are expressed as a function of 

the ring resonator round-trip phase offset RRΔ  (Row 2), the frequency offset Δ  (Row 3), 

and the offset eΔn  of effective refractive index (Row 4) from the respective on-resonance 

value. The relations are general and can be adapted to the various sensor implementations by 

using the corresponding Q-factor Q, quality ratio cQ, and optical output contrast ˆT    

according to Eqs. (4.16) and (4.17) as well as to Table 4.3. 
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B.4 Details on the optimization of the 
optoelectronic effective-index sensitivity 

B.4.1 Ring coupling optimization 

An intuitive choice for the coupling strength of RR-based sensor implementa-

tions would be critical coupling that leads to a complete signal suppression in 

the through port at resonance, i.e., maximum output contrast T̂ . However, the 

performance metric that is most relevant to sensors is the output power change 

for a small en . We therefore search for an optimum operating point that ex-

hibits the largest slope of the optical power transmission with respect to en . 

Within the Lorentzian approximation, an optimum operating point is found at 

the inflection point, located at a distance  FWHM 2 3  away from the res-

onance, see Column 4 of Table B.3. The slope in the optimum operating point 

is fully determined by the corresponding resonance height and width, see Col-

umn 5 of Table B.3. With e,FWHM,RR egn Qn  , see Table B.3, and 

Q eg 0 ,Q c n k   see Eq. (4.16), we can derive Eq. (4.20) for the peak optoelec-

tronic effective-index sensitivity ˆˆ T R  as used in Section 4.4.2.4, 

 0
e, ,peak Q

e,FWHM,RR eg

3 3 3
2 3 2 3 2 3 .

8 Δ 8 8

ˆ
ˆ ˆ

kQ
S c

n n



 


    (B.7) 

The effective output contrast ˆ T̂   is given by the electric readout responsiv-

ity  and the optical transmission contrast T̂ , which is obtained from Column 5 

in Table B.2. Note that T̂  is fully defined by the amplitude transmission factors 

1  and 2  of the ring resonator coupling sections and the round-trip amplitude 

transmission factor  exp 2a L   with modal power loss coefficient α and 

round-trip length L. The quality ratio cQ can be directly derived from T̂  via 

Eq. (B.6) and hence also depends on 1 , 2 , α, and L. As a consequence, for a 

given L and α, we can calculate the optimum coupling coefficients 1,opt  and 

2,opt  that yield the maximum achievable optoelectronic effective-index sensi-

tivity Se,τ,max for each RR-based sensor implementation – the results are shown 

in the last column of Table 4.3 and plotted in Fig. 4.4. We find that a slightly 

under-coupled (UC) operation yields the best results, where the increased Q-

factor and thus cQ outweighs the decrease in output contrast ̂ . For an all-pass 
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ring resonator with optimum under-coupling (
UC
APRR ), an amplitude-transmis-

sion coefficient of UC CC
1,opt AP 1,opt AP( ( )) a    has to be chosen, whereas the 

implementations based on add-drop ring resonators (
UC
ADRR ) and optional bal-

anced detection (
UC
BDRR ) require UC CC

1,opt AD,BD 1,opt AD,BD( ( )) a    and 
UC CC

2,opt AD,BD 2,opt AD,BD( ( )) a   . The corresponding values for the quality ratio 

cQ, the output contrast ˆˆ T R  and the effective optoelectronic transmission in 

the optimum operating point OP OPT   for the various systems are detailed 

in Table 4.3. Here, OP   always equals 1-¾T̂  and ¾T̂  for the through and 

drop ports, respectively, which is relevant for noise figures and feedback con-

trol. 

B.4.2 Device-length optimization 

For ring resonators, the optoelectronic effective-index sensitivity Se,τ, can be 

maximized by optimum choice of cQ as described in the previous paragraph. In 

contrast to that, the round-trip length L does not have relevant influence on Se,τ, 

see Fig. 4.4(b). This is due to the fact that the sensitivity is directly linked to the 

loaded Q-factor i QQ Q c  as long as the resonator can be described by a Lo-

rentzian approximation, see Eq. (B.7), where the intrinsic Q-factor Qi is inde-

pendent of the ring round-trip length L, see Eq. (4.16). As a consequence, 

changing the round-trip length L while maintaining the same quality ratio cQ 

does not influence the optoelectronic effective-index sensitivity as long as 

αL ≪ 1, see Fig. 4.4(b). For αL ≳ 1, the Lorentzian approximation and the as-

sociated relationship between optoelectronic effective-index sensitivity and Q-

factor are not valid anymore, and the optoelectronic effective-index sensitivity 

decreases as the round-trip length L is increased. In this regime, the benefits of 

using a resonator disappear. Note that, for typical waveguide losses of 10 dB/cm 

(α = 2.3 cm-1), the critical round-trip length L = 1/α is thus in the mm-range. In 

practical sensor designs, the length L < 1/α can hence be chosen freely over a 

wide range, e.g., to achieve an advantageous FSR that is compatible with the 

frequency tuning rang of the light source, or to avoid excessive bend loss, which 

are not considered in our analysis. 
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For MZI, the arm length L is a critical parameter, and the peak optoelectronic 

effective-index sensitivity in the optimum operating point can be expressed by 

Eq. (4.20) for any output contrast ̂  as given in Table 4.2, 

 e, ,peak,MZI 0 .
ˆ

e  
2

LS k L L


    (B.8) 

Unlike ring resonators, the peak optoelectronic effective-index sensitivity of an 

MZI can be maximized by proper choice of the arm length Lopt,MZI = 1/α that 

offers an ideal trade-off between low output power at large L and small phase 

shifts in case L is chosen too small. This means that a waveguide technology 

with lower waveguide loss allows for larger sensitivity but requires longer MZI 

arms to unfold its full potential. 

B.4.3 Light-source linewidth 

To quantify the impact of drive-laser frequency noise on the optoelectronic ef-

fective-index sensitivity in Section 4.4.2.4, we assume a laser diode (LD) emit-

ting at an optical center frequency ω0 and having a power spectral density 

 
iPS  , which is characterized by the linewidth ΔωFWHM,LD. The laser is con-

nected to a sensor system with optical power transmission T(ω), characterized 

by spectral features such as a ring resonator resonance with an FWHM 

ΔωFWHM,RR or a periodic MZI response with a free spectral range ΔωFSR,MZI. If 

the laser linewidth is much smaller than the spectral features of the sensor trans-

mission, the output current can be calculated by multiplying the readout respon-

sivity with the total laser power  
i    dPS    and the sensor transmission 

T(ω0) at the center frequency ω0 of the laser. However, if the laser linewidth is 

comparable to the width of the spectral features of the sensor transmission char-

acteristics, the power spectrum of the laser and the sensor transmission spectrum 

have to be multiplied before integrating the resulting power spectral density 

over the relevant frequency range, 

 
     

   

i

i

0   FWHM,LD FWHM,RR FSR,MZI

o 0
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   d  else.
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The associated optoelectronic effective-index sensitivity Se,τ(ω0) is then ob-

tained by taking the derivative with respect to en  and by normalizing the result 

by the total laser power. Using τ(ω) = ℜT(ω) for the single-output sensor im-

plementations, this leads to 

 

 
 

    
 

i

i

0
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e, 0
  e
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

 
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
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
  
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The larger the width of the laser spectrum compared to that of the spectral fea-

tures of the sensor, the more the optoelectronic effective-index sensitivity is 

“blurred”, leading to a decreased sensitivity with respect to the value obtained 

for a sharp laser line in the optimum operating point, see Fig. 4.4(c). For the 

plot in Fig. 4.4(c), we calculate Se,τ for pure Lorentzian- as well as Gaussian-

shaped power spectral densities  
iPS  , both characterized by the same lin-

ewidth ΔωFWHM,LD. As detailed in [93],[144], these Lorentzian and Gaussian 

line shapes can represent corner cases for the line shape of typical lasers. De-

pending on the specific laser and operation conditions, the line shape will typi-

cally be a mixture of these two profiles – such a convolution is known as a Voigt 

profile. 

As a numerical example, a low-cost laser diode emitting at a center wavelength 

of λ0 = 1.55 µm with a typical linewidth of ΔωFWHM,LD = 2π×10 MHz will set an 

upper limit for the Q-factor of 200,000 before sensitivity degradation is to be 

expected. In contrast to this, MZI-based sensors are generally not subject to such 

limitations: The devices can always be designed with balanced arms of approx-

imately identical group delays, leading to large FSR ΔωFSR,MZI ≫ ΔωFWHM,LD. 
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B.5 Frequency dependency of the MZI phase in 
the operating point  

The MZI phase difference in an operating point (OP) at a wavenumber 

0 0k c  with common base arm length L and common base effective refrac-

tive index en  as well as an geometrical arm length difference ΔL and initial 

effective-refractive-index difference e,0n  can be written according to 

Eq. (4.11) as  OP,MZI 0 e e,0k Ln L n    . The frequency dependence of this 

phase difference can be expressed by taking the derivative with respect to ω. 

The result can be simplified by using an effective group refractive index egn , 

which is common to both arms, as well as an initial difference eg,0n  of the 

effective group refractive index between the two arms. If we assume that the 

waveguides in the two arms have similar cross sections and that the correspond-

ing refractive indices and dispersion relations are hence similar as well, we can 

assume that eg,0 e,0 eg en n n n  . This leads to 

    eg egOP,MZI OP,MZI
eg eg,0 e e,0

e e

1 1
Δ Δ Δ Δ .

n n
Ln L n Ln L n

c n c n

 

 


    


 

  (B.11) 

B.6 Experimental extraction of the laser 
frequency stability 

In Sections 4.4 and 4.5, we discuss laser frequency noise as one of the most 

important impairments for RR-based sensor implementations. The frequency-

noise characteristics of a laser can be obtained with the help of a heterodyne 

detection scheme, which transfers the relevant frequency noise characteristics 

from the optical domain into the electrical domain. In principle, this is achieved 

by first tuning the optical frequency fLO of a highly stable reference local oscil-

lator (LO) laser close to the optical frequency fDUT of the laser device under test 

(DUT), then superimposing the two optical signals and subsequently recording 

the combined optical signal with a photodetector. The photocurrent is propor-

tional to the square of the sum of the electrical fields and hence contains a term 

at the beat frequency fbeat = fDUT – fLO, which carries the phase- and frequency-
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noise properties of the laser DUT. The beat frequency fbeat has to be chosen such 

that the beat signal including potential frequency drift of the DUT and the LO 

laser is within the electronic acquisition bandwidth of the acquisition system. 

The beat signal can be recorded with a single photodiode, with balanced detec-

tion on two photodiodes, or via an in-phase quadrature (IQ) demodulation 

scheme consisting of two pairs of balanced photodiodes [145]. In the case of the 

IQ demodulation scheme, as sketched in Fig. B.2(a), we construct a complex 

signal SIQ with magnitude IQÎ  from the two photocurrents that represent the in-

phase (I) and the quadrature-phase (Q) components of the complex signal, 

     IQ I Q IQj exp j .ˆS It I I t     (B.12) 

Due to the frequency offset between LO and DUT, the total phase Φ(t) of SIQ 

increases or decreases monotonously with time and can be obtained by taking 

the argument of SIQ and by the associated time-series of phases. Neglecting the 

phase noise of the LO, the phase noise of the DUT can be directly reconstructed 

from the phase noise Φn of the beat signal, which is obtained by subtracting a 

linear phase fit with a mean beat frequency beatf  from the unwrapped phase 

Φ(t), 

    n beat2π .t t f t    (B.13) 

The noise of the instantaneous frequency, fn, is then calculated via the time-

derivative of the phase noise Φn. Practically, this is achieved by calculating the 

discrete derivative from a set of discrete measurement points spaced by the same 

time interval τ as  

  
   n nn

n

1
.

2π 2π

t t
f t

t





  
 


 (B.14) 

Generally, laser phase noise corresponds to a random walk, i.e., a non-stationary 

stochastic process with diverging variance. For a laser controlled by some fre-

quency stabilization process, however, we may assume that the frequency vari-

ations are mean-free and that they can be described by an ergodic stationary 

stochastic process. According to the Wiener-Khinchin-Theorem, the one-sided 



B.6  Experimental extraction of the laser frequency stability 

199 

power spectral density SF(f) of the frequency noise fn(t) can then be calculated 

as the Fourier-transform of its autocorrelation function ρff, 

 

     

         

F ff
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 (B.15) 
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Fig. B.2. Details on the frequency-noise characterization of lasers in our experiments. 

(a) Measurement setup for recording the beat frequency between the laser device under test 

(DUT: VCSEL or TLS) and a reference local-oscillator (LO) laser using an IQ demodulation 

detection scheme with two pairs of balanced output photodiodes (PD). The graphic was adapted 

from the application note of the Keysight N4391A Optical Modulation Analyzer that was used 

in this experiment. (b) The differential currents II and IQ from the two balanced photodiode 

pairs generate the in-phase (I) and the quadrature-phase components (Q) of the complex signal 

SIQ. Assuming a highly stable LO laser, the phase- and frequency-noise characteristics of SIQ can 

be attributed to the respective noise characteristics of the laser DUT. (c, d) One-sided fre-

quency noise power spectral densities of a typical VCSEL and TLS calculated from the extracted 

phase Φ(t) of the beat signal according to Eqs. (B.14) and (B.15). We extract exemplary angular 

frequency variances 
n

2
  for each laser by integrating SF(f) from low frequencies of 

1/Tobs = 1 kHz up to the measurement acquisition bandwidth Δf = 500 kHz. In this case, the 

standard deviation 
n

  of the VCSEL and the TLS emission frequency differ by nearly one order 

of magnitude. 

For a given optoelectronic acquisition bandwidth Δf of our sensor system, the 

variance 
n

2
  of the angular laser frequency noise can theoretically be obtained 

by calculating the noise up to this frequency, 
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    
obs

22
F

1/

2π d
n

f

T

S f f



  , (B.16) 

where obsT  denotes the overall observation time during a complete set of meas-

urements and where the optoelectronic acquisition bandwidth Δf is related to 

the ADC sampling frequency fs by the sampling theorem, s 2f f  . Note that 

for long observation times obsT  , the integral in Eq. (B.16) can only be eval-

uated if SF(f) does not diverge for f → 0, i.e., SF(f) must have an upper bound of 

the form 1/fγ for f → 0 where γ < 1 – otherwise the frequency variance 
n

2
  di-

verges with increasing Tobs. For laser sources that do not fulfill this condition 

intrinsically, e.g., due to frequency drift, it might be necessary to use a fre-

quency-stabilization mechanism to ensure mean-free frequency variance that 

does not diverge with long observation times obsT  . For laser sources with 

feedback compensation of frequency drifts, we may approximate the one-sided 

power spectral density by a constant  F F0S f S  that leads to the same spectral 

power as the truly measured frequency-noise spectrum within the frequency in-

terval  obs1/ ,T f . Exploiting the fact that the observation time is usually much 

larger than the sampling time and hence obs1/ T f , the laser frequency vari-

ance can be approximated by  

 
2 2

F04π Δ .S f   (B.17) 

In Fig. B.2(c) and Fig. B.2(d), we show the one-sided power spectral density 

SF(f) of the frequency noise of a typical VCSEL and benchtop-type tunable light 

source (ANDO AQ4321A) within a frequency interval between obs1/ 1kHzT   

and 500 kHzf  . The standard deviation 
n

2
  of the angular laser frequency 

noise is calculated according to Eq. (B.16) by integrating the frequency noise 

spectrum over this frequency range, which leads to 
n

2 π 175 M z2 H    for the 

VCSEL and 
n

2 π 23 M z2 H    for the TLS. These values are in fair quantita-

tive agreement with the frequency variations of 
n

2 π 435 M z2 H    and 

n

2 π 10 M z2 H    that were independently estimated from the ring-resonator 

measurement (see Section 4.5).  

In Section 4.4.3.1, we assume a typical frequency noise variance 

n

2 π 100 M z2 H    at a rather low acquisition bandwidth of Δf = 100 Hz, 
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which is estimated from the VCSEL measurement data in Fig. B.2(c). Note that 

the equipment used in the experiment did not allow us to record sufficiently 

long beat signals to directly derive the frequency-noise spectrum below 1 kHz. 

We therefore estimate the low-frequency part by extrapolating the measured 

frequency-noise spectrum within the interval [1 kHz, 10 kHz]f   towards 

lower frequencies 1 kHz.f   We use a fit based on a model function of the 

form  F F1 1S f S f   , which leads to parameters 
15 2

F1 4.6 10 z Hz HS    

and 1.4  . As 1  , the frequency variance 
n

2
 diverges for long observation 

times obsT , see Eq. (B.16). The finite value 
n

2 π 100 M z2 H    is obtained by 

limiting the observation time to obs 1 sT   and hence integrating the extrapolated 

data according to Eq. (B.16) only within the frequency interval between 

obs 1 Hz1/ T   and 100 Hzf  . 

In practical sensor systems that rely on low-cost lasers with diverging frequency 

spectra of the form  F 1S f f   with 1  , continuous operation with infi-

nitely long observation times requires some sort of frequency stabilization, 

which effectively reduces the strong frequency-noise contribution at low Fou-

rier frequencies and thus results in a finite frequency variance 
n

2
  for obsT 

. Clearly, the implementation of such a frequency stabilization mechanism in-

creases the complexity of the overall sensor system. For a quantitatively reliable 

estimation of the frequency variance 
n

2
  and the associated LoD contribution, 

it is essential to characterize the laser source under the operation and data ac-

quisition conditions that are relevant for the respective use case. 

[end of appendices of publication [J2]]  
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C. Towards robust sensor systems: The 
fault-tolerant 1×3 Mach-Zehnder 
interferometer 

C.1 Derivation of general 1×3 Mach-Zehnder 
interferometer transfer function 

This section derives the general transfer function of a 1×3 MZI that can be used 

to calculate the optical output powers including amplitude and phase errors. Ac-

cording to Eq. (5.6) and Fig. 5.6, the transfer function can be written as 

3 iMZI MMI,o MMI,iArmso E t E t t t , where MMI,ot  is already known from 

Eq. (5.5). 

The transfer matrix notation MMI,it  for the 1×2 MMI coupler is defined along 

the lines of MMI,ot  for the case of the 3×3 MMI coupler, see Section 5.2.1. Con-

sequently, the transmission MMI,it  is split up into a Hadamard product (denoted 

as ○) consisting of ideal and erroneous amplitude and phase matrices. Note that 
r

MMI,i

er
φ  is omitted, as it is additive to and undistinguishable from the MZI phase 

difference φMZI between the sensor and the reference arm. The transfer matrix 

of the 1×2 MMI coupler can hence be written as 

 
1 1
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err
MMI,i

φ
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 (C.1) 

The next elements and central pieces of the MZI between the 1×2 input MMI 

coupler and the 3×3 output MMI coupler are the waveguides in the sensor and 

reference arms. Just as in the definition for the MMI coupler, the respective 

transfer matrix splits into an ideal and an error part. In the ideal case, the two 

arms are assumed to have the same modal loss coefficient, i.e., 
id
Arms ( , )a aa , 
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and potential multiplicative errors are written as 
sa  and 

ra . Note that 
err

Arms
φ  is 

again omitted as it additive to and undistinguishable from the phase difference 

φMZI between the sensor and the reference arm, which itself is purely attributed 

to the sensor arm from this point on. The transfer matrix of the MZI arms can 

hence be written as 

 
s s

s

r r
r

id id er

M

r
Arms ArmsArms

id
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j i
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 (C.2) 

The electrical field transmission 
3MZIt  from the complex electrical field ampli-

tude at the input iE  to the three complex electrical field amplitudes at the output 

oE  in a 1×3 MZI can hence be written in general form as a matrix multiplication 

via 

 

s 1311 r

s 2321 r

3

31 s 33 r

j jj j
s 1 11 r 2 13

j jj j
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t  (C.3) 

In the following paragraphs, this relation is used to calculate the optical output 

powers Po depending on an optical signal with input power Pi. It is important to 

note that the complex electrical field amplitudes at the outputs oE  can be writ-

ten as a 3×1 matrix and that it can be expressed by a sum of the output fields 

o,sE  originating from the sensor arm and the output fields o,rE  originating from 

the reference arm. This simplifies the notation in the following paragraphs and 

leads to 
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These electrical fields can again be expressed by an ideal and an error amplitude 

and phase part 
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The optical output power Po,ν in each output channel ν = 1,2,3 can be calculated 

via the square of the magnitude of the respective electrical output fields 

 2

ii
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2
P E , 

 

  

    

  

s 1

2

o, o, , o,s, o,r, o,s, o,r,o,

2 2

o,s, o,r, o,s, o,r, o,r, o,s,

i o,s, o,r, o,s, o,r, MZI o,

s 1 11

o,s s 1 21

s 1 3

**
o

2 2

1

1 1 1
2 2 2

1 1 cos arg arg
2 2

2 cos

6

a a a

P E E E E E E E

E E E E E E

P a a a a

a a a
a

a a a

a a a

      

     

     

  

    

   

   

 
 

 
 
 
 

a

11 r 2 13

s 1 21 r 2 23

s 1 31 r 2 33

r 2 13

o,r r 2 23

r 2 33

13 11

o 13 11

33 31

, ,
6

2 δ δ

0 δ δ .

3

3 δ

π

2 δπ

a a a

a a a a a a

a a a a a a

a a a
a

a a a

a a a



  

  





 

 

  

    

    
    

     
           

  
  

  
  

       

a

φ  

  (C.6) 



C  Towards robust sensor systems: The fault-tolerant 1×3 Mach-Zehnder interferometer 

206 

Here, the channel-dependent amplitude transmission factors from the sensor 

arm and reference arm, ao,s,ν and ao,r,ν, as well as the channel-dependent phase 

shifts φo,ν were summarized in the three vectors ao,s, ao,s and φo. In general, the 

optical output powers Po,ν, ν = 1,2,3 can hence be written as 
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C.2 Impact of laser frequency and power 
modulation 

The phase modulation required for the calibration and endless phase unwrap-

ping processes in Sections 5.3.1 and 5.3.2 require a modulation of the MZI 

phase φMZI, which was demonstrated in Section 5.3.2 via a frequency modula-

tion of the laser diode. The frequency of some integrated lasers such as VCSEL 

can be tuned via the current, which also modifies the output power. As an ex-

ample, Fig. C.3(a) shows measured intensity spectra of a near-infrared VCSEL. 

The total laser power integrated over the relevant spectrum is plotted in 

Fig. C.3(b). It can be seen that the dependence of the laser power P on the input 

current Ii is well approximated by a cubic function. In the vicinity of an operat-

ing point, see dashed in line Fig. C.3(b), it can be approximated linearly. The 

dependence of the corresponding central wavelength and frequency of the laser 

on the input current Ii are well approximated by quadratic function, see 

Fig. C.3(c). In the vicinity of an operating point, it can be approximated linearly. 
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Fig. C.3. Laser emission vs. input current for a typical VCSEL diode. (a) The output spec-

trum recorded with an optical spectrum analyzer for input currents ranging from 1.5 to 14 mA. 

(b) The dependence of the laser power P on the input current Ii is well approximated by a cubic 

function, which can be approximated linearly via a first-order Taylor expansion in the vicinity of 

the operating point. (c) The dependence of the central wavelength λ and frequency f on the input 

current Ii are well approximated by a quadratic function, and can again be approximated linearly 

by a first-order Taylor expansion in the vicinity of the operating point. 

A modulation of the laser input current Ii around the operating point Ii0 hence 

causes a frequency modulation, which yields the desired phase modulation, ac-

companied by a power modulation, i.e.,  
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The negative signs in front of the sine function for the frequency and phase can 

be explained by the decreasing frequency with increasing laser current in 

Fig. C.3. Note that we drop the MZI-subscript in the phases for better readabil-

ity. Based on Eq. (C.6), the optical output powers Po,ν of the νth output channel 

of a 1×3 MZI can hence be rewritten using a modulated power and frequency,  
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  (C.9) 

Here, ao,s,ν and ao,r,ν are the channel-dependent amplitude transmission factors, 

φo,ν are the channel-dependent phase shifts, and 
MZI MZI 0 eL cn     is the 

phase delay between sensor and reference arm. Note that this modulation causes 

harmonic frequencies in the optical output powers at multiples of the modula-

tion frequency Ω. The magnitudes of the harmonics in the optical output powers 

are calculated using the Jacobi-Anger expansion,  
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where the magnitudes of the harmonics are given by the Bessel functions of nth 

order  ˆ
nJ  . By applying the Jacobi-Anger expansions from Eq. (C.10) to 

Eq. (C.9), the explicit notation of the νth output power Po,ν can be written as  
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The first row in Eq. (C.11) shows the DC part of the output power with the 

expected DC transmission  2 2
o,s, o,r, i0a Pa   . However, additional terms are 

created from the harmonics that have to be respected in signal processing. The 

magnitudes of the first six harmonics are summarized in Table C.4. 
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Table C.4: First six harmonics of the optical powers Po,ν in the νth output channel of the 

1×3 MZI based on amplitude and phase properties. The three amplitude factors in the 

right three columns of the header row have to be multiplied with the corresponding entries in 

the matrix to obtain the Fourier coefficients of each harmonic. 

νth harmonic 
o,r, o,s,

2 2a a
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 4, / cos 4 tP           3 5 o,
ˆ ˆ sinJ J          4 o,

ˆ s2 coJ     

 5, / sin 5 tP           4 6 o,
ˆ ˆ cosJ J          5 o,

ˆ n2 siJ     

 7, / cos 6 tP           5 7 o,
ˆ ˆ sinJ J          6 o,

ˆ s2 coJ     

Fig. C.4(a) shows the measured spectrum of one the three output currents of an 

integrated 1×3 MZI driven by the current-modulated VCSEL from Fig. C.3, see 

blue line. This measurement is compared with the calculated coefficients from 

Eq. (C.11). It can be seen that the linear approximations of the power and fre-

quency modulation achieve good results. 

In Fig. C.4(b), the magnitudes of the first ten Bessel functions required to cal-

culate the Fourier coefficients for each harmonic in Table C.4 are plotted as a 

function of the phase modulation amplitude MZI̂  of the MZI phase difference. 

For the instantaneous calibration process in Section 5.3.1, a phase modulation 

of MZI
ˆ π   is required. The corresponding magnitudes of the Bessel functions 

are extracted from the intersection of the colored Bessel functions with the ver-

tical black line, and are plotted as a function of n in Fig. C.4(c). 
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Fig. C.4. Generation of harmonics in the output power spectrum. (a) Measured spectrum 

(blue) of the output power Po of one channel of a 1×3 MZI driven by a frequency-modulated 

laser. The spectrum is compared to calculated Fourier coefficients of the first nine harmonics of 

the output power. A linear frequency and power modulation of the input laser is assumed, which 

accurately predict the harmonic amplitudes. (b) The amplitudes of the Bessel functions re-

quired to calculate the Fourier coefficients for each harmonic in Table C.4 according to 

Eq. (C.11) depending on the phase modulation. For the instantaneous calibration process in Sec-

tion 5.3.1, , a phase modulation of MZI
ˆ π   is required. (c) Magnitudes of the Bessel functions 

 MZI
ˆ πnJ   . It can be seen that the measurement bandwidth Δf has to cover at least the first 

five harmonics of the modulation frequency Ω in order to accurately recover  
T

I Q,S S  and sub-

sequently MZI . 

The output powers carry relevant information at least in the first five harmonics 

of the modulation frequency Ω. A practical effect of this observation is that the 

measurement bandwidth has to exceed the modulation frequency by at least 

5f   . This is demonstrated in Fig. C.5, where two measurement systems 

are compared.  
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Fig. C.5. Consequences of harmonics for measurement bandwidth. (a) The output currents, 

shown here for two modulation periods TP, are sent through bandpass filter around the modulation 

frequency Ω, which blocks important information contained in the harmonics. This leads to er-

roneous phase results. (b) The measurement bandwidth is chosen to accommodate the first five 

harmonics of the modulation frequency Ω, increasing the accuracy of the phase extraction pro-

cess. 

One of the measurement systems (a, left column) uses a bandpass filter around 

the modulation frequency Ω on the output currents, the other measurement sys-

tem (b, right column) has a bandwidth that covers the first 5 harmonics of Ω. 

The phase extraction process from current recording and filtering (1, top row), 

generation of the  
T

I Q,S S  signals (2, center row), and subsequent phase ex-

traction (3, bottom row) are visualized, which demonstrates that an appropriate 

measurement bandwidth is essential. It is important to note that the DC part of 

the output currents, and hence the DC part of the reconstructed phase, is affected 

by this modulation scheme.   
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E. Glossary 

E.1 Acronyms 

Acronym Description 

AC Alternate current 

AD Add-drop (configuration for a ring resonator) 

ADC Analog-to-digital converter 

AP All-pass (configuration for a ring resonator) 

ASE Amplified spontaneous emission 

ASIC Application-specific integrated circuit 

AWG Arrayed waveguide grating 

BD Balanced detection (configuration for a ring resonator) 

BOX Buried oxide 

CC Critically-coupled (coupling state of a ring resonator) 

CMOS Complementary metal-oxide-semiconductor 

DC Direct current 

DFB Distributed feedback 

DSP Digital signal processing 

DUT Device under test 

EDFA Erbium-doped fiber amplifier 

FEM Finite element method 

FF Fill factor 

FPGA Field-programmable gate array 

FSR Free spectral range 

FWHM Full width at half maximum (Lorentzian resonance) 

GC Grating coupler 

H2O Water 

LAS Laser 

LD Laser diode 

LED Light-emitting diode 

LO Local oscillator 
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Acronym Description 

LoD Limit of detection 

LSB Least significant bit 

MIR Mid-infrared portion of the electro-magnetic spectrum 

MMI Multi-mode interferometer 

MZI Mach-Zehnder interferometer 

    ↳  MZI1     ↳  With a single output port 

    ↳  MZI2     ↳  With two output ports 

    ↳  MZI3     ↳  With three output ports 

NEP Noise-equivalent power 

NIR Near-infrared portion of the electro-magnetic spectrum 

OC Over-coupled (coupling state of a ring resonator) 

OMA Optical modulation analyzer 

OP Operating point 

OSA Optical spectrum analyzer 

OSC Oscilloscope 

PCB Printed circuit board 

PD Photodiode 

PIC Photonic integrated circuit 

RI Refractive index 

RIN Relative intensity noise 

RR Ring resonator 

    ↳  RRAP     ↳  All-pass configuration 

    ↳  RRAD     ↳  Add-drop configuration (usage of the drop port) 

    ↳  RRBD     ↳  Add-drop configuration (balanced detection, drop-

through port) 

Si Silicon 

Si3N4 Silicon nitride 

SiO2 Silicon dioxide 

SL Surface layer 

SNR Signal-to-noise ratio 

SOI Silicon-on-insulator 

SWG Sub-wavelength grating 

TE Transverse electric polarization 
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Acronym Description 

TLS Tunable light source 

TM Transverse magnetic polarization 

TOC Thermo-optic coefficient 

UC Under-coupled (coupling state of a ring resonator) 

VCSEL Vertical-cavity surface-emitting laser 

VIS Visible portion of the electro-magnetic spectrum 

WG Waveguide 

 

E.2 Symbols 

In general, bold symbols refer to matrices, while underlined symbols refer to 

complex quantities. 

E.2.1 Greek symbols 

Symbol Description Unit 

α Waveguide mode power attenuation coefficient 1/m 

β Propagation constant of an electro-magnetic wave 1/m 

    ↳  β     ↳  Vectorial propagation constant 1/m 

    ↳  βB     ↳  Bloch propagation constant in a periodic waveguide 1/m 

Γ Field interaction factor 1 

    ↳  ΓSL     ↳  With a surface layer 1 

Γ(conf) Field confinement factor 1 

Δenv Arbitrary environmental change around a waveguide * 

ε0 Electric permittivity of vacuum As/Vm 

εr Relative electric permittivity of a material 1 

    ↳  Δεr     ↳  Change of relative electric permittivity 1 

  Variable for noise sources  i s NEP q; ; ; ; ;T P I I I   * 

η Power transmission factor (total coupling efficiency) 1 

θc Critical angle for total internal reflection rad 

κ Extinction coefficient (imaginary part of the RI) 1 

κe Effective extinction coefficient 1 
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Symbol Description Unit 

κ1,2 Cross-coupling amplitude coefficients of RR 1 

λ Optical vacuum wavelength m 

    ↳  ̂      ↳  Wavelength modulation depth m 

μ0 Magnetic permeability of free space N/A² 

μr Relative magnetic permeability of a material 1 

ρ Charge density C/m³ 

ρ1,2 Self-coupling amplitude coefficients of ring resonators 1 

ρff Autocorrelation function 1 

σ Electrical conductivity S/m 

σg Geometric scaling factor 1 

σn Refractive index scaling factor 1 

σω Angular frequency scaling factor 1 

2
  Noise variances,  i s NEP q; ; ; ; ;T P I I I   * 

e,r

2
Δ ,n   Reconstructed measurand variances,  i s NEP q; ; ; ; ;T P I I I   * 

τ Effective optoelectronic transmission A/W 

    ↳  ̂      ↳  Output contrast (maximum-minimum) A/W 

    ↳  τOP     ↳  Effective optoelectronic transmission in the OP A/W 

τc Photon lifetime in a cavity s 

τg Group delay s 

MZI  Phase delay between two MZI arms s 

Φn Phase noise rad 

φ Instantaneous phase rad 

    ↳  φ     ↳  Phase matrix (Chapter 5) rad 

    ↳  φs     ↳  At the end of the MZI sensor arm rad 

    ↳  φr     ↳  At the end of the MZI reference arm rad 

    ↳  φmn     ↳  MMIn×m phase coefficients rad 

    ↳  φres     ↳  Round-trip phase shift in resonance condition rad 

    ↳  φOP,RR     ↳  Round-trip phase shift in the optimum operating point rad 

    ↳  Δφ     ↳  Phase change rad 

    ↳  φMZI     ↳  MZI phase difference rad 

    ↳  φOP,MZI     ↳  MZI phase difference (optimum operating point) rad 

    ↳  ̂      ↳  Phase modulation amplitude rad 

    ↳  MZI      ↳  MZI phase difference (mean value) rad 
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Symbol Description Unit 

    ↳  MZI̂      ↳  MZI phase difference (amplitude value) rad 

    ↳  res
MZI      ↳  MZI phase difference (measurement resolution)  rad 

    ↳  δφ     ↳  Phase coefficient error (additive) rad 

ω Angular frequency 1/s 

    ↳ ̂      ↳  Modulation amplitude 1/s 

    ↳  ω0     ↳  Central frequency 1/s 

    ↳  ωres     ↳  Resonance angular frequency of a resonator 1/s 

    ↳  OP,opt      ↳  Frequency offset from ωres for optimum sensitivity 1/s 

    ↳  FSR,MZI       ↳  Angular frequency FSR of a MZI 1/s 

    ↳  FWHM,LD      ↳  Angular frequency FWHM of a laser diode 1/s 

    ↳  FWHM,RR      ↳  Angular frequency FWHM of a RR 1/s 

Ω Modulation frequency 1/s 

E.2.2 Latin symbols 

Symbol Description Unit 

A Area m² 

    ↳  ASL     ↳  Of the surface layer on the waveguide core m² 

a Period of periodic waveguide (scalar, Chapter 3) m 

    ↳  a     ↳  Period of periodic waveguide (vectorial, Chapter 2) m 

a Amplitude transmission coefficient (other sections) 1 

    ↳  a     ↳  General coeff. matrix for multiport comp., coeff.ts amn 1 

    ↳  a1     ↳  MMI1x2MZI reference arm 1 

    ↳  a2     ↳  MMI1x2MZI sensing arm 1 

    ↳  as     ↳  MZI sensing arm 1 

    ↳  ar     ↳  MZI reference arm 1 

    ↳  amn     ↳  MMIn×m  1 

    ↳  γa     ↳  Coefficient errors (multiplicative) 1 

B Magnetic flux density Wb/m² 

    ↳  Bx,y,z     ↳  Magnetic flux density components Wb/m² 

c Vacuum speed of light m/s 

cQ Quality ratio between Q-factor and intrinsic Q-factor 1 

D Dielectric displacement C/m² 

    ↳  Dx,y,z     ↳  Dielectric displacement components C/m² 



E  Glossary 

234 

Symbol Description Unit 

dgap Gap width of a sub-wavelength grating waveguide m 

E Electric field (vectorial) V/m 

    ↳  Ex,y,z     ↳  Electric field components V/m 

    ↳  Ei     ↳  Electric field at the sensor input (scalar) V/m 

    ↳  Eo     ↳  Electric field at the sensor output (vectorial) V/m 

    ↳  E0     ↳  Modal electric field profile V/m 

ez Unit vector in z-direction 1 

f Frequency of an electro-magnetic wave Hz 

    ↳  fn     ↳  Noise of the instantaneous frequency Hz 

    ↳  fLO     ↳  Frequency of a local oscillator Hz 

    ↳  fDUT     ↳  Frequency of a device under test Hz 

    ↳  fbeat     ↳  Beat frequency between two frequencies Hz 

fs Sampling frequency of the measurement setup Hz 

Δf Bandwidth of the measurement setup Hz 

FF Fill factor of a SWG waveguide 1 

h Height of a waveguide m 

H Vectorial magnetic field A/m 

    ↳  Hx,y,z     ↳  Magnetic field components A/m 

H0 Modal magnetic field profile A/m 

I Electrical current A 

    ↳  Ii     ↳  At the laser input A 

    ↳  Io     ↳  At the photodetector output (single, scalar) A 

    ↳  Io     ↳  At the photodetector output (multiple, vectorial) A 

    ↳  Io,max     ↳  At the photodetector output (maximum expected)  A 

    ↳  In     ↳  At the n-th photodetector output A 

    ↳  Iq     ↳  After the ADC (quantized) A 

B Electric current density A/m² 

Jn Bessel function of nth order 1 

j Imaginary unit 1 

k Vectorial propagation constant 1/m 

k0 Vacuum propagation constant 1/m 

L Length of the MZI arm and of the RR circumference m 

    ↳  Lopt     ↳  MZI arm length (optimized common length) m 
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Symbol Description Unit 

    ↳  ΔL     ↳  MZI arm length (difference between two arms)  m 

LSB Least significant bit of an ADC A 

LoD Total limit of detection of the sensor (eff. refractive index) 1 

    ↳  LoD      ↳  LoD from noise source  i s NEP q; ; ; ; ;T P I I I   1 

m Absolute fringe order of a MZI phase difference 1 

MC Clarke Transformation matrix 1 

    ↳  T
C


M      ↳  Non-ideal transposed Clarke Transformation matrix 1 

MR Ellipse fitting matrix (rotation) 1 

MS Ellipse fitting matrix (stretching) 1 

MT Ellipse fitting matrix (translation) 1 

N ADC resolution 1 

n  Refractive index of a material (complex) 1 

N Refractive index of a material (real) 1 

    ↳  Mn      ↳  Of a waveguide cladding medium 1 

    ↳  SLn      ↳  Of a waveguide surface layer 1 

    ↳  BOXn      ↳  Of the buried oxide 1 

    ↳  coren      ↳  Of the waveguide core 1 

en  Effective refractive index of a waveguide mode (complex) 1 

en  Effective refractive index of a waveguide mode (real) 1 

    ↳ e,Bn      ↳  Effective Bloch refractive index of a periodic WG 1 

    ↳  e,resn      ↳  ne to obtain resonance at a given optical frequency 1 

    ↳  en      ↳  Changes of ne in a single waveguide 1 

    ↳  e,0n      ↳  Initial ne offset between two waveguides 1 

    ↳  e,rn      ↳  Reconstructed ne change of a waveguide 1 

gn  Group refractive index of a material 1 

egn  Effective group refractive index of a waveguide mode 1 

    ↳ eg,0n      ↳  Initial neg offset between two MZI arm waveguides 1 

NEP Noise-equivalent power W 

OS Translational offset vector 1 

P Optical power W 

    ↳  iP      ↳  At the sensor input W 

    ↳  i0P      ↳  At the sensor input (constant/flat spectral distr.) W 

    ↳  oP      ↳  At the sensor output (single, scalar) W 
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Symbol Description Unit 

    ↳  oP      ↳  At the sensor output (multiple, vectorial) W 

    ↳  LDP      ↳  At the laser diode output W 

r Position vector m 

R Photodiode responsivity (single, scalar) A/W 

    ↳  R     ↳  Multiple photodiodes (multiple, vectorial) A/W 

ℜ Overall electrical readout responsivity A/W 

RIN Constant, one-sided spectral density RIN ( )S f  for low f 1 

Q Quality factor of a resonator 1 

    ↳  Qi     ↳  Intrinsic quality factor of a resonator 1 

qe Elementary charge C 

S Complex Poynting vector W/m² 

S Complex signal constructed from the MZI3 currents A 

Se Effective-index sensitivity 1 

Se,τ Effective optoelectronic sensitivity A/W 

    ↳  Se,τ,max     ↳  Maximum achievable – optimized parameters A/W 

    ↳  Se,τ,peak     ↳  Peak within operating range A/W 

Senv Arbitrary environmental sensitivity of a waveguide mode * 

    ↳  
(hom)S      ↳  Homogeneous sensitivity of a waveguide mode 1 

    ↳  
(surf)S      ↳  Surface sensitivity of a waveguide mode 1/m 

    ↳  (surf)
optS      ↳  Optimized surface sensitivity of a waveguide mode 1/m 

Ssys System sensitivity of a complete photonic sensor * 

(SI,SQ) Clarke-transformed MZI3 output signals (in-phase/quadratic) 1 

SF Frequency noise spectrum Hz²/Hz 

    ↳  SF0     ↳  Scalar value for a flat frequency noise spectrum Hz²/Hz 

iPS  Laser input power spectrum W/Hz 

SRIN Relative intensity noise spectrum 1/Hz 

T Optical power transmission 1 

    ↳  T̂      ↳  Output contrast – difference between max/min 1 

    ↳  T0     ↳  Constant/flat transmission 1 

    ↳  TOP     ↳  In an operating point 1 

    ↳  TRR     ↳  Of a ring resonator 1 

    ↳  TLor     ↳  Of a Lorentzian resonance 1 

    ↳  Tmax     ↳  Maximum 1 
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Symbol Description Unit 

    ↳  Tmin     ↳  Minimum 1 

    ↳  TMMI,1x2     ↳  Of an 1×2 MMI 1 

    ↳  TMMI,2x3     ↳  Of an 2×3 MMI 1 

    ↳  TMMI,3x3     ↳  Of an 3×3 MMI 1 

    ↳  TMZI     ↳  Of an two-arm MZI 1 

    ↳  Topt     ↳  In the optimum operating point 1 

t Time s 

    ↳  Tobs     ↳  Experiment observation time s 

    ↳  TP     ↳  Laser frequency modulation period s 

t Electric field transmission matrix with coeff. tmn 1 

    ↳  tArms     ↳  Of the two 1×3 MZI arms 1 

    ↳  tMMIi     ↳  Of the input MMI in a 1×3 MZI 1 

    ↳  tMMIo     ↳  Of the output MMI in a 1×3 MZI 1 

    ↳  tMZI3     ↳  Of the 1×3 MZI 1 

tSL Effective thickness of a surface layer on a WG core surface m 

TR 2×2 transformation matrix 1 

ΔTrel Relative temperature difference K 

TOC Thermo-optic coefficient 1/K 

u Periodic modulation function for periodic WG modes 1 

V Volume m³ 

    ↳  VSL     ↳  Of the surface layer on the waveguide core m³ 

vg Group velocity in a material m/s 

veg Effective group velocity of a waveguide mode m/s 

w Width of a waveguide m 

    ↳  wopt     ↳  Optimized total width of a waveguide m 

    ↳  wslot     ↳  Slot width of a slot waveguide m 

    ↳  wrail     ↳  Rail width of a slot waveguide m 

    ↳  wrail,opt     ↳  Optimized rail width of a slot waveguide m 

W Length-related electric energy density J/m 

W  Noise propagation factors,  i s NEP q; ; ; ; ;T P I I I   var. 

(x,y,z) Cartesian coordinates m 

Z0 Free space wave impedance Ω 
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