Skip to main content

Potato Carbohydrates

  • Chapter
  • First Online:
Potato

Abstract

Potatoes are widely consumed and are a highly popular food due to their preparation in many ways such as boiled, microwaved, fried, roasted, dehydrated, etc. Methods of processing and storage are known to affect its nutritional quality. Glycemic index of potato is affected by various factors, which include the genetic makeup of variety, amylose content, type and ratio of starches, cooking method, and the presence of other ingredients consumed with them including fiber, fat, and protein. Potatoes contain three types of starches, i.e. rapidly digestible starch, slowly digestible starch, and resistant starch. These starches affect blood glucose levels to different extents and hence the glycemic index. Processing method significantly affects the concentration of these starch types. Potato resistant starch has attracted the attention of nutritionists due to its various health benefits. Potato contains resistant starch type III in most cooked forms. Potato carbohydrates are affected by factors including cultivation practices, temperatures during crop growth, storage durations and temperatures, and processing. Various biochemical procedures are available to evaluate potato carbohydrates. This chapter deals with the types of starches present in potato, effect of cultivation practices, processing and storage on carbohydrates, methods used for evaluation, glycemic index, and genetic modifications carried out to alter the structure and function of potato carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Åkerberg AKE, Liljeberg HGM, Granfeldt YE et al (1998) An in vitro method, based on chewing, to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber. J Nutr 128:651–660

    Article  PubMed  Google Scholar 

  • Andersson M, Melander M, Pojmark P et al (2006) Targeted gene suppression by RNA interference: an efficient method for production of high-amylose potato lines. J Biotechnol 123(2):137–148

    Article  CAS  PubMed  Google Scholar 

  • Araya H, Contreras P, Alviña M et al (2002) A comparison between an in vitro method to determine carbohydrate digestion rate and the glycemic response in young men. Eur J Clin Nutr 56:735–739

    Article  CAS  PubMed  Google Scholar 

  • Atkinson FS, Foster-Powell K, Brand-Miller JC (2008) International tables of GI and GL values: 2008. Diabetes Care 31(12):2281–2283

    Article  PubMed  PubMed Central  Google Scholar 

  • Bach S, Yada RY, Bizimungu B et al (2013) Genotype by environment interaction effects on starch content and digestibility in potato (Solanum tuberosum L.). J Agric Food Chem 61(16):3941–3948

    Article  CAS  PubMed  Google Scholar 

  • Balance S, Knutsen SH, Fosvold ØW et al (2018) Glyceamic and insulinaemic response to mashed potato alone, or with broccoli, broccoli fibre or cellulose in healthy adults. Eur J Nutr 57:199

    Article  CAS  Google Scholar 

  • Bang SJ, Lee ES, Song EJ et al (2019) Effect of raw potato starch on the gut microbiome and metabolome in mice. Int J Biol Macromol 133:37–43

    Article  CAS  PubMed  Google Scholar 

  • Baroja-Fernández E, Muñoz FJ, Montero M et al (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol l50(9):1651–1662

    Article  CAS  Google Scholar 

  • Bavaneethan Y, Vasantharuba S, Balakumar S, Thayananthan K (2015) Effect of different processing time on resistant starch content of selected tubers. World J Agric Sci 11(4):244–246

    CAS  Google Scholar 

  • Bembem K, Sadana B (2012) Effect of cooking methods on the nutritional composition and antioxidant activity of potato tubers. Int J Food Nutr Sci 2(4):26–30

    Google Scholar 

  • Bordoloi A, Kaur L, Singh J (2012) Parenchyma cell microstructure and textural characteristics of raw and cooked potatoes. Food Chem 133(4):1092–1100

    Article  CAS  Google Scholar 

  • Brighenti F, Pellegrini N, Casiraghi MC et al (1995) In vitro studies to predict physiological effects of dietary fibre. Eur J Clin Nutr 49(Suppl 3):S81–S88

    PubMed  Google Scholar 

  • Carillo P, Cacace D, Pascale SD et al (2012) Organic vs traditional potato powder. Food Chem 133(4):1264–1273

    Article  CAS  Google Scholar 

  • Chen X, Salamini F, Gebhardt C (2001) A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet 102:284–295

    Article  CAS  Google Scholar 

  • Chen JY, Miao Y, Zhang H et al (2004) Non-destructive determination of carbohydrate content in potatoes using near infrared spectroscopy. J Near Infrared Spec 12(5):311–314

    Article  CAS  Google Scholar 

  • Chryssanthopoulos C, Varzakas T, Tampaki M et al (2016) Glycemic index of two different fried potato varieties cultivated under organic fertilization conditions. Curr Res Nutr Food Sci 4(1):09–15

    Article  Google Scholar 

  • Coudray C, Younes H, Bellanger J et al (2001) Effect of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br J Nutr 86(4):479–485

    Article  PubMed  Google Scholar 

  • Cummings JH, Englyst HN (1995) Gastrointestinal effects of food carbohydrate. Am J Clin Nutr 61:938S–945S

    Article  CAS  PubMed  Google Scholar 

  • Darwiche G, Stman EM, Liljeberg HGM, Kallinen N, Björgell O, Björck IME, Almér L-O (2001) Measurements of the gastric emptying rate by use of ultrasonography: studies in humans using bread with added sodium propionate. Am J Clin Nutr 74:254–258

    Article  CAS  PubMed  Google Scholar 

  • de Quadros DA, Iung MC, Ferreira SMR et al (2009) Chemical composition of potato tubers for processing, grown at different levels and sources of potassium. Food Sci Technol 29(2):316–323

    Article  Google Scholar 

  • de Vasconcelos NCM, Salgado SM, Livera AVS et al (2015) Influence of heat treatment on the sensory and physical characteristics and carbohydrate fractions of french-fried potatoes (Solanum tuberosum L.). Food Sci Technol (Campinas) 35(3):561–569

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Ek KL, Wang S, Brand-Miller JC et al (2014a) Properties of starch from potatoes differing in glycemic index. Food Funct 10:2509–2515

    Google Scholar 

  • Ek KL, Wang S, Copeland L, Brand-Miller JC (2014b) Discovery of a low-glycaemic index potato and relationship with starch digestion in vitro. Br J Nutr 111:699–705

    Article  CAS  PubMed  Google Scholar 

  • Englyst H, Wiggins HS, Cummings JH (1982) Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 107:307

    Article  CAS  PubMed  Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46(Suppl 2):S33–S50

    PubMed  Google Scholar 

  • Englyst HN, Veenstra J, Hudson GJ (1996) Measurement of rapidly available glucose (RAG) in plant foods: a potential in vitro predictor of the glycaemic response. Brit J Nutr 75:327–337

    Google Scholar 

  • Englyst KN, Englyst HN, Hudson GJ et al (1999) Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response. Am J Clin Nutr 69:448–454

    Google Scholar 

  • Englyst KN, Vinoy S, Englyst HN et al (2003) Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br J Nutr 89:329–339

    Article  CAS  PubMed  Google Scholar 

  • Eroglu E, Buyuktuncer Z (2017) The effect of various cooking methods on resistant starch content of foods. Nutr Food Sci 47(4):522–533

    Google Scholar 

  • FAO (1998) Carbohydrates in human nutrition. Report of a joint FAO/WHO expert consultation. FAO Food Nutr Pap 66:1–140

    Google Scholar 

  • Faruk AA, Kirichenko EB, Voronkova TV et al (2004) Changes in carbohydrate and polyphenolics pools during potato tuber maturation: cultivar-specific development of resistance to pathogens. Dokl Biol Sci 396:240–242

    Article  CAS  PubMed  Google Scholar 

  • Fernandes G, Velangi A, Wolever TMS (2005) Glycemic index of potatoes commonly consumed in North America. J Am Diet Assoc 105(4):557–562

    Article  PubMed  Google Scholar 

  • Furrer AN, Chegeni M, Ferruzzi MG (2018) Impact of potato processing on nutrients, phytochemicals and human health. Crit Rev Food Sci Nutr 58(1):146–168

    Article  CAS  PubMed  Google Scholar 

  • García-Alonso A, Goñi I (2000) Effect of processing on potato starch: In vitro availability and glycaemic index. Nahrung – Food 44:19–22

    Article  PubMed  Google Scholar 

  • Gerendas J, Heuser F, Sattelmacher B (2007) Influence of nitrogen and potassium supply on contents of acrylamide precursors in potato tubers and on acrylamide accumulation in French fries. J Plant Nutr 30(9):1499–1516

    Article  CAS  Google Scholar 

  • Goni L, Garcia-Diamanas E, Saura-Calixto F (1996) Analysis of resistant starch: a method for foods and food products. Food Chem 56(4):455–459

    Article  Google Scholar 

  • Goni I, Garcia-AIonso A, Saura-Calixto F (1997) A starch hydrolysis procedure to estimate glycemic index. Nutr Res 17(3):427437.1

    Article  Google Scholar 

  • Granfeldt Y, Björck I (1991) Glycemic response to starch in pasta: a study of mechanisms of limited enzyme availability. J Cereal Sci 14:47–61

    Article  Google Scholar 

  • Granfeldt Y, Björck I, Drews A et al (1992) An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. Eur J Clin Nutr 46:649–660

    CAS  PubMed  Google Scholar 

  • Granfeldt Y, Liljeberg H, Drews A, Newman R, Björck I (1994) Glucose and insulin responses to barley products: influence of food structure and amylose-amylopectin ratio. Am J Clin Nutr 59(5):1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Granfeldt Y, Drews A, Björck I (1995) Arepas made from high amylose corn flour produce favorably low glucose and insulin responses in healthy humans. J Nutr 125(3):459–465

    CAS  PubMed  Google Scholar 

  • Haase NU (2015) The in vitro digestibility of carbohydrates in boiled and processed potatoes. Potato Res 58(2):91–102

    Article  CAS  Google Scholar 

  • Hatonen KA, Virtamo J, Eriksson JG et al (2011) Protein and fat modify the glycaemic and insulinaemic responses to a mashed potato-based meal. Br J Nutr 106:248–253

    Article  PubMed  CAS  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) In: Whistler RI, Be Miller JN (eds) Carbohydrate chemistry. Academic Press, New York, p 17

    Google Scholar 

  • Henry CJK, Lightowler HJ, Strik CM et al (2005) Glycaemic index values for commercially available potatoes in Great Britain. Br J Nutr 94(6):917–921

    Article  CAS  PubMed  Google Scholar 

  • Henry CJK, Lightowler HJ, Kendall FL et al (2006) The impact of the addition of toppings/fillings on the glycaemic response to commonly consumed carbohydrate foods. Eur J Clin Nutr 60:763–769

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Hernandez O, Olano A, Rastall RA, Moreno FJ (2019) In vitro digestibility of dietary carbohydrates: toward a standardized methodology beyond amylolytic and microbial enzymes. Front Nutr 6:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ISO: 26642 (2010) Food products-determination of the glycaemic index (GI) and recommendation for food classification. ISO, Geneva

    Google Scholar 

  • Jenkins DJA, Wolever TMS, Taylor RH et al (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34:362–366

    Article  CAS  PubMed  Google Scholar 

  • Jenkins DJA, Wolever TMS, Thorne MJ et al (1984) The relationship between glycemic response, digestibility, and factors influencing the dietary habits of diabetics. Am J Clin Nutr 40:1175–1191

    Article  CAS  PubMed  Google Scholar 

  • Juliano BO (1971) A simplified assay for milled-rice amylose. Cereal Sci Today 16:334–360

    Google Scholar 

  • Kalita D, Holm DG, La Barbera DV et al (2018) Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLoS One 13(1):1–21

    Article  CAS  Google Scholar 

  • Karlsson ME, Leeman AM, Bjorck IME et al (2007) Some physical and nutritional characteristics of genetically modified potatoes varying in amylose/ amylopectin ratio. Food Chem 100:136–146

    Article  CAS  Google Scholar 

  • Kaur A, Singh N, Ezekiel R et al (2007) Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chem 101(2):643–651

    Article  CAS  Google Scholar 

  • Koch M, Naumann N, Pawelzik E (2020) The importance of nutrient management for potato production part I: plant nutrition and yield. Potato Res 63(1):97–119

    Google Scholar 

  • Krunic SL, Skryhan K, Mikkelsen L et al (2018) Non-GMO potato lines with an altered starch biosynthesis pathway confer increased-amylose and resistant starch properties. Starch 70(1–2):1600310

    Article  CAS  Google Scholar 

  • Kumar A, Sahoo U, Baisakha B et al (2018) Resistant starch could be decisive in determining the glycemic index of rice cultivars. J Cereal Sci 79:348–353

    Article  CAS  Google Scholar 

  • Kumari M, Kumar M, Solankey SS (2018) Breeding potato for quality improvement. In: Potato-From Incas to all over the world. Intech Open, London, pp 37–59

    Google Scholar 

  • Lamberti M, Geiselmann A, Conde-Petit B et al (2004) Starch transformation and structure development in production and reconstitution of potato flakes. LWT Food Sci Technol 37(4):417–427

    Article  CAS  Google Scholar 

  • Leeman M, Ostman E, Bjorck I (2005) Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. Eur J Clin Nutr 59:1266–1271

    Article  CAS  PubMed  Google Scholar 

  • Leeman M, Ostman E, Bjork I (2008) Glycaemic and satiating properties of potato products. Eur J Clin Nutr 62:87–95

    Article  CAS  PubMed  Google Scholar 

  • Leinonen K, Liukkonen K, Poutanen K et al (1999) Rye bread decreases postprandial insulin response but does not alter glucose response in healthy Finnish subjects. Eur J Clin Nutr 53:262–267

    Article  CAS  PubMed  Google Scholar 

  • Leonel M, Carmo EL, Fernandes AM et al (2016) Physico-chemical properties of starches isolated from potato cultivars grown in soils with different phosphorus availability. J Sci Food Agric 96:1900–1905

    Article  CAS  PubMed  Google Scholar 

  • Leonel M, do Carmo EL, Fernandes AM et al (2017) Chemical composition of potato tubers: the effect of cultivars and growth conditions. J Food Sci Technol 54:2372–2378

    Google Scholar 

  • Liatis S, Grammatikou S, Poulia KA et al (2010) Vinegar reduces postprandial hyperglycaemia in patients with type II diabetes when added to a high, but not to a low, glycaemic index meal. Eur J Clin Nutr 64(7):727–732

    Article  CAS  PubMed  Google Scholar 

  • Liljeberg HGM, Björck IME (1998) Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr 52:368–371

    Article  CAS  PubMed  Google Scholar 

  • Liljeberg H, Granfeldt Y, Björck I (1992) Metabolic responses to starch in bread containing intact kernels versus milled flour. Eur J Clin Nutr 46:561–575

    CAS  PubMed  Google Scholar 

  • Lloyd JR, Springer F, Buléon A et al (1999) The influence of alterations in ADP-glucose pyrophosphorylase activities on starch structure and composition in potato tubers. Planta 209(2):230–238

    Article  CAS  PubMed  Google Scholar 

  • Ludwig DDS (2002) The glycemic index - physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287:2414–2423

    Article  CAS  PubMed  Google Scholar 

  • Maggio A, Carillo P, Bulmetti GS et al (2008) Potato yield and metabolic profiling under conventional and organic farming. J Agron 28:343–350

    CAS  Google Scholar 

  • Mareček J, Frančáková H, Bojňanská T et al (2013) Carbohydrates in varieties of stored potatoes and influence of storage on quality of fried products. J Microbiol. Biotechnol Food Sci 2(Special issue 1):1744–1753

    Google Scholar 

  • Mccready RM, Guggolz J, Silviera V et al (1958) Determination of starch and amylose in vegetables. Anal Chem 22:1156

    Article  Google Scholar 

  • McKibbin RS, Muttucumaru N, Paul MJ et al (2006) Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1. Plant Biotechnol J 4(4):409–418

    Article  CAS  PubMed  Google Scholar 

  • Menéndez CM, Ritter E, Schäfer-Pregl R et al (2002) Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics 162(3):1423–1434

    PubMed  PubMed Central  Google Scholar 

  • Miller GL (1956) Use of Dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31(3):426–428

    Article  Google Scholar 

  • Miller CK, Gabbay RA, Dillon J et al (2006) The effect of three snack bars on glycemic response in healthy adults. J Am Diet Assoc 106:745–748

    Article  PubMed  Google Scholar 

  • Mishra S, Monro J, Hedderley D (2008) Effect of processing on slowly digestible starch and resistant starch in potato. Starch-Starke 60(9):500–507

    Article  CAS  Google Scholar 

  • Mitchell M, Pritchard J, Okada S et al (2017) Oil accumulation in transgenic potato tubers alters starch quality and nutritional profile. Front Plant Sci 8:554

    Article  PubMed  PubMed Central  Google Scholar 

  • Monro J, Mishra S, Blandford E et al (2009) Potato genotype differences in nutritionally distinct starch fractions after cooking, and cooking plus storing cool. J Food Compos Anal 22:539–545

    Article  CAS  Google Scholar 

  • Moser S, Aragona I, Furrer A et al (2018) Potato phenolics impact starch digestion and glucose transport in model systems but translation to phenolic rich potato chips results in only modest modification of glycemic response in humans. Nutr Res 52:57–70

    Article  CAS  PubMed  Google Scholar 

  • Mulinacci N, Ieri F, Giaccherinic C et al (2008) Effect of cooking on the anthocyanins, phenolic acids, glycoalkaloids and resistant starch content in two pigmented cultivars of Solanum tuberosum L. J Agric Food Chem 56:11830–11837

    Article  CAS  PubMed  Google Scholar 

  • Murniece I, Karlina D, Galoburda R et al (2011) Nutritional composition of freshly harvested and stored Latvian potato (Solanum tuberosum L.) varieties depending on traditional cooking methods. J Food Compos Anal 24:699–610

    Article  CAS  Google Scholar 

  • Najjar N, Adra N, Hwalla N (2004) Glycemic and insulinemic responses to hot vs cooled potato in males with varied insulin sensitivity. Nutr Res 24(12):993–1004

    Article  CAS  Google Scholar 

  • Nakajima S, Hira T, Tsubata M et al (2011) Potato extract (Potein) suppresses food intake in rats through inhibition of luminal trypsin activity and direct stimulation of cholecystokinin secretion from enteroendocrine cells. Agric Food Chem 59(17):9491–9496

    Article  CAS  Google Scholar 

  • Nayak B, De J, Berrios J, Tang J (2014) Impact of food processing on the glycemic index (GI) of potato products. Food Res Int 56:35–46

    Article  CAS  Google Scholar 

  • Nielsen TS, Bendiks Z, al TB (2019) High-amylose maize, potato, and butyrylated starch modulate large intestinal fermentation, microbial composition, and oncogenic miRNA expression in rats fed a high-protein meat diet. Int J Mol Sci 20(9):2137

    Article  CAS  PubMed Central  Google Scholar 

  • Niu S, Zhang G, Li X et al (2019) Organelle DNA contents and starch accumulation in potato tubers. Theor Appl Genet 132:205–216

    Article  CAS  PubMed  Google Scholar 

  • Noda T, Tsuda S, Mori M et al (2004) The effect of harvest dates on the starch properties of various potato cultivars. Food Chem 86(1):119–125

    Article  CAS  Google Scholar 

  • Ostman E, Granfeldt Y, Persson L, Björck I (2005) Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur J Clin Nutr 59(9):983–988

    Article  CAS  PubMed  Google Scholar 

  • Ozturk S, Koksel H, Ng PKW (2009) Characterization of resistant starch samples prepared from two high amylose maize starches through debranching and heat treatments. Cereal Chem 86:503–510

    Article  CAS  Google Scholar 

  • Pinhero RG, Waduge RN, Liu Q et al (2016) Evaluation of nutritional profiles of starch and dry matter from early potato varieties and its estimated glycemic impact. Food Chem 203:356–366

    Article  CAS  PubMed  Google Scholar 

  • Pobereżny J, Wszelaczyńska E (2011) Effect of bioelements (N, K, Mg) and long-term storage of potato tubers on quantitative and qualitative losses. Part II. Content of dry matter and starch. J Elementol 16:237–246

    Google Scholar 

  • Raatz SK, Idso L, Johnson LK et al (2016) Resistant starch analysis of commonly consumed potatoes: content varies by cooking method and service temperature but not by variety. Food Chem 208:297–300

    Article  CAS  PubMed  Google Scholar 

  • Raigond P, Ezekiel R, Kaundal B (2014) Starch fractions of cooked potatoes at low temperature. Potato J 41(1):58–67

    Google Scholar 

  • Raigond P, Ezekiel R, Raigond B (2015) Resistant starch in food: a review. J Sci Food Agric 95:1968–1978

    Article  CAS  PubMed  Google Scholar 

  • Raigond P, Mehta A, Singh B (2018) Sweetening during low temperature and long term storage of Indian potatoes. Potato Res 61:207–217

    Article  CAS  Google Scholar 

  • Ramdath DD, Padhi E, Hawke A et al (2014) The glycemic index of pigmented potatoes is related to their polyphenol content. Food Funct 5(5):909–915

    Article  CAS  PubMed  Google Scholar 

  • Ramírez C, Millon C, Nuñez H et al (2015) Study of effect of sodium alginate on potato starch digestibility during in vitro digestion. Food Hydrocol 44:328–332

    Article  CAS  Google Scholar 

  • Rivero RC, Rodrı́guez ER, Romero CD (2003) Effects of current storage conditions on nutrient retention in several varieties of potatoes from Tenerife. Food Chem 80(4):445–450

    Article  CAS  Google Scholar 

  • Robertson TM, Alzaabi AZ, Robertson MD et al (2018) Starchy carbohydrates in a healthy diet: the role of the humble potato. Nutrients 10:1764

    Article  PubMed Central  CAS  Google Scholar 

  • Rommens CM, Yan H, Swords K et al (2008) Low acrylamide French fries and potato chips. Plant Biotechnol J 6:843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross SW, Brand JC, Thorburn AW, Truswell AS (1987) Glycemic index of processed wheat products. Am J Clin Nutr 46(4):631–635

    Article  CAS  PubMed  Google Scholar 

  • Schafer G, Schenk U, Ritzel U et al (2003) Comparison of the effects of dried peas with those of potatoes in mixed meals on postprandial glucose and insulin concentrations in patients with type 2 diabetes. Am J Clin Nutr 78:99–103

    Article  PubMed  Google Scholar 

  • Schreiber L, Nader-Nieto AC, Schönhals EM et al (2014) SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.). G3 Genes Genom Genet 4:1797–1811

    CAS  Google Scholar 

  • Schwall GP, Safford R, Westcott RJ et al (2000) Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotech 18:551–554

    Article  CAS  Google Scholar 

  • Schwingshackl L, Schwedhelm C, Hoffmann G et al (2019) Potatoes and risk of chronic disease: a systematic review and dose–response meta-analysis. Eur J Nutr 58:2243–2251

    Article  PubMed  Google Scholar 

  • Singh J, Singh N (2001) Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars. Food Chem 75(1):67–77

    Article  CAS  Google Scholar 

  • Soh NL, Brand-Miller J (1999) The glycemic index of potatoes: the effect of variety, cooking method and maturity. Eur J Clin Nutr 53:249–254

    Article  CAS  PubMed  Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19

    CAS  Google Scholar 

  • Southgate DAT (1969a) Determination of carbohydrates in foods. I.—available carbohydrate. J Sci Food Agric 20:326–330

    Article  CAS  PubMed  Google Scholar 

  • Southgate DAT (1969b) Determination of carbohydrates in foods. II.—unavailable carbohydrate. J Sci Food Agric 20:331–335

    Article  CAS  PubMed  Google Scholar 

  • Sowokinos JR (2001) Biochemical and molecular control of cold induced sweetening in potatoes. Am J Potato Res 78:221–236

    Article  CAS  Google Scholar 

  • Tahvonen R, Hietanena RM, Sihvonena J et al (2006) Influence of different processing methods on the glycemic index of potato (Nicola). J Food Compos Anal 19:372–378

    Article  CAS  Google Scholar 

  • Tappy L, Gügolz E, Würsch P (1996) Effects of breakfast cereals containing various amounts of beta-glucan fibers on plasma glucose and insulin responses in NIDDM subjects. Diabetes Care 19(8):831–834

    Article  CAS  PubMed  Google Scholar 

  • Tester RF, Ansell R, Snape CE et al (2005) Effects of storage temperatures and annealing conditions on the structure and properties of potato (Solanum tuberosum) starch. Int J Biol Macromol 36(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  • Turnbull CM, Baxter AL, Johnson SK (2005) Water-binding capacity and viscosity of Australian sweet lupin kernel fibre under in vitro conditions simulating the human upper gastrointestinal tract. Int J Food Sci Nutr 56:87–94

    Article  CAS  PubMed  Google Scholar 

  • Venn BJ, Green TJ (2007) Glycemic index and glycemic load: measurement issues and their effect on diet–disease relationships. Eur J Clin Nutr 61:S122–S131

    Article  CAS  PubMed  Google Scholar 

  • Vreugdenhil D et al (2007) Potato biology and biotechnology: advances and perspectives. Elsevier, Amsterdam, p 857

    Google Scholar 

  • Wang M, Zheng Q, Shen Q et al (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiberley-Bradford AE, Busse JS, Bethke PC (2016) Temperature-dependent regulation of sugar metabolism in wild-type and low-invertase transgenic chipping potatoes during and after cooling for low-temperature storage. Postharvest Biol Technol 115:60–71

    Article  CAS  Google Scholar 

  • Woolnough JW, Monro JA, Brennan CS et al (2008) Simulating human carbohydrate digestion in vitro: a review of methods and the need for standardisation. Int J Food Sci Technol 43:2245–2256

    Article  CAS  Google Scholar 

  • Yadav BS (2011) Effect of frying, baking and storage conditions on resistant starch content of foods. Br Food J 113:710–719

    Article  Google Scholar 

  • Yang Y, Achaerandio I, Pujolà M (2016) Effect of the intensity of cooking methods on the nutritional and physical properties of potato tubers. Food Chem 197:1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Thompson LU, Jenkins DJA (1983) The effect of phytic acid on in vitro rate of starch digestibility and blood glucose response. Am J Chin Nutr 38:835–842

    Article  CAS  Google Scholar 

  • Zhang Z, Venn BJ, Monro J et al (2018) Subjective satiety following meals incorporating rice, pasta and potato. Nutrients 10(11):1739

    Article  PubMed Central  CAS  Google Scholar 

  • Zhao X, Andersson M, Andersson R (2018) Resistant starch and other dietary fiber components in tubers from a high-amylose potato. Food Chem 251:58–63

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinky Raigond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raigond, P., Atkinson, F.S., Lal, M.K., Thakur, N., Singh, B., Mishra, T. (2020). Potato Carbohydrates. In: Raigond, P., Singh, B., Dutt, S., Chakrabarti, S.K. (eds) Potato. Springer, Singapore. https://doi.org/10.1007/978-981-15-7662-1_2

Download citation

Publish with us

Policies and ethics