Skip to main content
Log in

Felsic maar-diatreme volcanoes: a review

  • Review Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Felsic maar-diatreme volcanoes host major ore deposits but have been largely ignored in the volcanology literature, especially for the diatreme portion of the system. Here, we use two Mexican tuff rings as analogs for the maar ejecta ring, new observations from one diatreme, and the economic geology literature on four other mineralized felsic maar-diatremes to produce an integrated picture of this type of volcano. The ejecta rings are up to 50 m+ thick and extend laterally up to ∼1.5 km from the crater edge. In two Mexican examples, the lower part of the ejecta ring is dominated by pyroclastic surge deposits with abundant lithic clasts (up to 80% at Hoya de Estrada). These deposits display low-angle cross-bedding, dune bedforms, undulating beds, channels, bomb sags, and accretionary lapilli and are interpreted as phreatomagmatic. Rhyolitic juvenile clasts at Tepexitl have only 0–25% vesicles in this portion of the ring. The upper parts of the ejecta ring sequences in the Mexican examples have a different character: lithic clasts can be less abundant, the grain size is typically coarser, and the juvenile clasts can be different in character (with some more vesicular fragments). Fragmentation was probably shallower at this stage. The post-eruptive maar crater infill is known at Wau and consists of reworked pyroclastic deposits as well as lacustrine and other sediments. Underneath are bedded upper diatreme deposits, interpreted as pyroclastic surge and fall deposits. The upper diatreme and post-eruptive crater deposits have dips larger than 30° at Wau, with approximately centroclinal attitudes. At still lower structural levels, the diatreme pyroclastic infill is largely unbedded; Montana Tunnels and Kelian are good examples of this. At Cerro de Pasco, the pyroclastic infill seems bedded despite about 500 m of post-eruptive erosion relative to the pre-eruptive surface. The contact between the country rocks and the diatreme is sometimes characterized by country rock breccias (Kelian, Mt. Rawdon). Pyroclastic rocks in the diatreme are typically poorly sorted, and ash-rich. They contain a heterolithic mix of juvenile clasts and lithic clasts from various stratigraphic levels. Megablocks derived from the ejecta ring or the country rocks are often found in the diatremes. Evidence for multiple explosions is in the form of steep crosscutting pyroclastic bodies within some diatremes and fragments of pyroclastic rocks within other pyroclastic facies. Pyroclastic rocks are cut by coherent felsic dikes and plugs which may have been feeders to lava domes at the surface. Allowing for the difference in magma composition, felsic maar-diatreme volcanoes have many similarities with their ultramafic to mafic equivalents. Differences include a common association with felsic domes, inside the crater or just outside (Wau), although the domes within the crater may be destroyed during the eruption (Hoya de Estrada, Tepexitl); the dikes and plugs feeding and invading felsic diatremes seem larger; the processes of phreatomagmatic explosions involving felsic magmas may be different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Acıgöl maar in Turkey is reported to be rhyolitic (Gençalioğlu-Kuşcu et al. 2012), but unfortunately, no details are available.

  2. In general, it should be noted that the fiamme or eutaxitic texture in pumiceous deposits is not always due to welding (Gifkins et al. 2005; Bull and McPhie 2007).

References

  • Angus M, Lewis RW (1996) Mt. Rawdon gold project—feasibility study, volume 1—geology. Internal company report. Placer Pacific Ltd, Sydney 59 p

    Google Scholar 

  • Austin-Erickson A, Büttner R, Dellino P, Ort MH, Zimanowski B (2008) Phreatomagmatic explosions of rhyolitic magma: experimental and field evidence. J. Geophys. Res. 113:paper B11201

  • Austin-Erickson A, Ort MH, Carrasco-Núñez G (2011) Rhyolitic phreatomagmatism explored: Tepexitl tuff ring (Eastern Mexican Volcanic Belt). J Volcanol Geotherm Res 201:325–341

    Article  Google Scholar 

  • Baumgartner R (2007) Sources and evolution in space and time of hydrothermal fluids at the Cerro de Pasco Cordilleran base metal deposit, central Peru. PhD thesis, Université de Genève, Switzerland, 167 p

  • Baumgartner R, Fontboté L, Vennemann T (2008) Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Econ Geol 103:493–537

    Article  Google Scholar 

  • Baumgartner R, Fontboté L, Spikings R, Ovtcharova M, Schaltegger U, Schneider J, Page L, Gutjahr M (2009) Bracketing the age of magmatic-hydrothermal activity at the Cerro de Pasco epithermal polymetallic deposit, central Peru: a U-Pb and 40Ar/39Ar study. Econ Geol 104:479–504

    Article  Google Scholar 

  • Bendezú R, Fontboté L, Cosca M (2003) Relative age of Cordilleran base metal lode and replacement deposits, and high sulfidation Au–(Ag) epithermal mineralization in the Colquijirca mining district, central Peru. Mineral Deposita 38:683–694

    Article  Google Scholar 

  • Brooker M (1991) Geology, alteration and mineralization of the Mount Rawdon diatreme-hosted gold deposit. MSc thesis, James Cook University of North Queensland, Australia, 180 p

  • Brooker M, Jaireth S (1995) Mount Rawdon, Southeast Queensland, Australia; a diatreme-hosted gold-silver deposit. Econ Geol 90:1799–1817

    Article  Google Scholar 

  • Brooker MR, Houghton BF, Wilson CJN, Gamble JA (1993) Pyroclastic phases of a rhyolitic dome-building eruption: Puketarata tuff ring, Taupo Volcanic Zone, New Zealand. Bull. Volc. 55:395–406

    Article  Google Scholar 

  • Buchel G, Lorenz V (1993) Syn- and post-eruptive mechanism of the alaskan Ukinrek maars in 1977. In: Negendank JFW, Zolitschka B (eds) Paleolimnology of European Maar Lakes, Lecture Notes in Earth Sciences 49, pp 15–60

  • Bull KF, McPhie J (2007) Fiamme textures in volcanic successions: flaming issues of definition and interpretation. J Volcanol Geotherm Res 164:205–216

    Article  Google Scholar 

  • Büttner R, Dellino P, Zimanowski B (1999) Identifying magma-water interaction from the surface features of ash particles. Nature 401:688–690

    Article  Google Scholar 

  • Cano-Cruz M (2007) Evolución del volcán Hoya de Estrada. MSc thesis, Universidad Nacional Autónoma de México, 136 p

  • Cano-Cruz M, Carrasco-Núñez G (2008) Evolución de un cráter de explosión (maar) riolítico: Hoya de estrada, campo volcánico valle de Santiago, Guanajuato, México [Evolution of a rhyolitic explosion crater (maar): Hoya de Estrada, Valle de Santiago volcanic field, Guanajuato, Mexico]. Revista Mexicana de Ciencias Geologicas 25:549–564

    Google Scholar 

  • Carrasco-Núñez G, Ort M (2012) Rhyolitic and basaltic maar volcanoes, a perspective from Mexican volcanism [extended abstract]. Forth International Maar Conference, Auckland, New Zealand, Abstract volume, p. 21–22. (https://vhub.org/resources/1435/download/4IMC_Abstract_Volume.pdf)

  • Carrasco-Núñez G, Ort MH, Romero C (2007) Evolution and hydrological conditions of a maar volcano (Atexcac crater, Eastern Mexico). J Volcanol Geotherm Res 159:179–197

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient. Allen & Unwin, London 528 p

    Book  Google Scholar 

  • Cashman KV, Scheu B (2015) Magmatic fragmentation. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes, Second edn. Academic Press, London, pp 459–471

    Chapter  Google Scholar 

  • Cashman KV, Sturtevant B, Papale P, Navon O (2000) Magmatic fragmentation. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, London, pp 421–430

    Google Scholar 

  • Chough SK, Sohn YK (1990) Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37:1115–1135

    Article  Google Scholar 

  • Cranfield LC (1994) Maryborough—sheet SG56-6, 1:250,000 geological series—explanatory notes. Geological Survey of Queensland, Brisbane 120 p

    Google Scholar 

  • Corbett GJ, Leach TM (1998) Southwest Pacific Rim gold-copper systems: structure, alteration, and mineralization. Society of Economic Geologists, Special Publication 6, 238 p

  • Davies AGS (2002) Geology and genesis of the Kelian gold Deposit, East Kalimantan, Indonesia. PhD thesis, University of Tasmania, Australia

  • Davies AGS, Cooke DR, Gemmell JB, van Leeuwen T, Cesare P, Hartshorn G (2008a) Hydrothermal breccias and veins at the Kelian gold mine, Kalimantan, Indonesia: genesis of a large epithermal gold deposit. Econ Geol 103:717–757

    Article  Google Scholar 

  • Davies AGS, Cooke DR, Gemmell JB, Simpson KA (2008b) Diatreme breccias at the Kelian gold mine, Kalimantan, Indonesia: precursors to epithermal gold mineralization. Econ Geol 103:689–716

    Article  Google Scholar 

  • Delaney PT, Pollard DD (1981) Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico. US Geological Survey, Professional Paper 1202, 61 p

  • Delpit S, Ross P-S, Hearn BC (2014) Deep-bedded ultramafic diatremes in the Missouri River Breaks volcanic field, Montana, USA: 1 km of syn-eruptive subsidence. Bull. Volc. 76:Art. 832

  • Erickson AA (2007) Phreatomagmatic eruptions of rhyolitic magma: a case study of Tepexitl tuff ring, Serdán-Oriental basin, Mexico. MSc thesis, Northern Arizona University, USA, 234 p

  • Evolution Mining Limited (2016) Annual mineral resources and ore reserves statement, 21 April 2016, 66 p. Downloaded from http://www.evolutionmining.com.au on June 8, 2016

  • Fisher RV, Waters AC (1970) Base surge forms in maar volcanoes. Am J Sci 268:157–180

    Article  Google Scholar 

  • Gençalioğlu-Kuşcu G, Nemeth K, Stewart RB (2012) Morphological and chemical diversity of maars in Central Anatolian Volcanic Province (Turkey). Fourth international maar conference, Auckland, New Zealand; Abstract volume, p. 31–32

  • Gifkins CC, Allen RL, McPhie J (2005) Apparent welding textures in altered pumice-rich rocks. J Volcanol Geotherm Res 142:29–47

    Article  Google Scholar 

  • Graettinger AH, Valentine GA, Sonder I, Ross P-S, White JDL (2015) Facies distribution of ejecta in analog tephra rings from experiments with single and multiple subsurface explosions. Bull. Volc. 77:Article 66

  • Gurney JJ, Menzies AH (1998) Small mines field guide. Seventh International Kimberlite Conference, Cape Town, 40 p

  • Hanson RE, Wilson TJ (1993) Large-scale rhyolitic peperites (Jurassic, southern Chile). J Volcanol Geotherm Res 54:247–264

    Article  Google Scholar 

  • Hayman PC, Cas RAF (2011) Reconstruction of a multi-vent kimberlite eruption from deposit and host rock characteristics: Jericho kimberlite, Nunavut, Canada. J Volcanol Geotherm Res 200:201–222

    Article  Google Scholar 

  • Heiken G (1974) An atlas of volcanic ash. Smithsonian Contributions to the Earth Sciences No. 12, 101 p

  • Heiken G, Wohletz K (1987) Tephra deposits associated with silicic domes and lava flows. In: Fink JH (ed) The emplacement of silicic domes and lava flows. Geological Society of America, Special Paper 212, p. 55–76

  • Hewson N, Leary S, Feier N (2005) Tarina and Rodu: gold mineralisation hosted in maar-diatreme contact environments in the Apuseni Mountains, Romania. Au-Ag-Te-Se deposits, Proceedings of the 2005 Field Workshop, Kiten, Bulgaria, p. 93–101

  • Howell FH, Molloy JS (1960) Geology of the Braden orebody, Chile, South America. Econ Geol 55:863–905

    Article  Google Scholar 

  • Kereszturi G, Németh K, Cronin SJ, Procter J, Agustín-Flores J (2014) Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 286:101–115

    Article  Google Scholar 

  • Kienle J, Kyle PR, Self S, Motyka R, Lorenz V (1980) Ukinrek Maars, Alaska, I. Eruption sequence, petrology and tectonic setting. J Volcanol Geotherm Res 7:11–37

    Article  Google Scholar 

  • Lefebvre NS, White JDL, Kjarsgaard BA (2013) Unbedded diatreme deposits reveal maar-diatreme-forming eruptive processes: Standing Rocks West, Hopi Buttes, Navajo Nation. USA. Bull. Volc. 75:1–17

    Google Scholar 

  • Leys CA (1983) Volcanic and sedimentary processes during formation of the Saefell tuff-ring, Iceland. Trans R Soc Edinb Earth Sci 74:15–22

    Article  Google Scholar 

  • Lorenz V (1973) On the formation of maars. Bull. Volc. 37:183–204

    Article  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull. Volc. 48:265–274

    Article  Google Scholar 

  • Lorenz V (2007) Syn- and posteruptive hazards of maar-diatreme volcanoes. J Volcanol Geotherm Res 159:285–312

    Article  Google Scholar 

  • Lorenz V, Haneke J (2004) Relationship between diatremes, dykes, sills, laccoliths, intrusive-extrusive domes, lava flows, and tephra deposits with unconsolidated water-saturated sediments in the late Variscan intermontane Saar-Nahe Basin, SW Germany. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society, London, Special Publication 234, pp 75–124

  • Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. J Volcanol Geotherm Res 159:4–32

    Article  Google Scholar 

  • Lorenz V, Zimanowski B (2008) Volcanology of the West Eifel maars and its relevance to the understanding of kimberlite pipes [fieldtrip guidebook]. Ninth International Kimberlite Conference, Frankfurt am Main, Germany, 84 p.

  • Lorenz V, Suhr P (2012) On differences and similarities between maar-diatreme volcanoes and explosive collapse calderas. Fourth international maar conference, Auckland, New Zealand; Abstract volume, p. 58–59

  • Manske SL, Hedenquist JW, O’Connor G, Tămaş C, Cauuet B, Leary S, Minut A (2006) Roşia Montană. Romania: Europe’s largest gold deposit: Society of Economic Geologists Newsletter 64:1–15

    Google Scholar 

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Plenum Press, New York 442 p

    Book  Google Scholar 

  • Németh K, Kereszturi G (2015) Monogenetic volcanism: personal views and discussion. Int J Earth Sci 104:2131–2146

    Article  Google Scholar 

  • Nemeth K, Risso C, Maeno F (2009) Different eruption mechanisms forming similar landforms; large maars and small calderas from Argentina and Japan. Programme with Abstracts, International Geomorphology Conference, Melbourne, Australia, Abstract no. 50

  • Ort MH, Carrasco-Núñez G (2009) Lateral vent migration during phreatomagmatic and magmatic eruptions at Tecuitlapa maar, east-central Mexico. J Volcanol Geotherm Res 181:67–77

    Article  Google Scholar 

  • Palladino DM, Valentine GA, Sottili G, Taddeucci J (2015) Maars to calderas: end-members on a spectrum of explosive volcanic depressions. Frontiers in Earth Science 3, article 36

  • Pirrung M, Büchel G, Lorenz V, Treutler H-C (2008) Post-eruptive development of the Ukinrek East Maar since its eruption in 1977 A.D. in the periglacial area of south-west Alaska. Sedimentology 55:305–334

    Article  Google Scholar 

  • Porritt LA, Cas RAF, Crawford BB (2008) In-vent column collapse as an alternative model for massive volcaniclastic kimberlite emplacement: an example from the Fox kimberlite, Ekati Diamond Mine, NWT, Canada. J Volcanol Geotherm Res 174:90–102

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, London, pp 263–269

    Google Scholar 

  • Rogers RD (1983) Structural and geochemical evolution of a mineralized volcanic vent at Cerro de Pasco, Peru. PhD thesis, University of Arizona, USA

  • Ross P-S, White JDL (2006) Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica. J Volcanol Geotherm Res 149:62–84

    Article  Google Scholar 

  • Ross P-S, White JDL (2012) Quantification of vesicle characteristics in some diatreme-filling deposits, and the explosivity levels of magma-water interactions within diatremes. J Volcanol Geotherm Res 245-246:55–67

    Article  Google Scholar 

  • Ross P-S, White JDL, Zimanowski B, Büttner R (2008a) Rapid injection of particles and gas into non-fluidized granular material: volcanological implications. Bull. Volc. 70:1151–1168

    Article  Google Scholar 

  • Ross P-S, White JDL, Zimanowski B, Büttner R (2008b) Multiphase flow above explosion sites in debris-filled volcanic vents: insights from analogue experiments. J Volcanol Geotherm Res 178:104–112

    Article  Google Scholar 

  • Ross P-S, Delpit S, Haller MJ, Németh K, Corbella H (2011) Influence of the substrate on maar-diatreme volcanoes—an example of a mixed setting from the Pali Aike volcanic field, Argentina. J Volcanol Geotherm Res 201:253–271

    Article  Google Scholar 

  • Ross P-S, White JDL, Valentine GA, Taddeucci J, Sonder I, Andrews RG (2013) Experimental birth of a maar-diatreme volcano. J Volcanol Geotherm Res 260:1–12

    Article  Google Scholar 

  • Rottas KM, Houghton BF (2012) Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O’ahu, Hawai’i. Bull. Volc. 74:1683–1697

    Article  Google Scholar 

  • Rust AC, Cashman KV, Wallace PJ (2004) Magma degassing buffered by vapor flow through brecciated conduit margins. Geology 32:349–352

    Article  Google Scholar 

  • Schaefer J (2012) Montana Tunnels Mining, Inc., Mine redevelopment: part II. Presentation given at the Montana Tech Mine Design, Operations & Closure Conference, downloaded from http://www.mtech.edu/mwtp/conference/2012_presentations/John%20Schaefer.pdf on March 3, 2016

  • Sheridan MF, Updike RG (1975) Sugarloaf Mountain tephra—a Pleistocene rhyolitic deposit of base-surge origin in northern Arizona. Geol Soc Am Bull 86:571–581

    Article  Google Scholar 

  • Sieh K, Bursik M (1986) Most recent eruption of the Mono Craters, eastern central California. J Geophys Res 91:12539–12571

    Article  Google Scholar 

  • Silberman ML, Noble DC (1977) Age of igneous activity and mineralization, Cerro de Pasco, central Peru. Econ Geol 72:925–930

    Article  Google Scholar 

  • Sillitoe RH (1985) Ore-related breccias in volcanoplutonic arcs. Econ Geol 80:1467–1514

    Article  Google Scholar 

  • Sillitoe RH (1994) Indonesian mineral deposits—introductory comments, comparisons and speculations. J Geochem Explor 50:1–11

    Article  Google Scholar 

  • Sillitoe RH (1997) Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Aust J Earth Sci 44:373–388

    Article  Google Scholar 

  • Sillitoe RH, Bonham HF (1984) Volcanic landforms and ore deposits. Econ Geol 79:1286–1298

    Article  Google Scholar 

  • Sillitoe RH, Angeles CA (1985) Geological characteristics and evolution of a gold-rich porphyry copper deposit at Guinaoang, Luzon, Philippines. In: Asian Mining ‘85. Institution of Mining and Metallurgy, London, pp 15–26

    Google Scholar 

  • Sillitoe RH, Baker EM, Brook WA (1984) Gold deposits and hydrothermal eruption breccias associated with a maar volcano at Wau, Papua New Guinea. Econ Geol 79:638–655

    Article  Google Scholar 

  • Sillitoe RH, Grauberger GL, Elliott JE (1985) A diatreme-hosted gold deposit at Montana Tunnels Montana. Econ Geol 80:1707–1721

    Article  Google Scholar 

  • Sillitoe RH, Tolman J, Van Kerkvoort G (2013) Geology of the Caspiche porphyry gold-copper deposit, Maricunga belt, northern Chile. Econ Geol 108:585–604

    Article  Google Scholar 

  • Skewes MA, Arévalo A, Floody R, Zuñiga PH, Stern CR (2002) The giant El Teniente breccia deposit: hypogene copper distribution and emplacement. In: Goldfarb RJ, Nielsen RL (eds) Integrated methods for discovery: global exploration in the 21st century. Society of Economic Geologists, Special Publication 9, pp 299–332

  • Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geotherm Res 155:18–48

    Article  Google Scholar 

  • Stiefenhofer J, Farrow DJ (2004) Geology of the Mwadui kimberlite, Shinyanga district, Tanzania. Lithos 76:139–160

    Article  Google Scholar 

  • Suhr P, Goth K, Lorenz V (2006) Long lasting subsidence and deformation in and above maar-diatreme volcanoes—a never ending story. Z Dtsch Ges Geowiss 157:491–511

    Google Scholar 

  • Taddeucci J, Valentine GA, Sonder I, White JDL, Ross P-S, Scarlato P (2013) The effect of pre-existing craters on the initial development of explosive volcanic eruptions: an experimental investigation. Geophys Res Lett 40:507–510

    Article  Google Scholar 

  • Tămaş CG, Minuţ A (2012) Cetate Breccia, Roşia Montana, Romania—a dacite-related Au-Ag mineralized maar-diatreme structure. Fourth international maar conference, Auckland, New Zealand; Abstract volume, p. 89–90

  • Tait MA, Cas RAF, Viramonte JG (2009) The origin of an unusual tuff ring of perlitic rhyolite pyroclasts: the last explosive phase of the Ramadas Volcanic Centre, Andean Puna, Salta, NW Argentina. J Volcanol Geotherm Res 183:1–16

    Article  Google Scholar 

  • Thompson TB, Trippel AD, Dwelley PC (1985) Mineralized veins and breccias of the Cripple Creek District. Colorado Econ Geol 80:1669–1688

    Article  Google Scholar 

  • Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31:1089–1092

    Article  Google Scholar 

  • Valentine GA, White JDL (2012) Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology 40:1111–1114

    Article  Google Scholar 

  • Valentine GA, Graettinger AH, Sonder I (2014) Explosion depths for phreatomagmatic eruptions. Geophys. Res. Lett. 41:2014GL060096

  • Valentine GA, Graettinger AH, Macorps E, Ross P-S, White JDL, Döhring E, Sonder I (2015) Experiments with vertically- and laterally-migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes. Bull. Volc. 77:Art 15, doi:10.1007/s00445-015-0901-7

  • van Otterloo J, Cas RAF (2016) Low-temperature emplacement of phreatomagmatic pyroclastic flow deposits at the monogenetic Mt Gambier Volcanic Complex, South Australia, and their relevance for understanding some deposits in diatremes. J Geol Soc 173:701–710

    Article  Google Scholar 

  • Vazquez JA, Ort MH (2006) Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. J Volcanol Geotherm Res 154:222–236

    Article  Google Scholar 

  • Wallier S, Rey R, Kouzmanov K, Pettke T, Heinrich CA, Leary S, O’Connor G, Tămaş CG, Vennemann T, Ullrich T (2006) Magmatic fluids in the breccia-hosted epithermal Au-Ag deposit of Roşia Montană, Romania. Econ Geol 101:923–954

    Article  Google Scholar 

  • Walters AL, Phillips JC, Brown RJ, Field M, Gernon T, Stripp G, Sparks RSJ (2006) The role of fluidisation in the formation of volcaniclastic kimberlite: grain size observations and experimental investigation. J Volcanol Geotherm Res 155:119–137

    Article  Google Scholar 

  • White JDL (1989) Basic elements of maar-crater deposits in the Hopi Buttes volcanic field, northeastern Arizona. USA J Geol 97:117–125

    Article  Google Scholar 

  • White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona). USA Bull Volc 53:239–258

    Article  Google Scholar 

  • White JDL, Schmincke H-U (1999) Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands). J Volcanol Geotherm Res 94:283–304

    Article  Google Scholar 

  • White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Article  Google Scholar 

  • White JDL, Ross P-S (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29

    Article  Google Scholar 

  • White JDL, Valentine GA (2016) Magmatic versus phreatomagmatic fragmentation: absence of evidence is not evidence of absence. Geosphere. doi:10.1130/GES01337.1

    Google Scholar 

  • Woolsey TS, McCallum ME, Schumm SA (1975) Modeling of diatreme emplacement by fluidization. First international conference on kimberlites, Physics and Chemistry of the Earth 9, Pergamon, pp 11–24

  • Zimanowski B, Büttner R (2002) Dynamic mingling of magma and liquefied sediments. J Volcanol Geotherm Res 114:37–44

    Article  Google Scholar 

  • Zimanowski B, Fröhlich G, Lorenz V (1991) Quantitative experiments on phreatomagmatic explosions. J Volcanol Geotherm Res 48:341–358

    Article  Google Scholar 

  • Zimanowski B, Fröhlich G, Lorenz V (1995) Experiments on steam explosion by interaction of water with silicate melts. Nucl Eng Des 155:335–343

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Lorenz V, Häfele H-G (1997a) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res 102:803–814

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Lorenz V (1997b) Premixing of magma and water in MFCI experiments. Bull. Volc. 58:491–495

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Delino P, White JDL, Wohletz K (2015) Magma-water interaction and phreatomagmatic fragmentation. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes, Second edn. Academic Press, London, pp 473–484

    Chapter  Google Scholar 

  • Zimmer BW, Riggs NR, Carrasco-Núñez G (2010) Evolution of tuff ring-dome complex: the case study of Cerro Pinto, eastern Trans-Mexican Volcanic Belt. Bull Volc 72:1223–1240

    Article  Google Scholar 

Download references

Acknowledgements

The initial manuscript was written while P.-S.R. was on sabbatical at Queensland University of Technology (QUT) in Brisbane, Australia. P.-S.R. acknowledges Discovery Grant funding from NSERC. Brian Jicha dated the Tepexitl sample, and partial support for dating was provided by Conacyt grant CB-150900 to G.C.N. Evolution Mining Limited is acknowledged for logistical support during fieldwork at Mt. Rawdon. Samson Wangi in particular is thanked for sharing his knowledge of the geology there and facilitating everything. T. Watson showed the senior author some interesting core intervals at Mt. Rawdon. James D.L. White made useful comments on an early draft of the manuscript. We thank Karoly Nemeth, Dick Sillitoe, and Greg Valentine for constructive comments on the submitted version, which helped to significantly improve the paper. Acting executive editor Steve Self is thanked for final suggestions on the revised version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Simon Ross.

Additional information

Editorial responsibility: S. Self

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, PS., Carrasco Núñez, G. & Hayman, P. Felsic maar-diatreme volcanoes: a review. Bull Volcanol 79, 20 (2017). https://doi.org/10.1007/s00445-016-1097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1097-1

Keywords

Navigation