Definition of limit using supremums and infimums

Suppose $\left(x_{n}\right)$ is a sequence of real numbers, and x is a real number. Here is an alternate way to define the statement " x is a limit of $\left(x_{n}\right)$ ", using the notions of supremum and infimum of a set. It's logically equivalent to the definition given in the text.

For each natural number K, define the set S_{K} of real numbers by

$$
S_{K}=\left\{\left|x_{n}-x\right|: n \geq K\right\} .
$$

That is, S_{K} is the set containing all the numbers $\left|x_{K}-x\right|,\left|x_{K+1}-x\right|,\left|x_{K+2}-x\right|$, and so on. Notice that S_{K} is a set, not a sequence. The numbers in S_{K} are not assumed to be in any particular order, and it's perfectly possible, for example, that S_{K} has only one element in it. Also notice that

$$
S_{1} \supseteq S_{2} \supseteq S_{3} \supseteq \ldots,
$$

or in other words, S_{2} is a subset of S_{1}, S_{3} is a subset of S_{2}, S_{4} is a subset of S_{3}, and so on.
Now consider S_{1}, which is equal to the set $\left\{\left|x_{n}-x\right|: n \in \mathbf{N}\right\}$. There are two possibilities: either S_{1} is bounded above, or S_{1} is not bounded above. If S_{1} is not bounded above, we define the statement " x is a limit of $\left(x_{n}\right)$ " to be false. So now it only remains to define what " x is a limit of $\left(x_{n}\right)$ " means when S_{1} is bounded above.

Since

$$
S_{1} \supseteq S_{2} \supseteq S_{3} \supseteq \ldots,
$$

we know that S_{K} is a subset of S_{1} for all $K \in \mathbf{N}$. So when S_{1} is bounded above, then S_{K} is also bounded above for all $K \in \mathbf{N}$. Therefore we know from the Completeness Property of real numbers that each S_{K} has a supremum, and in this case we define the real number u_{K} by

$$
u_{K}=\sup S_{K} .
$$

Next, we define the set of real numbers U by

$$
U=\left\{u_{K}: K \in \mathbf{N}\right\}
$$

Notice that from the definition of u_{K} it is clear that $u_{K} \geq 0$ for all $K \in \mathbf{N}$, so 0 is a lower bound of U. We now define the statement " x is a limit of $\left(x_{n}\right)$ " to be true if and only if 0 is the greatest lower bound of U; that is, if and only if

$$
\inf U=0
$$

To summarize, then, the statement " x is a limit of $\left(x_{n}\right)$ " is true if and only if (1) S_{1} is bounded above, and (2) $\inf U=0$. It is a good exercise in logic to check that this is equivalent to the definition of " x is a limit of $\left(x_{n}\right)$ " given in the text.

The sets S_{K} and numbers u_{K} defined above are used often in analysis when dealing with a sequence whose limit (or lack of limits) is under investigation, although we won't have occasion to use them much this semester. The number w defined by

$$
\begin{aligned}
w & =\inf U \\
& =\inf \left\{u_{K}: K \in \mathbf{N}\right\} \\
& =\inf \left\{\sup S_{K}: K \in \mathbf{N}\right\} \\
& =\inf \left\{\sup \left\{\left|x_{n}-x\right|: n \geq K\right\}: K \in \mathbf{N}\right\}
\end{aligned}
$$

is called the "limit superior" of the sequence $\left(\left|x_{n}-x\right|\right)$, or "limsup $\left|x_{n}-x\right|$ " for short. One can see easily that w exists whenever $\left(x_{n}\right)$ is bounded. Therefore we can summarize the above discussion in the following statement:

$$
\lim \left(x_{n}\right)=x \text { if and only if }\left(x_{n}\right) \text { is bounded and } \lim \sup \left|x_{n}-x\right|=0
$$

or, more explicitly,
$\lim \left(x_{n}\right)=x$ if and only if $\left(x_{n}\right)$ is bounded and $\inf \left\{\sup \left\{\left|x_{n}-x\right|: n \geq K\right\}: K \in \mathbf{N}\right\}=0$.
Thus we have achieved the goal of defining limits of sequences in terms of supremums and infimums of sets.

