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Abstract

Many years of active research and development have advanced fluorescence microscopy to new
standards of contrast and resolution in biological imaging. While innovative super-resolution
techniques enable the possibility of visualizing single molecules in cells, understanding com-
plex biological processes usually requires multi-scale imaging. Many highly dynamic processes,
such as brain activity in live animals, are not only very fast, but three dimensional in nature.
In order to record such processes, high speed 3D microscopy techniques are needed.

Light field microscopy enables scanless 3D imaging of fluorescent specimens by strategically
incorporating an array of micro-lenses into the optical path of a conventional wide-field micro-
scope. Thus, similarly to a multi-stereo imaging device, the microscope captures both lateral
and angular light field information in a single shot. This arrangement allows for subsequent
volumetric reconstruction of the original 3D distribution of fluorescent emitters in the sam-
ple.

While its ability to capture the 3D scene at camera frame rate makes LFM particularly attrac-
tive for biological applications involving high dynamics, there are several challenges to the
modality. As the system simultaneously records both lateral and axial information using a
limited bank of sensor elements, the measurements are multiplexed, and thus the microscope
captures axial information at the expense of lateral resolution.

In this thesis we develop 3D reconstruction schemes for computationally recovering high res-
olution images from light field measurements. We address two different microscope designs:
the conventional light field microscope (LFM) and the Fourier light field microscope (FLFM).
The conventional LFM employs a micro-lens array at the image plane of a standard wide-
field microscope counterpart. In the case of the FLFM, the micro-lens array is placed at the
Fourier plane. While the difference between these microscopes is minor in appearance, they
are fundamentally different both in terms of complexity of the imaging model and in terms
of recoverable resolution. The LFM configuration suffers from non-uniform resolution across
the axial dimension, and exhibits very low resolution around the native object plane. This
limitation is bound to the physical properties of the device and cannot be overcome computa-
tionally. The FLFM design was proposed more recently to address some of the disadvantages
of conventional LFM.

In order to understand the sampling requirements of these devices, we analyze the image for-
mation models and derive their wave-based point spread functions. We then propose custom
3D reconstruction algorithms that exploit the aliasing in the measurements to recover compu-
tationally super-resolved images and evaluate the methods using several biological samples.
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Zusammenfassung

Über Jahre hinausgehende aktive Forschung und wissenschaftlicher Fortschritt haben die Flu-
oreszenzmikroskopie zu neuen Standards für Bildkontrast und Auflösung in der biologischen
Bildgebung geführt. Während innovative Superauflösungstechniken die Möglichkeit bieten,
einzelne Moleküle in Zellen zu visualisieren, erfordert das Verständnis komplexer biologischer
Prozesse in der Regel mehrskalige Bildgebung. Viele hochdynamische Prozesse, wie die Gehir-
naktivität von lebenden Tieren, sind nicht nur sehr schnell, sondern auch dreidimensional.
Um solche Prozesse aufzuzeichnen, werden 3D-Mikroskopietechniken mit hoher Bildfrequenz
benötigt.

Die Lichtfeld Mikroskopie (LFM) ermöglicht die scanless 3D-Bildgebung von fluoreszieren-
den Proben durch die strategische Einbindung eines Arrays von Mikrolinsen in der optischen
Achse eines standard Weitfeldmikroskops. Somit erfasst das Mikroskop ähnlich einem Multi-
Stereo-Bildgebungsgerät sowohl seitliche als auch Winkelinformation in einer einzigen Auf-
nahme. Diese Anordnung ermöglicht im Anschluss die volumetrische Rekonstruktion der ur-
sprünglichen 3D-Verteilung der Fluoreszenzemitter in der Probe.

Was LFM besonders attraktiv für biologische Anwendungen mit hoher Dynamik macht, ist
dessen Fähigkeit Aufnahmen von der 3D Szene in Echtzeit zu erfassen. Leider gibt es mehrere
Herausforderungen an dieser Prozedur. Da die Anzahl an Sensorelementen, die für eine gle-
ichzeitige Aufnahme von lateralen und axialen Informationen eingesetzt werden, begrenzt ist,
müssen Messungen multiplexiert werden, was zu einem Kompromiss zwischen axialer und
lateraler Auflösung führt.

In dieser Arbeit entwickeln wir 3D-Rekonstruktionsalgorithmen, die die rechnerische Wieder-
herstellung superauflösender Bilder aus Lichtfeldaufnahmen ermöglichen. Dafür untersuchen
wir zwei verschiedene Implementierungen von Lichtfeld-Mikroskopen: das standard Lichtfeld-
Mikroskop (LFM) und das Fourier-Lichtfeld-Mikroskop (FLFM). Ein standard LFM entsteht
indem man ein Mikrolinsenarray in der Bildebene eines normalen Weitfeldmikroskop legt.
Beim FLFM wird das Mikrolinsenarray in die Fourier-Ebene platziert. Obwohl die zwei
Mikroskopen ähnlich sind, gibt es grundsätzliche Unterschiede die sich sowohl auf die Kom-
plexität des Bildentstehungsmodells als auch auf die erreichbare Auflösung beziehen. Die
LFM-Konfiguration leidet unter einer ungleichmäßigen Auflösung über die axiale Dimension
und zeigt eine sehr niedrige Auflösung um die native Objektebene. Diese Einschränkung wird
von der physikalischen Eigenschaften des Linsensystems bestimmt und kann rechnerisch nicht
überwunden werden. Das FLFM-Design wurde in den letzten Jahren entworfen, um einige
Nachteile des standard LFMs aufzeheben.
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Zusammenfassung

Um die Sampling-Anforderungen dieser Geräte zu verstehen, analysieren wir die Bilderzeu-
gungsmodelle und leiten ihre wellenbasierten Punktbildfunktionen ab. Wir entwickeln dafür
neue 3D-Rekonstruktionsalgorithmen, die das Alias-Effekt in den Messungen zu Gunsten der
Erzeugung von superauflösenden Bilder nutzen und wir führen die Evaluation der Methoden
auf mehreren biologischen Proben aus.
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CHAPTER1
Introduction

1.1 Pioneers of microscopy

It was the seventeenth century when lenses became scientific instruments for the study of liv-
ing organisms. Around 1590, Zaccharias Janssen who was only five to ten years old at that
moment, invented the compound microscope while working in his father’s eyeglass workshop
in the Netherlands [1]. In a compound microscope the overall magnification is obtained using
two main optical elements: the objective lens and the eye-piece. At that time, Janssen’s inven-
tion was capable of achieving up to 9× magnification. The term “microscope” was first used
in 1625 by the botanist Giovanni Faber to describe Galileo’s “occhiolino” built in 1609 [2].
The word “microscope” has its root in the Greek “mikros” (small) and “skopos” (observer).
Galileo’s design (also a compound microscope) provided up to 30× magnification.

Until the late 1600s there are, however, no documented observations from these instruments.
The first major development was marked in 1655 when the English natural philosopher, Robert
Hooke published “Micrographia” [3] promoting the microscope as a promising scientific instru-
ment. “Micrographia” is the first illustrated microscopy book and it contains many detailed
observations including plants, seeds, a flea and the eye of a fly [4, 5]. Hooke named the pores
inside a cork sample as “cells”, and thus coining the biological term in use today [6]. Hooke’s
microscope was a compound one, very similar to the modern ones. Its design featured a light
source (oil lamp) to illuminate the sample, a stage and height adjuster. This setup enabled
him to achieved up to 50× magnification [4].

The most prominent figure related to the development of the microscope is probably Antonie
van Leeuwenhoek (1632-1723) who is known as the “Father of Microbiology”. He has built
over five hundred high-quality lenses and microscopes capable of magnifying up to 275×.
Antonie van Leeuwenhoek’s instruments were not compound microscopes. Unlike Hooke, he
used single lenses which reduced the problems of optical aberrations and produced superior
quality images compared to the instruments of that time. Enclosing a single spherical lens
and a sample holding pin, without an in-built light source, his microscopes were lightweight.
This setup allowed for imaging the samples as they were collected in the field. The imaging
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process consisted of sketching and documenting observations. His ability to grind and polish
extremely high-quality lenses capable of the greatest magnification of his times, together with
an extraordinary dedication to research, promote Van Leeuwenhoek to the rank of pioneer in
many areas of microbiology [6]. In his work, he studied the microscopic structure of seeds, fish
scales, nerves, bones, muscle fibers, algae and discovered microorganisms such as bacteria and
protozoa and other very small animals which he referred to as “animacule”. He communicated
his findings through letters addressed to the Royal Society [7].

1.2 Fluorescence microscopy

When imaging biological samples under a bright-field microscope, the contrast is obtained
from the scattering and absorption of incident light. As these samples are generally transpar-
ent, due to their refractive index being close to that of water, they do not interact much with
the incident light. As a result, the captured images exhibit low contrast. In order to address
this challenge in biological imaging, various modalities have been developed, including phase
imaging (as opposed to amplitude), sample staining and fluorescence imaging.

First described by Fritz Zernike in the 1930s [8], phase contrast microscopy is a technique for
producing enhanced contrast images of transparent samples. When light waves travel through
a medium, their amplitude and phase change. While the amplitude variations (brightness)
are the ones being sensed by the human eye or digital cameras, the shift in phase often carry
important information. The light scattered by a specimen is usually phase-shifted by 90 de-
grees relative to the illuminating light. Based on this observation, phase changes can be made
visible in phase contrast imaging as the transmitted and scattered light can be manipulated
independently. Phase contrast microscopy is an important advancement in biology and, as a
consequence, Zernike was awarded the Nobel prize in 1953 [9].

Another technique to improve the contrast in biological imaging is staining. Using high con-
trast substances, such as dyes, allows for highlighting micro-structures in biological specimens.
Differential contrast is obtained when certain parts of the sample are stained, for example, in
order to differentiate between the cytoplasm and the nucleus of the cell [10]. Staining can
also enable scientists to visualize metabolic processes. Staining breakthroughs that are wor-
thy of mention include the work of Camillo Golgi who used silver staining to visualize nervous
tissue [11] and Gram’s staining method for identifying bacterial organisms [12] which is the
most commonly used staining method as it differentiates a wide range of pathogens. How-
ever, the development of fluorescent staining has revolutionized the contrast enhancement
in microscopic imaging of biological specimens. Fluorescence imaging is probably the most
far-reaching development since the invention of the light microscope [6].

In 1852, British scientist George Gabriel Stokes published a paper describing the ability of
fluorite to transform UV light into blue visible light. He coined the word “fluorescence” for
referring to this phenomenon of wavelength change (refrangibility of light) [13]. As a more
general definition, florescence is the emission of light by a material that absorbed light (or other
electromagnetic radiation). The emitted light was a different (usually higher) wavelength than
the one of the excitation radiation.

While fluorescence occurs naturally in some minerals and organisms (biofluorescence), fluo-
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rophores can also be artificially synthesized. With the first fluorescent stain (fluorescein) being
developed in 1871 by the chemist Adolf von Bayer [14], fluorescent staining enables a massive
enhancement in detection contrast. In 2008, scientists Martin Chalfie, Roger Tsien and Osamu
Shimomura were awarded the Nobel prize for the development of of the green fluorescent
protein (GFP). While the GFP was first isolated from the jellyfish Aequorea Victoria in 1962 by
Shimomura et al. [15], in 1994 Chalfie et al. [16] showed that it could be expressed and flu-
oresce outside of the jellyfish. In cell biology, the GFP is used as a marker for gene expression.
It can be introduced in animals through genetic manipulation techniques and maintained in
their genome (and in the genome of their offspring) allowing for the continuous study of cells
it is expressed in.

After many years of research and development of various techniques, fluorescence microscopy
is arguably the most versatile optical imaging modality and an essential tool for modern bi-
ologists. With the development of dichromatic beam splitters [17, 18], the epi-fluorescence
microscope (reflected light fluorescence microscope) has become the standard choice. The
design allows for both excitation and emission optics to be on the same side of the specimen
[6]. Using a dichroic mirror, the objective focuses the illumination light on the sample and
also collects the light being emitted.

Capable of optical scanning, confocal fluorescence microscopy [19], uses a pinhole to ensure
that a small extent of the sample is illuminated, while another pinhole, at the detector, only
collects in-focus light. The design enhances the contrast considerably by reducing the out-of-
focus (background) light in the image, especially with laser-scanning illumination [20] which
is one of the most important advancements in fluorescence imaging [21].

Important advances have also been achieved on the illumination side. Two-photon excitation
fluorescence (2PEF) microscopy, developed from the concept of two-photon absorption, first
described in 1931 by Maria Gopport-Mayer [22], allows for imaging up to 1 mm deep tissue.
Two photons with longer wavelength than that of the the emitted light are required to trigger
the emission of one photon whose energy is the accumulated energy of the two excitation
photons. Due to its deep tissue penetration and low background signal, 2PEF has become a
powerful technique, in many cases, superior to confocal microscopy [23].

Light sheet fluorescence microscopy (LSFM) is another efficient method for high contrast fluo-
rescence imaging [24, 25]. As opposed to epi-fluorescence microscopy, LSFM illuminates only
a thin slice (a hundred nanometers to several millimeters) of the sample. A laser light-sheet is
used to illuminate perpendicularly to the imaging direction. It allows for 3D optical sectioning
and 3D reconstruction through slice-by-slice scanning. While the quality of the recorded im-
ages is comparable to the ones obtained in confocal microscopy, LSFM is orders of magnitude
faster as it allows for an entire plane to be imaged at once.

1.3 Super-resolution and 3D microscopy

According to Abbe’s theory [26], the highest achievable resolution that can be obtained with
an optical microscope, is imposed by the wave nature of light. The so-called “diffraction limit”
governs the resolving power of optical instruments. Thus, object points separated by a dis-
tance less than about half the wavelength of the incident light, cannot be resolved. Although
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technological advancements have led to spectacular image quality in microscopy, for over one
hundred years, Abbe’s diffraction barrier has been the ultimate limit in optical resolution.
More recently, innovative, non-conventional techniques have demonstrated spatial resolution
beyond what was believed unbreakable.

Stimulated emission depletion microscopy (STED) is one of the super-resolution microscopy
techniques, able to overcome the diffraction limit of light microscopy. STED works by selec-
tively deactivating fluorophores in certain regions of the specimen. The depletion is usually
achieved over a doughnut-shaped de-excitation region [27], allowing for the emission to oc-
cur from only a narrow central focal spot inside the deactivation torus. When the emission
region is smaller in extent than Abbe’s diffraction limit, a super-resolution image is obtained.
Stephan Hell, who was awarded the Nobel Prize in Chemistry in 2014 for STED, has developed
it together with Jan Wichmann in 1994 [28] and experimentally demonstrated it together with
Thomas Klar in 1999 [29].

Photo-activated localization microscopy (PALM) is another innovative super-resolution mi-
croscopy technique, invented by Eric Betzig and Herald Hess [30]. PALM relies on photo-
activatable fluorophores [31] to distinguish spatial locations of densely packed molecules [32].
In PALM, ultra-violet laser light is used to selectively activate subsets of fluorophores in a spec-
imen at a given time in order to localize each of them individually. When the emission of
neighboring molecules is triggered at different times, the photons coming from each such
molecules can be recorded separately. By randomly triggering small numbers of fluorophores
until all of them have emitted, their position can be accurately mapped in a super-resolution
image. In 2014 Eric Betzig was awarded the Nobel Prize in Chemistry for his contribution to
super-resolution fluorescence microscopy.

Stochastic optical reconstruction microscopy (STORM), proposed by Rust et al. [33] in 2006 is
another single molecule localization microscopy technique (SMLM). STORM relies on photo-
switchable dye pairs. Photoswitchable molecules can alternate between fluorescence and dark
state under different laser light activation, such that only a fraction of the fluorophores emit
at a time. Similarly to PALM, by repeatedly recording these signals, a super-resolution image
is generated.

Structured illumination microscopy (SIM) is another important super-resolution technique. In
SIM the sample is illuminated with a known striped light pattern (using a periodic grating).
By shifting the illumination pattern in a controlled way, a collection of images is acquired.
These images exhibit Moiré fringes [34]. Combining the information in interference signals,
a super-resolved image can be obtained via deconvolution. Using this technique a twofold
improvement over the optical resolution limit can be achieved [35].

These high resolution techniques, in combination with innovative illumination schemes, are
successfully capable of achieving high quality volumetric imaging [36, 37]. Confocal laser
scanning microscopy (CLSM) is probably the most commonly used technique for 3D micro-
scopic imaging [20, 38]. CLSM uses a point laser illumination and a pinhole at the detector
to block out-of-focus light. A 2D image is obtained via scanning over the specimen in a raster
pattern. A 3D image can be obtained by stacking together 2D images of the cross sections.

Other 3D microscopy techniques encode the depth information by asymmetrically distorting
the shape of the point spread function (PSF) of the system through PSF engineering methods

6



[39, 40]. Controlled distortions are usually achieved through inserting a phase mask in the
optical path. These distortions are depth dependent due to the phase mask acting on the phase
of the incoming wavefront [41]. Double-helix PSF (DH-PSF) [42] is one such 3D phase mask
based microscopy technique. The axial profile of the DH-PSF resembles an intertwined helix,
rather than the hourglass shape of the conventional PSF. The effective system response at the
sensor plane appears as two distinct spots and the orientation of these pairs of spots encodes
the axial position of a fluorescent molecule.

A thorough review of technological advancements and forecasts in fluorescent microscopy is
offered by Wollman et al. [6].

1.4 Light field microscopy

Dynamic biological processes, such as calcium signaling during brain activity or the mechanics
of heart beats, occur in three dimensions and at high speed in live animals. One major chal-
lenge in optical imaging is to record such processes with sufficient temporal and spatial (lateral
and axial) resolution [43]. While scanning microscopy approaches are highly optimized for
image quality, they lack on the temporal aspect.

To address this challenge, light field microscopy (LFM) enables scanless 3D imaging of fluores-
cent specimens by strategically incorporating an array of micro-lenses (MLA) into the optical
path of a conventional wide-field microscope. Thus, both spatial and directional light field
information (4D ligh field) is captured in a single shot, allowing for subsequent volumetric re-
construction of the original 3D distribution of fluorescent emitters in the imaged sample. Due
to its high speed 3D imaging capability, LFM has proven very attractive around applications in-
volving recording highly dynamic biological processes due to its ability to capture the 3D scene
at camera frame rate, without scanning. The potential of the modality has been demonstrated
in various biomedical application where speed represents a critical factor, including recording
neuro-dynamics in vertebrate model organisms [44–49] or live cell imaging [50].

Lenslet-based (plenoptic) imaging [51] has emerged from the principles of integral photogra-
phy proposed by G. Lippmann in 1908 [52]. Both light field photography [53–57] and light
field microscopy [58–61] have attracted a lot of interest and have become important research
topics in computational imaging. Plenoptic cameras enable various post-acquisition process-
ing possibilities like image refocusing [53, 62, 63], depth estimation [64–66] or 3D object
reconstruction via deconvolution and computational super-resolution methods [67–69].

While the scan-less 3D imaging capability is very attractive, the technique suffers from a num-
ber of disadvantages. As the LFM captures both lateral and axial information using a limited
bank of sensor elements, the information is multiplexed, and therefore the microscope cap-
tures axial information at the expense of lateral resolution. This drawback represents the
well-known resolution trade-off in light field imaging [54–58, 62, 67, 70].

A considerable research effort aims at improving the image quality and increasing the res-
olution of LFM systems. Innovative hardware variations and extensions are actively being
proposed. [50, 68, 71] discuss different strategies for introducing the MLA in the optical path
of the LFM, with respect to the camera sensor. Other proposals include wave-front coding
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techniques for extended depth of field in LFM [72, 98], simultaneous light field and wide
field acquisition systems [73] or dual-LFM devices which combine complementary informa-
tion from two plenoptic systems [45]. On the other hand, inspired by the large amount of
work on computational super-resolution in the computer vision field [74, 75], algorithms for
super-resolving the light field are proposed, involving multi-view reconstruction schemes [76,
77], or explicit image formation models for plenoptic devices employing either ray-based [57,
64, 78] or wave-based optics [67, 68, 72, 79].

1.5 Structure of this thesis

In this thesis we discuss popular LFM setup designs and accompanying algorithmic approaches
for 3D object reconstruction from raw light field measurements.

Part II (Chapter 2) presents fundamental notions of diffraction theory for deriving the point
spread function of an optical system, together with mathematics of inverse problems with a fo-
cus on statistical inversion in the context of image deconvolution. This theoretical background
provides the building blocks for the algorithms developed in the main body of the thesis.

In Part III specialized reconstruction algorithms are derived for two light field microscope
configurations: conventional LFM in Chapter 3 and Fourier LFM in Chapter 4. These chapters
are similar in structure. We analyze the image formation and derive the setup specific light field
point spread function used for 3D deconvolution. The deconvolution algorithms incorporate
the intricacies of the microscope designs to recover computationally super-resolved images.
The proposed methods are evaluated using measurements acquired with our experimental
setups.

Part IV (Chapter 5) presents oLaF, a flexible Matlab framework for 3D reconstruction of light
field microscopy data. oLaF suports the various LFM configurations discussed in the previous
part of the thesis. Besides describing the available functionality, this chapter also offers a
tutorial for using the framework.

Part V (Chapter 6) is dedicated to NeuBtracker, the project that marks my debut in computa-
tional imaging research. NeuBtracker is an open-source modular platform for neuro-behavioral
imaging and manipulation that enables simultaneous and non-invasive monitoring of brain ac-
tivity and behavioral parameters in unrestrained, freely swimming zebrafish larvae.

Finally, Chapter 7 contains a short conclusion.
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CHAPTER2
Background

2.1 Diffraction theory

The diffraction property of light waves describes the light propagation behaviour when en-
countering an obstacle. This behaviour deviates from the geometric optics predictions and,
in order to characterize an optical system’s performance (resolving power), it is necessary to
consider and model diffraction. Sommerfeld defined diffraction as “any deviation of light rays
from rectilinear paths which cannot be interpreted as reflection or refraction” [80].

This Chapter selectively introduces the theory for deriving the diffraction models used in Chap-
ters 3 and 4. For a rigorous and exhaustive discussion on diffraction theory, the interested
reader is referred to [81, 82].

2.1.1 Wave optics

new wavefront

primary wavefront

source point

spherical wavelets

Figure 2.1: The Huygens-Fresnel principle: the superposition of spherical wavelets originating from
a wavefront at an earlier time defines the wavefront at a later time.
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The Huygens-Fresnel principle [83, 84] states that every point of a wavefront of light is the
origin of a secondary wave having the same speed and frequency. All these wavelets give rise
to the wavefront at a later point in time. The amplitude distribution on the new wavefront is
given by the superposition of all the wavelets, as depicted in Fig. 2.1.

According to this principle, when a plane wave illuminates an opaque screen containing a small
aperture, the diffraction pattern the light field undergoes depends on the distance between the
aperture and the plane of observation. A spherical wavelet originating at a point P1 within a
small aperture

∑

contributes to the light field at a point P2 on the observation the following:

U(P1)
e−ikr

r
, (2.1)

where U(P1) is the amplitude of the wavelet at P1 and r is the distance from point P1 to point
P2. The factor e−ikr

r is a spherical wave originating at P1. Here k is the wave number defined
as k = 2πn

λ , where n is the refraction index of the medium and λ is the wavelength. Then, the
mathematical formulation of the Huygens-Fresnel principle expresses the total amplitude at
point P2 as the integration over the aperture area:

U(P2) =

∫∫

∑

U(P1)
e−ikr

r
ds. (2.2)

Although the Huygens-Fresnel principle provides a good qualitative prediction for the diffrac-
tion patterns by an aperture, more accurate formulas are derived from Maxwell’s wave equa-
tions. Depending on the employed boundary conditions, different solutions exist (Rayleigh-
Sommerfeld I and II, Kirchoff-Fresnel diffraction integrals). These solutions are equivalent
when the diffracting aperture and the distance to the observation plane are both far larger
than the light wavelength, which is the case for optical systems with a low numerical aperture
(NA). A complete treatise is offered in [81].

P1

r

n

P2∑

θ

x1 x2

y1 y2

zdiffra
ctio

n plane

observa
tion plane

Figure 2.2: Diffraction by an aperture.
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For simplicity, the first Rayleigh-Sommerfeld integral is commonly used as it closely resem-
bles the Huygens-Fresnel formula in Eq. 2.2:

U(P2) = −
i
λ

∫∫

∑

U(P1)
e−ikr

r
cos(θ )ds, (2.3)

where θ is the angle between the normal vector of the diffraction aperture (~n) and the direction
of observation (~r) as depicted in Fig. 2.2.

In common diffraction scenarios, we are mostly interested in observing the field close to the
optical axis of a given imaging system. The so called “paraxial approximation” or Fresnel
approximation can be assumed in this case. In Fig. 2.2, the plane (x1, y1) represents the
diffraction plane and (x2, y2) the observation plane. z is the distance between these planes.
Then r, the distance between a point P1(x1, x2) within the diffraction aperture and an obser-
vation point P2(x2, y2), can be expressed as:

r =
Æ

z2 + (x2 − x1)2 + (y2 − y1)2 = z

√

√

1+
(x2 − x1)2 + (y2 − y1)2

z2
. (2.4)

When the observation point is relatively close to the optical axis, one can assume that z2 �
(x2 − x1)2 + (y2 − y1)2. Using the fact that

p
a+ b ≈ a(1+ b

2a ) if a� b, Eq. 2.4 becomes:

r =
Æ

z2 + (x2 − x1)2 + (y2 − y1)2 = z(1+
(x2 − x1)2 + (y2 − y1)2

2z2
). (2.5)

Conveniently, as a direct implication of the paraxial approximation, cos(θ ) can be reduced
to unity and r in the denominator of Eq. 2.3 can be safely replaced by z. Under Fresnel
approximation, Eq. 2.3 becomes:

U(x2, y2) =
ie−ikz

λz

∫∫ ∞

−∞
P(x1, y1)U(x1, x2)e

− ik
2z [(x2−x1)2+(y2−y1)2]d x1d y1, (2.6)

where P(x1, y1) is the pupil function for a circular aperture.

In order to compute accurate results under this approximation, the observation point needs
to be relatively far away from the diffraction plane. The Fresnel number, F = a2

λz establishes
a guide for defining the scenarios when the approximation holds; a being the radius of the
diffraction aperture. When z is larger than the aperture size, the propagation regime verifies
F ≈ 1.

2.1.2 Deriving the point spread function

The point spread function (PSF) of an optical system describes the system’s response to a point
source. When treating an object field as the weighted sum of impulse functions, the image of
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the object in a microscope can be computed as the weighted (by the field amplitude) sum over
the images of these impulse functions. When modeling the object as a set of discrete source
points with varying intensities, the image is computed as the sum of the PSF for each point.

For linear systems, such as fluorescence microscopes, this process is conveniently expressed via
a convolution operation. Fig. 2.3 illustrates the imaging process with an artificially computed
image of cotton fibers using the simulated PSF of a wide-field microscope. The degree of
blurring of an object point characterizes the performance of the imaging system. In certain
conditions, if the PSF is known, it is possible to restore the original object via deconvolution
as discussed in Sec. 2.2. The PSF is determined by the properties of the optical system and it
can be calculated by modeling the imaging conditions.

true object

PSF

image

⨂ =

Figure 2.3: Simulated microscope image of cotton fibers via convolution with a theoretical PSF.

2.1.2.1 Lens transmittance

When passing through an optical lens, a light wave undergoes a phase and an amplitude
change. The amplitude change is due to the reflected intensity on the surface of the lens. The
transmittance of a lens is then a complex function of the form:

t(x , y) = P(x , y)e−iφ(x ,y), (2.7)

where the pupil function, P(x , y) affects the amplitude of the incident field and e−iφ(x ,y) rep-
resents the phase change due to the change in the direction of propagation.

Fig. 2.4 shows a lens composed of two spherical surfaces with radii of curvature R1 and R2. If
the thickness of the lens (D) is small such that the displacement of the coordinates in the front
and back of the lens due to refraction is neglectable, the change of phase between U1 and U2
is derived as [81]:

φ(x , y) = −
k(x2 + y2)

2 f
, (2.8)

where k = 2π
λ is the wave number of the incident light and f is the focal length of the lens

defined as:
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O1 O2

R1

R2

D

U1 U2

Figure 2.4: A thin double-convex lens with radii of curvature R1 and R2. D is the thickness of
the lens on the optical axis. The light fields right before and after the lens are related
through the transmittance function such that U2(x , y) = U1(x , y)t(x , y).

1
f
= (n− 1)(

1
R1
−

1
R2
), (2.9)

here n is the refractive index of the lens.

The complex transmittance of a thin lens is then given as:

t(x , y) = P(x , y)e
ik(x2+y2)

2 f . (2.10)

A plane wave incident on a double-convex lens converges to the “focus point” at a distance f
behind the lens.

2.1.2.2 Diffraction by a lens

Having discussed the light field propagation in the paraxial regime and the transmittance of a
thin lens, we can now characterize the field distribution around the focal region of a lens.

If a plane wave incident on the lens generates the field U−(x1, x1) just in front of the lens, as de-
picted in Fig. 2.5, then due to the complex lens transmittance given by Eq. 2.10, immediately
behind the lens, the field U+(x2, y2) is derived as:

U+(x2, y2) = U−(x2, y2)P(x2, y2)e
ik(x2

2+y2
2 )

2 f . (2.11)

Propagating this field further to the back focal plane using Fresnel’s diffraction formula intro-
duced in Eq. 2.6, the field U f is given as:
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U-(x1,y1) Uf(x3,y3)

f

U+(x2,y2) Uz(x4,y4)

𝚫z

Figure 2.5: Diffraction by a lens.

U f (x3, y3) =
iU−(x2, y2)

λ f
e−ik f e−

ik(x2
3+y2

3 )
2 f

∫∫ ∞

−∞
P(x2, y2)e

ik(x3 x2+y3 y2)
2 f d x2d y2. (2.12)

When the observation plane is placed at a ∆z displacement from the focal plane, or at a
distance z behind the lens as suggested by Fig. 2.5, under Fresnel’s approximation, the field
becomes:

Uz(x4, y4) =
iU−(x2, y2)

λz
e−ikz

∫∫ ∞

−∞
P(x2, y2)e

ik(x2
2+y2

2 )
2 f e−

ik
2z [(x4−x2)2+(y4−x2)2]d x2d y2. (2.13)

Finally, as common symmetrical imaging systems employ circular lenses, the diffraction pattern
by a circular thin lens in a defocused plane (when the incident field has unit amplitude), as
derived in [81], becomes:

Uz(r4) =
i
λz

e−ikze−
iπr2

4
λz

∫ ∞

−∞
P(r2, z)J0

�

2πr2r4

λz

�

2πr2dr2. (2.14)

Here P(r2, z) = P(r2)e
ikr2

2
2

�

1
f −

1
z

�

represents the so-called defocused pupil function of the lens.
J0 is the Bassel function of the first kind of order zero. r2 and r4 are the radial coordinates:

r2 =
q

x2
2 + y2

2 and r4 =
q

x2
4 + y2

4 .

The derivations above assume the field incident on the lens has an uniform amplitude
(U1(x1, y1) = 1). When imaging an actual object placed in front of the lens, as illustrated
in Fig. 2.6, the amplitude transmittance of the object needs to be taken into consideration,
U1(x1, y1) = o(x1, y1). Employing the Fresnel’s diffraction formula introduced in Eq. 2.6
together with the lens transmittance in Eq. 2.10, the field at the imaging plane is given as:
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U1(x1,y1) U3(x3,y3)

P(x2,y2)

d1 d2

object plane image plane 

Figure 2.6: Imaging through a single lens.

U3(x3, y3) =
e−ik(d1+d2)

d1d2λ2
e−

ik
2d2
(x2

3+y2
3 )
∫∫∫∫ ∞

−∞
P(x2, y2)o(x1, y1)e

− ik
2d1
(x2

1+y2
1 )

e
ik
2

�

1
f −

1
d1
− 1

d2

�

(x2
2+y2

2 )

eik
�

x2
d1

�

x1+
d1
d2

x3

�

+ y2
d1

�

y1+
d1
d2

y3

��

d x1d y1d x2d y2.

(2.15)

Eq. 2.15 describes the relationship between an object and its image through a single lens.
|U3(x3, y3)|2 represents the intensity image as it would be captured by a camera placed at the
observation plane (U3).

2.1.2.3 Point spread function

When the object and the observation plane in Fig. 2.6 satisfy the geometric lens law 1
d1
+ 1

d2
= 1

f ,
equation Eq. 2.15 can be simplified as [81]:

U3(x3, y3) =
Me−ikd1(1+ 1

M )

d2
1λ

2
e−

ikM
2d1
(x2

3+y2
3 )

∫∫ ∞

−∞
o(x1, y1)e

− ik
2d1
(x2

1+y2
1 )h(x1 +M x3, y1 +M y3)d x1d y1,

(2.16)

where M = d1
d2

is the demagnification factor and h(x , y) is the Fourier transform of the pupil
function:

h(x , y) =

∫∫ ∞

−∞
P(x2, y2)e

ik
d1
(x2 x ,y2 y)d x2d y2. (2.17)

The function h(x , y) is called the 2D point spread function (PSF) as it represents the image of
a single point object. This is best understood when o(x1, x2) is replaced by a delta function in
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Eq. 2.16. In a good optical system, the PSF has to be close to the point object and x1 ≈ −M x3,
y1 ≈ −M y3 [81]. Subsequently, Eq. 2.16 can be rewritten as:

U3(x3, y3) =
Me−ikd1(1+ 1

M )

d2
1λ

2
e−

ikM
2d1
(x2

3+y2
3 )(1+M)

∫∫ ∞

−∞
o(x1, y1)h(x1 +M x3, y1 +M y3)d x1d y1.

(2.18)

As the 2D convolution operation in equation Eq. 2.18 shows, the image of an object is the
superposition of the PSF shifted around positions (M x3, M y3) and weighted by the object
transmittance, o(x1, x2). The intensity image is then given by the modulus squared of Eq.
2.18.

It is worth mentioning here that in a "defocused" scenario, when the object and observation
planes do not satisfy the lens law: 1

d1
+ 1

d2
6= 1

f , the defocused PSF, hd(x , y) can be expressed
as:

hd(x , y) =

∫∫ ∞

−∞
Pd(x2, y2)e

ik
d1
(x2 x ,y2 y)d x2d y2. (2.19)

Pd(x2, y2) = P(x2, y2)e
ik
d0
(x2

2+y2
2 ) is the effective pupil function which accounts for the defocus

effect. d0 is introduced here such that it satisfies 1
d0
= 1

d1
+ 1

d2
− 1

f .

In this case, the intensity image of the object is given by the squared modulus of the convolution
of the object transmittance function with the defocused PSF, hd(x , y).

Interestingly, when d1 = d2 = f , U3(x3, y3) becomes the 2D Fourier transform of the object
transmittance:

U3(x3, y3) =
e−2ik f

iλ f

∫∫ ∞

−∞
o(x1, y1)e

ik
f (x1 x3+y1 y3)d x1d y1. (2.20)

Eq. 2.20 describes the Fourier property of a thin lens. When an object is placed at the front
focal plane of the lens, the field at the back focal plane represents the 2D Fourier transform of
the object function. This property holds when the lens is much larger in size than the imaged
object.

2.1.2.4 4-f optical systems

The field at the back focal plane does not represent the image of the field at the front focal
plane, due to the Fourier property. In order to obtain an image of an object placed in front of
the lens (at the focal plane), a second lens is used as illustrated in Fig. 2.7. This secondary
lens is usually referred to as "tube lens" in microscopy setups.
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Figure 2.7: A 4-f imaging system.

According to Abbe imaging theory, when the size of the two lenses is sufficiently large in
comparison with the size of the object, the field at the back focal plane of the first lens (objective
lens in a microscope) is the Fourier transform (F ) of the object plane field. Analogously, the
field at the back focal plane of the second lens is the Fourier transform of the field at the its
front focal plane:

U2(x2, y2) =F
�

U1(x1, y1)
	

, (2.21)

U3(x3, y3) =F
�

U2(x2, y2)
	

= U1(−x1,−y1). (2.22)

In practice, the focal lengths of the two lens are different and a magnification factor M = f2
f1

is
introduced such that:

U3(x3, y3) = U1(−M x1,−M y1). (2.23)

Finally the minus sign in equation Eq. 2.23 suggests the 4-f optical system creates an inverted
and magnified image of the object.

The derivations introduced in this section represent the basis for developing the diffraction
models for light field microscopy as they will be presented in Chapters 3 and 4.
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2.2 Image deconvolution

This power is what I mean when I talk of
reasoning backward.

Sherlock Holmes,
A Study in Scarlet,

Sir Arthur Conan Doyle (1887)

When treating an object field as the weighted sum of impulse functions, the image of the
object by a microscope can be computed as the weighted sum (by the field amplitude) over
the images of these impulse functions.

The recorded image can then be described as:

f (x , y) =

∫∫∫

|h(x , y, xp, yp, zp)|
2 g(xp, yp, zp)d xpd ypdzp, (2.24)

where x , y are the sensor plane coordinates, xp, yp, zp are the 3D object coordinates and the
function g describes the light intensity at each point in the imaged object. h is now a 3D PSF
function explicitly encoding the axial position of a source point.

Image deconvolution attempts to recover the original object when the captured image and the
PSF are available. The term deconvolution is mostly used in the context of image deblurring,
where the observed data (captured image) is given by a convolution of the true data (object)
with a known kernel (PSF). Here the image and object space coincide. In the absence of noise,
the problem is solved in a straight-forward manner via division by the kernel in the Fourier
domain. In this sense, image deconvolution is an inverse problem with a translation-invariant
forward operator.

The 3D deconvolution problem in light field microscopy, on the other side, is rather a 3D
reconstruction problem where the observed data (measurements) and the object to reconstruct
come from different spaces. Then, the problem formulation is closer to image reconstruction
as in computed tomography than it is to classic 2D image deconvolution in microscopy.

In this section we will address the 3D deconvolution problem in light field microscopy while
touching on the basics of the more generic topic of inverse problems.

2.2.1 Inverse problems

Inverse problems are concerned with finding causes for observed effects. In imaging related
applications, inverse problems are generally formalized as the restoration or reconstruction of
model parameters given measured data and they solve an equation of the form:

y = A(x) + e, (2.25)
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where y ∈ Rm represents the measurements, x ∈ Rn the parameters to reconstruct and
A: Rn → Rm the forward projection operator which explains the directed relation from x
to y . e ∈ Rm models the observation noise.

The high-level formulation in Eq. 2.25 is encountered in various imaging applications from
image denoising, deblurring to image reconstruction in computed tomography, where the for-
ward operator A takes different interpretations.

2.2.1.1 Ill-posedness

In the absence of noise, the exact solution to the problem in Eq. 2.25 is given by the A−1 y
when A is invertible. In practice, however, we often deal with over-determined linear systems
and, moreover, measurements typically contain noise. Solving the problem becomes difficult
as the solution is sensitive to perturbations in data. Ill-posedness is defined in contrast with
the notion of well-posedness introduced by Hadamard [85] which states that a well-posed
problem must have a unique solution x that depends continuously on the data y .

A common approach in dealing with over-determined systems is to look for an approximate
solution by minimizing the sum of squared residuals. This is called the “least squares method”
which solves the following optimization problem:

arg min
x∈Rn

||A(x)− y||22. (2.26)

2.2.2 Regularization

Regularization adds extra (prior) knowledge during the process of solving an ill-posed prob-
lem. It imposes constraints on the solution of the inverse problem (e.g. smoothness, positive
definiteness) in order to make the optimal solution unique. For an exhaustive discussion on
regularization methods, the reader is referred to [86].

2.2.2.1 Variational methods

The most prominent regularization methods are based on variational methods. These methods
develop from optimizing a functional composed of a data term and possibly multiple regular-
ization terms whose influences are controlled via corresponding regularization parameters.
Here the idea is to minimize the data misfit penalized by some explicit regularizer [87, 88]:

argmin
x∈Rn

D{A(x), y}+λR(x). (2.27)

This is a generic formulation for optimizing a perturbed inverse problem with a natural plug-
and-play structure. The forward operator A takes various implementations based on the prob-
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lem at hand. The data discrepancy D and the regularizer R are chosen to fit the specific
aspects of the inverse problem. D is a data fitting term and it can be a metric on the data
space (often L1 or L2 norm) or a transformation over the data log-likelihood for a statistical
interpretation of the inverse problem as we will see in the next section. Analogous, the reg-
ularizer can take the form of a metric penalty term or the log of a prior distribution for the
unknown. Well-known examples of variational methods are classical Tikhonov regularization
and TV regularization.

Tikhonov regularization Introduced by Andrey Tikhonov [89], it is arguably the most com-
mon variational regularization method:

argmin
x∈Rn

1
2
||A(x)− y||22 +

λ

2
||Γ x ||22. (2.28)

In the classical implementation of the Tikhonov regularization Γ is usually chosen as Γ = I and
the regularization effect is scaled with λ. The regularizer then penalizes large x in terms of
the L2-norm.

Total variation regularization Another famous explicit regularizer controls the variation
given by the gradient of the solution. Rudin et al. [90] introduced the total variation (TV)
regularization for imaging problems to preserve sharp structures, while removing noise in the
images. In the original paper an isotropic and not differentiable total variation norm was
proposed for the regularizer:

arg min
x∈Rn

1
2
||A(x)− y||22 +λ

∑

i j

Ç

Dxx2
i j + Dyx2

i j . (2.29)

Dx and Dy are the horizontal and vertical finite difference operators. Without loss of generality,
the TV regularizer assumes that x is two dimensional for the sake of an explicit expansion of
the term.

A commonly employed variation is the “anisotropic TV” as it might be easier to minimize
[91]:

argmin
x∈Rn

1
2
||A(x)− y||22 +λ

∑

i j

|Dxxi j|+ |Dyxi j|. (2.30)

2.2.3 Statistical Inversion

Statistical inversion is a complete statistical inferential methodology for approaching inverse
problems. It addresses these problems from a different angle and interprets the object of infer-
ence (the model parameter) as a random variable that follows a prior distribution. This gives
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rise to a set of tools from Bayesian inference theory [92–94] for incorporating data statistics
into the recovery of the model parameter when solving ill-posed inverse problems. In such
frameworks, regularization is incorporated in the form of prior knowledge through an appro-
priate choice of the prior distribution.

2.2.3.1 Basics of Bayesian inference

So far we have looked at inverse problems from an analytic point of view and aimed at finding
a best fit solution x̂. In a statistical inverse problem we solve for a set of solutions by looking
at the distribution of the unknown solution rather than a single best fit; this has the effect of
improving the conditioning of the problem [95, 96].

When formulating a Bayesian inverse problem the key idea is to treat both the unknown solu-
tion and observed data as realizations of random variables. Then the inverse problem can be
interpreted as a statistical inference problem.

Let X = (X1, ..., Xn) be the random vector for the unknown solution x and Y = (Y1, ..., Ym) for
the measurements y. Likewise, E models the uncertainty in the observations as additive noise
with the associated probability density function pnoise : Rm → R+. We can then replace the
formulation in Eq. 2.25 by the stochastic analogue below:

Y = A(X) + E. (2.31)

Assume further that X ∼ pprior and E ∼ pnoise, then the conditional distribution of (Y|X =
x)∼ px

data is derived from translating pnoise by A(x):

px
data(y|x) = pnoise(y− A(x)) (2.32)

A common model for the above likelihood when dealing with low photon count imaging (as it is
the case in fluorescence microscopy) is the Poisson distribution for Y with the mean λ= A(x).
This approach is used in Chapters 3 and 4 when solving the light field 3D reconstruction
problem.

The prior probability density of X, pprior describes the information regarding the distribution of
x prior to recording the measurements. The task of the statistical inference is now to recover
the posterior (conditional distribution p y

post of (X|Y = y)) given a single sample y from the
observed data model.

The posterior density is given in the Bayes formula for parameter inference:

p y
post(x|y) =

px
data(y|x)pprior(x)

pY (y)
, (2.33)

where:
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• px
data(y|x) is the “likelihood” and it quantifies the likeliness of the data when the model

parameter is fixed. It is a function of y, while the posterior is a function of x.

• pprior(x) represents the “prior”. It comes from prior knowledge (known physical con-
strains). A good choice of the prior distribution incorporates regularization in the in-
ference process and a great amount of research in Bayesian inference revolves around
designing priors. The prior is especially important for problems where there are very
few observations from which the posterior can be updated.

• pY (y) is the so-called “evidence” representing the marginal density of the observed data:

pY (y) =

∫

Rn

px
data(y|x)pprior(x)d x . (2.34)

pY (y) is often ignored as it stays constant with respect to the values of X and only the
factors in the numerator of Eq. 2.33 affect the values of the posterior.

The posterior gives the complete solution of the inference problem as it provides the entire
distribution for the model parameter. In practice, however, it is often computationally chal-
lenging, if not intractable, to calculate the posterior density. Then point estimator methods
which compute a single “best” value are commonly used.

2.2.3.2 Point estimators

While Bayesian inference offers a set of tools for fully calculating the posterior probability
distribution, in large scale problems the computation can be very intensive or even intractable.
By contrast, non-Bayesian statistics calculates point estimates (like maximum likelihood) for
the model parameters.

Maximum a posteriori (MAP) estimator This point estimator represents the most likely
model parameter x given the observed data y. It maximizes the posterior probability:

x̂MAP = arg max
x

p y
post(x|y) = arg max

x

px
data(y|x)pprior(x)

pY (y)
= argmax

x
px

data(y|x)pprior(x).
(2.35)

The advantage of the MAP estimator is that it does not involve integration over X as the pos-
terior is proportional to the numerator in Eq. 2.33 and the denominator can be safely ignored
for the maximization purpose. As previously mentioned, the prior may act as a regularizer, so
MAP can be useful for solving an ill-posed inverse problem. On the other side, the choice of
prior is not always trivial and it can also lead to non-smooth optimization problems that are
computationally challenging [96].
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Maximum likelihood (ML) estimator This estimator maximizes the data likelihood:

x̂M L = arg max
x

px
data(y|x). (2.36)

Since the ML estimator only considers the data likelihood, it neglects the prior and it does not
have a regularization effect. ML is equivalent to MAP when the prior is uniformly distributed.
Chapters 3 and 4 discuss methods to add regularization after obtaining the ML estimate.

2.2.3.3 Expectation Maximization

The Expectation Maximization (EM) algorithm [97] is a classic iterative method for finding
the ML or MAP estimates of unknown parameters in statistical problems involving also latent
variables. In this case the maximization problem cannot be solved directly.

Let Y and Z be independent and identically distributed random vectors and a vector of un-
known parameters θ ∈ Rn along with the density function p(Y, Z;θ ). The random vector
(Y,Z) represents the complete data containing the observed data Y and unobserved latent (or
missing) data Z. The maximum likelihood estimate of θ maximizes the marginal likelihood of
the observed data:

L(θ ;Y) = p(Y|θ ) =
∫

p(Y,Z|θ )dZ. (2.37)

As we do not know Z the above sum calculation can be problematic (intractable) and the EM
algorithm aims to find the ML estimator by iteratively applying the following two steps:

• Expectation (E) step: computes the expected value of the log-likelihood function with
respect to the conditional distribution of (Z|Y):

EZ|Y
�

log L(θcur rent ;Y,Z)
�

• Maximization (M) step: computes the ML estimator on the conditional expectation:

θM L = argmaxθ EZ|Y
�

log L(θcur rent ;Y,Z)
�

The EM method is used in Chapters 3 and 4 as part of the MLEM (Maximum Likelihood Ex-
pectation Maximization) algorithm for 3D deconvolution.
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Part III

Light field microscopy
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CHAPTER3
Conventional light field microscopy

The work in this chapter was published in:

• A. Stefanoiu, J. Page, P. Symvoulidis, G. G. Westmeyer, and T. Lasser. “Artifact-free de-
convolution in light field microscopy.” Optics Express, 27, pp. 31644-31666, 2019. DOI:
10.1364/OE.27.031644.

3.1 The light field microscope

A light field microscope (LFM) is built by placing a micro-lens array (MLA) into the optical
path of a conventional wide-field microscope [44, 58]. Fig. 3.1 shows a ray diagram as an
intuitive overview of the light propagation through a LFM. A source point at a depth z in front
of the microscope objective has a conjugate image by the tube lens at z′′. The objective lens
creates a virtual image of the object at z′, which is not drawn here for the sake of clarity. We
choose to represent z as fob j +∆z, since an object at depth fob j is usually in focus in the wide
field microscope. In order to be consistent with the literature [44, 67], we will call this depth,
z = fob j , the native object plane (NOP) or the zero plane of the LFM. Then ∆z represents an
offset from the native object plane, and we will refer to this quantity when talking about depth
in the subsequent sections. Finally, the micro-lenses create micro-images at z′′′, and the light
reaches the camera sensor, producing a raw light field image.

Without loss of generality, Fig. 3.1 depicts a configuration where the conjugate image is formed
in front of the MLA. However, our derivations are valid for arbitrary configurations, i.e. they
do not discriminate between focused plenoptic [54] and original plenoptic [53, 58] light field
imaging designs.

In the early stages, the methods for rendering images from the LFM were limited to lenslet res-
olution [53], which is the number of available micro-lenses. In [67], Broxton et al. introduced
a wave-based model to describe the propagation of light through a plenoptic 1.0 LFM setup
[58], together with a 3D deconvolution method. They demonstrate superior reconstructions in
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Figure 3.1: Ray diagram of the LFM: light propagation through the light field microscope. fob j
denotes for objective focal length, ∆z represents the offset from the native object plane
(NOP). A source point o(ox , oy , oz = z) in front of the microscope objective has a conju-
gate image by the tube lens at z′′. Finally, the micro-lenses create micro-images at z′′′,
and the light reaches the camera sensor, producing a raw light field image.

terms of lateral resolution (compared to lenslet resolution) for most of the axial range. The im-
provement rate, however, is non-uniform across depth, and the recoverable resolution remains
low near the native object plane; additionally this region exhibits strong artifacts. This effect
is due to the depth-dependent sampling patterns and induced aliasing in light field imaging
[57]. As the sample is naturally placed at the native object plane during the acquisition, i.e.
in focus, the aliasing artifacts constitute a rather prominent problem in light field microscopy
as expressed in [44, 45, 99], undermining the potential of the modality.

The sampling patterns and angular aliasing have previously been studied for light field imaging
systems, like camera arrays [100–103]. However, there are fundamental differences between
the aliasing in camera arrays and plenoptic devices [57], which must be acknowledged in
order to address the cause of the artifacts in LFM deconvolution. Plenoptic devices avoid
angular aliasing while introducing considerable spatial aliasing, since neighboring emitters in
the scene are projected to pixels far apart on the sensor. Ng et al. [53] analyzed aliasing in
refocused light fields, and Georgiev et al. [104] discussed the impact of the micro-lens array to
sensor distance on the sampling rate in plenoptic cameras. In [57, 105], the authors studied
the depth-dependent sampling requirements in light field cameras.
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3.2 Aliasing in light field microscopy

3.2.1 The depth-dependent sampling patterns of the LFM

We now proceed at investigating the sampling requirements of the LFM and deriving the depth-
dependent quantities relevant for our algorithm, similar to the analysis of sampling patterns
in plenoptic cameras [57].

Fig. 3.2 is meant to build an intuition on the depth-dependence of the sampling patterns of
the plenoptic microscope. The source points at z0 in front of the microscope (circled in red)
have completely overlapped images at the sensor plane. On the other side, the source points
in the blue group have partially non-overlapping images on the sensor, while being sampled
at the same rate as the points in the red group, but they originate from a different depth z1.
The points in the green group, also at z1, are being sampled at a higher rate such that their
images on the sensor are fully non-overlapping.

+z
+x 

z0 z1 

Objective Tube lens MLA Sensor

Figure 3.2: Depth-dependent aliasing in LFM: The source points in the red group at depth z0 in
front of the microscope have completely overlapped images at the sensor plane. The
points in the blue group, while being sampled at the same rate as the points in the red
group, show partially non-overlapping images on the sensor as they are placed at depth
z1. The points in the green group, on the other side, are also placed at z1; however they
are sampled at a higher rate and their images are fully non-overlapping.

In order to characterize the depth-dependent nature of the sampling in light field microscopy,
let us assume for now that the micro-lenses have very small apertures and behave like pinholes.
Then we can approximate the MLA by an array of pinholes with spacing pml . The in-camera
light field at the MLA (pinholes in this context) should be band-limited with a bandwidth
of f0 =

1
2d in order to satisfy the Nyquist criteria [106]. Higher frequencies, outside this

bandwidth, would be under-sampled by the pinhole array and appear aliased.

Since the sensor elements have a finite extent, we must look into what area the pixels effec-
tively integrate over. Fig. 3.3(a) illustrates how the image at the MLA scales to the actual
image that forms under a micro-lens. For a clear visualization, we omit here the first part of
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Figure 3.3: (a) Micro-lens magnification: The image of an object under a micro-lens scales ac-
cording to the object depth. b) Micro-lens blur: The geometric blur radius behind a
micro-lens is again depth-dependent.

the image formation and assume we have an image of an object at z in front of the objective
formed at z′ by the objective lens. The tube lens further creates a scaled image at the conjugate
image plane (dark blue), z′′. The image at the MLA (light blue) follows from tracking the chief
rays. Finally, we pick a micro-lens and derive the micro-image behind it. By means of similar
triangles, the size of the image under a micro-lens is the size of the image at the MLA, scaled
by a factor:

γz =
dsens

mla

dmla
tl

�

�

�

�

�

z′′

dmla
tl − z′′

�

�

�

�

�

. (3.1)

The scaling amount γz is depth-dependent, which means the actual area of the light field the
sensor pixels integrate over varies with the object depth.

An interesting observation follows for telecentric microscopes (4f-systems as the ones in [44,
67]). For these systems, although the magnification stays constant with object depth, the blur
radius at the MLA (depicted in blue in Fig. 3.3(b)) varies in extent with depth,

Bz = rt l

�

�

�

�

�

dmla
tl − z′′

z′′

�

�

�

�

�

. (3.2)

Here, rt l is the effective tube lens radius. Consequently, the depth-dependent scaling factor γz
still applies, as we can write

γz =
dsens

mla

dmla
tl

rt l

Bz
. (3.3)

Please note the relation to the magnification factor in [57], or the amount of refocusing in
[62].

If we now drop the pinhole array approximation and consider a micro-lens with finite aperture
pml , we have to take into account the additional blur they introduce. The depth-dependent
blur under each micro-lens, depicted in red in Fig. 3.3(b), has a radius

32



bz = rml

�

�

�

�

1
z′′′
−

1
dsens

mla

�

�

�

�

, (3.4)

where rml =
pml
2 is the radius of the micro-lens.

We have now derived all the ingredients we need to characterize the non-aliasing requirements
of the LFM.

3.2.2 Anti-aliasing filters

The band-limited assumption we made in the previous section for the pinhole approximation
of the MLA means the acquired light field is the conjugate light field at z′′, convolved by a low-
pass ideal (sinc) filter with cutoff frequency 1

2d . We define the sinc kernel radius as the first
zero crossing of the filter, pml . Then, as every micro-image is the projection of the conjugate
light field onto the sensor, we can project the filter in the same way. Employing eq. (3.1), the
scaled filter kernel has a radius of γzd.

When we take into account the finite micro-lens apertures pml , the pixels effectively integrate
over a larger area and the aliasing is reduced with the micro-lens blur bz . Then the filter size
at the sensor, accounting for the micro-lens blur, is:

wsensz
=
�

�γz pml − bz

�

�. (3.5)

In the case where the conjugate image forms at the MLA (z′′ → dmla
tl ), we have z′′′ → 0 and

bz →∞. However, the micro-lens blur actually converges to the size of the micro-image and
thus we restrict the maximum filter radius to rml :

wsensz
=min

��

�γz pml − bz

�

�, rml

�

. (3.6)

We now backproject the filter into the object space. For this we introduce the super-resolution
factor, s ∈ Z, as defined in [67]. If we sample the volume at a rate of s times the lenslet
resolution pml , then the voxels are spaced by pml

Ms , where M is the objective magnification
factor. Then the radius of our ideal filter kernel in pixels in object space is:

wob jz =
wsensz

s

pml
. (3.7)

Fig. 3.4 illustrates the scaled pinhole filter radius together with the micro-lens blur radius and
the final compensated anti-aliasing filter radius in pixels over an axial range [−100, 100]µm
for an example plenoptic 1.0 LFM configuration as in Fig. 3.5(a). An important observation
here is that, as we move away from the zero plane, the LFM samples at a higher rate, imposing
milder anti-aliasing requirements.

Finally, we define h fw,z
as the anti-aliasing normalized resampling filter. h fw,z

is a depth-
dependent ideal low-pass filter and its kernel size at each depth is given by wob jz .

33



𝜟z [µm]

Scaled pinhole filter radius
Micro-lens blur radius
Compensated filter radius

Fi
lte

r r
ad

iu
s 

[p
x]

Figure 3.4: Anti-aliasing filter radius over depth: In the original LFM design [58, 67] (see
Fig. 3.5(a)), the NOP is sampled at the coarsest rate by the LFM which implies our
resampling anti-aliasing filter has the largest radius at this object depth. As we move
away from the zero plane, the LFM sampling rate increases and the anti-aliasing require-
ments become milder.

Since the ideal filter is of unit value for all the frequencies inside the band-limit, and zero
outside, it has infinite extent. In practice, we need to use an approximate non-ideal filter
kernel, aiming at optimizing the unity gain in the pass-band and zero gain in the stop-band.
While there are extensive filter design choices [106], for all the experiments shown in this
work, we obtained satisfying results using a Lanczos2 windowed version of the sinc kernel.

3.3 The generalized light field point spread function

In this section we propose a generalized forward light propagation model describing the optical
system’s impulse response for arbitrary LFM configurations (i.e. the light field point spread
function, LFPSF). Fig. 3.5 depicts such plenoptic configurations, where the micro-lens array is
placed at the native image plane (left), behind (center) or in front of it (right). Experimentally
acquired LFSPFs are shown on top for each setup.

In order to derive the diffraction pattern of a source point o(ox , oy , oz), when the light prop-
agates through the LFM from the source to the camera sensor, we discuss the wavefront at
intermediate key planes in the following subsections.

3.3.1 The wavefront at the MLA plane

In order to evaluate the wavefront incident on the MLA produced by a source point in front
of the microscope, we employ Abbe imaging theory for 4-f optical systems [81]. We proceed
to find the “focused” configuration for our scenario. In Fig. 3.6(b) FOP represents the focused
object plane, which is the depth in the object space that is imaged exactly at the MLA by
the tube lens. This plane is then located at offset ∆NOP from the native object plane. If we
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Figure 3.5: LFM configurations and their light propagation paths. (a) The original design as
described in [58, 67]. The objective and tube lens are arranged as a 4-f (tele-centric)
system. The native object plane (NOP) is then defined at the fob j in front of the micro-
scope objective and the native image plane (NIP) follows at ft l behind the tube lens. The
MLA is then placed at the NIP. The camera is behind the MLA at an offset dsens

mla = fml . (b)
and (c) Defocused LFM (similar to the 2.0 / focused plenoptic camera [54] design).
The MLA is now placed behind the NIP (b) or in front of it (c), such that the NOP is not
focused on the MLA. In the latter scenario, the virtual image that would form at the NIP
is depicted in dashed orange. Top: experimentally acquired LFPSF of a point source at
the NOP, o(ox , oy , oz) = (0,0, fob j) for each setup.
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Figure 3.6: (a) Example defocused LFM configuration with dmla
tl < ft l . (b) The “focused” object

depth for our LFM in (a). FOP represents the focused object plane which is imaged
exactly at the MLA by the tube lens. FOP is then located at offset∆NOP from NOP. Then
an object focused on the MLA by our microscope is placed at do f mla = fob j +∆NOP in
front of the objective. (c) ∆zFOP represents the depth offset from the FOP for a source
point, o(ox , oy , oz =∆zFOP+do f mla). (d) Optimal sensor plane coverage condition:
The micro-lens blur radius for a source point o(ox , oy , oz = do f mla) needs to match
the micro-lens radius rml , in order to ensure optimal sensor plane coverage, without
overlapping micro-images. (e) Overlapping micro-images due to violation of criteria
in eq. (3.17).
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introduce ∆M LA = dmla
tl − ft l to be the signed distance between the MLA plane and the tube

lens, we can write:

∆NOP =
1

M2
∆M LA, (3.8)

where 1
M2 is the axial magnification factor [81].

We now introduce the axial coordinate do f mla = fob j +∆NOP as the object space depth that
is focused on the MLA by our 4-f microscope. Then a source point o(ox , oy , oz = do f mla)
produces a convergent wavefront exactly at the MLA plane; see Fig. 3.6(b).

Having defined these quantities, we can express any source point o(ox , oy , oz) relative to the
FOP of our LFM setup as o(ox , oy , oz = do f mla +∆zFOP), see Fig. 3.6(c). Then we observe a
defocused wavefront at the MLA plane:

Umla−(o, xmla, ymla) =
deM
oz

2λ2
exp

�

−
iu

4 sin2(α/2)

�

·
∫ α

0

P(θ )exp

�

−
iu sin2(θ/2)
2sin2(α/2)

�

J0

�

sin(θ )
sin(α)

v
�

sin(θ ) dθ , (3.9)

which is the Debye integral for circular lens apertures. deM = do f mla

dmla
tl

is the demagnification

factor, α ≈ arcsin(NA/n) is the maximum entrance angle of the objective aperture, λ is the
wavelength of the monochromatic light we assume, P(θ ) is the apodization function of the
microscope, J0 the zeroth order Bessel function of the first kind, and v, u are the normalized
radial and axial optical coordinates respectively, given by:

v =
2π
λ

q

(xmla − ox)2 + (ymla − oy)2 · sin(α),

u=
8π
λ
∆zFOP · sin2(α/2), (3.10)

∆zFOP represents the depth offset from the FOP for a source point, o(ox , oy , oz = ∆zFOP +
do f mla). In order to stay consistent with the convention and for the clarity of the subsequent
discussion, we will still refer to ∆z (oz = ∆z + fob j) as the axial range of an object, via the
following convenient substitution:

∆zFOP =∆z +∆NOP (3.11)

An immediate observation follows when∆NOP = 0, then do f mla = fob j and dmla
tl = ft l . This is

the original LFM configuration, and eq. (3.9) is equivalent to the defocused PSF at the native
image plane proposed in Broxton et al. [67].

Similar to us, in [50] the authors compute the wavefront at the MLA in a defocused LFM
setup. They first model the PSF at the NIP as in [44, 67] and then propagate the wavefront for
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a ∆M LA distance via Fresnel diffraction integral. In theory this is equivalent to our approach.
In practice, however, FFT-based Fresnel propagation is implemented via its transfer function,
which is a chirp function, and special sampling regimes have to be considered. This implies
not only a computational overkill, but such requirements depend on the propagation distance
and under-/over- sampling of the angular spectra introduce artifacts in the observation plane
[107].

3.3.2 The MLA transmittance

Having computed the light field at the plane immediately before the MLA, we account now for
the effect of the MLA. The field Umla+ immediately after the MLA is given by:

Umla+(o, xmla, ymla) = Umla−(o, xmla, ymla) · T (xmla, ymla), (3.12)

where the MLA transmittance function T is modeled by replicating the single lenslet transmit-
tance in a tiled fashion as in [67]:

T = repd,d

�

t(x l , yl)
�

, (3.13)

with repd,d the 2D replication operator and pml the spacing between micro-lenses. t(x l , yl) is
the complex transmittance function of a lenslet with local lenslet coordinates, (x l , yl):

t(x l , yl) = P(x l , yl)e
ik(x2

l +y2
l )

2 fml . (3.14)

The exponential term is responsible for the phase change in the incident light, while P(x , y)
represents the pupil function, where P(x , y) = circd(x , y) for circular aperture lenslets or
P(x , y) = rectd(x , y) for squared shaped lenslets. k = 2π

λ is the wavenumber.

3.3.3 MLA to sensor light field propagation

We now address the propagation of the field from the MLA plane to the camera plane. Since we
aim to model arbitrary distances between the MLA and the sensor, without restricting the dsens

mla
distance to satisfy the Fresnel number (paraxial assumption) [67], we use the more accurate
Rayleigh-Sommerfeld diffraction solution [108] to predict the light field at the sensor plane:

Usens(o, xs, ys) =F−1
¦

F
�

Umla+(o, xs, ys)
	

·Hrs( fX , fY )
©

, (3.15)

where (xs, ys) are the image plane coordinates, F denotes the Fourier transform, and ( fX , fY )
are the spatial frequencies at the sensor plane. Hrs is the Rayleigh-Sommerfeld transfer func-
tion:
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Hrs( fX , fY ) = e

�

ik·dsens
mla

p
1−(λ fX )2−(λ fY )2

�

(3.16)

3.3.4 F-number matching condition for defocused LFM setups

In order to ensure the micro-images optimally fill the sensor plane without overlapping when
acquiring light field images, the effective image-side NA of the tube lens needs to match the
effective NA of the micro-lenses.

As depicted in Fig. 3.6(d), it is important to notice that a point source o(ox , oy , oz = do f mla),
generates the largest response (blur) behind a micro-lens. Conversely, as we move away from
do f mla, the micro-lens blur radius, bz decreases. Thus, we only need to constrain the maxi-
mum blur radius, bdo f mla

to match the micro-lens radius rml in order to ensure optimal non-
overlapping sensor plane coverage. From Fig. 3.6(d) it quickly follows:

rt l

dmla
tl

=
rml

dsens
mla

, (3.17)

where rt l represents the effective tube radius; the radius of the field distribution incident on
the tube lens by a source point at do f mla in front of the microscope. In practice, we compute
the rt l following the marginal rays:

rt l = rob j

�

�

�

�

�

1−
d t l

ob j

z′

�

�

�

�

�

, (3.18)

where z′ is obtained using the thin lens equation and d t l
ob j = fob j + ft l for 4f microscopes.

An immediate observation follows that when dmla
tl = ft l and dsens

mla = fml , we have rt l = rob j ,

and eq. (3.17) is equivalent to M
2NAob j

= fml
pml

, where M is the objective magnification and NAob j

the objective numerical aperture. This is the f-number matching condition for the original LFM
[58, 67].

While violations of eq. (3.17) result in either suboptimal sensor plane coverage or overlap-
ping micro-images (see Fig. 3.6(e)), the LFPSF we derived in the current section allows for
arbitrary dmla

tl , dsens
mla combinations and is consequently not limited to f-number matching con-

figurations.

3.4 Aliasing aware 3D deconvolution

Having discussed the non-aliasing sampling requirements of the LFM and derived the gener-
alized LFPSF, we now turn our attention to incorporating this prior knowledge into the recon-
struction process of computing a 3D volume from a light field image.
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In [67], Broxton et al. introduced a wave-based model to describe the propagation of light
through a plenoptic 1.0 LFM setup [58], together with a 3D deconvolution method. They
demonstrate superior reconstructions in terms of lateral resolution (compared to lenslet res-
olution) for most of the axial range. The improvement rate, however, is non-uniform across
depth, and the recoverable resolution remains low near the native object plane; additionally
this region exhibits strong artifacts. This effect is due to the depth-dependent sampling pat-
terns and induced aliasing in light field imaging [57]. As the sample is naturally placed at
the native object plane during the acquisition, i.e. in focus, the aliasing artifacts constitute a
rather prominent problem in light field microscopy as expressed in [44, 45, 99], undermining
the potential of the modality.

3.4.1 The discretized imaging model

Given the raw noisy light field sensor measurements m = (m j) j∈J acquired by pixels j ∈ J
(|J | = m) we seek to recover the fluorescence intensity at each discrete point in the volume
which produced these measurements.

We represent the discretized volume v by a coefficient vector (vi)i∈I with |I |= n. Note that the
sampling rate in v is dictated by the super-resolution factor s defined in the previous section.
We now denote the detection probabilities

a ji = P
�

photon counted at sensor element j |

emission occurred in voxel i
�

.
(3.19)

Due to the low photon counts in fluorescence microscopy, we define the number of pho-
tons emitted at voxel i and detected by sensor element j as random variables z ji with
z ji ∼ Poisson(via ji), which we combine into the the iid random vector z= (z ji) j∈J ,i∈I .

Our measurements m = (m j) j∈J arise from z ji as m j =
∑

i∈I via ji , yielding the stochastic
imaging model

m∼ Poisson(Av), (3.20)

where m denotes the light field measurement, v denotes the discretized volume we seek to
reconstruct, and the operator A = (a ji) j∈J ,i∈I describes the light field forward model, which
is effectively determined by the discretized version of the LFPSF in eq. (3.15). For each point
in a fluorescent object the image intensity is given by the modulus squared of its amplitude
[81]:

a ji =
�

�Usens(o(i),xs( j))
�

�

2
, (3.21)

where o(i) is the object space coordinate of voxel i and xs( j) is the coordinate of the pixel j.
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3.4.2 Estimate-Maximize-Smooth algorithm

We now consider the estimation of v by maximizing the Poisson log-likelihood

L (z | v) =
∑

j∈J

∑

i∈I

via ji + z ji ln via ji − ln z ji!. (3.22)

If we look at z as the complete version of the incomplete data m, the expectation maximization
approach provides an iterative two-step scheme for increasing the likelihood of the current es-
timate v. In the first step, z is estimated by computing the conditional expectation E(zi j|m,v),
and in the second step, the maximum likelihood estimate of v is found, starting from an initial
guess v0:

ẑ ji = m j
vq

i a ji
∑

l∈I vq
l a jl

(3.23)

vq+1
i =

vq
i

∑

j∈J a jl

∑

j∈J

m ja ji
∑

l∈I vq
l a jl

(3.24)

This is the well known MLEM algorithm, and eq. (3.24) also corresponds to the popular
Richardson-Lucy [109] iterative update, which in matrix-vector notation reads:

vq+1 =
vq

AT 1

h

AT m
Avq

i

. (3.25)

We now propose an additional straightforward step in which we filter the result of eq. (3.23)
and eq. (3.24) using the depth-dependent anti-aliasing filters h fw,z

that we derived in the pre-
vious section. Then the aliasing aware update scheme reads:

EMS: vq+1 = h fw,z
∗

vq

AT 1

h

AT m
Avq

i

, (3.26)

where ∗ represents the convolution operator.

The reconstructed v has a uniform lateral resolution across depths as imposed by the depth
invariant discretization we choose; see the super-resolution factor s in the previous section.
However, the non-aliasing sampling requirements of the LFM vary across depth, and the actual
details that can be recovered depend on these patterns, among other factors.

Moreover, as our model does not incorporate explicit depth priors, information from one depth
appears aliased when wrongly projected to another depth. This behavior is present from the
first iteration of the Richardson-Lucy scheme, resulting in strong artifacts at the highly under-
sampled depths where the process fails to converge. Thus, the resampling correction (by
depth-dependent filtering) we propose is absolutely necessary.
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The filtering in eq. (3.26) can be interpreted as projecting vq+1 to the set of true solutions,
which consists of frequencies below the bandwidth dictated by the LFM sampling requirements
at each reconstructed depth.

3.4.3 Convergence of the proposed scheme

In order to show convergence of our proposed algorithm, we use the results of [110], in which
a similar EMS algorithm with a smoothing kernel S is investigated. The authors in [110]
demonstrate a modified (weighted) EMS algorithm with desirable convergence properties us-
ing a weighted smoothing kernel T = W−1SW , where W = diag(wi) and wq+1

i = s1/2
i e1/2

i θ
q
i .

According to Lemma in Section 5.3 in [110], S and T will have approximately the same effect
if S and W satisfy the three requirements:

1. S ji ≥ 0,∀i, j,

2.
∑

S ji = 1,

3. |wi
w j
− 1| ≤ δ when S ji 6= 0 for some δ > 0.

In our context, si is the size of the voxel i, ei =
∑

j∈J ai j and θ q
i = (

vi
si
)1/2. For our smoothing

kernel, h fw,z
, the first two requirements are trivially fulfilled. Regarding the third requirement,

as we use a uniform sampling of our volume, we have si = s j∀i, j. Also ∀i, j where h fw,z
is

non-zero, we have θ q
i ' θ

q
j , as the effective sampling rate is higher than the kernel radius.

The same argument holds for ei and e j , since the columns ai and a j act on regions of v at most
as large as the effective sampling rate of the LFM. Thus we can conclude wi ' w j when S ji 6= 0
and δ small.

3.5 Experimental results

All experiments in this work were performed with a custom-built LFM setup, configured as a
4-f system, combining a 0.5 NA with 20× magnification objective lens, and a tube lens with
focal length ft l = 165mm. We used a f-number matching square-shaped aperture MLA with
150µm micro-lens pitch and 3000µm focal lengths. The pixel pitch of the sCMOS camera is
6.5µm, yielding a total of 23× 23 pixels behind a micro-lens.

All the results we discuss in this section were reconstructed at sensor resolution, i.e. at a super-
resolution factor s = 23, which translates to a uniform lateral resolution of 0.33µm. Note, this
refers to the sampling rate we chose for rendering the volumes and has nothing to do with the
actual details that can be recovered, which is the effective resolution of the LFM. We refer the
interested reader to existing discussions on the subject [56, 58, 111].
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Figure 3.7: (c) Reconstruction of the USAF 1951 target: Left: a light field image of the USAF 1951
resolution target, acquired with our experimental LFM. Center: reconstructed target
using the method in [67]. Specific aliasing artifacts are present. Right: artifact-free
reconstruction using our aliasing-aware deconvolution method.

3.5.1 Artifact-free deconvolution

In order to show the full potential of our method and to be able to use the method [67] as a
baseline for comparison, the experiments in this section were done with the LFM in the original
plenoptic 1.0 configuration, i.e. dmla

tl = ft l and dsens
mla = fml . Then the zero plane (∆z = 0µm)

has a conjugate image exactly at the MLA and is the most under-sampled, exhibiting the most
artifacts.

As the first experiment, a USAF 1951 resolution target was imaged at ∆z = 0µm using the
LFM, see Fig. 3.7 (left) for the raw light field image. Fig. 3.7 shows the reconstruction us-
ing the baseline method from [67] (center), and it is obviously riddled with the typical zero
plane artifacts. Conversely, Fig. 3.7 (right) shows the reconstruction of the same light field
image with our proposed aliasing-aware algorithm, exhibiting a natural appearance with no
artifacts.

As discussed in Section 3.2.2, when moving away from ∆z = 0µm, we need milder anti-
aliasing filters to remove the artifacts while keeping the details in the reconstruction. This
effect is illustrated in Fig. 3.9, which shows the reconstruction of an eyeball of a zebrafish
larvae (5 days post fertilization, expressing green fluorescent proteins) over a depth range of
[−50, 50]µm; due to space constraints we only show several lateral slices through the vol-
ume.

Figs. 3.9(a) and 3.9(c) show the reconstruction with the baseline method in [67] and the
artifacts are strongly present at depths close to the zero plane, while they fade out as we move
further away from this plane, see for example the slice at ∆z = 25µm. In Figs. 3.9(b) and
3.9(d) we show the reconstruction of the same light field data using our proposed method.
The depth-dependent filter radius is shown in Fig. 3.4; note here how the kernel radius drops
as the artifacts fade away. Our deconvolution produces superior artifact-free results compared
to the reference method without over-smoothing, as the depth-dependent filter is dictated by
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Figure 3.9: 3D reconstruction of a zebrafish eye over an axial range ∆z = [−50,50]µm. (a),
(b): maximum intensity projections. (c), (d): lateral slices through the volume. The
reconstruction with the baseline method in [67] shows strong specific aliasing artifacts
(red arrows) at depth planes close to the zero plane, while they fade out as we move
further away from this plane. In comparison, our aliasing-aware deconvolution scheme
completely removes all the artifacts.
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the sampling requirements of the LFM. Both reconstructions (Fig. 3.9) were obtained after 8
iterations of the corresponding update schemes.

Fig. 3.10 shows a reconstructed cardiomyocyte organoid labelled with the calcium dye Fluo4-
AM. Such organoids are an emerging platform for clinical trials, enabling high-throughput
studies (both logistically and ethically since they are not organisms), along with possible direct
clinical applicability, since they are derived from human stems cells. Contrary to traditional
cell-cultures they are extended across all three dimensions and they have interesting temporal
dynamics like cell-signaling and, specifically for heart-organoids, movements.

For the reference method [67], reconstruction artifacts are again strongly present
(Figs. 3.10(a) and 3.10(c)) around ∆z = 0µm, while gradually fading out further away;
see the slice at ∆z = 50µm. In the corrupted regions, a subsequent data analysis is not only
troublesome, but rather unreliable. In comparison, our proposed method, specifically treats
these artifacts via our depth-dependent resampling strategy (Figs. 3.10(b) and 3.10(d)).
Again 8 iterations were performed for both methods.

3.5.2 Defocused LFM design

In this section we evaluate the defocused LFM setup. For this purpose, we place the micro-lens
array at a distance dmla

tl 6= ft l from the tube lens, while keeping the tele-centricity as before
(see Figs. 3.5(b) and 3.5(c)). The dsens

mla distance will then follow from eq. (3.17) to ensure
the micro-images optimally cover the sensor plane.

Fig. 3.11 shows the reconstruction of a zebrafish eye (a different sample from the one in
Fig. 3.9), over an axial range ∆z = [−40,40]µm, from LF images acquired when dmla

tl > ft l

and dmla
tl < ft l . In order to perform deconvolution on these images, we used the LFPSF we

derived in Section 3.3 to describe the forward imaging model. In Fig. 3.11(b) we show the
reconstruction using the classic Richardson-Lucy scheme, as in eq. (3.25). While in the original
LFM configuration the reconstructed samples show prominent aliasing artifacts around ∆z =
0µm due to the coarse sampling in this region, here, in the defocused LFM design we observe
the artifacts pushed to the edges of our axial range. This effect is due to the displacement of the
MLA from the native image plane, ∆M LA, which effectively translates into a proportional axial
shift of the depth dependent lateral sampling rates in the object space by ∆NOP , see eq. (3.8).
This means an axial range ∆z in front of a defocused LFM setup is sampled in the same way
the ∆zFOP range would be sampled by the original LFM setup with the same settings.

Table 3.1 contains the system parameters for the used experimental data sets, together with
the relevant reconstruction settings. The Fish eye(>) and Fish eye(<) entries correspond to
the dmla

tl > ft l and dmla
tl > ft l configurations in Fig. 3.11, respectively. Reconstructing the

[−40, 40]µm axial range in both situations is equivalent, in terms of recoverable resolution, to
reconstructing the [−80, 0]µm and [5,85]µm in the original LFM setup (see ∆zFOP column);
effectively shifting the zero plane by∆NOP . This explains the strongest artifacts in Fig. 3.11(b)
being at the right most end of the axial range (∆zFOP = [−80, 0]µm) when dmla

tl > ft l , and
at the left most end of the axial range (∆zFOP = [5,85]µm) for the dmla

tl < ft l case. In
Fig. 3.11(c) we show the artifact-free deconvolution obtained using our Estimate-Maximize-
Smooth scheme, and in Fig. 3.11(d) we illustrate z-slices of the reconstructed volumes every
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Figure 3.10: 3D reconstruction of a cardiomyocyte organoid over an axial range ∆z =
[0, 50]µm. (a), (b): maximum intensity projections. (c), (d): lateral slices through
the volume. The reconstruction with the baseline method in [67] shows strong specific
aliasing artifacts (red arrows) at depth planes close to the zero plane, while as we move
away from this plane, the artifacts are less visible. Our aliasing-aware deconvolution
method shows superior artifact-free results.

47



     0um
    
-20um

    
-35um

     
35um

     
20um

     0um
    
-20um

    
-35um

     
35um

     
20um

LF deconvolution without 
depth-dependent filtering 

Aliasing-aware deconvolution 
(our method)

(c) LF deconvolution with our 
aliasing-aware scheme 

d tlm
la
 <

  f
tl

d tlm
la
 >

  f
tl

     0um
    
-20um

    
-35um

     
35um

     
20um

     0um
    
-20um

    
-35um

     
35um

     
20um

(b) LF deconvolution without 
depth-dependent filtering 

(a) LF images

d tlm
la
 >

  f
tl

d tlm
la
 <

  f
tl

(d) Reconstruction using our aliasing-aware method: z-slices  

60 𝜇m 60 𝜇m

60 𝜇m60 𝜇m

Figure 3.11: Defocused LFM: 3D reconstruction of a zebrafish eye over an axial range ∆z =
[−40,40]µm. (a) LF images acquired when dmla

tl > ft l and dmla
tl < ft l . (b) The

reconstruction using the Richardson-Lucy scheme shows artifacts around the FOP
plane of each setup. The defocused LFM is effectively an axially shifted (by∆NOP ; see
Table 3.1) version of the original LFM; the zero plane behavior is now appearing at
the FOP plane. (c) The artifact-free reconstruction using our aliasing-aware decon-
volution method. (d) Lateral slices through the reconstructed volume. The two
defocused LFM configurations demonstrate higher resolved features at complemen-
tary axial ranges; marked with smileys.
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5µm. We perceive better spatially resolved features in the range [0, 40]µm for the dmla
tl > ft l

setup, while in the dmla
tl < ft l case this range appears blurred and the [−40,0]µm range is

resolved better.

Data set ft l dmla
tl (mm) dsens

mla (mm) ∆z (µm) ∆NOP (µm) ∆zFOP =∆z +∆NOP (µm)
USAF 165 165 3.0 0 0 0

Fish eye 165 165 3.0 [−50,50] 0 [−50,50]
Organoid 165 165 3.0 [0, 50] 0 [0, 50]

Fish eye (>) 165 181 2.985 [−40,40] -40 [−80, 0]
Fish eye (<) 165 147 3.016 [−40,40] 45 [5, 85]
Spheres (>) 165 175 2.990 [−45,45] -25 [−70,20]
Spheres (=) 165 165 3.0 [−45,45] 0 [−45,45]
Spheres (<) 165 151 3.012 [−45,45] 35 [−10,80]

Table 3.1: Data set acquisition parameters of our experimental LFM setup together with the cor-
responding reconstructed axial ranges. Top three rows: Datasets acquired with the
focused LFM setup. Bottom five rows: Datasets acquired with various defocused LFM
configurations.

In Fig. 3.12, we imaged 1µm fluorescent beads in agarose with the LFM in the three config-
urations depicted in Fig. 3.5. Fig. 3.12(a) (top) shows the acquired LF image for the original
plenoptic design (dmla

tl = ft l), together with the 3D reconstruction using our proposed method
in Fig. 3.12(b) (top). Fig. 3.12(a) (middle) and (bottom) illustrate the acquired LF image for
the defocused design with dmla

tl > ft l and dmla
tl < ft l , respectively, alongside the 3D reconstruc-

tions in Fig. 3.12(b) (middle) and (bottom). The red rectangle highlights two micro-spheres
at the zero plane of the LFM (∆z = 0). While, in the original LFM setup (top) they are only
reconstructed at the lenslet resolution, in Fig. 3.12 (middle) and (bottom) they appear better
resolved. On the other side, the dashed arrow, for example, points to a sphere placed at the
FOP plane in the defocused dmla

tl > ft l (middle) case. While in this case it can only be recov-
ered at lenslet resolution, in Fig. 3.12 (top) and (bottom) we observe it at higher resolution.
Analogous discussion applies to the other beads. Just as we have seen for the fish eye in Fig.
3.11, while one LFM configuration performs well at spatially resolving certain depths in the
axial range, it does so at the cost of other depths, which is also the case when imaging away
from the zero plane with the original LFM. In order to extend the resolvable range in the 3-D re-
constructions, such LFM configurations can be complementary, which supports and motivates
the work towards multi-focus [55, 112] or dual-camera [45, 113] plenoptic setups.

3.6 Discussion

In this Chapter we address one of the challenges in 3D reconstruction of light field microscopy
data, the aliasing artifacts. We perform an analysis of the aliasing-free sampling requirements
of the LFM to derive depth-dependent anti-aliasing filters. We also derive a generalized wave-
based LFPSF to propose a novel aliasing-aware deconvolution scheme that applies to arbitrary
LFM designs. We compare the capabilities of the original and defocused LFM designs in terms
of recoverable lateral resolution at various axial ranges and demonstrate the superior quality
reconstruction performance of our method using experimental data from phantoms and in-vivo
biological samples.
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Figure 3.12: Defocused LFM: 3D reconstruction of fluorescent beads in agarose over an axial range
of ∆z = [−45, 45]µm. (a) Acquired LF images. (b) The reconstructed volumes
using our method for the original plenoptic design with dmla

tl = ft l (top) and the de-
focused LFM with dmla

tl > ft l (middle) and dmla
tl < ft l (bottom). The red and blue

highlights suggest how different features at different depths are better resolved in one
configuration than in the others. No plenoptic design is generally better or worse.
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Figure 3.13: 3D reconstruction of a zebrafish larvae brain over the axial range ∆z =
[−80,70]µm. Top: maximum intensity projections. Bottom: lateral slices through
the volume. The reconstruction with the baseline method in [67] shows strong spe-
cific aliasing artifacts (a) and c)) at depth planes close to the zero plane, while as we
move away from this plane, the artifacts are less visible. Our aliasing-aware deconvo-
lution method shows superior artifact-free results (b) and d)). e): Fluorescent signal
changes for various biologically significant ROIs over the fish brain.
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Our work and [57] share the anti-aliasing priors idea in an interesting way. In [57], the au-
thors use light field projections of the filtering kernels directly on the micro-images to ensure
correct, non-aliased disparity maps. They then incorporate the estimated disparity in the light
propagation model and proceed to recover the 2D radiance (all-in-focus image) from a light
field camera image employing a variational Bayesian framework. This can be interpreted as an
implicit accounting for the aliasing through the disparity prior. In our work, on the contrary,
we derive the anti-aliasing filter kernels in the object space and explicitly apply them to the
light field as a correction step of our iterative aliasing-aware deconvolution, which employs a
smoothing expectation maximization scheme.

The analysis and the deconvolution scheme we propose apply to arbitrary plenoptic config-
urations. Hence, we also derive a generalized wave-based forward light propagation model
able to characterize both original (plenoptic 1.0) [58, 67] and “focused” (plenoptic 2.0) LFM
setups.

In previous works, the “focused plenoptic” (or plenoptic 2.0) camera [54, 56] design was pro-
posed to enhance the spatial resolution of the captured light field, compared to the original
plenoptic camera [62], by manipulating the placement of the sensor with respect to the MLA
such that the micro-lenses are focused on the objective lens. When coming to the light field
microscope, due to the presence of the tube lens, manipulating the distance between the MLA
and the camera sensor immediately affects the distance between the tube lens and the MLA
such that the conjugate image of the native object plane may be in front or behind the MLA,
creating a defocused field incident on the MLA, as opposed to the original LFM case, where
the native image pane coincides with the MLA plane. Thus, although conflicting with the es-
tablished “focused plenoptic” term, we find the term “defocused LFM” to better reflect generic
LFM designs, as the recoverable resolution at a certain depth in the object space strongly de-
pends on the extent of the defocus generated at the MLA plane.

Although we improve the visual appearance of the 3D reconstructed objects by addressing
the sampling artifacts, the effective lateral resolution is still limited by the depth-dependent
sampling rate.

We showed that defocused LFM designs better resolve the near native object plane range,
while sacrificing resolution at other depth ranges by axially shifting the sampling patterns;
similar to imaging away from the zero plane with the original LFM design. This situation
can be improved by splitting the optical path and imaging with complementary focused LF
systems [45, 113], or combining a light field with a wide-field acquisition [73]. Alternatively,
employing an array of lenslets with mixed focal lengths introduces more irregularity in the
sampling patterns and allows increased depth of field [55, 112]. In [105], denser and more
uniform sampling through lens aberrations was discussed, while [72] demonstrates higher
lateral resolutions over extended depth of field by introducing phase masks in the optical path
of the LFM.
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CHAPTER4
Fourier light field microscopy

The work in this chapter was published in:

• A. Stefanoiu, G. Scrofani, G. Saavedra, M. Martínez-Corral, and T. Lasser. “What about
computational super-resolution in fluorescence Fourier light field microscopy?” Optics
Express, 28, p. 16554, 2020. DOI: 10.1364/OE.391189.

• A. Stefanoiu, G. Scrofani, G. Saavedra, M. Martínez-Corral, and T. Lasser. “Deconvolu-
tion in Fourier integral microscopy.” Proc. SPIE 11396, Computational Imaging V, p. 18,
2020. DOI: 10.1117/12.2558516.

4.1 The Fourier integral microscope

Fourier integral microscopy (FiMic) was recently introduced [59] to address the current chal-
lenges in conventional LFM.

A Fourier integral microscope (FiMic) is built by inserting a micro-lens array (MLA) at the
back aperture stop (AS) of a conventional microscope objective (MO) and recording far-field
(Fourier) perspective views (elemental images) of the object under each micro-lens [71].
While compact in design, this arrangement provides extended depth of field and improved
uniform lateral resolution compared to conventional LFM [71].

Fig. 4.1 illustrates a ray diagram of the light propagation through a FiMic. Since the AS is
usually not accessible for commercial microscope objectives, the configuration depicted here
employs a telecentric optical relay system (RL1 and RL2, with focal lengths f1 and f2, respec-
tively) to conjugate the AS plane and the MLA plane. Note that, when f1 6= f2, there is a relay
magnification factor Mrela y =

f2
f1

that contributes to the total system magnification. For an
arbitrary source point in front of the objective, o(ox , oy , z), we will represent the axial coordi-
nate as z = fob j +∆z, since an object at the front focal plane (the native object plane, NOP) is
in focus in a conventional wide-field microscope. fob j is the focal length of the objective lens.
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Figure 4.1: Ray diagram: light field propagation through the Fourier integral microscope. The
FiMic depicted here makes use of an optical relay system (RL1 and RL2 with focal
lengths f1 and f2, respectively) which conjugate the back aperture of the microscope
objective (MO) with the MLA plane. The reason for the relay is that the back aperture
is usually not accessible in conventional commercial MOs. A source point o(ox , oy , z =
fob j +∆z) in front of the MO has a conjugate image by the first relay lens (RL1) at z′.
RL2 picks up this image and magnified images are recorded behind each micro-lens as
the light reaches the camera sensor. fob j denotes the MO focal length and∆z represents
the axial offset from the native object plane.
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Figure 4.2: Image formation in FLFM. (a) The field stop (FS) controls the size of the elemental
images (EIs) as well as the size of the microscope’s field of view. See Eq. (4.1) and Eq.
(4.2). (b) Overlapping images of the USAF resolution target when the FS is too large.

Then ∆z is an offset from the NOP, and we will refer to it when talking about depth in the
subsequent sections.

A source point at a depth z in front of the MO has a conjugate image at z′ by the first relay
lens, RL1. This intermediate image is then picked up by the second relay lens, RL2, and
finally, magnified images of the field stop (FS) are recorded behind each micro-lens as the
light reaches the camera sensor. The FS, as depicted in Fig. 4.2(a), controls the lateral extent
of the micro-images as µimage = rFS

fml
f2

. Here rFS is the radius of the FS, fml is the focal length
of the micro-lens and µimage is the radius of the EI formed on the sensor. In order for the EIs
to optimally cover the sensor plane (without leaving space between them or overlapping), the
micro-image radius must match the micro-lens radius, µimage = rml . Then the radius of the FS
satisfies:

rFS = rml · f2/ fml . (4.1)

It quickly follows, as depicted in Fig. 4.2(a), that the FS determines the field of view (FOV) of
the FiMic, as its radius satisfies:

rFOV = rFS · fob j/ f1. (4.2)

Figure 4.2(b) shows a simulated light field image of the USAF 1951 resolution target with
overlapping EIs when the FS does not satisfy Eq. (4.1).

4.2 Aliasing and computational super-resolution

By design, behind the micro-lenses, the FiMic records EIs with dense spatial sampling and each
with different angular content. The number of micro-lenses that can be fitted within the AS
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is N = Mrela y
rob j
rml

, with rob j being the radius of the AS. Then such a setup captures N angular
views of the imaged scene. With an equivalent (in terms of MO) wide-field microscope, these
EIs could be captured if pinholes would be placed at certain positions over the AS. Hence, the
recorded light field consists of pinhole views at N locations over the numerical aperture of the
objective, NAob j . The number of micro-lenses controls the spatio-angular resolution trade-off.
By increasing N we may capture more views, however, at a lower spatial resolution as the
effective numerical aperture is reduced proportionally,

NAob j
N [71].

When aiming at 3D reconstruction of the imaged object, the resolution of the volumetric re-
construction is directly determined by the band limit of the recorded signal in each perspective
view. Thus, high-frequency details in the volume can only be recovered if they can be resolved
in the views. Under the Rayleigh resolution criterion for diffraction limited systems [108], two
source points are resolved in each of the EIs, when they are separated by at least a distance:

δdi ff = N
λ

2NAob j
, (4.3)

where λ is the wavelength of the light we employ.

On the other hand, the sampling rate in an EI is crucial in determining how high frequencies
of the light field signal are recorded on the sensor. Within each EI, the sampling period in the
object space is given by the camera pixel pitch, ρpx divided by the total system magnification

factor, MF iMic =
fml f1
f2 fob j

. Then, using Nyquist’s criterion, we define the sensor resolution as:

δsensor = 2
ρpx

MF iMic
. (4.4)

When δsensor samples the signal below the band limit, high frequency details of the light field
appear aliased as low frequency features in the individual EIs. One could potentially try to
alleviate the under-sampling issues by proper selection of the relay magnification. However,
this is not a good strategy since such an increase of the magnification involves the reduction
of the FOV and the need of high-NA micro-lenses which have poor optical quality [71].

A feature that inherently characterizes the orthographic images captured in FLFM, when work-
ing with fluorescent samples, is the under-sampling of the PSF. This happens due to the sensi-
tivity and noise requirements of the camera sensors, which are often met by the use of large
pixels. Note that this problem does not occur in conventional fluorescence microscopy due to
the large magnification factor between the object and the sensor planes.

We introduce the super-sampling factor s ∈ Z to characterize the object space sampling rate
of our reconstructed volumes. If we sample the volume at a rate s times the sensor resolution,
the lateral voxel spacing is:

δsuper =
δsensor

s
. (4.5)
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Figure 4.3: Aliasing and EI sampling rates. a) The EIs formed behind off-axis micro-lenses are
shifted with respect to the centers of the micro-lenses. b) FiMic image of the USAF
1951 resolution target placed at ∆z = −100µm. c) Zoomed-in regions of the EIs in b)
showing distinct aliasing patterns in areas with high frequency features as highlighted
by the arrows. The micro-lens centers (red dots) and the EI centers (dark blue dots)
are mismatched for the off-axis EIs.

There are various works in computer vision demonstrating computational super-resolution
through combining multiple aliased low-resolution images acquired at sub-pixel camera move-
ments [74, 114–118]. In light field photography and conventional light field microscopy, com-
putational super-resolution was addressed by exploiting sub-lenslet sampling [57, 67, 68, 77–
79].

In Fourier light field microscopy, the EIs form behind the micro-lenses at specific translational
offsets with respect to their corresponding micro-lens centers. In Fig. 4.3(a) a ray diagram of
the image formation of a point source away from the NOP is depicted. The first part of the light
propagation is omitted for the sake of clarity of the figure. The center of the image (µimage)
formed behind an off-axis micro-lens, with respect to the optical axis (OA) of the system, is
translationally offset from the corresponding micro-lens (µlens) center. We will refer to the
EI behind the micro-lens centered on the OA as the reference EI, since this image is aligned
with the micro-lens. Then the translational offsets specific to the off-axis EIs are stated with
respect to this image. Fig. 4.3(b) shows an image acquired with our experimental FiMic of
the USAF-1951 resolution target placed at ∆z = −100µm in front of the MO. And Fig. 4.3(c)
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shows zoomed-in regions of three arbitrarily picked EIs of the image in Fig. 4.3(b). The centers
of the micro-lenses are marked in red on the image, while the centers of the EIs are marked
in blue to highlight the misalignment between them. These images contain distinct comple-
mentary aliasing patterns (especially noticeable for elements 6.4 and 6.5 of the USAF target)
which motivate computational super-resolution. Figure 4.4(a) illustrates how the shift pat-
terns change with object depth and Fig. 4.4(b) visualizes these shifts in pixels (between each
micro-lens and its corresponding EI) for an axial range [-120, 120]µm to give an intuitive
understanding on how the image formation in FLFM varies with object depth. The µlens index
being zero refers to the reference (central) micro-lens, which is the closest to the OA.
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Figure 4.4: Depth-dependent lateral shift for the EIs. a) The EIs exhibit different shift pattern with
object depth. b) EIs offsets in pixels from the micro-lens centers with respect to a ref-
erence EI (closest to the optical axis) for objects placed at ∆z = [-120, 120] µm. The
µlens index = 0 refers to the central micro-lens (closest to the OA). c) Sub-pixel shifts
of the EIs with respect to the reference EI over depth. It is these sub-pixel shifts be-
tween the captured views that record complementary aliased information and motivate
computational super-resolution.

More interesting for our discussion are the sub-pixel shifts which are the fractional part of the
pixel shifts in Fig. 4.4(b). Fig. 4.4(c) displays the absolute value of the sub-pixel shifts as a
function of axial position of the source point and µlens index and they appear highly irregular,
although consistent in density across depth. The lack of symmetry with respect to the ’µlens
index’ axis is due to the fact that the reference EI is not perfectly aligned with the optical axis,
but rather the most central one, as it is not trivial to perfectly align the MLA with the optical
axis in practice. However, this misalignment does not impact our reasoning, as long as the
location of the sub-imaging systems (micro-lenses) can be determined. When computing the
system’s response for a specific arrangement, we first detect the relative positions (with respect
to the reference EI) of the centers of the micro-lenses. Also, at the zero plane (∆z = 0µm)
the off-axis EIs show no shift in Fig. 4.4(c). However, the concept of NOP in experimental
FLFM is rather mathematical than physical as any small displacement from that plane gives
rise to a collection of EIs with subpixel shifts. When we present the results we show that
super-resolution is achievable also around the NOP.

In order to recover high-frequency features, enough images with distinct aliasing patterns
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should be combined, such that the sub-pixels shifts constitute a sufficiently dense sampling
pattern [106, 119–121]. Such requirements contribute to the ultimate fundamental resolution
limits of the deconvolved image, the band limit through diffraction limit, the camera pixel
size, sensitivity, fill factor and prior scene information [122]. Multiple such aliased images of a
scene can be computationally combined to enhance the resolution of the recontructed volume,
provided known sub-pixel translational offsets between them Provided sufficient aliased EIs,
we aim at fusing this complementary information while also removing out of focus light in
order to recover a high resolution 3D reconstruction through deconvolution. When the sensor
pixels are close to or smaller than the diffraction limit (generally the case in microscopy), the
aliasing is probably neglectable and computational super-resolution is of relatively low impact.
We will discuss these aspects when we present our results in section 4.4.

4.3 3D reconstruction

4.3.1 The light field point spread function model

In order to obtain a 3D reconstruction of the imaged sample, we aim at characterizing the point
spread function (PSF) of the system and use it to perform deconvolution. In this section we
introduce a wave-based forward light propagation model to describe the optical system’s PSF.
For that we derive the diffraction pattern of a source point when the light propagates through
the FiMic from the source to the camera sensor and we discuss the wavefront at intermediate
key planes in the following subsections.

A source point o(0, 0, oz = fob j + ∆zo) in front of the microscope generates, according to
Rayleigh-Sommerfeld theory [81], a wavefront distribution at the front focal plane of the ob-
jective:

U0(x , y;o) =
A
r

eikr(si gn(∆zo)), (4.6)

where A is the amplitude of the source electrical field, r =
Æ

x2 + y2 +∆z2
o is the distance

between the source point and the observation point (x , y) at the front focal plane, k = 2π
λ is

the wave number and λ is the wavelength of the assumed monochromatic light.

According to Debye scalar integral representation, the wavefront distribution at the back focal
plane of the objective is given by[123]:

UAS(ras;o) =

∫ α

0

U0(θ ;o) J0(kras sin(θ )) sin(θ ) dθ , (4.7)

where ras = (xas, yas) stands for the lateral coordinate at the AS, α is the aperture angle so
that NAob j = sin(α), and θ = sin−1(ras/ fob j). J0 represents the zeroth order Bessel function
of the first kind. From this equation we recognize a Fourier-Bessel transformation between the
amplitude at the front and the back focal planes.
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The wave propagation between the AS and the MLA can be accurately described under the
Fresnel approximation, Thus, the wavefront incident on the MLA array is the magnified version
of the wavefront at the MO aperture stop:

UM LA−(xmla, ymla;o) = UAS

�

xmla

Mrela y
,

ymla

Mrela y
;o

�

, (4.8)

where Mrela y =
f2
f1

. As pointed out in Sec. 4.1, for practical design reasons, the FiMic makes
use of a relay system, depicted by the RL1 and RL2 lens in Fig. 4.2(a), in order to mimic
the MLA being placed at the AS plane (Fourier plane) of the objective. There is no need to
explicitly model the relay system, however we have to account for the induced magnification
factor, Mrela y . When f1 = f2, the relay is 1:1 and the wavefront distributions UM LA− and UAS
are the same.

In [124], the authors have very recently presented a similar wave-based model for describing
the incident field on the MLA. They directly compute the wavefront at the intermediate image
plane (in our naming scenario this is at the back focal plane of RL1) using the Debye integral
derivation for 4f systems [81] and then Fourier transform this field to obtain the distribution
at the MLA. This brings an unnecessary computational overhead and a degree of inflexibility
as the model confines the FiMic design to configurations containing the relay lenses, which as
we have discussed above, do not need explicit modeling. The relay system in our experimental
setup is an auxiliary construction due to the AS not being physically accessible in commercial
MOs, and not an essential specification of the FiMic.

In the next step, the wavefront is further transmitted by the MLA. The field UM LA+ immediately
after the MLA is given by:

UM LA+(xmla, ymla;o) = UM LA−(xmla, ymla;o) · T (xmla, ymla). (4.9)

Here T is the MLA transmittance function modeled by replicating the single lenslet transmit-
tance in a tiled fashion, T = reppml ,pml

�

t(x l , yl)
�

; with reppml ,pml
being the 2D replication

operator and pml the spacing between micro-lenses. t(x l , yl) = P(x l , yl)e
ik(x2

l +y2
l )

2 fml is the com-
plex transmittance function of a lenslet and (x l , yl) are the local lenslet coordinates, while
P(x l , yl) is the lenslet pupil function [67, 68].

Finally, similarly to [68], we employ the Rayleigh-Sommerfeld diffraction solution [108] to
further propagate (for a fml distance) the light field to the sensor plane:

Usens(xs, ys;o) =F−1
¦

F
�

UM LA+(xs, ys;o)
	

·Hrs( fX , fY )
©

, (4.10)

where (xs, ys) are the coordinates at the sensor plane, F represents the Fourier transform
operator, and ( fX , fY ) are the spatial frequencies at the image plane. Hrs is the Rayleigh-
Sommerfeld transfer function, given by:
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Hrs( fX , fY ) = e

�

ik· fml

p
1−(λ fX )2−(λ fY )2

�

. (4.11)

The fact that we deal with an under-sampled process, in which the PSF is smaller than the pixel
size, the small shape changes in the PSF due to the imperfections in the optical system have
little relevance and therefore validate our decision of using the analytic LFPSF. Additionally, it
must be taken into account that, since we are using well-corrected optical equipment (the MO
and the achromatic lenses), our experiments are subjected to the same aberrations problems
as conventional microscopes, and therefore we do not consider aberrations as a topic of special
concern.

4.3.2 3D deconvolution

Given the raw noisy light field sensor measurements m = (m j) j∈J acquired by pixels j ∈ J
(|J | = m) we seek to recover the fluorescence intensity at each discrete point in the volume
which produced these measurements. We represent the discretized volume v by a coefficient
vector (vi)i∈I with |I | = n. Note that the sampling rate in v is dictated by the super-sampling
factor s defined in the previous section. Due to the low photon counts in fluorescence mi-
croscopy, the sensor pixels follow Poisson statistics, yielding the stochastic imaging model:
m∼ Poisson(Av), where m denotes the light field measurement, v denotes the discretized vol-
ume we seek to reconstruct, and the operator A= (a ji) j∈J ,i∈I describes the light field forward
model, which is effectively determined by the FiMic point spread function in Eq. (4.10). For
each point in a fluorescent object, the image intensity is given by the modulus squared of its
amplitude [81]: a ji =

�

�Usens(xs( j),o(i))
�

�

2
, where o(i) is the object space coordinate of voxel i,

and xs( j) is the coordinate of sensor pixel j. We now employ the well known Richardson-Lucy
algorithm [109, 125] to estimate v. The iterative update in matrix-vector notation reads:

vq+1 =
vq

AT 1

h

AT m
Avq

i

, (4.12)

where q is the iteration count. For a more detailed derivation of the reconstruction algorithm
we refer the reader to the previous Chapter [68].

When we assume an aberration-free context, thanks to the strategic placement of the MLA
at the at the back aperture stop of the MO, the light field PSF of the FiMic is translationally
invariant for a fixed axial coordinate. Each micro-lens represents a sub-imaging system with
spatially invariant PSFs and since all the micro-lenses are identical, the whole FiMic imaging
system can be characterized by a shift invariant LFPSF, as a superposition of these individual
PSFs [49]. Conveniently, this allows for the application of the columns of the matrix A for
each depth ∆z via a 2D convolution operation when implementing the iterative scheme in
Eq. (4.12).

For practical reasons, when we discretize the object using the lateral spacing δsuper introduced
in Eq. (4.5), we upsample the raw light field image by the super-sampling factor s. To make
sure this step does not alter the measurements, we employ a nearest neighbor upsampling
method.
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4.3.2.1 Penalized likelihood

If we further assume that we have prior information about our solution, it is appropriate to
estimate u by maximizing the penalized log-likelihood [126], L(v)−λJ(v) instead:

arg max
u

∑

j∈J

∑

i∈I

via ji + z ji ln x ia ji −λJ(v), (4.13)

where the prior J(v) could, for example, represent a roughness functional and λ a smoothing
parameter, as we will see in the next section.

To find a maximizer of the penalized likelihood, we adopt the explicit one step late (OSL)
algorithm [126], and the iterative update scheme in Eq. 4.12 now becomes:

vk+1 =
vk

AT 1+λ ∗ (DJ(v)k)

h

AT m
Avk

i

, (4.14)

where D denotes the derivative operator.

4.3.2.2 Total variation regularization

In this section we assume a smoothness requirement on the discrete solution u. Rudin et al.
[90] introduced the total variation (TV) regularization for imaging problems to preserve sharp
structures, while removing noise in the images. The roughness penalty functional, defined by
the TV of the solution v is:

J(v) = |v|TV. (4.15)

Here we employ the anisotropic discretization of the TV norm[127]:

|v|TV =
∑

i

�

|(∇xv)i|+ |(∇yv)i|
�

, (4.16)

where ∇xv and ∇yv are the horizontal and vertical derivatives, which are discretized here as
one-sided forward differences [128].

When minimizing the negative penalized log-likelihood, −L(v) +λJ(v), the minimizer of the
J(v) functional satisfies the corresponding Euler-Lagrange equation, div ∇v

|∇v| = 0 and the up-
date scheme of the OSL algorithm with TV regularization (OSL-TV) finally reads [129]:

vk+1 =
vk

AT 1+λ · div( ∇v
|∇v|)k

h

AT m
Avk

i

. (4.17)
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Figure 4.5: Reconstruction of the USAF 1951 resolution target. Top: (a) Raw elemental image
of the resolution target acquired with our experimental FiMic (shown is a close up on
groups 6 and 7 of the central elemental image). (b) The post-acquisition refocused
image using the popular algorithm of shifting views and summing up [130]. (c) The
deconvolved image at sensor resolution. (d) The reconstructed image at a 3x super-
sampling of the object space, exploiting complementary multi-view aliasing in the el-
emental images. Bottom: Line profiles through the elements 6.4 to 7.3 of the images
above. While the elemental image (a) and the refocused image (b) resolve up to ele-
ment 6.4 (11 µm), the deconvolution resolves up to element 6.6 (8.8 µm) in (c) and
element 7.1 (7.8 µm) in the computationally super-resolved image (d).

4.4 Experiments and results

In order to demonstrate the potential of our method, the deconvolution results in this section
were obtained at various super-sampling factors and compared with the the refocusing algo-
rithm of pixel shifting and summing [130] and with the central EI of the raw image. All the
results were obtained after 50 iterations of the scheme in Eq. (4.12), which coincides with
a drop in the improvement rate (based on the absolute square difference from the previous
iteration) below 10−2 and the solutions were initialized with uniform white texture.

It is important to note that the factor s relates to the sampling rate we chose for reconstructing
the volumes and has nothing to do with the actual details that can be recovered, which is the
effective resolution of the FiMic as addressed in section 4.2. We refer the interested reader to
existing discussions on the subject [59, 71, 124].

The experiments in this chapter were performed with a custom-built FiMic containing a MLA
with fml = 6.5mm, µlens = 1.0mm (AMUS APH-Q-P1000-R2.95) and an infinity corrected
MO ( fob j = 9.0mm and NAob j = 0.4). For recording the images we used a CMOS camera
(EO-5012c 1/2") with pixel pitch ρpx = 2.2µm.
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MLEM

No reg , 150 it

OSL-TV
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Figure 4.6: Close-up on the reconstruction of the USAF resolution target: MLEM (left) and OSL-TV
(right). The regularized reconstruction (λ = 0.001) produces a smooth image, while
preserving the sharp discontinuities as expected.

4.4.1 Analysis of the reconstruction resolution

For the USAF-1951 resolution target imaged at the front focal plane, Fig. 4.5 shows superior
results for the deconvolution compared to the well known shift and sum refocusing algorithm
[130] used in the baseline work by Scrofani et al. [71]. When employing total variation regu-
larization during the reconstruction, using the penalized likelihood fomulation in Eq. (4.17),
the solution becomes smoother while the sharp details are preserved; see Fig. 4.6. We have
further imaged the USAF-1951 resolution target at various axial positions in the [-120,120]µm
range using our experimental setup. As mentioned in section 4.1, since the AS was not mechan-
ically accessible, we used an optical relay system ( f1 = 125mm, f2 = 200mm) to conjugate the
AS plane and the MLA plane. This configuration fits N = 11.5 micro-lenses in the AS. Under
the resolution criterions in Eq. (4.3) and Eq. (4.4), the expected lateral resolution limit (when
λ = 480nm) of this setup is at best δdi ff = 6.9µm, while the sensor sampling resolution is
δsensor = 9.7µm. On the USAF resolution target, these values are approximately represented
by the elements 7.2 and 6.5, respectively. Fig. 4.7(a) shows the central EI of the raw FiMic
image (green), the shift and sum refocusing algorithm (yellow), our deconvolution at object
space sampling s = 1 (red) and s = 3 (blue) of the groups 6 and 7 of the USAF 1951 resolution
target placed at ∆z = {0,−20,−50,−100}µm. To characterize the recoverable resolution of
our FiMic configuration, in Fig. 4.5 we display line profiles for elements 6.4 to 7.3 of the USAF
target arbitrarily placed at ∆z = −80µm. To determine if one element is resolved, we check
for the existence of an intensity dip of 25% [60]. The central EI, and similarly the refocused
image, resolves up to element 6.4, which corresponds to a lateral resolution of 11µm. By re-
moving the out-of-focus blur, the deconvolution (s = 1) resolves up to element 6.6 (8.8µm).
And by fusing the aliased information in the EIs, in the super-resolved reconstruction (s = 3),
we can recover element 7.1, corresponding to 7.8µm. It is worth remarking here that the
difference between δdi ff and δsensor changes with the number of sub-aperture images, N . It
quickly follows from the definitions in Eq. (4.3) and Eq. (4.4), that when λ < 4NAmlρpx , the
more angular samples we record, the more under-sampled they are by the system. For our
configuration, this inequality is well satisfied and thus the potential for computational super-
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Figure 4.7: Reconstruction of the USAF 1951 target imaged at ∆z = [-120, 120] µm. a) Example
central EI of the FiMic image (green), the refocused image (yellow), the deconvolved
image at sensor resolution (red), the deconvolved image at 3x sensor resolution (blue)
for arbitrarily picked axial positions ∆z = {0,−20,−50,−100}. When compared to
the raw and refocused images, the deconvolved images appear to better resolve details
through deblurring. Element 7.1 appears resolved in the super-resolved image (blue
oval). b) Contrast of the USAF element 7.1 over ∆z = [-120, 120] µm is generally
constant for all the methods in a). As expected, the super-resolved deconvolution shows
the best contrast.
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resolution. On the other hand, although we record N = 11.5 views, this does not dictate the
actual improvement factor we can obtain via super-sampling, which is rather determined by
the density and the level of distinction in the aliasing patterns the EIs exhibit and ultimately
band limited. For the presented USAF target images, reconstructing at s > 3 did not improve
the resolution any further.

Finally, in order to analyze the behaviour of the reconstruction regarding object axial position-
ing, we compute the contrast measure c = (Imax−Imin)/(Imax+Imin) [67, 131], for the element
7.1 for each method in Fig. 4.7(a), over the [-120,120]µm axial range. Imax and Imin are the
minimal and maximal intensities along a line perpendicular to the stripes of the element 7.1
The final contrast (average of the vertical and horizontal stripes contrasts) as a function of
depth is aggregated for all the discussed methods in Fig. 4.7(b). In agreement with the anal-
ysis in Fig. 4.5, the central EI and the refocused image show low contrast when compared to
the deconvolved and super-resolved images. And very importantly, the plots suggest that the
variation in contrast over the axial position is rather low, which means the lateral resolution
in FLFM is uniform across depth, unlike in conventional LFM, where the resolution is highly
non uniform.

4.4.2 Reconstruction of a real 3D sample

We further evaluate the proposed methods on real volumetric data of cotton fibers.

Fig. 4.8(a) (left) shows a raw FiMic image of cotton fibers captured with our experimental
setup configured in a similar way as in the previous section. This time, the relay lenses, RL1
and RL2 have focal lengths f1 = 50mm and f2 = 40mm, which introduce a relay magnification,
Mrela y = 0.8x . Under red light with λ = 680nm, the expected lateral resolution limit for
this configuration is δdi ff = 4.9µm and the sensor sampling resolution is about the same.
In order to evaluate our proposed computational super-resolution algorithm, we binned the
pixels (2x2) in the LF image to artificially double the sensor pixel size. This results in δsensor =
9.8µm. The LF image is shown in Fig. 4.8(a) together with zoomed-in regions of an EI for
details. We reconstructed the sample over an axial range of ∆z = [-150,150]µm for every
10 µm at super-sampling rates s = 1 and s = 4 as displayed in Fig. 4.8(b) and Fig. 4.8(c).
While in both cases we see details that are not visible in the raw image, the improvement
in the super-resolved deconvolution is evident. The close-up in Fig. 4.8(c), as well as the xz
and xy projections cleary show structure that are not resolved in the normal deconvolution in
Fig. 4.8(b).

4.5 Discussion

Fourier light field microscopy addresses the limitations in conventional LFM, where compu-
tational super-resolution has a major impact. It is then natural to ask ourselves if there is
something we can do computationally to improve the resolution in this different FLFM ar-
rangement. When inspecting fluorescence specimens, the camera pixels need to be relatively
large to cope with low light conditions. Then for certain FiMic setup configurations, the light
field signal is under-sampled.
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Figure 4.8: 3D reconstruction of cotton fibers. a) Raw image acquired with our experimental FiMic
setup and zoomed-in regions of an EI for details. b) Maximum intensity projections
(MIPs) and zoomed-in regions of the 3D reconstructed sample (∆z = [-150,150]µm)
using our proposed method at sensor resolution (s = 1). c) MIPs of the super-resolved
3D reconstruction at 4x sensor resolution (s = 4). The deconvolved images resolve
structures structures that do not show in the EI. The close-ups in b) and c) clearly shows
that the super-resolved reconstruction recovers fine details in the sample, that are not
resolved in the normal deconvolution.
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In this chapter we analyze the sampling requirements in FLFM to understand how the sam-
pling rate of the camera pixels impacts the recoverable spatial resolution through volumetric
deconvolution. We then derive a flexible wave-based light field point spread function and use
it to perform 3D reconstruction. The methods we develop in this work are related to compu-
tational super-resolution techniques used in computer vision and computational photography,
where sub-pixel shifts (or sub-lenslet shifts in conventional light field photography) between
multiple aliased views of the same scene are combined to recover an image at sub-pixel res-
olution. A feature that inherently characterizes the orthographic images captured in FLFM,
when working with fluorescent samples, is the under-sampling of the PSF. This happens due
to the sensitivity and noise requirements of the camera sensors, which are often met by the
use of large pixels. Note that this problem does not occur in conventional fluorescence mi-
croscopy due to the large magnification factor between the object and the sensor planes. We
demonstrate, using experimental images of the USAF 1951 resolution target, that when the
system samples the light field below its band limit, computational super-resolution is possi-
ble to some extent. Hence, successful deconvolution fuses the complementary information in
aliased perspective views to recover high frequency details in the imaged scene. We further
evaluate the proposed methods for volumetric samples (cotton fibers) and show superior 3D
reconstruction quality over state-of-the-art methods.
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Part IV

3D reconstruction software
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CHAPTER5
oLaf - A flexible Matlab framework for

3D reconstruction of LFM data

oLaF 1 is a flexible Matlab framework for 3D reconstruction of light field microscopy data. It
is designed to cope with various LFM configurations in terms of MLA type (regular vs. hexag-
onal grid, single-focus vs. mixed multi-focus lenslets) and MLA placement in the optical path
(original 1.0 vs. defocused 2.0 LFM vs. Fourier LFM designs).

Acknowledgments

oLaF evolved gradually improving and expanding on the functionality in [44]. Where pos-
sible, the naming conventions were kept for the sake of relatability and convenience of the
shared users. The pre-processing of the raw light field images relies on the image rectification
functionality [132] in the Light Field Toolbox for Matlab by Donald G. Dansereau.

1https://gitlab.lrz.de/IP/olaf
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5.1 A tutorial

5.1.1 LFM vs. FLFM

oLaF deals with 3D reconstruction of data from both conventional light field microscopy (LFM)
and Fourier light field microscopy (FLFM). While both modalities make use of a micro-lens
arrays to record the spatio-angular light field information, they are in many ways conceptually
different. In this sense, oLaF distinguishes between LFM and FLFM functionality and in the
following we will demonstrate each of them separately. To make the distinction clear, we
employ the LFM prefix for the LFM related function names and FLFM for the FLFM related
ones; see appendix.

5.1.2 Getting started

Clone or download oLaF at https://gitlab.lrz.de/IP/olaf into a location of choice
and run the script olaf/Code/import2ws.m to set up the Matlab path. Every time Matlab
restarts, this script needs to be re-run. Alternatively, add it to startup.m.

olaf/SampleData/ contains several example light field datasets, acquired with various con-
ventional LFM and FLFM setups. Every dataset contains a raw light field image, a white image
(in case of LFM) or a calibration image (in case of FLFM) used for detecting the micro-lens
centers and a YAML file describing the microscope configuration parameters. Fig. 5.1 displays
three such datasets.

5.1.3 Step-by-step reconstruction of conventional LFM data

olaf/Code/mainLFM.m serves as a step-by-step demo script of the LFM related functionality
in oLaF v3.0.

You can switch between datasets by un-commenting the associated lines at the beginning of the
script. Different depthRange and depthStep are suggested for different datasets in order to
keep a low runtime for demonstration purposes. The impact of depthRange on the runtime
is discussed in Sec. 5.4.1.

5.1.3.1 Loading datasets

[LensletImage, WhiteImage, configFile] = LFM_selectLFImages(dataset);

is a convenience function for loading the light field image together with the corresponding
white image and a configuration file containing the acquisition specific parameters, for a given
dataset. Note, the raw light field images are cropped to a region of interest (ROI), as depicted
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Light field image White image

LFConfig.yaml

Light field image White image

LFConfig.yaml

(a) Zebrafish eye: Single focal length, regular grid micro-lens array; original LFM setup.

Light field image White image LFConfig.yaml

(b) Zebrafish brain: Multi focus, hexagonal grid micro-lens array; defocused LFM setup.

Light field image Calibration image LFConfig.yaml

Light field image White image

LFConfig.yaml

(c) Cotton fibers: Hexagonal grid micro-lens array; FLFM setup.

Figure 5.1: Example light field data sets.

in Fig. 5.1 (b), in order to speed up the computations. For the provided datasets the ROIs
are predefined. However, you can choose custom regions using the built-in Matlab interactive
function getrect():

figure; imagesc(LensletImage);
rect = round(getrect);

5.1.3.2 User Inputs.

When reconstructing a light field image, the user decides the resolution related parameters:

depthRange % the axial range (in µm) of the reconstructed volume,
% relative to the focal plane of the objective lens,
% e.g., depthRange = [-20,20].
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depthStep % represents the axial resolution (in µm) of the
% reconstructed object.

newSpacingPx % the desired spacing (in number of pixels) between
% neighboring lenslet centers. This parameter was introduced to
% allow for up-/down-sampling of the raw lenslet image.
newSpacingPx = 'default' % means no up-/down-sampling i.e.,
% newSpacingPx = spacingPx (spacingPx is the real lenslet spacing
% given by the micro-lens pitch and the camera sensor pixel pitch).
% newSpacingPx controls the sensor resolution and the lenslet
% image is interpolated to this user-specified pixel spacing,
% prior to reconstruction.

superResFactor % controls the lateral resolution of the reconstructed
% object. It is interpreted as a multiple of the lenslet resolution
% (1 voxel/lenslet).
superResFactor = 'default' % means the object is reconstructed at
% sensor resolution, while superResFactor = 1 means
% lenslet resolution.

5.1.3.3 Light field microscope (LFM) setup descriptor.

Camera = LFM_setCameraParams(configFile, newSpacingPx);

builds the Camera structure based on the fields in the configFile. A configuration file (see
Fig. 5.1 (a) and (b)) typically contains the following LFM setup specific parameters:

gridType % micro-lens array grid type;
gridType = 'reg' % for regular grid array;
gridType = 'hex' % for hexagonal grid array.

focus % flag for the micro-lens array type;
focus = 'single' % when all the micro-lens in the array have the same
% focal length;
focus = 'multi' % when the array contains three mixed focal lengths
% in a hexagonal grid; see Fig.5.6.
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fm % the focal length of the micro-lens; when focus = 'multi',
% fm is an array (see Fig.5.1 (b)).

plenoptic % flag for the LFM configuration;
plenoptic = 1 % for the original LFM design (1.0);
plenoptic = 2 % for the defocused LFM design (2.0, tube2mla 6= ftl).

uLensMask % flag for micro-lens shape mask;
uLensMask = 1 % when there is no space between micro-lens
% e.g., regular grid array with square aperture micro-lens;
uLensMask = 0 % when there is space between micro-lens
% e.g., circular aperture.

M % objective magnification;
NA % objective numerical aperture;
ftl % focal length of the tube lens (in µm);
lensPitch % micro-lens pitch (in µm);
pixelPitch % sensor pixel pitch (in µm).

tube2MLA % distance between the tube lens and MLA
% tube2MLA = ftl in original LFM design, i.e. when plenoptic = 1
% When tube2MLA is not known from the acquisition (measuring was
% not possible), set tube2MLA = 0 in the YAML configuration file.
% Then the function:
tube2MLA = computeTube2MLA(lensPitch, mla2sensor, deltaOT,...

objRad, ftl) % computes tube2MLA such that
% the effective image-side NA of the tube lens matches
% the effective NA of the micro-lenses i.e., the micro-images
% optimally fill the sensor without overlapping.
% Here deltaOT is the distance between the objective and the tube
% lens, usually deltaOT = ftl + fobj for commercial microscopes.

mla2sensor % distance between the MLA and sensor;
% set mla2sensor = 0 in the configuration file if tube2MLA is known
% and mla2sensor has to be retrieved such that the F-number matching
% condition is satisfied.
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wavelength % wavelength of the emission light;
n % refraction index (1 for air).

Based on the input parameters and the ones in the configuration file, the function

Camera = LFM_setCameraParams(configFile, newSpacingPx)

computes extra parameters relevant for the reconstruction; these are described in Sec. 5.2.1.

5.1.3.4 Retrieve lenslet centers and related data structures.

For every image/dataset to be reconstructed, an associated white image needs to be provided
in order to detect the lenslet centers; Fig. 5.1 (a) and (b) show example light field (lenslet)
and white images.

Figure 5.2: Detected micro-image centers in a white image.

The function

[LensletCenters, Resolution, LensletGridModel, NewLensletGridModel]...
= LFM_computeGeometryParameters(...

Camera, WhiteImage, depthRange, depthStep,...
superResFactor, DebugBuildGridModel, imgSize)

uses such a white image, WhiteImage, together with the Camera structure and the user inputs
to retrieve the lenslet centers and builds several data structures relevant for the 3D reconstruc-
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Figure 5.3: Rectified micro-lens centers after the NewLensletGridModel matching transforma-
tion.

tion process. Details on the implementation of this function and the returned data structures
are given in Sec. 5.2.1.

5.1.3.5 Compute the light field point spread function.

The function

[H, Ht] = LFM_computeLFMatrixOperators(...
Camera, Resolution, LensletCenters)

uses the data structures introduced in the previous section to pre-compute the forward (H)
and backward (Ht) light transport patterns. H describes the discrete light field point spread
function (LFPSF), and Ht describes the inverse light propagation.

Sec. 5.3.1 describes in detail the functionality implemented by this function.

5.1.3.6 Correct/rectify light field images.

Prior to the reconstruction, the input light field image is transformed to match the
NewLensletGridModel. For this purpose, we retrieve the 2D affine transforma-
tion between the original and new (user defined) grids, LensletGridModel and
NewLensletGridModel:
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FixAll = LFM_retrieveTransformation(LensletGridModel,...
NewLensletGridModel)

and apply this transformation to the light field and white images:

[CorrectedLensletImage, CorrectedWhiteImage]...
= LFM_applyTransformation(LensletImage, WhiteImage, FixAll,...
LensletCenters, debug)} % When debug = '1', the...
% transformed white image (with overlaid rectified
% centers) is displayed for a visual check like in Fig.5.3.

While transforming both images, due to the rotation without cropping, the rectified images
show some zero borders, as pointed out by the red arrows in Fig. 5.3. In order to even out
these parts, for smooth visualization of the subsequent reconstruction result, we apply a pre-
processing step:

correctedLensletImage(correctedLensletImage <...
mean(correctedLensletImage(:)))...
= mean(correctedLensletImage(:))

however, this is optional, and other strategies may be used.

5.1.3.7 Set forward/backward projection operators.

The forward projection operators are functions which use the forward projection patterns (H)
to simulate a light field image from a 3D volume (object), and the backward projection oper-
ators are meant to do the inverse mapping, i.e. generate the 3D object from a lenslet image
by applying the pre-computed back-projection patterns (Ht).

Based on the Camera.focus, function pointers are set up to be passed to the deconvolution
routine.

When Camera.focus = 'single':

forwardFUN = @(object) LFM_forwardProject( H, object, ...
LensletCenters, Resolution, imgSize, Camera.range);

backwardFUN = @(projection) LFM_backwardProject(Ht, projection,...
LensletCenters, Resolution, texSize, Camera.range).

In case Camera.focus = 'multi', we use projection operators which adapt the func-
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tionality to multi-focus MLA setups ( H, Ht contain multi-focus patterns, as discussed in
Sec. 5.3.1):

forwardFUN = @(object) LFM_forwardProjectMultiFocus( H, object,...
LensletCenters, Resolution, imgSize, Camera.range);

backwardFUN = @(projection) LFM_backwardProjectMultiFocus(Ht,...
projection, LensletCenters, Resolution, texSize, Camera.range).

imgSize and texSize are pre-computed light field image and volume container sizes; they
are different when we reconstruct at a different resolution than sensor resolution.

5.1.3.8 3D reconstruction.

Once we have all the necessary ingredients we proceed to 3D reconstruct the light field image,
correctedLensletImage.

The function

reconVolume = deconvEMS(forwardFUN, backwardFUN, LFimage, it,...
initVolume, filterFlag, lanczos2FFT, onesForward, onesBack)

implements the Estimate-Maximize-Smooth deconvolution algorithm we presented in
[68]. The arguments are described below:

forwardFUN / backwardFUN % the function pointers set previously
LFimage = correctedLensletImage;
initVolume = ones([texSize, length(Resolution.depths)]); % initial
% guess
it % the number of iterations
filterFlag % when filterFlag = 0, deconvEMS implements the
% Richardson-Lucy deconvolution, otherwise, when filterFlag = 1,
% deconvEMS implements the depth-dependent aliasing-free
% deconvolution with smoothing step as described in [68];

lanczos2FFT = LFM_buildAntiAliasingFilter([texSize,...
length(Resolution.depths)], widths, lanczosWindowSize);
% contains the depth-dependent anti-aliasing filter kernels,
% used in the smoothing step of the EMS algorithm.
% When filterFlag = 0, lanczos2FFT argument can be [].

widths = LFM_computeDepthAdaptiveWidth(Camera, Resolution);
% are the ideal filter radii, computed based on the LFM
% depth-dependent sampling. There is one computed width
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% per object depth.
lanczosWindowSize % is the size of the Lanczos window used
% to implement the ideal filters. Typically, in our
% experiments, lanczosWindowSize = 2,3

onesForward / onesBackward % are used for background correction
% during deconvolution, to cope with the illumination and noise
% effects imbalances in real images:

onesvol = ones(size(initVolume));
onesForward = forwardFUN(onesvol);
onesBack = backwardFUN(onesForward);

% When using the EMS deconvolution (filterFlag = 1),
% the background normalization is not necessary, as the
% smoothing step keeps the process stable over the iterations.

For more details on the implementation of the deconvolution, see the corresponding Matlab
files. For the theory behind the EMS deconvolution algorithm, check out [68].

5.1.4 Step-by-step reconstruction of Fourier LFM data

olaf/Code/mainFLFM.m serves as a step-by-step demo script of the FLFM related function-
ality in oLaF v3.0 using the example dataset shown in Fig.5.1 (c).

5.1.4.1 User Inputs.

Once the LensletImage, CalibrationImage and configFile are loaded, the user decides
the resolution related parameters:

depthRange % is the axial range (in µm) of the reconstructed
% volume, relative to the front focal plane of the microscope
% objective lens, e.g., depthRange = [-80,80];
depthStep % represents the axial resolution (in µm) of the
% reconstructed object.

superResFactor % controls the lateral sampling rate of the
% reconstructed object. When superResFactor == 1 the volume is
% reconstructed at the resolution of the sub-aperture images.
% Conversely, superResFactor > 1, the object is discretized
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% at a sampling rate superResFactor times the sensor sampling rate.
% The LensletImage (as well as the CalibrationImage) is upsampled
% accordingly using the nearest neighbor method.

5.1.4.2 Fourier light field microscope (FLFM) setup descriptor.

The function

[Camera, LensletGridModel] = FLFM_setCameraParams(configFile,...
superResFactor)

builds the Camera and LensletGridModel structures based on the fields in the configFile.
A configuration file (see Fig. 5.1 (c)) typically contains the following FLFM setup specific pa-
rameters:

gridType % micro-lens array grid type. gridType = 'reg'
% for regular grid array; gridType = 'hex' for hexagonal
% grid array.
NA % numerical aperture of the microscope objective
fobj % focal length of the microscope objective lens
f1 / f2 % focal lengths of the two relay lenses
fm % focal length of the micro-lens
mla2sensor % distance between the MLA plane and camera sensor plane
lensPitch % micro-lens pitch (in µm)
pixelPitch % sensor pixel pitch (in µm)
wavelength % wavelength of the emission light
n % refraction index (1 for air).

The configFile also contains parameters describing the micro-lens array. These are usually
rough estimates (by analyzing the LensleImage of the CalibrationImage) and they will
be refined later, as discussed in section 5.2.2:

noLensHoriz / noLensVert % the number of micro-lens in the array
% to match the sensor extent

spacingPixels % the number of pixels between two horizontally
% neighboring lenslets

horizOffset / vertOffset % the coordinates of the center of the
% first (upper left corner) whole elemental image in the LensleImage
% or the CalibrationImage

shiftRow % whether odd (shiftRow = 1) or even (shiftRow = 2)
% represents the number of rows that are half diameter
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% shifted in case of hexagonal grids

gridRot % the rotation of the grid with respect to the optical axis

Based on the input parameters and the ones in the configuration file, the function

[Camera, LensletGridModel] = FLFM_setCameraParams(configFile,...
superResFactor)

computes extra parameters relevant for the reconstruction; these are described in Sec. 5.2.2.

5.1.4.3 Retrieve lenslet centers and resolution related parameters.

For every image to be reconstructed, an associated calibration image needs to be provided
in order to detect the lenslet centers; Fig. 5.1 (c) shows an example light field image and a
corresponding calibration image. A calibration image is an image of an object (usually, but not
necessarily, a resolution target) placed at the front focal plane of the microscope objective, so
that the centers of the micro-lens coincide with the centers of the elemental images.

The function

[LensletCenters, Resolution] =...
FLFM_computeGeometryParameters(CalibrationImage,...
Camera, LensletGridModel, depthRange, depthStep)

uses such a CalibrationImage, together with the Camera and LensletGridModel data
structures and the user inputs to retrieve the lenslet centers and compute several resolution
related parameters that are relevant for the 3D reconstruction process.

Details on the implementation of this function are given in Sec. 5.2.2.

5.1.4.4 Compute the light field point spread function.

The function

[H, Ht] = FLFM_computeLFMatrixOperators(Camera, Resolution)

uses the data structures introduced in the previous sections to precompute the forward (H)
and backward (Ht) light transport patterns. H describes the discretized 3D light field point
spread function (LFPSF), and Ht is its transpose.
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Sec. 5.3.2 describes the functionality provided by the FLFM_computeLFMatrixOperators
function.

5.1.4.5 3D reconstruction.

The forward projection operator is a function which uses the pre-computed LFPSF (H) to sim-
ulate a light field image from a 3D volume (object), and the backward projection operator is
meant to do the inverse mapping, i.e. generate the 3D object from a lenslet image by applying
the pre-computed back-projection model (Ht).

We set up function pointers for the projectors to be passed to the deconvolution routine:

forwardFUN = @(volume) FLFM_forwardProject(H, volume);
backwardFUN = @(projection) FLFM_backwardProject(Ht, projection);

Once we have all the necessary ingredients we proceed to deconvolved the light field image,
LensletImage.

The function

recon = deconvRL(forwardFUN, backwardFUN, LensletImage, iter, init)

implements the Richardson-Lucy deconvolution algorithm as presented in [133]. The ar-
guments are described below:

forwardFUN / backwardFUN % the function pointers set previously;
LensletImage % the raw light field image we want to 3D reconstruct;
iter % the number of iterations;
init % the initial solution guess; usually a uniform white object
% init = ones(volumeSize).

Alternatively, the function

recon = deconvOSL(forwardFUN, backwardFUN, LensletImage,...
iter, init, lambda)

implements the One-Step-Late algorithm which combines the Richardson-Lucy decon-
volution with a total variation (TV) prior on the data to be reconstructed as presented in [129].
The additional argument, lambda represents the regularization parameter.

The axial slices of the 3D reconstructed object have the same size as the light field image (in
terms of number of pixel), for the ease of use of the convolution operation (see section 5.4.2).
However, the actual field of view of the microscope is smaller (it matches an elemental image
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size in terms of number of pixels; see section 5.2.2). We compute the field of view (fovRangeX
and fovRangeY) and crop the recon accordingly:

reconCropped = recon(fovRangeY, fovRangeX, :)

5.2 Microscope geometry

5.2.1 LFM setup

Based on the setup description (from user inputs and configuration file), the function below
computes extra parameters relevant for the reconstruction:

Camera = LFM_setCameraParams(configFile, newSpacingPx)
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Figure 5.4: LFM setup specific quantities.

Camera.range % when gridType = 'reg' we exploit the symmetry
% of the discrete volume relative to the system's optical axis.
% Then we can pre-compute the light field point spread
% function (LFPSF) for a reduced (one quarter) set of source
% point positions. In this case we set Camera.range = 'quarter'.
% When gridType = 'hex', unfortunately, the discretization does
% not allow for such optimization and we set Camera.range = 'full'
% For a detailed explanation see Sec. 5.3.1.
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Camera.fobj % focal length of the objective lens
Camera.fobj = Camera.ftl/Camera.M;

Camera.DeltaOT % objective to tube lens distance
Camera.DeltaOT = Camera.ftl + Camera.fobj; % for 4-f systems

Camera.spacingPx % number of pixels behind a micro-lens
Camera.spacingPx = Camera.lensPitch/Camera.pixelPitch;

Camera.newSpacingPx % as specified by the user
% See paragraph 5.1.3.2.

Camera.newPixelPitch % sensor pixel pitch corresponding to the
% new micro-lens spacing.
Camera.newPixelPitch = Camera.lensPitch / newSpacingPx;

Camera.k % wave number
Camera.k = Camera.n/Camera.WaveLength % 2 ∗π

Camera.dof % an object at a distance Camera.dof in front of
% the objective is focused on the MLA by the tube lens.
% Fig.~5.4 depicts dof together with all the relevant
% LFM quantities.

Camera.offsetFobj % the offset from fobj to dof
Camera.offsetFobj = Camera.dof - Camera.fobj;

Camera.objRad % radius of the objective lens
Camera.objRad = Camera.fobj * Camera.NA

Camera.uRad % radius of the micro-image formed on the sensor
% for an object depth focused on the MLA by the tube
% lens (Camera.dof). µRad is depicted in Fig.5.4.

Camera.tubeRad % effective tube lens radius.
% It represents the radius of the wave-front distribution
% incident on the tube lens, for a source point at dof;
% see Fig.5.4.

The function

[LensletCenters, Resolution, LensletGridModel, NewLensletGridModel] =
LFM_computeGeometryParameters(Camera, WhiteImage,...
depthRange, depthStep, superResFactor,...
DebugBuildGridModel, imgSize)
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Figure 5.5: Lenslet grid and resolution related parameters.

uses a white image, together with the Camera structure and the user inputs to retrieve the
lenslet centers and to build several data structures relevant for the reconstruction.

DebugBuildGridModel is a binary flag. When it is set true, the white image with overlaid
micro-image centers is displayed for a visual check as in Fig. 5.2.

imgSize is only needed when a white image is not available (WhiteImage = []). This is the
case in simulations, when a lenslet grid model is built based on the Camera specs and the de-
sired sensor image size, imgSize. Conversely, when a white image is provided, the imgSize
argument can be omitted as the sensor image size is just the size of the WhiteImage.

Finally, the LFM_computeGeometryParameters function returns the following data struc-
tures:

LensletGridModel % derived when analyzing the raw white image.
% LensletGridModel contains information like the spacing between
% lenslet centers in pixels (HSpacing and Vspacing fields;
% which are different for hexagonal grids),
% the offset to the center of the first whole lenslet image
% in the white image (HOffset and VOffset),
% the rotation of the grid with respect to the optical axis (Rot),
% and whether odd or even rows are half diameter shifted
% in case of hexagonal grids (FirstPosShiftRow), etc.
% An example LensletGridModel for a regular grid MLA,
% with lensPitch = 127 µm and pixelPitch = 5.5 µm
% is displayed in Fig.5.5.

NewLensletGridModel % the ideal (Rot = 0) grid model created based
% on the user inputs and the LensletGridModel.
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% Fig.5.5 (middle) shows a NewLensletGridModel for
% an input newSpacingPx = 17.
% The new pixel pitch is now given by lensPitch/newSpacingPx,
% such that HSpacing and VSpacing are now integer values in
% terms of the new pixel size.

Resolution % contains all the sensor and object space resolution
% related quantities. Similarly to the lenslet grid model,
% we build a TextureGridModel which describes the object space.
% The object space is interpreted as tiled lateral patches
% (areas) that are imaged exactly behind a micro-lens.
% In Sec.5.3.1 and Sec.5.4.1 we
% describe how such a representation of the object space
% makes the imaging process computationally efficient.
% The TextureGridModel depends on the LensletGridModel and the
% superResFactor introduced earlier.

The function

Resolution = LFM_computeResolution(NewLensletGridModel,...
TextureGridModel, Camera, depthRange, depthStep)

builds the Resolution structure as shown in Fig. 5.5. NspacingLenslet is the distance in
pixels between lenslets centers.

Resolution contains fields like:

Resolution.Nnum / Resolution.TexNnum % always odd
% to ensure a center pixels exists. They refer to the number of
% pixels/voxels behind/in front of a micro-lens, together with
% sensor/texture (object) resolution in µm,
% or Resolution.texScaleFactor which is computed as texNnum/Nnum.

Resolution.sensMask % a Nnum*Nnum binary mask computed in the function
% LFM_computePatchMask(NspacingLenslet, Camera.gridType, sensorRes,
% Camera.uRad, Nnum), such that the sensor patches behind
% the micro-lens perfectly fill the sensor plane without overlapping;
% this is particularly important for hexagonal grid MLAs, where the
% discretization of the patches is not symmetric with respect to
% the center of a micro-lens (NspacingLenslet vs. Nnum).
% Fig.5.6 (left) shows such a lenslet mask.

Resolution.texMask % analogous for the object space patches
% aligned with the micro-lenses. Ultimately, the struct also
% keeps depth related (axial resolution) input parameters.
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Finally, the function

LensletCenters = LFM_computeLensCenters(NewLensletGridModel,...
TextureGridModel, Resolution.sensorRes,
Camera.focus, Camera.gridType)

builds the LensletCenters data structure illustrated in Fig. 5.5 (bottom):

LensletCenters.px % lenslet centers coordinates in pixels
LensletCenters.metric % metric lenslet centers coordinates in µm
LensletCenters.offset % the position of the central micro-lens
LensletCenters.vox % the centers of the object space patches
% LensletCenters.px has a third dimension in case of multi-focus
% MLAs (Fig.5.6 (right)) in order to store the
% lenslet type along side its center x/y coordinates.
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Camera.fm = [4250, 4950, 5900] (μm)

Figure 5.6: Left: Non-overlapping sensor lenslet mask. Right: Multi-focus MLA with three mixed
focal length micro-lenses.

5.2.2 FLFM setup

Based on the setup description (from user inputs and configuration file; see paragraphs 5.1.4.1
and 5.1.4.2), the function

[Camera, LensletGridModel] = FLFM_setCameraParams(configFile,...
superResFactor)
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computes extra parameters relevant for the reconstruction:

Camera.spacingPixels = Camera.spacingPixels * superResFactor;
% We scale the spacing between micro-lenses according
% to the super-sampling factor superResFactor
% See paragraph 5.1.4.1.

Camera.objRad % radius of the microscope objective under
% paraxial approximation.
Camera.objRad = Camera.fobj * Camera.NA;

Camera.k % wave number
Camera.k = Camera.n/Camera.WaveLength = $2*\pi$;

Camera.M % total system magnification factor
Camera.M = (Camera.fm*Camera.f1)/(Camera.f2*Camera.fobj)

Camera.fsRad % the radius of the field stop
Camera.fsRad = Camera.lensPitch/2 * Camera.f2/Camera.fm;
% see Fig.~5.7.

Camera.fovRad % the radius of the object space field of view
Camera.fovRad = Camera.fsRad * Camera.fobj/Camera.f1;

LensletGridModel.VSpacing % vertical spacing (in pixels)
% between neighboring lenslets.
% In case of LensletGridModel.gridType == 'hex',
% LensletGridModel.VSpacing = round(sqrt(3)/2*LensletGridModel.HSpacing)
% Otherwise (for regular grid arrays)
% LensletGridModel.VSpacing and LensletGridModel.HSpacing are the same.
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Figure 5.7: FLFM ray diagram and setup specific quantities.

The function
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Figure 5.8: Setup, lenslet grid and resolution related parameters.

[LensletCenters, Resolution] = FLFM_computeGeometryParameters...
(CalibrationImage, Camera, LensletGridModel, ...
depthRange, depthStep)

uses a calibration image, together with the Camera and LensletGridModel data struc-
tures and the user inputs to retrieve the lenslet centers and to compute several resolution
quantities relevant for the reconstruction. Fig. 5.8 illustrates the content of the Camera and
LensletGridModel data structures for the experimental FLFM configuration used to acquire
the cotton fibers image in Fig. 5.1 (c).

The FLFM_computeGeometryParameters function returns the following data structures:

Resolution % contains all the sensor and object space resolution
% related quantities, as displayed in Fig.5.8.
% computed in the function FLFM_computeResolution(...

% LensletGridModel, Camera, depthRange, depthStep)
% It contains fields like:

% Nnum - number of pixels behind each micro-lens,

% senRes / texRes (object space) resolution in µm,

% fovRadVox - radius of the object side field of view

% sensorSize is the size of the input light field image.
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Figure 5.9: FLFM light field image of the USAF-1951 resolution target and elemental image close-
ups: uniformly spaced micro-lens centers according to the LensletGridModel speci-
fications (red stars) vs. corrected centers via elemental image registration (blue circles).

LensletCenters % the lenslet centers coordinates in pixels
% computed by the function FLFM_computeLensCenters(CalibrationImage,

% Camera, LensletGridModel)

In order to detect the exact lenslet centers, in function

transformationsStack = ...
FLFM_retrieveEItransformations(LensletGridModel,
CalibrationImage)

we first extract the elemental images from the CalibrationImage using the
LensletGridModel:

LF = FLFM_extractEI(LensletGridModel, CalibrationImage),

then pick a reference elemental image (the most central one):

fixed = LF(:,:,ceil(size(LF,3)/2), ceil(size(LF,4)/2)),
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and register all the other elemental images to this reference one, in order to retrieve the trans-
lational transformation between them:

tform = imregtform(LF(:,:,i,j), fixed, 'translation',...
optimizer, metric);

The transformationsStack contains the transformations corresponding to all the elemen-
tal images.

Having computed these translational offsets, we can now find the exact centers of the micro-
lenses by correcting the coordinates of the centers in the uniformly spaced grid estimated from
the LensletGridModel:

centersUniform = LFBuildGrid(LensletGridModel, Camera.gridType)
...
LensletCenters(j,k,1) = centersUniform(j,k,1) -...

transformationsStack{j,k}.T(3,1);
LensletCenters(j,k,2) = centersUniform(j,k,2) -...

transformationsStack{j,k}.T(3,2);

Fig. 5.9 shows a light field image of the USAF-1951 resolution target and elemental image
close-ups overlaid with the uniformly spaced (according to LensletGridModel) micro-lens
centers (red stars) and the real (corrected) centers (blue circles).

5.3 Light Field Point Spread Function

5.3.1 LFPSF in conventional LFM

When passing through an optical system, an ideal source point generates a diffraction pattern
at the observation plane, known as the system’s point spread function (PSF). While in a conven-
tional optical microscope, the PSF is invariant with respect to the position of the point source,
in the LF microscope, the light field PSF (LFPSF) is translationally variant i.e., the diffraction
pattern generated behind the MLA depends on the 3D position of the point source.

Fortunately, the repeating nature of the MLA grid makes the LFPSF to be periodic such that for
source points at s ∗ lensPi tch

M apart (s is any integer scalar factor), their response on the sensor
(LFPSFs) are identical up to a s ∗ lensPi tch translation.

When we represent the discrete forward imaging model as:

i = H ∗ t, (5.1)
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Figure 5.10: Step-by-step LF point spread function computation.

the operator H represents the discrete LFPSF, i the sensor image (LF measurements) and t the
discretized imaged 3D object.

Due to the periodicity of the LFPSF, the computational burden of computing the columns of
matrix H reduces dramatically as we only compute and store the LFPSF for a limited number
(Resolution.TexNnum*Resolution.TexNnum) of discrete source points per axial depth;
we call these the forward projection patterns. Consequently, H can be efficiently applied (for-
ward projection) as a series of convolutions (each PSF pattern as kernel over corresponding
source points) at every object depth. This procedure is described in Sec. 5.4.1.

The function

[H, Ht] = LFM_computeLFMatrixOperators(Camera, Resolution,...
LensletCenters)

uses the data structures introduced in Sec. 5.2.1 to pre-compute the forward (H) and backward
(Ht) projection patterns in several steps:

• The function

PSFsize = LFM_computePSFsize(maxDepth, Camera)

first computes the maximum blur size in pixels (area of the wave-front distribution) at
the MLA plane in order to know the needed size of the H, Ht matrix containers.

maxDepth is that depth among Resolution.depthRange which is further away from
the front focal point of the microscope objective, such that it generates the largest blur
in extent. Once we know the maximum size of the LFPSF for the chosen axial range,
using the Resolution.sensorRes we define the sensor plane coordinates (in µm),
Resolution.xspace, Resolution.yspace as well as local lenslet coordinates (rel-
ative to a lenslet center), Resolution.xMLspace, Resolution.yMLspace.

• The function
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psfWaveStack = LFM_calcPSFAllDepths(Camera, Resolution)

computes the wave-front distribution at the MLA plane generated by point source on the
optical axis at every depth in Resolution.depths. This intermediary PSF at the MLA
plane is shift invariant and so it is enough to compute the response for a single source
point, for simplicity, a point on the optical axis. In order to optimize the implementation
and computation time, we exploit the nature of the wave-based PSF:

– Due to the circular symmetry of the PSF, we only compute one quarter of the 2D
distribution and then replicate it for the full range.

– The PSF for source points at equal distance from the focus point of the objective
are complex conjugates. In practice, in general, we are interested in reconstructing
axial ranges symmetrically around the native object plane, e.g. [−50, 50]µm; we
then only effectively compute the responses at the MLA for half of the range and
use their complex conjugates for the rest.

The simulated PSF at the MLA plane for a point at depth ∆z = −20 is shown in
Fig. 5.10 (a). For these simulations, we emulated a LFM setup as described in the
LFConfig.yaml of Fig. 5.1 (a).

• Once we have the psfWaveStack at the MLA plane, the function

[H, Ht] = LFM_computePatternsSingleWaves (psfWaveStack, Camera, ...
Resolution, tolLFpsf)

computes the forward and back-projection patterns for LFM setups with single focus
MLA.

Similarly, the function

[H, Ht] = LFM_computePatternsMultiWaves(psfWaveStack, Camera,...
Resolution, tolLFpsf)

adapts the functionality for multi-focus (Camera.focus = ’multi’) MLA setups as
depicted in Fig. 5.6 (right). Over the remaining of this section we will point out to the
multi-focus specific functionality when relevant.

The forward/backward light patterns computation is implemented in several steps:

– The function

ulensPattern = LFM_ulensTransmittance(Camera, Resolution)

computes the 2D transmittance function for one micro-lens and
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MLARRAY = LFM_mlaTransmittance (Camera, Resolution,...
ulensPattern)

replicates the ulensPattern one lensPitch apart for the size of the MLA. The
simulated 2D MLA transmittance function is depicted in Fig. 5.10 (b).

– The function

H = LFM_computeForwardPatternsWaves(psfWaveStack,...
MLARRAY, Camera, Resolution)

computes the forward projection for every point inside a patch aligned with the
central (w.r.t the optical axis) micro-lens. The size of this patch is chosen such that
its image on the sensor is formed exactly behind one micro-lens. It is then sufficient
to compute the LFPSFs for these points and then apply them in a shifted matter for
any object size in front of the microscope.

In case of regular grid MLAs, it is sufficient to compute the LFPSF for only one
quarter of the object space patch

Resolution.TexNnum_half * Resolution.TexNnum_half *
length(Resolution.depths)

due to symmetry, and then use shift rotated versions of these for the rest of the
discrete points in the patch. Unfortunately, such optimization is not possible in
case of hexagonal grid MLAs, as the object space cannot be split into symmetrically
(with respect to the center point of a patch) discretized patches; this is due to
the integer rounding of the half lenspitch displacement of the micro-lens every
other row in the hex MLA. This discrimination gives rise to the Camera.range flag
introduced in Sec. 5.2.1:

Camera.range = 'quarter' % for regular grid MLA setups;
Camera.range = 'full' % for hexagonal grid MLA setups.

Coming back to computing the forward patterns, for each discrete point in the
object space range (full or quarter patch) described above, we laterally shift the
previously compute 2D PSF (at the MLA plane) corresponding to the axial position
of the point (from psfWaveStack) to the x y position of the current point, using
the function

newImg = imShift2(Img, ShiftX, SHiftY)

Then the shifted PSF (psfSHIFT) is passed through the MLA by applying the MLA
transmittance:
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psfMLA = psfSHIFT.*MLARRAY;

The response is then propagated to the sensor using the function:

LFpsfAtSensor = prop2Sensor(psfMLA, sensorRes,...
Camera.mla2sensor, Camera.WaveLength, 0);

which implements the Rayleigh-Sommerfeld diffraction.

Finally, the 2D response patterns are shifted back and the results are stored in
sparse format:

H(aa_tex, bb_tex, c) = sparse(abs(double(LFpsf).^2));

Here, aa_tex, bb_tex represent the local lateral object patch coordinates and c
indexes the axial coordinate, Resolution.depths(c):

aa_tex = 1..Resolution.TexNnum,

bb_tex = 1..Resolution.TexNnum,

c = 1..length(Resolution.depths).

In case of the multi-focus LFM setup, we compute three (as many as the number
of different micro-lens focal length available in the MLA) different sets of forward
patterns. In order to do so, we simulate three different 2D MLA transmittance
functions, each with one of the three micro-lens in the center (w.r.t the optical axis
of the system), by shifting around the available focal lengths, e.g.:

CameraShift.fm = circshift(Camera.fm, -1);
ulensPattern = LFM_ulensTransmittance(CameraShift,...

Resolution);
MLARRAY = LFM_mlaTransmittance(CameraShift,...

Resolution, ulensPattern);

Fig. 5.10 (c) shows a simulated forward pattern for source a point on
the optical axis ((aa_tex, bb_tex) = (Resolution.TexNnum_half,
Resolution.TexNnum_half) at −20µm.

– The function

H = ignoreSmallVals(H, tolLFpsf)
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is a convenience function which first clamps the values of H smaller than tolLFpsf
in order to speed up the computations (see convolution in Sec. 5.4.1). Then the
individual 2D LFPSFs, H(aa,bb,c) are normalized to [0,1] range.

– The function

Ht = LFM_computeBackwardPatterns(H, Resolution,...
range, lensOrder)

computes the backward light transport patterns, for every discrete point on the
sensor plane, behind a micro-lens. Analogous to the forward pass, it is sufficient to
compute the patterns for only a limited set (behind the central micro-lens) of points
(Resolution.Nnum * Resolution.Nnum) as the entire sensor plane contains
only shifted version of these.

The lensOrder argument is left empty ([]) for single-focus MLA setups, and it
is only used in case of multi-focus setups when we compute three different sets of
back-projection patterns, one for each micro-lens type:

lensOrder = [1,2,3];
Ht1 = LFM_computeBackwardPatterns(H, Resolution,...

Camera.range, lensOrder);
Ht2 = LFM_computeBackwardPatterns(H, Resolution,...

Camera.range, circshift(lensOrder, -1));
Ht3 = LFM_computeBackwardPatterns(H, Resolution,...

Camera.range, circshift(lensOrder, -2));

The backward light propagation represents the inverse process of the forward pro-
jection, and it is thus a mapping from the 2D sensor space to the 3D object space;
every backward pattern is stored in a 3D container:

Ht = cell(coordsRange(1), coordsRange(2), nDepths);
% coordsRange = Resolution.Nnum when Camera.range = 'full'
% coordsRange = Resolution.Nnum_half when

% Camera.range = 'quarter'

In order to compute the backward projection patterns, we iterate through ev-
ery pixel behind the central micro-lens and compute its 3D object space response
(which part -and to what extent- of the 3D object space affects the current pixel).

The function

tempback = LFM_backwardProjectSinglePoint(H, Resolution,...
imgSize, texSize, currentPixel,...
lensletCenters, range, lensOrder);
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H{aa_tex, bb_tex, c}

Ht{aa_sen, bb_sen, c}

Figure 5.11: Example forward and backward light transport patterns for a hexagonal grid MLA
system.

returns the back-projection response for one activated pixel, currentPixel. The
idea to obtain the back-projection pattern for an active pixel is to forward project
the whole (an area as wide as it can be captured) 3D space in front of the micro-
scope and acknowledge which object space points were seen by the active pixel
and to what extent (intensity of the LFPSF); then this is the object space response
to our active sensor pixel (the back-projection pattern).

In practice, in order to forward project the 3D object space, we convolve the object
with the LFPSF, H. However, since the LFPSF is different for different source point
positions, the object space needs to be split into discrete sets of points which give
the same (only translated) sensor response and apply each H(aa_tex, bb_tex,
c) to the corresponding points and store the sensor response back into the volume
at the same locations. This process is equivalent to convolving each rotated forward
pattern kernel with the sensor image with a single active pixel and grabbing the
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result of this convolution only at the relevant (which generate the forward pattern
in discussion) coordinates in the volume:

H_rot = imrotate(H(aa_tex,bb_tex,cc), 180);
tempSlice = sconv2singlePointFlip(imgSize,...

currentPixel, H_rot, flipX, flipY, 'same');
% Instead of a 2D convolution between H_rot and the sensor
% image, we have implemented a computationally efficient
% single point convolution, as the sensor image has only
% one active pixel.

% flipX, flipY are flags used when Camera.range = 'quarter',
% when we only compute forward projection patterns
% for one quarter of the patch in front of the central
% micro-lens, and thus for the rest of the points
% the LFPSFs are flipped versions of the available ones.

sliceCurrentDepth(indicesTex) = sliceCurrentDepth(indicesTex)
+ tempSlice(indicesSen);

% indicesTex and indicesSen are the relevant
% (associated with H(aa_tex,bb_tex,cc))
% volume and sensor coordinates.

% indicesTex and indicesSen are different
% when we reconstruct at a different lateral resolution
% than the sensor resolution.
% For a comprehensive understanding,
% see the backwardProjectSinglePoint.m file.

We repeat this for all the object depths, as one sensor pixel back-projects to the
entire axial range.

Finally, we shift the patterns back (needed for convolution, see Sec. 5.4.1) and
store them:

Ht(aa_sensor,bb_sensor,:) = tempbackShift;
% aa_sensor = 1..coordsRange(1),
% bb_sensor = 1..coordsRange(2).

Fig. 5.11 shows example forward and backward light transport patterns for a defocused LFM
setup with hexagonal grid MLA and a desired reconstruction with axial resolution
Resolution.depths = [-15, -10, -5, 0, 5] µm, and Resolution.TexNnum =
Resolution.Nnum = 17. We show forward patterns for source points on the optical axis
(Fig. 5.11 (top row)), as well as off-axis ones (Fig. 5.11 (second row)), for the -15, -5, 5
µm depth planes. The displayed backward patterns correspond to the central pixel behind a
micro-lens (Fig. 5.11 (third row)), as well as an offset pixel (Fig. 5.11 (bottom row)).
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The derivation of the wave-based LFPSF implemented in this framework is described in detail
in [68].

5.3.2 LFPSF in Fourier LFM

When passing through an optical system, an ideal source point generates a diffraction pattern
at the observation plane, known as the system’s point spread function (PSF). Similarly to a
conventional wide field microscope, the light field PSF (LFPSF) of the Fourier LFM is trans-
lationally invariant for a fixed axial position, due to the strategic placement of the MLA at
the back aperture stop of the objective. Conveniently, this allows us to describe the imaging
process in FLFM as a 2D convolution (at each axial slice) of the object with the LFPSF. This
process is described in Sec. 5.4.2.

When we represent the discrete forward imaging model as:

i = H ∗ t, (5.2)

H represents the discrete LFPSF (a stack of the 2D PSFs for each object space axial position in
the object), i the sensor image (LF measurements) and t the discretized imaged object. ∗ is
then the slice-by-slice 2D convolution operator.

The function

[H, Ht] = FLFM_computeLFMatrixOperators(Camera, Resolution)

uses the data structures introduced in Sec. 5.2.2 to pre-compute the LFPSF (H) and its transpose
(Ht) in several steps:

psfStack = FLFM_calcPSFAllDepths(Camera, Resolution)
% computes the wave-front distribution incident on the micro-lens
% array (MLA) plane generated by a point source
% on the optical axis at every depth in Resolution.depths.

[U1, LU1] = FLFM_lensProp(U0, LU0,...
Camera.WaveLength, Camera.fobj)

% implements the Fourier property of a lens (under paraxial context)
% to generate the field at the back focal plane;
% see AS plane in Fig.5.7
% of the objective as a scaled Fourier transform of the field
% at the front focal plane.

% The field at the MLA plane is then just a scaled version
% of the field at the AS plane, by the relay magnification factor,
% Mrelay = Camera.f2/Camera.f1.
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% For implementation details of these functions,
% see the corresponding Matlab functions.

Once we have the psfStack at the MLA plane,

[H, Ht] = FLFM_computeLFPSF(psfStack, Camera,...
Resolution, tolLFpsf)

computes the forward and backward light propagation models of the FLFM setup in several
steps:

% computes the 2D transmittance function for one micro-lens
ulensPattern = FLFM_ulensTransmittance(Camera, Resolution);

% replicates the ulensPattern
% one lensPitch apart for the size of the MLA.
MLARRAY = FLFM_mlaTransmittance (Resolution, ulensPattern);

% each of the 2D PSFs in the psfSTACK is passed through the
% MLA by applying the MLA transmittance
psfREF = psfSTACK(:,:,c);
psfMLA = psfSHIFT.*MLARRAY;

% Rayleigh-Sommerfeld diffraction transfer function
% propagates the response to the sensor
LFpsfSensor = prop2Sensor(psfMLA, sensorRes, Camera.mla2sensor,...

Camera.WaveLength, 0);

% store the 2D response patterns in the H container
H(i,j,c) = sparse(abs(double(LFpsfSensor).^2))

% clamp the values of H smaller than tolLFpsf
% in order to speed up the computations;
% see convolution in Sec.5.4.2
H = ignoreSmallVals(H, tolLFpsf)

% H(1,1,c) are also normalized to the [0, 1] range.

% Ht stores the backward light transport patterns,
% which are the rotated LFPSF kernels
Ht(i,j,c) = imrotate(H(i,j,c), 180)

% makes sure the transpose LFPSF adds up to 1
% for each source axial position.
% This step ensures that when applying the inverse mapping (Ht ∗ i),
% the energy in the reconstruction is kept through the
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% Richardson-Lucy iterative deconvolution scheme.
Ht = normalizeHt(Ht)

The derivation of the wave-based LFPSF implemented in this framework is described in detail
in [133].

5.4 Forward/Backward projection

5.4.1 Projection operators in conventional LFM

The function

Projection = LFM_forwardProject(H, realSpace, LensletCenters, ...
Resolution, imgSize, Camera.range);

implements the light field forward projection operator. It applies the pre-computed (see
Sec. 5.3.1) forward patterns, H to a given 3D volume, realSpace and returns a light field
image, Projection of size imgSize.

In order to apply the patterns in H to the object, realSpace, we pre-store the object voxels with
coordinates (aa_tex,bb_tex) relative to the ’Resolution.TexNnum*Resolution.TexNnum’
object space repetition patches (imaged behind exactly one micro-lens extent), into
indicesTex(aa_tex,bb_tex). The corresponding sensor image coordinates are pre-stored
into indicesImg(aa_tex,bb_tex).

Once we sort out which object coordinates generate which pattern, for every reconstruction
depth, cc = 1..length(Resolution.depths), we grab, at a time, only those parts of
the object corresponding to current indicesTex(aa_tex,bb_tex) and apply the associated
H(aa_tex,bb_tex,cc):

% grab object slice (current depth) to be forward projected
realspaceCurrentDepth = realSpace(:,:,cc);

% from the current slice, keep only indicesTex(aa_tex,bb_tex)
tempspace(indicesImg(aa_tex,bb_tex)) =...

realspaceCurrentDepth(indicesTex(aa_tex,bb_tex));

% convolve tempspace with the corresponding pattern
Hs = H(aa_tex,bb_tex, cc);
conv2(tempspace, Hs, 'same');

% finally, the intermediate projection are accumulated
Projection = Projection + projectedPattern;
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The non-zero values in H(aa_tex,bb_tex, cc) (effective sparse kernel size) directly af-
fect the computation time. The further away a source point is from the native object plane
(NOP, depicted in blue in Fig. 5.4) of the LFM, the larger the LFPSF size on the sensor. This
means object depths further away from the NOP require are computationally more expensive
to forward- / backward-project.

The above procedure is executed in parallel on workers using Matlab’s parallel pool func-
tionality, for all aa_tex = 1..Resolution.TexNnum, bb_tex = 1..Resolution.TexNnum.

The function

BackProjection = LFM_backwardProject(Ht, projection,...
lensCenters, Resolution, texSize, range);

implements the light field backward projection operator. It applies the pre-computed (see
Sec. 5.3.1) backward patterns, Ht to a given light field image, projection and returns 3D
volume, BackProjection of size texSize.

In order to tapply he patterns in Ht to the light field image, projection, the
LFM_backwardProject function implements selective sparse convolutions in an analogous
manner to the LFM_forwardProject function described above.

imgSize and texSize are pre-computed container sizes for the returned light field
image in case of the forwardProjectACC function and 3D object in case of the
backwardProjectACC function, respectively. The imgSize and texSize sizes are different
when we reconstruct an object at a lateral resolution different from the sensor resolution.
Then texSize is retrieved as (see main.m script):

imgSize = size(correctedLensletImage);
imgSize = imgSize + (1-mod(imgSize,2)); % ensure odd size
texSize = ceil(imgSize.*Resolution.texScaleFactor);
texSize = texSize + (1-mod(texSize,2)); % ensure odd size

Both LFM_forwardProject and LFM_backwardProject functions apply to sin-
gle focus MLA setups (Camera.focus = ’single’). In case of multi-focus se-
tups (Camera.focus = ’multi’), functions LFM_forwardProjectMultiFocus and
LFM_backwardProjectMultiFocus expand and adapt the functionality above in a straight-
forward manner. For details on the implementation of the projection operators, see the
corresponding Matlab files.
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5.4.2 Projection operators in FLFM

The function

Projection = FLFM_forwardProject(H, realSpace);

implements the light field forward projection operator. It applies the pre-computed (see
Sec. 5.3.2) forward light model, H to a given 3D volume, realSpace and returns a light
field image, Projection.

In order to project the object, realSpace using the LFPSF in H, we perform 2D slice-by-slice
convolutions at every depth and cumulate the responses:

Projection = Projection + conv2(realSpace(:,:,k),...
full(H(i,j,k)),'same');

The function

BackProjection = FLFM_backwardProject(Ht, projection)

implements the light field backward projection operator. It applies the pre-computed (see
Sec. 5.3.2) backward patterns, Ht to a given light field image, projection and returns a 3D
volume, BackProjection.

In order to apply the patterns in Ht to the light field image, projection, the
LFM_backwardProject function implements slice-by-slice convolutions in an analogous
manner to the FLFM_forwardProject function described above:

BackProjection(:,:,k) = BackProjection(:,:,k) + conv2(projection,...
full(Ht(i,j,k)),'same');

For details on the implementation of the projection operators, see the corresponding Matlab
files.
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Part V

How it all started
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CHAPTER6
NeubTracker

This Chapter is dedicated to NeuBtracker - the project that marks my debut in computational
imaging research. Taking part in the development of this framework definitely influenced my
subsequent research work; both in terms of methods and vision.

The work presented here was published as part of the article:

• P. Symvoulidis, A. Lauri, A. Stefanoiu, M. Cappetta, S. Schneider, H. Jia, A. Stelzl, M.
Koch, C. Cruz Perez, A. Myklatun, S. Renninger, A. Chmyrov, T. Lasser, W., V. Ntziachris-
tos, and G. G. Westmeyer. “NeuBtracker - Imaging neurobehavioral dynamics in freely
behaving fish.” Nature Methods, 14, pp. 1079-1082, 2017. DOI: 10.1038/nmeth.4459.

NeuBtracker is the product of endless work and successful collaboration between several re-
search entities 1.

1 Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Germany;
Institute of Developmental Genetics, Helmholtz Zentrum Müunchen, Munich, Germany;
Department of Nuclear Medicine, Technical University of Munich, Munich, Germany;
Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany;
Institute of Neuroscience, Technical University of Munich, Munich, Germany;
Champalimaud Centre for the Unknown, Lisbon, Portugal;
Chair for Biological Imaging, Technical University of Munich, Munich, Germany.
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6.1 Motivation

An important goal in neuroscientific research is to record spatiotemporal patterns of brain
activity in free, naturally-behaving vertebrate animals in order to reveal neuronal correlates
of unperturbed perception and unrestrained behavior. However, technical challenges usually
necessitate a combination of physical restraint, pharmacological sedation, and paralysis of the
animal to enable neuroimaging. Whereas sophisticated head-mounted optical imaging devices
have been developed for rodents to achieve real-time neuroimaging of selected cell popula-
tions [134], their field of view (FOV) is usually much smaller than what could be achieved in
transparent vertebrate reporter fish.

Several advances in genetically encoded fluorescent sensors [135] and fast optical imaging
instrumentation have established the zebrafish (Danio rerio) as a powerful genetic verte-
brate model organism for imaging-based neuroscience [136]. Virtual reality approaches in
restrained zebrafish larvae [137, 138], fluorescent imaging of unrestrained fish within a sta-
tionary FOV [139], or bioluminescent point measurements in free larvae [140] have been
reported. There is also considerable interest in quantifying the versatile behavioral repertoire
of zebrafish [141, 142] in the context of high-throughput pharmacological screens [143].

NeuBtracker [144] is an open-source modular platform for neuro-behavioral imaging and ma-
nipulation that enables simultaneous and non-invasive monitoring of brain activity and behav-
ioral parameters in unrestrained, freely swimming zebrafish larvae.

6.2 The optical tracking system

The NeuBtracker platform is able to track the head and/or body of freely swimming zebrafish
larvae to obtain fluorescence images with up to 15 fold magnification. Fig. 6.1 gives an
overview of the main features and capabilities of the tracking microscope. NeuBtracker has two
imaging channels: one is static to observe the behavior of the fish and locate its position, the
other one tracks the freely swimming larva to provide magnified fluorescent images. Tracking
of the fish is controlled by a custom-written acquisition software that receives the 1× image
from an IR-sensitive camera as input, locates the fish’s head, and moves galvanometric mirrors
to the position that keeps the FOV of the fluorescent camera on the fish.

For fluorescence excitation a LED centered at 460 nm was used to provide homogeneous illu-
mination across the whole arena rather than guiding the excitation light through the tracking
mirrors, which might result in confounding visual or thermal stimuli during imaging. Magnifi-
cation is obtained either by using lenses with a fixed focal length (“MicroFixed” configuration)
or a zoom lens (“MacroZoom” configuration), which can achieve a resolution of up to 150 line
pairs per mm (lp/mm) for FOVs ranging from the whole body of a larva to zoom-ins on only
the larval brain. Furthermore, an electrically tunable lens (ETL) inserted in the optical path
enables fast refocusing with submicrometer steps up to a focal length of 10 mm.
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Figure 6.1: Left: Rendering of the system showing the infrared (IR) channel (red arrow) for tran-
sillumination imaging as well as the fluorescence detection path (blue/green) that can
be scanned across the arena with adjustable magnification and focusing via an electri-
cally tunable lens (ETL). Middle: Example of a swimming trajectory as well as fluores-
cent images obtained at different magnifications either capturing the whole arena 0.5×,
covering the entire body 4× or just the brain 15× of a fish larva. Right: Neurobehav-
ioral imaging and tracking data from a swimming zebrafish larva during an experiment
where cadaverine odour was injected in the water.

6.3 Image processing

6.3.1 Tracking

The online tracking procedures detects the center of mass of the fish from the IR channel. Once
the coordinates are determined, they are transformed (based on a fixed transformation matrix
built during a calibration step) into a pair of voltage values. If the center of mass exceeds a
predefined distance from the center of FOV, these voltage command signals are sent via an
IO card to the galvanometric mirrors that move the FOV of the fluorescent channel. Manual
overrides of the automated tracking are possible by either defining the desired coordinates of
the FOV via a mouse click or by moving the FOV with a joystic. The GUI illustrated in Fig. 6.2
intermediates the acquision control.

6.3.2 Autofocus

The electrically focus-tunable lens (ETL) can be manually controlled from the acquisition GUI
of system for optimizing the focus for each experimental run. It can also be tuned automatically
via an autofocus routine to enable, e.g., refocusing for long-term recordings or screens. The
routine operates by computing a focus measure of each acquired frame. If this measure is lower
than a threshold, additional focus measures are obtained from images acquired by varying the
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Figure 6.2: (a) Simplified schematic showing the main connections to and from the console running
the control software. (b) Screenshot acquired during one of the acquisitions, showing
the GUI of the control software displaying both of the imaging channels (left: 1x be-
havioral tracking, right: magnified real-time view of the fluorescent imaging).

focal length of the ETL in both directions. A 2nd-degree polynomial is fitted to the obtained
focus measures vs. the focal lengths that were acquired. If the residuals of the fit are small,
the ETL is set to the focal length that resulted in the largest focus measure. If the residuals
are large, the maximum of the fitted curve is used to set the ETL to the corresponding focal
length. The autofocus rutine is illustrated in Fig. 6.3.

6.3.3 Data post-processing

Each single output data set of NeuBtracker is composed of two collections of images: one ac-
quired by the fluorescence channel and one obtained from the 1× channel. A postprocessing al-
gorithm coregisters the fluorescence acquired images to enable analysis of the spatio-temporal
patterns of calcium fluxes. The processing pipeline is illustrated in Fig. 6.4.

An automated quality inspection of the fluorescence images is performed in two stages. In the
first stage, a fast feature detection algorithm (SURF) is run on each single frame. The number
of features detected is the first parameter considered in order to confirm the presence of the
brain in the FOV in each frame. Any frame with less than five features detected is censored
from subsequent analyses. In the second stage, the individual frames are grouped into batches.
In each batch, an image with a high number of features is selected as a key frame, which is
a good indicator for the presence of the brain in the FOV. All other frames in the batch are
matched to the key frame using a similarity transform. Frames that yield no rigid match to
the key frame are censored, as well as frames that have a similarity transform with nonunit
scaling. The transformed frames in the batches are used as initialization for the subsequent
registration routine.

To initialize the fine image registration process, the key frame in each batch and the estimated
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Figure 6.3: (a) The autofocus routine runs during the acquisition in order to keep the fish in focus
as it swims at different depths. (b) Fine-focusing of the ETL (m? control currents corre-
spond to submicron steps in the focal length) on a larval brain. (c) The fish swimming
in different depths in a 10 mm deep arena were brought in focus. The bottom frame
focuses on the right fish located close to the surface (fish is tilted). The top frame was
acquired 200 ms later and focused on the left fish swimming at a greater depth.

transform computed from the feature matching are used. The frames in each batch are then
cropped around the estimated position of the fish brain to reduce the file size. The registration
then proceeds in three steps. First, for each batch the frames are registered to the key frame
using an intensity-based registration algorithm maximizing the mutual information similarity
measure, applying a rigid transformation model. In a second step, a global template image
is selected from the key frames. All frames of the image series are then rigidly registered
to the global template by applying the same registration algorithm again, propagating the
previous transformations. As a final step for fine tuning the registration result, all frames
are again registered with respect to the global template. This is performed by optimizing the
crosscorrelation of the images in the Fourier domain and applying a transformation model
using only translations.
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Figure 6.4: (a) Flowchart of the data acquisition and processing pipeline with (b) examples from
the feature matching of the SURF registration.

6.4 Results

This section selectively presents several experiments showcasing the potential of the tracking
microscope. We used NeuBtracker with a FOVs of 15×15 mm and a working distance between
objective and sample of≈ 10 cm. To enable long-term recordings and controlled application of
substances (e.g. odors), we designed custom-made circular arenas of 9 mm in diameter that
contain two symmetric holes ≤ 10µm, connected to two ≈ 25µL compartments into which
substances can be directly pipetted via external injection ports.

Single zebrafish larvae were left free to explore a circular arena (9 mm) on NeuBtracker (con-
taining 100µL of fish water). After a few seconds of acclimation, an automated tracker control
routine was initiated that switched the 488 nm LED illumination OFF and ON (5 seconds OFF
and 20 seconds ON as showen in Fig. 6.5 for several cycles to test for responses of the pineal
complex known to contain photoreceptors. The dynamics of neuronal activation in response
to the OFF-ON were studied within each subject. For validation experiments, a custom-built
single-plane illumination (SPIM) setup was used, which combines both a fast galvo-scanner
light sheet [145] and an ETL [146] for the z-scanning of the optical path. The larvae were em-
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bedded in 1% low melting agarose in a custom-made chamber and illuminated by a light sheet
generated by a 488 nm laser. One plane was imaged at 10 Hz. Activation of the pineal com-
plex was confirmed by immunodetection of phosphorylated ERK [147] on a different group of
larvae of the same age and strain using the same dark-light cycles protocol as was used for the
NeuBtracker.

Figure 6.5: (a) Fluorescence signal changes obtained with NeuBtracker from the PC and optic tec-
tum (OT) in a larva expressing the calcium indicator GCaMP7a. The signal was aver-
aged over ten dark-light cycles. Right, schematic drawing and two-photon microscopy
image of the anterior larval zebrafish brain showing pc, habenulae (hb) and OT. The
symbols indicate the color coding of the stimulation paradigm consisting of alternating
periods of illumination with the LED ON (blue) or OFF (gray). (b) Plot of the median
and the interquartile range of the locomotor activity (distance traveled) across different
cycles (50 s light ON, 10 sec OFF and 50 sec ON again) for four individuals. (c) Plot
of swimming trajectories color coded for the illumination condition for four animals.
(d) Fluorescent signal time courses in PC (purple ROI) detected by SPIM in the same
transgenic larvae immobilized in 1% low melting agarose.

To analyze stimulus-induced neurobehavioral responses, we applied the odorant cadaverine
[148] into one of two reservoirs of a custom-built arena such that it could diffuse on one side
of a central divider. We simultaneously tracked the swimming trajectory and the neuronal
activity of larvae exhibiting prominent expression of GCaMP7a in the optic tectum and anterior
brain regions [139] and observed repeated activations of the fish’s olfactory epithelium after
multiple visits to the cadaverine port. The experiemnts are described in Fig. 6.6.

6.5 Conclusion

It is a long-standing objective in neuroscience to measure distributed neuronal activity in freely
behaving animals. In this light, “NeuBtracker” implements a tracking microscope for simulta-
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Figure 6.6: (a) Fluorescent signal changes recorded in the olfactory epithelium in the experiment
shown in Fig. 6.1 plotted here continuously over the entire duration of the experiment
together with the distance of the fish to the cadaverine port at each point in time. (b)
Control experiment in which water was injected instead of cadaverine. After the end of
the 360 second baseline observation period, cadaverine was injected.(c) Representative
heat maps of the behavioral traces for 3 different individuals during 2 minutes before
(left) and after (right) delivery of cadaverine to the left compartment.

neous imaging of neuronal activity and behavior of freely swimming fluorescent reporter fish.
The system enables the possibility of screening neurostimulants with respect to their neuronal
and behavioral effects, while determining spontaneous and stimulus-induced spatio-temporal
neuronal activation patterns during unrestrained behavior.
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Part VI

Final Thoughts
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CHAPTER7
Conclusion

The sampling patterns of the conventional light field microscope are highly depth-dependent,
which implies non-uniform recoverable lateral resolution across depth. Moreover, reconstruc-
tions using state-of-the-art approaches suffer from strong artifacts at axial ranges, where the
LFM samples the light field at a coarse rate. In this thesis we study the sampling patterns
of the LFM and analyze how they introduce aliasing, in order to understand the cause of the
artifacts. We introduce a flexible light field point spread function model to cope with arbitrary
LFM designs (with varying MLA to sensor distance) and propose a novel aliasing-aware de-
convolution for artifact-free 3D reconstruction. We evaluate the depth-dependent trade-offs
in terms of recoverable lateral resolution when comparing various LFM configurations.

Fourier light field microscopy, also referred to as Fourier integral microscopy (FiMic) in the
literature, was recently proposed as an alternative to conventional LFM. FiMic is designed
to overcome the non-uniform lateral resolution limitation specific to LFM. In this thesis, we
analyze the image formation process in FLFM to understand how the modified microscope
samples the light field, and, based on this analysis, we discuss the conditions and extent to
which the computational super-resolution is possible in FLFM. We propose a deconvolution
scheme combining the well-known Expectation-Maximization algorithm with total variation
regularization.

The proposed reconstruction algorithms are evaluated on real experimental data and demon-
strate superior image quality results over the state-of-the-art methods.

The methods we developed in this thesis are related to computational super-resolution tech-
niques used in computer vision and computational photography, where sub-pixel shifts (or
sub-lenslet shifts in conventional LFM) between multiple aliased views of the same scene are
combined to recover an image with higher resolution. Thus, computational super-resolution
should not be confused with optical super-resolution which aims at breaking the diffraction
limit of imaging systems, as discussed in Chapter 1.
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