Skip to main content

Effects of Metasomatism on Mineral Systems and Their Host Rocks: Alkali Metasomatism, Skarns, Greisens, Tourmalinites, Rodingites, Black-Wall Alteration and Listvenites

  • Chapter
  • First Online:
Metasomatism and the Chemical Transformation of Rock

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

Heat-liberating events, such as igneous intrusions emplaced into cool crustal rocks, will result not only in loss of heat to the surrounding environment, but also in the transport of volatile components, which are responsible for metasomatic processes. Some of the most impressive results of these processes are, for example, fenites (K- and Na-metasomatism), skarns (Ca-metasomatism) and tourmalinisation (B-metasomatism).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concept of boiling in magmas is very important for hydrothermal mineral systems: first boiling is that which occurs in a magma during decompression, causing exsolution of volatiles; second boiling takes place as a result of increasing concentration of volatiles during crystallisation, with continuous increase of H2O and other volatile constituents in the residual melt fractions, such that at some stage, the pressure of H2O equals the confining pressure and retrograde (second) boiling occurs, effectively creating a hydrothermal solution.

References

  • Bach W, Klein F (2009) The petrology of seafloor rodingites: insights from geochemical reaction path modelling. Lithos 112:103–117

    Google Scholar 

  • Bailey DK (1983) The chemical and thermal evolution of rifts. Tectonophysics 94:585–598

    Google Scholar 

  • Bailey DK (1984) Kimberlite: “the mantle sample” formed by ultrametasomatism. In: Kornprobst J (ed) Kimberlite and relate rocks. Elsevier, Amsterdam, pp 232–333

    Google Scholar 

  • Bailey DK (1987) Mantle metasomatism – perspective and prospect. Geol Soc Lond 30:1–14, Sp Publ

    Google Scholar 

  • Barnes SJ (2006) Komatiites: petrology, volcanology, metamorphism and geochemistry. Soc Econ Geol 13:13–49, Sp Publ

    Google Scholar 

  • Barsukov VL (1957) The geochemistry of tin. Geokimiya 1:41–53

    Google Scholar 

  • Barton MD, Johnson DA (1996) Evaporitic source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 24:259–262

    Google Scholar 

  • Bédard JH (2010) Parental magmas of Grenville Province massif-type anorthosite and conjectures about why massif anorthosites are restricted to the Proterozoic. T Roy Soc Edin (Earth Env Sci) 100:77–103

    Google Scholar 

  • Best MG (1982) Igneous and metamorphic petrology. Freeman, San Francisco, p 630

    Google Scholar 

  • Béziat D, Bourges F, Debat P, Lompo M, Tollon F, Zonou S (1998) Albitite et “listvénite” sites de concentration aurifère inédits dans les ceintures de roches vertes birimiennes fortment hydrothermalisées du Burkina Faso. Bull Soc Géol Fr 169(4):563–571

    Google Scholar 

  • Bowden P (1985) The geochemistry and mineralization of alkaline ring complexes in Africa (a review). J Afr Earth Sci 3:17–40

    Google Scholar 

  • Bowden P, Kinnaird JA, Abaa SI, Ike EC, Turaki UM (1984) Geology and mineralization of the Nigerian anorogenic ring complexes. Geol Jahrb B 56:1–65

    Google Scholar 

  • Brogger WC (1921) Die Eruptivgesteine des Kristianiagebiets IV. Das Fengebiet in Telemarken, Norwegen. Norsk Vidensk Akademie Oslo Skr Nat Kl 9, 408

    Google Scholar 

  • Brown PE, Bowman JR, Kelly WC (1985) Petrologic and stable isotope constraints on the source and evolution of skarn-forming fluids at Pine Creek, California. Econ Geol 80:72–95

    Google Scholar 

  • Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks. Springer, Berlin, p 341

    Google Scholar 

  • Bucher K, De Capitani C, Grapes R (2005) The development of a margarite-corundum blackwall by metasomatic alteration of a slice of mica schist in ultramafic rock, Kvesjoen, Norwegian Caledonides. Can Mineral 43:129–156

    Google Scholar 

  • Burnham CW, Ohmoto H (1980) Late stage processes of felsic magmatism. Mining Geol 8:1–11, Sp Iss

    Google Scholar 

  • Burt DM (1981) Acidity-salinity diagrams – application to greisen and porphyry deposits. Econ Geol 76:832–843

    Google Scholar 

  • Carmichael IS, Turner FJ, Verhoogen J (1974) Igneous petrology. McGraw-Hill, New York

    Google Scholar 

  • Castor SB (2008) The mountain pass rare-earth carbonatite and associated ultrapotassic rocks, California. Can Mineral 46:779–806

    Google Scholar 

  • Chen SF, Morris PA, Pirajno F (2005) Occurrence of komatiites in the Sandstone greenstone belt, north-central Yilgarn Craton. Aust J Earth Sci 52:959–963

    Google Scholar 

  • Coleman RG (1977) Ophiolites. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Cuney M, Kyser K (2009) Recent and not-so-recent developments in uranium deposits and implications for exploration, vol 39. Mineralogical Association of Canada, Quebec, Short Course

    Google Scholar 

  • Dubé B, Gosselin P (2007) Greenstone-hosted quartz-carbonate vein deposits. In: Goodfellow WD (ed) Mineral Deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces and exploration methods, vol 5. Geological Association of Canada, Ottawa, pp 49–73, Sp Publ

    Google Scholar 

  • Duncan RK, Willett GC (1990) Mount weld carbonatite. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua new guinea, vol 14. The Australasian Institute of Mining and Metallurgy, Parkville, pp 591–597, Monogr

    Google Scholar 

  • Einaudi MT (1982) Description of skarns associated with porphyry copper plutons. In: Titley SR (ed) Advances in geology of the porphyry copper deposits, southwestern North America. University of Arizona Press, Tucson, pp 139–184

    Google Scholar 

  • Einaudi MT, Burt DM (eds) (1982) A special issue devoted to skarn deposits – introduction, terminology, classification and composition of skarn deposits. Econ Geol 77(4):745–754

    Google Scholar 

  • Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. Econ Geol 75:317–391

    Google Scholar 

  • Eugster HP (1984) Granites and hydrothermal ore deposits: a geochemical framework. Mineral Mag 49:7–23

    Google Scholar 

  • Ferguson J, McIver JR, Danchin RV (1975) Fenitization associated with the alkaline carbonatite complex of Epemba, South West Africa. Trans Geol Soc S Afr 78:111–122

    Google Scholar 

  • Fitton JG, Upton BGJ (eds) (1987) Alkaline igneous rocks, vol 30. Geological Society by Blackwell Scientific, Oxford, Sp Publ

    Google Scholar 

  • Fleet ME (2003) Rock forming minerals, sheet silicates: micas, vol 3A, 2nd edn. Geological Society, London, p 758

    Google Scholar 

  • Flint D, Abeysinghe PB (2000) Geology and mineral resources of the Gascoyne Region. Geological Survey of Western Australia, East Perth, p 29, Rec 2000/7

    Google Scholar 

  • Frost BR (1975) Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington. J Petrol 16:272–313

    Google Scholar 

  • Fryer BJ, Kerrich R, Hutchinson RW, Peirce MG, Rogers DS (1979) Achaean precious-metal hydrothermal systems, Dome Mine, Abitibi Greenstone Belt. I. Patterns of alteration and metal distribution. Can J Earth Sci 16:421–439

    Google Scholar 

  • Grey K, Hocking RM, Stevens MK, Bagas L, Carlsen GM, Irimies F, Pirajno F, Haines PW, Apak SN (2005) Lithostratigraphic nomenclature of the officer basin and correlative parts of the Paterson Orogen, Western Australia. Geol Surv West Aus Rpt 93:89

    Google Scholar 

  • Groves DI (1993) The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Miner Deposita 28:366–374

    Google Scholar 

  • Groves DI, Ridley JR, Bloem EMJ, Gebre-Mariam M, Hageman SG, Hronsky JMA, Knight JT, McNaughton NJ, Ojala J, Vielreicher RM, McCuaig TC, Holyland PW (1995) Lode-gold deposits of the Yilgarn block: products of late Archaean crustal scale overpressured hydrothermal systems. Geol Soc Lond 95:155–172, Sp Publ

    Google Scholar 

  • Halls C, Zhao R (1995) Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineral Dep 30:303–313

    Google Scholar 

  • Hemley J, Jones WR (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Econ Geol 59:538–569

    Google Scholar 

  • Hosking KFG (1988) The world’s major types of tin deposits. In: Hutchison CS (ed) Geology of tin deposits in Asia and the Pacific. Springer, Berlin/Heidelberg/New York, pp 3–49

    Google Scholar 

  • Hutchison CS (ed) (1988) Geology of tin deposits in Asia and the Pacific. United Nations economic and social commission for Asia and the Pacific. Springer, Berlin/Heidelberg, p 718

    Google Scholar 

  • Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol 27:293–305

    Google Scholar 

  • Ishihara S (1981) The granitoid series and mineralization. Econ Geol 75:458–484

    Google Scholar 

  • Jones AP, Wall F, Williams CT (eds) (1996) Rare earth minerals – chemistry, origin and ore deposits, vol 7, Mineralogical Society Series. Chapman and Hall, London, p 372

    Google Scholar 

  • Kalbskopf SP, Barton JM (2003) The Zandrivier deposit, Pietersburg greenstone belt, South Africa: an auriferous tourmalinite. S Afr J Geol 106:361–374

    Google Scholar 

  • Kelly WC, Rye RO (1979) Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Econ Geol 74:1721–1822

    Google Scholar 

  • Kent AJR, Ashley PM, Fanning CM (2000) Metasomatic alteration associated with regional metamorphism: an example from the Willyama Supergroup, South Australia. Lithos 54:33–62

    Google Scholar 

  • Kerrich R, Fyfe WS (1981) The gold – carbonate association: source of CO2, and CO2 fixation reactions in Archaean lode deposits. Chem Geol 42(8):265–294

    Google Scholar 

  • Kerrich R, Fyfe WS, Barnett RL, Blair BB, Willmore LM (1987) Corundum, Cr-muscovite rocks at O’Briens, Zimbabwe: the conjunction of hydrothermal desilification and LIL-element enrichment – geochemical and isotopic evidence. Contrib Mineral Petrol 95:481–498

    Google Scholar 

  • Kinnaird JA (1985) Hydrothermal alteration and mineralisation of the alkaline anorogenic ring complexes of Nigeria. J Afr Earth Sci 3:229–252

    Google Scholar 

  • Kirwin DJ (1985) Tourmaline breccia pipes. Unpublished M.sc. thesis, James Cook University, North Queensland, 139pp

    Google Scholar 

  • Kresten P (1988) The chemistry of fenitisation: examples from Fen, Norway. Chem Geol 68:329–349

    Google Scholar 

  • Laznicka P (2006) Giant metallic deposits – future resources of industrial minerals. Springer, Berlin

    Google Scholar 

  • Le Bas MJ (1977) Carbonatite nepheline volcanism. Wiley, New York

    Google Scholar 

  • Le Bas MJ (1987) Nephelinites and carbonatites. Geol Soc Lond 30:53–83, Sp Publ

    Google Scholar 

  • Leblanc M, Lbouabi M (1988) Native silver mineralisation along a rodingite tectonic contact between serpentinite and quartz-diorite (Bon Azzer, Morocco). Econ Geol 83:1379–1391

    Google Scholar 

  • Li XP, Zhang L, Wei C, Al Y, Chen J (2007) Petrology of rodingite derived from eclogite in western Tianshan, China. J Metamorph Geol 25:363–382

    Google Scholar 

  • Lindgren W (1933) Mineral deposits. McGraw-Hill, New York, p 930

    Google Scholar 

  • Manning DC (1982) An experimental study of the effects of fluorine on the crystallization of granite melts. In: Evans AM (ed) Metallization associated with acid magmatism. Wiley, Chichester, pp 191–203

    Google Scholar 

  • Mao JW, Wang YT, Lehmann B, Yu JJ, Du A, Mei YX, Li YF, Zang WS, Stein HJ (2006) Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangzte River valley and metallogenic implications. Ore Geol Rev 29:307–324

    Google Scholar 

  • Mao JW, Xie GQ, Chao,D, Pirajno F, Ishiyama D, Chen YC (2011) A tectono-genetic model for porphyry Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, eastern China. Ore Geol Rev 43(1):294–314

    Google Scholar 

  • Mariano AN (1989) Economic geology of rare earth elements. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements, vol 21, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 309–337

    Google Scholar 

  • McPhie J, Doyle M, Allen R (1993) Volcanic textures. Tasmanian Govt Print Office, Hobart, 198p

    Google Scholar 

  • Meinert LD, Lentz DR, Newberry RJ (eds) (2000) A special issue devoted to skarn deposits. Econ Geol 95(6):1183–1365

    Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100:299–336

    Google Scholar 

  • Meyer C, Hemley JJ (1967) Wall rock alteration. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 1st edn. Holt Rinehart and Winston, New York, pp 166–235

    Google Scholar 

  • Mottl MJ (1983) Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geol Soc Am Bull 94:161–180

    Google Scholar 

  • Mueller AG (1988) Achaean gold-silver deposits with prominent calc-silicate alteration in the Southern Cross greenstone belt, Western Australia: analogues of Phanerozoic skarn deposits. Geol Dept & Univ Ext, Univ West Aust, Publ 12: 141–163

    Google Scholar 

  • Mueller AG, Groves DI (1991) The classification of Western Australian greenstone-hosted gold deposits according to wallrock-alteration mineral assemblages. Ore Geol Rev 6:291–331

    Google Scholar 

  • Mueller AG, De Laeter JR, Groves DI (1991) Strontium isotope systematics of hydrothermal minerals from epigenetic Archean gold deposits in the Yilgarn Block, Western Australia. Econ Geol 86:780–809

    Google Scholar 

  • Munhá J, Kerrich R (1980) Sea water interaction in spilites from the Iberian pyrite belt. Contrib Mineral Petrol 73:191–200

    Google Scholar 

  • Mustard R (2004) Textural, mineralogical and geochemical variation in the zoned Timbarra Tablelands pluton, New South Wales. Aust J Earth Sci 51:385–405

    Google Scholar 

  • Newberry RJ (1991) Scheelite-bearing skarns in the Sierra Nevada region, California. Contrasts in zoning and mineral compositions and tests of the infiltration metasomatism theory. In: Barto-Kyriakidis RJ (ed) Skarns – their genesis and metallogeny. Theophrastus, Athens, pp 343–384

    Google Scholar 

  • Oliver NHS, Rubenach MJ, Valenta RK (1998) Precambrian metamorphism, fluid flow and metallogeny of Australia. AGSO J Geol Geophys 17(4):31–53

    Google Scholar 

  • Palandri JL, Read MH (2004) Geochemical models of metasomatism in ultrmafic systems: serpentinisation, rodingitisation and sea floor carbonate chimney precipitation. Geoch Cosmoch Acta 68:1115–1133

    Google Scholar 

  • Pan Y, Dong P (1999) The lower Chanjiang (Yangzi/Yangzte River) metallogenic belt, East China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb and Ag deposits. Ore Geol Rev 15:177–242

    Google Scholar 

  • Pearson JM, Taylor WR (1996) Mineralogy and geochemistry of fenitized alkaline ultrabasic sills of the Gifford Creek complex, Gascoyne province, Western Australia. Can Mineral 34:201–219

    Google Scholar 

  • Pearson JM, Taylor WR, Barley ME (1995) Geology of the alkaline Gifford Creek complex, Gascoyne complex, Western Australia. Aust J Earth Sci 43:299–309

    Google Scholar 

  • Phillips GN, Powell R (2010) Formation of gold deposits: a metamorphic devolitilization model. J metamoroh Geol 28:689–718

    Google Scholar 

  • Pichavant M (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1 kbar vapour pressure. Contrib Mineral Petrol 76:430–439

    Google Scholar 

  • Pichavant M, Manning D (1984) Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Phys Earth Planet Inter 35:31–50

    Google Scholar 

  • Pirajno F (1982) Geology, geochemistry, mineralisation and metal zoning of the McConnochie greisenised granite, Reefton district, New Zealand. NZ J Geol Geophys 25:405–425

    Google Scholar 

  • Pirajno F (1992) Hydrothermal mineral deposits. Springer, Berlin

    Google Scholar 

  • Pirajno F (2000) Ore deposits and mantle plumes. Kluwer, Dodrecht

    Google Scholar 

  • Pirajno F (2004) Oceanic plateau accretion onto the northwestern margin of the Yilgarn Craton, Western Australia: implications for a mantle plume event at ca, 2.0 Ga. J Geodyn 37:205–231

    Google Scholar 

  • Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, Berlin

    Google Scholar 

  • Pirajno F, Bentley PN (1985) Greisen-related scheelite, gold and sulphide mineralisation at Kirwans Hill and Bateman Creek, Reefton District, Westland, New Zealand. N Z J Geol Geophys 28:97–109

    Google Scholar 

  • Pirajno F, Schlögl HU (1987) The alteration-mineralisation of the Krantzberg tungsten deposit, South West Africa/Namibia. S Afr J Geol 90:499–508

    Google Scholar 

  • Pirajno F, Smithies RH (1992) The FeO/Feo + MgO ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits. J Geochem Explor 42:371–382

    Google Scholar 

  • Pirajno F, Occhipinti SA, Swager CP (2000) Geology and mineralization of the Palaeoproterozoic Bryah and Padbury Basins Western Australia. Geological Survey of Western Australia, East Perth, p 52, Rep 59

    Google Scholar 

  • Pirajno F, Haines PW, Hocking RM (2006) Keene Basalt, Northwest Officer Basin, Western Australia: tectono-stratigraphic setting and implications for possible submarine mineralisation. Aust J Earth Sci 53:1013–1022

    Google Scholar 

  • Pirajno F, Sheppard S, González-Alvaréz I, Johnson SP, Thorne A (2010) The Gifford Creek carbonatite complex. Symp Proc IAGOD 2010, Giant ore deposits down under, Adelaide, 115–116

    Google Scholar 

  • Pirajno F, Seltmann R, Yang YQ (2011) A Review of mineral systems and associated tectonic settings of Northern Xinjiang, NW China. Geosci Frontier 2(2):157–185

    Google Scholar 

  • Plimer IR (1987) The association of tourmalinite with stratiform scheelite deposits. Miner Deposita 22:82–291

    Google Scholar 

  • Polito PA, Kyser K, Stanley C (2009) The Proterozoic, albitite-hosted, Valhalla uranium deposit, Queensland, Australia: a description of the alteration assemblage associated with uranium mineralisation in diamond drill hole v39. Miner Deposita 44:11–40

    Google Scholar 

  • Pollard PJ (1983) Magmatic and postmagmatic processes in the formation of rocks associated with rare element deposits. Trans Inst Min Metall 92:B1–B9

    Google Scholar 

  • Pollard PJ, Pichavant M, Charoy B (1987) Contrasting evolution of fluorine- and boron-rich tin systems. Miner Deposita 22:315–321

    Google Scholar 

  • Pollard PJ, Taylor RG, Cuff C (1988) Genetic modelling of greisen-style tin systems. In: Hutchison CS (ed) Geology of tin deposits in Asia and the Pacific. Springer, Berlin, pp 59–72

    Google Scholar 

  • Putnis A, Hinrichs R, Putnis CV, Golla-Schindler U, Collins LG (2007) Hematite in porous red-clouded feldspars: evidence of large-scale crustal fluid-rock interaction. Lithos 95:10–18

    Google Scholar 

  • Ramberg H (1952) The origin of metamorphic and metasomatic rocks. University of Chicago Press, Chicago, p 317

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineralogical Society of America, Washington, DC, p 644, Rev Mineral 12

    Google Scholar 

  • Rona PA (1984) Hydrothermal mineralization at seafloor spreading centers. Earth Sci Rev 20:1–104

    Google Scholar 

  • Rose G (1837) Mineralogisch-geognostische Reise nach dem Ural,dem Altai und dem Kaspischen Meere. Vol 1: Reise nach dem nördlichen Ural und dem Altai. Berlin, CW Eichhoff (Verlag derSanderschen Buchhandlung), 641p.

    Google Scholar 

  • Rose AW, Burt DM (1979) Hydrothermal alteration. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 173–235

    Google Scholar 

  • Rosenbauer RJ, Bischoff JL (1983) Uptake and transport of heavy metals by seawater: a summary of the experimental results. In: Rona PA, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 177–198

    Google Scholar 

  • Rozendaal A, Misiewicz JE, Scheepers R (1995) The tin zone: sediment-hosted hydrothermal tin mineralization at Rooiberg, South Africa. Miner Deposita 30:178–187

    Google Scholar 

  • Sánchez-Muñoz L, Crespop E, García-Guinea J, de Moura OJM, Zagorsky VY (2009) What is a twin structure? An answer from microcline minefrals from pegmatites. Estudos Geol 19(2):240–245

    Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD (2005) Porphyry deposits: characteristics and origin of hypogene features. Econ Geol 100:251–298

    Google Scholar 

  • Seltmann R, Soloviev S, Shatov V, Pirajno F, Naumov E, Cherkasov S (2010) Metallogeny of Siberia: tectonic, geologic and metallogenic settings of selected significant deposits. Aust J Earth Sci 57:655–706

    Google Scholar 

  • Seyfried WE, Janecky DR (1985) Heavy metal and sulfur transport during subcritical and supercritical hydrothermal alteration of basalt: Influence of fluid pressure and basalt composition and crystallinity. Geochim Cosmochim Acta 49:2545–2560

    Google Scholar 

  • Seyfried WE, Berndt ME, Seewald JS (1988) Hydrothermal alteration processes at mid-ocean ridges: constraints from diabase alteration experiments, hot spring fluids and composition of the oceanic crust. Can Mineral 26:787–804

    Google Scholar 

  • Sharkov EV (2010) Middle-proterozoic anorthosite-rapakivi granite complexes: an example of within-plate magmatism in abnormally thick crust: evidence from the East European Craton. Precambrian Res 183:689–700

    Google Scholar 

  • Shcherba GN (1970) Greisens. Int Geol Rev 12:114–255

    Google Scholar 

  • Sheppard S, Rasmussen B, Muhling JR, Farrell TR, Fletcher IR (2007) Grenvillian-aged orogenesis in the Palaeoproterozoic Gascoyne complex, Western Australia: 1030–950 Ma reworking of the Proterozoic Capricorn orogen. J Metamorph Geol 25:477–494

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Google Scholar 

  • Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. Rev Mineral 33:559–641

    Google Scholar 

  • Slack JF, Herriman N, Barnes RG, Plimer IR (1984) Stratiform tourmalinites in metamorphic terranes and their geologic significance. Geology 12:713–716

    Google Scholar 

  • Smirnov VI (1976) Geology of mineral deposits. MIR, Moscow

    Google Scholar 

  • Šoŝtaríc SB, Palinkaŝ LA, Topa D, Spangeberg JE, Prochaska W (2011) Silver-base metal epithermal and listwaenite types of deposit Crnac, Rogozna Mts., Kosovo. Part I: ore mineral geochemistry and sulphur isotope study. Ore Geol Rev 40:65–80

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equlibria and pressure-temperature-time paths. Mineralogical Society of America, Washington, DC, p 799, Monogr

    Google Scholar 

  • Storey BC, Alabaster T, Pankhurst RJ (eds) (1992) Magmatism and the causes of continental breakup, vol 68, Geological Society of London. The Geological Society, London, Sp Publ

    Google Scholar 

  • Taylor RG (1979) Geology of tin deposits. Elsevier, Amsterdam

    Google Scholar 

  • Taylor R, Pollard PJ (1988) Pervasive hydrothermal alteration in tin-bearing granites and implications for the evolution of ore-bearing magmatic fluids. Can Inst Min Metall 39:86–95, Sp Vol

    Google Scholar 

  • Verwoerd WJ (1966) Fenitization of basic igneous rocks. In: Tuttle DF, Gittens J (eds) Carbonatites. Wiley, New York, pp 295–308

    Google Scholar 

  • Vigneresse JL (2005) The specific case of the Mid-Proterozoic rapakivi granites and associated suite within the context of the Columbia supercontinent. Precambrian Res 137:1–34

    Google Scholar 

  • Walker RJ, Böhlke JK, McDonough WF, Li J (2007) Effects of Mother Lode-type gold mineralization on 187Os/188Os and platinum group element concentrations in peridotite: Alleghany District, California. Econ Geol 102:1079–1089

    Google Scholar 

  • Walraven F (1985) Genetic aspects of the granophyric rocks of the Bushveld complex. Econ Geol 80:1166–1180

    Google Scholar 

  • Williams PJ (ed) (1998) A special issue on the McArthur River-Mount Isa-Cloncurry minerals province. Econ Geol 98(8):139–178

    Google Scholar 

  • Woolley AR (1987) The alkaline rocks and carbonatites of the world. Part 1: North and South America. British Museum Natural History, University Texas Press, London

    Google Scholar 

  • Woolley AR (2001) Alkaline rocks and carbonatites of the world. Part 3: Africa. Geological Society, London

    Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008) Carbonatite occurrences of the world: map and database. Geological Survey of Canada, Open File 5796

    Google Scholar 

  • Woolley AF, Symes RF, Elliot CJ (1972) Metasomatised (fenitized) quartzites from the Barralam complex, Scotland. Mineral Mag 38:819–836

    Google Scholar 

  • Wright JH, Kwak TAP (1989) Tin-bearing greisens of Mount Bischoff, northwestern Tasmania, Australia. Econ Geol 84:551–574

    Google Scholar 

  • Zharikov V, Pertsev N, Rusinov V, Callegari E, Fettes D (2007) Metasomatism and metasomatic rocks. In: Fettes D, Desmons J (eds) Metamorphic rocks – a classification and glossary of terms. Cambridge University Press, Cambridge, pp 58–68

    Google Scholar 

  • Zoheir B, Lehmann B (2011) Listvenite-lode association at the Barramiya gold mine, Eastern Desert, Egypt. Ore Geol Rev 39:101–115

    Google Scholar 

Download references

Acknowledgments

I thank Dan Harlov for inviting me to provide a chapter on metasomatic processes associated with mineral systems and for his useful suggestions. Rob Kerrich, Wolfgang Bach, Daniel Harlov and Håkon Austrheim are thanked for their constructive comments, which considerably improved this contribution. I publish this chapter with the permission of the Executive Director of the Geological Survey of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Pirajno .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Pirajno, F. (2013). Effects of Metasomatism on Mineral Systems and Their Host Rocks: Alkali Metasomatism, Skarns, Greisens, Tourmalinites, Rodingites, Black-Wall Alteration and Listvenites. In: Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28394-9_7

Download citation

Publish with us

Policies and ethics