Math 160A - Winter 2002 Instructor: Sam Buss - UCSD

Theorem Sequence*

Definition. Σ_1 and Σ_2 are *tautologically equivalent* if for all ϕ , $\Sigma_1 \vDash \phi$ iff $\Sigma_2 \vDash \phi$. $\Sigma_1 \vDash \Sigma_2$ if, for $\phi \in \Sigma_2$, $\Sigma_1 \vDash \Sigma_2$.

Theorem. The following are equivalent.

- (1) Σ_1 and Σ_2 are tautologically equivalent.
- (2) $\Sigma_1 \vDash \Sigma_2$ and $\Sigma_2 \vDash \Sigma_1$.
- (3) For all truth assignments v, v satisfies Σ_1 iff v satisfies Σ_2 .

Theorem D. If Σ is a finite set of wffs, then Σ is tautologically equivalent to a singleton set.

Definition. Let Σ and Γ be sets of wffs. Then, Σ and Γ are *complementary* if for all truth assignments v, v satisfies Σ iff v does not satisfy Γ .

Theorem E. Suppose Σ and Γ are complementary set of wffs and that Σ is a finite set. Then Γ is tautologically equivalent to a singleton set.

Theorem F. Suppose Σ and Γ are complementary set of wffs. Then Σ and Γ are each tautologically equivalent to a singleton set.

Lemma G. Suppose Σ and Γ are complementary set of wffs. Then $\Sigma \cup \Gamma$ is unsatisfiable.

Theorem H. There are wffs ϕ and ψ such that $\exists x \phi \land \exists x \psi \nvDash \exists x (\phi \land \psi)$.

Theorem I. $\vDash \exists x (\exists y P(y) \rightarrow P(x)).$

Theorem J. $\vDash \forall x(P(x) \rightarrow \exists y P(y)).$

^{*}This is not a traditional Moore-method theorem sequence, in that it does not make by itself a coherent course. Rather, it is the actual sequence of theorems assigned to students in conjunction with a course a based on Enderton's textbook, *A Mathematical Introduction to Logic*.

Theorem K. $\nvDash \forall x(P(x) \leftrightarrow \exists y P(y)).$

Theorem L. $\forall x(P(x) \lor Q(x)) \nvDash \forall x P(x) \lor \forall x Q(x).$

Theorem M. Prove the following. It is enough to prove the existence of the deductions, you do not need to explicitly write out the complete deduction.

- **a.** $\vdash \forall x(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \forall x\beta)$, where x is not free in α .
- **b.** $\vdash x = y \rightarrow \forall z (Pxz \leftrightarrow Pyz).$
- **c.** $\vdash \forall x(\alpha \rightarrow \beta) \leftrightarrow (\exists x\alpha \rightarrow \beta)$, where x is not free in β .

Theorem N. Give examples of formulas α and β such that

$$\nvDash \forall x(\alpha \to \beta) \leftrightarrow (\alpha \to \forall x\beta).$$

Lemma O. Prove that if Γ is consistent, then at one of $\Gamma \cup \{\varphi\}$ or $\Gamma \cup \{\neg\varphi\}$ is consistent.

Theorem P. Prove the consistency of the set Δ constructed in class for the third step in the proof of the completeness theorem.