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Abstract: A three-year long experiment was conducted on open-field tomato with different levels of
water shortage stress. Three different water supply levels were set in 2017 and four levels for 2018 and
2019. Biomass and yield data were collected, along with leaf-temperature-based stress measurements
on plants. These were used for calibration and validation of the AquaCrop model. The validation
gave various results of biomass and yield simulation during the growing season. The largest errors
in the prediction occurred in the middle of the growing seasons, but the simulation became more
accurate at harvest in general. The prediction of final biomass and yields were good according to the
model evaluation indicators. The relative root mean square error (nRMSE) was 12.1 and 13.6% for
biomass and yield prediction, respectively. The modeling efficiency (EF) was 0.96 (biomass) and 0.99
(yield), and Willmott’s index of agreement (d) was 0.99 for both predicted parameters at harvest. The
lowest nRMSE (4.17) was found in the simulation of final yields of 2018 (the calibration year). The
best accuracy of the validation year was reached under mild stress treatment. No high correlation was
found between the simulated and measured stress indicators. However, increasing and decreasing
trends could be followed especially in the severely stressed treatments.

Keywords: stomatal closure; CWSI; thermal camera; crop growth; simulation; dry matter

1. Introduction

Drought periods and heat waves affect agricultural lands year by year through Europe,
especially the Mediterranean, and even the Central European region under a continental cli-
mate. Inadequate soil moisture conditions lead to disturbance in the physiological processes
of plants and a reduction in yields [1,2]. Mitigating or avoiding the negative effects on crops
can be provided by irrigation, mostly. Due to technological and technical novelties, the
development of irrigation systems has been continuous during the past several decades [3].
Major improvements had been implemented especially on micro- and sprinkler irrigation
systems. These help farmers to save irrigation water and avoid irrigation-related environ-
mental problems but only if farmers have the knowledge to exploit the opportunities of
technology. This knowledge should be provided via scientific research.

The use of crop growth modeling based on water balance can be a good option to
plan the irrigation of large areas. However, for optimal use, these models need to be
calibrated and validated for different crops and climatic conditions [4–9]. AquaCrop
is a crop-water productivity model, which includes soil, atmosphere, and plants to the
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simulation process. Evapotranspiration is divided into transpiration and evaporation
in the model; thus, only transpiration is considered to estimate biomass production by
means of water productivity as a conservative parameter. Yield is calculated from biomass
and harvest index as a multiplier. Water stress can affect crop parameters via different
stress multipliers, regulating the magnitude of canopy growth, stomatal closure, canopy
senescence, and harvest index [10]. In the model, these effects are described by the water
stress coefficients (Ks), which are connected to the upper and lower thresholds of the soil
water content, expressed as fractions of total available water (p) or referenced to permanent
wilting point. The Ks curve determines how the stress levels emerge from 1, when there is
no stress (above the upper threshold), to 0, when the stress is at its maximum (reaching
the lower threshold) [11]. These stress indicators are not direct indices of the plant water
status, but they refer to the relative root zone water depletion [12].

Tomato production covers a significant part of horticultural production since it has
a worldwide importance as a vegetable crop with 180 million tonnes produced on over
five million hectares [13]. Processing tomatoes were grown in open fields with 38 million
tonnes of production in 2020 [14]. Different levels of water stress affect tomato yields,
soluble solids content, phenological traits, bioactive components, and water use effi-
ciency [15–20]. Balancing optimal yields and soluble solids content in the fruit, along
with favourable composition and concentration of bioactive components, is expected by
the processing industry. Deficit irrigation technologies may help fulfil these expectations.
Crop growth modelling of tomato with AquaCrop in the Mediterranean region has been
assessed by several authors [21–23]. It is also used for the optimisation of daily irrigations
to reach the best yields for a given water quota [23]. The effect of climate change on tomato
production in Tunisia was also evaluated, and the effects of some possible adaptation strate-
gies were modelled with AquaCrop as well [24]. Despite that, a significant production area
of open-field processing tomatoes are located in the continental climatic region (Ukraine,
Russia, Argentina, Chile etc.), the modelling performance of AquaCrop has not yet been
optimised under a continental climate. In any case, the comparison of a simulated water
stress related indicator to a measurement-based stress indicator has not yet been conducted.

The aim of this research is to evaluate the tomato biomass and yield simulation
performance of the AquaCrop model after calibration under the continental climate of the
Carpathian basin. Water stress monitoring, using crop water stress index (CWSI), was
compared to the model’s water stress-induced stomatal closure (StSto) to determine any
correlation between the two variables. This is an approach to evaluate the water stress
implementation of AquaCrop. An open-field experiment on processing tomatoes with
different water shortage stress levels was conducted for three years for calibration and
validation purposes.

2. Materials and Methods
2.1. Characteristics of the Experimental Site

The field experiments were conducted at Szarvas, Hungary (46◦53′14.8” N, 20◦31′56.5” E)
between 2017 and 2019 for three growing seasons. The site is located in the warm and dry
part of the country with 500 mm average annual precipitation, which shows a decreasing
tendency, and 10–11 ◦C annual mean temperature, showing an increasing tendency, accord-
ing to the data of the last 100 years [25]. Measurements indicated good irrigation water
quality in the irrigation seasons, with an average electric conductivity of 369 µS cm−1 and
7.6 pH. A WTW Multi 340i (Xylem Analytics Germany Sales GmbH & Co, Rye Brook, NY,
USA, 2019) device was used for the water quality measurements. Soil texture was analysed
at five different depths, and the water management characteristics were estimated by the
Soil Water Characteristics application (Table 1) (USDA Natural Resources Conservation Ser-
vice, Washington, DC, USA). These data were used to build the soil profile characteristics
in AquaCrop.
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Table 1. Soil characteristics of the experimental site.

Soil Type Thickness (m) Total Available Water
(mm m−1)

Permanent Wilting
Point (%) Field Capacity (%) Saturation (%)

clay loam 0.35 138 22.9 36.7 48
clay 0.2 130 27.6 40.6 49.5
clay 0.3 133 24.8 38.1 47.4
clay 0.35 133 25.3 38.6 47.3
clay 0.3 133 24.6 37.9 46.4

2.2. Field Management

The tomato hybrid (UG812J) was grown in every year (United Genetics Seeds Co.,
Hollister, CA, USA). This is a mid-early type cultivar with good potential soluble solids
content (SSC) (5.4–5.6◦) and an average fruit weight of 65–70 g. The distance between
single rows was 140 cm, and the distance between plants was 20 cm, giving a plant density
of 3.57 plant m−2. Pesticides and fungicides were applied by spraying according to the
recommendation of the local expert advice. Fertiliser was applied according to the results
of soil analysis in the different years and uniformly to all treatments (Table 2). The date
of transplanting and the length of the growing season (in days and GDD, respectively)
were slightly different during the three years of the experiment (Tables 2 and 3). The
meteorological characteristics of the growing seasons were different in the three years.
The amount of natural precipitation was the highest in 2019, which paired the highest
mean relative humidity as well. The mean temperature was the lowest in 2017, but the
reference evapotranspiration and the mean global radiation were the highest. The second
experimental year was characterised by the least natural precipitation (Table 3).

Table 2. Transplanting and harvest dates, and fertilisation by the three different years.

Year Date of Planting Date of Harvest * Growing Days N (kg ha−1) P (kg ha−1) K (kg ha−1)

2017 9 May 17 August 100 138 117 183
2018 8 May 14 August 98 137 69 174
2019 17 May 27 August 102 138 117 183

* one-time harvest at the end of the growing season.

Table 3. Climate-related parameters by the three different years in the growing season. ET0 refers to the reference
evapotranspiration (computed by the FAO Penman–Monteith method).

Year ∑ GDD Temperature *
(◦C)

Relative Humidity
* (%)

Precipitation
(mm) ET0 (mm) Global Radiation *

(MJ m−2 day−1)

2017 1184 21.8 64.4 146 472 22.5
2018 1217 22.3 69 127 430 20.5
2019 1282 22.5 70.8 257 443 20.8

* Mean for the whole growing season.

2.3. Irrigation System, Methods, and Treatments

The irrigation system consisted of two Valley 8120 spans and an 800c type corner with
Nelson R3000 rotator sprinklers that provide minimal evaporative loss (Nelson irrigation
corporation of Australia PTY. Ltd., Seventeen Mile Rocks, Australia, 2020). The centre pivot
was equipped with a variable rate irrigation (VRI) system. VRI gives the opportunity to
operate the sprinklers separately from each other and to modify the speed of the driving
system. This allowed the set of different water supply levels. The system’s pressure
demand at the centre was 180 kPa, which was provided at every irrigation event. GPS
guidance was used for the steering of the centre pivot. The sprinklers were installed around
2.4 m in height. The water distribution radius of the sprinklers was 6–7 m. The distance
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between sprinklers was 5.73 m on the span. The prescription map was designed with
Valley VRI 8.55 software (Valmont Industries, Inc., Valley, NE, USA, 2020).

The irrigation scheduling was executed using the soil water balance methodology. The
water requirement (crop evapotranspiration (ETc)) was determined using the AquaCrop
model (according to Food and Agriculture Organization of the United Nations (FAO)
Penman–Monteith method) [26,27]. The ETc consists of the crop transpiration and soil
evaporation part (1).

ETc (mm day−1) = (KcTr × ETo) + (Ke× ETo) (1)

where KcTr is the crop transpiration coefficient, ETo is the reference evapotranspiration, and
Ke is the soil water evaporation coefficient. KcTr includes a correction for actual canopy
cover and water-related stresses, which are key factors of the crop transpiration calculation
in AquaCrop. The correction for water stresses is 1 if no stress occurs and 0 if the soil water
content reaches the lower threshold. Ke is proportional to uncovered soil since Ke × ETo
refers to the evaporation part of ETc [28,29].

Generally, irrigation water was applied two times per week, depending on the volume
of precipitation. The irrigation intervals were 3 or 4 days apart. The irrigation water was pre-
calculated according to the weather forecast (provided by the Hungarian Meteorological
Service) and supplied ahead for 3 or 4 days. After receiving the actual meteorological
data, ETc was computed. The next irrigation water amount was corrected by the ETc and
precipitation of the last term as a soil water balance method, giving the water demand
(WD) of tomato crop between two irrigation events. Irrigation was conducted at night-time
to minimise evaporation loss of irrigation.

In 2017, three different water balance levels were set. The plot size was 33 m × 50 m
for each plot. The method explained above gave the irrigation water demand for the I100,
which was irrigated with 100% of WD. In 2017, two more water supply levels were the
50% of I100 (I50) and control (K) with no regular irrigation. Since the irrigation system
was newly installed, the water distribution and transition between zones were evaluated.
The results were published in a previous study [30]. The results showed that another
treatment could be added to the experiment, so the I75 (75% of I100) was set in 2018 and
2019, modifying the size of treatment plots to 25 m × 50 m. K plots were irrigated only
at fertilisation events to wash the granulates off the leaves, thus avoid scorching (26, 28.8,
and 22.6 mm irrigation water above precipitation was applied in 2017, 2018, and 2019,
respectively). The whole field was irrigated uniformly right after transplanting, which was
15 mm in 2017 and 2018 and 5 mm in 2019. In summary, water shortage stress was rising
from I100 towards K, where I100 theoretically suffered no stress and K suffered severe
water stress. The date of last irrigation was the 29th of July, 20th of July, and 25th of July in
2017, 2018, and 2019, respectively. The net irrigation water applied in the different years
and treatments is presented in Table 4. Irrigation cut-off is a common method to improve
SSC in processing tomato production finishing water supply 2–3 weeks before harvest
for the period of maturation [31]. Due to this, even the I100 will not meet the maximum
potential ET of the whole season because it was provided only until the beginning of the
maturation period. The same method was used in a previous study [15].

Table 4. Net irrigation water (mm) provided in the different water shortage stress treatments and the
natural precipitation (mm) in the three years.

Year K I50 I75 I100 Precipitation

2017 40 173 - 307 146
2018 44 131 170 214 127
2019 28 81 108 135 257
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2.4. Sampling of Biomass, Yield

Mid-growing season biomass was sampled five times in 2018 and 2019. After fresh
weight measurement, samples were put into an oven at 105 ◦C for 24 h in order to get the
dry weights, which were comparable with modelled yields. Later in the season, when
samples contained a considerable amount of fruit yield, the time period for drying was
increased to 48 h. The fruit yield was separated from vegetative parts after fruit set. Four
randomly selected plants per plot were sampled for biomass mid-season; thus, each plant
represented one replicate. This implied 16 plants per sampling date in total. Sampling
was different at harvest, when one randomly selected sample per treatment consisted of
10 plants per replicate, implying 40 plants per treatment in total. Just as in mid-season, the
samples’ total biomass and fruit yield were measured separately.

2.5. Stress Measurements

The water shortage stress experiment was continued in the whole growing season,
but the water shortage stress monitoring was conducted in July of every year. The fruit
development stage and the end of flowering, along with the starting of ripening, occurred
in July, which represented 54–85th, 53–84th, and 42–73rd days of the growing season in
2017, 2018, and 2019, respectively. The leaf surface temperature was measured with a
FLIR One (FLIR® Systems AB, Danderyd, Sweden) for an Android thermal camera, whose
sensor is sensitive in the 8–14 µm range and has a thermal resolution of 160 × 120 (12 µm
pixel size). Four random repetitions per plot (leaves from 4 different plants through the
evaluation period) were sampled. Images were taken with the handheld device positioned
at a 40 cm distance from plants from an angle to direct the camera vertically to leaves and
eliminate the effect of shadows. The method was based on the idea of Jones et al. [31,32].
Measurements were conducted between 1 and 2 p.m. (local time UTC +1:00). The emissivity
was set to 0.95. The thermal images were analysed in FLIR Tools software (FLIR® Systems
AB, Danderyd, Sweden), which gave us the opportunity to use the average temperature of
each examined leaf surface, not just the temperature value of only one pixel. Temperature
data were registered from regular leaves and from leaves used as a dry and wet reference
surface for the computation of the CWSI. For the wet reference surface, leaves were sprayed
with water, and the evaporation cooled down the leaves, as they would have unlimited
water supply (Twet). For the dry reference, leaves were covered with petroleum jelly to
block transpiration, simulating the leaf temperature of non-transpiring leaves without a self-
cooling effect (Tdry). Petroleum jelly was applied before the beginning of measurements,
and water was sprayed two minutes before the measurement. CWSI was computed as
follows (2) [32]:

CWSI = (Tleaf − Twet)/(Tdry − Twet) (2)

Each thermal image included the wet and dry reference leaves beside the leaf, provid-
ing the actual leaf temperature (Tleaf). This method allowed the elimination of all types
of additional meteorological measurements to compute CWSI because the wet and dry
references reflect the conditions of the moment of the measurement [32,33]. Data were
collected for 27, 24, and 22 days in 2017, 2018, and 2019, respectively.

2.6. Modeling

The calibration process was based on the data of 2018 from every treatment (K, I50,
I75, and I100). The important phenological parameters were calculated in GDD using
the temperature measurements of the nearby meteorological station. Along with the non-
stressed I100, the water-stressed treatments were used to calibrate the water stress-related
canopy expansion and stomatal closure (p) through trial and error until the difference
between the modelled and measured biomass and yields were the lowest. The parameters
of the default tomato crop file were used as base values. The comparison of the calibrated
and original parameters is presented in Table 5. The simulation period was not linked
with the growing cycle. The simulation started on 1 January in every year, thus providing
enough time for the soil to reach the initial conditions close to the actual initial conditions.
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Table 5. The original (default TomatoGDD.CRO) and the calibrated values for the different crop parameters.

Parameters Original Base Values Calibrated Value

Plant density (plants ha−1) 33,333 35,714
Initial canopy cover (%) 0.67 0.71

Maximum canopy cover (%) 75 80
Canopy Growth Coefficient (% day−1) 7.1 8.5

Canopy Decline Coefficient (% GDD−1) 0.4 0.447
Base and upper limit temperature for GDD (◦C) 7 and 28 10 and 28

From transplanting to recovered (GDD) 43 45
- maximum canopy and rooting depth (GDD) 1009 543

- senescence (GDD) 1553 1017
- maturity (GDD) 1933 1227
- flowering (GDD) 525 319

Determinancy linked with flowering no yes
Duration of flowering (GDD) 750 425

Maximum effective rooting depth (m) 1 0.7
Reference harvest index (HI) 63 60

Soil water depletion fraction (p) related to water stress coefficient
for canopy expansion

0.15 (upper) and 0.55 (lower)
shape factor: 3.0

0.1 (upper) and 0.7 (lower)
linear shape factor

Soil water depletion fraction (p) related to water stress coefficient
for stomatal closure

0.5
shape factor: 3.0

0.5
linear shape factor

Positive effect on HI as a result of water stress affecting
canopy expansion none small

2.7. Statistical Analysis

The model accuracy evaluation was based on four different indicators, which are
widely used and also recommended for model evaluation according to the work of
Yang et al. [34]. These indicators were the following [35,36]:

RMSE (root mean square error)→ → RMSE =
√

∑(yi − xi)
2/n (3)

nRMSE (relative RMSE)→ → → nRMSE = RMSE/x× 100 (4)

EF (modelling efficiency)→ → → EF = 1−∑(yi − xi)
2/ ∑(xi − x)2 (5)

d (index of agreement)→ → d = 1−∑(yi − xi)
2/ ∑(|yi − x|+ |xi − y|)2 (6)

where x is the observed value, y is the simulated value, and i = 1, 2, . . . , n.

3. Results
3.1. Simulation of Biomass and Yield in the Growing Season

Data from 2018 was used for the calibration of the crop file. The simulated biomass
growth line of I100 showed a very good fit with the measured growth line (nRMSE = 8.66,
EF = 0.99, d = 0.997) (Figure 1D). However, the simulation of biomass in the water-stressed
treatments was less accurate in every case. The highest nRMSE occurred in the I50 treatment
(40.54). The most accurate was the K among the water-stressed treatments (nRMSE = 26.17)
(Figure 1A). Rinaldi et al. [22] presented a similar range of relative RMSE values for total dry
matter (28.9–60.5%). The final biomass at harvest was very accurately estimated in every
treatment (nRMSE = 6.09). The reason for the mid-season inaccuracy was that the actual
biomass produced more intensive growth than estimated by AquaCrop between 21 June
and 24 July, according to the samples (44–77 days after transplanting (DAT)). Nevertheless,
the simulated value fell into the standard deviation of measured values at the sampling
date of 24 July. Higher biomass was measured in July in all the water-stressed treatments
than the final biomass at harvest, which was not as expected (Figure 1B,C). This fact implies
that the sampled plants were above average by these two sampling dates. Looking at the
whole growing season, the nRMSE was poor in the water stressed treatments (26.2–40.5)
and very good in the case of the I100 treatment (8.7).
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The yield simulation results were very similar to biomass in 2018 (Figure 2). The
nRMSE showed weaker results in the case of yield, but EF and d results indicated very
similar modelling accuracy to the biomass evaluation. Rinaldi et al. [22] also found weaker
relative RMSE results for dry yields compared to total dry matter. The modelled fresh
yield of tomato was comparable to the observed one with an error of 9% in the calibration
process [37]. We found lower errors in final yields, from 1.2% to 5.5%, depending on the
water supply. All the simulated results fell into the standard deviation range except for the
July 11 date in the stressed treatments. Accuracy of yield at harvest date was even better
than biomass estimation (nRMSE = 4.17). Still, the whole season accuracy was good only
in the case of I100 (13.98) and poor (>30) in the water-stressed treatments, according to
nRMSE. EF values were above the minimum (0.75), except for I50.

The simulated biomass data for 2019 gave the best result for the I75 treatment in which
the nRMSE was 18.79 (Figure 3C). The inaccuracy of the data was the highest in the most
stressed K treatment (nRMSE = 48.97) (Figure 3A). This low modelling performance was
mostly affected by the inaccurate results related to the last sampling date before harvest
on 5 August (80 DAT). It must be noted that higher biomass was found at this sampling
date then at harvest. Better accuracy was reached in the I50 and I75 treatments than in 2018
(Figure 3B,C). The underestimation in the simulated values was constant in the stressed
treatments and also in the I100 treatment, excluding the sampling event on 5 August. This
suggests that the water productivity was higher in 2019. If underestimated values could
be found only in stressed treatments, then the explanation would be the over-calibrated
stress-related parameters (p). Katerji et al. [21] reported the overestimation of the model
in biomass prediction under water stress, specifically after the middle of the growing
season. This is contradictory of our findings that were pointing out the underestimation
of AquaCrop. The modelled values at harvest were fairly accurate (nRMSE = 15.22), but
significantly higher, than in the calibration year. Whole season accuracy did not reach the
minimum value of EF in the case of K (EF = 0.73). A break in the growth tendency of I100
observed biomass was found at the August 5 sampling (Figure 3D).
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Excessive inaccuracy occurred during the sampling dates of August in the K and
I100 treatments (Figure 4A,D), resulting in extremely high nRMSE values (49 and 36.1,
respectively). EF was sensitive only in the I100 treatment, where the index did not reach
the threshold of acceptable accuracy (<0.75). The index of agreement (d) was less sensitive
to several of these sampling dates with an inaccurate prediction. However, by the end
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of the growing season, the results were acceptable and underestimated in every case
(nRMSE = 17.8). Since both biomass and yield were very low in I100 on 5 August, this
suggests unsatisfactory plant development and the effect of overirrigation, even if there was
no evidence found for this when looking at the water balance of the period 11 July–5 August.
The performance of the simulation in the I50 and I75 (Figure 4B,C) was more accurate,
where EF and d showed very good values (EF = 0.93–0.99 and d = ~0.99–1, respectively),
but nRMSE suggested only marginal (23.24) and acceptable modelling (14.75), respectively.
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Since there was no mid-season sampling in 2017, only the harvest dates could be
evaluated. The results for this year are presented in Table 6. AquaCrop overestimated
both biomass and yield in I100 but underestimated in the water-stressed treatments. In
any case, the simulated values fell into the range of standard deviation in every case. The
model evaluation values indicate an accurate simulation. Katerji et al. [21] found a weak
simulation of the final yield in the severely stressed treatment. Our results justify this
in 2017, where the K treatment also gave the biggest difference between the simulated and
observed yield.

The most important value from a practical perspective is the harvested yield. Thus,
the values at harvest are presented and evaluated for the three years (Figure 5). The nRMSE
was 12.11 and 13.58 (indicating good modelling performance), EF was 0.84 and 0.81, and
the d was 0.95 and 0.94 for biomass and yield, respectively. These results indicate a good
simulation for biomass and yield at harvest. There were only two cases when the points
were relatively far from the “perfect model line”, and even the error bars did not reach it (K
and I100 in 2019). Except for these two cases, the prediction of final yield was acceptable.
Thus, our results are not in agreement with the previously cited study in which only the
severely stressed treatment performed a poor simulation, in the case of tomato yield [21].
In 2019, even the K treatment was not severely stressed because of the higher amount of
precipitation compared to 2017 and 2018 (Table 3).
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Table 6. Simulated and measured dry biomass and yield values (t ha−1) for 2017 (validation) with
the modelling evaluation parameters.

Treatment Measured SD * AquaCrop Difference

Biomass
K 4.54 0.52 4.12 0.43

I50 7.41 1.34 7.35 0.06
I100 10.11 1.50 10.82 0.71

Yield
K 2.75 0.34 2.49 0.26

I50 4.55 0.84 4.47 0.08
I100 6.44 0.73 6.49 0.05

RMSE nRMSE EF d
Biomass 0.48 6.49 0.96 0.99

Yield 0.16 3.52 0.99 0.997
* SD is the standard deviation of the observed values.
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3.2. Simulation of Stomatal Closure Induced by Soil Water Stress (StSto)

The leaf surface temperature measurements were conducted only in July of the three
years; therefore, the comparison can be done only for July. A detailed evaluation of the
CWSI results is published in a previous study [15]. Even if the two indicators are not the
same, both are related to water stress and range from 0 to 1 (StSto expressed in percentage).
The Ststo is not a direct indicator of the plant water status but only refers to the relative root
zone water depletion, as previously mentioned in the introduction [12].

However, due to the similarities of the simulated and measured indicators, the com-
parison can be conducted. However, as presented in Table 7, the range of the two indicators
are different. In 2019, severe stress did not occur compared to 2018. The higher values
over 50% were concentrated in the second half of July in 2019 in the K treatment, and
some lower values appeared in the I50 treatment, which was not significant. An interesting
observation is that the maximum CWSI reached a lower value in 2019 compared to the
two other years, but the highest value of the simulated indicator was reached in this year.
The measured stress values were generally lower in 2019 due to the meteorology in July,
which was characterised by mild temperatures and evenly distributed rainfalls. The stress
affecting the plants in 2017 was concentrated only in the second half of July. This is justified
by the CWSI as well; however, there were 4 days with higher CWSI values (>0.55) when
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the simulated indicator remained 0. In the second half of the month, the trends of the two
indicators were similar (data not shown). There were no simulated stress values higher
than 0 in the I100 and only very mild stress in the I75. As a result, the comparison is not
relevant in these treatments in any year, as the StSto was always 0.

Table 7. Minimum and maximum values of the measured and simulated water stress-related indicators.

Water Stress-Related
Indicator 2017 2018 2019

CWSI (measured)
min 0.12 0.23 0.20
max 0.82 0.82 0.68

Ststo (modelled)
min 0 0 0
max 48 66 74

In the I100 treatment of 2018, the highest CWSI value was 0.55. We can assume
that, theoretically, stress did not develop in this treatment; thus, the values of CWSI that
were indicating stress had to be over 0.55 in this case. Stress was more explicit in 2018
because of the higher temperature (mean and accumulated) compared to 2019. Thus,
higher stress appeared in the K and I50 treatments. The tendencies were similar in the
measured CWSI and simulated Ststo values in the K treatment of 2018, where the similarity
was the best between the observed and simulated indicators (Figure 6). During the first
week (55–61 DAT), both values were increasing. This can be explained by the increasing
daily maximum temperature (until 5 July) and the lack of significant rainfall (until 8 July).
By 8 July (62 DAT), the Ststo dropped to 0; however, CWSI reached the lowest values
only two days later. The simulated value started to increase from 10 July (64 DAT) and
reached the maximum value on 17 July (71 DAT), when the CWSI peaked as well. This
is in agreement with the temperature data because the maximum temperature exceeded
30 ◦C for a four-day period before this day, and significant rainfall was absent. After
this date, CWSI values were decreasing till 21 July (75 DAT). This is explained by the lower
temperature on 18 July and rainfall on 19 July and 20. The simulated values followed
this pattern, but in contrast with CWSI, a high value was reached on 21 July. No relevant
correlation was found between CWSI and Ststo in any treatment or experimental year. The
highest correlation was found in K of 2017 (0.55), but it is important to note that half of the
simulated values were zero in this case.
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Figure 6. Comparison of water stress-related, simulated Ststo (percent water stress inducing stomatal closure–AquaCrop)
(orange), and measured CWSI values (blue) in the treatment with severe stress. Error bars represent the standard error
of CWSI values. Grey columns refer to the irrigation and rainfall events (mm) and green dotted line refers to the daily
maximum temperature.
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4. Discussion

Deficit irrigation is commonly used as an irrigation water-saving strategy in the
practice of processing tomato production [30]. Water use efficiency increases due to mild
and moderate water stress [38], and this method also contributes to the reduction of
irrigation costs [39]. Several models have been developed to help irrigation scheduling and
to predict the potential biomass and fruit yield of open-field tomatoes. The Tomgro_field
model was used for the evaluation of possible climatic scenarios on tomato yields. In
the calibration process, the authors achieved the worst simulation results for plant dry
weight in the moderately stressed and rainfed treatments, according to relative RMSE [40].
Our finding on dry biomass prediction was different in 2018 and 2019 because a better
modelling performance was achieved in K and I100 treatments in 2018 and in the I50
and I75 treatments in 2019. Likewise, the same level of EF values was obtained in these
cases, as found by Giuliani et al. [40]. However, in evaluating the yield results, the fresh
weight of yields was evaluated in that study. Good modelling results of dry matter
prediction were achieved by Giménez et al. [41] with the VegSyst model, although the
goal of the study was to assess the model’s performance regarding different nitrogen
supply. The EF was above 0.9, except one, which was similar to our findings in the
well-irrigated treatments. Another model performance evaluation of STICS model was
conducted focusing on tomato nitrogen supply. The EF and relative RMSE values indicated
the lowest modelling performance for dry matter production when no additional nitrogen
was supplied. The inaccuracy of the model was higher in the case of fruit dry matter in
general [42]. A very strong correlation (R2 = 0.99) was found between the observed and
predicted yields of tomato with the SALTMED, according to the results of Alkhasha and
Al-Omran [43]. The experiment contained treatments with freshwater and saline water
irrigation and different types of soil amendments as well. Our prediction for harvested
yields was lower (R2 = 0.88). As found by a study, AquaCrop modelling combined with
Sentinel-2 imagery can be used for improving the irrigation water requirements of tomatoes
in the early and canopy developing stages [44].

The performance of the AquaCrop model was assessed on other horticultural crops as
well. Deviations between simulated and measured yield and biomass varied on a relatively
wide scale in the different water supply and plastic film mulching treatments in the case of
sweet pepper. This was the consequence of different cultivars, climate, and meteorological
factors, according to the authors [45]. The model was calibrated for some leafy vegetables
(such as amaranth, spider flower, Swiss chard), described by high R2 values. The validation
gave similarly high R2 for well-watered crops but performed less accurately under severe
water stress conditions [46]. Minimal differences (1–2%) appeared with cabbage yield in
the cross-validation process in a study [47]. Better simulation results were found for yield
(nRMSE = 8.8%) than for biomass (nRMSE = 9.8%) in the case of the cowpea, which was
in contradiction with our results because a lower nRMSE was found for biomass when
evaluating the final yields [5]. Overestimation of bitter-gourd biomass and yield was found
in a study conducted for two growing seasons [48]. Both over- and underestimation was
revealed according to our findings.

5. Conclusions

AquaCrop performed quite well for the simulation of dry biomass and fruit yields
at harvest time in every experimental year. However, for the evaluation of crop growth
modelling, it is important to follow the simulation during the whole season. This revealed
uncertainty with the modelling in several cases of both biomass and yield in the mid-
season. A general underestimation of the model was found in the validation year of 2019,
when samples were collected during the whole season. Only the harvested yields were
evaluated in 2017, where an overestimation was found under optimal water supply and an
underestimation under the stressed treatments by the validation. The simulation showed
very good modelling indicator numbers for the harvested biomass and fruit yield in the
non-stressed treatment in the calibration year (2018), but poor performance was found in
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the water-stressed treatments because of some mid-season inaccuracies. It is important
to note that in the case of these inaccurate values, the measured biomass and yield in
mid-season was higher than the measured value at harvest. This suggests that the sampled
plants were above average. It should be noted that the model would perform differently
by the evaluation of a hybrid with a longer growing season since a mid-early type hybrid
was used for the calibration in this study.

No significant correlation was found between measured (CWSI) and modelled (StSto)
water stress-related parameters in processing tomatoes, but the comparison was conducted
only for one month of the growing season. However, when comparing the increasing and
decreasing trends of stress, some similarities were found, especially in the treatment with
severe water stress, where the most stress affected the plants. The results related to the
water stress indicators may provide information to model developers to further progress
the role of water stress in the modelling of plant development.
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