Skip to main content
Log in

Substrate structure governs maximum rate of catalysis exerted by cyclodextrin oxidase chemzymes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Selectively modified α- and β-cyclodextrin ketones or aldehydes act as artificial oxidases on a variety of small lipophilic substrates. The structure of the substrate is a highly important factor governing how effectively the oxidation reaction can be catalyzed. Amino acid-type substrates were not prone to catalysis, which yields new information about the limits of CD catalysis. Aniline showed some non-quantifiable catalysis, but for quinones and benzyl alcohols no net catalysis was detected. For aminophenol oxidation, o-aminophenols are far better substrates than p-aminophenols. The CD-catalyzed reaction follows Michaelis–Menten kinetics, involves CD cavity binding of the substrate and substrate recognition, and thus encompasses many of the hallmarks of natural enzymatic catalysis. Strong binding of the cooxidant H2O2 to the CD catalytic carbonyl group is a prerequisite for the subsequent oxidation of the substrate and in accordance with this, the binding of H2O2 to β-CD dialdehyde was shown to be strong (K d = 1.4 mM). β-CD 6A,6D-diketone which binds H2O2 weaker than an aldehyde was accordingly a less efficient oxidase. The wide range of substrates applicable to CD chemzyme catalysis brings about optimism for future scopes of synthetic biology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Scheme 3
Scheme 4
Scheme 5
Fig. 3

Similar content being viewed by others

Abbreviations

CD:

Cyclodextrin

K m :

Michaelis–Menten constant

K d :

Dissociation constant

k cat :

Catalyzed reaction rate

k uncat :

Uncatalyzed reaction rate

References

  1. Burton, S.G.: Laccases and phenol oxidases in organic synthesis—a review. Curr. Organ. Chem. 7, 1317–1331 (2003)

    Article  CAS  Google Scholar 

  2. Ferguson Miller, S., Babcock, G.T.: Heme/copper terminal oxidases. Chem. Rev. 96, 2889–2907 (1996)

    Article  CAS  Google Scholar 

  3. Bjerre, J., Rousseau, C., Marinescu, L., Bols, M.: Artificial enzymes, “chemzymes”: current state and perspectives. Appl. Microbiol. Biotechnol. 81, 1–11 (2008)

    Article  CAS  Google Scholar 

  4. Zhang, B., Breslow, R.: Ester hydrolysis by a catalytic cyclodextrin dimer enzyme mimic with a metallobipyridyl linking group. J. Am. Chem. Soc. 119, 1676–1681 (1997)

    Article  CAS  Google Scholar 

  5. Yan, J., Breslow, R.: An enzyme mimic that hydrolyzes an unactivated ester with catalytic turnover. Tetrahedron Lett. 41, 2059–2062 (2000)

    Article  CAS  Google Scholar 

  6. Tsutsumi, H., Ikeda, H., Mihara, H., Ueno, A.: Enantioselective ester hydrolysis catalyzed by β-cyclodextrin conjugated with β-hairpin peptides. Bioorg. Med. Chem. Lett. 14, 723–726 (2004)

    Article  CAS  Google Scholar 

  7. Ye, H., Tong, W., D’Souza, V.T.: Efficient catalysis of a redox reaction by an artificial enzyme. J. Am. Chem. Soc. 114, 5470–5472 (1992)

    Article  CAS  Google Scholar 

  8. Ye, H., Rong, D., Tong, W., D’Souza, V.T.: Artificial redox enzymes. Part 3: structure and properties. J. Chem. Soc. Perkin Trans. 2, 2071–2076 (1992)

    Google Scholar 

  9. Ye, H., Tong, W., D’Souza, V.T.: Flavocyclodextrins as artificial redox enzymes. Part 4: catalytic reactions of alcohols, aldehydes and thiols. J. Chem. Soc. Perkin Trans. 2, 2431–2437 (1994)

    Google Scholar 

  10. Breslow, R., Dong, S.D.: Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2011 (1998)

    Article  CAS  Google Scholar 

  11. Bjerre, J., Nielsen, E.H., Bols, M.: Hydrolysis of toxic natural glucosides catalyzed by cyclodextrin dicyanohydrins. Eur. J. Org. Chem. 745–752 (2008)

  12. Ortega-Caballero, F., Bjerre, J., Laustsen, L.S., Bols, M.: Four orders of magnitude rate increase in artificial enzyme-catalyzed aryl glycoside hydrolysis. J. Org. Chem 70, 7217–7226 (2005)

    Article  CAS  Google Scholar 

  13. Fenger, T.H., Bjerre, J., Bols, M.: Cyclodextrin aldehydes are oxidase mimics. ChemBioChem 10, 2494–2503 (2009)

    Article  Google Scholar 

  14. Filliben, J.J.: Dataplot—an interactive high-level language for graphics, non-linear fitting, data analysis and mathematics. Comput. Graph. 15, 199–213 (1981)

    Article  Google Scholar 

  15. Bjerre, J., Fenger, T.H., Bols, M.: Synthesis of some trifluoromethylated cyclodextrin derivatives and analysis of their properties as artificial glycosidases and oxidases. Eur. J. Org. Chem. 704–710 (2007)

  16. Pearce, A., Sinaÿ, P.: Diisobutylaluminium-promoted regioselective de-O-benzylation of perbenzylated cyclodextrins: a powerful new strategy for the preparation of selectively modified cyclodextrins. Angew. Chem. Int. Ed. 39, 3610–3612 (2000)

    CAS  Google Scholar 

  17. Lecourt, T., Herault, A.J., Pearce, M., Sollogoub, M., Sinaÿ, P.: Triisobutylaluminium and diisobutylaluminium hydride as molecular scalpels: the regioselective stripping of perbenzylated sugars and cyclodextrins. Chem. Eur. J. 10, 2960–2971 (2004)

    Article  CAS  Google Scholar 

  18. Lecourt, T., Mallet, J.-M., Sinaÿ, P.: An efficient preparation of 6I, IV dihydroxy permethylated β-cyclodextrin. Carbohydr. Res. 338, 2417–2419 (2003)

    Article  CAS  Google Scholar 

  19. Horvath, T., Kaizer, J., Speier, G.: Functional phenoxazinone synthase models. Kinetic studies on the copper-catalyzed oxygenation of 2-aminophenol. J. Mol. Catal. 215, 9–15 (2004)

    Article  CAS  Google Scholar 

  20. Brown, K.C., Corbett, J.F.: Benzoquinone imines. Part 16. Oxidation of p-aminophenol in aqueous solution. J. Chem. Soc. Perkin Trans. 2, 308–311 (1979)

    Google Scholar 

  21. Fenger, T.H., Marinescu, L.G., Bols, M.: Cyclodextrin ketones as oxidation catalysts: investigation of bridged derivatives. Org. Biomol. Chem. 7, 933–943 (2009)

    Article  CAS  Google Scholar 

  22. Marinescu, L., Bols, M.: Very high rate enhancement of benzyl alcohol oxidation by an artificial enzyme. Angew. Chem. Int. Ed. 45, 4590–4593 (2006)

    Article  CAS  Google Scholar 

  23. Suzuki, H., Furusho, Y., Higashi, T., Ohnishi, Y., Horinouchi, S.: A novel o-aminophenol oxidase responsible for formation of the phenoxazinone chromophore of grixazone. J. Biol. Chem. 281, 824–833 (2006)

    Article  CAS  Google Scholar 

  24. Marinescu, L., Mølbach, M., Rousseau, C., Bols, M.: Supramolecular oxidation of anilines using hydrogen peroxide as stoichiometric oxidant. J. Am. Chem. Soc. 127, 17578–17579 (2005)

    Article  CAS  Google Scholar 

  25. Sander, E.G., Jencks, W.P.: Equilibria for additions to the carbonyl group. J. Am. Chem. Soc. 90, 6154–6162 (1968)

    Article  CAS  Google Scholar 

  26. Rousseau, C.; Christensen, B.; Bols, M.: Artificial epoxidase II. Synthesis of cyclodextrin ketoesters and epoxidation of alkenes. Eur. J. Org. Chem. 2734–2739 (2005)

  27. Rousseau, C., Christensen, B., Petersen, T.E., Bols, M.: Cyclodextrins containing an acetone bridge. Synthesis and study as epoxidation catalysts. Org. Biomol. Chem. 2, 3476–3482 (2004)

    Article  CAS  Google Scholar 

  28. Travis, B.R., Sivakumar, M., Hollist, G.O., Borhan, B.: Facile oxidation of aldehydes to acids and esters with oxone. Org. Lett. 5, 1031–1034 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank The Lundbeck Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Bols.

Additional information

This work was presented at the First European Cyclodextrin Conference, Aalborg, Denmark, 11–13th of October 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerre, J., Bols, M. Substrate structure governs maximum rate of catalysis exerted by cyclodextrin oxidase chemzymes. J Incl Phenom Macrocycl Chem 69, 417–423 (2011). https://doi.org/10.1007/s10847-010-9774-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9774-8

Keywords

Navigation