Skip to main content
Log in

Senfgas, Stickstofflost, Lewisit und Phosgenoxim

Hautschädigende Militärkampfstoffe und deren Bedeutung für die Rettungsdienste, Feuerwehren, Polizei und das Militär

  • Konzepte & Qualitätsmanagement
  • Published:
Notfall & Rettungsmedizin Aims and scope Submit manuscript

Zusammenfassung

Hautkampfstoffe sind, wie andere chemische Kampfstoffe, seit der Genfer Konvention von 1925 und der Konferenz von Paris zum Verbot von Chemiewaffen im Jahre 1989 verboten. Trotz solcher Verbote wurden weiterhin chemische Kampfstoffe produziert und auch eingesetzt. Ein Einsatz von Hautkampfstoffen durch Terroristen gegen die Zivilbevölkerung wäre eine bedeutende Herausforderung für das Gesundheitspersonal im Rettungsdienst und im Krankenhaus. Planungsstäbe von Rettungsdiensten und der Polizei müssen ein solches Szenario in ihren Vorbereitungen zur Gefahrenabwehr zugunsten der Zivilbevölkerung mit einbeziehen. Hautkampfstoffe wie Senfgas schädigen hauptsächlich die Haut, die Augen und die Atemwege durch chemische Verbrennungen. Sofortige Entfernung aus der Gefahrenzone und rasche Dekontamination sind die wichtigsten Maßnahmen bei der Soforthilfe von Senfgasopfern. Hautkampfstoffe haben eine niedrige Mortalität und eine hohe Morbidität mit langen Krankenhausaufenthalten. Die Behandlung von Kampfstoffopfern in Krankenhäusern besteht v. a. aus unterstützender Therapie. Die Krankheitsverläufe sind langwierig, und viele ehemalige Opfer haben jahrelange Folgeschäden. Es gibt keine Antidote gegen Hautkampfstoffe, außer gegen Lewisit, wogegen Britisch Anti-Lewisit (BAL) zur Verfügung steht.

Abstract

Like other chemical warfare agents, blistering agents have been prohibited since the Geneva Convention of 1925 and the Paris Conference on Prohibition of Chemical Weapons in 1989. Despite such prohibitions, chemical weapons continue to be produced and used. Terrorist use of blistering agents against a civilian population would be a significant challenge to healthcare providers in the prehospital and hospital setting, as well as to law enforcement officials. Emergency medical services and law enforcement planners should include such a scenario in their preparations in order to protect civilian populations. Blistering agents predominantly damage the skin, eyes, and respiratory system by causing chemical burns. The most important and immediate measures for victims of a blistering agent attack are quick removal from the exposure and decontamination of the affected individuals. Injuries from blistering agents produce low mortality but high morbidity, and are associated with long periods of hospitalization. The mainstay of therapy for victims is supportive care. The natural course of disease for vesicant injuries is protracted and many victims have disabilities for many years. There are no antidotes for blistering agents, other than British anti-lewisite (BAL) for lewisite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Bey T, Walter FG (2002) Sarin, Soman, Tabun und VX. Notfall Rettungsmed 5: 462–468

    Article  Google Scholar 

  2. Compton JAF (1988) Blister agents. In: Military chemical and biological agents. Telford, Caldwell, pp 6–86

  3. Sidell FR, Urbanetti JS, Smith WJ et al.(1997) Vesicants. In: Sidell FR, Takafuji ER, Franz DR (eds) Textbook of military medicine. TMM Publications Borden Institute, Walter Reed Army Medical Center, Washington, pp 197–228

  4. Kim YH, Martinez G, Varghese A, Hoppe RT (2003) Topical nitrogen mustard in the management of mycosis fungoides: update of the Stanford experience. Arch Dermatol 139: 165–173

    CAS  PubMed  Google Scholar 

  5. Karrer K, Denck H, Obermair H, Pridun N, Zwintz E (1982) Combination of surgery and polychemotherapy for cure in early small- cell bronchial carcinoma. Bull Cancer 69: 94–97

    CAS  PubMed  Google Scholar 

  6. Smart KJ (1997) History of chemical and biological warfare: an American perspective. In: Sidell FR, Takafuji ER, Franz DR (eds) Textbook of military medicine. TMM Publications Borden Institute, Walter Reed Army Medical Center, Washington, pp 9–86

  7. Evison D, Hinsley D, Rice P (2002) Chemical weapons. BMJ 324: 332–335

    Article  CAS  PubMed  Google Scholar 

  8. Manley RG (1988) The problem of old chemcial weapons which contain "mustard gas" or organosarsenic compounds: an overview. In: Bunett JF, Mikolajczyk M (eds) Arsenic and old mustard: chemical problems in the destruction of old arsenical and "mustard" munitions. Kluwer Academic Publishers, Dordrecht, pp 1–16

  9. Ruhl CM, Park SJ, Danisa O et al. (1994) A serious skin sulfur mustard burn from an artillery shell. J Emerg Med 12: 159–166

    CAS  PubMed  Google Scholar 

  10. Wertejuk Z, Mieczyslaw K, Wlodzimierz M (1998) Recovered old arsenical and "mustard" munitions in Poland. In: Bunett JF, Mikolajczyk M (eds) Arsenic and old mustard: chemical problems in the destruction of old arsenical and "mustard" munitions. Kluwer Academic Publishers, Dodrecht, pp 91–104

  11. Karalliedde L, Wheeler H, Maclehose R, Murray V (2000) Possible immediate and long-term health effects following exposure to chemical warfare agents. Public Health 114: 238–248

    CAS  PubMed  Google Scholar 

  12. Sidell FR, Franz DR (1998) Overview: defense against the effects of chemical and biological warfare agents. In: Sidell FR, Takafuji ER, Franz DR (eds) Textbook of military medicine. TMM Publications Borden Institute, Walter Reed Army Medical Center, Washington, pp 1–7

  13. Garrett BC (1999) Arsenic and old mustard: chemical problems of old arsenical and 'mustard' munitions (Joseph F. Bunnett and Marian Mikotajczyk, eds). J Chem Educ 76: 1346

    CAS  Google Scholar 

  14. Sidell FR (1996) Chemical agent terrorism. Ann Emerg Med 28: 223–224

    CAS  PubMed  Google Scholar 

  15. Takafuji ER, Kok AB (1997) The chemical warfare threat and the military healthcare provider. In: Sidell FR, Takafuji ER, Franz DR (eds) Textbook of military medicine. TMM Publications Borden Institute, Walter Reed Army Medical Center., Washington, pp 111–128

  16. Lakshmana Rao PV, Vijayaraghavan R, Bhaskar AS (1999) Sulphur mustard induced DNA damage in mice after dermal and inhalation exposure. Toxicology 139: 39–51

    Article  PubMed  Google Scholar 

  17. Vidan A, Luria S, Eisenkraft A, Hourvitz A (2002) Ocular injuries following sulfur mustard exposure: clinical characteristics and treatment. Isr Med Assoc J 4: 577–578

    PubMed  Google Scholar 

  18. Mellor SG, Rice P, Cooper GJ (1991) Vesicant burns. Br J Plast Surg 44: 434–437

    CAS  PubMed  Google Scholar 

  19. Eisenmenger W, Drasch G, von Clarmann M, Kretschmer E, Roider G (1991) Clinical and morphological findings on mustard gas [bis(2- chloroethyl)sulfide] poisoning. J Forensic Sci 36: 1688–1698

    CAS  PubMed  Google Scholar 

  20. NIOSH (2002) Chemical Warfare Agent (CWA) Simulant Program for Respirator Materials Resistance Testing. In:http://www.cdc.gov/niosh/npptl/pdfs/simulantjul31.pdf

  21. Hurst CG (1997) Decontamination. In: Sidell FR, Takafuji ER, Franz DR (eds) Textbook of military medicine. TMM Publications Borden Institute, Walter Reed Army Medical Center, Washington, pp 351–359

  22. Koper O, Lucas E, Klabunde KJ (1999) Development of reactive topical skin protectants against sulfur mustard and nerve agents. J Appl Toxicol 19 Suppl 1: S59–70

    Google Scholar 

  23. Braue EH, Jr. (1999) Development of a reactive topical skin protectant. J Appl Toxicol 19 Suppl 1: S47–53

    Google Scholar 

  24. Wormser U, Brodsky B, Green BS, Arad-Yellin R, Nyska A (1997) Protective effect of povidone-iodine ointment against skin lesions induced by sulphur and nitrogen mustards and by non-mustard vesicants. Arch Toxicol 71: 165–170

    Article  PubMed  Google Scholar 

  25. Wormser U, Brodsky B, Green BS, Arad-Yellin R, Nyska A (2000) Protective effect of povidone iodine ointment against skin lesions induced by chemical and thermal stimuli. J Appl Toxicol 20 Suppl 1: S183–185

    Google Scholar 

  26. Vilensky JA, Redman K (2003) British anti-Lewisite (dimercaprol): an amazing history. Ann Emerg Med 41: 378–383

    Article  PubMed  Google Scholar 

  27. Momeni AZ, Aminjavaheri M (1994) Skin manifestations of mustard gas in a group of 14 children and teenagers: a clinical study. Int J Dermatol 33: 184–187

    CAS  PubMed  Google Scholar 

  28. Momeni AZ, Enshaeih S, Meghdadi M, Amindjavaheri M (1992) Skin manifestations of mustard gas. A clinical study of 535 patients exposed to mustard gas. Arch Dermatol 128: 775–780

    Article  CAS  PubMed  Google Scholar 

  29. Borak J, Sidell FR (1992) Agents of chemical warfare: sulfur mustard. Ann Emerg Med 21: 303–308

    CAS  PubMed  Google Scholar 

  30. Center for the Study of Bioterrorism & Emerging Infections (2002) Chemical terrorism fact sheet. Vesicant/blistering agents—halogenated oxime agents: phosgene oxime.http://www.slu.edu/colleges/sph/csbei/bioterrorism/other/phosgene.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Bey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bey, T.A., Walter, F.G. Senfgas, Stickstofflost, Lewisit und Phosgenoxim. Notfall & Rettungsmedizin 6, 327–336 (2003). https://doi.org/10.1007/s10049-003-0580-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10049-003-0580-3

Schlüsselwörter

Keywords

Navigation