Skip to main content

Abstract

The earliest studies of fluid flow consisted of observations of nature. By studying the movement of smoke, the flight of birds and by observing water swirl around obstacles for example, many details were seen that gave observers clues about what was occurring. Flow visualization remains an important tool even when results are limited to qualitative observation, because it renders many features of a flow-field directly accessible to visual perception and often gives considerable insight into the flow physics. Reference 1 is an excellent text reviewing the most commonly used flow visualization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Merzkirch, Flow visualization. Academic Press, New York, ed. 2, 1987.

    Google Scholar 

  2. J. Rienitz, Optical inhomogeneities: schlieren and shadowgraph methods in the seventeenth and eighteenth centuries. Endeavor, 21(2):77–81, 1997.

    Article  Google Scholar 

  3. G.S. Settles, Schlieren and Shadowgraph Techniques. Springer-Verlag, Berlin, 2001.

    Book  MATH  Google Scholar 

  4. R. Hooke, Micrographia.J. Martyn & J. Allestry, London, 1665.

    Google Scholar 

  5. C. Huygens, Oeuvres completes de Christiaan Huygens. Vol. 21. Martinus Nijhoff, La Haye, Holland, ed. 1, 1944.

    Google Scholar 

  6. A. Toepler, Beobachtungen nach einer neuen optischen Methode — Ein Beitrag zur Experimentalphysik. M. Cohen & Son, Bonn, 1864.

    Google Scholar 

  7. L. Foucault, Mémoire sur la construction des télescopes en verre argenté. Annales de l’Observatoire Imperial de Paris, 5:197–237, 1859.

    ADS  Google Scholar 

  8. P. Krehl, and S. Engemann. August Toepler — the first who visualized shock waves. ShockWaves, 5:1–18, 1995.

    Article  ADS  MATH  Google Scholar 

  9. E. Mach, and J. Sommer. Über die Fortpflanzungsgeschwindigkeit von Explosionsschallwellen. Sitzungsb. d. k. Acad. d. Wiss. Math. Naturw. Cl. Wien, 75:101–130, 1877.

    Google Scholar 

  10. H.E. Edgerton, Electronic flash, strobe. MIT Press, ed. 3, 1970.

    Google Scholar 

  11. H. Reichenbach, Contributions of Ernst Mach to fluid mechanics. Ann. Rev. Fluid Mech, 15:1–28, 1983.

    Article  MathSciNet  ADS  Google Scholar 

  12. H. Schardin, Das Toeplersche Schlierenverfahren: Grundlagen für seine Anwendung und quantitative Auswertung. VDI-ForschungsheftNo. 367, 5(4): 1–32, 1934.

    Google Scholar 

  13. H. Schardin, Die Schlieren verfahren und ihre Anwendungen. Ergebnisse der Exakten Naturwissenschaften, 20:303–439, 1942. English translation available as NASA TT F-12731, April 1970 (N70–25586).

    Article  ADS  Google Scholar 

  14. R.J. North, Schlieren systems using graded filters. ARC Report 15,099, British Aeronautical Research Council, 1952.

    Google Scholar 

  15. R.J. North, A colour schlieren system using multicolor filters of a simple construction. NPL Aero Report 266, British National Physical Laboratory, 1954.

    Google Scholar 

  16. D.W. Holder and R.J. North. Schlieren methods, NPL notes on applied science no. 31. Her Majesty’s Stationery Office, London, 1963.

    Google Scholar 

  17. A. Burton, A modified schlieren apparatus for large areas of field. JOSA, 39(11):907–908, 1949.

    Article  ADS  Google Scholar 

  18. A. Kantrowitz and R. L. Trimpi. A sharp-focusing schlieren system. J. Aero. Sci., 17:311–319, 1950.

    Google Scholar 

  19. A. Burton, The application of schlieren photography in fluid flow and heat transfer analysis. M.S.M.E. Thesis, University of Texas, 1951.

    Google Scholar 

  20. R.W. Fish and K. Parnham. Focusing schlieren systems. Report CP-54, British Aeronautical Research Council, 1950.

    Google Scholar 

  21. L.M. Weinstein, An improved large-field focusing schlieren system. In Proc. AIAA 29th Aerospace Sciences Mtg, AIAA Paper 91–0567, 1991.

    Google Scholar 

  22. L.M. Weinstein, Large-field high-brightness focusing schlieren system. AIAA 1, 31(7): 1250–1255, 1993.

    Article  Google Scholar 

  23. G.S. Settles, E.B. Hackett, J.D. Miller, and L.M. Weinstein. Full-scale schlieren flow visualisation. In Flow Visualisation VII, ed. J. P. Crowder. Begell House, NY, pp. 2–13, 1995.

    Google Scholar 

  24. L.M. Weinstein, An optical technique for examining aircraft shock wave structures in flight. NASA CP-3279, pp. 1–17, 1994.

    Google Scholar 

  25. L.M. Weinstein, and D. Minto. Focusing schlieren photography at the Holloman high speed test track. In Proc. of 22nd Intl. Congr. on High-Speed Photography and Photonics, SPIE Vol. 2869, pp. 865–873, 1996.

    Google Scholar 

  26. L.A. Vasiliev, Schlieren methods. ed. A. Baruch. Israel Program for Scientific Translations, New York, 1971.

    Google Scholar 

  27. H.G. Taylor, and J.M. Waldram. Improvements in the schlieren method. J. Sci. Inst., 10(12):378–389, 1933.

    Article  ADS  Google Scholar 

  28. T.A. Mortensen, An improved schlieren apparatus employing multiple slit-gratings. Rev. Sci. Instr., 21(1):3–6, 1950.

    Article  ADS  Google Scholar 

  29. L.R. Boedecker, Analysis and construction of a sharp focusing schlieren system. MS Thesis, Dept. of Aeronautics & Astronautics, MIT, 1959.

    Google Scholar 

  30. E. Gartenberg, L. M. Weinstein, and E. E. Lee, Jr. Aerodynamic investigation with focusing schlieren in a cryogenic wind tunnel. AIAA J., 32(6): 1242–1249, 1993.

    Article  ADS  Google Scholar 

  31. J.T. Heineck, Retroreflection focusing schlieren system. US Patent 5,515,158,1996.

    Google Scholar 

  32. G.S. Settles, B.T. Keane, B.W. Anderson, and J.A. Gatto, “Shock waves in aviation security and safety,” to be published in Shock Waves.

    Google Scholar 

  33. G.S. Settles, Visualizing full-scale ventilation airflows. ASHRAE Journal, 39(7): 19–26, 1997.

    Google Scholar 

  34. G.S. Settles, Airflow visualization in a model greenhouse. In Proc. 15th Intl. Congr. for Plastics in Agriculture, Hershey, PA, pp. 88–98, 2000.

    Google Scholar 

  35. G.S. Settles, Indoor environments. Chap. 37 of Handbook of Flow Visualization, ed. W. J. Yang. Hemisphere Pub., Washington, pp. 619–626, 1989.

    Google Scholar 

  36. F.S. Alvi, G.S. Settles, and L.M. Weinstein. A sharp-focusing schlieren optical deflectometer. AIAA Paper 93–0629, 1993.

    Google Scholar 

  37. G.P. Doggett, and N. Chokani. Large-field laser holographic focusing schlieren system. J. Spacecraft Rockets, 30(6):742–748, 1993.

    Article  ADS  Google Scholar 

  38. L.M. Weinstein, Schlieren system and method for moving objects. US Patent 5,534,995, July 1996.

    Google Scholar 

  39. L.M. Weinstein, An electronic schlieren camera for aircraft shock wave visualisation. In Proc. High-Speed Research Program Sonic Boom Workshop, NASA, Vol. 1, pp. 244–258, 1996.

    Google Scholar 

  40. L.M. Weinstein, K. Stacy, G.J. Vieira, E. A. Haering, Jr., and A.H. Bowers. Imaging supersonic aircraft shock waves. J. Flow Vis. Image Proc, 4(3): 189–199, 1997.

    Google Scholar 

  41. L.M. Weinstein, W. Culliton, and R. Rivers. Visualisation of transonic flow over a T-38 aircraft. In Proc. 8th Intl. Symp. on Flow Visualisation, Sorrento, Italy, ed. G.M. Carlomagno, Paper no. 80, 1998.

    Google Scholar 

  42. L.M. Weinstein, Large field schlieren visualisation - from wind tunnels to flight. In Proc. VSJ-SPIE98, Vis. Soc. of Japan, Paper AB124, 1998.

    Google Scholar 

  43. L.M. Weinstein, Vaporizing particle velocimeter. US Patent 5,153,665, Oct. 6,1992.

    Google Scholar 

  44. M.A. Kegerise, and G.S. Settles. Schlieren image-correlation velocimetry and its application to free-convection flows. In Proc. 9th Intl. Symp. on Flow Visualization, ed. G.M. Carlomagno and I. Grant, Paper no. 380, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weinstein, L.M., Settles, G.S. (2003). Schlieren. In: Mercer, C.R. (eds) Optical Metrology for Fluids, Combustion and Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3777-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3777-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5346-9

  • Online ISBN: 978-1-4757-3777-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics