Skip to main content

Metamorphe Gesteine

  • Chapter
  • First Online:
Mineralogie

Zusammenfassung

Unter Gesteinsmetamorphose (von grch. μεταμóρϕωσις = Umwandlung) versteht man sämtliche Umwandlungsprozesse, mit denen ein Gestein auf Veränderungen der physikalisch-chemischen Bedingungen im Erdinnern, insbesondere von Druck und Temperatur, reagiert. Dabei entstehen aus magmatischen, sedimentären oder (bereits) metamorphen Ausgangsgesteinen neue, metamorphe Gesteine (Metamorphite), die sich in ihrem Gefüge, ihrem Mineralbestand, bisweilen sogar in ihrem Chemismus vom Ausgangsgestein unterscheiden. Während der Metamorphose bleibt der feste Zustand des Gesteins erhalten, obwohl gewöhnlich eine intergranulare fluide Phase vorhanden ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abu El-Enen MM, Okrusch M, Will TM (2004) Contact metamorphism and metasomatism at a dolerite-limestone contact in the Gebel Yelleq area, Northern Sinai. Egypt. Mineral Petrol 81:135–164

    Article  Google Scholar 

  • Altherr R, Kreuzer H, Wendt I, Lenz H, Wagner GA, Keller J, Harre W, Höhndorf A (1982) A Late Oligocene/Early Miocene high temperature belt in the Attic-Cycladic Crystalline Complex (SE Pelagonian, Greece). Geol Jahrb E23:97–164, Hannover

    Google Scholar 

  • Andersen T (1989) Carbonatite-related contact metasomatism in the Fen complex, Norway: Effects and petrogenetic implications. Mineral Mag 53:395–414

    Article  Google Scholar 

  • Barrow G (1893) On an intrusion of muscovite-biotite gneiss in the southern Highlands of Scotland, and its accompanying metamorphism. Quart J Geol Soc London 49:330–358

    Article  Google Scholar 

  • Barrow G (1912) On the geology of lower Dee-side and the southern Highland Border. Proc Geol Assoc 23:274–290

    Article  Google Scholar 

  • Becke F (1903) Über Mineralbestand und Struktur der kristallinen Schiefer. Denkschr Akad Wiss Wien 75:1–97

    Google Scholar 

  • Best MG (2003) Igneous and metamorphic petrology, 2. Aufl. Blackwell, Malden

    Google Scholar 

  • Bose K, Ganguly J (1995) Quartz-coesite transition revisited: Reversed experimental determination at 500–1200 °C and retrieved thermodynamical properties. Am Mineral 80:231–238

    Article  Google Scholar 

  • Brögger WC (1921) Die Eruptivgesteine des Kristianiagebietes IV. Das Fengebiet in Telemark, Norwegen. Norsk Vidensk Selsk Skr I, Math Naturv kl No 9, Oslo

    Google Scholar 

  • Brown M, Korhonen FJ, Siddoway CS (2011) Organizing melt flow through the crust. Elements 7:261–266

    Article  Google Scholar 

  • Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks, 7. Aufl. Springer, Berlin

    Book  Google Scholar 

  • Buchner E, Schmieder M, Schwarz WH, Trieloff M (2012) Das Alter des Meteoritenkraters Nördlinger Ries – eine Übersicht und kurze Diskussion der neueren Datierungen des Riesimpakts. Z. dt. Ges. Geowiss. 164:433–445

    Google Scholar 

  • Carswell DA (Hrsg) (1990) Eclogite facies rocks. Blackie, Glasgow

    Google Scholar 

  • Chao ECT, Shoemaker EM, Madsen BM (1960) First natural occurrence of coesite. Science 133:882

    Article  Google Scholar 

  • Chatterjee ND (1974) Synthesis and upper thermal stability limit of 2M-margarite, CaAl2[Al2Si2O10(OH)2]. Schweiz Mineral Petrogr Mitt 54:753–767

    Google Scholar 

  • Chatterjee ND, Johannes W (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KAl2[AlSi3O10(OH)2]. Contrib Mineral Petrol 48:89–114

    Article  Google Scholar 

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib Mineral Petrol 86:107–118

    Article  Google Scholar 

  • Clark C, Fitzsimmons ICW, Healy D, Harley SL (2011) How does the continental crust really get hot? Elements 7:235–240

    Article  Google Scholar 

  • Coleman RG (1977) Ophiolites – ancient oceanic lithospheres? Springer, Berlin

    Book  Google Scholar 

  • Coleman RG, Wang X (1995) Ultrahigh pressure metamorphism. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Collins GS, Melosh HJ, Osinski GR (2012) The impact-cratering process. Elements 8:25–30

    Article  Google Scholar 

  • Coombs DS (1961) Some recent work on the lower grades of metamorphism. Australian J Sci 24:203–215

    Google Scholar 

  • Dietrich RV, Mehnert KR (1961) Proposal for the nomenclature of migmatites and associated rocks. In: Proc. 21st Internat Geol Congr Norden, Copenhagen 1960, 14:56–67

    Google Scholar 

  • Drüppel K, Hoefs J, Okrusch M (2005) Fenitizing processes induced by ferrocarbonatite magmatism at Swartbooisdrif, NW Namibia. J Petrol 46:377–406

    Article  Google Scholar 

  • Eisbacher GH (1996) Einführung in die Tektonik, 2. Aufl. Enke, Stuttgart

    Google Scholar 

  • El Goresy A, Gillet P, Chen M, Kunstler F, Graup G, Stähle V (2001) In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries crater, Germany. Am Mineral 86:611–621

    Article  Google Scholar 

  • El Goresy A, Chen M, Gillet P, Dubrovinsky L, Graup G, Ahuja R (2001) A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries Crater in Germany. Earth Planet Sci Lett 192:485–495

    Article  Google Scholar 

  • El Goresy A, Chen M, Dubrovinsky L, Gillet P, Graup G (2001) An ultradense polymorph of rutile with seven-coordinated titanium fom the Ries Crater. Science 293:1467–1470

    Article  Google Scholar 

  • El Goresy A, Dubrovisnsky LS, Gillet P, Mostefaoui S, Graup G, Drakopoulos M, Simionovici AS, Masaitis VL (2003) A novel cubic, transparent and superhard polymorph of carbon from the Ries and Popigai Craters: Implications to understanding dynamic-induced natural high-pressure phase transitions in the carbon system. Lunar Planet Sci 34, Abstract no 16

    Google Scholar 

  • Elliott DS (1973) Diffusion flow laws in metamorphic rocks. Geol Soc America Bull 84:2645–2664

    Article  Google Scholar 

  • Ernst WG (1976) Petrologic phase equilibria. Freeman, San Francisco

    Google Scholar 

  • Eskola P (1939) Die metamorphen Gesteine. In: Barth TFW, Correns CW, Eskola P (1939) Die Entstehung der Gesteine – ein Lehrbuch der Petrogenese. Springer, Berlin, 3. Teil, S 263–407 (Reprint 1970)

    Google Scholar 

  • Evans BW (2007) Metamorphic petrology. Landmark Paper Nr 3. Mineral Soc Great Britain and Ireland, London

    Google Scholar 

  • Feenstra A (1985) Metamorphism of bauxites on Naxos, Greece. Geologica Ultraiectina 39:1–206, Alblasserdam, Niederlande

    Google Scholar 

  • Fersmann AE (1929) Geochemische Migration der Elemente. III. Smaragdgruben im Uralgebirge. Abhandl Prakt Geol Berwirtschaftslehre 18:74–116. Knapp, Halle/Saale

    Google Scholar 

  • Fettes D, Desmons J (Hrsg) (2007) Metamorphic rocks: a classification and glossary of terms. Cambridge University Press, Cambridge

    Google Scholar 

  • Förster H-J, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645

    Article  Google Scholar 

  • Frey M (Hrsg) (1987) Low temperature metamorphism. Blackie, Glasgow

    Google Scholar 

  • Gall H, Müller D, Stöffler D (1975) Verteilung, Eigenschaften und Entstehung der Auswurfsmassen des Impaktkraters Nördlinger Ries. Geol Rundschau 64:915–947

    Article  Google Scholar 

  • Gault DE, Quaide WL, Overbeck VR (1968) Impact cratering mechanics and structures. In: French BM, Short NM (Hrsg.) Shock Metamorphism of Natural Materials. Mono Book Corporation, Baltimore

    Google Scholar 

  • Gillis KM, Thompson G (1993) Metabasalts from the Mid-Atlantic Ridge: New insights into hydrothermal systems in slow-spreading crust. Contrib Mineral Petrol 113:502–523

    Article  Google Scholar 

  • Grapes R (2011) Pyrometamorphism, 2. Aufl. Springer, Heidelberg New York

    Google Scholar 

  • Grieve RAF, Stöffler D (2012) Impacts and the Earth: a perspective. Elements 8:11–12

    Google Scholar 

  • Grundmann G, Morteani G (1989) Emerald mineralization during regional metamorphism: the Habachtal (Austria) and Leydsdorp (Transvaal, South Africa) deposits. Econ Geol 84:1835–1849

    Article  Google Scholar 

  • Grünhagen H (1980) Petrographie und Genese der Adinole an einem Diabaskontakt im nordöstlichen Sauerland. Neues Jahrb Mineral Abhandl 140:253–274

    Google Scholar 

  • Haas H (1972) Diaspore-corundum equilibrium determined by epitaxis of diaspore on corundum. Am Mineral 57:1375–1385

    Google Scholar 

  • Hamilton WB (1998) Archean magmatism and deformation were not products of plate tectonics. Precambr Res 91:143–179

    Article  Google Scholar 

  • Harker A (1932) Metamorphism. 2. Aufl. 1939, 3. Aufl. 1950, reprint 1974. Methuen, London

    Google Scholar 

  • Harrassowitz H (1927) Anchimetamorphose, das Gebiet zwischen Oberflächen- und Tiefenumwandlung der Erdrinde. Oberhess Ges Natur- und Heilkunde Gießen, Naturwiss Abt Ber 12:9–15

    Google Scholar 

  • Harrison TM (2009) The Hadean crust: Evidence from >4 Ga zircons. Annual Rev Earth Planet Sci 37:479–505

    Article  Google Scholar 

  • Holdaway MJ, Mukhopadhyay B (1993) A reevaluation of the stability relations of andalusite: Thermochemical data and phase diagram for the aluminum silicates. Am Mineral 78:298–315

    Google Scholar 

  • Holland TJB (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1200 °C. Am Mineral 65:129–134

    Google Scholar 

  • Holness MB, Cesare B, Sawyer EW (2011) Melted rocks under the microscope: microstructures and their interpretation. Elements 7:247–252

    Article  Google Scholar 

  • Humphris SE, Thompson G (1978) Hydrothermal alteration of oceanic basalts by seawater. Geochim Cosmochim Acta 42:107–125

    Article  Google Scholar 

  • Jaeger JC (1957) The temperature in the neighborhood of a cooling intrusive sheet. Am J Sci 255:306–318

    Article  Google Scholar 

  • Jaeger JC (1959) Temperatures outside a cooling intrusive sheet. Am J Sci 257:44–54

    Article  Google Scholar 

  • Jamieson RA, Unsworth MJ, Harris NBW, Rosenberg CL, Schulmann K (2011) Crustal melting and the flow of mountains. Elements 7:253–260

    Article  Google Scholar 

  • Jansen JBH, Schuiling ED (1976) Metamorphism on Naxos: petrology and geothermal gradients. Am J Sci 276:1225–1253

    Article  Google Scholar 

  • Johannes W (1988) What controls partial melting in migmatites? J Metam Geol 6:451–465

    Article  Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Heidelberg

    Book  Google Scholar 

  • Jung S, Mezger K (2001) Geochronology in migmatites -a Sm-Nd, U-Pb and Rb-Sr study from the Proterozoic Damara Belt (Namibia): implications for polyphase development of migmatites in highgrade terranes. J Metam Geol 19:77–97

    Article  Google Scholar 

  • Karato S, Wenk H-R (Hrsg.) (2002) Plastic deformation of minerals and rocks. Rev Mineral Geochem 51

    Google Scholar 

  • Kaur P, Chaudhri N, Hofmann AW, Raczek I, Okrusch M, Skora S, Baumgartner LP (2012) Two-stage, extreme albitization of A-type granites from Rajasthan, NW India. J Petrol 53:919–948

    Article  Google Scholar 

  • Kerrick DM (Hrsg.) (1991) Contact metamorphism. Rev Mineral 26

    Google Scholar 

  • Kleber W, Bautsch H-J, Bohm J, Klimm D (2010) Einführung in die Kristallographie, 19. Aufl. Technik, Berlin

    Book  Google Scholar 

  • Kresten P, Morogan V (1986) Fenitization at the Fen complex, southern Norway. Lithos 19:27–42

    Article  Google Scholar 

  • Kukla PA, Kukla C, Stanistreet IG, Okrusch M (1990) Unusual preservation of sedimentary structures in sillimanite-bearing metaturbidites of the Damara Orogen, Namibia. J Geol 98:91–99

    Article  Google Scholar 

  • Kukla C, Kramm U, Kukla PA, Okrusch M (1991) U-Pb monazite data relating to metamorphism and granite intrusion in the northwestern Khomas Trough, Damara Orogen, central Namibia. Communs Geol Surv Namibia 7:49–54

    Google Scholar 

  • Langenhorst F, Deutsch A (2012) Shock metamorphism of minerals. Elements 8:31–36

    Article  Google Scholar 

  • Lippmann F (1977) Diagenese und beginnende Metamorphose bei Sedimenten. Bull Acad Serbe Sci Nat, T LVI, No 15 Melson WG, Andel TH van (1966) Metamorphism in the MidAtlantic Ridge, 22° N latitude. Marine Geol 4:165–186

    Google Scholar 

  • Massonne H-J (2001) First find of coesite in the ultrahigh-pressure rocks of the Central Erzgebirge, Germany. Eur J Mineral 13:565–570

    Article  Google Scholar 

  • Massonne HJ, Kennedy A, Nasdala L, Theye T (2007) Dating of zircon and monazite from diamodiferous quartzofeldspatic rocks of the Saxonian Erzgebirge - hints at burial and exhumation velocities. Mineral Mag 71:407–425

    Article  Google Scholar 

  • Mehnert KR (1971) Migmatites and the origin of granitic rocks, 2. Aufl. Elsevier, Amsterdam

    Google Scholar 

  • Melson WG, van Andel TH (1966) Metamorphism in the Mid-Atlantic Ridge, 22° N latitude. Marine Geol 4:165–186

    Article  Google Scholar 

  • Miyashiro A (1972) Metamorphism and related magmatism in plate tectonics. Am J Sci 272:629–656

    Article  Google Scholar 

  • Miyashiro A, Shido F, Ewing M (1970) Petrologic models for the Mid-Atlantic Ridge. Deep Sea Res 17:109–123

    Google Scholar 

  • Miyashiro A, Shido F, Ewing M (1971) Metamorphism in the MidAtlantic Ridge near 24° and 30° N. Phil Trans Roy Soc London A268:589–603

    Google Scholar 

  • Möller A, Appel P, Mezger K, Schenk V (1995) Evidence for a 2 Ga subduction zone: eclogites in the Usagaran belt of Tanzania. Geology 23:1067–1070

    Article  Google Scholar 

  • Nabholz WK, Niggli E, Wenk E (1967) Lukmanier-Pass: Disentis–Biasca, Exkursion Nr. 23. In: Nabholz WK (Hrsg) Geologischer Führer der Schweiz, Heft 5: 400–417, Schweizerische Geologische Gesellschaft, Wepf Co., Basel

    Google Scholar 

  • Nasdala L, Massonne H-J (2000) Microdiamonds from the Saxonian Erzgebirge, Germany: in-stu micro-Raman characterisation. Eur J Mineral 12:495–498

    Article  Google Scholar 

  • Ogasawara Y (2005) Microdiamonds in ultrahigh-pressure metamorphic rocks. Elements 1:91–96

    Article  Google Scholar 

  • Okrusch M, Bröcker M (1990) Eclogites associated with high-grade blueschists in the Cycladic archipelago, Greece: A review. Eur J Mineral 2:451–478

    Article  Google Scholar 

  • Olsen SN (1985) Mass balance in migmatites. In: Ashworth JR (Hrsg.) Migmatites. Blackie, Glasgow, London

    Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics, 2. Aufl. Springer-Verlag, Berlin

    Google Scholar 

  • Phillips FM, Zreda MG, Smith SS, Elmore D, Kubik PW, Dorn RI, Roddy DJ (1991) Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish. Geochim Cosmochim Acta 55:2695–2698

    Article  Google Scholar 

  • Read HH (1952) Metamorphism and migmatisation in the Ythan Valley, Aberdeenshire. Trans Edinburgh geol Soc 15:265–279

    Article  Google Scholar 

  • Reimold WU, Jourdan F (2012) Impact! – Bolides, craters, and catastrophes. Elements 8:19–24

    Article  Google Scholar 

  • Reitz E (1987) Palynologie in metamorphen Serien: I. Silurische Sporen in einem granatführenden Glimmerschiefer des Vor-Spessart. Neues Jahrb Geol Paläont Monatsh 1987:699–704

    Article  Google Scholar 

  • Richardson SW (1968) Staurolite stability in a part of the system Fe-Al-Si-O-H. J Petrol 9:467–488

    Article  Google Scholar 

  • Robyr M, Vonlanthen P, Baumgartner LP, Grobety B (2007) Growth mechanism of snowball garnets from the Lukmanier Pass area (Central Alps, Switzerland): a combined μCT/EPMA/EBSD study. Terra Nova 19:240–244

    Article  Google Scholar 

  • Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: Implications fort the continental crust. J Metam Geol 23:19–28

    Article  Google Scholar 

  • Rosenbusch H (1877) Die Steiger Schiefer und ihre Contactzone. Abhandl Geol Spezialkarte Elsass-Lothringen 1:80–393, Halle/Saale

    Google Scholar 

  • Sander B (1950) Einführung in die Gefügekunde geologischer Körper, 2. Teil: Die Korngefüge. Springer, Wien

    Google Scholar 

  • Sawyer EW, Barnes S-J (1988) Temporal and compositional differences between subsolidus and anatectic migmatite leucosomes from the Quetico metasedimentary belt, Canada. J Metam Geol 6:437–450

    Article  Google Scholar 

  • Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234

    Article  Google Scholar 

  • Schmieder M, Schwarz WH, Buchner E, Pesonen LJ, Lehtinen M, Trieloff M (2012) Double and multiple impact events on Earth – hypotheses, tests, and problems. Meteorit Planet Sci 45:1093–1107

    Google Scholar 

  • Schmitt RT, Lapke C, Lingemann CM, Siebenschock M, Stöffler D (2005) Distribution and origin of impact diamonds in the Ries crater, Germany. In: Kenkmann T, Hörz F, Deutsch H (Hrsg) Large meteorite impacts III. Geol Soc America Spec Paper 384: 299–314

    Google Scholar 

  • Schneiderhöhn H (1961) Die Erzlagertätten der Erde, Bd II. Die Pegmatite. Gustav Fischer, Stuttgart

    Google Scholar 

  • Searle M, Hacker BR, Bilham R (2001) The Hindu Kush seismic zone as a paradigm for the creation of ultrahigh-pressure diamond-and coesite-bearing continental rocks. J Geol 109:143–153

    Article  Google Scholar 

  • Sederholm JJ (1907) Om granit och gneis, deras uppkomst, uppträ-dande och utbredning inom urberget i Fennoskandia. Bull Comm Gèol Finlande 23:1–110

    Google Scholar 

  • Karato S, Wenk H-R (Hrsg) (2002) Plastic deformation of minerals and rocks. Rev Mineral Geochem 51

    Google Scholar 

  • Kerrick DM (ed) (1991) Contact metamorphism. Rev Mineral 26

    Google Scholar 

  • Olsen SN (1985) Mass balance in migmatites. In: Ashworth JR (Hrsg) migmatites. Blackie, Glasgow

    Google Scholar 

  • Schmitt RT, Lapke C, Lingemann CM, Siebenschock M, Stöffler D (2005) Distribution and origin of impact diamonds in the Ries crater, Germany. In Kenkmann T, Hörz F, Deutsch H (Hrsg) Large meteorite impacts III. Geol Soc America Spec Paper 384: 299–314

    Google Scholar 

  • Sederholm JJ (1913) Die Entstehung migmatischer Gesteine. Geol Rundschau 4:174–185

    Article  Google Scholar 

  • Seidel E, Kreuzer H, Harre W (1982) A Late Oligocene/Early Miocene high pressure belt in the external Hellenides. Geol Jahrb E23:165–206, Hannover

    Google Scholar 

  • Shirey SB, Richardson SH (2011) Start of the Wilson cycle at 3 Gashown by diamonds from subcontinental mantle. Science 333:434–436

    Article  Google Scholar 

  • Spear FS, Cheney IT (1989) A petrogenetic grid for pelitic schists in the system SiO2–Al2O3–FeO–MgO–K2O–H2O. Contrib Mineral Petrol 101:149–164

    Article  Google Scholar 

  • Spry A (1983) Metamorphic textures. Pergamon, Oxford

    Google Scholar 

  • Stöffler D, Grieve RAF (2007) Impactites. In Fettes D, Desmons J (Hrsg) Metamorphic rocks: a classification and glossary of terms. Cambridge University Press, Cambridge, S 82–92, 111–125, 126–242

    Google Scholar 

  • Stöffler D, Artemieva NA, Wünnemann K, Reimold WU, Jacob J, Hansen BK, Summerson IAT (2013) Ries crater and suevite revisited – observations and modelling. Part I: Observations. Meteorit & Planet Sci 48:515–589

    Article  Google Scholar 

  • Storre B, Karotke E (1972) Experimental data on melting reactions of muscovite in the system K2O–Al2O3–SiO2–H2O to 20 Kb water pressure. Contrib Mineral Petrol 36:343–345

    Article  Google Scholar 

  • Teichmüller M (1987) Organic material and very low-grade metamorphism. In: Frey M (Hrsg) Low temperature metamorphism. Chapter 4: 114–161. Blackie Glasgow London

    Google Scholar 

  • Tilley CE (1925) Metamorphic zones in the southern Highlands of Scotland. Quart J Geol Soc London 81:100–112

    Article  Google Scholar 

  • Turner FJ (1981) Metamorphic petrology, 2. Aufl. Hemisphere, Washington

    Google Scholar 

  • Utada M (2001) Zeolites in hydrothermally altered rocks. In: Bish DL, Ming DW (Hrsg) Natural zeolites: occurrence, properties, applications. Rev Mineral Geochem 45:305–322

    Google Scholar 

  • Vallance TG (1977) Spilitic degradation of a tholeiitic basalt. J Petrol 15:79–96

    Article  Google Scholar 

  • Voll G, Töpel J, Pattison DRM, Seifert F (Hrsg) (1991) Equilibrium and kinetics in contact metamorphism: The Ballachulish Igneous Complex and its aureole. Springer, Berlin

    Google Scholar 

  • Von Engelhardt W, Arndt J, Stöffler D et al (1967) Diaplektische Gläser in den Breccien des Ries von Nördlingen als Anzeichen der Stoßwellenmetamorphose. Contrib Mineral Petrol 15:93–107

    Article  Google Scholar 

  • Werner E (1904) Das Ries in der schwäbisch-fränkischen Alb. Bl Schwäb Albver 16/5, Tübingen

    Google Scholar 

  • White RW, Stevens G, Johnson EJ (2011) Is the crucible reproducible? Reconciling melting experiments with thermodynamic calculations. Elements 7:241–246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Okrusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okrusch, M., Frimmel, H.E. (2022). Metamorphe Gesteine. In: Mineralogie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64064-7_26

Download citation

Publish with us

Policies and ethics