Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

  • 436 Accesses

Abstract

Twisted pair cables used in the access network were not built for the frequencies up to 212 MHz used by G.fast. With increasing frequency, the simplified modeling approach used for VDSL2 does no longer give accurate results because the behavior of twisted pair cables changes. This chapter presents measurement data of twisted pair cables at G.fast frequencies and introduces a MIMO cable binder model for the copper access network in the fiber to the distribution point topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The line impedance converges to the value of \(Z_{0 \infty }\) within the measurement precision at the measured frequencies, as explained in Sect. 2.4.3.

  2. 2.

    More details on single-ended and differential modes of twisted pair cables can be found in Appendix A.9.

  3. 3.

    More details on single-ended and differential mode of twisted pairs can be found in Appendix A.9.

  4. 4.

    For the ITU model, it is one of the derived parameters, \(L_{\text {s}\infty }\) in Eq. (2.8).

  5. 5.

    As indicated, e.g., by Fig. A.6 in Appendix A.5, the impedance converges for typical cables at frequencies below \(10\,\text {MHz}\) to the value of \(Z_{0\infty }\) within the measurement precision.

References

  1. ITU-T Rec. G.992.5: Asymmetric digital subscriber line 2 transceivers (ADSL2)- Extended bandwidth ADSL2 (ADSL2plus) (2005)

    Google Scholar 

  2. ITU-T Rec. G.993.2: Very high speed digital subscriber line transceivers 2 (VDSL2) (2006)

    Google Scholar 

  3. ETSI TS 101 270-1: Transmission and Multiplexing (TM); Access transmission systems on metallic access cables; Very high speed Digital Subscriber Line (VDSL); Part 1: Functional requirements (2003)

    Google Scholar 

  4. Maes, J., Guenach, M., Peeters, M.: Statistical channel model for gain quantification of DSL crosstalk mitigation techniques. In: IEEE International Conference on Communications (ICC) (2009)

    Google Scholar 

  5. Strobel, R., Stolle, R., Utschick, W.: Wideband Modeling of Twisted-Pair Cables for MIMO Applications. In: IEEE Global Communications Conference (GLOBECOM) (2013)

    Google Scholar 

  6. Broadband Forum TR-285: Cable Models for Physical Layer Testing of G.fast Access Network. Technical report (2015)

    Google Scholar 

  7. Heaviside, O.: LXII. On resistance and conductance operators, and their derivatives, inductance and permittance, especially in connexion with electric and magnetic energy. Lond. Edinburgh, and Dublin Philos. Mag. J. Sci. 24(151), 479–502 (1887)

    Google Scholar 

  8. TNO: G.fast: wideband modeling of twisted pair cables as two-ports (2011). ITU-T Contribution SG15/Q4a 11RV-022

    Google Scholar 

  9. ITU-T Rec. G.9701: Fast Access to Subscriber Terminals - Physical layer specification (2015). ITU Recommendation

    Google Scholar 

  10. Paul, C.: Analysis of Multiconductor Transmission Lines. Wiley-IEEE Press, New York (2007)

    Book  Google Scholar 

  11. Starr, T.: DSL Advances. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  12. Lindqvist, F., Börjesson, P., Ödling, P., Höst, S., Ericson, K., Magesacher, T.: Low-order and causal twisted-pair cable modeling by means of the Hilbert transform. In: AIP Conference Proceedings, vol. 1106, p. 301 (2009)

    Google Scholar 

  13. ANSI T1. 417-2003: Spectrum management for loop transmission systems (2003)

    Google Scholar 

  14. van den Brink, R.F.M.: Cable reference models for simulating metallic access networks (1998). ETSI STC TM6 Permanent Document TM6(97)02, r970p02r3

    Google Scholar 

  15. Ginis, G., Cioffi, J.: Vectored-DMT: a FEXT canceling modulation scheme for coordinating users. In: IEEE International Conference on Communications (ICC), vol. 1, pp. 305–309. IEEE (2001)

    Google Scholar 

  16. Muggenthaler, P., Tudziers, C., Berndt, E.: G.fast: EL-FEXT Analysis (2012). ITU-T Contribution SG15/Q4a 2012-06-4A-41

    Google Scholar 

  17. van den Brink, R., van den Heuvel, B.: G.fast: dual slope behaviour of EL-FEXT (2012). ITU-T Contribution SG15/Q4a 2012-02-4A-038

    Google Scholar 

  18. Kozarev, A., Strobel, R., Leimer, S., Muggenthaler, P.: Modeling of Twisted-Pair Quad Cables for MIMO Applications (2014). Broadband Froum Contribution bbf2014.467

    Google Scholar 

  19. TNO: G.fast: far-end crosstak in twisted pair cabling: measurements and modeling (2011). ITU-T Contribution SG15/Q4a 11RV-022

    Google Scholar 

  20. Carrick, A., Bongard, T.: G.fast: additional loop sets for simulation purposes (2013). ITU-T Contribution SG15/Q4a 2013-01-Q4-044

    Google Scholar 

  21. Humphrey, L., Morsman, T.: G.fast: release of BT cable measurements for use in simulations (2013). ITU-T Contribution SG15/Q4a 2013-1-Q4-066

    Google Scholar 

  22. G.fast: Release of BT cable (20 pair) measurements for use in simulations (2015). ITU-T Contribution SG15/Q4a 2015-02-Q4-053

    Google Scholar 

  23. Horsley, I., Singleton, H.: Release of BT cable (20 pair) NEXT measurements for use in simulations (2015). ITU-T Contribution SG15/Q4 COM15 - C1499 - E

    Google Scholar 

  24. Eder (Lantiq Deutschland GmbH), A., Helfer (CAD Service), G., Leibiger (Fraunhofer ESK), M.: Hochbitratige Access- und Inhausnetze (HAInet) Schlussbericht. Technical report, Forderprogramm IuK Bayern (2014)

    Google Scholar 

  25. Maierbacher (Fraunhofer ESK), G., Strobel (Lantiq Deutschland GmbH), R., Liss (InnoRoute GmbH), C.: Entwicklung eines Generators für Mustermodelle verkoppelter Mehrleitersysteme fr die FTTdp-Übertragung. Technical report, Bayerische Forschungsstiftung (2014)

    Google Scholar 

  26. Blenk, T.: Entwicklung eines Generators für Mustermodelle verkoppelter Mehrleitersysteme für die FTTdp-Übertragung. Master’s thesis, Hochschule Augsburg, University of Applied Sciences (2014)

    Google Scholar 

  27. Pipes, L.: X. matrix theory of multiconductor transmission lines. Lond. Edinb. Dublin Philos. Mag. J. Sci. 24(159), 97–113 (1937)

    Google Scholar 

  28. Lee, B., Cioffi, J., Jagannathan, S., Seong, K., Kim, Y., Mohseni, M., Brady, M.: Binder MIMO channels. IEEE Trans. Commun. 55(8), 1617–1628 (2007)

    Article  Google Scholar 

  29. Blenk, T.: Analyse existierender Leitungsmodelle zur Charakterisierung von DSL-Leitungen. Bachelor’s thesis, Hochschule Augsburg, University of Applied Sciences (2014)

    Google Scholar 

  30. Kozarev, A., Strobel, R.: Update to the Wideband MIMO model of Copper Access Networks up to 300 MHz (2014). Broadband Forum Contribution bbf2014.377.00

    Google Scholar 

  31. Leimer, S., Muggenthaler, P., Kozarev, A., Strobel, R.: Some Observations about the Models in SD-285 Section 4.1.5 (2014). Broadband Forum Contribution bbf2014.509.00

    Google Scholar 

  32. Kozarev, A., Strobel, R., Leimer, S.: Wideband MIMO model of Copper Access Networks up to 300 MHz (2014). Broadband Forum Contribution bbf2014.117.01

    Google Scholar 

  33. Kozarev, A., Strobel, R., Leimer, S., Muggenthaler, P.: Modeling of Twisted-Pair Quad Cables for MIMO Applications (2014). Broadband Forum Contribution bbf2014.467.01

    Google Scholar 

  34. Strobel, R.: Line simulator (2014). WO Patent App. WO/2015/132264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Strobel .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strobel, R. (2019). Channel Models for Twisted Pair Cable Bundles. In: Channel Modeling and Physical Layer Optimization in Copper Line Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-91560-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91560-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91559-3

  • Online ISBN: 978-3-319-91560-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics