Skip to main content
  • 257 Accesses

Abstract

Wood is a natural material which is obtained by sawing logs into a desired cross-section. Hence, all wooden parts are, from the outset, of linear shape. Traditional timber structures therefore used to be frameworks of bar-like components. Modern wood technology, however, has made available a wide gamut of industrial-type wood derivates. They allow manipulating the otherwise very demanding basic properties of wood—e. g. its pronounced anisotropy, its tendency to uncontrollable warping—by forming new wooden parts from smaller wooden parts or particles. Thereby, also two-dimensional, plate-like wooden elements can be produced—a novelty in timber construction. Particularly solid-wood derivates have introduced profound changes in the way wood material is used in building constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Natterer et al. (1980) Holzbau Atlas, p. 33 ff.

  2. 2.

    cf. 7 www.fh-eberswalde.de.

  3. 3.

    Scheidegger (1990) Aus der Geschichte der Bautechnik, p. 60 ff. and p. 172 ff.

  4. 4.

    Scheer et al. (1984) Der Holzbau, p. 10.

  5. 5.

    Nutsch et al. (2003) Holztechnik Fachkunde, p. 35.

  6. 6.

    Neuhaus (1994) Lehrbuch des Ingenieurholzbaus, p. 78 ff. The maximum width of the press bed, which in turn determines the maximum height of a glulam truss, is 4 m. The maximum width of the beam planer that finally smooths the truss side surfaces is 2 m, whereby a 4 m high truss can also be passed through the planer twice. The maximum length of the press beds is over 50 m. Naturally, the maximum transport dimensions for road transport also apply. Note the maximum glulam cross-section width of (only) 28 cm, which results from the maximum width of a standard board lamella. Wider board lamellae are not available due to the dimensional restrictions of the regular tree trunk, the diameter of which is in the range of 32–36 cm (information from Dr. Ch Dehlinger).

  7. 7.

    Mechanical presses, as used for the production of glulam, are not practical due to the large component lengths and widths of the panel-shaped cross-laminated timber (in contrast to the reduced widths of the rod-shaped glulam, which facilitate the application of the mechanical presses across the glulam component). For this reason, vacuum presses are used, i.e. enclosures made of rubber mats which, after pumping out the enclosed air, exert a two-dimensional compression on the cross-laminated timber as a result of atmospheric pressure. The pressures acting are correspondingly lower than with BSH. Therefore, other types of glues have to be used (PU glues), which foam up a little in the glue joint and for this reason do not require high compressing forces (information from Dr. Ch Dehlinger).

  8. 8.

    Neuhaus (1994), p. 52; also: Pfeifer et al. (1998) Der neue Holzbau, p. 18; Arbeitsgemeinschaft Holz e.V. (ed) (1997), p. 5.

  9. 9.

    Neuhaus (1994), p. 52 ff; also: Scheer et al. (1984), p. 35 ff, and Arbeitsgemeinschaft Holz e.V. (ed) (1997) Holzbau-Handbuch.

  10. 10.

    Pfeifer et al. (1998) Der neue Holzbau, p. 16; Arbeitsgemeinschaft Holz e.V. (ed) (1997), p. 7.

  11. 11.

    Pfeifer et al. (1998), p. 17; Arbeitsgemeinschaft Holz e.V. (ed) (1997), p. 4.

  12. 12.

    Neuhaus (1994), p. 52; Pfeifer et al. (1998), p. 20 and 22; Arbeitsgemeinschaft Holz e.V. (ed) (1997), p. 9.

  13. 13.

    Ibid., p. 8.

  14. 14.

    Pfeifer et al. (1998), p. 23; also: Arbeitsgemeinschaft Holz e.V. (ed) (1997), p. 10.

  15. 15.

    Pfeifer et al. (1998), p. 24; also: Arbeitsgemeinschaft Holz e.V. (ed) (1997), p. 11.

  16. 16.

    Neuhaus (1994) Lehrbuch des Ingenieurholzbaus, p. 52.

  17. 17.

    Arbeitsgemeinschaft Holz e.V. (ed) (1997), p. 15, p. 16.

  18. 18.

    Arbeitsgemeinschaft Holz e.V. (ed) (1997), p. 12, p. 13.

  19. 19.

    Pfeifer et al. (1998), p. 26.

  20. 20.

    Neuhaus (1994), p. 52; also: Pfeifer et al. (1998), p. 27; Arbeitsgemeinschaft Holz e.V. (ed) (1997), p. 19.

  21. 21.

    Götz et al. (1998) Holzbau-Atlas, p. 56 f.

  22. 22.

    Ibid., p. 56 f.

  23. 23.

    Ibid., p. 57 f; also: Pfeifer et al. (1998), p. 55.

  24. 24.

    Götz et al. (1998), p. 57 f.

  25. 25.

    Ibid., p. 57 f.

Bibliography

  1. Arbeitsgemeinschaft Holz e.V. (Ed) (1997) Holzbau-Handbuch Reihe 4, Baustoffe, Düsseldorf

    Google Scholar 

  2. Cheret P, Radovic B, Heim F (1997) Holzbau-Handbuch, Reihe 4 – Baustoffe. Informationsdienst Holz, Düsseldorf

    Google Scholar 

  3. Götz KH, Hoor D, Möhler K, Natterer J (1980) Holzbau Atlas. Institut für Internationale Architektur-Dokumentation, München – Sonderausgabe der Arbeitsgemeinschaft Holz – Holzwirtschaftlicher Verlag der Arbeitsgemeinschaft Holz, Düsseldorf

    Google Scholar 

  4. von Halász R, Scheer K (1996) Holzbau-Taschenbuch – Band 1: Grundlagen, Entwurf, Bemessung und Konstruktion. Berlin

    Google Scholar 

  5. Hugues T, Steiger L, Weber J (2012) Holzbau: Details, Produkte, Beispiele. Detail, Institut für Internationale Architektur-Dokumentation, München

    Google Scholar 

  6. Kaufmann H, Krötsch S, Winter S (2017) Atlas mehrgeschossiger Holzbau. Detail Business Information GmbH, München

    Google Scholar 

  7. Lückmann R (2018) Holzbau: Konstruktion, Bauphysik, Projekte. WEKA, Kissing

    Google Scholar 

  8. Menges A, Schwinn T, Krieg OD (2016) Advancing Wood Architecture: A Computational Approach. Taylor and Francis, Abindon

    Google Scholar 

  9. Natterer J, Herzog T, Schweitzer R, Volz M, Winter W (2003) Holzbau Atlas. Birkhäuser, Basel

    Google Scholar 

  10. Neuburger A (1919) Die Technik des Altertums. Voigtländers, Leipzig

    Google Scholar 

  11. Neuhaus H (1994) Lehrbuch des Ingenieurholzbaus. Teubner, Stuttgart

    Google Scholar 

  12. Nutsch W (2003) Holztechnik Fachkunde. Bearb. von Lehrern an beruflichen Schulen und Ingenieuren, Lektorat: Wolfgang Nutsch, 19. Aufl., Verl. Europa-Lehrmittel, Haan-Gruiten

    Google Scholar 

  13. Pfeifer, Liebers, Reiners (1998) Der neue Holzbau: aktuelle Architektur, alle Bausysteme, neue Technologien. Callwey München

    Google Scholar 

  14. Rug W, Mönck W (2015) Holzbau: Bemessung und Konstruktion. Beuth, Berlin, Wien, Zürich

    Google Scholar 

  15. Scheidegger F (1990) Aus der Geschichte der Bautechnik, Band 1. Birkhäuser, Basel, Boston, Berlin

    Google Scholar 

  16. Scheer C, Muszala W, Kolberg R (1993) Der Holzbau, Material – Konstruktion – Detail, 3. Aufl., Verlagsanstalt Alexander Koch, Leinfelden-Echterdingen

    Google Scholar 

  17. Steiger L (2013) Basics Holzbau. Birkhäuser Basel

    Google Scholar 

  18. HNE Eberswalde Hochschule für nachhaltige Entwicklung: http://www.hnee.de/de/Startseite/HNE-Eberswalde-E1016.htm

Standards and Guidelines

  1. EN 300: 2006-09 Oriented Strand Boards (OSB)—Definitions, classification and specifications

    Google Scholar 

  2. EN 309: 2005-04 Particleboards—Definition and classification

    Google Scholar 

  3. EN 312: 2010-12 Particleboards—Specifications

    Google Scholar 

  4. EN 316: 2009-07 Wood fibreboards—Definition, classification and symbols

    Google Scholar 

  5. EN 317: 1993-08 Particleboards and fibreboards; determination of swelling in thickness after immersion in water

    Google Scholar 

  6. EN 336: 2013-12 Structural timber—Sizes, permitted deviations;

    Google Scholar 

  7. EN 338: 2016-07 Structural timber—Strength classes

    Google Scholar 

  8. EN 384: 2019-02 Structural timber—Determination of characteristic values of mechanical properties and density

    Google Scholar 

  9. EN 408: 2012-10 Timber structures—Structural timber and glued laminated timber—Determination of some physical and mechanical properties

    Google Scholar 

  10. EN 622: Fibreboards—Specifications. (a) Part 1: 2003-09 General requirements. (b) Part 2: 2004-07 Requirements for hardboards. (c) Part 2 Corrigendum 1: 2006-06 Corrigenda to DIN EN 622-2. (d) Part 3: 2004-07 Requirements for medium boards. (e) Part 4: 2019-08 Requirements for softboards. (f) Part 5: 2010-03 Requirements for dry process boards (MDF)

    Google Scholar 

  11. EN 634: Cement-bonded particleboards—Specifications. (a) Part 1: 1995-04 General requirements. (b) Part 2: 2007-05 Requirements for OPC bonded particleboards for use in dry, humid and external conditions

    Google Scholar 

  12. EN 636: 2015-05 Plywood—Specifications

    Google Scholar 

  13. EN 844: 2020-01 Round and sawn timber—Terminology; Trilingual version

    Google Scholar 

  14. EN 975: Sawn timber—Appearance grading of hardwoods. (a) Part 1: 2011-08 Oak and beech. (b) Part 2: 2004-09 Poplar

    Google Scholar 

  15. EN 1128: 1995-11 Cement-bounded particleboards—Determination of hard body impact resistance

    Google Scholar 

  16. EN 1309: Round and sawn timber—Method of measurement of dimensions. (a) Part 1: 1997-08 Sawn timber. (b) Part 2: 2006-06 Round timber—Requirements for measurement and volume calculation rules. (c) Part 3: 2018-09 Characteristics and biological damage

    Google Scholar 

  17. EN 1313: Round and sawn timber—Permitted deviations and preferred sizes. (a) Part 1: 2010-05 Softwood sawn timber. (b) Part 2: 1999-01 Hardwood sawn timber

    Google Scholar 

  18. EN 1315: 2010-04 Dimensional classification of round timber

    Google Scholar 

  19. EN 1316: Hardwood round timber—Qualitative classification. (a) Part 1: 2013-01 Oak and beech. (b) Part 2: 2013-01 Poplar

    Google Scholar 

  20. EN 1611: Sawn timber—Appearance grading of softwoods. (a) Part 1: 2002-11 European spruces, firs, pines, Douglas firs and larches

    Google Scholar 

  21. EN 1912: 2013-10 Structural timber—Strength classes—Assignment of visual grades and species

    Google Scholar 

  22. EN 1927: Qualitative classification of softwood round timber. (a) Part 1: 2008-06 Spruces and firs. (b) Part 2: 2008-06 Pines. (c) Part 3: 2008-06 Larches and Douglas fir

    Google Scholar 

  23. EN 1995 Eurocode 5: Design of timber structures. (a) Part 1-1: 2010-12 General—Common rules and rules for buildings

    Google Scholar 

  24. EN 12775: 2001-04 Solid wood panels—Classification and terminology

    Google Scholar 

  25. EN 13017: Solid wood panels—Classification by surface appearance. (a) Part 1: 2001-03 Softwood. (b) Part 2: 2001-03 Hardwood

    Google Scholar 

  26. EN 13353: 2011-07 Solid wood panels (SWP)—Requirements

    Google Scholar 

  27. EN 13353: 2021-01 (prEN) Solid wood panels (SWP)—Requirements

    Google Scholar 

  28. EN 13354: 2009-02 Solid wood panels (SWP)—Bonding quality—Test method

    Google Scholar 

  29. EN 13377: 2002-11 Prefabricated timber formwork beams—Requirements, classification and assessment

    Google Scholar 

  30. EN 13986: 2015-06 Wood-based panels for use in construction—Characteristics, evaluation of conformity and marking

    Google Scholar 

  31. EN 14080: 2013-09 Timber structures—Glued laminated timber and glued solid timber—Requirements

    Google Scholar 

  32. EN 14081: Timber structures—Strength graded structural timber with rectangular cross section. (a) Part 1: 2019-10 General requirements. (b) Part 2: 2018-12 Machine grading; additional requirements for type testing. (c) Part 3: 2018-12 Machine grading; additional requirements for factory production control. (d) Part 3: 2019-11 (prEN) Machine grading; additional requirements for factory production control

    Google Scholar 

  33. EN 14250: 2010-05 Timber structures—Product requirements for prefabricated structural members assembled with punched metal plate fasteners

    Google Scholar 

  34. EN 14251: 2004-04 Structural round timber—Test methods

    Google Scholar 

  35. EN 14279: 2009-07 Laminated Veneer Lumber (LVL)—Definitions, classification and specifications

    Google Scholar 

  36. EN 14374: 2016-07 Timber structures—Structural laminated veneer lumber—Requirements

    Google Scholar 

  37. EN 15197: 2007-05 Wood-based panels—Flaxboards—Specifications

    Google Scholar 

  38. EN 15497: 2014-07 Structural finger jointed solid timber—Performance requirements and minimum production requirements

    Google Scholar 

  39. EN 16351: 2015-12 Timber structures—Cross laminated timber—Requirements

    Google Scholar 

  40. EN 16737: 2016-09 Structural timber—Visual strength grading of tropical hardwood

    Google Scholar 

  41. CEN/TS 15679: 2008-03 (preliminary standard) Thermally Modified Timber—Definitions and characteristics

    Google Scholar 

  42. DIN 1052: Design of timber structures. (a) Part 10: 2019-12 Additional provisions

    Google Scholar 

  43. DIN 4074: DIN 4074: Strength grading of wood. (a) Part 1: 2012-06 Coniferous sawn timber. (b) Part 2: 2021-01 Structural round timber (Coniferous species). (c) Part 4: 2008-12 Certificate of suitability for devices supporting visual grading of sawn timber. (d) Part 5: 2008-12 Sawn hard wood

    Google Scholar 

  44. DIN 68364: 2003-05 Properties of wood species—Density, modulus of elasticity and strength

    Google Scholar 

  45. DIN 68365: 2008-12 Sawn timber for carpentry—Appearance grading—Softwood

    Google Scholar 

  46. Institut für Holztechnologie Dresden gemeinnützige GmbH (IHD) (Ed) (2018) Merkblätter zu thermisch modifiziertem Holz (TMT 0.1 bis TMT 11), available at https://www.ihd-dresden.de/de/wissensportal/merkblaetter/ (accessed on 28.05.2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Moro .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moro, J.L. (2024). Wood Products. In: Building-Construction Design - From Principle to Detail. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61742-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61742-7_21

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61741-0

  • Online ISBN: 978-3-662-61742-7

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics