Skip to main content

Fluorochromes Suitable for Antibody Conjugation

  • Chapter
  • First Online:
Flow Cytometry Today
  • 1134 Accesses

Abstract

This chapter is dedicated to fluorochromes used in conjugating antibodies or other proteins. The chapter classifies this group of fluorochromes according to their structural characteristics. It divides them into (1) large protein molecules (PE, APC, PerCP, et cetera), (2) small organic molecules (FITC, TRITC, Alexa molecules, et cetera), (3) polymeric molecules (Brilliant Violet, Pdots, et cetera), and (4) and nanocrystals (Qdots and Upconverting Nanoparticles). A fifth group is added, encompassing the tandem fluorochromes, classified based on their main excitation line. This group is thoroughly described, with special attention to the general principles underlying their functioning, and the issues they often present during multicolor analyzes are carefully described. This chapter mentions more than 200 molecules, providing—when available—information on their molecular structure, spectral behavior, use in flow and imaging techniques, and further information on unexpected behaviors and the possibility of artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams B, Diwu Z, Guryev O, Aleshkov S, Hingorani R, Edinger M, Lee R, Link J, Dubrovsky T (2009) 3-Carboxy-6-chloro-7-hydroxycoumarin: a highly fluorescent, water-soluble violet-excitable dye for cell analysis. Anal Biochem 386(2):262–269

    Article  CAS  Google Scholar 

  • Abrams B, Diwu Z, Guryev O, Suni M, Dubrovsky T (2013) New violet-excitable reagents for multicolor flow applications. Cytometry A 83(8):752–762. https://doi.org/10.1002/cyto.a.22309

    Article  CAS  Google Scholar 

  • Afar B, Merrill J, Clark EA (1991) Detection of lymphocyte subsets using three-color/single-laser flow cytometry and the fluorescent dye Peridinin chlorophyll-a-Protein. J Clin Immunol 11(5):254–261

    Article  CAS  Google Scholar 

  • Agbavwe C, Somoza MM (2011) Sequence-dependent fluorescence of cyanine dyes on microarrays. PLoS One. https://doi.org/10.1371/journal.pone.0022177

  • Altman RB, Terry DS, Zhou Z, Zheng Q, Geggier P, Kolster RA, Zhao Y, Javitch JA, Warren JD, Blanchard SC (2011) Cyanine fluorophore derivatives with enhanced photostability. Nat Methods 9(1):68–71. https://doi.org/10.1038/nmeth.1774

    Article  CAS  Google Scholar 

  • Anderson MT, Baumgarth N, Haugland RP, Gerstein RM, Tjioe T, Herzenberg LA, Herzenberg LA (1998) Pairs of violet-light-excited fluorochromes for flow cytometric analysis. Cytometry 33(4):435–444

    Article  CAS  Google Scholar 

  • Apt KE, Collier JL, Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248(1):79–96

    Article  CAS  Google Scholar 

  • Archer JR, Badakere SS, Macey MG, Whelan MA (1995) Use of lucifer yellow iodoacetamide in a flow cytometric assay to measure cell surface free thiol. Biochem Soc Trans 23(1):38S

    Article  CAS  Google Scholar 

  • Aubry JP, Durand I, De Paoli P, Banchereau J (1990) 7-Amino-4-methylcoumarin-3-acetic acid-conjugated streptavidin permits simultaneous flow cytometry analysis of either three cell surface antigens or one cell surface antigen as a function of RNA and DNA content. J Immunol Methods 128(1):39–49

    Article  CAS  Google Scholar 

  • Auger A, Samuel J, Poncelet O, Raccurt O (2011) A comparative study of non-covalent encapsulation methods for organic dyes into silica nanoparticles. Nanoscale Res Lett 6(1):328. https://doi.org/10.1186/1556-276x-6-328

    Article  Google Scholar 

  • Bae SW, Tan W, Hong JI (2012) Fluorescent dye-doped silica nanoparticles: new tools for bioapplications. Chem Commun (Cambridge, England) 48(17):2270–2282. https://doi.org/10.1039/c2cc16306c

    Article  CAS  Google Scholar 

  • Balaguer S, Diaz L, Gomes A, Herrera G, O’Connor JE, Urios A, Felipo V, Montoliu C (2017) Real-time cytometric assay of nitric oxide and superoxide interaction in peripheral blood monocytes: a no-wash, no-lyse kinetic method. Cytometry B Clin Cytom 92(3):211–217. https://doi.org/10.1002/cyto.b.21237

    Article  CAS  Google Scholar 

  • Balkay L, Marian T, Emri M, Krasznai Z, Tron L (1997) Flow cytometric determination of intracellular free potassium concentration. Cytometry 28(1):42–49

    Article  CAS  Google Scholar 

  • Bartosik PB, Fitzgerald JE, El Khatib M, Yaseen MA, Vinogradov SA, Niedre M (2020) Prospects for the use of upconverting nanoparticles as a contrast agent for enumeration of circulating cells in vivo. Int J Nanomed 15:1709–1719. https://doi.org/10.2147/ijn.s243157

    Article  CAS  Google Scholar 

  • Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130(4):1910–1917

    Article  CAS  Google Scholar 

  • Bayer J, Grunwald D, Lambert C, Mayol JF, Maynadie M (2007) Thematic workshop on fluorescence compensation settings in multicolor flow cytometry. Cytometry B Clin Cytom 72(1):8–13

    Article  Google Scholar 

  • Beavis AJ, Pennline K (1996) ALLO-7: a new fluorescent tandem dye for use in flow cytometry. Cytometry 24(4):390–394

    Article  CAS  Google Scholar 

  • Beavis AJ, Pennline KJ (1994) Simultaneous measurement of five cell-surface antigens by five-colour immunofluorescence. Cytometry 15(4):371–376

    Article  CAS  Google Scholar 

  • Beckman Coulter (2020) SuperNova v428: new bright polymer dye for flow cytometry applications. White Paper. https://www.beckman.com/gated-media?mediaId=%7B0B9C63D3-1567-404C-883C-CD9665FC83F0%7D#:~:text=SuperNova%20polymer%20dyes%20are%20a,conjugates%20when%20conjugated%20to%20antibodies. Accessed 20 Sept 2021

  • Becton Dickinson (2014a) BD Horizon Brilliant™ Blue 515 Reagents. White Paper. https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/data-sheets/bd-biosciences-brilliant-blue-515-reagents-data-sheet.pdf. Accessed 18 Sept 2021

  • Becton Dickinson (2014b) BD Horizon Brilliant™ Violet Reagents. White Paper. https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/data-sheets/bd-biosciences-horizon-brilliant-violet-reagents-data-sheet.pdf. Accessed Sept 2021

  • Becton Dickinson (2014c) BD Horizon™ Red 718 Reagents. White Paper. https://www.bdbiosciences.com/content/dam/bdb/marketing-documents/BD_Horizon_Red_718_Reagents_Product_Information_Sheet.pdf. Accessed 18 Sept 2021

  • Becton Dickinson (2015) BD Horizon Brilliant™ Dyes. White Paper. http://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/brochures-and-catalogs/brochures/bd-biosciences-horizon-brilliant-dyes-brochure.pdf. Accessed 4 Dec 2021

  • Becton Dickinson (2016a) BD Horizon Brilliant™ Violet 480 Reagents. White Paper. https://www.bdbiosciences.com/content/dam/bdb/marketing-documents/BV480-DS-Brilliant-Violet-480-Reagents.pdf. Accessed 18 Sept 2021

  • Becton Dickinson (2016b) BV711 Mouse Anti-Human CD197 (CCR7) – Technical Data Sheet. White Paper. https://www.bdbiosciences.com/content/bdb/paths/generate-tds-document.us.566602.pdf. Accessed 4 Dec 2021

  • Bedner E, Halicka HD, Cheng W, Salomon T, Deptala A, Gorczyca W, Melamed MR, Darzynkiewicz Z (1999) High affinity binding of fluorescein isothiocyanate to eosinophils detected by laser scanning cytometry: a potential source of error in analysis of blood samples utilizing fluorescein-conjugated reagents in flow cytometry. Cytometry 36(1):77–82

    Article  CAS  Google Scholar 

  • Benchaib M, Delorme R, Pluvinage M, Bryon PA, Souchier C (1996) Evaluation of five green fluorescence-emitting streptavidin-conjugated fluorochromes for use in immunofluorescence microscopy. Histochem Cell Biol 106(2):253–256

    Article  CAS  Google Scholar 

  • Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung CY, Chang W, Hirsch JD, Beechem JM, Haugland RP, Haugland RP (2003) Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51(12):1699–1712

    Article  CAS  Google Scholar 

  • Bigos M, Baumgarth N, Jager GC, Herman OC, Nozaki T, Stovel RT, Parks DR, Herzenberg LA (1999) Nine color eleven parameter immunophenotyping using three laser flow cytometry. Cytometry 36(1):36–45

    Article  CAS  Google Scholar 

  • Bishop JE, Davis KA, Abrams B, Houck DW, Recktenwald DJ, Hoffman RA (2000) Mechanism of higher brightness of PerCP-Cy5.5 (abstract). Cytometry 79B(Suppl 10):162

    Google Scholar 

  • Branham WS, Melvin CD, Han T, Desai VG, Moland CL, Scully AT, Fuscoe JC (2007) Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements. BMC Biotechnol. https://doi.org/10.1186/1472-6750-7-8

  • Brown SB, Houghton JD, Vernon DI (1990) Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin. J Photochem Photobiol B Biol 5(1):3–23

    Article  CAS  Google Scholar 

  • Bruchez MJ, Moronne M, Gin P, Weiss S, Alivisatos A (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  CAS  Google Scholar 

  • Bryant DA, Glazer AN, Eiserling FA (1976) Characterization and structural properties of the major biliprotein of Anabaena sp. Arch Microbiol 110(1):61–75

    Article  CAS  Google Scholar 

  • Buckhout-White S, Spillmann CM, Algar WR, Khachatrian A, Melinger JS, Goldman ER, Ancona MG, Medintz IL (2014) Assembling programmable FRET-based photonic networks using designer DNA scaffolds. Nat Commun. https://doi.org/10.1038/ncomms6615

  • Buranda T, Wu Y, Sklar LA (2011) Quantum Dots for quantitative flow cytometry. Methods Mol Biol 699:67–84. https://doi.org/10.1007/978-1-61737-950-5_4

    Article  CAS  Google Scholar 

  • Cai ZJ, Kuang YQ, Pan D, Liu W, Jiang JH (2015) Synthesis and characterization of a novel ELF-97-based fluorescent probe for hydrogen peroxide detection. Chin J Anal Chem 43(11):1671–1675

    Article  CAS  Google Scholar 

  • Chai X, Cui X, Wang B, Yang F, Cai Y, Wu Q, Wang T (2015) Near-infrared phosphorus-substituted rhodamine with emission wavelength above 700 nm for bioimaging. Chemistry 21(47):16754–16758. https://doi.org/10.1002/chem.201502921

    Article  CAS  Google Scholar 

  • Chapple MR, Johnson GD, Davidson RS (1988) Fluorescence quenching of fluorescein by R-phycoerythrin. A pitfall in dual fluorescence analysis. J Immunol Methods 111(2):209–217

    Article  CAS  Google Scholar 

  • Chattopadhyay PK, Gaylord B, Palmer A, Jiang N, Raven MA, Lewis G, Reuter MA, Nur-ur Rahman AK, Price DA, Betts MR, Roederer M (2012) Brilliant violet fluorophores: a new class of ultrabright fluorescent compounds for immunofluorescence experiments. Cytometry A 81(6):456–466. https://doi.org/10.1002/cyto.a.22043

    Article  CAS  Google Scholar 

  • Chattopadhyay PK, Perfetto SP, Yu J, Roederer M (2010) The use of quantum dot nanocrystals in multicolor flow cytometry. Wiley Interdiscipl Rev Nanomed Nanobiotechnol 2(4):334–348. https://doi.org/10.1002/wnan.75

    Article  CAS  Google Scholar 

  • Chitadze G, Lettau M, Peters C, Luecke S, FlĂĽh C, Quabius ES, Synowitz M, Held-Feindt J, Kabelitz D (2021) Erroneous expression of NKG2D on granulocytes detected by phycoerythrin-conjugated clone 149810 antibody. Cytometry B Clin Cytom. https://doi.org/10.1002/cyto.b.22001

  • Chiu DT, Wu C, Rong Y, Zhang Y, Wu YC, Chan YH, Zhang X, Yu J, Sun W (2012) USA Patent 2012 10150841. Chromophoric polymer dots with narrow-band emission. https://patents.justia.com/patent/10150841. Accessed 21 Dec 2021

  • Chiu DT, Wu C, Rong Y, Zhang Y, Wu YC, Chan YH, Zhang X, Yu J, Sun W (2018) USA Patent 2012 10150841. Chromophoric polymer dots with narrow-band emission. https://patents.google.com/patent/US10150841B2/en. Accessed 21 Dec 2021

  • Crissman HA, Darzynkiewicz Z, Tobey RA, Steinkamp JA (1985) Correlated measurement of DNA, RNA and Protein in individual cells by flow cytometry. Science 228(4705):1321–1323

    Article  CAS  Google Scholar 

  • Crissman HA, Oka MS, Steinkamp JA (1976) Rapid staining methods for analysis of deoxyribonucleic acid and protein in mammalian cells. J Histochem Cytochem 24(1):64–71

    Article  CAS  Google Scholar 

  • Crissman HA, Steinkamp JA (1994) Cellular protein content measurement. In: Darzynkiewicz Z, Robinson JP, Crissman HA (eds) Flow cytometry. Methods in cell biology (Part A), 2nd edn. Academic Press, San Diego, pp 175–183

    Google Scholar 

  • Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1(2):145–157. https://doi.org/10.1006/niox.1996.0113

    Article  CAS  Google Scholar 

  • De Vita M, Catzola V, Buzzonetti A, Fossati M, Battaglia A, Zamai L, Fattorossi A (2014) Unexpected interference in cell surface staining by monoclonal antibodies to unrelated antigens. Cytometry B Clin Cytom 88(5):352–354. https://doi.org/10.1002/cyto.b.21197

    Article  CAS  Google Scholar 

  • Delia D, Martinez E, Fontanella E, Aiello A (1991) Two- and three-color immunofluorescence using aminocoumarin, fluorescein, and phycoerythrin-labelled antibodies and single laser flow cytometry. Cytometry 12(6):537–546

    Article  CAS  Google Scholar 

  • Delmotte C, Delmas A (1999) Synthesis and fluorescence properties of Oregon Green 514 labeled peptides. Bioorganic Medicinal Chem Lett 9(20):2989–2994

    Article  CAS  Google Scholar 

  • Deng G, Li S, Sun Z, Li W, Zhou L, Zhang J, Gong P, Cai L (2018) Near-infrared fluorescence imaging in the largely unexplored window of 900-1,000 nm. Theranostics 8(15):4116–4128. https://doi.org/10.7150/thno.26539

    Article  CAS  Google Scholar 

  • DiGiuseppe JA, Cardinali JL (2011) Improved compensation of the fluorochrome AmCyan using cellular controls. Cytometry B Clin Cytom 80(3):191–194. https://doi.org/10.1002/cyto.b.20584

    Article  Google Scholar 

  • Dimitropoulos K, Rolland JM, Nairn RC (1988) Analysis of early lymphocyte activation events by fluorescence polarization flow cytometry. Immunol Cell Biol 66(Pt 4):253–260

    Article  Google Scholar 

  • Dimmick I (2008) Questions about Qdots. Purdue Cytometry Discussion List. https://lists.purdue.edu/pipermail/cytometry/2008-July/035513.html. Accessed 30 Dec 2020

  • Dinchuk JE, Kelley KA, Callahan GN (1992) Flow cytometric analysis of transport activity in lymphocytes electroporated with a fluorescent organic anion dye. J Immunol Methods 155(2):257–265

    Article  CAS  Google Scholar 

  • Donahue CJ, Fennie C, Villacorta R, La H, Lasky LA, Ohneda O (1999) Multicolor immunofluorescence and flow cytometry utilizing Cascade Blue to purify murine hematopoietic stem cells from fetal liver and bone marrow. Cytometry 37(1):60–67

    Article  CAS  Google Scholar 

  • Doucet M, Soussi N, Crain-Denoyelle AM, Gendron MC, Sanchez P (2001) R-phycoerythrin-cyanine 5 tandem discerns CD72 polymorphism. Immunogenetics 53(4):307–314

    Article  CAS  Google Scholar 

  • Efthimiadis A, Hargreave FE, Dolovich J (1996) Use of selective binding of fluorescein isothiocyanate to detect eosinophils by flow cytometry (letter). Cytometry (Comm Clin Cytometry) 26(1):75–76

    Article  CAS  Google Scholar 

  • Engelhard HH (1997) Flow cytometric applications of Sulforhodamine 101 as a fluorescent stain for total cellular protein. Biotech Histochem 72(1):1–9

    Article  CAS  Google Scholar 

  • Ernst LA, Gupta RK, Mujumdar RB, Waggoner AS (1989) Cyanine dye labeling reagents for sulfhydryl groups. Cytometry 10(1):3–10

    Article  CAS  Google Scholar 

  • Estevez MC, O’Donoghue MB, Chen X, Tan W (2009) Highly fluorescent dye-doped silica nanoparticles increase flow cytometry sensitivity for cancer cell monitoring. Nano Res 2:448–461

    Article  CAS  Google Scholar 

  • Eytan GD, Regev R, Oren G, Hurwitz CD, Assaraf YG (1997) Efficiency of P-glycoprotein-mediated exclusion of rhodamine dyes from multidrug-resistant cells is determined by their passive transmembrane movement rate. Eur J Biochem/FEBS 248(1):104–112

    Article  CAS  Google Scholar 

  • Fare TL, Coffey EM, Dai H, He YD, Kessler DA, Kilian KA, Koch JE, LeProust E, Marton MJ, Meyer MR, Stoughton RB, Tokiwa GY, Wang Y (2003) Effects of atmospheric ozone on microarray data quality. Anal Chem 75(17):4672–4675

    Article  CAS  Google Scholar 

  • Floryk D, Houstek J (1999) Tetramethyl rhodamine methyl ester (TMRM) is suitable for cytofluorometric measurements of mitochondrial membrane potential in cells treated with digitonin. Biosci Rep 19(1):27–34

    Article  CAS  Google Scholar 

  • Forster S, Thumser AE, Hood SR, Plant N (2012) Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One. https://doi.org/10.1371/journal.pone.0033253

  • Franck P, Petitipain N, Cherlet M, Dardennes M, Maachi F, Schutz B, Poisson L, Nabet P (1996) Measurement of intracellular pH in cultured cells by flow cytometry with BCECF-AM. J Biotechnol 46(3):187–195

    Article  CAS  Google Scholar 

  • Freeman DA, Crissman HA (1975) Evaluation of six fluorescent protein stains for use in flow microfluorometry. Stain Technol 50(4):279–284

    Article  CAS  Google Scholar 

  • Futamura K, Sekino M, Hata A, Ikebuchi R, Nakanishi Y, Egawa G, Kabashima K, Watanabe T, Furuki M, Tomura M (2015) Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytometry A 87(9):830–842. https://doi.org/10.1002/cyto.a.22725

    Article  CAS  Google Scholar 

  • Galland-Irmouli AV, Pons L, Lucon M, Villaume C, Mrabet NT, Gueant JL, Fleurence J (2000) One-step purification of R-phycoerythrin from the red macroalga Palmaria palmata using preparative polyacrylamide gel electrophoresis. J Chromatogr B Biomed Sci Applications 739(1):117–123

    Article  CAS  Google Scholar 

  • Gerena Y, Gonzalez-Pons M, Serrano AE (2011) Cytofluorometric detection of rodent malaria parasites using red-excited fluorescent dyes. Cytometry Part A 79A(11):965–972. https://doi.org/10.1002/cyto.a.21119

    Article  CAS  Google Scholar 

  • Glazer AN (1982) Phycobilisomes: structure and dynamics. Annu Rev Microbiol 36:173–198

    Article  CAS  Google Scholar 

  • Glazer AN (1988) Fluorescence-based assay for reactive oxygen species: a protective role for creatinine. Faseb J 2(9):2487–2491

    Article  CAS  Google Scholar 

  • Glazer AN, Hixson CS (1977) Subunit structure and chromophore composition on rhodophytan phycoerythrins: Porphyridium cruentum, B-phycoerythrin and b-phycoerythrin. J Biol Chem 252(1):32–42

    Article  CAS  Google Scholar 

  • Glazer AN, Stryer L (1983) Fluorescent tandem phycobiliprotein conjugates. Emission wavelength shifting by energy transfer. Biophys J 43(3):383–386

    Article  CAS  Google Scholar 

  • Gratama JW, Orfao A, Barnett D, Brando B, Huber A, Janossy G, Johnsen HE, Keeney M, Marti GE, Preijers F, Rothe G, Serke S, Sutherland DR, Van der Schoot CE, Schmitz G, Papa S (1998) Flow cytometric enumeration of CD34+ hematopoietic stem and progenitor cells. European Working Group on Clinical Cell Analysis. Cytometry 34(3):128–142

    Article  CAS  Google Scholar 

  • Greimers R, Trebak M, Moutschen M, Jacobs N, Boniver J (1996) Improved four-color flow cytometry method using Fluo-3 and triple immunofluorescence for analysis of intracellular calcium ion ([Ca2+]i) fluxes among mouse lymph node B- and T-lymphocyte subsets. Cytometry 23(3):205–217

    Article  CAS  Google Scholar 

  • Grimm JB, Muthusamy AK, Liang Y, Brown TA, Lemon WC, Patel R, Lu R, Macklin JJ, Keller PJ, Ji N, Lavis LD (2017) A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat Methods 14(10):987–994. https://doi.org/10.1038/nmeth.4403

    Article  CAS  Google Scholar 

  • Gunasekera TS, Veal DA, Attfield PV (2003) Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk. Int J Food Microbiol 85(3):269–279

    Article  CAS  Google Scholar 

  • Guryev O, Jaimes MC, Edinger MG, Matvienko M, Abrams B, Dubrovsky T (2012) Use of a new violet-excitable AmCyan variant as a label in cell analysis. Cytometry A 81(7):627–634. https://doi.org/10.1002/cyto.a.22078

    Article  CAS  Google Scholar 

  • Han F, Fan L, Wang X, Li W (2012) Sulforhodamine B restaining as a whole-cell label allows visualizing one more fluorochrome and its application in assaying protein nucleocytoplasmic distribution. Cytometry A 81(6):532–540. https://doi.org/10.1002/cyto.a.22057

    Article  CAS  Google Scholar 

  • Hanani M (2012) Lucifer yellow – an angel rather than the devil. J Cell Mol Med 16(1):22–31. https://doi.org/10.1111/j.1582-4934.2011.01378.x

    Article  CAS  Google Scholar 

  • Hasbold J, Gett AV, Rush JS, Deenick E, Avery D, Jun J, Hodgkin PD (1999) Quantitative analysis of lymphocyte differentiation and proliferation in vitro using carboxyfluorescein diacetate succinimidyl ester. Immunol Cell Biol 77(6):516–522. https://doi.org/10.1046/j.1440-1711.1999.00874.x

    Article  CAS  Google Scholar 

  • Haugland RP (1996) Handbook of fluorescent probes and research chemicals, 6th edn. Molecular Probes, Eugene

    Google Scholar 

  • Herman A (2008) PerCP antibody on LSRII. Purdue Cytometry Discussion List. https://lists.purdue.edu/pipermail/cytometry/2011-February/040798.html. Accessed 2 Jan 2021

  • Hill RA, Grutzendler J (2014) In vivo imaging of oligodendrocytes with sulforhodamine 101. Nat Methods 11(11):1081–1082. https://doi.org/10.1038/nmeth.3140

    Article  CAS  Google Scholar 

  • Hoffman RA, Reinhardt BN, Stevens FE Jr (1987) Two color immunofluorescence using a red helium neon laser (abstract). Cytometry 8(Suppl 1):103

    Google Scholar 

  • Hoffman RA, Stokdijk W, Davis K (1993) Detecting two immunofluorescence colors with one PMT (abstract). Cytometry 14(Suppl 6):18

    Google Scholar 

  • Hollo Z, Homolya L, Davis CW, Sarkadi B (1994) Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim Biophys Acta 1191(2):384–388

    Article  CAS  Google Scholar 

  • Holm C, Jespersen L (2003) A flow-cytometric gram-staining technique for milk-associated bacteria. Appl Environ Microbiol 69(5):2857–2863

    Article  CAS  Google Scholar 

  • Horvatinovich JM, Sparks SD, Borowitz MJ (1994) Detection of terminal deoxynucleotidyl transferase by flow cytometry: a three color method. Cytometry 18(4):228–230

    Article  CAS  Google Scholar 

  • Hughes MJ, McGettrick HM, Sapey E (2020) Importance of validating antibody panels: anti-PD-L1 clone binds AF700 fluorophore. J Immunol Methods. https://doi.org/10.1016/j.jim.2020.112795

  • Hulspas R, Dombkowski D, Preffer F, Douglas D, Kildew-Shah B, Gilbert J (2009) Flow cytometry and the stability of phycoerythrin-tandem dye conjugates. Cytometry A 75(11):966–972

    Article  Google Scholar 

  • Ibanez-Peral R, Bergquist PL, Walter MR, Gibbs M, Goldys EM, Ferrari B (2008) Potential use of quantum dots in flow cytometry. Int J Mol Sci 9(12):2622–2638

    Article  CAS  Google Scholar 

  • Irwan Y, Anderson E, Fenoglio D, Tung J (2016) Demonstration of infrared laser applications using Beckman Coulter CytoFLEX S flow cytometer (abstract poster 436/B299). Proceedings of the 31st Congress of the International Society for Advancement of Cytometry, p 261. http://cytoconference.org/cyto/pdfs-docs/2016/2016-CYTO-Program-book-v6-FINAL-(1).aspx. Accessed 26 Nov 2018

  • Jahrsdorfer B, Blackwell SE, Weiner GJ (2005) Phosphorothyoate oligodeoxynucleotides block nonspecific binding of Cy5 conjugates to monocytes. J Immunol Methods 297(1-2):259–263

    Article  Google Scholar 

  • Jensen IJ, McGonagill PW, Lefebvre MN, Griffith TS, Harty JT, Badovinac VP (2020) Worry and FRET: ROS production leads to fluorochrome tandem degradation and impairs interpretation of flow cytometric results. Immunity 52(3):419–421. https://doi.org/10.1016/j.immuni.2020.02.003

    Article  CAS  Google Scholar 

  • Johansson U, Macey M (2014) Tandem Dyes: Stability in cocktails and compensation considerations. Cytometry B Clin Cytom 86(3):164–174

    Article  Google Scholar 

  • Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77(2):990–994

    Article  CAS  Google Scholar 

  • Jung TM, Dailey MO (1989) A novel and inexpensive source of allophycocyanin for multicolor flow cytometry. J Immunol Methods 121(1):9–18

    Article  CAS  Google Scholar 

  • Kapoor V, Karpov V, Linton C, Subach FV, Verkhusha VV, Telford WG (2008) Solid state yellow and orange lasers for flow cytometry. Cytometry A 73(6):570–577

    Article  Google Scholar 

  • Kappelmayer J, Gratama JW, Karaszi E, Menendez P, Ciudad J, Rivas R, Orfao A (2000) Flow cytometric detection of intracellular myeloperoxidase, CD3 and CD79a. Interaction between monoclonal antibody clones, fluorochromes and sample preparation protocols. J Immunol Methods 242(1–2):53–65

    Article  CAS  Google Scholar 

  • Karaszi E, Jakab K, Homolya L, Szakacs G, Hollo Z, Telek B, Kiss A, Rejto L, Nahajevszky S, Sarkadi B, Kappelmayer J (2001) Calcein assay for multidrug resistance reliably predicts therapy response and survival rate in acute myeloid leukaemia. Br J Haematol 112(2):308–314

    Article  CAS  Google Scholar 

  • Khalfan H, Abuknesha R, Rand-Weaver M, Price RG, Robinson D (1986) Aminomethyl coumarin acetic acid: a new fluorescent labelling agent for proteins. Histochem J 18:497–499

    Article  CAS  Google Scholar 

  • Kim MS, Kim TS (2013) R-phycoerythrin-conjugated antibodies are inappropriate for intracellular staining of murine plasma cells. Cytometry A 83(5):452–460. https://doi.org/10.1002/cyto.a.22276

    Article  CAS  Google Scholar 

  • Krangel MS, Bierer BE, Devlin P, Clabby M, Strominger JL, McLean J, Brenner MB (1987) T3 glycoprotein is functional although structurally distinct on human T-cell receptor T lymphocytes. Proc Natl Acad Sci U S A 84(11):3817–3821

    Article  CAS  Google Scholar 

  • Kristensen MW, Kejlberg-Jensen S, Sørensen AS, Vorup-Jensen T, Kragstrup TW, Hokland M, Andersen MN (2021) Behold cytometrists: one block is not enough! Cyanine-tandems bind non-specifically to human monocytes. Cytometry A 99(3):265–268. https://doi.org/10.1002/cyto.a.24273

    Article  Google Scholar 

  • Kronick MN, Grossman PD (1983) Immunoassay techniques with fluorescent phycobiliproteins conjugates. Clin Chem 29(9):1582–1586

    Article  CAS  Google Scholar 

  • Krutzik PO, Clutter MR, Trejo A, Nolan GP (2011) Fluorescent cell barcoding for multiplex flow cytometry. Curr Protoc Cytom Chapter 6:Unit 6 31

    Google Scholar 

  • Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3(5):361–368. https://doi.org/10.1038/nmeth872

    Article  CAS  Google Scholar 

  • Kuddus M, Ramteke PW (2009) Binding affinity of allophycocyanin to blood cells and nuclei. Sci Res Assays 4(10):1132–1135

    Google Scholar 

  • Kushida Y, Nagano T, Hanaoka K (2015) Silicon-substituted xanthene dyes and their applications in bioimaging. The Analyst 140(3):685–695. https://doi.org/10.1039/c4an01172d

    Article  CAS  Google Scholar 

  • Kwon OS, Song HS, Conde J, Kim HI, Artzi N, Kim JH (2016) Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo. ACS Nano 10(1):1512–1521. https://doi.org/10.1021/acsnano.5b07075

    Article  CAS  Google Scholar 

  • Lavis LD (2017) Teaching old dyes new tricks: biological probes built from fluoresceins and rhodamines. Annu Rev Biochem 86:825–843. https://doi.org/10.1146/annurev-biochem-061516-044839

    Article  CAS  Google Scholar 

  • Le Roy C, Varin-Blank N, Ajchenbaum-Cymbalista F, Letestu R (2009) Flow cytometry APC-tandem dyes are degraded through a cell-dependent mechanism. Cytometry A 75(10):882–890

    Article  Google Scholar 

  • Lee LG, Berry GM, Chen CH (1989a) Vita Blue: a new 633-nm excitable fluorescent dye for cell analysis (erratum). Cytometry 10(3):354

    Google Scholar 

  • Lee LG, Berry GM, Chen CH (1989b) Vita Blue: a new 633-nm excitable fluorescent dye for cell analysis. Cytometry 10(2):151–164

    Article  Google Scholar 

  • Lee LG, Woo SL, Head DF, Dubrow RS, Baer TM (1995) Near-IR dyes in three-color volumetric capillary cytometry: cell analysis with 633- and 785-nm laser excitation. Cytometry 21(2):120–128

    Article  Google Scholar 

  • Lefevre C, Kang HC, Haugland RP, Malekzadeh N, Arttamangkul S, Haugland RP (1996) Texas Res-X and rhodamine Red-X, new derivatives of sulforhodamine 101 and lissamine rhodamine B with improved labeling and fluorescence properties. Bioconjug Chem 7(4):482–489. https://doi.org/10.1021/bc960034p

    Article  CAS  Google Scholar 

  • Leung K (2004) Hoechst 33258-polyethylene glycol-IR-786. Molecular Imaging and Contrast Agent Database (MICAD). https://www.ncbi.nlm.nih.gov/books/NBK82964/. Accessed 15 June 2019

  • Leung WY, Trobridge PA, Haugland RP, Haugland RP, Mao F (1999) 7-Amino-4-methyl-6-sulfocoumarin-3-acetic acid: a novel blue fluorescent dye for protein labeling. Bioorganic Med Chem Lett 9(15):2229–2232

    Article  CAS  Google Scholar 

  • Levelt CN, Eichmann K (1994) Streptavidin-tricolor is a reliable marker for nonviable cells subjected to permeabilization or fixation. Cytometry 15(1):84–86

    Article  CAS  Google Scholar 

  • Li R, Norman S, Schober J (2015) Forensic biology. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Lipowska M, Patonay G, Strekowski L (1993) New near-infrared cyanine dyes for labelling of proteins. Synth Comm 23(21):3087–3094

    Article  CAS  Google Scholar 

  • Liu B, Bazan GC (2004) Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem Mater 16(23):4467–4476

    Article  CAS  Google Scholar 

  • Lock JT, Parker I, Smith IF (2015) A comparison of fluorescent Ca(2)(+) indicators for imaging local Ca(2)(+) signals in cultured cells. Cell Calcium 58(6):638–648. https://doi.org/10.1016/j.ceca.2015.10.003

    Article  CAS  Google Scholar 

  • Loken MR (1990) Immunofluorescence techniques. In: Melamed MR, Lindmo T, Mendelsohn ML (eds) Flow cytometry and sorting, 2nd edn. Wiley-Liss, New York, pp 341–353

    Google Scholar 

  • Loken MR, Parks DR, Herzenberg LA (1977) Two-color immunofluorescence using a fluorescence-activated cell sorter. J Histochem Cytochem 25(7):899–907

    Article  CAS  Google Scholar 

  • Lougheed T, Borisenko V, Hand CE, Woolley GA (2001) Fluorescent gramicidin derivatives for single-molecule fluorescence and ion channel measurements. Bioconjug Chem 12(4):594–602

    Article  CAS  Google Scholar 

  • Lugli E, Troiano L, Cossarizza A (2007) Polychromatic analysis of mitochondrial membrane potential using JC-1. Curr Protoc Cytom Chapter 7:Unit 7 32

    Google Scholar 

  • Lukinavicius G, Blaukopf C, Pershagen E, Schena A, Reymond L, Derivery E, Gonzalez-Gaitan M, D’Este E, Hell SW, Wolfram Gerlich D, Johnsson K (2015) SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy. Nat Commun 6:8497. https://doi.org/10.1038/ncomms9497

    Article  CAS  Google Scholar 

  • Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243(1–2):147–154

    Article  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124(2-3):311–334

    Article  CAS  Google Scholar 

  • Martel JL, Jaramillo S, Allen FH Jr, Rubinstein P (1974) Serology for automated cytotoxicity assays. Contrast fluorescence test. Vox Sang 27(1):13–20

    CAS  Google Scholar 

  • McKay IC, Forman D, White RG (1981) A comparison of fluorescein isothiocyanate and lissamine rhodamine (RB 200) as labels for antibody in the fluorescent antibody technique. Immunology 43(3):591–602

    CAS  Google Scholar 

  • Morseman JP, Moss MW, Zoha SJ, Allnutt FC (1999) PBXL-1: a new fluorochrome applied to detection of proteins on membranes. BioTechniques 26(3):559–563

    Article  CAS  Google Scholar 

  • Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS (1993) Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug Chem 4(2):105–111

    Article  CAS  Google Scholar 

  • Mujumdar RB, Ernst LA, Mujumdar SR, Waggoner AS (1989) Cyanine dye labeling reagents containing isothiocyanate groups. Cytometry 10(1):11–19

    Article  CAS  Google Scholar 

  • Mullersman JE, White G, Tung KS (1991) Differential staining of human alpha/beta and gamma/delta T cells by the fluorescein conjugate of an anti-CD3 monoclonal antibody. Clin Exp Immunol 84(2):324–328

    Article  CAS  Google Scholar 

  • Niki H, Hosokawa S, Nagaike K, Tagawa T (2004) A new immunofluorostaining method using red fluorescence of PerCP on formalin-fixed paraffin-embedded tissues. J Immunol Methods 293(1-2):143–151

    Article  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1(1):31–37. https://doi.org/10.1038/nmeth706

    Article  CAS  Google Scholar 

  • Niu G, Liu W, Zhou B, Xiao H, Zhang H, Wu J, Ge J, Wang P (2016) Deep-red and near-infrared xanthene dyes for rapid live cell imaging. J Org Chem 81(17):7393–7399. https://doi.org/10.1021/acs.joc.6b00981

    Article  CAS  Google Scholar 

  • Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8(11):3834–3838. https://doi.org/10.1021/nl802223f

    Article  CAS  Google Scholar 

  • Oi VT, Glazer AN, Stryer L (1982) Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol 93(3):981–986

    Article  CAS  Google Scholar 

  • Ortuno F, Ferrer F, Lozano ML, Heras I, Moraleda JM, Vicente V (1997) Differences in phycoerythrin- or fluorescein-isothiocyanate conjugated 8G12 on CD34+ cell evaluation. Haematologica 82(3):334–335

    CAS  Google Scholar 

  • Ozkan P, Mutharasan R (2002) A rapid method for measuring intracellular pH using BCECF-AM. Biochim Biophys Acta 1572(1):143–148

    Article  CAS  Google Scholar 

  • Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung WY, Haugland RP (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47(9):1179–1188

    Article  CAS  Google Scholar 

  • Pape KA, Taylor JJ, Maul RW, Gearhart PJ, Jenkins MK (2011) Different B cell populations mediate early and late memory during an endogenous immune response. Science 331(6021):1203–1207. https://doi.org/10.1126/science.1201730

    Article  CAS  Google Scholar 

  • Paragas VB, Kramer JA, Fox C, Haugland RP, Singer VL (2002) The ELF-97 phosphatase substrate provides a sensitive, photostable method for labelling cytological targets. J Microsc 206(Pt 2):106–119

    Article  CAS  Google Scholar 

  • Paragas VB, Zhang YZ, Haugland RP, Singer VL (1997) The ELF-97 alkaline phosphatase substrate provides a bright, photostable, fluorescent signal amplification method for FISH. J Histochem Cytochem 45(3):345–357

    Article  CAS  Google Scholar 

  • Parish CR (1999) Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol Cell Biol 77(6):499–508. https://doi.org/10.1046/j.1440-1711.1999.00877.x

    Article  CAS  Google Scholar 

  • Park CG, Rodriguez A, Steinman RM (2012) PE-Cy5.5 conjugates bind to the cells expressing mouse DEC205/CD205. J Immunol Methods 384(1–2):184–190. https://doi.org/10.1016/j.jim.2012.07.011

    Article  CAS  Google Scholar 

  • Pellegrino C, Volpe A, Juris R, Menna ME, Calabrese V, Sola F, Barattini C, Ventola A (2018) Multiple dye doped core-shell silica nanoparticles: outstanding stability and signal intensity exploiting FRET phenomenon for biomedical applications. J Nanomater Mol Nanotechnol. https://doi.org/10.4172/2324-8777.S6-003

  • Persidsky MD, Baillie GS (1977) Fluorometric test of cell membrane integrity. Cryobiology 14(3):322–331

    Article  CAS  Google Scholar 

  • Prajapati SI, Martinez CO, Bahadur AN, Wu IQ, Zheng W, Lechleiter JD, McManus LM, Chisholm GB, Michalek JE, Shireman PK, Keller C (2009) Near-infrared imaging of injured tissue in living subjects using IR-820. Mol Imaging 8(1):45–54

    Article  CAS  Google Scholar 

  • Preijers FW, Huys E, Leenders M, Nieto L, Gautherot E, Moshaver B (2011) The new violet laser dye, Krome Orange, allows an optimal polychromatic immunophenotyping based on CD45-KO gating. J Immunol Methods 372(1–2):42–51

    Article  CAS  Google Scholar 

  • Qasim AM, Bass J, Picker LJ (1996) Fluorochrome specific PE/Cy5 tandem (Tricolor) staining is sensitive and specific for acute promyelocytic leukemia (AML-FAB M3) (abstract). Cytometry 26(Suppl 1):83

    Google Scholar 

  • Richter L (2018) Different CompBeads and polymer tandem-dyes? Purdue Cytometry Discussion List. https://lists.purdue.edu/pipermail/cytometry/2018-April/052836.html. Accessed 30 Dec 2020

  • Riegler J, Nann T (2004) Application of luminescent nanocrystals as labels for biological molecules. Anal Bioanal Chem 379(7-8):913–919

    Article  CAS  Google Scholar 

  • Roederer M (2001) 6 colour sorting. Purdue Cytometry Discussion List. http://www.cyto.purdue.edu/cdroms/cyto6/content/archive/2001/2338.htm. Accessed 21 Oct 2018

  • Roederer M (2008) PerCP/Cy5.5 conjugates on a 488 nm, 532 nm machine. Purdue Cytometry Discussion List. https://lists.purdue.edu/pipermail/cytometry/2008-August/035758.html. Accessed 5 Mar 2021

  • Roederer M, Kantor AB, Parks DR, Herzenberg LA (1996a) Cy7PE and Cy7APC: bright new probes for immunofluorescence. Cytometry 24(3):191–197

    Article  CAS  Google Scholar 

  • Roederer M, Parks D, Treister A, Stovel R, Bigos M, Nozaki T, De Rosa S, Anderson M, Gerstein R, Herzenberg LA (1996b) Routine seven-color immunophenotyping (abstract). Cytometry 23(Suppl 8):123

    Google Scholar 

  • Rothe G, Oser A, Valet G (1988) Dihydrorhodamine 123: a new flow cytometric indicator for respiratory burst activity in neutrophil granulocytes. Naturwissenschaften 75(7):354–355

    Article  CAS  Google Scholar 

  • Rotman B, Papermaster BW (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci U S A 55(1):134–141

    Article  CAS  Google Scholar 

  • Rusinova E, Tretyachenko-Ladokhina V, Vele OE, Senear DF, Alexander Ross JB (2002) Alexa and Oregon Green dyes as fluorescence anisotropy probes for measuring protein-protein and protein-nucleic acid interactions. Anal Biochem 308(1):18–25

    Article  CAS  Google Scholar 

  • Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76(1 Pt 1):469–477. https://doi.org/10.1016/s0006-3495(99)77214-0

    Article  CAS  Google Scholar 

  • Schauenstein K, Bock G, Wick G (1980) Short time bleaching of fluorescein isothiocyanate. A possible parameter for the specific binding of conjugates in immunofluorescence. J Histochem Cytochem 28(9):1029–1031

    Article  CAS  Google Scholar 

  • Schmid I (2000) Intracellular antigen detection by flow cytometry. In: Diamond RA, DeMaggio S (eds) In living color. Protocols in flow cytometry and cell sorting. Springer, Berlin, pp 526–531

    Google Scholar 

  • Scott E, Berns DS (1965) Protein-protein interaction. The phycocyanin system. Biochemistry 4(12):2597–2606

    Article  CAS  Google Scholar 

  • Seong Y, Nguyen TA, Wu Y, Nguyen D, Thakur A, Harding F (2021) Novel PE and APC tandems: additional near-infrared fluorochromes for use in spectral flow cytometry. bioRxiv : the preprint server for biology. https://doi.org/10.1101/2020.06.25.165381

  • Shapiro HM (1997) Re: Transmembrane potential and Antibody staining... Purdue Cytometry Discussion List. http://www.cyto.purdue.edu/cdroms/cyto3/1/04970697/0053.htm. Accessed 3 Jan 2021

  • Shapiro HM (2003) CASP-glow red. Purdue Cytometry Discussion List. https://lists.purdue.edu/pipermail/cytometry/2003-August/025019.html. Accessed 23 Oct 2018

  • Shapiro HM, Stephens S (1986) Flow cytometry of DNA content using oxazine 750 or related laser dyes with 633 nm excitation. Cytometry 7(1):107–110

    Article  CAS  Google Scholar 

  • Shi C, Wu JB, Pan D (2016) Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J Biomed Opt. https://doi.org/10.1117/1.jbo.21.5.050901

  • Shi M, Timm MM, Howard MT, Jevremovic D, Yuan J, Greipp PT, Peterson JF, Roh DJ, Horna P, Olteanu H (2022) Spurious CD34 expression in B-cell lymphoma due to nonspecific binding to PerCP-Cy5.5 fluorochrome conjugates: a rare phenomenon and a diagnostic pitfall. Cytometry B Clin Cytom. https://doi.org/10.1002/cyto.b.22079

  • Shlomchik M (2002) Antibody Conjugation Vendor and Alexa633. Purdue Cytometry Discussion List. http://www.cyto.purdue.edu/cdroms/cyto7/content/archive/2002/0268.htm. Accessed 23 Oct 2018

  • Siena S, Bregni M, Brando B, Belli N, Lansdorp PM, Bonadonna G, Gianni AM (1991) Flow cytometry to estimate circulating hematopoietic progenitors for autologous transplantation: comparative analysis of different CD34 monoclonal antibodies. Haematologica 76(4):330–333

    CAS  Google Scholar 

  • Sigma Aldrich (n.d.) Sunstone Upconverting Nanocrystals UCP 538 – Technical Bulletin. White Paper. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Datasheet/10/74932dat.pdf. Accessed 21 Feb 2021

  • Sims PJ, Waggoner AS, Wang CH, Hoffman JF (1974) Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13(16):3315–3330

    Article  CAS  Google Scholar 

  • Singh P, Kuddus M, Thomas G (2011) Isolation and binding affinity of C-phycocyanin to blood cells and genomic DNA as well as its diagnostic applications. JBPR 2(1):1–8

    Google Scholar 

  • Smith W, Rodriguez A, Patry CA, Schammel C, Knight J (2021) CLL/SLL specifically binding to the APC fluorochrome: a previously undescribed phenomenon. Cytometry B Clin Cytom. https://doi.org/10.1002/cyto.b.22006

  • Song PS, Koka P, Prezelin BB, Haxo FT (1976) Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates. Biochemistry 15(20):4422–4427

    Article  CAS  Google Scholar 

  • Song X, Li F, Ma J, Jia N, Xu J, Shen H (2011) Synthesis of fluorescent silica nanoparticles and their applications as fluorescence probes. J Fluoresc 21(3):1205–1212. https://doi.org/10.1007/s10895-010-0799-6

    Article  CAS  Google Scholar 

  • Southwick PL, Ernst LA, Tauriello EW, Parker SR, Mujumdar RB, Mujumdar SR, Clever HA, Waggoner AS (1990) Cyanine dye labelling reagents-carboxymethylindocyanine succinimidyl esters. Cytometry 11(3):418–430

    Article  CAS  Google Scholar 

  • Spendlove RS (1966) Optimal labeling of antibody with fluorescein isothiocyanate. Proc Soc Exp Biol Med 122(2):580–583

    Article  CAS  Google Scholar 

  • Stall A (2001) PE-Cy5 in the NOD. Purdue Cytometry Discussion List. https://lists.purdue.edu/pipermail/cytometry/2001-April/019403.html. Accessed 20 Feb 2021

  • Stewart SJ, Stewart CC (1994) Pitfalls using the PE-Cy5 tandem (abstract). Cytometry 17(Suppl 7):76

    Google Scholar 

  • Stewart WW (1981) Lucifer dyes – highly fluorescent dyes for biological tracing. Nature 292(5818):17–21

    Article  CAS  Google Scholar 

  • Sumner JP, Kopelman R (2005) Alexa Fluor 488 as an iron sensing molecule and its application in PEBBLE nanosensors. The Analyst 130(4):528–533. https://doi.org/10.1039/b414189j

    Article  CAS  Google Scholar 

  • Sun C, Cai J, Chen J, Wu Y, Wang P, Zhou G, Zong X, Chen B, Lv Y, Ji M (2015) The synthesis of a novel near-infrared fluorescent probe and its application in imaging of living cells. Appl Biochem Biotechnol 175(3):1644–1650. https://doi.org/10.1007/s12010-014-1398-9

    Article  CAS  Google Scholar 

  • Sun WC, Gee KR, Haugland RP (1998) Synthesis of novel fluorinated coumarins: excellent UV-light excitable fluorescent dyes. Bioorg Med Chem Lett 8(22):3107–3110

    Article  CAS  Google Scholar 

  • Tabary T, Staal-Viliare A, Rault JP, Didion J, Latger-Cannard V, Reveil B, Cohen JH, Rio Y (2008) Unusual direct phycoerythrin labeling of B-cells from a splenic marginal zone lymphoma. Cytometry Part B: Clin Cytom 74B(3):189–193

    Article  Google Scholar 

  • Takizawa F, Kinet JP, Adamczewski MD (1993) Binding of Phycoerythrin and its conjugates to murine low affinity receptors for Immunoglobulin-G. J Immunol Methods 162(2):269–272

    Article  CAS  Google Scholar 

  • Telford W, Cox W, Singer V (2001a) Detection of endogenous and antibody-conjugated alkaline phosphatase with ELF-97 phosphate in multicolor flow cytometry applications. Cytometry 43(2):117–125

    Article  CAS  Google Scholar 

  • Telford W, Georges T, Miller C, Voluer P (2019) Deep ultraviolet lasers for flow cytometry. Cytometry A 95(2):227–233. https://doi.org/10.1002/cyto.a.23640

    Article  CAS  Google Scholar 

  • Telford W, Kapoor V, Jackson J, Burgess W, Buller G, Hawley T, Hawley R (2006) Violet laser diodes in flow cytometry: an update. Cytometry A 69(11):1153–1160

    Article  Google Scholar 

  • Telford W, Stickland L, Koschorreck M (2017) Ultraviolet 320 nm laser excitation for flow cytometry. Cytometry A 91(4):314–325. https://doi.org/10.1002/cyto.a.23066

    Article  CAS  Google Scholar 

  • Telford WG (2004) Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes. Cytometry 61A(1):9–17

    Article  Google Scholar 

  • Telford WG (2015a) Near-ultraviolet laser diodes for brilliant ultraviolet fluorophore excitation. Cytometry A 87A:1127–1137. https://doi.org/10.1002/cyto.a.22686

    Article  CAS  Google Scholar 

  • Telford WG (2015b) Near infrared lasers in flow cytometry. Methods 82:12–20. https://doi.org/10.1016/j.ymeth.2015.03.010

    Article  CAS  Google Scholar 

  • Telford WG, Cox WG, Stiner D, Singer VL, Doty SB (1999) Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate. Cytometry 37(4):314–319

    Article  CAS  Google Scholar 

  • Telford WG, Hawley TS, Hawley RG (2003) Analysis of violet-excited fluorochromes by flow cytometry using a violet laser diode. Cytometry 54A(1):48–55

    Article  Google Scholar 

  • Telford WG, Moss MW, Morseman JP, Allnutt FC (2001b) Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry 44(1):16–23

    Article  CAS  Google Scholar 

  • Telford WG, Moss MW, Morseman JP, Allnutt FC (2001c) Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. J Immunol Methods 254(1–2):13–30

    Article  CAS  Google Scholar 

  • Thomas JA (1986) Intracellularly trapped pH indicators. Soc Gen Physiologists Ser 40:311–325

    CAS  Google Scholar 

  • Titus JA, Haugland R, Sharrow SO, Segal DM (1982) Texas Red, a hydrophylic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluorimetric and fluorescence microscopic studies. J Immunol Methods 50(2):193–204

    Article  CAS  Google Scholar 

  • van Vugt MJ, van den Herik-Oudijk IE, van de Winkle JG (1996) Binding of PE-CY5 conjugates to the human high-affinity receptor for IgG. Blood 88(6):2358–2361

    Article  Google Scholar 

  • Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA (1995) Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods 178(1):89–97

    Article  CAS  Google Scholar 

  • Wadley R (2014) Loss of FITC signal during sorting. Purdue Cytometry Discussion List. https://lists.purdue.edu/pipermail/cytometry/2014-February/046476.html. Accessed 30 Dec 2020

  • Waggoner AS, Ernst LA, Chen LA, Rechtenwald DJ (1993) PE-Cy5. A new fluorescent antibody label for three-color flow cytometry with single laser. Ann N Y Acad Sci 677:185–193

    Article  CAS  Google Scholar 

  • Wang M, Mi CC, Wang WX, Liu CH, Wu YF, Xu ZR, Mao CB, Xu SK (2009) Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles. ACS Nano 3(6):1580–1586. https://doi.org/10.1021/nn900491j

    Article  CAS  Google Scholar 

  • Watson A, Wu X, Bruchez M (2003) Lighting up cells with quantum dots. BioTechniques 34(2):296–300, 302–303. https://doi.org/10.2144/03342bi01

  • Weaver JL (1998) Estimation of cell viability by flow cytometry. In: Jaroszeki MJ, Heller R (eds) Flow cytometry protocols, Methods in molecular biology, vol 91. Humana Press, pp 77–83

    Chapter  Google Scholar 

  • Weichel W, Liesegang B, Gehrke K, Gottlinger C, Holtkamp B, Radbruch A, Stackhouse TK, Rajewsky K (1985) Inexpensive upgrading of a FACS I and isolation of rare somatic variants by double-fluorescence sorting. Cytometry 6(2):116–123. https://doi.org/10.1002/cyto.990060206

    Article  CAS  Google Scholar 

  • Whitaker JE, Haugland RP, Moore PL, Hewitt PC, Reese M, Haugland RP (1991) Cascade blue derivatives: water soluble, reactive, blue emission dyes evaluated as fluorescent labels and tracers. Anal Biochem 198(1):119–130

    Article  CAS  Google Scholar 

  • White JC, Stryer L (1987) Photostability studies of phycobiliprotein fluorescent labels. Anal Biochem 161(2):442–452

    Article  CAS  Google Scholar 

  • Williams RT, Bridges JW (1964) Fluorescence of solutions. A review. J Clin Pathol 17(4):371–394

    Article  CAS  Google Scholar 

  • Wu Y, Campos SK, Lopez GP, Ozbun MA, Sklar LA, Buranda T (2007a) The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy. Anal Biochem 364(2):180–192

    Article  CAS  Google Scholar 

  • Wu Y, Lopez GP, Sklar LA, Buranda T (2007b) Spectroscopic characterization of streptavidin functionalized quantum dots. Anal Biochem 364(2):193–203. https://doi.org/10.1016/j.ab.2007.02.007

    Article  CAS  Google Scholar 

  • Xing J, Zhou G, Sun C, Zhang H, Chen B, Zong X, Cai J, Ji M (2016) Synthesis and characterization of a novel near-infrared fluorescent probe for applications in imaging A549 cells. Biotechnol Lett 38(11):1851–1856. https://doi.org/10.1007/s10529-016-2179-z

    Article  CAS  Google Scholar 

  • Yoshie S, Ito J, Shirasawa S, Yokoyama T, Fujimura Y, Takeda K, Mizuguchi M, Matsumoto K, Tomotsune D, Sasaki K (2012) Establishment of novel detection system for embryonic stem cell-derived hepatocyte-like cells based on nongenetic manipulation with indocyanine green. Tissue Eng Part C Methods 18(1):12–20. https://doi.org/10.1089/ten.TEC.2011.0179

    Article  CAS  Google Scholar 

  • Zarkowsky D, Lamoreaux L, Chattopadhyay P, Koup RA, Perfetto SP, Roederer M (2011) Heavy metal contaminants can eliminate quantum dot fluorescence. Cytometry A 79(1):84–89. https://doi.org/10.1002/cyto.a.20986

    Article  CAS  Google Scholar 

  • Zeng X, Wei YL, Huang J, Newell EW, Yu H, Kidd BA, Kuhns MS, Waters RW, Davis MM, Weaver CT, Chien YH (2012) γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response. Immunity 37(3):524–534. https://doi.org/10.1016/j.immuni.2012.06.011

    Article  CAS  Google Scholar 

  • Zheng K, Loh KY, Wang Y, Chen Q, Fan J, Jung T, Nam SH, Suh YD, Liu X (2019) Recent advances in upconversion nanocrystals: expanding the kaleidoscopic toolbox for emerging applications. Nano Today. https://doi.org/10.1016/j.nantod.2019.100797

  • Zurgil N, Kaufman M, Solodiev I, Deutsch M (1999) Determination of cellular thiol levels in individual viable lymphocytes by means of fluorescence intensity and polarization. J Immunol Methods 229(1–2):23–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortolani, C. (2022). Fluorochromes Suitable for Antibody Conjugation. In: Flow Cytometry Today. Springer, Cham. https://doi.org/10.1007/978-3-031-10836-5_15

Download citation

Publish with us

Policies and ethics