Math 160A - Winter 2002

Instructor: Sam Buss - UCSD

Theorem Sequence*

Definition. Σ_{1} and Σ_{2} are tautologically equivalent if for all $\phi, \Sigma_{1} \vDash \phi$ iff $\Sigma_{2} \vDash \phi . \Sigma_{1} \vDash \Sigma_{2}$ if, for $\phi \in \Sigma_{2}, \Sigma_{1} \vDash \Sigma_{2}$.

Theorem. The following are equivalent.
(1) Σ_{1} and Σ_{2} are tautologically equivalent.
(2) $\Sigma_{1} \vDash \Sigma_{2}$ and $\Sigma_{2} \vDash \Sigma_{1}$.
(3) For all truth assignments v, v satisfies Σ_{1} iff v satisfies Σ_{2}.

Theorem D. If Σ is a finite set of wffs, then Σ is tautologically equivalent to a singleton set.

Definition. Let Σ and Γ be sets of wffs. Then, Σ and Γ are complementary if for all truth assignments v, v satisfies Σ iff v does not satisfy Γ.

Theorem E. Suppose Σ and Γ are complementary set of wffs and that Σ is a finite set. Then Γ is tautologically equivalent to a singleton set.

Theorem F. Suppose Σ and Γ are complementary set of wffs. Then Σ and Γ are each tautologically equivalent to a singleton set.

Lemma G. Suppose Σ and Γ are complementary set of wffs. Then $\Sigma \cup \Gamma$ is unsatisfiable.

Theorem H. There are wffs ϕ and ψ such that $\exists x \phi \wedge \exists x \psi \not \models \exists x(\phi \wedge \psi)$.
Theorem I. $\vDash \exists x(\exists y P(y) \rightarrow P(x))$.
Theorem J. $\vDash \forall x(P(x) \rightarrow \exists y P(y))$.

[^0]Theorem K. $\not \models \forall x(P(x) \leftrightarrow \exists y P(y))$.
Theorem L. $\forall x(P(x) \vee Q(x)) \not \models \forall x P(x) \vee \forall x Q(x)$.
Theorem M. Prove the following. It is enough to prove the existence of the deductions, you do not need to explicitly write out the complete deduction.
a. $\vdash \forall x(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \forall x \beta)$, where x is not free in α.
b. $\vdash x=y \rightarrow \forall z(P x z \leftrightarrow P y z)$.
c. $\vdash \forall x(\alpha \rightarrow \beta) \leftrightarrow(\exists x \alpha \rightarrow \beta)$, where x is not free in β.

Theorem N. Give examples of formulas α and β such that

$$
\not \models \forall x(\alpha \rightarrow \beta) \leftrightarrow(\alpha \rightarrow \forall x \beta) .
$$

Lemma O. Prove that if Γ is consistent, then at one of $\Gamma \cup\{\varphi\}$ or $\Gamma \cup\{\neg \varphi\}$ is consistent.

Theorem P. Prove the consistency of the set Δ constructed in class for the third step in the proof of the completeness theorem.

[^0]: *This is not a traditional Moore-method theorem sequence, in that it does not make by itself a coherent course. Rather, it is the actual sequence of theorems assigned to students in conjunction with a course a based on Enderton's textbook, A Mathematical Introduction to Logic.

