Skip to main content

Raumakustische Simulation und Auralisation

  • Living reference work entry
  • First Online:
Handbuch der Audiotechnik

Zusammenfassung

In der Raumakustik können analytische Formeln und Computersimulationen verwendet werden, um die Akustik von Räumen vorherzusagen. In diesem Zusammenhang ist hauptsächlich die Raumimpulsantwort von Interesse. Sie bildet eine Art „Signatur“ des Raumes, aus der sich nicht nur die Nachhallzeit, sondern auch andere Parameter berechnen lassen, die mit der Wahrnehmung von Musik oder Sprache zusammenhängen. In diesem Kapitel werden die Grundlagen von Computersimulationen für Berechnungen von Impulsantworten erläutert, wobei die geometrische Akustik sowie wellenbasierte numerische Verfahren zur Sprache kommen. Beschreibungen und Datenformate für Schallquellen sowie für Reflexionseigenschaften von Oberflächen sind dabei wesentliche Voraussetzungen für eine Planung von Räumen und Beschallungsanlagen. Die Daten- und Signalverarbeitung ermöglicht es, durch eine Auralisation in die simulierten Räume hineinzuhören, um das Schallfeld im Raum auditorisch zu evaluieren. Mit einer Berechnung in Echtzeit wird dies zu einer wertvollen Erweiterung von Techniken der Virtuellen Realität. Fragen zur Genauigkeit von Simulationsverfahren und Anwendungsbeispiele runden dieses Kapitel ab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Ackermann, D., Böhm, C., Brinkmann, F., Weinzierl, S.: The acoustical effect of musicians’ movements during musical performances. Acta Acust. Acust. 105(2), 356–367 (2019)

    Article  Google Scholar 

  • Ackermann, D., Brinkmann, F., Zotter, F., Kob, M., Weinzierl, S.: Comparative evaluation of interpolation methods for the directivity of musical instruments. EURASIP Journal on Audio, Speech, and Music Processing 36, 1–14 (2021)

    Google Scholar 

  • Ahnert, W., Feistel, R.: Ray Tracing or Sound-Imaging. In: Audio Engineering Society Convention 89, paper 2993 (1990)

    Google Scholar 

  • Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65, 943–950 (1979)

    Article  Google Scholar 

  • Anding, E. (Hrsg.): Lamberts Photometrie. Drittes Heft: Theil VI und VII. Verlag Wilhelm Engelmann, Leipzig (1892)

    Google Scholar 

  • Barron, M.: Auditorium Acoustics and Architectural Design, 2 Aufl. Taylor & Francis, London (2010)

    Google Scholar 

  • Beranek, L.L.: Concert Halls and Opera Houses – Music, Acoustics and Architecture, 2 Aufl. Springer, New York (2004)

    Google Scholar 

  • Bork, I.: A comparison of room simulation software – the 2nd round robin on room acoustical computer simulation. Acust. Acta Acust. 86(6), 943–956 (2000)

    Google Scholar 

  • Bork, I.: Report on the 3rd round robin on room acoustical computer simulation – part I: measurements. Acta Acust. Acust. 91(4), 740–752 (2005a)

    Google Scholar 

  • Bork, I.: Report on the 3rd round robin on room acoustical computer simulation – part II: calculations. Acta Acust. Acust. 91(4), 753–763 (2005b)

    Google Scholar 

  • Brinkmann, F., Aspöck, L., Ackermann, D., Lepa, S., Vorländer, M., Weinzierl, S.: A round robin on room acoustical simulation and auralization. J. Acoust. Soc. Am. 145(4), 2746–2760 (2019)

    Article  Google Scholar 

  • Brinkmann, F., Aspöck, L., Ackermann, D., Opdam, R., Vorländer, M., Weinzierl, S.: Benchmark for room acoustical simulation. Concept and Database. Appl. Acoust. 176, 107867 (2021)

    Article  Google Scholar 

  • Cremer, L.: Die wissenschaftlichen Grundlagen der Raumakustik. S. Hirzel Verlag, Stuttgart (1948)

    Google Scholar 

  • Dalenbäck, B.-I.: Room acoustic prediction based on a unified treatment of diffuse and specular reflection. J. Acoust. Soc. Am. 100(2), 899–909 (1996)

    Article  Google Scholar 

  • DIN EN ISO 3382-1:2009. Akustik – Messung von Parametern der Raumakustik – Teil 1: Aufführungsräume

    Google Scholar 

  • Eyring, C.F.: Methods of calculating the average coefficient of sound absorption. J. Acoust. Soc. Am. 4(3), 178–192 (1933)

    Article  Google Scholar 

  • Feistel, S.: Modeling the radiation of modern sound reinforcement systems in high resolution. Dissertation RWTH Aachen, Logos Verlag, Berlin (2014)

    Google Scholar 

  • Feistel, S., Ahnert, W.: Modelling of loudspeaker systems using high-resolution data. J. Audio Eng. Soc. 55(7/8), 571–597 (2007)

    Google Scholar 

  • Feistel, S., Ahnert, W.: The effect of sample variation among cabinets of a line array on simulation accuracy. In: Audio Engineering Society Convention 127, paper 7842 (2009)

    Google Scholar 

  • Feistel, S., Goertz, A.: Digitally steered columns: comparison of different products by measurement and simulation. In: Audio Engineering Society Convention 135, paper 8935 (2013)

    Google Scholar 

  • Feistel, S., Ahnert, W., Bock, S.: New data format to describe complex sound sources. In: Audio Engineering Society Convention 119, paper 6631 (2005)

    Google Scholar 

  • Feistel, S., Ahnert, W., Miron, A., Schmitz, O.: Improved methods for calculating room impulse responses with EASE 4.2 AURA. In: Proceedings of 19th International Congress on Acoustics, Madrid (2007)

    Google Scholar 

  • Feistel, S., Sempf, M., Köhler, K., Schmalle, H.: Adapting loudspeaker array radiation to the venue using numerical optimization of FIR filters. In: Audio Engineering Society Convention 135, paper 8937 (2013)

    Google Scholar 

  • Harten, A. van der : Pachyderm acoustical simulation: towards open-source sound analysis. Archit. Des. 83(2), 138–139 (2013)

    Google Scholar 

  • ISO 17497-1:2004. Acoustics – Measurement of the sound scattering properties of surfaces – Part 1: Measurement of the random-incidence scattering coefficient in a reverberation room

    Google Scholar 

  • Keller, J.B.: Geometrical theory of diffraction. J. Opt. Soc. Am. 52(2), 116–130 (1962)

    Article  MathSciNet  Google Scholar 

  • Klippel, W., Bellmann, C.: Holographic nearfield measurement of loudspeaker directivity. In: Audio Engineering Society Convention 141, paper 9598 (2016)

    Google Scholar 

  • Kocon, P., Monson, B.B.: Horizontal directivity patterns differ between vowels extracted from running speech. J. Acoust. Soc. Am. 144(1), EL7-EL12 (2018)

    Article  Google Scholar 

  • Krijnen, T., Hornikx, M.: openPSTD: the open source implementation of the Pseudo Spectral Time-Domain method. In: Proceedings of Forum Acusticum. Krakow, Poland (2014)

    Google Scholar 

  • Krokstad, A., Strøm, S., Sørsdal, S.: Calculating the acoustical room response by the use of a ray-tracing technique. J. Sound Vib. 8(1), 118–125 (1968)

    Article  Google Scholar 

  • Kuttruff, H.: Room Acoustics, 5 Aufl. Taylor & Francis, London (2009)

    Google Scholar 

  • Kuttruff, H., Schroeder, M.R.: On frequency response curves in rooms. Comparison of experimental, theoretical, and Monte Carlo results for the average frequency spacing between maxima. J. Acoust. Soc. Am. 34(1), 76–80 (1962)

    Article  Google Scholar 

  • Maekawa, Z.: Noise reduction by screens. Appl. Acoust. 1(3), 157–173 (1968)

    Article  Google Scholar 

  • Maerke, D. van : Simulation of sound fields in time and frequency domain using a geometrical model. In: Proceedings of the 12th ICA, Vol. 2:E11-7, Toronto (1986)

    Google Scholar 

  • Mechel, F.P.: Improved mirror source method in room acoustics. J. Sound Vib. 256(5), 873–940 (2002)

    Article  Google Scholar 

  • Naylor, G.M.: Odeon – another hybrid room acoustical model. Appl. Acoust. 38(2–4), 131–143 (1993)

    Article  Google Scholar 

  • Norris, R.F., Andree, C.A.: An instrumental method of reverberation measurement. J. Acoust. Soc. Am. 1(3A), 366–372 (1930)

    Article  Google Scholar 

  • Otondo, F., Rindel, J.H.: A New Method for the Radiation Representation of Musical Instruments in Auralizations. Acta Acustica united with Acustica 91, 902–906 (2005)

    Google Scholar 

  • Panzer, J., Ferekidis, L.: The use of continuous phase for interpolation, smoothing and forming mean values of complex frequency response curves. In: Audio Engineering Society Convention 116, paper 6005 (2004)

    Google Scholar 

  • Pörschmann, C., Arend, J.M.: Analyzing the Directivity Patterns of Human Speakers. Fortschritte der Akustik, S. 16–19. DAGA, Hannover (2020)

    Google Scholar 

  • Postma, B., Demontis, H., Katz, B.: Subjective Evaluation of Dynamic Voice Directivity for Auralizations. Acta Acustica united with Acustica 103(2), 181–184 (2017)

    Google Scholar 

  • Sabine, W.C.: Collected Papers on Acoustics, Nr. 1. Harvard University Press, Cambridge, MA (1922)

    Google Scholar 

  • Schröder, D., Vorländer, M.: RAVEN: A real-time framework for the auralization of interactive virtual environments. In: Proceedings of Forum Acusticum, S. 1541–1546, Aalborg (2011)

    Google Scholar 

  • Schröder, M.R.: Die statistischen Parameter der Frequenzkurven von großen Räumen. Acustica. 4(5), 594–600 (1954)

    Google Scholar 

  • Siltanen, S., Lokki, T., Kiminki, S., Savioja, L.: The room acoustic rendering equation. J. Acoust. Soc. Am. 122(3), 1624–1635 (2007)

    Article  Google Scholar 

  • Stein, L., Straube, F., Sesterhenn, J., Weinzierl, S., Lemke, M.: Adjoint-based optimization of sound reinforcement including non-uniform flow. J. Acoust. Soc. Am. 146(3), 1774–1785 (2019)

    Article  Google Scholar 

  • Stein, L., Straube, F., Weinzierl, S., Lemke, M.: Directional sound source modeling using the adjoint Euler equations in a finite-difference time-domain approach. J. Acoust. Soc. Am. 148(5), 3075–3085 (2020)

    Article  Google Scholar 

  • Straube, F.: Optimized Geometric and Electronic Wavefront Shaping with Line Source Arrays for Large-scale Sound Reinforcement. Dissertation, TU Berlin (2019)

    Google Scholar 

  • Svensson, P., Fred, R.I., Vanderkooy, J.: Analytic secondary source model of edge diffraction impulse responses. J. Acoust. Soc. Am. 106(5), 2331–2344 (1999)

    Article  Google Scholar 

  • Thompson, A.: Improved methods for controlling touring loudspeaker arrays. In: Audio Engineering Society Convention 127, paper 7828 (2009)

    Google Scholar 

  • Vorländer, M.: Ein Strahlverfolgungsverfahren zur Berechnung von Schallfeldern in Räumen. Acustica. 65(3), 138–148 (1988)

    Google Scholar 

  • Vorländer, M.: Simulation of the transient and steady state sound propagation in rooms using a new combined ray-tracing/image-source algorithm. J. Acoust. Soc. Am. 86(1), 172–178 (1989)

    Article  Google Scholar 

  • Vorländer, M.: International round robin on room acoustical computer simulations. In: Proceedings 15th ICA 95, Trondheim (1995)

    Google Scholar 

  • Vorländer, M.: Computer simulations in room acoustics: Concepts and uncertainties. J. Acoust. Soc. Am. 133(3), 1203–1213 (2013)

    Article  Google Scholar 

  • Vorländer, M.: Auralization – Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality, 2 Aufl. Springer Nature, Cham (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Vorländer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vorländer, M., Feistel, S. (2023). Raumakustische Simulation und Auralisation. In: Weinzierl, S. (eds) Handbuch der Audiotechnik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60357-4_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60357-4_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60357-4

  • Online ISBN: 978-3-662-60357-4

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics