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Abstract

Chronic pain is a common and severely disabling disease whose treatment is often
unsatisfactory and whose neural mechanisms are incompletely understood. Here,
we aimed to harness the potential of electroencephalography (EEG) to determine
abnormalities of brain function during the resting-state in chronic pain. We therefore
performed state-of-the-art analyses of oscillatory brain activity, brain connectivity
and brain networks in 101 chronic pain patients and a healthy control group of
84 pain-free participants. We observed significantly increased connectivity at theta
(4 — 8 Hz) and gamma (> 60 Hz) frequencies in frontal brain areas and global
network reorganization at gamma frequencies in chronic pain patients. A machine
learning algorithm could differentiate between patients and healthy controls with an
above-chance accuracy of 57 percent, mostly based on frontal connectivity. These
results implicate increased theta and gamma synchrony in frontal brain areas in the
pathophysiology of chronic pain. Beyond, the findings might represent a step further
towards a low-cost, broadly available and potentially mobile brain-based marker and
a novel treatment target of chronic pain.



Zusammenfassung

Chronischer Schmerz ist eine weitverbreitete und sehr belastende Krankheit, deren
Behandlung oft unbefriedigend verlduft und deren exakte neuronale Mechanismen
noch unklar sind. Mit dem Ziel das Potential von EEG auszuschoépfen, wurde die
Hirnaktivitat von Patienten mit chronischen Schmerzen untersucht und mit der Hir-
naktivitdt von gesunden Probanden verglichen. Dazu wurden modernste Analysen
der oszillatorischen Hirnaktivitat, -konnektivitat und der Netzwerkarchitektur des
Gehirns bei 101 Patienten mit chronischen Schmerzen und einer Kontrollgruppe mit
84 gesunden und schmerzfreien Probanden durchgefithrt. In der Gruppe der Patien-
ten zeigte sich eine signifikant erhéhte Konnektivitdt in den Theta- (4 — 8 Hz) und
Gamma-Frequenzen (> 60 Hz) in frontalen Hirnarealen und eine globale Netzwerk-
Umstrukturierung in Gamma-Frequenzen. Mit Hilfe von maschinellem Lernen kon-
nte zwischen Patienten und gesunden Kontrollprobanden mit einer Genauigkeit von
57 Prozent unterschieden werden, vornehmlich auf Basis frontaler Konnektivitét.
Diese Ergebnisse deuten darauf hin, dass erhohte Theta- und Gamma-Synchronitét
in frontalen Hirnarealen eine bedeutende Rolle in der Pathophysiologie von chro-
nischem Schmerz spielen. Diese Befunde sind ein weiterer Schritt auf dem Weg
in Richtung eines kosteneffizienten, allgemein verfiigharen und potenziell mobilen
Hirn-basierten Biomarkers. Dariiber hinaus konnten die Befunde dazu dienen, neue
Ansatzpunkte fiir chronische Schmerztherapien zu generieren.
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1 Introduction

1.1 Definition and Relevance

According to the International Associa-
tion for the Study of Pain (IASP), “Pain
is an unpleasant sensory and emotional
experience associated with actual or po-
tential tissue damage, or described in
terms of such damage” (Merskey and
Bogduk, 1994). This definition im-
plies the contribution of multiple as-
pects to the pain experience, both a
sensory aspect, mediated by a special-
ized transmission system between the
periphery and the spinal cord, and an
emotional and cognitive aspect, medi-
ated by higher-level cognitive processes
in the brain.

1.1.1 Nociception

To investigate pain, it is necessary to
clearly differentiate it from nociception,
a term first introduced by Sherrington
(1900) and now defined as “the neu-
ral process of encoding noxious stimuli”
(Merskey and Bogduk, 1994). Nocicep-
tion is a subconscious process which is
driven by nociceptors, specialized sen-
sory neurons, and is not to be confused
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Figure 1: Anatomy of the nociceptive pathway.

A schematic of the major nociceptive pathway from the pe-
riphery’s nociceptors through the spinal cord to the brain
and back. From the dorsal horn of the spinal cord, a sub-
set of neurons project to the somatosensory cortex via the
thalamus, while other populations of neurons project to
the cingulate and insular cortices via connections in the
brain stem and amygdala. This ascending information is
also modulated by neurons of the rostral ventral medulla
and the periaqueductal gray which are associated with
the descending feedback systems that regulate the out-
put from the spinal cord. Adapted from Basbaum et al.
(2009) with permission (originally published in Cell Press,
https://www.cell.com/).

with pain, a conscious experience. Nociceptors are differentially and specifically ac-
tivated by noxious stimuli and consist of two major types: the medium diameter
myelinated Ad, mediating well-localized fast pain, and the small diameter unmyeli-
nated C fibers, mediating poorly localized slow pain. Both types of nociceptors
transmit nociceptive signals to the dorsal horn of the spinal cord, where they are
synaptically connected to second-level neurons which predominantly project to the
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thalamus and brainstem via the spinothalamic and spinoreticulothalamic tracts,
respectively (Basbaum et al., 2009). From the thalamus and the brainstem, noci-
ceptive information reaches the cerebral cortex where the transformation into a pain
experience occurs. Notable brain regions include the somatosensory cortex, relevant
for the sensory aspect, and the amygdala, relevant for the emotional aspect of un-
pleasantness (Corder et al., 2019). However, no brain area has been found to be
solely, or even predominantly, responsible for pain (Apkarian et al., 2005; Baliki and
Apkarian, 2015). Apart from the function of transmitting nociceptive information
from the periphery to the brain, primary afferent nociceptor fibers show a special
morphology called pseudo-unipolar, making them receptive to both ascending and
descending information, i.e. nociceptors are bidirectional neurons (Basbaum et al.,
2009). An illustration of the nociceptive pathway is shown in Figure 1.

While many pain experiences are preceded by nociception, it is important to note
that nociceptive activity does not necessarily lead to pain perception, a phenomenon
which is commonly observed in highly trained athletes, e.g. climbers who carry their
complete body weight on just the tips of their fingers or toes for minutes to hours
while reporting deep positive emotional satisfaction during an activity that con-
tinuously and massively activates their toe and finger nociceptors. Furthermore,
nociceptive activity does not linearly translate into pain perception, i.e. a painful
stimulus of identical intensity does not always elicit the same pain experience, which
has been shown in many studies, even across species (Hu and Iannetti, 2019). Fur-
ther, experiments in which participants received a controlled painful heat stimulus
have shown that the perceived pain intensity significantly dissociates from the ob-
jective stimulus intensity after just a few minutes of stimulation (Schulz et al., 2015;
Nickel et al., 2017). All of this indicates that the actual experience of pain is an
integrative process which takes into account not just nociceptive information from
afferent sensory neurons, but also the contextual information provided by concur-
rent emotional and cognitive processing (Ploner et al., 2017), something which is
also reflected in the TASP’s definition of pain.

1.1.2 Protective pain

Pain normally functions as a protective mechansim, warning the body of danger,
disease or injury and is necessarily highly unpleasant and salient, steering attention,
action and subsequent learning (Seymour, 2019). This pain can be nociceptive,
i.e. evoked by potentially tissue-damaging mechanical, chemical or thermal stimuli.
But it can also be inflammatory, caused by adaptive processes occurring after injury
or infection to promote increased protection of the afflicted area. These adaptive
processes are hyperalgesia (Hucho and Levine, 2007), an abnormally increased pain
sensitivity, and allodynia (Latremoliere and Woolf, 2009), the experience of pain
in response to innocuous stimuli such as a light touch. Being unable to experience
this nociceptive or inflammatory pain has dire consequences, e.g. mutilation of the
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extremities in individuals with congenital insensitivity to pain (Bennett and Woods,
2014) or severe damage to the joints in arthritis patients under strong analgesic
medication (Denk et al., 2017), which indicates the essential role of pain in keeping
the body safe from harm.

However, when pain persists beyond v
the tissue’s healing time, it becomes E',“Z’ éq;
pathological and loses its protective
function.  This is commonly called
chronic pain. At the same time, the rela-
tionship between stimulus and resulting -
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Figure 2: Three kinds of pain.

age has been healed and subsequently
disappearing. However, chronic pain of-
ten persists past any externally observ-
able effects of the tissue damage or ex-
ternal stimulus, making its treatment
extremely challenging. An illustrative
summary of these three kinds of pain is
depicted in Figure 2. From a clinical
point of view, acute and even inflam-

A simplified schematic of nociceptive, inflammatory and
pathological pain. In this illustration the underlying
mechanisms are represented as circuits, producing brief
pain in response to a simple injury, persisting pain in re-
sponse to an inflammation and abnormal pain as a conse-
quence of damage to a nerve or the central nervous system
(CNS). The pathological pain depicted here is a special
form defined as neuropathic pain, caused by a lesion or
disease of the somatosensory nervous system (Merskey and
Bogduk, 1994). It should be noted that the actual rela-
tionships between stimuli and pain are in general far more
complex. Adapted from Cervero and Laird (1991) with
permission (originally published in News in Physiological

. . . Sciences, https://www.physiology.org/).
matory pain management is highly ad- pe:/ fwrwrw physiology.org/)

vanced and effective, and there exist a myriad of opioids and other analgesia which
are routinely used to great effect, e.g. to reduce or even eliminate the pain of a
surgical intervention, a pain that would be unimaginable and unbearable without
analgesia. Therefore, the clinically more important research topic is the pathologi-
cal, chronic pain, a disease in its own right.

1.1.3 Chronic pain

Chronic pain is defined by the IASP as “pain that persists or recurs for longer than 3
months” (Treede et al., 2019). In addition to ongoing pain, chronic pain is a disease
characterized by significant sensory, cognitive and affective abnormalities (Moriarty
et al., 2011; Velly and Mohit, 2017), which have severe detrimental effects on quality
of life. Affecting between 20 and 30 percent of the adult population (Breivik et al.,
2006; Kennedy et al., 2014), chronic pain is a leading cause of disability worldwide
(Rice et al., 2016). According to the Global Burden of Disease Study (2017), four
out of the leading ten causes of years lived with disability are chronic pain afflictions
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(Table 1). The World Health Organization (WHO) has also recently acknowledged
this by including chronic pain as a health condition in its own right for the first time
in the new edition of the International Classification of Diseases (ICD-11) (Treede
et al., 2019). At the same time, its underlying pathology is not completely under-
stood and current treatments of chronic pain often follow a trial-and-error strategy,
with 40 percent of patients suffering from chronic pain reporting dissatisfaction with
their care (Breivik et al., 2006). As the abuse of opioids worldwide, particularly in
the United States where it is dubbed the “opiod crisis” (The Lancet, 2017), con-
tinues to be a significant problem for a large percentage of the population (Rudd
et al., 2016; Koh, 2017; Rutkow and Vernick, 2017; The Lancet, 2017; Volkow and
Collins, 2017) and the healthcare system, costing about 600 billion dollars per year
in the USA (Institute of Medicine of the National Academies, 2011), alternatives to
or improvements to pharmacological therapies would be a welcome addition to the
arsenal of treatments against chronic pain. Thus, advances in the understanding
and treatment of chronic pain are urgently needed.

Table 1: Leading ten causes of years lived with disability worldwide in 2016

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
Back pain ‘ Migraine ‘ Hearing ‘ Iron ‘ MDD ‘ Neck pain ‘ Oth MSK | Diabetes ‘ Anxiety ‘ Falls

Afflictions related to chronic pain are highlighted in red. Anxiety = Anxiety disorders. Back pain = Low back pain.
Diabetes = Diabetes mellitus. Iron = Iron-deficiency anaemia. MDD = Major depressive disorder. Oth MSK =
Other musculoskeletal disorders. Adapted from the Global Burden of Disease Study (2017).

Chronic pain is generally associated with two mechanisms of sensitization: pe-
ripheral and central sensitization. In the periphery, tissue damage often results in
synthesis and accumulation of the so-called “inflammatory soup”, a wide array of
signaling molecules, e.g. neurotransmitters, released from activated nociceptors or
non-neural cells in the local area of the injury. Excitability of nociceptors in this
area is subsequently enhanced, resulting in the increased sensitivity to temperature
and touch (Julius and Basbaum, 2001; Basbaum et al., 2009). At the level of the
spinal cord, numerous processes occur concurrently to cause central sensitization, a
state of hyperexcitability in response to nociceptive signals. Among these processes
are enhancement of glutamatergic neurotransmission, loss of inhibitory control, and
microglia activation (Scholz and Woolf, 2002; Basbaum et al., 2009). A common
mechanism of these processes is the enhancement of afferent nerve fiber sensitivity
along the nociceptive pathway. Though the peripheral and central sensitization are
very well-studied and their molecular mechanisms have been understood to a great
extent, they can only explain the sensory aspect of chronic pain. It has become clear
that purely treating the site of injury is often not enough to completely cure the pa-
tient of their pain. Lower back pain is one of the most common pain afflictions, yet
the chances of becoming pain-free after chronic pain onset are less than 50 percent
with the current clinical care (Vingard et al., 2002; Henschke et al., 2008; Costa Lda
et al., 2009). It is therefore imperative to look beyond the current standard of only
treating the injured site and towards potential treatment options based on cognitive
mechanisms.
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1.1.4 The role of the brain in experimental pain

Pain is the result of interactions between sensory and contextual (i.e. cognitive, emo-
tional and motivational) processes (Melzack and Casey, 1968). As mentioned above,
the mechanisms of both acute and persistent pain have been extensively investigated
on the level of the periphery and the spinal cord. However, the contextual processes
and the integration of the sensory and contextual information, both of which are
high-level processes mainly occuring in higher brain regions (Bushnell et al., 2013)
such as the cerebral cortex, have only recently shifted into the focus of pain research.
Studies in animals and humans have revealed a robust activation of an extended net-
work of brain areas in response to experimentally inflicted acute pain. The most
consistently activated regions constitute the so-called “pain matrix” and include the
somatosensory, insular, cingulate and prefrontal cortices, as well as the thalamus,
basal ganglia, cerebellum and amygdala (Peirs and Seal, 2016). However, it has
not been shown that the activation of this pain matrix specifically represents pain
(Legrain et al., 2011). Rather, it has become clear that pain has to be represented
by a dynamic pain connectome (Kucyi and Davis, 2015), a neural signature for pain
with both spatial specificity and temporal dynamics.

In studies investigating the temporal and spectral patterns of brain activity with
electrophysiological recordings such as EEG and magnetoencephalography (MEG),
experimental acute pain has been associated with specific spatial-temporal-spectral
responses (Ploner and May, 2018). Most commonly studied in the context of acute
experimental pain is a typical sequence of responses evoked by brief noxious stimuli,
termed N1, N2, and P2 responses, see Figure 3. These originate mainly from the
somatosensory, insular, and cingulate cortices (Garcia-Larrea et al., 2003). These
responses are correlated with nociceptive pathway damage, stimulus intensity, sub-
jective pain perception, attention and cognitive modulations, but are not specific
to pain (Ploner and May, 2018). Instead, they mostly reflect the salience of these
noxious stimuli (Mouraux and Ilannetti, 2009; Mouraux et al., 2011). In addition
to these time-locked evoked responses, time-frequency analyses have shown modu-
lations of neural oscillations at alpha (8 - 13 Hz), beta (13 - 30 Hz), and gamma
(40 -100 Hz) frequencies (Gross et al., 2007; Schulz et al., 2011; Zhang et al., 2012)
in response to brief noxious stimuli, which are also modulated by contextual factors
(Tiemann et al., 2015). In an effort to more closely model the more clinically relevant
chronic pain, some studies have used a tonic pain paradigm, extending the dura-
tion of the afflicted experimental pain from the range of (milli-) seconds to minutes.
These studies have shown an association of tonic pain with a suppression of neural
oscillations at alpha (Nir et al., 2012; Nickel et al., 2017; Li et al., 2016; Schulz et al.,
2015) and beta (Nickel et al., 2017) frequencies. Further, several studies have found
increased gamma oscillations during tonic pain stimulation (Peng et al., 2014; Nickel
et al., 2017). Intriguingly, this increase was localized to the medial prefrontal cortex
instead of sensorimotor areas (Nickel et al., 2017). Whether these effects are specific
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to pain is of yet unclear, however, as e.g. most mental processes also suppress alpha
oscillations (Ploner et al., 2017).

gamma

1001 ¢5/kcz/c2

amplitude [uV]
frequency [Hz]

time [s] time [s]
8 0 -8 8 0 -8 8 0 -8 100 0 -100
amplitude [V, amplitude [V amplitude [pV] signal change [%]

Figure 3: Electrophysiologically recorded brain responses to brief noxious stimuli.

Mean time courses and time-frequency representation (TFR, right-most panel) of EEG brain responses to approxi-
mately 180 brief painful laser stimuli applied to the left hand, averaged across 51 participants. Marked time periods
and time-frequency windows indicate periods chosen to quantify N1, N2, P2, and gamma responses, in this study
motivated by previous literature. Topographies depict the scalp distribution of neural activity in these periods,
electrodes used for the quantification of the different responses are marked. The TFR is displayed as percent-signal
change relative to a prestimulus baseline ( - 1000 to 0 ms). Reproduced from Tiemann et al. (2018) with permission
(originally published in Nature Communications, https://www.nature.com).

In summary, experimental pain has been shown to be represented by a complex
spatial, temporal and spectral pattern of brain activity which shows a remarkable
lack of specificity in its spatial and spectral dimensions, in the sense that activity at
a single location or frequency is not completely predictive of the pain experience. It
has instead become clear that multiple aspects of brain activity collaborate to form
a complex pattern of neural activity to eventually determine the subjective pain
experience in an experimental setting. Further basic research on the processing of
experimental pain could facilitate understanding the dysfunctional alterations which
lead to chronic pain by providing a template of healthy pain processing.

1.1.5 Alterations of the brain in chronic pain

Studies in animals and humans have revealed that chronic pain is associated with
significant structural and functional changes of the brain (Baliki and Apkarian, 2015;
Rauschecker et al., 2015; Kuner and Flor, 2017). Not only have somatosensory and
motor areas been associated robustly with chronic pain (Ploner and May, 2018;
Mouraux and lannetti, 2018), but also the prefrontal cortex and subcortical brain
areas including amygdala, hippocampus, insula and striatal areas have been impli-
cated in chronic pain (Hashmi et al., 2013; Baliki and Apkarian, 2015; Rauschecker
et al., 2015; Vachon-Presseau et al., 2016; Kuner and Flor, 2017; Seminowicz and

10
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Moayedi, 2017; May et al., 2018; Corder et al., 2019). An illustrative summary of
brain changes found to be associated with chronic pain is shown in Figure 4.
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Figure 4: Structural and functional changes in the human brain in chronic pain conditions.

a | Brain areas undergoing functional reorganization. b | Regions of grey-matter alterations. ¢ | Altered resting-
state and pain-evoked functional connectivity. d | Brain glial activation. e | Changes in activity in descending
inhibitory pathways. f | Changes in white-matter integrity and structural connectivity. ACC, anterior cingulate
cortex; BG, basal ganglia; M1, primary motor cortex; PAG, periaqueductal grey; PFC, prefrontal cortex; S1,
primary somatosensory cortex; S2, secondary somatosensory cortex. Reproduced from Kuner and Flor (2017) with
permission (originally published in Nature Reviews Neuroscience, https://www.nature.com).

Structurally, alterations in both grey and white matter have been observed in
patients suffering from chronic pain. Grey matter atrophy was mainly found to affect
the insula (Geha et al., 2008), cingulate (Schmidt-Wilcke et al., 2006), thalamus and
prefrontral cortex (Apkarian et al., 2004); see May (2008) for a review. In some cases,
successful analgesic treatment of chronic pain even led to the reversal of grey matter
changes in the prefrontal cortex (Seminowicz et al., 2011). Further, alterations in
white matter structure especially in prefrontal areas (Mansour et al., 2013) and
corticolimbic regions (Vachon-Presseau et al., 2016) have been associated with the
transition from acute pain to chronic pain, representing putative anatomical risk
factors for pain chronification.

11
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Functionally, Hashmi et al. (2013) observed that conversion from subacute to
chronic back pain was accompanied by a shift of brain activation patterns from
somatosensory (S1 and S2) and motor regions (M1), which are robustly involved
in processing of brief experimental pain, to regions commonly associated with emo-
tional processing, i.e. the insula, medial prefrontal cortex (mPFC), anterior cingulate
cortex (ACC), and the amygdala. Intriguingly, this shift of cortical representation is
also observed in tonic experimental pain application within a few minutes of stimu-
lation (Nickel et al., 2017; Schulz et al., 2015), albeit less pronounced. FMRI studies
investigating functional connectivity at rest have shown disruptions in the so-called
default mode network (Baliki et al., 2008), a resting-state network which is robustly
activated in task-free fMRI recordings and is mainly comprised of the medial pre-
frontal cortex, the cingulate cortex, the lateral temporal cortex, the inferior parietal
lobe, and the hippocampus (Buckner et al., 2008). The default mode network is as-
sociated with self-reflection and mind-wandering (Buckner et al., 2008) and often im-
plicated in neurological conditions with cognitive impairments, such as Alzheimer’s
disease (Badhwar et al., 2017), or psychotic forms of schizophrenia (Baker et al.,
2019). Only few EEG and MEG studies have investigated the brain activity of pa-
tients suffering from chronic pain and the results have been heterogeneous. A few
studies have observed increased theta (4 - 8 Hz) frequency power and/or a lowered
peak frequency at rest in these patients (Llinas et al., 1999; Sarnthein et al., 2006;
Stern et al., 2006; Vuckovic et al., 2014; Meneses et al., 2016; Di Pietro et al., 2018;
Fallon et al., 2018; Vanneste et al., 2018). These findings have been related to the
Thalamocortical Dysrhythmia (TCD) model of chronic pain (Llinas et al., 2005). In
this model, abnormal nociceptive input causes abnormal thalamic bursts at theta
frequencies. These theta oscillations are transmitted to the cerebral cortex, where
they result in disinhibition of neighboring areas, which, in turn, results in abnor-
mal oscillations at gamma (> 30 Hz) frequencies and eventually in ongoing pain.
This model is highly appealing, but evidence is still sparse. Just as many studies,
if not more, were unable to reproduce these findings (Boord et al., 2008; Walton
et al., 2010; Schmidt et al., 2012; de Vries et al., 2013; van den Broeke et al., 2013;
Gonzalez-Roldan et al., 2016; Gonzalez-Villar et al., 2017; Vanneste et al., 2017).
The main issues contributing to the uncertainty of these results are most likely the
limited sample sizes - most of these studies involved fewer than 20 patients - coupled
with the publication towards positive findings which pervades most scientific fields
(Baker, 2016). Further insights into the brain mechanisms of chronic pain not only
promise to advance the understanding of the underlying pathophysiology, but could
also be highly useful in a clinical setting. In particular, a brain-based marker of pain
could be immensely helpful for the diagnosis and treatment of pain (Davis et al.,
2017; Upadhyay et al., 2018). EEG in particular, which is capable of capturing the
fast temporal patterns of brain activity, shows exceptional potential for developing
such a marker.
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1.2 Fundamentals of EEG for Pain Research

An extensive characterization of EEG (Buzsaki, 2006; Nunez and Srinivasan, 2006;
Kandel, 2013) is beyond the scope of this dissertation. However, a few relevant prop-
erties will be listed and discussed in the following. On the one hand, the biggest
advantage of EEG over other techniques of non-invasive functional neuroimaging
such as Positron Emission Tomography (PET) and fMRI is EEG’s temporal resolu-
tion. EEG can capture brain activity in the range of milliseconds, whereas PET and
fMRI have a latency of several seconds. On the other hand, EEG’s biggest weakness
is its spatial resolution. Localizing sources to within a cube of 1 cm? is already at
the theoretical limit for EEG data, even with high-density recording systems (Nunez
and Srinivasan, 2006). Further, sub-cortical regions such as the insula or amygdala
contribute very little to the overall EEG signal, resulting in a low signal-to-noise
ratio in deep brain structures (Seeber et al., 2019).

1.2.1 The neurophysiological basis of EEG
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Figure 5: The postsynaptic potential.
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vation of the dendrites, and is mainly found in pyramidal neurons of the cortex
(Okada et al., 1997; Murakami and Okada, 2006). Thus, at its core, EEG is a
measurement, of the synchronized electric activity created by neural activity of a
population of neurons, mainly from the cerebral cortex. Each EEG electrode picks
up the activity of many thousands to millions of neurons from all over the head and
even from the neck, not only of the neural populations directly beneath the elec-
trode. This explains the spatial unspecifity of EEG. A neural population’s electrical
activity is directly linked to information transfer between neurons and EEG is easily
able to sample this electrical activity at 1000 Hz or more, therefore offering insights
into macro-level information transfer at high temporal resolution. This temporal
resolution is important for investigations of the brain responses to external stimuli
(typically showing latencies of at least 100 ms depending on the location and modal-
ity of the stimulus (e.g. Gross et al. (2007)) or inter-regional communication in the
brain.

1.2.2 Evoked and induced brain activity in experimental pain

contralateral

EEG studies have mostly investigated either the %0 05

event-related potentials (ERP), “voltage fluctuations _ o4 ;j—;u
in the EEG that are time-locked to internal or exter- < 0 02 E
nal events (e.g. stimuli, responses, decisions)” (Luck f§ o o2
et al., 2011), or neural oscillations, which can be in- § 02 g
duced by external stimuli but also occur intrinsically " -
in the human brain. * 05 0.0.5 152258 05

Most studies investigating brain responses to ex- Time (s)

perimental pain in humans have investigated re-
sponses to a brief painful stimulus (Ploner and May,

Figure 6: Pain-induced alpha and beta
frequency repsonses

2018). A common experimental brief painful stimu-
lus is the application of a laser pulse onto the skin.
This type of stimulation offers a brief (milliseconds)
stimulus which selectively activates nociceptors with-
out co-activating tactile sensory fibers (Plaghki and
Mouraux, 2005). Typically, laser stimuli applied to

Average time-frequency responses over
right temporal channels to contralateral
hand stimulation by a laser, averaged
over 15 subjects. Power changes relative
to a pre-stimulus baseline (-1 to O sec-
onds relative to stimulus onset) are color-
coded. Adapted from May et al. (2012)
with permission (originally published by

o : . Elsevier, https://www.elsevier.com).
the hand dorsum robustly elicit a triphasic sequence

of temporal responses (see Figure 3): first, a small negative deflection of the EEG
activity is observed at contralateral temporal electrodes, peaking approximately 170
ms after stimulus application (N1). After the N1 response, EEG activity at central
electrodes shows another large negative deflection, peaking approximately 250 ms
after stimulus application (N2), followed immediately by a large positive deflection
which peaks approximately 390 ms after stimulus application (P2) (Plaghki and
Mouraux, 2005). These brain responses to laser stimuli are known as laser-evoked
potentials (LEP), a subtype of ERPs, and have been established as a clinical tool
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to measure integrity of nociceptive pathways (Ploner and May, 2018), and as a re-
search tool to study basic pain perception and various modulations such as attention
(Legrain et al., 2009) or placebo effects (Tiemann et al., 2015).

Time-frequency representations and topographies of pain-induced responses
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Figure 7: Pain-induced neuronal responses in the theta, alpha, and gamma frequency bands.

The upper row shows time—frequency representations of neuronal activity in response to painful stimulation as
compared to a prestimulus baseline (2800 to 200 milliseconds) averaged across 20 subjects. Responses were averaged
across central electrodes as marked in the corresponding topographical maps of theta, alpha, and gamma responses
in the lower row. TFRs and topographies illustrating gamma and theta responses are displayed as percent signal
change relative to baseline, whereas those illustrating alpha responses are displayed in absolute power minus baseline
power. TFR, time—frequency representation. Reproduced from Tiemann et al. (2015) with permission (originally
published by Wolters Kluwer Health, https://shop.lww.com).

Experimental pain further induces modulations of neural oscillations in four fre-
quency bands (see Figure 6 and Figure 7): theta (4-8 Hz), alpha (8-13 Hz), beta(14-
30 Hz), and gamma (30-100 Hz). Neural oscillations are periodic oscillations which
are robustly and ubiquitously observed in EEG. The underlying mechanisms of these
oscillations are challenging to explain as they diverge substantially from the invasive
single-unit recordings which have been obtained in recent years (Cardin et al., 2009;
Womelsdorf et al., 2014). This can partly be explained by the fact that the signal
recorded at the scalp by EEG electrodes is a superposition of millions of neurons
and neural cell assemblies. There exist models on a microscopic scale such as the
Hodgkin-Huxley model (Hodgkin and Huxley, 1952) for single neuron activity, mod-
eling every component of a single cell as an electrical element, and there exist models
on a macroscopic scale such as the Kuramoto model (Kuramoto, 1975), describing
the brain as a system of coupled oscillators leading to synchrony and subsequent
large-scale oscillations. But creating a model which accurately spans the gap from
single neuron activity to macro-scale phenomena has been challenging. Though no
general theory for the generation and function of neural oscillations has yet been
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established, it has become clear that neural oscillations are an essential property of
neural networks. One of the most compelling theories concerning the function of
brain oscillations is the so-called communication-through-coherence theory (Fries,
2015). The theory states that a neural assembly tends to synchronize rhythmi-
cally, creating temporal windows of high and low postsynaptic excitability. Thus,
postsynaptic neuronal groups which receive inputs from multiple presynaptic neu-
ronal groups would preferably respond to the coherent presynaptic groups. Further,
communication with inputs which consistently and repeatedly arrive in coherent
windows would be enhanced. In other words, the theory proposes a postsynaptic
amplifying multiplexing via oscillations.

Brief noxious stimuli induce increased activity in the theta frequency band be-
tween 150 and 400 ms after stimulus onset, which strongly overlaps with pain-evoked
ERP responses (Tiemann et al., 2018; Ploner et al., 2017). Transient suppression of
alpha and beta frequencies can be observed both in phasic (May et al., 2012) and
tonic pain paradigms (Nickel et al., 2017), where they have been shown to more
closely reflect the stimulus intensity than the perceived pain (Schulz et al., 2015;
Tiemann et al., 2015; Nickel et al., 2017). Phasic pain stimuli also induce gamma
frequency oscillations over the sensorimotor cortex between 150 to 350 ms after
stimulus onset (Gross et al., 2007; Hauck et al., 2007; Ploner et al., 2006). Interest-
ingly, in tonic pain the induced gamma frequency oscillations have been observed
to shift from the sensorimotor cortex to the medial prefrontal cortex (Nickel et al.,
2017). The induced gamma frequency oscillations have been shown to correlate
with the reported pain intensity, not just the objectively applied stimulus intensity
(Gross et al., 2007; Zhang et al., 2012; Nickel et al., 2017). However, different pain
perception modulations (e.g. via attention) affect the induced neural oscillations
differentially (Ploner et al., 2017), making a precise assignment of a neural oscilla-
tion to a function difficult, and indicating, as mentioned in subsection 1.1.4, that
there is no direct correspondence between a certain neural oscillation and pain, but
rather an unspecific relationship. However, it has become clear that longer-lasting
pain does not simply lead to continued signaling of acute pain, but that processing
already shifts after a few minutes of tonic pain (Nickel et al., 2017), implying even
greater changes in chronic pain, which lasts for months, years, or even decades.

1.2.3 Spontaneous brain activity at rest in chronic pain

For a long time, recordings of brain activity without any task were thought to contain
little to no information, and were mostly used as a control condition for task-based
experiments. But recent observations of this so-called resting-state have shown that
robust and meaningful brain activity can be observed (Damoiseaux et al., 2006; Fox
and Raichle, 2007). Beyond the maintenance of normal bodily functions, mind-
wandering, self-reflection, and similar cognitive processes are a common occurrence
during prolonged task-free periods (Buckner et al., 2008). Further, abnormalities
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of brain activity during resting-state recordings, as measured by several recording
techniques such as PET, fMRI and MEG or EEG, have been reliably linked to
pathological neurological conditions such as Alzheimer’s disease (Badhwar et al.,
2017), Parkinson’s disease (Politis, 2014), or schizophrenia (Baker et al., 2019).

Patients with chronic pain regularly suffer from pain without experiencing any
noxious external stimuli, often reporting spontaneous pain attacks or a constant level
of pain. This is the basis for the hypothesis that differences of brain activity between
chronic pain patients and healthy controls without pain should be observable even
during periods without any particular task or stimulus. As discussed in 1.1.5, fMRI
studies have robustly shown alterations in functional connectivity in chronic pain
patients at rest. To translate these observational results into a clinically useful
tool, recent fMRI studies have tried to establish an objective, brain-based marker
of experimental (Wager et al., 2013) and chronic pain (Mansour et al., 2016; Mano
et al., 2018). Accordingly, the feasibility, limitations and perspectives of brain-based
markers of pain are currently the subject of intensive discussion in the pain research
community (Rosa and Seymour, 2014; Hu and lannetti, 2016; Davis et al., 2017;
Smith et al., 2017; Upadhyay et al., 2018) and beyond (Reardon, 2015; Makin, 2016;
Woo et al., 2017a).
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1.3 The Search for a Marker of Chronic Pain

A joint working group of the US Food

and Drug Administration (FDA) and Analgesic drug
the National Institutes of Health (NTH) Basic science  discovery and
X of pain development
defined a biomarker as a “defined char- (preclinical Clinical trials
C : : animalmodels
acteristic that is measured as an in- e N
dicator of normal biological processes, \
pathogenic processes, Or respounses to Veterinary | Pain ‘ Insurance
. . . clinical | ) | firms, courts of
an exposure or intervention, includ- management | Biomarkers L law
ing therapeutic interventions” (FDA- N 4
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S Neonates, diagnosis &
pain are illustrated in Figure 8, and, S non-verbal oo cement
. . . persons,
with the exception of those relating to comatose &
animals and anaesthetised patients, all anaesthetised

of them apply to a brain-based marker
of chronic pain as well. In the following, Figure 8: Potential uses for a pain biomarker.
the term “pain biomarker™ is avoided Reproduced from Tracey et al. (2019) with per-
as the definition of “biomarker” includes mission (originally — published in  Cell  Press,
the following passage: “A biomarker is !tps://www.cell.com/).
not an assessment of how an individual feels, functions, or survives” (FDA-NIH
Biomarker Working Group, 2016), which stands in direct contrast with the defini-
tion of pain. However, any kind of pain marker is unlikely to replace the current
gold standard for pain assessment, a self-report by the patient (Davis et al., 2017;
Mouraux and Tannetti, 2018; Tracey et al., 2019). A marker would instead supple-
ment self-reports and enable better informed prognoses. Furthermore, differential
diagnoses of the various types of chronic pain could be supported by a physiolog-
ical and objective diagnosis criterion, as criteria for differential diagnoses of some
pain disorders can be vague. As an example, fibromyalgia, a subtype of chronic
widespread pain, is typically diagnosed through exclusion of other pain disorders
(Clauw, 2014). A correct differential diagnosis is directly linked with another use
of a brain-based marker: treatment of chronic pain. As in many other diseases for
which a biomarker has already been established, treatment of chronic pain could be
optimized by evaluating changes of the marker as a proxy for the severity of the
disease, thereby guiding treatment efforts. This would be especially useful for e.g.
pharmacological interventions, which can have severe side effects.

In 2017, an international task force of influential pain researchers defined the
following 7 criteria that a neuromarker of pain based on neuroimaging should ideally
fulfill (Davis et al., 2017):

1. A precise definition of a pain neuromarker.

2. Applicability of the pain neuromarker to individuals.
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Methodological procedures used during testing must be validated.

4. Measures must be internally consistent and image data quality validated for
the individual tested using positive and negative controls.

5. The neuromarker must be diagnostic for pain.
The neuromarker must be validated with converging methods.

7. The neuromarker must be generalizable to the patient group tested and to the
test conditions.

At the same time, the task force’s consensus was that “current brain-based measures
fall short of the requisite standards” (Davis et al., 2017). Several fMRI studies have
tried establishing a neuromarker of pain, the most noteworthy of which is the so-
called Neurologic Pain Signature (NPS) (Wager et al., 2013). The NPS is a weighted
activation map outputting a single value at any time point, predicting the perceived
pain of the recorded person at that time. The NPS was developed to predict pain
experience but suffers from its insensitivity to psychological interventions such as
placebo treatment (Woo et al., 2017b). Refer to Figure 9 for a thresholded map of
the NPS.

Negative Predictive Weights Positive Predictive Weights

-2.95 2.95 3.35+
z 4

Figure 9: The Neurologic Pain Signature (NPS).

The figure shows the neurologic pain signature for fMRI as proposed by Wager et al. (2013), consisting of voxels
in which activity reliably predicted pain. The map shows weights that exceed a threshold (a false discovery rate
of q<0.05) for display only; all weights were used in prediction. ACC denotes anterior cingulate cortex, CB cere-
bellum, FUS fusiform, HY hypothalamus, IFJ inferior frontal junction, INS insula, MTG middle temporal gyrus,
OG occipital gyrus, PAG periaqueductal gray matter, PCC posterior cingulate cortex, PFC prefrontal cortex, S2
secondary somatosensory cortex, SMA supplementary motor area, SMG supramarginal gyrus, SPL superior parietal
lobule, TG temporal gyrus, and THAL thalamus. Direction is indicated with preceding lowercase letters as follows:
a denotes anterior, d dorsal, i inferior, 1 lateral, m middle, mid mid-insula, p posterior, and v ventral. Reproduced
with permission from Wager et al. (2013), Copyright Massachusetts Medical Society.

As a potential first step towards an EEG marker of chronic pain, some EEG
studies have shown a slowing of neural oscillations together with an increase of
oscillatory brain activity at theta frequencies in chronic pain patients (Sarnthein
et al., 2006; Vanneste et al., 2018). These observations have been embedded in the
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Thalamocortical Dysrhythmia (TCD) model of neuropsychiatric disorders (Llinas
et al., 2005). In this model, abnormal nociceptive input causes abnormal thalamic
bursts at theta frequencies. These theta oscillations are transmitted to the cerebral
cortex where they result in disinhibition of neighboring areas, which, in turn, results
in abnormal oscillations at gamma frequencies and eventually in ongoing pain. This
model is highly appealing, but evidence is sparse, contradictory, and mostly confined
to small groups of patients suffering from neuropathic subtypes of chronic pain (see
Pinheiro et al. (2016) or 1.1.5 for a review). Thus, a general EEG-based marker of
chronic pain remains to be demonstrated.

Using EEG to assess abnormalities of brain function and to establish a brain-
based marker of chronic pain is particularly appealing as it is safe, non-invasive,
cost-effective, broadly available and potentially mobile. EEG is not known to be
associated with any side effects except for slight abrasion of the skin during prepa-
ration and has no contraindications. Additionally, the high temporal resolution of
EEG enables online decoding and precise attribution of external stimulations, cre-
ating easily accessible feedback for novel manipulations of brain activity such as
neurofeedback (Sitaram et al., 2017) or non-invasive brain stimulation techniques
(Polania et al., 2018). Both techniques are, at their current state of research, based
on altering brain activity in a spatially unspecific manner, i.e. it is currently not
possible to precisely control the location of stimulation (Polania et al., 2018). At
the same time, especially for neurofeedback, having a high temporal resolution for
immediate feedback about changes in brain activity is likely to be crucial for these
methods. For these reasons, an EEG-based target for manipulation appears very
appealing, as EEG’s greatest weakness, spatial inaccuracy, is less relevant, and its
greatest strength, high temporal resolution, can be exploited.
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1.4 Aims and Qutline

In the present study, we aimed to harness the potential of EEG to determine abnor-
malities of resting-state brain activity as a potential brain-based marker of chronic
pain. We therefore recorded resting-state data in a large cohort of chronic pain
patients and age and gender-matched healthy controls. We then systematically an-
alyzed global, i.e. spatially holistic, and local, i.e. spatially specific, measures of
oscillatory brain activity, including all commonly used analyses of EEG data on
resting-state data. Moreover, we performed connectivity analyses using phase and
amplitude-based measures in source space as well as graph theory-based network
analyses. A few studies have previously investigated EEG or MEG-based functional
connectivity in chronic pain (Sarnthein and Jeanmonod, 2008; Gonzalez-Villar et al.,
2017; Vanneste et al., 2017; Choe et al., 2018; Lee et al., 2018). However, to the
best of our knowledge the present study is the first study to report a rigorously
data-driven and whole-brain approach. In this univariate approach, we statistically
compared the above mentioned measures between patients and healthy controls,
strictly correcting for multiple comparisons. Our main hypothesis was explorative
and simple: the brain activity and/or functional connectivity differs between chronic
pain patients and matched healthy controls.

As discussed in 1.1.4 and 1.1.5, pain processing is likely to be represented by com-
plex spatial, temporal, and spectral patterns of brain activity instead of measures of
a single dimension. Thus, to further investigate not just single measures, but pat-
terns of brain measures, we used a multivariate machine learning approach based
on a support vector machine (SVM) to distinguish between chronic pain patients
and healthy controls. This approach also enabled us to predict whether a person
was part of the patient group or the healthy control group on an individual level,
expanding the group-level contrast to a single-subject prediction. A comprehensive
overview of the measures that were investigated is shown in Figure 12. The main
hypothesis for our multivariate approach was therefore expanded: there is a pattern
of brain activity and/or functional connectivity which differentiates between chronic
pain patients and matched healthy controls.

Thus, we recorded the resting-state EEG of a large cohort of patients suffering
from various types of chronic pain, and a matched cohort of healthy controls without
pain. We systematically analyzed these recordings, contrasting the patients’ data
with the data of the healthy controls. Most of the following methods and the main
results are part of another manuscript (Ta Dinh et al., Pain, in press); this secondary
publication also shows supplementary material and control analyses that were not
visualized or not described in detail in the original publication.
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2 Material and Methods

2.1 Participants

101 patients (age 58.2 £+ 13.5 years (mean + standard deviation), 69 female) suf-
fering from chronic pain of various types and 84 age and gender-matched healthy
control participants (age 57.8 £ 14.6 years (mean + standard deviation), 55 female)
participated in the study. Inclusion criteria for patients were a clinical diagnosis of
chronic pain, with pain lasting at least 6 months and a minimum reported average
pain intensity > 4/10 during the last 4 weeks (0 = no pain, 10 = worst imaginable
pain). Exclusion criteria were acute changes of the pain condition during the last 3
months, for example due to recent injuries or surgeries. Further exclusion criteria
were major neurological diseases such as stroke, epilepsy or dementia, major psychi-
atric diseases aside from depression and severe general diseases. Finally, patients on
medication with benzodiazepines, which have known effects on EEG signals (Bauer
and Bauer, 2011), were excluded; other medications were not restricted. See Table 2
for group summaries of the patient and control cohort. Table 3 lists detailed patient
characteristics. In summary, we included 47 patients with chronic back pain, 30
patients with chronic widespread pain, 6 patients with joint pain, 5 patients with
unspecific neuropathic pain, 7 patients with post-herpetic neuralgia and 6 patients
with poly-neuropathic pain. Exclusion criteria for healthy controls were a medical
history of any chronic pain afflictions, any current painful injuries, major neurolog-
ical diseases, and medication with benzodiazepines. All participants gave written
informed consent. The study was approved by the ethics committee of the Medi-

Table 2: Demographics and questionnaire results.

CP (N = 101, mean =+ sd) HC (N = 84, mean =+ sd)

Gender (M/F) 32/69 29/55
Age 58.2 4+ 13.5 57.8 + 14.6
VR-12 PCS score 31.7+ 7.8 52.74 £ 5.7
VR-12 MCS score 46.4 £+ 12.0 54.1 £ 9.0
Curr. pain intensity (VAS) 52+ 1.9 -

Avg. pain intensity (VAS) 57+ 1.6 -
Pain duration (months) 121.9 + 114.3 -

PDI score 28.3 £ 14.7 -
PDQ score 174 £ 6.5 -

CP, chronic pain patients; HC, healthy controls; VR-12, Veteran’s RAND 12; PCS, physical component score; MCS,
mental component score; Curr. pain intensity, currently experienced pain intensity; VAS, visual analog scale; Avg.
pain intensity, average pain intensity in the last 4 weeks; PDI, pain disability index; PDQ, painDETECT.
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cal Faculty of the Technische Universitdt Miinchen and carried out in accordance
with the relevant guidelines and regulations. A power analysis for non-parametric
t-tests using G*Power showed that the number of participants allowed for detecting
differences between groups of at least medium effect size (Cohen’s d > 0.5) with a
statistical power of 0.9.

Table 3: Patient characteristics.

ID Age | Sex | Pain duration | Curr. pain | Avg. Pain Pain MQS | BDI | PDQ
(ys) (months) (VAS) (VAS) diagnosis
1 67 m 360 5 5 CBP 4 3 30
2 54 f 120 4 5 CBP 32 35 14
3 64 f 96 5 7 CBP 11 7 16
4 41 m 24 7 6 CBP 6 15 22
5 74 m 180 3 5 CBP 7 18 4
6 58 f 168 7 6 CBP 19 22 21
7 65 m 48 6 5 CBP 4 11 12
8 65 f 132 3 3 CBP 6 5 24
9 76 f 24 5 5 CBP 4 9 20
10 33 f 36 6 7 CBP 9 19 16
11 45 f 12 8 7 CBP 5 20 8
12 51 f 24 5 6 CBP 11 22 19
13 73 f 108 6 8 CBP 11 21 26
14 41 f 120 5 6 CBP 13 14 13
15 55 f 252 9 9 CBP 24 24 20
16 73 m 300 5 4 CBP 4 10 5
17 46 m 360 6 7 CBP 16 10 5
18 50 m 60 7 7 CBP 0 5 17
19 59 f 24 4 6 CBP 12 31 23
20 62 m 12 5.5 6 CBP 10 26 22
21 54 m 84 5 7 CBP 16 18 17
22 39 f 144 4 2 CBP 0 12 22
23 66 m 48 4 4 CBP 8 19 10
24 57 m 300 5 6 CBP 22 12 17
25 52 m 300 4 3 CBP 11 22 13
26 47 f 180 4 3.5 CBP 26 19 15
27 24 f 96 7.5 7.5 CBP 5 13 20
28 59 f 180 3 5 CBP 6 4 10
29 82 m 60 5 5 CBP 14 21 8
30 54 m 120 6.5 6 CBP 12 17 22
31 62 f 36 3 4.5 CBP 3 22 11
32 73 m 480 8 8 CBP 4 11 10
33 48 m 64 0.5 4 CBP 24.45 24 22
34 55 f 240 5 6 CBP 8.55 31 11
35 59 f 60 3 4 PNP 13.5 11 15
36 48 f 108 3 4 PHN 15.4 13 28
37 73 f 24 5 5 CBP 13.5 5 11
38 57 m 84 8 7.5 PNP 22.35 15 33
39 57 f 96 6 7 CBP 3.4 20 15
40 77 f 36 5 7.8 PNP 4 10 11
41 77 f 480 3.5 3.5 CBP 8.6 9 19
42 53 f 24 4 5 CBP 16.3 12 24
43 80 m 48 4 4 PHN 11.4 4 18
44 7 f 192 4 6 CWP 12.8 0 23
45 57 f 72 5 6 CWP 5.7 42 17
46 67 f 21 6 8 NP 3.4 8 17
47 7 f 324 6 6 CWP 3.4 16 24
48 61 f 36 4.5 6 NP 3.4 7 21.5
49 65 f 23 8 8 CWP 4 7.5 25
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ID Age | Sex | Pain duration | Curr. pain | Avg. Pain Pain MQS | BDI | PDQ
50 65 f 180 5 4 CWP 0 12 22
51 56 f 213 4 7 CWP 8 13 23
52 57 m 264 3 4 JP 13.25 10 11
53 41 f 24 4 5 NP 25.5 12 24
54 69 f 72 8 5 CBP 0 19 13
55 56 f 108 8 8 PNP 17.2 10 25
56 72 f 120 7 8 CWP 15.4 16 20
57 57 m 96 5 7 PNP 10.9 11 28
58 82 f 36 2 5 CBP 4.6 n.a. 10
59 70 f 420 4 6 CWP 14.8 28 22
60 70 f 72 4 6 PHN 10.3 11 22
61 54 f 24 7 5 PHN 5.8 10 10
62 69 f 48 6 5 PHN 8.4 6 16
63 66 f 84 2 3 JP 6 4 13
64 52 f 204 6 6 CWP 10.2 16 21
65 77 f 72 8 8 JP 4.6 n.a. 19
66 42 m 252 7 9 CBP 17.35 33 22
67 51 f 31 6 5 JP 9.1 15 7
68 55 m 7 7 7 JP 6.9 1 13
69 68 f 24 1 4 NP 3.8 0 23
70 71 m 324 4 5 CBP 10.8 5 6
71 24 f 108 6 6 CWP 8 31 21
72 71 m 36 6 6 CBP 5.8 9 14
73 68 f 204 3 4 JP 8.8 7 15
74 86 f 120 3 3 CBP 2 5 6
75 68 f 120 4 5 NP 7.8 5 28
76 45 m 48 1 2 CBP 3.8 10 9
7 18 f 16 4 6 PHN 0 14 20
78 80 f 25 8 7 PHN 23.1 15 20
79 60 m 60 n.a. n.a. PNP 0 n.a. n.a.
80 60 f 54 3.5 5.5 CBP 13.5 22 18
81 57 m 17 6.5 6.5 CBP 24.3 25 24
82 45 m n.a. 7.3 n.a. CWP 0 17 n.a.
83 24 f n.a. 3.2 n.a. CWP 0 17 n.a.
84 49 m n.a. 7.3 n.a CWP 0 39 n.a.
85 47 f n.a. 2.4 n.a CWP 0 21 n.a.
86 53 f n.a. 7.5 n.a CWP 0 22 n.a.
87 41 f n.a. 6.2 n.a CWP 0 29 n.a.
88 46 m n.a. 7.4 n.a CWP 0 20 n.a.
89 56 f n.a. 1.8 n.a CWP 0 22 n.a.
90 55 f n.a. 7.8 n.a. CWP 0 30 n.a.
91 60 f n.a. 6.2 n.a. CWP 0 14 n.a.
92 55 f n.a. 8.6 n.a. CWP 0 25 n.a.
93 48 f n.a. 2.9 n.a. CWP 0 27 n.a.
94 59 m n.a. 6.8 n.a. CWP 0 13 n.a.
95 60 f n.a. 5 n.a CWP 0 17 n.a.
96 58 f n.a. 4.5 n.a CWP 0 12 n.a.
97 71 f n.a. 8.4 n.a CWP 0 36 n.a.
98 42 m n.a. 3.7 n.a CWP 0 12 n.a.
99 38 f n.a. 6.5 n.a CWP 0 10 n.a.
100 65 f n.a. 8.8 n.a CWP 0 18 n.a.
101 60 f n.a. 6 n.a. CWP 0 21 n.a.

ID, patient identification number; ys, years; Curr. pain, currently experienced pain; Avg. pain, average pain in the
last 4 weeks; VAS, visual analog scale: 0 = no pain, 10 = worst imaginable pain; MQS, medication quantification
scale; BDI, Beck Depression Inventory II, score > 18 = clinically relevant depression; PDQ, painDETECT, score
> 19 = neuropathic pain component probable; m, male; f, female; CBP, chronic back pain; PNP, poly-neuropathic
pain; NP, neuropathic pain, PHN, post-herpetic neuralgia; CWP, chronic widespread pain; JP, joint pain; n.a., not
available because the respective questionnaire was not completed.
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2 Material and Methods

2.2 Recordings

Brain activity was recorded using EEG. Recordings were performed during the
resting-state, i.e. participants were asked to stay in a relaxed and wakeful state,
without any particular task. EEG data were recorded with eyes closed and eyes
open for 5 minutes each. As the eyes closed condition showed better data qual-
ity and less muscle artifacts, analyses were focused on this condition. EEG data
were recorded using 64 electrodes consisting of all 10-20 system electrodes and
the additional electrodes Fpz, CPz, POz, Oz, Iz, AF3/4, F5/6, FC1/2/3/4/5/6,
FT7/8/9/10, C1/2/5/6, CP1/2/3/4/5/6, TP7/8/9/10, P5/6 and PO1/2/9/10 plus
2 electrodes below the outer canthus of each eye (Easycap, Herrsching, Germany)
and BrainAmp MR plus amplifiers (Brain Products, Munich, Germany). All EEG
electrodes were referenced to FCz and grounded at AFz. Simultaneously, muscle ac-
tivity was recorded with 2 bipolar surface electromyography (EMG) electrode mon-
tages placed on the right masseter and neck (semispinalis capitis and splenius capitis)
muscles and a BrainAmp ExG MR amplifier (Brain Products, Munich, Germany).
The EMG ground electrode was placed at vertebra C2. All data were sampled at
1000 Hz (0.1 uV resolution) and band-pass filtered between 0.016 Hz and 250 Hz.
Impedances were kept below 20 k2. Prior to the EEG recordings, patients completed
the following questionnaires to assess pain characteristics and comorbidities: short-
form McGill Pain Questionnaire (SF-MPQ) (Melzack, 1987), Pain Disability Index
(PDI) (Dillmann et al., 1994), painDETECT (PDQ) (Freynhagen et al., 2006), Beck
Depression Inventory II (BDI-II) (Beck et al., 1996), State-Trait-Anxiety Inventory
(STAI) (Spielberger et al., 1983) and the Veteran’s RAND 12-Item Health Survey
(VR-12) (Selim et al., 2009).

2.3 Preprocessing

Preprocessing was performed using the BrainVision Analyzer software (Brain Prod-
ucts, Munich, Germany). Data were downsampled to 250 Hz to improve computa-
tion speed. For artifact identification, a high-pass filter of 1 Hz and a 50 Hz notch
filter for line noise removal were applied to the EEG data. Independent component
analysis was performed (Jung et al., 2000) and components representing eye move-
ments and muscle artifacts were identified based on time courses and topographies.
Furthermore, time intervals of 400 ms around data points with signal jumps exceed-
ing + 100 puV were marked for rejection. Lastly, all data were visually inspected
and remaining bad segments marked. Subsequently, independent components rep-
resenting artifacts were subtracted from the raw, unfiltered EEG data and EEG
data were re-referenced to the average reference. The reference electrode FCz was
added to the signal array. Next, data were exported from the BrainVision Analyzer
and further analyzed in Matlab (Mathworks, Natick, MA, USA) with the Field Trip
(Oostenveld et al., 2011) and Brain Connectivity Toolbox (Rubinov and Sporns,

26
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2010), along with custom-written code. Data were segmented into 2-second epochs
with 1 second overlap. A 2-second epoch length was chosen to balance the stationar-
ity of the signals and the number of samples for lower frequencies (Chu et al., 2012;
van Diessen et al., 2015). All analyses are based on these epochs and the following 4
frequency bands: theta (4 — 8 Hz), alpha (8 — 13 Hz), beta (14 — 30 Hz) and gamma
(60 — 100 Hz). We observed strong non-stationary line noise around 45 — 55 Hz and
therefore excluded the “low gamma” band from frequency band specific analyses.

For the following analyses, we define two categories. First, local, i.e. spatially spe-
cific, analyses were performed in which a single value is obtained for every electrode,
voxel or brain region. These analyses include the comparison of power topographies
on electrode level and connectivity and local network measures topographies (degree,
CC) on source level. Second, global, i.e. spatially holistic, analyses were performed.
These analyses include all analyses which average across all electrodes, voxels or
brain regions, i.e. the peak frequency, the power spectrum and all global network
measures (gCC, gEff, S, Q, kd). In all global analyses, each participant is represented
by a single scalar value per measure.

2.4 Brain Activity (Power) Analysis

Frequency-specific global power was computed on electrode level for all epochs using
a Fast Fourier Transformation (FFT) with Slepian multitapers (Thomson, 1982)
and a frequency smoothing of 1 Hz and then averaged across epochs and electrodes.
Power was first computed for the complete power spectrum, i.e. 1 — 100 Hz, with a
frequency resolution of 0.5 Hz. To remove line noise, a band-stop filter of 45 — 55
Hz was applied before computing power. The individual dominant peak frequency
was determined on the average of the epochs as the highest local maximum (larger
than its two neighboring samples) of the amplitude in the frequency range of 6
— 14 Hz (Bazanova and Vernon, 2014). Another method is to define the center of
gravity of the power spectrum as the peak frequency (Klimesch, 1999; Bazanova and
Vernon, 2014). We also computed the dominant peak frequency with both methods
using longer time windows of 5 seconds to control for the length of time windows.
We also re-computed this analysis by computing the peak frequency on each single
epoch and then averaging the peaks (Furman et al., 2017). To compare the spatial
distribution of local brain activity between patients and healthy controls, power was
averaged within each frequency band before comparing groups with cluster-based
permutation tests. Relative power was calculated by normalizing every power value
(both local and global power) by the respective participant’s total power. Total
power was calculated by summing all power values across frequencies 1 to 100 Hz
and across all electrodes.
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2.5 Source Analysis

We used linearly constrained minimum variance (LCMV) beamforming (van Veen
et al., 1997) to project the band-pass filtered data for each frequency band and par-
ticipant from electrode space into source space. Spatial filters were computed based
on the covariance matrices of the band-pass filtered data for each frequency band
and a lead field matrix. A three-dimensional grid with a 1 cm resolution covering
the brain was defined, resulting in a total of 2020 voxels in the brain. The lead field
was constructed for each voxel using a realistically shaped 3-shell boundary-element
volume conduction model based on the template Montreal Neurological Institute
(MNI) brain. We used a regularization parameter of 5 percent of the covariance
matrix and chose the dipole orientation of most variance using singular value decom-
position. Finally, the preprocessed and bandpass-filtered EEG data were projected
through the spatial filter to extract the amplitude time series of neuronal activity
of each frequency band at each voxel.

2.6 Connectivity Analysis

Functional connectivity was investigated using 3 different connectivity measures:
the phase locking value (PLV) (Lachaux et al., 1999), the debiased weighted phase
lag index (dwPLI) (Vinck et al., 2011) and the orthogonalized amplitude envelope
correlation (AEC) (Hipp et al., 2012). Both PLV and dwPLI are based on the
phase of the signals, whereas the AEC is based on the amplitude. Thus, we assessed
the complementary information provided by phase and amplitude-based connectiv-
ity measures (Engel et al., 2013). Amplitude-based connectivity is more closely
related to structural connectivity (Vincent et al., 2007; Wang et al., 2013), puta-
tively regulating activation of whole brain regions and being implicated in diseases
with dominant structural alterations (Engel et al., 2013). Phase-based connectivity
seems more detached from structure and is strongly affected by contextual factors
(Singer, 1999; Siegel et al., 2012). The PLV is well-established, highly sensitive and
captures both zero-phase lag and non-zero-phase lag connectivity. The dwPLI cap-
tures non-zero phase lag connectivity only. The dwPLI is therefore not susceptible
to volume conduction at the cost of reduced sensitivity because real synchrony at
zero phase lag is also discarded. All our connectivity analyses are based on contrasts
between two groups and are therefore less susceptible to effects of volume conduc-
tion. Additionally, if no group differences in amplitude are found, the probability of
connectivity differences being driven by volume conduction is further reduced.

For the connectivity analyses, the connectivity between every pair of voxels was
computed, resulting in a 2020 x 2020 matrix, with a single value representing the
strength of connection between two voxels over the complete recording time. All 3
connectivity measures are undirected.
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A summary of the global graph measures relevant for this

e ) ) ) study. The global clustering coefficient (gCC) quantifies
gCC, global c‘lusterlng coefficient; the number of connections that exist between the near-
local segregation; est neighbours of a node as a proportion of the maxi-
high gCC = strong functional mum number of possible connections (Watts and Stro-
specialization gatz, 1998). Random networks have low average clustering

whereas complex networks have high clustering, associated
with high local efficiency of information transfer and ro-
bustness (Bullmore and Sporns, 2009). The path length

gEff, global efficiency; is the number of edges that must be traversed to reach
global integration; another node from a starting node (Watts and Strogatz,
high gEff = many long-range 1998). The global efficiency (gEff) is inversely related to
connections the average shortest path length between all possible pairs

of nodes, so high global efficiency (= short path lengths on
average) is thought to reflect high connectome integration
(Achard and Bullmore, 2007). Small-worldness (S) com-

S, small-worldness; bines the clustering coefficient and the global efficiency,
communication efficiency; resulting in a compound measure (Humphries and Gur-
high S = strong functional ney, 2008). A high small-worldness supports functional
specialization and integration segregation and integration, as well as information propa-

gation (Bassett and Bullmore, 2006). The hub disruption
index (kg) is a complex measure which compares the de-
gree of all nodes to those of a control group (Achard et al.,

kd, hub disruption index; 2012). Positive values indicate that strongly connected

global shift of connections; nodes increase and weakly connected nodes decrease their

positive kd = “the rich get richer* number of connections (“the rich get richer and the poor

negative kd = “the rich get poorer* get poorer”). Conversely, negative values indicate that

J strongly connected nodes decrease and weakly connected

nodes increase their number of connections (“the rich get

Figure 10: Global graph-theoretical measures. poorer and the poor get richer”), which means a shift of

the network towards a random network with less internal
structure (Achard et al., 2012; Mansour et al., 2016).

2.7 Graph-theoretical Network Analysis

Graph theory is a branch of mathematics treating systems of interacting elements.
The two elementary components in graph theory are nodes and edges connecting the
nodes. Graphs are a useful tool to analyze complex networks, offering a flexible and
established mathematical framework. We refer to Sporns (2012) as an excellent in-
troduction to this topic in the context of brain networks. Fundamentally, graphs are
an abstract construct reflecting the underlying systems. They enable quantitative
comparisons across different brain networks because these networks share certain
key organizational principles even if they differ on a microscopic level (Bullmore
and Sporns, 2009). Further, graph theory can effectively reduce dimensionality of
data, reducing the amount of statistical tests necessary to compare between groups.
Graph theory has recently become more feasible for neuroimaging studies (Sporns,
2011) because of the substantial increase in computational power, a necessity for the
large amount of data generated in most neuroimaging recordings. This has led to a
growing body of research associating neurological diseases with abnormal structural
and functional brain network measures, e.g. in Alzheimer’s disease (Stam, 2014).
By applying graph-theoretical methods to our data, we reduced the high-dimensional

EEG data to a few network measures, characterizing the organization of the whole
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brain network. We defined the nodes as voxels and the edges as thresholded func-
tional connectivity between voxels. To reduce the complexity of the analysis, the
adjacency matrix (the matrix defining all edges between the nodes) was thresholded
to the 10 (5, 20, see Figure 20 and Figure 21) percent of strongest connections and
binarized, resulting in an unweighted and undirected graph. We used graph mea-
sures that characterize either a single node (local analyses) or the complete network
(global analyses).

We investigated two local network measures: the degree and the local clustering
coefficient. The degree is the number of connections to other nodes. The local clus-
tering coefficient (CC) is the fraction of the node’s neighbors that are also neighbors
of each other (Rubinov and Sporns, 2010). Thus, both local measures depict the
importance of a node. Four global network measures were included in the analy-
sis (see Figure 10): the global clustering coefficient (gCC), global efficiency (gEff),
small-worldness (S) and hub disruption index (kd) (Achard et al., 2012). The global
clustering coefficient is the average of the local clustering coefficient of all nodes, re-
sulting in a measure of local segregation (Rubinov and Sporns, 2010; Fornito et al.,
2016). The gEff is the inverse of the average shortest path length. It measures the
strength of “long-range” connections or the global integration (Rubinov and Sporns,
2010; Fornito et al., 2016). S describes the ratio of clustering coefficient and global
efficiency and compares it to random networks. Lastly, the hub disruption index is
a differential measure and compares the degree of a node to its average degree in a
control cohort. It shows potential shifts of connections, which manifest on a global
scale (Achard et al., 2012; Mansour et al., 2016).

2.8 Correlation Analysis

Pearson’s r was computed between clinical parameters and brain measures which
had been found to show a significant correlation with clinical parameters in previous
studies (Sarnthein et al., 2006; Stern et al., 2006; Schmidt et al., 2012; de Vries
et al., 2013; Gonzalez-Roldan et al., 2016; Mansour et al., 2016; Kuo et al., 2017;
Vanneste et al., 2017; Choe et al., 2018; Fallon et al., 2018). Additionally, the brain
measures that were found to significantly differ between chronic pain patients and
healthy controls in this study were tested for correlation with clinical parameters.
The global peak frequency, mean global power in the four frequency bands, hub
disruption index and the mean theta and gamma PLV connectivity, the PLV global
efficiency in the gamma band, and the dwPLI hub disruption index in the gamma
band, were correlated with the following clinical parameters: current pain intensity,
average pain intensity in the last four weeks quantified by a visual analog scale, pain
duration, pain disability quantified by the PDI, mental and physical quality of life
quantified by the VR-12, depression quantified by the BDI-II, and medication as
quantified by the medication quantification scale (MQS)(Harden et al., 2005).
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2.9 Machine Learning Analysis

2.9.1 Fundamentals of machine learning

All the above analyses were univariate comparisons between the two groups, in-
vestigating one specific feature of the EEG sequentially. All these comparisons of
different features were done independently of one another, e.g. the comparison of
the peak frequency was tested independently from the global power spectrum. As
discussed in 1.1.4 and 1.1.5, both experimental and chronic pain are most likely
represented by complex patterns of brain activity spanning the temporal, spectral
and spatial dimensions of EEG activity. A tool to investigate patterns of data that
has has recently gained large public and scientific interest because of its outstanding
performance, especially in the fields of computer vision and language processing, is
machine learning (Jordan and Mitchell, 2015). It is a generic term for a family of
computer algorithms which learn a set of rules or representations without explicit
programming (Bishop, 2006). In general, all kinds of machine learning scale ex-
tremely well with the amount of data available up to a certain point, i.e. the more
data, the better the performance (Alpaydin, 2014). The focus in this work will be
on a specific rule-based classifier, a Support Vector Machine (SVM) (Cortes and
Vapnik, 1995).

The basic principle of an SVM is to fit a so-called hyperplane to achieve the best
discrimination between two classes; this is schematically depicted in Figure 11. In
the simple case of e.g. two-dimensional data, a hyperplane would simply be a line,
while a hyperplane in three-dimensional data would be an actual plane, and generally
in n-dimensional data a hyperplane would be an (n-1)-dimensional plane. New data
points are simply classified as belonging to one class or the other depending on which
side of the hyperplane they are located. As one of the most commonly used, simplest
and most easily intrepretable machine learning algorithms, we chose an SVM as a
first approach to differentiate between chronic pain patients and healthy controls
via machine learning.

2.9.2 Support vector machines

The machine learning analysis was carried out using the Statistics and Machine
Learning Toolbox in Matlab as well as custom-written scripts. We implemented
an SVM with a linear kernel, which was trained on all available features. The
features were the peak frequency (1 feature per participant), global power spectrum
(199 features per participant, 1 feature for each frequency step), local power (4
x 65 features per participant, 4 frequency bands, 65 electrodes), local strength of
connectivity (3 x 4 x 2020 features per participant, 2020 voxels in 4 frequency bands
and 3 connectivity measures), local degree (3 x 4 x 2020 features per participant,
2020 voxels in 4 frequency bands and 3 connectivity measures), local clustering
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classification of
4 new samples

Figure 11: Basic principle of an SVM.

A schematic visualization of how a classification with an SVM works. A simple example of two-dimensional data
with two groups (red and blue) is shown. The discriminatory function in this case is the black line, trained with the
training data on the left. New data is classified by looking at which side of the line the samples are located. Here,
the inner circle represents the ground truth, i.e. which group the data sample really belongs to, while the outer circle
represents the classification result. In this example, 3 out of 4 new samples are classified correctly, which would
result in a classification accuracy of 75 percent.

coefficient (3 x 4 x 2020 features per participant, 2020 voxels in 4 frequency bands
and 3 connectivity measures), and the global graph measures (3 x 4 x 4 features
per participant, 4 global graph measures in 4 frequency bands and 3 connectivity
measures). This resulted in an SVM containing 73228 features per participant. To
avoid overfitting, we implemented a so-called sequential forward feature selection.
This algorithm consists of incrementally adding single features to the SVM and
evaluating the performance. When performance is increased, the feature is kept
and another feature is added. If performance of the SVM is not improved, the
feature is discarded and a different feature is added. This process is repeated until
no additional feature improves performance. The performance of the SVM was
evaluated using a 10-fold cross-validation. First, the dataset was randomly split
into 10 folds. 9/10 folds were used to train the classifier, after which the remaining
1/10 were classified, resulting in a certain classification accuracy. This procedure
was then repeated, cycling through all folds, yielding a mean accuracy over the 10
folds. As our groups were unbalanced regarding participant numbers, we randomly
picked 84 datasets from the cohort of chronic pain patients for the classification
procedure, repeating this 1000 times. To conclude whether this result truly exceeds
chance level, we repeated the whole procedure with the same data, but the labels of
chronic pain patients and healthy controls were randomly shuffled. The two resulting
distributions were then statistically compared using a non-parametric permutation
test. The sensitivity is defined as the rate of true positives, i.e. correctly classified
patients, divided by the number of total patient classifications. The specificity is
defined as the rate of true negatives, i.e. correctly classified healthy controls, divided
by the number of total healthy classifications. Apart from the overall performance
of the SVM, we also investigated which features contained the highest predictive
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value, i.e. which features were most consistently picked by the SVMs by looking at
the number of times a certain feature was included in the SVM by automatic feature
selection.

2.10 Statistical Analysis

Statistical analysis was carried out using FieldTrip and custom-written Matlab
scripts. The significance level for all statistical tests was set to 0.05 two-tailed. We
used cluster-based permutation tests with a cluster-threshold of 0.05 to compare
patients to healthy controls for all local analyses and the global power spectrum
analysis (Maris and Oostenveld, 2007). We report maximal and minimal T-values
(tmaz/min) for all cluster-based permutation tests to show potential trends. The other
global measures were compared using non-parametric permutation tests, permuting
between the patient and healthy control group. The underlying statistical test for
all permutation tests was an unpaired T-test. To account for multiple comparisons
within a specific measure, we corrected all p-values of tests that were performed
on all 4 frequency bands using the Holm-Bonferroni method (Holm, 1979). To test
whether the accuracy of the SVMs was above random chance level, we computed a
non-parametric permutation test on the accuracy distribution of the SVM trained
on the real data against the accuracy distribution of the SVM trained on the ran-
domly labeled data. Pearson’s r was calculated to find correlations between brain
measures and clinical parameters and tested for statistical significance against the
null hypothesis of no correlation. Resulting p-values were again corrected for multi-
ple comparisons across the four frequency bands using the Holm-Bonferroni method,
if applicable.
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Figure 12: Analysis pipeline.

EEG data were analyzed with regard to power and connectivity, which quantify neural activity and neural commu-
nication, respectively. Power analyses were performed in electrode space. Analyses of functional connectivity were
performed in source space. Connectivity analyses comprised phase-based (PLV and dwPLI) and amplitude-based
(AEC) connectivity measures. Graph theoretical network analysis was applied to further characterize functional
connectivity. All measures were compared between chronic pain patients and healthy controls. In addition, a
purely data-driven machine learning approach was adopted, using an SVM. The SVM was trained on all power and
connectivity measures to distinguish between chronic pain patients and healthy controls.

34



3 Results

We collected resting-state EEG data from 101 patients suffering from chronic pain
and 84 age and gender-matched healthy, pain-free controls. Demographic and clini-
cal data of participants are shown in Table 2 and Table 3, respectively. In order to
define abnormalities of brain function in chronic pain regardless of subtype, patients
suffering from various types of chronic pain were included. Figure 12 summarizes
the analyses of the EEG data. They included measures of the magnitude of brain ac-
tivity (power) and connectivity between brain regions in electrode and source space,
respectively. Power and connectivity analyses comprised local and global analyses.
We define local analyses as spatially specific analyses in which a single value was
obtained for each electrode, voxel or brain region. These analyses included topogra-
phies of power, connectivity and local network measures. In contrast, we define
global analyses as spatially holistic analyses in which a single value was obtained for
each participant. These analyses summarized the data of different electrodes, voxels
or brain regions, i.e. the peak frequency, the power spectrum and global network
measures. All analyses were based on 2-second epochs of resting-state data unless
stated otherwise, to balance robustness, frequency resolution and non-stationarity
of the data.

3.1 Global Measures of Brain Activity

First, we investigated whether chronic pain was associated with global changes of
brain activity on electrode level. We determined the peak frequency of EEG activity
in chronic pain patients and healthy controls by averaging the power spectra across
all epochs and electrodes and determining the maximal power in the frequency range
of 6 to 14 Hz (Bazanova and Vernon, 2014). Peak frequency was 9.8 + 1.2 Hz (mean
+ standard deviation) in chronic pain patients and 10.0 4 1.4 Hz in healthy controls
and did not differ significantly between groups (non-parametric permutation test, p
= 0.20, Figure 13A). Other common approaches to determine the peak frequency,
by computing the center of gravity, analyzing longer time windows (5 seconds) for
increased spectral resolution, or computing the peak frequency on individual epochs
and then averaging, did not show a difference between groups either (Figure 14).
Next, we examined whether chronic pain was associated with global changes of
oscillatory brain activity at any frequency between 1 and 100 Hz. To this end, we
compared the global power spectrum of EEG activity averaged across all electrodes
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absolute power.

between chronic pain patients and healthy controls. The results did not reveal
any significant difference between the two groups at any frequency (cluster-based
permutation statistics clustered across frequencies, t,,qz/min = 1.7 /-1.5; Figure 13B).
When controlling for inter-subject differences in overall power by calculating power
relative to the total power across all electrodes and frequencies for each participant,
the results did not show a significant difference between patients and controls either
(tmaz/min = 1.4/-1.7; Figure 15A).

Thus, we did not observe global changes of the peak frequency or the power
spectrum of oscillatory brain activity in chronic pain patients.

3.2 Local Measures of Brain Activity

We further assessed whether chronic pain was associated with local changes of oscil-
latory brain activity. We therefore calculated topographical maps of brain activity
for theta (4 — 8 Hz), alpha (8 — 13 Hz), beta (14 — 30 Hz) and gamma (60 — 100 Hz)
frequency bands. Group comparisons of the topographical maps did not show signif-
icant differences between patients and controls in any frequency band (cluster-based
permutation statistics clustered across electrodes, t,,qz/min = 2.0 /-1.4, Figure 13C).
When controlling for inter-subject differences in overall power by calculating relative
power, the results did not show a significant difference between patients and controls
either (tmqez/min = 2.5/-3.2; Figure 15B).

Thus, our findings did not show local changes of oscillatory brain activity in
chronic pain patients in any frequency band. Taken together, as neither global nor
local brain activity differed between chronic pain patients and healthy controls, any
potential connectivity effects are unlikely to be driven by volume conduction.
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(A)Peak frequency analysis as reported in Figure 13A.
(B) Peak frequency analysis was repeated with the cen-
ter of gravity method, which defines the center of grav-
ity of the power spectrum as the peak frequency. The
comparison of chronic pain patients (CP, red) and healthy
controls (HC, blue) with a non-parametric permutation
test did not show a significant difference (p = 0.16). (C)
Peak frequency analysis as described in Figure 13A was
repeated with 5 second epochs. No significant difference
between patients and healthy controls was found (p =
0.43). (D) Peak frequency analysis using the center of
gravity method based on 5 second epochs. No significant
difference between chronic pain patients and healthy con-
trols was found (p = 0.14). (E) The peak frequency of
each participant was calculated by determining the peak
frequency of each single epoch and then averaging across
epochs and electrodes. No significant difference between
patients and healthy controls was found (p = 0.15). (F)
The peak frequency of each participant was calculated by
determining the peak frequency of each single epoch using
the center of gravity method and then averaging across
epochs and electrodes. No significant difference between
patients and healthy controls was found (p = 0.15).

(A) Same as Figure 13B, but power values were normal-
ized for each participant by the participant’s total power,
i.e. the power summed across all electrodes and frequencies
(1 to 100 Hz). A cluster-based permutation test cluster-
ing across frequencies did not show a significant difference
between chronic pain patients (CP, red) and healthy con-
trols (HC, blue) (tyae/min = 1.4/-1.7). (B) Same as Fig-
ure 13C, but all power values were normalized for each par-
ticipant by the participant’s total power. The colormap
shows the t-values of a cluster-based permutation test. No
significant cluster was found in any frequency band (theta
tmaz/min = 2.5/-1.7, alpha t,,00/min = 2.3/-2.3, beta
tmaz/min = 1.2/-3.2, gamma t,,40 /min = 1.2/-2.3).

3.2 Local Measures of Brain Activity
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Figure 14: Global measures of brain activity - al-
ternative peak frequency analyses.
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3 Results

3.3 Local Measures of Functional Connectivity

Next, we explored whether chronic pain was associated with changes of functional
connectivity, a measure of neural communication. To reduce potential confounds
by field spread and volume conduction effects (Schoffelen and Gross, 2009), we per-
formed all connectivity analyses in source space using 2020 voxels with a size of 1 x
1 x 1 ecm3. We then computed the connectivity between all pairs of voxels, resulting
in a connectivity matrix of dimension 2020 x 2020. Connectivity analyses of EEG
data can be performed using phase-based and amplitude-based approaches which
capture different and complementary neural communication processes (Engel et al.,
2013). Amplitude-based connectivity is more closely related to structural connec-
tivity and putatively regulates activation of brain regions. Phase-based connectivity
seems more detached from structure and is more strongly affected by contextual fac-
tors. We therefore performed both phase-based and amplitude-based connectivity
analyses by calculating the PLV and the AEC, respectively. As a more conservative
measure which also discards zero phase-lag connectivity, we also analyzed connec-
tivity using the dwPLI, which will be reported further below.

We first investigated whether chronic pain was associated with local changes of
functional connectivity in any brain region or any frequency band. To this end, we
calculated the connectivity strength for each voxel and frequency band. Connectiv-
ity strength was defined as the average connectivity of a specific voxel to all other
voxels of the brain, which yields one connectivity strength value for each voxel. This
allows for visualizing connectivity strength in a topographical map and applying the
same statistical approaches used for the analysis of local brain activity. Analysis of
phase-based connectivity (Figure 16A) showed that chronic pain patients’ connectiv-
ity strength in the theta band was significantly increased (cluster-based permutation
test, p(corrected/uncorrected) = 0.045/0.011, Cohen’s d = 0.40) in comparison to
the control group. The strongest contrast was found in the supplementary mo-
tor area (MNI = [-10, 10, 70]). Moreover, we also found that patients showed a
significantly increased connectivity strength in the gamma band (cluster-based per-
mutation test, p(corrected/uncorrected) = 0.0072/0.0018, Cohen’s d = 0.59), which
was maximal in the anterior prefrontal cortex (MNI = [-40, 40, 30]). No significant
clusters were found in the alpha and beta bands (alpha: p,,;,(corrected /uncorrected)
= 1/0.61, tyar = 2.8; beta: ppn(corrected/uncorrected) = 0.71/0.18, tya: = 3.5).
Analysis of amplitude-based connectivity did not show any significant differences
in connectivity strength between chronic pain patients and healthy controls in any
brain region or any frequency band. (Figure 16B, t,,qz/min = 0.4/-1.2).

To further assess connectivity patterns of chronic pain patients, we performed
graph theory-based network analysis. Graph theory conceptualizes a network as
a collection of nodes and their connections, termed edges. Here, nodes were de-
fined as voxels and edges as thresholded functional connectivity between voxels.
To simplify the subsequent analyses, edges were thresholded to the 10 percent
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3.3 Local Measures of Functional Connectivity

A Phase-based (PLV) connectivity (CP — HC)
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Figure 16: Local measures of functional connectivity.

strongest connections (10 percent edge density) and binarized. These graphs al-
low for summarizing local and global properties of complex networks with a few
measures. We first examined the local properties of brain networks in chronic pain
patients. A basic property of a node is the number of its connections to other
nodes, which is termed the degree. Conceptually, the degree is closely related to
the connectivity strength analyzed in the previous step, the essential difference be-
ing that the edges are thresholded, whereas the connectivity strength considers all
connections. We computed the degree of every voxel and compared it between
patients and controls. No difference in degree was found in any frequency band
(Figure 17A and B). This applied similarly to phase-based and amplitude-based
measures of connectivity (PLV: pyi,(corrected /uncorrected) = 0.51/0.13, tyee =
4.2; AEC: ppin(corrected /uncorrected) = 1/0.56, tq: = 3.0). To further investi-
gate this, we computed the weighted degree, i.e. a thresholded but not binarized
connectivity matrix. The cluster-based permutation tests of the weighted degree
in the theta and gamma bands showed no significant differences between patients
and controls. This lack of a difference in degree indicates that the difference in
connectivity strength is not confined to the strongest connections but instead ap-
plies to connections of all strengths. Another well-established measure that char-
acterizes nodes is the clustering coefficient. This measure assesses the number of
connections of neighboring nodes, i.e. it measures the local integration of a node
served by short-range connectivity. Comparing the clustering coefficients of all
nodes between patients and controls did not show any significant differences at
any frequency band, neither for phase-based nor amplitude-based connectivity (Fig-
ure 17C and D; PLV: py, (corrected /uncorrected) = 0.12/0.030, t,,0. = 3.3, AEC:
Pmin(corrected /uncorrected) = 1/0.28, t,,4. = 3.8).

Taken together, the analysis of local measures of functional connectivity showed

39



3 Results

A Phase-based (PLV) degree (CP — HC) B Phase-based (PLV) clustering coefficient (CP — HC)
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Figure 17: Local measures of functional connectivity - degree and local clustering coefficient.

Brain topographies of the comparison of degree and local clustering coefficient between chronic pain patients (CP)
and healthy controls (HC) in the theta, alpha, beta and gamma band frequencies, averaged across frequencies in
each band, are shown. The degree is the number of connections of a voxel, thresholded to the 10 percent highest
connectivity values. The local clustering coefficient is a measure of how well a voxel’s neighbors are connected.
The colormaps show t-values. Cluster-based permutation tests were performed to test for significance. Significant
results are masked, i.e. all voxels but the ones belonging to a significant cluster are greyed out. In the absence of
significant clusters, colors were retained to show potential trends. Here, no significant effects were found and, thus,
nothing is greyed out. (A) PLV-based degree. No significant difference between the degrees of chronic pain patients
and healthy controls was observed in any frequency band (theta t,,q5/min = 3.3/-3.8, alpha t,,04 /min = 3.1/-3.4,
beta tyqp/min = 3.7/-2.6, gamma t,,q4 /min = 4.2/-3.3). (B) PLV-based local clustering coefficient. No significant
difference between the local clustering coefficients of chronic pain patients and healthy controls was observed in
any frequency band (theta t,qp/min = 4.4/-2.9, alpha tpqz/min = 3.7/-3.3, beta tpaz/min = 4.5/-3.5, gamma
tmaz/min = 3:6/-3.2). (C)AEC-based degree. No significant difference between the degrees of chronic pain patients
and healthy controls was found in any frequency band (theta t,,q5 /min = 3.0/-3.2, alpha bmaz/min = 2.3/-2.6, beta
tmaz/min = -2.6/-1.9, gamma t,,40 /min = 3.2/-3.0). (D) AEC-based local clustering coefficient. No significant
difference between the local clustering coefficients of chronic pain patients and healthy controls was observed in
any frequency band (theta t,,qz/min = 3.2/-1.5, alpha t,q0 /min = 2.7/-2.7, beta tma0/min = 3.5/-2.7, gamma
tmax/min = 3.8/-1.8).

increases of phase-based connectivity in frontal and prefrontal cortices at theta and
gamma frequencies in chronic pain patients. The increase in the theta band was of
small effect size (Cohen’s d = 0.40), whereas the increase in the gamma band was
of medium effect size (Cohen’s d = 0.59).

3.4 Global Measures of Functional Connectivity

We next investigated whether chronic pain was associated with changes of global
measures of functional connectivity and therefore computed graph measures which
characterize different complementary global properties of brain networks. Figure 18
summarizes the results of the global graph measures. First, we calculated the global
clustering coefficient, which is the average of the local clustering coefficient across
the whole network. This is commonly interpreted as a measure of functional seg-
regation in a network (Rubinov and Sporns, 2010; Fornito et al., 2016), i.e. how
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3.4 Global Measures of Functional Connectivity

specialized sub-regions of the brain are. We found no differences in global cluster-
ing coefficient between chronic pain patients and healthy controls (Table 4; pin
(corrected /uncorrected) = 0.088/0.022).
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Figure 18: Global graph theoretical measures of functional connectivity.

The radar plots show four global graph measures in four frequency bands based on (A) PLV and (B) AEC-based
connectivity measures. The clockwise arrangement follows the following pattern: theta, alpha, beta and gamma
repeat within the arrangement of the four graph measures: global clustering coefficient, global efficiency, small-
worldness and absolute values of the hub disruption index. The red lines show the chronic pain patients’ (CP)
values, while the blue lines represent the healthy controls’ (HC). Error bars show the standard deviation. For
visualization purposes, the symmetric error bars are only drawn in a single radial direction. Axes run from the
center (= 0) to the outside (= 1). For visualization purposes, the small-worldness and hub disruption index were
scaled with a factor of 0.2 and the absolute unsigned value is shown. (A) Phase-based connectivity (PLV). The global
efficiency in the gamma band was significantly decreased in chronic pain patients (non-parametric permutation test,
p(corrected /uncorrected) = 0.013/0.0032, Cohen’s d = 0. 44). No other measure revealed a significant difference
when compared between groups; see Table 4 for details. (B) Amplitude-based connectivity (AEC). No significant
difference between groups was observed; see Table 4 for statistical details.

Second, we assessed the global efficiency, which is the mean of the inverse of
the shortest path length between each pair of nodes. This measure provides an
account of the ease of long-distance communication and is commonly interpreted
as a measure of functional integration in a network (Rubinov and Sporns, 2010;
Fornito et al., 2016). After accounting for multiple comparisons, we found evi-
dence for a decrease of global efficiency in patients in the gamma frequency band
when investigating phase-based connectivity (Table 4; p(corrected/uncorrected) =
0.013/0.0032). The effect size of this difference was small (Cohen’s d = 0.44). Third,
we computed the small-worldness, which combines the two aforementioned measures
and compares it against a random network. This measure is associated with com-
munication efficiency within a network (Rubinov and Sporns, 2010; Fornito et al.,
2016). We detected no changes in small-worldness between the two groups (Table
2; Pmin(corrected /uncorrected) = 0.26/0.064). Fourth, we analyzed the hub disrup-
tion index (Achard et al., 2012), which has been shown to differ between chronic
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pain patients and controls in previous functional magnetic resonance imaging studies
(Mano et al., 2018; Mansour et al., 2016). The hub disruption index compares the
degree of all nodes to those of a control group. Positive values indicate that strongly
connected nodes increase and weakly connected nodes decrease their number of con-
nections (“the rich get richer and the poor get poorer”). Conversely, negative values
indicate that strongly connected nodes decrease and weakly connected nodes in-
crease their number of connections (“the rich get poorer and the poor get richer”),
which means a shift of the network towards a random network with less internal
structure. Our results did not show a difference of the hub disruption index in any
frequency band when comparing chronic pain patients to healthy controls (Table 4;
Pmin(corrected /uncorrected) = 1/0.32).

In summary, global graph measures of phase-based functional connectivity showed
a decrease of global efficiency at gamma frequencies in chronic pain patients. This
decrease was of small effect size (Cohen’s d = 0.44).

Table 4: Global graph measure statistics.

PLV AEC dwPLI
4 o &l Y | 0 o B Y | 0 o B ol
gCC | 0.084 0.040 0.092 0.022 | 022 092 029 038 [ 0088 045 0.017 047
gEff | 0.052 013  0.084 017 078 030 074 | 029 0051 020  0.12
S 017 024 024 0064 | 030 092 0094 024 | 008 030 0.090 0.29
kq 077 064 094 088 | 0.066 032 099 0.8 | 0.048 020 0.43 [JOOON

Uncorrected p-values of non-parametric permutation tests comparing global graph measures between groups. P-
values were corrected for multiple comparisons using the Holm-Bonferroni method across the four frequency bands to
take cross-spectral dependencies into account. After correction, the PLV-based global efficiency in the gamma band
differed significantly between groups (p(corrected) = 0.013, Cohen’s d = 0.44). The dwPLI-based hub disruption
index (kd) in the gamma band was significantly lower in patients (p(corrected) = 0.00, Cohen’s d = 0.63). Cell
coloring indicates the direction of significant effects; blue indicates lower values in chronic pain patients. gCC, global
clustering coefficient; gEff, global efficiency; S, small-worldness; kg, hub disruption index.

3.5 Local and Global Measures of Functional
Connectivity - dwPLlI

We further tested whether changes of functional connectivity in chronic pain patients
can be detected using another common phase-based connectivity measure, the dw-
PLI (30). The dwPLI differs from the PLV by capturing only non-zero phase lag
connectivity. The dwPLI is therefore not susceptible to volume conduction which
can yield artificial connectivity effects at the cost of reduced sensitivity because real
synchrony at zero phase lag is also discarded. The results of the cluster-based per-
mutation tests did not reveal any local difference in functional connectivity between
patients and controls (Figure 19A — C, py,, (corrected /uncorrected) = 0.48/0.12,
tmin = -3.0). This indicates that zero phase lag connectivity plays an important role
in the increased frontal connectivity of patients. Concerning global graph measures
(Figure 19 and Table 4), the hub disruption index was significantly lower in chronic
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pain patients in the gamma band (p(corrected/uncorrected) = 0.00/0.00, Cohen’s d
= 0.63).

In summary, when the connectivity was calculated using the dwPLI, there was a
decrease of the hub disruption index in chronic pain patients with a medium effect
size (Cohen’s d = 0.63), but no local connectivity differences could be found.

3.6 Control Analyses

As muscle artifacts may cause spurious synchrony, we computed a control analysis
using the EMG electrodes on the right neck and masseter. We band-passed the
signals from the neck and the masseter electrode in the theta and gamma frequency
bands and then computed connectivity from each single EMG electrode to the peak
voxel of the statistically significant clusters in the theta (MNI = [- 10 10 70]) and
gamma (MNI = [- 40 40 30]) band, respectively. Afterwards, we tested the EMG
connectivity of the chronic pain patients against the healthy controls’” with a non-
parametric permutation test. These tests revealed that no significant difference in
EMG-to-peak voxel-connectivity could be detected.

We tested the robustness of the local and global graph measures against a change
of the threshold responsible for creating the graphs, i.e. the edge density. We there-
fore repeated the analyses with edge densities of 5 and 20 percent (the initial edge
density being 10 percent). As can be seen in Figure 20 and Figure 21, our negative
findings were consistent across the different edge densities. At the same time, Ta-
ble 5 and Table 6 show that the global graph measure effects in the gamma band
were robust across edge densities as well.

In summary, the PLV global efficiency and the dwPLI hub disruption index in
the gamma band were consistently changed in chronic pain patients. Both were
decreased in chronic pain patients, with the PLV global efficiency showing a small
effect size (average Cohen’s d = 0.44) and the dwPLI hub disruption index showing
a medium effect size (average Cohen’s d = 0.61).

43



3 Results

A Phase-based (dwPLI) connectivity (CP — HC)

n.s. n.s. n.s. n.s.
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C Phase-based (dwPLI) clustering coefficient (CP — HC)
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D dwPLI global graph measures
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Figure 19: Local and global graph theoretical measures
of functional connectivity - dwPLI.
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All connectivity analyses based on the dwPLI, a
more conservative phase-based connectivity mea-
sure. Brain topographies of the comparison of con-
nectivity strength, degree and local clustering co-
efficient between chronic pain patients (CP) and
healthy controls (HC) in the theta, alpha, beta and
gamma band frequencies, averaged across frequen-
cies in each band, are shown in (A) — (C). The col-
ormaps show t-values. Cluster-based permutation
tests were performed to test for significance. Sig-
nificant results are masked, i.e. all voxels but the
ones belonging to a significant cluster are greyed
out. In the absence of significant clusters, colors
were retained to show potential trends. No sig-
nificant effects were found in the local connectiv-
ity analyses and, thus, nothing is greyed out. (A)
dwPLI connectivity strength. No significant differ-
ence between the connectivity strength of chronic
pain patients and healthy controls was observed in
any frequency band (theta ty,qq/min = 2.2/-2.3, al-
pha tyaz/min = 2.3/-3.0, beta ta0/min = 1.2/-
3.0, gamma ty,40 /min = 1.6/-2.8). (B) dwPLI de-
gree. No significant difference between the degrees
of chronic pain patients and healthy controls was
observed in any frequency band (theta ty,q0/min =
2.9/-3.1, alpha t,00 /min = 4.2/-4.1, beta t a0 /min
= 3.2/-2.5, gamma ty40/min = 4.1/-3.4). (C) dw-
PLI clustering coefficient. No significant difference
between the clustering coefficients of chronic pain
patients and healthy controls was observed in any
frequency band (theta ty,qz/min = 2.8/-3.9, alpha
tmaz/min = 3.1/-3.3, beta tyqp/min = 2.8/-4.0,
gamma by, /min = 3.2/-3.2). (D) The radar plot is
analogous to Figure 18. Here, global graph measures
based on dwPLI connectivity are shown. Only the
hub disruption index in the gamma band was signif-
icantly lower in chronic pain patients (p(corrected)
= 0.00, Cohen’s d = 0.63). No other global graph
measure showed a significant difference, see Table 4
for statistical details.



3.6 Control Analyses

A PLV 0.05 degree (CP — HC) B PLV 0.05 clustering coefficient (CP — HC)
ns. ns. n.s. ns. n.s. n.s. ns. n.s.
theta alpha beta gamma theta alpha beta gamma
C AEC 0.05 degree (CP — HC) D AEC 0.05 clustering coefficient (CP — HC)
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Figure 20: Local and global measures of functional connectivity — 5 percent edge density
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Figure 21: Local and global measures of functional connectivity — 20 percent edge density
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3.6 Control Analyses

In Figure 20 and Figure 21 graph analyses were repeated with an edge density of 5 percent instead of 10 percent,
i.e. the threshold for edges within the graphs was set to the 5 percent highest connectivity values. (A) — (F) are
analogous to Figure 17, showing the comparison of degree and clustering coefficient between chronic pain patients
(CP) and healthy controls (HC).

Figure 20: (A) Degree based on PLV with 5 percent edge density. No significant difference between the degrees of
chronic pain patients and healthy controls was observed in any frequency band (theta t,,q5/min = 3.2/-3.5, alpha
trmaaz/min = 3:0/-3.2, beta ta0 /min = 3.7/-3.2, gamma t.,40 /min = 3.8/-3.4). (B) PLV clustering coefficient with
5 percent edge density. No significant difference between the clustering coefficients of chronic pain patients and
healthy controls was observed in any frequency band (theta t,,40/min = 4.0/-4.2, alpha t,,40/min = 3.3/-3.8, beta
trmaz/min = 3-6/-3.9, gamma ty,q5/min = 3.5/-4.2). (C) Degree based on AEC with 5 percent edge density. No
significant difference between the degrees of chronic pain patients and healthy controls was observed in any frequency
band (theta tqq/min = 3.0/-2.7, alpha ty, 40 /min = 2.4/-2.9, beta tyqa /min = 2.5/-2.2, gamma t,,q5 /min = 3.0/-
3.3). (D) AEC clustering coefficient with 5 percent edge density. No significant difference between the clustering
coefficients of chronic pain patients and healthy controls was observed in any frequency band (theta bmac/min =
3.5/-1.9, alpha tp,q0 /min = 2.5/-2.6, beta t,q0 /min = 3.4/-2.7, gamma t,,q0 /min = 2.9/-2.4). (E) Degree based
on dwPLI with 5 percent edge density. No significant difference between the degrees of chronic pain patients and
healthy controls was observed in any frequency band (theta t,,qz/min = 3.0/-3.3, alpha t,,40/min = 3.6/-4.2,
beta tyap/min = 3.6/-2.4, gamma ty,q5/min = 3.4/-3.1). (F) dwPLI clustering coefficient with 5 percent edge
density. No significant difference between the clustering coefficients of chronic pain patients and healthy controls
was observed in any frequency band (theta t,,qq0/min = 2.8/-3.4, alpha tyqz/min = 3.0/-3.7, beta tyaq/min =
2.9/-4.3, gamma tyqz /min = 3.2/-2.6). (G) — (I) are radar plots analogous to Figure 18, for statistical details see
Table 5. (G) PLV global graph measures based on 5 percent edge density. PLV-based global efficiency in the gamma
band was significantly lower in patients (p(corrected) = 0.011, Cohen’s d = 0.44). The PLV-based small-worldness
in the gamma band was also significantly lower in patients (p(corrected) = 0.0040, Cohen’s d = 0.45). (H) AEC
global graph measures based on 5 percent edge density. No significant difference was found. (I) dwPLI global graph
measures based on 5 percent edge density. dwPLI-based hub disruption index in the gamma band was significantly
lower in patients (p(corrected) = 0.00, Cohen’s d = 0.61).

Figure 21: (A) Degree based on PLV with 20 percent edge density. No significant difference between chronic pain
patients’ and healthy controls’ degrees were observed in any frequency band (theta t,,qq/min = 3.0/-3.6, alpha
trmaz/min = 2.9/-3.0, beta t a0 /min = 3.7/-2.7, gamma t,,q4 /min = 3.9/-3.5). (B) PLV clustering coefficient with
20 percent edge density. No significant difference between chronic pain patients’ and healthy controls’ clustering
coefficients were observed in any frequency band (theta ty,4¢/min = 4.1/-1.6, alpha t,,00/min = 3.2/-3.1, beta
trmaz/min = 5.1/-2.4, gamma t,,q5/min = 5.2/-1.9). (C) Degree based on AEC with 20 percent edge density. No
significant difference between chronic pain patients’ and healthy controls’ degrees were observed in any frequency
band (theta ti,ae/min = 2-9/-3.4, alpha tpap/min = 2.6/-2.7, beta tra0/min = 2.6/-2.0, gamma t,,40/min =
3.3/-2.8). (D) AEC clustering coefficient with 20 percent edge density. No significant difference between chronic
pain patients’ and healthy controls’ clustering coefficients were observed in any frequency band (theta Smax/min
= 2.9/-1.8, alpha ty,40/min = 2-1/-2.5, beta tpap/min = 3.0/-2.0, gamma t,,40 /min = 3.3/-1.1). (E) Degree
based on dwPLI with 20 percent edge density. No significant difference between chronic pain patients’ and healthy
controls’ degrees were observed in any frequency band (theta tmaz/min = 3.0/-2.8, alpha tmaz/min = 4.1/-3.8, beta
tmac/min = 3:2/-2.7, gamma ty,qq /min = 4.1/-3.2). (F) dwPLI clustering coefficient with 20 percent edge density.
No significant difference between chronic pain patients’ and healthy controls’ clustering coefficients were observed
in any frequency band (theta ty,qz/min = 2.7/-3.5, alpha ty0q /min = 2.9/-3.3, beta tyaz /min = 2.7/-3.4, gamma
trmaz/min = 2.9/-3.6). (G) — (I) are radar plots analogous to Figure 18, for statistical details see Table 6. (G) PLV
global graph measures based on 20 percent edge density. PLV-based global clustering coefficient in the gamma band
was significantly higher in patients (p(corrected) = 0.014, Cohen’s d = 0.0012). The PLV-based global efficiency in
the gamma band was significantly lower in patients (p(corrected) = 0.0080, Cohen’s d = 0.00040). The PLV-based
small-worldness in the gamma band was significantly higher in patients (p(corrected) = 0.045, Cohen’s d = 0.0036).
(H) AEC global graph measures based on 20 percent edge density. No significant differences were found. (I) dwPLI
global graph measures based on 20 percent edge density. dwPLI-based hub disruption index in the gamma band
was significantly lower in patients (p(corrected) = 0.00, Cohen’s d = 0.056).
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Table 5: Global graph measure statistics — 5 percent edge density.

PLV AEC dwPLI
0 o 3 o 0 o B Y 0 a B Y
gCC [ 031 044 046 027 | 0049 042 010 035 | 0.097 0.33  0.017  0.38
gEff | 0.026 0.082 0.038 017 042 031 048 | 027 0.045 0.14  0.036
S 0.017  0.099  0.055 0.081 046 0.058 027 | 010 013 022  0.089
kq 038 031 046 038 | 0.032 019 050  0.30 | 0.0071 0.090 0.44 [HOWGON

Uncorrected p-values of non-parametric permutation tests comparing global graph measures between chronic pain
patients and healthy controls, based on voxels, but with 5 percent edge density, i.e. only the 5 percent highest
connectivity values were included in the graph analyses. P-values were corrected for multiple comparisons using the
Holm-Bonferroni method across the four frequency bands to take cross-spectral dependencies into account. After
correction, the PLV-based global efficiency in the gamma band was significantly lower in patients (p(corrected) =
0.011, Cohen’s d = 0.44). The PLV-based small-worldness in the gamma band was also significantly lower in patients
(p(corrected) = 0.0040, Cohen’s d = 0.45). Further, the dwPLI-based hub disruption index in the gamma band was
also significantly lower in patients (p(corrected) = 0.00, Cohen’s d = 0.61). Cell coloring indicates the direction
of significant effects; blue indicates lower values in chronic pain patients. gCC, global clustering coefficient; gEff,
global efficiency; S, small-worldness; kd, hub disruption index.

Table 6: Global graph measure statistics — 20 percent edge density.
PLV AEC dwPLI
0 o 3 o 0 o B o 0 a B ol
gCC | 0.022 0.033 0.036 | 0.0018| 0.25 0.25 0.30 0.12 0.34 0.27 0.12 0.24
gEff 0.024  0.090 0.050 0.042 0.34 0.071 0.15 0.25 0.18 0.38 0.47
S 0.031  0.027  0.052 | 0.0056 | 0.27 0.25 0.21 0.073 0.27 0.35 0.14 0.25
kg 0.32 0.39 0.45 0.36 0.029  0.093 0.45 0.50 0.15 0.29 0.24 o0

Uncorrected p-values of non-parametric permutation tests comparing global graph measures between chronic pain
patients and healthy controls, based on voxels, but with 20 percent edge density, i.e. only the 20 percent highest
connectivity values were included in the graph analyses. P-values were corrected for multiple comparisons using
the Holm-Bonferroni method across the four frequency bands to take cross-spectral dependencies into account.
After correction, the PLV-based global clustering coefficient in the gamma band was significantly higher in patients
(p(corrected) = 0.014, Cohen’s d = 0.43). The PLV-based global efficiency in the gamma band was significantly
lower in patients (p(corrected) = 0.0080, Cohen’s d = 0.44). The PLV-based small-worldness in the gamma band
was significantly higher in patients (p(corrected) = 0.045, Cohen’s d = 0.38). Further, the dwPLI-based hub
disruption index in the gamma band was also significantly lower in patients (p(corrected) = 0.00, Cohen’s d = 0.61).
Cell coloring indicates the direction of significant effects; blue and red indicate lower and higher values in chronic
pain patients, respectively. gCC, global clustering coefficient; gEff, global efficiency; S, small-worldness; kd, hub
disruption index.

3.7 Relationships Between Brain Activity and Clinical
Parameters

We further investigated the relationships of brain-based activity and connectivity
measures with clinical parameters. To reduce the number of statistical tests, we
restricted our analyses to selected measures of brain activity and brain connectivity
that were associated with clinical parameters of chronic pain patients in previous
studies (Sarnthein et al., 2006; Stern et al., 2006; Schmidt et al., 2012; de Vries et al.,
2013; Gonzalez-Roldan et al., 2016; Mansour et al., 2016; Kuo et al., 2017; Vanneste
et al., 2017; Choe et al., 2018; Fallon et al., 2018). We thus computed correlations
between the global peak frequency, mean global power in the four frequency bands,
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the hub disruption index, and the following major clinical parameters: current pain
intensity, average pain intensity in the last four weeks, pain duration, pain disabil-
ity, mental and physical quality of life, depression, and medication as quantified by
the medication quantification scale (Harden et al., 2005). Additionally, we corre-
lated the significant clusters in the theta and gamma PLV connectivity, the PLV
global efficiency in the gamma band, and the dwPLI hub disruption index with the
same clinical parameters. The results showed no significant correlations (Figure 22).
Thus, we did not observe any relationships between measures of brain activity and
functional connectivity, and clinical parameters including medication. This suggests
that frontal connectivity increases and global network changes in chronic pain pa-
tients do not scale with disease characteristics, but rather characterize the state of
chronic pain per se.

Curr. pain Avg. pain Pain dur. PDI  VR12-PCS VR12-MCS  BDI MQS

Peak freq p

uncorrected
Power theta ( )

Power alpha o1
Power beta
Power gamma
kdAEC theta
kdAEC alpha
kdAEC beta
kdAEC gamma
kdPLV theta
kdPLV alpha
kdPLV beta

kdPLV gamma

0.05

gEffPLV gamma
connPLV theta

connPLV gamma

kddwPLI gamma

Figure 22: Correlations between clinical/behavioral parameters and brain activity/functional connectivity mea-
sures.

The cell values show the strength and direction of the correlations (Pearson’s r) and the color depicts the uncorrected
p values. Only correlations showing a trend (p < 0.1) are shown. No correlation was statistically significant after
Holm-Bonferroni correction for multiple comparisons across the four frequency bands. Curr. pain, current pain
intensity; Avg. pain, average pain intensity in the last 4 weeks; Pain dur., pain duration; PDI, pain disability
index; VR12-PCS, Veterans’s RAND physical component score; VR12-MCS, Veterans’s RAND mental component
score; BDI, Beck Depression Inventory II, MQS, medication quantification scale; peak freq, peak frequency; kd, hub
disruption index; AEC, measure is based on the orthogonalized amplitude envelope correlation; PLV, measure is
based on the phase locking value; dwPLI, measure is based on the debiased weighted phase lag index; gEff, global
efficiency; conn, connectivity strength.
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3.8 Machine Learning Approach

Finally, we performed a multivariate machine learning approach. This approach
extends the previous univariate approaches by taking patterns of brain activity
and connectivity into account rather than single pieces of information in isolation.
Moreover, it complements the previous descriptive group analyses by adding a pre-
dictive, single-subject analysis. We used an SVM classifier to test whether patterns
of brain activity and/or connectivity can distinguish between chronic pain patients
and healthy controls. We trained a linear SVM on all aforementioned measures of
brain activity and functional connectivity, using an automated sequential feature
selection algorithm. The performance of the SVM was evaluated using a 10-fold
cross-validation. The resulting mean accuracy was 57 £ 4 percent with a sensitivity
of 60 £+ 5 percent and a specificity of 57 4+ 5 percent. To test whether this result
exceeds chance level, we repeated the whole procedure with the same data but ran-
domly shuffled labels of chronic pain patients and healthy controls. This resulted in
a permutation distribution with 50 4+ 5 percent accuracy. A non-parametric permu-
tation test of the two accuracy distributions (Figure 23A) confirmed that the real
model was significantly more accurate than random guessing (p < 0.001). Finally,
we were interested to know which features of brain activity and/or connectivity were
most relevant for the classification. The automatic feature selection picked on av-
erage 5.5 features for the SVMs. We therefore show the 5 most frequently picked
features in Figure 23B. The most relevant features were phase-based connectivity
measures in frontal brain areas at gamma (MNI: -40, 30, 40 and -30, 50, 10) and
theta (MNI: -20, 50, 40) frequencies. These 3 features were chosen with a rate
greater than 10 percent each, whereas all other features were picked with a rate of
less than 10 percent.

Thus, a multivariate machine learning approach could statistically significantly
distinguish between chronic pain patients and healthy controls based on EEG mea-
sures of brain activity and connectivity. In particular, frontal phase-based con-
nectivity at theta and gamma frequencies provided important information for the
classification.
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Figure 23: Multivariate machine learning approach to
classify chronic pain patients and healthy

controls.

3.8 Machine Learning Approach

(A) Distribution of mean accuracies resulting from a
10-fold cross-validation. The blue histogram shows
the results trained on the actual data including all
features of brain activity and connectivity. The gray
histogram shows a SVM trained on data with ran-
domly permuted labels. The SVM trained on the
real data shows an accuracy of 57 + 4 percent,
significantly higher than the accuracy of the SVM
trained on randomly permuted data, 50 + 5 per-
cent (p < 0.001). (B) The 5 most predictive fea-
tures, i.e. those selected most consistently by the
SVMs. Specific measures are color-coded; the size
of the spheres represents how often a specific feature
was selected. The most frequently selected features
were PLV-based connectivity of the prefrontal cor-
tex (MNI: -40, 30, 40 and -30, 50, 10) in the gamma
band, which were selected in 15 percent and 12 per-
cent of SVMs, respectively, and dwPLI-based con-
nectivity of the prefrontal cortex (MNI: -20, 50, 40)
in the theta band, which was selected in 15 percent
of SVMs. All other features were selected with a
frequency of less than 10 percent.
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4 Discussion

In this study, we harnessed the potential of EEG to determine abnormalities of
brain function in chronic pain. Defining such abnormalities promises to advance the
understanding of the neural basis of chronic pain. Moreover, they might serve as
a brain-based marker and novel treatment target of chronic pain. To this end, we
recorded and compared resting-state EEG data of a large cohort of patients suffering
from chronic pain with those of age and gender-matched healthy controls. The anal-
yses ranged from well-established global measures of brain activity to sophisticated
connectivity and network analyses in source space. All analyses were data-driven
and rigorously corrected for multiple comparisons. To the best of our knowledge,
this approach represents the most extensive analysis of EEG data from one of the
largest cohorts of chronic pain patients so far. The results show that global measures
of brain activity as measured by EEG did not differ between chronic pain patients
and a matched healthy control group. However, our approach revealed a stronger
phase-based connectivity at theta and gamma frequencies in the prefrontal cortex
of chronic pain patients. Furthermore, we observed a global reorganization of brain
networks at gamma frequencies. Based on patterns of brain activity and connectiv-
ity, a multivariate machine learning approach could classify chronic pain patients
and healthy controls significantly above chance with an accuracy of 57 percent.

4.1 The TCD Model of Chronic Pain

Previous resting-state EEG studies investigating alterations in chronic pain patients
mainly reported an increase in theta power together with a slowing of the global
peak frequency compared to healthy controls (Sarnthein et al., 2006; Vanneste et al.,
2018). These findings have been related to the Thalamocortical Dysrhythmia (TCD)
model of chronic pain (Llinas et al., 2005). In this model, abnormal nociceptive in-
put causes abnormal thalamic bursts at theta frequencies. These theta oscillations
are transmitted to the cerebral cortex where they result in disinhibition of neigh-
boring areas, which, in turn, results in abnormal oscillations at gamma frequencies
and eventually in ongoing pain. This model is highly appealing, but evidence is
still sparse (see 1.1.5 for an extensive review). The present completely data-driven
approach in a large cohort of chronic pain patients neither shows increased theta
power nor a shift of global peak frequency and therefore does not directly support
the TCD model of chronic pain.
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4.2 The Role of the Prefrontal Cortex in Chronic Pain

The univariate comparisons of brain activity/connectivity between groups and the
multivariate machine learning approach congruently indicated increased functional
connectivity of the prefrontal cortex in chronic pain patients. These findings are
in accordance with fMRI studies (Baliki et al., 2012; Hashmi et al., 2013; Vachon-
Presseau et al., 2016) as well as with recent reviews and theories (Seminowicz and
Moayedi, 2017; Baliki and Apkarian, 2015; Rauschecker et al., 2015), which have
shown that structural and functional alterations in the prefrontal cortex play an
important role in chronic pain. Previous EEG studies have also pointed towards
a close relationship between high-frequency oscillations in prefrontal areas and the
perceived pain in chronic (May et al., 2018) and experimental longer-lasting pain
(Nickel et al., 2017; Schulz et al., 2015), indicating a dissociation from the repre-
sentation in sensorimotor areas that is generally observed in acute pain (Hu and
Tannetti, 2019). A more precise localization of the connectivity increases in the pre-
frontal cortex is beyond the spatial resolution of EEG. Hence, it remains unclear
how the present observations relate to the multitude of functions represented in
the prefrontal cortex, which include motor, cognitive control, emotional, evaluative
and modulatory functions (de la Vega et al., 2016; Kragel et al., 2018). However,
a role of the prefrontal cortex in chronic pain points to an important function of
emotional-evaluative, motivational and decision-making circuits rather than sensory
circuits in chronic pain (Baliki and Apkarian, 2015; Rauschecker et al., 2015).

4.3 Brain Oscillations at Gamma Frequencies in
Chronic Pain

Our findings revealed that chronic pain is associated with local increases of con-
nectivity at gamma frequencies in the frontal cortex. These local increases were
associated with a global disturbance of brain network organization in the gamma
frequency band. The machine learning approach specifies that the frontal increase in
connectivity of gamma oscillations has the highest predictive value for distinguish-
ing chronic pain patients from healthy controls. Mechanistically, gamma oscillations
have been related to the activity of inhibitory parvalbumin-positive GABAergic in-
terneurons (Buzsaki and Wang, 2012). In an animal model of chronic pain, these
interneurons have been implicated in the modulation of pyramidal cell firing in the
prefrontal cortex and pain behavior (Zhang et al., 2015). This link between GABAer-
gic inhibition, gamma oscillations, prefrontal cortex activity and pain behavior is
in accordance with the present observations. Functionally, gamma oscillations have
been associated with a broad range of cognitive and behavioral functions including
object representation, memory and attention (Wang, 2010; Donner and Siegel, 2011;
Fries, 2015). Thus, they likely represent a basic feature of neuronal signaling and
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communication (Wang, 2010; Donner and Siegel, 2011; Fries, 2015), which appears
to be particularly related to the local processing and feedforward communication
of currently important stimuli (Ploner et al., 2017; Donner and Siegel, 2011; Fries,
2015). These concepts would be in line with an association of chronic pain with
prefrontal gamma oscillations possibly signaling the emotional, motivational and
evaluative aspects of pain.

4.4 Automated Classification of Chronic Pain

The multivariate machine learning approach showed that applying an SVM classifier
to resting-state EEG data makes it possible to distinguish between chronic pain pa-
tients and healthy controls with a 57 percent accuracy. Interestingly, a recent study
which pursued a closely related EEG approach showed accuracies of greater than 90
percent for the classification of chronic pain patients vs. healthy controls (Vanneste
et al., 2018), which were not achieved in the present study. The reasons for this
disparity remain unclear as the available information on the previous approach does
not allow for precise replication. An attempted replication of the study’s meth-
ods on our data with reasonable parameters did not yield a classification accuracy
significantly above chance level.

Our machine learning approach identified features of brain activity which were
particularly relevant for the distinction between chronic pain patients and healthy
controls. In this study, we found that prefrontal connectivity at gamma frequencies
(> 60 Hz) was particularly useful for the distinction between chronic pain patients
and healthy controls. Interestingly, the automated feature selection chose on aver-
age only five to six features for the classification, indicating that additional features
did not improve performance. This implies that many of the features contained
redundant information, which may be a result of the spatial resolution of the source
reconstructed EEG data being coarser than the chosen grid of 1 x 1 x 1 ecm? voxels.
Further, though we found no significant effects for the local connectivity using the
dwPLI, two of the five most predictive features were dwPLI-based features. This in-
dicates that the dwPLI connectivity measures also contained predictive information
for the classification of chronic pain patients, albeit less than the PLV connectivity
measures.

4.5 Altered Phase-based Connectivity in Chronic Pain

Thus, both phase-based connectivity measures, the dwPLI and PLV, showed pre-
dictive value in the multivariate approach and also revealed group-level differences
in the univariate approach. We investigated both phase- and amplitude-based func-
tional connectivity measures, and found no evidence for any alterations using the
amplitude-based AEC measure. Intrinsic phase-based coupling has been shown to
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be closely related to plasticity (Engel et al., 2013), being involved in shaping the
cortical network during development (Uhlhaas et al., 2010) and memory processing
in the adult brain (Fell and Axmacher, 2011). Thus, our results are consistent with
models of chronic pain which are based on aberrant learning processes (Baliki and
Apkarian, 2015; Seymour, 2019).

4.6 Limitations

Several limitations of the present study need to be pointed out. First, abnormal
oscillations and synchrony are observed in many neurological diseases (Uhlhaas and
Singer, 2006) and the specificity of the present results for chronic pain remains un-
clear. However, a potential lack of specificity does not necessarily limit the clinical
usefulness and validity of a brain-based marker of chronic pain. In fact, many well-
established laboratory, electrophysiological and imaging tests yield results which
are neither disease-specific nor symptom-specific, but are clinically highly useful. A
prominent example is C-reactive protein (CRP), an unspecific inflammatory marker
ubiquitously used in various medical disciplines such as pulmonology (Butler et al.,
2019) and cardiology (Danesh et al., 2004). Second, the temporal resolution of
EEG is excellent, but its spatial resolution is low. The integration of the spatially
highly resolved information from fMRI with the temporal information provided by
EEG might therefore be a promising way to increase the accuracy of the present
approach. Third, drug effects cannot be ultimately ruled out. We excluded pa-
tients taking benzodiazepines, which have known effects on EEG signals (Bauer and
Bauer, 2011). However, in our representative cohort of chronic pain patients, most
patients took non-opioid analgesics, opioids and/or antidepressants. To control for
drug effects, we quantified medication using the medication quantification scale and
found no significant correlations between medication and the observed EEG effects.
Therefore, it is unlikely that our effects are solely driven by drug regimen. Fourth,
field spread and/or muscle artifacts can cause spurious synchrony of EEG signals. A
rigorous artifact correction procedure and analysis in source space are best practice
to reduce these effects. Additionally, we have computed a control analysis with the
connectivity between the peak voxels of our significant clusters and the EMG elec-
trodes in the right neck and masseter to check whether our effects were driven solely
by muscle artifacts and found no significant effect for the EMG signals. However,
muscle artifacts remain an inherent and delicate confound of EEG signals.

4.7 Towards a Brain-based Marker of Chronic Pain

In conclusion, our extensive, data-driven, and systematic analysis of EEG data from
a large cohort of chronic pain patients shows that global measures of brain activity
did not differ between chronic pain patients and a healthy control group. These
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negative findings might help to clarify inconsistencies in previous studies and guide
future research. Our study reveals increased prefrontal synchrony together with
global network reorganization at gamma frequencies in chronic pain, which enables
differentiation between chronic pain patients and healthy controls. This finding
advances the understanding of the brain mechanisms of chronic pain and might
represent a step closer towards a safe, low-cost, widely available and potentially
mobile brain-based marker of pain.

However, it is important to note that not all 7 criteria as established by the
consensus paper (see 1.3) are met, and we can therefore not claim to have found a
neuromarker of chronic pain.

1. Precise definition of a pain neuromarker. Using the SVM weights allows
for a precise definition of a neuromarker and the SVM model also defines a precise
threshold for classification. This criterion is therefore fulfilled.

2. Applicability of the pain neuromarker to individuals. As the SVM model is
easily used to classify new datasets, this criterion is also fulfilled, albeit the accuracy
is not sufficient for clinical use.

3. Methodological procedures used during testing must be validated. Record-
ing resting-state EEG data is a well-established procedure, but preprocessing of
EEG data depends largely on visual inspection. This makes standardization across
different labs or hospitals challenging, making this criterion an issue of general im-
portance for any EEG neuromarker.

4. Measures must be internally consistent and image data quality validated
for the individual tested using positive and negative controls. In EEG data
acquisition, many artifacts such as eye blinks and muscle activity are easily observed
in the raw data, and can be controlled for during the recording or afterwards during
preprocessing, but no established measure for data quality exists. It is therefore
challenging to fulfill this criterion at the current state of EEG research.

5. The neuromarker must be diagnostic for pain. The largest caveat of our cur-
rent putative neuromarker for chronic pain is its low accuracy, rendering it infeasible
for clinical purposes. This criterion is therefore clearly not met.

6. The neuromarker must be validated with converging methods. Prefrontal
regions have been implicated in fMRI studies of chronic pain patients (Kuner and
Flor, 2017), and brain oscillations at gamma frequencies have also been associated
with chronic pain in mouse models (Tan et al., 2019). Our results are therefore
consistent across other neuroimaging methods and species.

7. The neuromarker must be generalizable to the patient group tested and to
the test conditions. One of our goals was to find an overarching pattern across
various types of chronic pain instead of one specific condition such as chronic back
pain. We therefore investigated a large cohort suffering from diverse types of chronic
pain. An important test of generalizability would be to apply our machine learning
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model on an independent population of chronic pain patients and healthy controls
to conclusively fulfill this criterion.

Thus, substantial challenges concerning the accuracy, specificity and generalizabil-
ity of the findings remain to be overcome. Even though the accuracy of the present
study is far from being sufficient for clinical purposes, this result has important
implications. First, the present approach constitutes a proof-of-principle, showing
that patterns of brain activity as measured by EEG can help distinguish chronic
pain patients from healthy controls using a simple linear SVM. This represents a
further step towards a much sought-after brain-based marker of pain (Davis et al.,
2017; Upadhyay et al., 2018). FMRI recordings have already shown that, in princi-
ple, it is possible to establish such a marker (Wager et al., 2013; Mano et al., 2018).
The present approach complements these fMRI approaches by using EEG record-
ings. Second, abnormal patterns of EEG activity in chronic pain might represent
potential targets for novel therapeutic strategies such as non-invasive brain stimu-
lation techniques (Polania et al., 2018) and/or neurofeedback approaches (Sitaram
et al., 2017). In particular, the emerging transcranial alternating current stimulation
(tACS) technique (Polania et al., 2018) allows for the frequency-specific modulation
of neuronal oscillations and synchrony and might thus represent a promising ap-
proach to modulating pain. These results can therefore be seen as a localizer for
future studies seeking to manipulate chronic pain via non-invasive brain stimulation.

Future projects which investigate the temporal variability of the EEG signals
(Garrett et al., 2013) or implement deep learning (LeCun et al., 2015) might in-
crease accuracy and specificity, and have already been started by our working group.
Further, experiments in which prefrontal oscillations at gamma frequencies are mod-
ulated externally via tACS to modulate pain perception are also being conducted.
These experiments could corroborate the current findings, advance our knowledge
towards a brain-based marker of chronic pain, and provide causal evidence for the
role of brain oscillations in pain perception. Importantly, any negative findings
from these experiments, which are notoriously under-reported in general, would still
contribute to our mechanistic understanding of pain and its processing in the brain.
Other important next steps towards a brain-based marker of chronic pain are record-
ings from larger cohorts of patients with different types of chronic pain, comparisons
with patients suffering from other neuropsychiatric diseases, the standardization of
recording and analysis methods, and data-sharing approaches. These steps hold
great promise but require huge concerted efforts. However, the enormous relevance
of the clinical problem and the failure of many previous diagnostic and therapeutic
strategies justify these efforts.
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