Skip to main content

Mechanische Eigenschaften

  • Chapter
  • First Online:
Anwendungstechnologie Aluminium

Part of the book series: VDI-Buch ((VDI-BUCH))

  • 32k Accesses

Zusammenfassung

In Zusammenarbeit mit Dr.-Ing. Johann Georg Blauel, ehem. Fraunhofer Institut für Werkstoffmechanik, Freiburg.

Bei der Wahl der Legierung und der Halbzeugart für den jeweiligen Anwendungsfall sind neben der Beurteilung der Verarbeitungseigenschaften, wie Verformbarkeit, Schweißbarkeit und Zerspanbarkeit, sowie des Korrosionsverhaltens unter den beabsichtigten Einsatzbedingungen vor allem die Kenntnis der Festigkeits- und Duktilitätseigenschaften von Bedeutung. Die letzteren beiden Eigenschaften bestimmen sowohl die Auslegung des Bauteils als auch das Umformverhalten und das Verhalten unter Missbrauch und Crash.

Neu gegliedert, aktualisiert und ergänzt in Zusammenarbeit mit Dr.-Ing. Johann Georg Blauel, ehem. Fraunhofer Gesellschaft, Institut für Werkstoffmechanik, Freiburg

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reziproker Wert im Verhältnis zu n des Ramberg-Osgood Werkstoffgesetzes, Gl. 6.1

  2. 2.

    In der Originalliteratur wird anstelle der Anrisslastwechselzahl N A die Zahl der Dehnungsumkehrungen N f verwendet, so dass N A  = 2 N f entspricht.

  3. 3.

    Nennspannungen sind die sich aus den Schnittkräften und Momenten ergebenden nominellen Spannungen im gefährdeten Querschnitt des Bauteils ohne Berücksichtigung von spannungserhöhenden Singularitäten, wie Kerben, Schweißnähten, etc.. Der Nennspannungsnachweis verwendet „zulässige Spannungen“ für Kerbfälle, die in entsprechenden Regelwerken oder Richtlinien als Kerbfallklassen (sog. FAT-Klassen) angegeben sind.

  4. 4.

    Für die Bezeichnung der Kerbformzahl wird im Folgenden die international übliche Bezeichnung K t anstelle von α k gewählt. Gleiches gilt für die übrigen Größen K f  , K σ , K σ der Kerbspannungslehre.

  5. 5.

    Zur Qualitätsüberprüfung, insbesondere zur Beurteilung des Bruchmechanismus hinsichtlich der Neigung zu energiearmem Korngrenzenbruchverhalten, eignen sich auch vergleichsweise einfache Kerbschlag- und Schlagbiegeprüfungen, s. Abschn. 3.2.5.

Literatur

  • Abe, Y., Yoshida, M.: Warm forming of 5182 aluminum alloy sheets into double square sinks. J. Jap. Inst. Light Metals 44, 240–245 (1994)

    Article  Google Scholar 

  • Abel, A., Ham, R.K.: The cyclic strain behaviour of crystals of aluminum-4 wt.% copper. The Bauschinger effect. Acta Metall. 14, 1489–1494 (1966a)

    Article  Google Scholar 

  • Abel, A., Ham, R.K.: The cyclic strain behaviour of crystals of aluminum-4 wt.% copper. Low cycle fatigue. Acta Metall. 14, 1495–1503 (1966b)

    Article  Google Scholar 

  • AD-Merkblatt W6/1 (Hrsg.): Vereinigung der Technischen Überwachungsvereine e.V. Essen

    Google Scholar 

  • Aegerter, J., Keller, S., Wieser, D.: Prüfvorschrift zur Durchführung und Auswertung des Zugversuches für Al-Werkstoffe. Tagung „Werkstoffprüfung 2003“, Bad Neuenahr (2003)

    Google Scholar 

  • Agarwal, H., Gokhale, A.M., Graham, S., Horstemeyer, M.F.: Void growth in 6061-aluminum alloy under triaxial stress state. Mater. Sci. Eng. A 341, 35–42 (2003)

    Google Scholar 

  • Angermayer, K.: Structural Aluminium Design. CPE Corporation, Richmond (1992)

    Google Scholar 

  • Alcoa: Alcoa Aluminum Handbook. Aluminum Company of America, Pittsburgh (1962)

    Google Scholar 

  • Aretz, H.: Numerical analysis of diffuse and localized necking in orthotropic sheet metals. Int. J. Plast. 23 (2007) 798–840

    Article  MATH  Google Scholar 

  • ASTM B645-10: Standard practice for linear elastic plane strain fracture toughness testing of aluminium alloys. ASTM Int’l West Conshohocken PA 19428-2959, USA (2010)

    Google Scholar 

  • ASTM B646-12: Standard practice for fracture toughness testing of alu7minum alloys. ASTM Int’l West Conshohocken PA 19428-2959, USA (2012)

    Google Scholar 

  • ASTM, B 871-96: Standard test method for tear testing of aluminum alloy products, vol. 02-02, S. 1–7. ASTM (1996)

    Google Scholar 

  • ASTM B 909-00(2011): Standard guide for plane strain fracture toughness testing of non stress-relieved aluminum products. ASTM Int’l West Conshohocken PA 19428-2959, USA (2011)

    Google Scholar 

  • ASTM E 399-12: Standard test method for linear-elastic plane-strain fracture toughness KIC of metallic materials. ASTM Int’l West Conshohocken PA 19428-2959, USA (2012)

    Google Scholar 

  • ASTM, E 561-98: Standard Practice for R-curve Determination, Vol. 03-01, S. 509–521. ASTM (1999)

    Google Scholar 

  • ASTM E 561-10e2: Standard test method for KR-curve determination. ASTM Int’l West Conshohocken PA 19428-2959, USA (2010)

    Google Scholar 

  • ASTM E647-13E1: Standard test method for measurement of fatigue crack growth rates. ASTM Int’l West Conshohocken PA 19428-2959, USA (2013)

    Google Scholar 

  • ASTM E 1820-11: Standard test method for measurement of fracture toughness. ASTM Int’l West Conshohocken PA 19428-2959, USA (2009)

    Google Scholar 

  • Avery, D.H., Backofen, W.A.: Fatigue hardening in alloys of low stacking-fault energy. Acta Metall. 11, 653–661 (1963)

    Article  Google Scholar 

  • Backofen, W.A., Turner, I.R., Avery, D.H.: Superplastizity in an Al-Zn alloy. Trans. ASM 57, 980–990 (1964)

    Google Scholar 

  • Balasundaram, A., Gokhale, A.M., Graham, S., Horstemeyer, M.F.: Three-dimensional particle cracking damage development in an Al-Mg-base wrought alloy. Mater. Sci. Eng. A 355, 368–383 (2003)

    Article  Google Scholar 

  • Banabic, D.: Anisotropy of sheet metal. In: Banabic, D. (Hrsg.) Formability of Metallic Materials. Springer-Verlag, Berlin (2000). ISBN 3-540-67906-5

    Chapter  Google Scholar 

  • Bao, Y., Wierzbicki, T.: On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46, 81–98 (2004)

    Article  Google Scholar 

  • Barlat, F., Lian, J.: Plastic behaviour and stretchability of sheet metals. Part 1: a yield function for orthotropic sheets under plane stress conditions. Int. J. Plast. 5 (1989), S. 51–66

    Article  Google Scholar 

  • Barlat, F., Maeda, Y., Chung, K., Yanagawa, M., Berm, J.C., Hayashida, Y., Lege, D.J., Matsui, K., Murtha, S.J., Hattori, S., Becker, R.C., Makosey, S.: Yield function development for aluminum sheets. J. Mech. Phys. Solids 45, 1727–1763 (1997)

    Article  Google Scholar 

  • Basinski, Z.S., Basinski, S.J.: Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Prog. Mater. Sci. 36, 89–148 (1992)

    Article  Google Scholar 

  • Bathias, C.: There is no infinite fatigue life in metallic materials. Fat. Fract. Eng. Mat. Struct. 22, 559–565 (1999)

    Article  Google Scholar 

  • Bathias, C., Drouillac, L., Le Francois, P.: How and why the fatigue S–N curve does not approach a horizontal asymptote. Int. J. Fatigue 23, 143–151 (2001)

    Google Scholar 

  • Baur, M., Blauel, G.: Festigkeit und Zähigkeit von Metall-Inertgasschweißungen an gewalzten Aluminiumblechen. Schweißen & Schneiden H3/97, DVS-Verlag, Düsseldorf (1997)

    Google Scholar 

  • Benedetti, M., Bortolamedi, T., Fontanari, V., Frendo, F.: Bending fatigue behaviour of differently shot peened Al 6082 T5 alloy. International Journal of Fatigue 26, 889–897 (2004)

    Google Scholar 

  • Berger, C.: Fracture mechanics behavior of stress corrosion cracks, ASM Conf. on Fatig., Corr. Crack., Frac. Mech., Failure Analysis, Salt Lake City (1985)

    Google Scholar 

  • Bergner, F., Zouhar, G.: A new approach to the correlation between the coefficient and the exponent in the power law equation of fatigue crack growth. Int. J. Fatigue 22, 229–239 (2000)

    Article  Google Scholar 

  • Blauel, J.G.: Fehler in Schweißverbindungen Materialprüfung 34-3, 48–52 (1992)

    Google Scholar 

  • Blauel, J.G.: Fitness for purpose assessment of structural integrity. In Smith, R.A. (Hrsg.) Reliability Assessment of Cyclically Loaded Engineering Structures, S. 47–64. Kluwer Academic Publishers (1997)

    Google Scholar 

  • Blauel, J.G., Burget, W.: Bewertung der Sicherheit und Lebensdauer fehlerbehafteter Komponenten des Maschinenbaus auf der Basis bruchmechanischer Konzepte, DVM Berichtsband 800, Fulda (1997)

    Google Scholar 

  • Blauel, J.G., Mayville, R., Lenz, H.W.: Toughness evaluation for a thick weld joint of AlMg4.5Mn, Proc. 2nd Intern. Conf. on Al Weldments. München May 24–26 1982, II.9.1-16, Aluminium Verlag Düsseldorf (1982)

    Google Scholar 

  • Blauel, J.G., Burget, W., Memhard, D., Knissel, H.: Strength and fracture toughness assessment of laser beam welded aluminium, Proc.8th INALCO, Intern. Conference on Aluminium Joints, München (2001)

    Google Scholar 

  • Blauel, J.G., Pfeiffer, W., Varfolomyev, I., Veneziano, C.: Bruchmechanische Bewertung von rissbehafteten Schweißkonstruktionen mit Eigenspannungen. Materialprüfung 49, 577–587 (2007)

    Google Scholar 

  • Blumenauer, H.H., Pusch, G.: Technische Bruchmechanik. Wiley-VCH Verlag, Weinheim (1993)

    Google Scholar 

  • Böhme, W.: Dynamic key-curves for brittle fracture impact tests and establishment of a transition time. ASTM STP 1074, 144–156 (1990)

    Google Scholar 

  • Böhme, W., Memhard, D., Brand, M., Reißig, L., Hug, M., Meer, A., Reichert, T., Siegele, D.: Experimentelle Untersuchungen und numerische Modellierung des Verformungs- und Versagensverhaltens crashrelevanter Aluminium-Schweißverbindungen. AiF-Vorhaben 15.377, DVS-Nr. 9.046, IWM-Bericht W9/2011

    Google Scholar 

  • Boller, Chr., Seeger, T.: Materials data for cyclic loading. Amsterdam: Elsevier Science Publishers B.V. (1987), ISBN 0-444-42875-5

    Google Scholar 

  • Bomas, H.: Der Einfluss der Abkühlgeschwindigkeit vom Lösungsglühen auf Gefüge und mechanische Eigenschaften von AlMgSi-Legierungen. Tagungsband Internationale Leichtmetalltagung Leoben Wien (1981)

    Google Scholar 

  • Bridgman, P.W.: Studies in Large Plastic Flow and Fracture. McGraw-Hill, New York (1952)

    MATH  Google Scholar 

  • Brochu, M., Verreman, Y., Ajersch, F., Bouchard, D.: High cycle fatigue strength of permanent mold and rheocast aluminum 357 alloy. Int. J. Fatigue 32, 1233–1242 (2010)

    Article  Google Scholar 

  • Brochu, M., Verreman, Y., Ajersch, F., Bouchard, D.: Propagation of short fatigue cracks in permanent and semi-solid mold 357 aluminum alloy. Int. J. Fatigue 36, 120–129 (2012)

    Article  Google Scholar 

  • Bron, F., Besson, J., Pineau, A.: Ductile rupture in thin sheets of two grades of 2024 aluminum alloy. Mater. Sci. Eng. A 380, 356–364 (2004)

    Article  Google Scholar 

  • Brünig, M., Gerke, S., Hagenbrock, V.: Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. Int. J. of Plasticity, In Press, Available online 8 April 2013

    Google Scholar 

  • BS 7910: Guide to methods for assessing the acceptability of flaws in metallic structures. British Standards Institution (2005)

    Google Scholar 

  • Bühler, H., Höptner, H.G., Löwen, T.: Die Umformeigenschaften von Aluminium und einigen Aluminiumlegierungen. Metall 25, 865–872 (1971)

    Google Scholar 

  • Campbell, J.D., Ferguson, W.G.: The temperature and strain-rate dependence of the shear strength of mild steel. Philos. Mag. 21, 63–82 (1970)

    Article  Google Scholar 

  • Carter, R.D., Lee, E.W., Starke, E.A.Jr., Beevers, C.J.: The effect of microstructure and environment on fatigue crack closure of 7475 aluminum alloy. Metall. Trans. A 15A, 555–562 (1984)

    Article  Google Scholar 

  • Chan, K.S.: A microstructure-based fatigue-crack-initiation model. Metall. Mater. Trans. A 34A, 43 (2003)

    Article  Google Scholar 

  • Cheng, L.M, Poole, W.J., Embury, J.D., Lloyd, D.J.: The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030. Metall. Mater. Trans. A 34A, 2473–2481 (2003)

    Article  Google Scholar 

  • Chicois, J., Fougeres, R., Guichon, G., Hamel, A., Vincent, A.: Mobilite des dislocations lors de la sollicitation cyclique de l’aluminium polycristallin. Acta Metall. 34, 2157–2170 (1986)

    Article  Google Scholar 

  • CRACKWISE 2013: Software for automation of fracture and fatigue assessment procedures to BS 7910, The Welding Institute, Abington (GB). http://www.twisoftware.com/products/crackwise

  • Clark, J.B., McEvily, A.J.,: Interaction of dislocations and structures in cyclically strained aluminum alloys. Acta Metall. 12, 1359–1372 (1964)

    Article  Google Scholar 

  • Clark, W.G.: How fatigue crack initiation and growth properties affect material selection and design criteria. Metals Eng. Q. 16, (1974)

    Google Scholar 

  • Clausen, A.H., Børvik, T., Hopperstad, O.S., Benallal, A.: Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Mater. Sci. Eng. A 364, 260–272 (2004)

    Article  Google Scholar 

  • Coffin, L.F., Jr.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76, 931–950 (1954)

    Google Scholar 

  • Considère, A.G.: Memoire sur l’emploi du fer et de l’acier dans les constructions. Annales des Ponts et Chausses (ser. 6) 9, 574–775 (1885)

    Google Scholar 

  • Déprés, C., Robertson, C.F., Fivel, M.C.: Crack initiation in fatigue: experiments and three-dimensional dislocation simulations. Mater. Sci. Eng. A 387–389, 288–291 (2004)

    Article  Google Scholar 

  • Deschamps, A., Niewczas, M., Bley, F., Brechet, Y., Embury, J.D., Lesinq, L., Livet, F., Simon, J.P.: Low-temperature dynamic precipitation in a supersaturated Al-Zn-Mg alloy and related strain hardening. Philos. Mag. A 79(10) 2485–2504 (1999)

    Article  Google Scholar 

  • Deschamps, A., Peron, S., Brechet, Y., Ehestrom, J-C., Poizat, L.: High temperature cleavage fracture in 5383 aluminum alloy. Mater.Sci. Eng. A 319–321, 583–586 (2001)

    Article  Google Scholar 

  • Develay, R.: Criteria for the testing and selection of high-strength aluminium alloy for the aircraft industry. Metals Mater. 6, 404–410 (1972)

    Google Scholar 

  • Dieter, G.E., Jr.: Mechanical Metallurgy. McGraw-Hill Book Co. Ltd, New York (1961)

    Book  Google Scholar 

  • DIN BS EN ISO 12737:2010 Determination of plane strain fracture toughness for metallic materials

    Google Scholar 

  • DIN EN ISO 6892-1:2009 Metallische Werkstoffe – Zugversuch – Teil 1: Prüfverfahren bei Raumtemperatur (ISO 6892-1:2009)

    Google Scholar 

  • DIN ISO 10113:2009 Metallische Werkstoffe – Blech und Band – Bestimmung der senkrechten Anisotropie

    Google Scholar 

  • DIN ISO 15653:2010 Method of test for the determination of quasistatic fracture toughness of welds

    Google Scholar 

  • DIN EN 1999-1-3:2011 Eurocode 9: Bemessung und Konstruktion von Aluminiumtragwerken, Teil 1–3: Ermüdungsbeanspruchte Tragwerke, Deutsche Fassung EN 1999-1-3:2007 + A1:2011

    Google Scholar 

  • Doege, E., Meyer-Nolkemper, H., Saeed, I.: Fließkurvenatlas metallischer Werkstoffe. Hanser-Verlag, München (1986)

    Google Scholar 

  • Drespling, B., Öztürk, K.: Entwicklung einer Vorgehensweise für die Simulation der Schweissnahtbeanspruchungen bei Fahrwerksbauteilen aus Aluminium, 42. Tagung des DVM-Arbeitskreises Bruchvorgänge, Paderborn 23. und 24. Febr.2010, Berichtsband 242, 227–235, DVM Berlin (2010)

    Google Scholar 

  • Dumont, D., Deschamps, A., Brechet, Y.: On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy. Mater. Sci. Eng. A 356, 326–336 (2003)

    Article  Google Scholar 

  • Durham, R.J.: Mechanische Eigenschaften von Aluminiumlegierungen für den Transport von Flüssiggas bei tiefen Temperaturen. Aluminium 37, 792–801 (1961)

    Google Scholar 

  • Duva, J.M., Daeubler, M.A., Starke, E.A. Jr., Lütjering, G.: Large shearable particles lead to coarse slip in particle reinforced alloys. Acta Metall. 36, 585–589 (1988)

    Article  Google Scholar 

  • DVS 1608-2011-09: Gestaltung und Festigkeitsbewertung von Schweißverbindungen an Aluminiumlegierungen im Schienenfahrzeugbau. Deutscher Verband für Schweißtechnik e. V., Düsseldorf (2011)

    Google Scholar 

  • DVS 2401: DVS-Merkblatt: Bruchmechanische Bewertung von Fehlern in Schweißverbindungen. Deutscher Verband für Schweißtechnik e. V., Düsseldorf (2005)

    Google Scholar 

  • Ebelsheiser, H., Feucht, M., Neukamm, F.: On calibrating advanced damage models using sheet metal coupon tests. 7.LS-DYNA Anwendungsforum, Bamberg (2008)

    Google Scholar 

  • Egger, W, Kögel, G., Sperr, P., Triftshäuser, W., Bär, J., Rödling, S., Gudladt, H.-J.: Measurements of defect structures of a cyclically deformed Al–Mg–Si alloy by positron annihilation techniques. Mater. Sci. Eng. A 387–389, 317–320 (2004)

    Article  Google Scholar 

  • El-Madhoun, Y., Mohamed, A., Bassim, M.N.: Cyclic stress-strain response and dislocation structures in polycrystalline aluminum. Mater. Eng. A 359, 220–227 (2003)

    Article  Google Scholar 

  • El-Magd, E., Gese, H., Tham, R., Hooputra, H., Werner, H.: Fracture criteria for automobile crashworthiness simulation of wrought aluminium alloy components. Mat.-wiss. Werkst. 32, 712–724 (2001)

    Article  Google Scholar 

  • Endo, T., Morrow, J-D.: Cyclic stress-strain and fatigue behaviour of representataive aircraft materials. J. Mater. 4, 159–175 (1969)

    Google Scholar 

  • Engström, H., Sandström, R.: Evaluation of high temperature strength values of aluminium alloys. Aluminium 69, 1007–1013 (1993)

    Google Scholar 

  • ESIS-TC5: Proposed standard methods for instrumented pre-cracked Charpy impact testing of steel, Draft 19, April 2005

    Google Scholar 

  • Eßmann, U., Differt, K.: Dynamic model of the wall structure in persistent slip bands of fatigued metals II. The wall spacing and the temperature dependence of the yield stress in saturation. Mater. Sci. Eng. A 208, 56–68 (1996)

    Article  Google Scholar 

  • Eurocode 9, DIN EN 1999-1-3:2011-11: Bemessung und Konstruktion von Aluminiumtragwerken, Deutsche Fassung EN 1999-1-3:2007 + A1: 2011: Ermüdungsbeanspruchte Tragwerke. DIN Deutsches Institut für Normung e. V. Berlin (2011)

    Google Scholar 

  • FKM 2003: Rechnerischer Festigkeitsnachweis für Maschinenbauteile. FKM-Richtlinie, VDMA Verlag GmbH (2003)

    Google Scholar 

  • FKM 2006: Richtlinie bruchmechanischer Festigkeitsnachweis für Maschinenbauteile, 3. Aufl. Forschungskuratorium Maschinenbau, VDMA-Verlag, Frankfurt a. M. (2006)

    Google Scholar 

  • Fonte, M.A., Stanzl-Tschegg, S.E., Holper, B., Tschegg, E.K., Vasudevan, A.K.: The microstructure and environment influence on fatigue crack growth in 7049 aluminum alloy at different load ratios. Int. J. Fatigue 23, S311–S317 (2001)

    Article  Google Scholar 

  • Forman, R.G., Kearny, V.E., Engle, R.M.: Numerical analysis of crack propagation in cyclic loaded structures. J. Basic Eng., Trans. ASME 89 (1967)

    Google Scholar 

  • Forsyth, P.J.E.: Fatigue damage and crack growth in aluminium alloys. Acta Metall. 11, 703–715 (1963)

    Google Scholar 

  • FracSafe 2003: Software für Berechnungen nach der FKM-Richtlinie „Bruchmechanischer Festigkeitsnachweis für Maschinenbauteile. VDMA-Verlag GmbH, Frankfurt a. M. www.fracsafe.de

  • Franciosi, P., Maire, E., Vincent, A., Grenier, J.C., Daniel, D.: Modelling particle-induced damage during forming of aluminium alloys. Aluminium 80, 724–728 (2004)

    Google Scholar 

  • Gao, Y.X., Ji, J.Z., Lee, P.D., Lindley, T.C.: The effect of porosity on fatigue life of cast aluminium-silicon alloys. Fatifue Fract. Eng. Mater. Struct. 27, 559–570 (2004)

    Article  Google Scholar 

  • Gao, Y.X., Zhang, T., Hayden, M., Roe, C.: Effects of stress state on plasticity and ductile failure of an aluminum 5083 alloy. Int. J. Plast. 25, 2366–2382 (2009)

    Article  Google Scholar 

  • Gilat, A., Cheng, C-S.: Modeling torsional split Hopkinson bar tests at strain rates above 10,000 s-1. Int. J. Plast. 18, 787–799 (2002)

    Article  MATH  Google Scholar 

  • Gologano, M., Leblond, J.B., Deveaux, J.: Approximate models for ductile metals containing nonspherical voids – case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41, 1723–1754 (1993)

    Article  Google Scholar 

  • Goodwin, G.M.: Application of strain analysis to sheet metal forming in the press shop. SAE paper No. 680093 (1968)

    Google Scholar 

  • Green, D.E., Neale, K.W., MacEwen, S.R., Makinde, A., Perrin, R.: Experimental investigation of the biaxial behaviour of an aluminum sheet. Int. J. Plast. 20, 1677–1706 (2004)

    MATH  Google Scholar 

  • Green, S.J., Maiden, C.J., Babcock, S.G., Schierloh, F.L.: The high strain-rate behavior of face-centered cubic metals. In: Kanninen, M.F., Adler, W.F., Rosenfield, A.R., Jaffee, R.I. (Hrsg.) Inelastic Behavior of Solids, S. 521–542. McGraw-Hill Book Co. Inc., New York (1970)

    Google Scholar 

  • Gross, D., Seelig, T.: Fracture Mechanics, Springer Verlag Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  • Grosskreutz, J.C., Shaw, G.G.: Critical mechanisms in the development of fatigue cracks in 2024-T4 aluminum. In: 2nd Int. Conf. on Fracture 1969. Pratt, P.L. (Hrsg.) S. 620–629. Chapman and Hall, Ltd., London (1969)

    Google Scholar 

  • Grubisic, V., Lowak, H.: Fatigue life prediction and test results of aluminum alloy components. Int. Conf. „Fatigue Prevention and Design“. Amsterdam (1986)

    Google Scholar 

  • Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Pt. I – Yield criteria and flow rules for porous ductile media. J. Eng. Mat. and Techn., Trans ASME 2–15 (1977)

    Google Scholar 

  • Haasen, P.: Physikalische Metallkunde, 3. Aufl. Springer-Verlag, Berlin (1994) ISBN 3-540-57210-4

    Book  Google Scholar 

  • Haibach, E.: Betriebsfestigkeit – Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf (1989), ISBN 3-18-400828-2

    Google Scholar 

  • Halliday, M.D., Cooper, M.D., Poole, C., Bowen, P.: On predicting small fatigue crack growth and fatigue life from long crack data in 2024 aluminium alloy. Int. J. Fatigue 25, 709–718 (2003)

    Article  Google Scholar 

  • Han, H.N., Kim, K.-H.: A ductile fracture criterion in sheet metal forming process. J. Mater. Process. Technol. 142, 231–238 (2003)

    Article  Google Scholar 

  • Hänel, B., Hanel, W., Wegert, C.: Festigkeitsnachweis Aluminium. Richtlinie Rechnerischer Festigkeitsnachweis für Bauteile aus Aluminium. Forschungsheft 241 (1999), Forschungskuratorium Maschinenbau e. V. (FKM). VDMA-Verlag, Bestellnummer 512241 Frankfurt a. M. (1999) ISBN 3-8163-0380-3

    Google Scholar 

  • Havner, K.S.: On the onset of necking in the tensile test. Int. J. Plast. 20, 965–978 (2004)

    Google Scholar 

  • Heller, C., Schmoeckel, D.: Umformen von Aluminiumblechen bei erhöhten Temperaturen. Aluminium 64, 398–405 (1988)

    Google Scholar 

  • Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. Royal Soc. Lond. A 193, 281–297 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  • Hill, R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  • Hill, R.: Constitutive modelling of orthotropic plasticity in sheet metals. J. Mech Phys Solids 38, 405–417 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Hirsch, T., Vöhringer, O., Macherauch, E.: Bending fatigue behaviour of differently heat treated and shot peened AlCuMg. Proc. 2nd Int. Conf. Shot Peening, Chicago, USA, 90–101 (1984)

    Google Scholar 

  • Hobbacher, A.: Empfehlungen zur Schwingfestigkeit geschweißter Verbindungen und Bauteile, Intern. Inst. Welding, Doc. IIW/IIS XIII-1539/ XV-845-96. DVS-Verlag GmbH, Düsseldorf (1997)

    Google Scholar 

  • Hodulak, L.: Geschweißter Aluminiumbehälter, Anwendungsbeispiel 6.10 in FKM-Richtlinie Bruchmechanischer Festigkeitsnacheis für Maschinenbauteile, 3. Ausgabe, S. 131–134, Forschungskuratorium Maschinenbau, Frankfurt a. M. (2006)

    Google Scholar 

  • Hooputra, H., Gese, H., Dell, H., Werner, H.: A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int. J. Crash 9, 449–463 (2004)

    Article  Google Scholar 

  • Hornbogen, E., Zum Gahr, K.H.: Microstructure and Fatigue. Crack Growth in a γ-Fe-Ni-Al Alloy. Acta Metall. 24, 581–587 (1976)

    Article  Google Scholar 

  • Huppertz, P.H., Bäumler, F.: Fertigung und Qualitätssicherung einer großen Kolonne aus AlMg4,5Mn. Ber. Tech. Wiss. 54, 32–40 (1984)

    Google Scholar 

  • Hutchinson, J.W.: Singular behavior at the end of a tensile cracking a hardening material. J. Mech. Phys. Solids 16, 13–31 (1968)

    Article  MATH  Google Scholar 

  • IIW 1994 Recommendations on fatigue of welded components. Intern. Institute of Welding IIW-Document XIII-1539-94/XV-845-94

    Google Scholar 

  • IIW 1990 Guidance on Assessment of the Fitness for Purpose of Welded Structures, Intern. Institute of Welding, IIW/IIS-SST Document -1157-90 (1990)

    Google Scholar 

  • Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. Trans. ASME (J. Appl. Mech.) 24-3, 361–364 (1957)

    Google Scholar 

  • ISO 7539-6, 2011: Corrosion of metals and alloys – Stress corrosion testing – Part 6: Preparation and use of precracked specimens for tests under constant load or constant displacement

    Google Scholar 

  • ISO 12135: Unified method of test for the determination of quasistatic fracture toughness. International Standard Organisation (2002)

    Google Scholar 

  • Issler, L., Ruoßh, H., Häfele, P.: Festigkeitslehre – Grundlagen. Springer-Lehrbuch, 2005, ISBN 978-3-540-40705-8

    Google Scholar 

  • Jaccard, R.: Fatigue crack propagation in aluminum, IIW Doc. XIII-1377-90 (1990)

    Google Scholar 

  • Jain, M., Allin, J., Lloyd, D.J.: Fracture limit prediction using ductile fracture criteria for forming an automotive aluminum sheet. Int. J. Mech. Sci. 41, 1273–1288 (1999)

    Article  MATH  Google Scholar 

  • Jiang, D., Wang, C.: Influence of microstructure on deformation behavior and fracture mode of Al-Mg-Si alloys. Mater. Sci. Eng. A 352, 29–33 (2003a)

    Article  Google Scholar 

  • Jiang, D.M., Wang, C.L., Yu, J., Gao, Z.Z., Shao, Y.T., Hu, Z.M.: Cleavage and intergranular fracture in Al-Mg alloys. Scr. Mater. 49, 387–392 (2003b)

    Article  Google Scholar 

  • Jíša, D., Liškutín, P., Kruml, T., Polák, J.: Small fatigue crack growth in aluminium alloy EN-AW 6082-T6. Int.’l J. Fatigue 32(12), 1913–1920 (2010)

    Article  Google Scholar 

  • Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)

    Google Scholar 

  • Juijerm P., Altenberger I., Scholtes B.: Influence of ageing on cyclic deformation behavior and residual stress relaxation of deep rolled as-quenched aluminium alloy AA6110. International Journal of Fatigue, 29, 1374–1382 (2007)

    Google Scholar 

  • Khan, A.S., Liu, H.: A new approach for ductile fracture prediction on Al 2024-T351 alloy. Int. J. Plast. 35, 1–12 (2012)

    Article  Google Scholar 

  • Kammer, C. (Hrsg.): Aluminium-Taschenbuch, Bd. 2: Umformen, Gießen, Oberflächenbehandlung, Recycling, 15. Aufl. Aluminium-Verlag, Düsseldorf (1996) ISBN 3-87017-242-8

    Google Scholar 

  • Karnes, C.H., Ripperger, E.A.: Strain rate effects in cold worked high-purity Aluminium. J. Mech. Phys Solids 14, 75–88 (1966)

    Article  Google Scholar 

  • Kaschner, G.C., Gibeling, J.C.: A study of the mechanisms of cyclic deformation in f.c.c. metals using strain rate change tests. Mater. Sci. Eng. A 336, 170–176 (2002)

    Article  Google Scholar 

  • Kassem, M.A.: Determination of fracture toughness at subzero temperatures. Aluminium 50, 449–453 (1974)

    Google Scholar 

  • Kassner M.E., PeÂrez-Prado M.-T.: Five-power-law creep in single phase metals and alloys. Progress in Materials Science 45, 1–102, (2000)

    Google Scholar 

  • Kassner, M.E.: Taylor hardening in five-power-law creep of metals and Class M alloys. Acta Mater. 52, 1–9 (2004)

    Article  Google Scholar 

  • KTA 3201: Sicherheitstechnische Regeln des Kerntechnischen Ausschusses (KTA), Komponenten des Primärkreises von Leichtwasser-Reaktoren, Wiederkehrende Prüfungen und Betriebsüberwachungen KTA 3201–3204. (1999)

    Google Scholar 

  • Kaufman, J.G. (Hrsg.): Properties of aluminum alloys: tensile, creep and fatigue data at high and low temperatures. Materials Park, OH, ASM International (1999)

    Google Scholar 

  • Kaufman, J.G., Holt, M.: Bruchverhalten von Aluminiumlegierungen. Aluminium 46, 103–115 (1970)

    Google Scholar 

  • Keeler, S.P., Backofen, W.A.: Plastic instability and fracture in sheet stretched over rigid punches. ASM Trans. Q. 56, 25–48 (1964)

    Google Scholar 

  • Kim, K.C., Nam, S.W.: Effects of Mn-dispersoids on the fatigue mechanism in an Al–Zn–Mg alloy. Mater. Sci. Eng. A 244, 257–262 (1998)

    Article  Google Scholar 

  • Kitagawa, H., Takahashi, S.: Applicability of fracture mechanics to very small cracks or cracks in the early stage. In: The Second International Conference on Mechanical Behaviour of Materials, ICM2, S. 627–631. ASM Metal Park, Ohio (1976)

    Google Scholar 

  • König, W., Klocke, F.: Fertigungsverfahren Bd. 5 „Blechbearbeitung“. VDI-Verlag (1995)

    Google Scholar 

  • Korbel, A., Embury, J.D., Hatherly, M., Martin, P.L., Erbslöh, H.W.: Microstructural aspects of strain localisation in Al-Mg alloys. Acta Metall. 34, 1999–2009 (1986)

    Article  Google Scholar 

  • Korbel, A., Martin, P.: Microscopic versus macroscopic aspect of shear bands deformation. Acta Metall. 34, 1905–1909 (1986)

    Article  Google Scholar 

  • Kosteas, D., Ondra, R.: Imperfektionen in Aluminium-Schweißverbindungen – Einfluss auf die Betriebsfestigkeit. VDI-Bericht Nr. 770, 43–75 (1989)

    Google Scholar 

  • Kammer, C. (Hrsg.): Aluminium-Taschenbuch, Bd. 1 Grundlagen und Werkstoffe 16. Aufl. Aluminium-Verlag, Düsseldorf (2002) ISBN 3-87017-274-6

    Google Scholar 

  • Laird, C.: The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: Fatigue Crack Propagation, ASTM STP 415, S. 131–180. American Society for Testing Materials (1967)

    Google Scholar 

  • Laird, C., Krause, A.R.: The long-life cyclic stress-strain response and fatigue behavior of a planar slip material. In: Kanninen, M.F., Adler, W.F., Rosenfield, A.R., Jaffee, R.I. (Hrsg.) Inelastic Behavior of Solids, S. 691–715. McGraw-Hill Book Co. Inc., New York (1970)

    Google Scholar 

  • Landgraf, R.W., Morrow, J., Endo, T.: Determination of the cyclic stress-strain curve. J. Mater. 4, 176–188 (1969)

    Google Scholar 

  • Lee, W.-S., Sue, W.-C, Lin, C.-F., Wu, C-J.: The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy. J. Mater. Process. Technol. 100, 116–122 (2000)

    Article  Google Scholar 

  • Lee, Y.W.: Fracture prediction in metal sheets. Ph.D. thesis, Cambridge, MA, Department of Ocean Engineering, Massachusetts Institute of Technology (2004)

    Google Scholar 

  • Li, H., Fu, M.W., Lu, J., Yang, H.: Ductile fracture: experiments and computations. Int. J. Plast. 27, 147–180 (2011)

    Google Scholar 

  • Lin, C.-K., Sheng-Tseng, Y.: Corrosion fatigue behavior of 7050 aluminum alloys in different tempers. Eng. Fract. Mech. 59, 779–795 (1998)

    Article  Google Scholar 

  • Lindigkeit, J., Terlinde, G., Gysler, A., Lütjering, G.: The effect of grain size on the fatigue crack propagation behavior of age-hardened alloys in inert and corrosive Pöhlandt e environment. Acta Metall. 27, 1717–1726 (1979)

    Article  Google Scholar 

  • Liu, G., Zhang, G.J., Ding, C.D., Sun, J., Chen, K.H.: The influence of multiscale-sized second phase particles on ductility of aged aluminum alloys. Metall. Mater. Trans. A 35A, 1725–1734 (2004)

    Article  Google Scholar 

  • Liu, G., Sun, J., Nan, C.-W., Chen, K.-H.: Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys. Acta Mater. 53, 3459–3468 (2005)

    Article  Google Scholar 

  • LTH SB 1998: Luftfahrttechnisches Handbuch Struktur und Berechnung, MSB-Blatt 62211-05 Ausgabe A Rissfortschrittsgleichung mit Berücksichtigung von Temperatur, R-Verhältnis, Threshold-Bereich und Bereich instabilen Risswachstums (1998)

    Google Scholar 

  • Ludwik, P.: Elemente der technologischen Mechanik. Springer-Verlag, OHG, Berlin (1909)

    Book  MATH  Google Scholar 

  • Luke, M., Schendera, C., Blauel, J.G.: Fitness for purpose assessment of a structural aluminium railway car body component, Proc. 11th Intern. Conf. on Fracture, Torino March 20–25, 1096–11xx (2005)

    Google Scholar 

  • Lumley, R.N., Morton, A.J., Polmear, I.J.: Enhanced creep resistance in underaged aluminum alloys. Mater. Sci. Forum 331–337, 1495–1500 (2000)

    Article  Google Scholar 

  • Lumley, R.N., Morton, A.J., Polmear, I.J.: Control of secondary precipitation to improve the performance of aluminium alloys. Mater. Sci. Forum 396–402, 893–898 (2002a)

    Article  Google Scholar 

  • Lumley, R.N., Morton, A.J., Polmear, I.J.: Enhanced creep performance in an Al–Cu–Mg–Ag alloy through underageing. Acta Mater. 50, 3597–3608 (2002b)

    Article  Google Scholar 

  • Lumley, R.N., Morton, A.J., Polmear, I.J.: Development of properties during secondary ageing of aluminium alloys. Mater. Sci. Forum 426–433, 303–308 (2003)

    Article  Google Scholar 

  • Lumley, R.N., Polmear, I.J.: The effect of long term creep exposure on the microstructure and properties of an underaged Al–Cu–Mg–Ag alloy. Scr. Mater. 50, 1227–1231 (2004)

    Article  Google Scholar 

  • Maire, E., Franciosi, P., Vincent, A., Grenier, J.C., Daniel, D.: Experimental characterisation of damage during cold forming of aluminium sheets by means of high resolution X ray tomography. Aluminium 80, 696–701 (2004)

    Google Scholar 

  • Manson, S.S.: Behavior of materials under conditions of thermal stress. Techn. Note No. 2933, NACA (1953), Report No. 1170 (1954)

    Google Scholar 

  • McClintock, F.A., Argon, A.S.: Mechanical Behavior of Materials. Addison-Wesley Publ. Co. Inc., Reading (1966)

    Google Scholar 

  • McKittrick, J., Liaw, P.K., Kwun, S.I., Fine, M.E.: Threshold for fatigue macrocrack propagation in some aluminum alloys. Metall. Trans. A, 12A, 1535–1539 (1981)

    Article  Google Scholar 

  • Meggiolaro, M.A., Castro, J.T.P.: Statistical evaluation of strain-life fatigue crack initiation predictions. Int. J. Fatigue 26, 463–476 (2004)

    Article  Google Scholar 

  • Miller, K.J.: Materials science perspective of metal fatigue resistance. Mater. Sci. Technol. 9, 453–462 (1993)

    Article  Google Scholar 

  • Milne, I., Ainsworth, R.A., Dowling, A.R., Stewart, A.T.: Assessment of the integrity of structures containing defects, British Energy Generation Ltd. (formerly CEGB), Rep.H/R6 Rev. 3 (1986)

    Google Scholar 

  • Morgenstern, C.: Kerbgrundkonzepte für die schwingfeste Auslegung von Aluminiumschweißverbindungen am Beispiel der naturharten Legierung AIMg4,5Mn (AW-5083) und der warmausgehärteten Legierung AlMgSilT6 (AW-6082 T6). Fraunhofer-Institut für Betriebsfestigkeit LBF, Bericht Nr. FB-231, Darmstadt (2006)

    Google Scholar 

  • Morgenstern, C., Sonsino, C.M., Kotowski, J., Dilger, K., Sorbo, F.: Anwendung des Konzepts der Mikrostützwirkung zur Schwingfestigkeitsbewertung geschweißter Aluminiumverbindungen aus AlMg4,5Mn und AlMgSi1 T6. Schweißen und Schneiden 56(10), 538–544 (2004)

    Google Scholar 

  • Mori, L: Caratteristiche meccaniche della leghe leggere a bassa temperatura. Alluminio 27, 495–501 (1958)

    Google Scholar 

  • Morris, W.L., Cox, B.N., James, M.R.: Localized surface deformation of an Al-4 % Cu alloy in fatigue. Acta Metall. 37, 457–464 (1989)

    Article  Google Scholar 

  • Morrow, JD: Cyclic plastic strain energy and fatigue of metals. Internal friction, damping, and cyclic plasticity. ASTM STP 378, S. 45–87. American Society for Testing and Materials, Philadelphia (1964)

    Google Scholar 

  • Mughrabi, H.: Introduction to the viewpoint set on surface effects in cyclic deformation and fatigue. Scr. Metall. Mater. 26, 1499–1504 (1992)

    Article  Google Scholar 

  • Murakami, Y. et al. Stress Intensity Factors Handbook, Vol. 1–5, Pergamon Press, (1987–2001)

    Google Scholar 

  • Naka, T., Yoshida, F.: Deep drawability of type 5083 aluminium-magnesium alloy sheet under various conditions of temperature and forming speed. J. Mater. Process. Technol. 89–90, 19–23 (1999)

    Article  Google Scholar 

  • Nakai, M., Eto, T.: New aspects of development of high strength aluminum alloys for aerospace applications. Mater. Sci. Eng. A 285, 62–68 (2000)

    Article  Google Scholar 

  • Needleman, A., Tvergaard, V.: An analysis of ductile rupture in notched bars. J. Mech. Phys. Solids 32, 461–490 (1984)

    Article  Google Scholar 

  • Needleman, A., Tvergaard, V.: An analysis of ductile rupture modes at a crack tip. J. Mech. Phys. Solids 35, 151–183 (1987)

    Article  MATH  Google Scholar 

  • Neuber, H.: Theory of stress concentration for shear strained prismatical bodies with arbitrary non-linear stress strain laws. J. Appl. Mech. 544–550 (1961)

    Google Scholar 

  • Newman, J.C., Jr.: A crack opening stress equation for fatigue crack growth. Int. J. Fract. 24(3), R131–R135 (1984)

    Article  Google Scholar 

  • Newman, J.C., Raju, I.S.: Stress-intensity factors for internal surface cracks in cylindrical pressure vessels. Trans. ASME, J. Press. Vessel Technol. 102, 342–349 (1980)

    Article  Google Scholar 

  • Newman, J.C., Jr., Raju, I.S.: „Stress Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies,“ Fracture Mechanics: Fourteenth Symposium––Volume I: Theory and Analysis, ASTM STP 791. Lewis, J. C. Sines, G. (Hrsg.), I-238–I-265. American Society for Testing and Materials (1983)

    Google Scholar 

  • Nielsen, H.: Über das Festigkeitsverhalten von Aluminium-Magnesium-Knetlegierungen bei tiefen Temperaturen. Aluminium 37, 802–807 (1961)

    Google Scholar 

  • Oeser, S., Memhard, D., Blauel, J.G., Böhme, W.: Verformungsfähigkeit, Festigkeit und Zähigkeit von Al-6XXX-Profilschweißverbindungen bei statischer und crashartiger Belastung. Abschlussbericht zum Forschungsvorhaben AIF/10.978 N/DVS-Nr. 9.015, Okt. 2000

    Google Scholar 

  • Oeser, S., Memhard, D., Blauel, J.G.: Verformungs- und Bruchverhalten metallinertgasgeschweißter Aluminiumprofile, DVS-Verlag Düsseldorf 2001. Schweiß Schneid. 53/9, 566–573 (2001)

    Google Scholar 

  • Oeser, S., Sun, D-Z., Blauel, J.G., Böhme: ICE3-Crashtoleranz-Nachweis. IWM V176/2003

    Google Scholar 

  • Oosterkamp, L.D., Ivankovic, A., Venizelos, G.: High strain rate properties of selected aluminium alloys. Mater. Sci. Eng. A 278, 225–235 (2000)

    Article  Google Scholar 

  • Ostermann, F.: Abhängigkeit der Bruchzähigkeit von plastischen Werkstoffkenngrößen bei hochfesten Aluminium-Legierungen. Fortschr.Ber. VDI-Z Reihe 5(20), 34–35 (1975a)

    Google Scholar 

  • Ostermann, F.: Comments on the significance of plastic instability and strain hardening for fracture toughness of aluminum alloys. Specialists Meeting on Alloy Design for Fatigue and Fracture Resistance, AGARD Conf. Proc. No. 185, Brüssel (1975b)

    Google Scholar 

  • Pantelakis, S., Kyrsanidi, A., El-Magd, E., Dünnwald, J., Y. Barbaux, Y., Pons, G.: Creep resistance of aluminium alloys for the next generation supersonic civil transport aircrafts. Theor Appl. Fract. Mech. 31, 31–39 (1999)

    Article  Google Scholar 

  • Pardoen, T., Dumont, D., Deschamps, A., Brechet, Y.: Grain boundary versus transgranular ductile failure. J. Mech. Phys. Solids 51, 637–665 (2003)

    Article  MATH  Google Scholar 

  • Paris, P.C., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng, Trans. ASME 85, 528–534 (1960)

    Article  Google Scholar 

  • Pedersen, K., Segle, P., Furu, T., Ekström, H.E.: The effect of pre-strain on the fatigue life properties of AA6063 and AA6082 alloys. VIR[*] Conference 2004. Aluminium 80, 747–752 (2004)

    Google Scholar 

  • Pelloux, R.M.: Influence of grain size on fatigue. U.S. Army Sagamore Conf. (1969)

    Google Scholar 

  • Plumbridge, W.J., Ryder, D.A.: The metallography of fatigue. Metall. Rev. Review 136, 119–142 (1970)

    Google Scholar 

  • Polmear, I.J., Pons, G., Barbaux, Y., Octor, H., Sanchez, C., Morton, A.J., Borbidge, W., Rogers, S.: After Concorde: evaluation of creep resistant Al–Cu–Mg–Ag alloys. Mater. Sci. Tech. 15, 861–868 (1999)

    Article  Google Scholar 

  • Portevin, A., LeChatelier, F.: Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation. Acad. Sci. Compt. Rend. 176, 507–510 (1923)

    Google Scholar 

  • Pro SINTAP 2010, Brickstad, B., Dillström, P., Schimpfke, T., Cueto-Felgueroso, C., Chapman, O.J.V., Bell, C.D.: Project NURBIM (Nuclear RI-ISI Methodology for Passive Components), benchmarking of structural reliability models and associated software, Flaw Evaluation, Service Experience, and Materials for Hydrogen Service, PVP475, S. 109–119 (2004), peter.dillstrom@dnv.com

    Google Scholar 

  • R6 2001: Assessment of the integrity of structures containing defects, Rev.4, British Energy Generation Ltd, Barnwood, Gloucester (2001) Graham.Marshall@british-energy.com

    Google Scholar 

  • Ramberg, W., Osgood, W.R.: Description of stress-strain curves by three parameters. National Advisory Committee for Aeronautics, Technical Note No. 902 (1943)

    Google Scholar 

  • Rashkeev, S.N., Glazov, M.V., Barlat, F.: Strain-rate sensitivity limit diagrams and plastic instabilities in a 6xxx series aluminum alloy Part I: analysis of temporal stress–strain serrations. Comput. Mater. Sci. 24, 295–309 (2002)

    Article  Google Scholar 

  • Raviprasad, K., Hutchinson, C.R., Sakurai, T., Ringer, S.P.: Precipitation processes in an Al-2.5Cu-1.5Mg (wt. %) alloy microalloyed with Ag and Si. Acta Mater. 51, 5037–5050 (2003)

    Article  Google Scholar 

  • Raymond, M.H., Coffin, L.F., Jr.: Geometric and hysteresis effects in strain-cycled aluminum. Acta Metall. 11, 801–807 (1963)

    Article  Google Scholar 

  • Reissig, L., Kammerhofer, G., Blauel, J.G.: Analysis and assessment of damage in railway vehicles, Proc. Int.Conf.Failure Analysis and Repair Welding (ICFARW- 2009), S. 106–116. CMRDI Cairo-Helwan (2009)

    Google Scholar 

  • Rice, J.R., Rosengren, C.F.: Plastic strain deformation near a crack tip in a power-law hardening material. J. Mech. Pys. Solids 16, 1–12 (1968)

    Article  MATH  Google Scholar 

  • Richard, H.A.: Bruchmechanischer Festigkeitsnachweis bei Bauteilen mit Rissen unter Mixed Mode Beanspruchung. Materialprüfung 45, 513–515 (2003)

    Google Scholar 

  • Richard, H.A., Kuna, M.: Theoretical and experimental study of superimposed fracture modes I, II, III. Eng. Fract. Mech. 35, 949–960 (1990)

    Article  Google Scholar 

  • Richard, H.A., Sander, M.: Ermüdungsrisse. Vieweg + Teubner, GWV Fachverlage GmbH, Wiesbaden (2009)

    Google Scholar 

  • Riedel, H.: Beschreibung von Plastizitäts-, Schädigungs- und Versagensmodellen, Handbuch Leichtbau, S. 997–1019. Hanser Verlag (2013)

    Google Scholar 

  • Robinson, J.S., Cudd, R.L., Evans, J.T.: Creep resistant aluminium alloys and their applications. Mater. Sci. Technol. 19, 143–155 (2003)

    Article  Google Scholar 

  • Rooke, D.P., Cartwright, D.J.: Compendium of Stress Intensity Factors. Her Majesty’s Stationary Office, London (1976)

    Google Scholar 

  • Rosenfield, A.R., McEvily, A.J.: Some recent developments in fatigue and fracture. AGARD Rep. No. 610 on Metallurgical Aspects of Fatigue and Fracture Toughness (1973)

    Google Scholar 

  • Ryum, N., Videm, M.: Cyclic deformation of [001] aluminium single crystals. Mater. Sci. Eng. A 219, 1–10 (1996a)

    Article  Google Scholar 

  • Ryum, N., Videm, M.: Cyclic deformation and fracture of pure aluminium polycrystals. Mater. Sci. Eng. A 219, 11–20 (1996b)

    Article  Google Scholar 

  • Sadananda, K., Vasudevan, A.K.: Short crack growth and internal stresses. Int. J. Fatigue 19(Supp. 1), S99–S108 (1997)

    Article  Google Scholar 

  • Sandström, R.: Creep rupture data for aluminium alloys. Part I: Aluminium 69, 263–268 (1993); Part II: ALUMINIUM 69, 361-363 (1993). Part III: Aluminium 69, 458–461 (1993)

    Google Scholar 

  • Sandström, R.: Creep rupture strengths up to 100.000 hours for aluminium alloys. Aluminium 72, 910–917 (1996)

    Google Scholar 

  • Sarkar, J., Kutty, T.R.G., Conlon, K.T., Wilkinson, D.S., Embury, J.D., Lloyd, D.J.: Tensile and bending properties of AA5754 aluminum alloys. Mater. Sci. Eng. A 316, 52–59 (2001)

    Article  Google Scholar 

  • Sarkar, J., Kutty, T.R.G., Wilkinson, D.S., Embury, J.D., Lloyd, D.J.: Tensile properties and bendability of T4 treated AA6111 aluminum alloys. Mater. Sci. Eng. A 369, 258–266 (2004)

    Article  Google Scholar 

  • Sattari-Far, I., Dillström, P.: Local limit load solution for surface cracks in cylindrical pressure vessels. Int. J. Press. Vessels Pip. 81, 57–66 (2004)

    Article  Google Scholar 

  • Scharf, G., Grzemba, B.: Zähigkeitsverhalten von AlMgSi-Knetwerkstoffen. Aluminium 58, 391–397 (1982)

    Google Scholar 

  • Schröder, G.: Wt-Z ind. Fertigung 74, (1984)

    Google Scholar 

  • Schütz, W.: Über eine Beziehung zwischen der Lebensdauer bei konstanter und veränderlicher Beanspruchungsamplitude und ihre Anwendbarkeit auf die Bemessung von Flugzeugbauteilen. Z. f. Flugwiss. 15, 407–419 (1967)

    Google Scholar 

  • Schwalbe, K.-H.: Bruchmechanik metallischer Werkstoffe. Carl Hanser Verlag, München 1980

    Google Scholar 

  • Schwalbe, K.H.: The crack tip openig displacement in elastic-plastic fracture mechanics. Proc.of Workshop on CTOD-Methodology, Geesthacht April 1985, Springer Verlag Berlin, Heidelberg, New York, Tokyo (1986)

    Google Scholar 

  • Schwalbe, K-H., Heerens, J.: R-curve testing and its relevance to structural assessment, Fatigue Fract. Engng. Mater. & Struct., 21, 1259–1271 (1998)

    Google Scholar 

  • Schwalbe, K.-H., Zerbst, U., Kim, Y.-J., Brocks, W., Cornec, A., Heerens, J., Amstutz, H.: The ETM method for assessing crack-like defects in engineering structures. Fatigue Fract. Eng. Mater. Struct. 21, 1215–1231 (1998)

    Article  Google Scholar 

  • Shatla, M., Kerk, C., Altan, T.: Process modeling in machining. Part I: determination of flow stress data. Int. J. Mach. Tools Manuf 41, 1511–1534 (2001)

    Article  Google Scholar 

  • Shikama, T, Takahashi, Y., Zeng, L., Yoshihara, S., Aiura, T., Higashida, K., Noguchi, H.: Distinct fatigue crack propagation limit of new precipitation-hardened aluminium alloy. Scr. Mater. 67(1), 49–52 (2012a)

    Article  Google Scholar 

  • Shikama, T., Yoshihara, S., Aiura, T., Lee, D., Noguchi, H.: Initiation and Propagation Behaviors of Fatigue Cracks in 5056 Aluminum Alloy Studied by Rotating-Bending Tests with Smooth Specimen. J. Solid Mech. Mater. Eng. 6–5, 361–373 (2012b)

    Article  Google Scholar 

  • SINTAP: Structural integrity assessment procedures for European industry, Report BE95-1426 (1999/2007)

    Google Scholar 

  • Skinn, D.A., Gallagher, J.P., Berens, P.D., Huber, P.D., Smith, J.: Damage Tolerant Design Handbook, Vol.3, Chapt. 7 (1994)

    Google Scholar 

  • Skrotzki, B., Murken, J.: On the effects of stress on nucleation, growth, and coarsening of precipitates in age-hardenable aluminujm alloys. In: Jata, K., Lee, E.W., Frazier, W., Kim, N.J. (Hrsg.) Lightweight Alloys for Aerospace Applications. TMS (The Minerals, Metals & Materials Society), (2001)

    Google Scholar 

  • Smith, K.N., Watson, P., Topper, T.H.: A stress strain function for the fatigue of metals. J. Mater. 5(4), 767–778 (1970)

    Google Scholar 

  • Sneddon, I.N.: The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc. Roy. Soc. Lond. A 187, (1946)

    Google Scholar 

  • Snowden, K.U.: Dislocation arrangements during cyclic hardening and softening in Al crystals. Acta Metall. 11, 675–684 (1963)

    Article  Google Scholar 

  • Somoza, A., Dupasquier, A., Polmear, I.J., Folegati, P., Ferragut, R.: Positron-annihilation study of the aging kinetics of AlCu-based alloys. II. Ag microalloying. Phys. Rev. B 61, 14464–14473 (2000)

    Article  Google Scholar 

  • Sonsino, C.M.: Einfluss von Kaltverformungen bis 5 % auf das Kurzzeitschwingfestigkeitsverhalten des Feinkornbaustahles StE 47 und der Aluminiumlergierung AlCuMg2. Z. Werkstofftechnik 14, 1–11 (1983)

    Google Scholar 

  • Sonsino, C.M., Dieterich, K.: Einfluss von Porosität auf das Schwingfestigkeitsverhalten von Aluminium-Gusswerkstoffen. Teil 1: Gießereiforschung 43, 119–130 (1991)

    Google Scholar 

  • Sonsino, C.M.: Werkstoffauswahl für schlagartig und zyklisch belastete metallische Bauteile. DVM-Bericht. 127, 21–38 (2000)

    Google Scholar 

  • Sonsino, C.M., Berg-Pollack, A., Grubisic, V.: Betriebsfestigkeitsnachweis von Aluminium-Sicherheitsbauteilen – Stand der Technik. MP Materialprüfung 47, 404–410 (2005)

    Article  Google Scholar 

  • Staley, J.T., Truckner, W.G., Bucci, R.J., Thakker, A.B.: Improving fatigue resistance of aluminum aircraft alloys. Aluminium 53, 667–669 (1977)

    Google Scholar 

  • Starke, E.A., Jr., Williams, J.C.: Microstructure and the fracture mechanics of fatigue crack propagation. In: Wei, R.P., Gangloff, R.P., (Hrsg.) Fracture Mechanics: Perspectives and Directions, ASTM STP 1020, S. 184–205. American Society for Testing and Materials, Philadelphia, (1989)

    Google Scholar 

  • Stone, R.H. van, Merchant, R.H., Low, J.R., Jr.: Investigation of the plastic fracture of high-strength aluminum alloys. In: Hickey, C.F., Broadwell, R.G. (Hrsg.), Fatigue and Fracture Toughness Cryogenic Behavior ASTM STP 556, S. 93–124. (1974)

    Google Scholar 

  • Stoughton, T.B., Yoon, J.W.: A new approach for failure criterion for sheet metals. Int. J. Plast. 27, 440–459 (2011)

    Article  MATH  Google Scholar 

  • Stroppe, H.: Berechnung der Wöhler-Linie für Aluminium-Gusslegierungen aus dem statischen Zugversuch und dem Dendritenarmabstand. Materialwissenschaft Werkst. 40, 738–742 (2009)

    Article  Google Scholar 

  • Stroppe, H., Sonsino, C.M., Bähr, R.: Einfluss von Poren und Kerben auf die Ermüdungsfestigkeit von Aluminiumgussteilen. Giesserei 98, 20–25 (2011)

    Google Scholar 

  • Stubbington, C.A., Forsyth, P.J.E.: Some observations on microstructural damage produced by fatigue of an aluminium-7.5 % Zinc-2.5 % Magnesium alloy at temperatures between room temperature and 250°C. Acta Metall. 14, 5–12 (1966)

    Article  Google Scholar 

  • Sun, D.-Z., Ockewitz, A., Klamser, H., Malcher, D.: Characterization and modeling of the deformation and damage behavior of aluminium materials for crash simulation. In: Hirsch, J., Skrotzki, B., Gottstein, G. (Hrsg.), Aluminium Alloys, S. 1256–1262. Wiley-VCH GmbH & Co. KGaA, Weinheim (2008)

    Google Scholar 

  • Sun, D.-Z., Ockewitz, A., Falkinger, G., Andrieux, F.: Characterisation and modeling of the deformation and damage behaviour of thick-walled aluminium profiles. Proc. Aluminium 20 Milano (2013)

    Google Scholar 

  • Sun, D.-Z.: Crashverhalten von metallischen Werkstoffen und deren Fügeverbindungen, Handbuch Leichtbau, Hanser Verlag 2013, 1020–1032

    Google Scholar 

  • Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks Handbook. Del Research Corporation, Hellertown (1973)

    Google Scholar 

  • Takuda, H., Mori, K., Takakura, N., Yamaguchi, K.: Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture. Int. J. Mech. Sci. 42, 785–798 (2000)

    Article  MATH  Google Scholar 

  • Taylor, D.: A compendium of fatigue thresholds and growth rates. Eng. Mat. Adv. Serv. Ltd. (1985)

    Google Scholar 

  • Taylor, D., Jianchu, L.: Sourcebook on fatigue crack propagation: thresholds and crack closure. Eng. Mat. Adv. Serv. Ltd. (1993)

    Google Scholar 

  • Teirlinck, D., Zok, F., Embury, J.D., Ashby, M.F.: Fracture mechanism maps in stress space. Acta Metall. 36, 1213–1228 (1988)

    Article  Google Scholar 

  • Tetelmann, A.S., McEvily, A.J.: Fracture of Structural Materials. Wiley, New York, (1967)

    Google Scholar 

  • Thompson, A.W., Backofen, W.A: The effect of grain size on fatigue. Acta Metall. 19, 597–606 (1971)

    Article  Google Scholar 

  • Thum, A., Buchmann, W.: Dauerfestigkeit und Konstruktion, Heft 1 der Mitt. Mat.-Prüf.-Anst. Darmstadt, Berlin 1932 bzw. VDI-Verlag Berlin (1932)

    Google Scholar 

  • Topper, T.H., Wetzel, R.M., Morrow, J.D.: Neuber’s rule applied to fatigue of notched specimens. J. Mater. 4, 200–209 (1969)

    Google Scholar 

  • Turnbull, A., de los Rios, E.R.: The effect of grain size on fatigue crack growth in an aluminium magnesium alloy. Fat. Fract. Eng. Mater. Struct. 18, 1355–1356 (1995a)

    Article  Google Scholar 

  • Turnbull, A., de los Rios, E.R.: The effect of grain size on the fatigue of commercially pure aluminium. Fat. Fract. Eng. Mater. Struct. 18, 1455–1467 (1995b)

    Article  Google Scholar 

  • Tvergaard, V.: Material failure by void growth to coalescence. Adv. Appl. Mech. 27, 83–147 (1990)

    Article  MATH  Google Scholar 

  • Valtinat, G.: Aluminium im konstruktiven Ingenieurbau. Bauingenieur-Praxis. Verlag Ernst & Sohn, Berlin (2003)

    Google Scholar 

  • Vegter, H., An, Y., Pijlman, H.H., Huétink, J.: Advanced mechanical testing on aluminium alloys and low carbon steels for sheet forming. Proc. Numisheet 99, (1999)

    Google Scholar 

  • Venkataraman, G., Chung, Y.-W., Nakasone, Y., Mura, T.: Free energy formulation of fatigue crack initiation along persistent slip bands: calculation of S-N curves and crack depths. Acta Metall. et Mater. 38, 31–40 (1990)

    Article  Google Scholar 

  • VERB 2013, Software for failure assessment, Version 8.1. Fraunhofer Institut für Werkstoffmechanik (IWM), Freiburg

    Google Scholar 

  • Voce, E.: A practical strain-hardening function. Metallurgia 51, 219–226 (1955)

    Google Scholar 

  • Wagenhofer, M., Erickson-Natishan, M.-A., Armstrong, R.W., Zerilli, F.J.: Influences of strain rate and grain size on yield and serrated flow in commercial Al-Mg alloy 5086. Scr. Mater. 41, 1177–1184 (1999)

    Article  Google Scholar 

  • Walgraef, D.: Rate equation approach to dislocation dynamics and plastic deformation. Mater. Sci. Eng. A 322, 167–175 (2002)

    Article  Google Scholar 

  • Wallin, K.: Low cost J-R curve estimation based on CVN upper shelf energy. Fatigue Fract. Eng. Metall. Struct. 24, 537–49 (2001)

    Article  Google Scholar 

  • Webernig, W.M., Krol, J., Pink, E.: The orientation dependence of serrated flow in polycrystalline thin sheet samples. Mater. Sci. Eng. 80, L15–L18 (1986)

    Article  Google Scholar 

  • Wellinger, K., Sautter, S.: Zeitfestigkeit von Aluminiumlegierungen bei dehnungskontrollierter Beanspruchung. Aluminium 47, 741–744 (1971)

    Google Scholar 

  • Westergaard, H.M.: Bearing pressures and cracks. Trans. ASME (J. Appl- Mech.) 6/2, 49–53 (1939)

    Google Scholar 

  • Wierzbicki, T., Bao, Y., Lee, Y.-W, Bai, Y.: Calibration and evaluation of seven fracture models. Int’l J. Mech. Sci. 47, 719–743 (2005)

    Google Scholar 

  • Williams, M.L.: On the stress distribution at the base of a stationary crack. J. Appl. Mech. 24, 109–114 (1957)

    MathSciNet  MATH  Google Scholar 

  • Wohlfahrt, H.: Schwingfestigkeitsoptimierung bei Schweißverbindungen aus Aluminiumlegierungen. Abschlussbericht DFG-Forschungsvorhaben Wo 344/2 TU Braunschweig (1997)

    Google Scholar 

  • Woodward, A.R.: persönl. Mitteilung (1995)

    Google Scholar 

  • Xue, L.: Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng. Fract. Mech. 75, 3343–3366 (2008)

    Article  Google Scholar 

  • Zehnder, A.T., Hui, C.Y.: A simple model relating crack growth resistance to fracture process parameters in elastic-plastic solids. Scr. Mater. 42, 1001–1005 (2000)

    Article  Google Scholar 

  • Zerbst, U., Schödel, M., Webster, S., Ainsworth, R.A.: Fitness-for service fracture assessment of structures containing cracks. A workbook based on the European SINTAP/FITNET procedure. Elsevier Publ., Oxford (2007)

    Google Scholar 

  • Zhai, T., Martin, J.W., Briggs, G.A.D.: Fatigue damage in aluminum single crystals –I. On the surface containing the slip burgers vector. Acta Metall. et Mater. 43 (1995), 3813–3825

    Article  Google Scholar 

  • Zhai, T., Martin, J.W., Briggs, G.A.D.: Fatigue damage at room temperature in aluminium single crystals—II. TEM. Acta Mater. 44, 1729–1739 (1996)

    Article  Google Scholar 

  • Zhang, B., Poirier, D.R., Chen, W.: High-cycle fatigue crack initiation site distribution in A356.2. Automotive Alloys 1999, Ed. Das, SK., The Minerals, Metals & Materials Society, 2000

    Google Scholar 

  • Zhou, J., Gao, X., Hayden, M., Joyce, J.A.: Modeling the ductile fracture behavior of an aluminum alloy 5083-H116 including the residual stress effect. Eng. Fract. Mech. 85, 103–116 (2012)

    Article  Google Scholar 

  • Zhuang W.Z., Halford G.R.: Investigation of residual stress relaxation under cyclic load. Int. J. Fatigue; 23 S1, 31–37 (2001)

    Google Scholar 

  • Zinkham, R.E., Ashton, R.F.: Fracture of 5083-0 aluminum LNG weldments. Aluminium 50, 462–466 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Ostermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ostermann, F. (2014). Mechanische Eigenschaften. In: Anwendungstechnologie Aluminium. VDI-Buch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43807-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43807-7_6

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43806-0

  • Online ISBN: 978-3-662-43807-7

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics