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Abstract I 

 

Abstract 

In this publication-based dissertation, a series of research papers investigates the 

advantages of nonlinear modeling techniques in the analysis and optimization of cake 

filtration processes. To this end, two overall frameworks for mechanistic continuum scale 

modeling are examined: 

1. the Conventional Filtration Theory, which provides an analytical approach to 

evaluate cake filtration data, but is limited in its ability to dynamically forecast the 

process 

2. the Multiphase Flow Theory, which may describe the spatio-temporal development 

of the cake filtration process in detail, but can only be computed using numerical 

approximation schemes 

The first part of this thesis evaluates the VDI 2762 guideline. While being built upon the 

conventional theory, this method is used to estimate the resistance of incompressible filter 

cakes from experimental data. Even though it is a widely applied standard procedure, 

systematic errors are induced to the procedure due to an underlying linearization approach. 

Therefore, a nonlinear model formulation is proposed to address this issue. In order to 

evaluate the novel method’s validity, a large artificial data set is generated by employing 

Monte Carlo experiments. Examining the error performances for both, the linear, and the 

nonlinear technique, proves that the latter approach suppresses errors better, while the 

simplicity of the conventional theory is maintained. 

In the second part, the scenario of filter aid cake filtration is examined in detail. 

Opposed to the previous case study, here the effects of cake compression, as well as cake-

internal particle migration are described mathematically. Hence, the multiphase flow theory 

is used to develop a model, which in return allows to calculate the influence of time-

dependent filter aid dosages on the cake growth process. Thereby, ideal dosage trajectories 

are obtained by employing an optimal control approach. The results suggest that varying the 

filter aid concentration as a control input can help to increase the process efficiency. For 

specific scenarios, both, the integral filter aid usage, as well as the area-specific energy 

consumption, are reduced simultaneously by up to ≈ 30%, and ≈ 	5% respectively. 

Since the calculation of these optimization procedures is computationally intensive, 

a reduced order modeling method is employed to the filter aid cake filtration model. Hereby, 

the approach is based on the technique of proper orthogonal decomposition. Further, 

different adaptation techniques are examined to ensure that parameter variations can be 

captured accurately. In order to evaluate how the reduced order modeling architecture 

benefits the numerical efficiency, an optimization scenario is solved as a benchmark 
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problem. Using this method, the computational time can be reduced approximatively by a 

factor of 10, while producing only minor approximation errors. 

A following discussion section elaborates on current developments, open questions, 

and possible future research in the domain of cake filtration modeling. Special focus lies on 

how both separate filtration theories may be combined to obtain new user-friendly 

procedures for the evaluation of experimental data from compressible cake filtration 

processes. After, the act of parametrizing the models is discussed by taking a closer look on 

novel process-analytical methods recently described in the literature. The last section 

analyses how the publications included in this thesis contribute toward the development of 

cyber-physical systems in the overall domain of solid-liquid separation. Hereby, the 

simulation model based on the multiphase flow theory, the optimal control algorithm, and 

the reduced order modeling architecture proposed throughout this work can be interpreted 

as newly available “puzzle pieces” needed to build a nonlinear model predictive control 

approach for cake filtration processes.
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Kurzzusammenfassung 

Diese publikationsbasierte Dissertation untersucht Vorteile, die nichtlineare 

mathematische Modelle bei der Analyse und Optimierung von Kuchenfiltrationsprozessen 

aufbringen können. Zu diesem Zweck werden zwei mechanistische Theorien zur 

Modellierung der Kuchenfiltration auf Kontinuumsebene betrachtet: 

1. die konventionelle Filtrationstheorie, die einen analytischen Ansatz zur Auswertung 

von Experimentaldaten bietet, aber nur begrenzt dazu geeignet ist, den Prozess 

dynamisch vorherzusagen 

2. die Mehrphasenströmungstheorie, die die dynamische zeit- und ortsabhängige 

Entwicklung des Kuchenfiltrationsprozesses detailliert beschreibt, aber nur 

numerisch gelöst werden kann 

Der erste Teil dieser Arbeit widmet sich der VDI 2762 Richtlinie – eine auf der 

konventionellen Theorie aufbauende Methode, die zur Ermittlung des Widerstands von 

inkompressiblen Filterkuchen verwendet wird. Obwohl es sich hierbei um eine weit 

verbreitete Standardtechnik handelt, ist das Verfahren aufgrund eines 

Linearisierungsansatzes systematischen Fehlern unterworfen. Daher wird eine alternative 

nichtlineare Modellformulierung eingeführt, die dieses Problem löst. Um die Gültigkeit der 

neuen Methode zu bewerten, wird ein großer künstlicher Datensatz mit Hilfe von Monte 

Carlo Experimenten erzeugt. Bei der Untersuchung von sowohl der linearen als auch der 

nichtlinearen Technik wird deutlich, dass bei Letzterer die Fehler der Parameterermittlung 

vermindert werden, während gleichzeitig die Nutzerfreundlichkeit der konventionellen 

Theorie erhalten bleibt. 

Im zweiten Teil der Dissertation wird das Szenario der Anschwemmfiltration –   

einem Spezialfall der Kuchenfiltration – im Detail untersucht. Im Gegensatz zur vorherigen 

Fallstudie werden nun die Effekte der Filterkuchenkompression sowie eines überlagerten 

Tiefenfiltrationsmechanismus mitberücksichtigt. Dazu wird mit Hilfe der 

Mehrphasenströmungstheorie ein Modell entwickelt, das auch den Einfluss einer 

zeitabhängigen Filterhilfsmitteldosage auf den Filtrationsprozess berechnen kann. Dabei 

werden mit Hilfe eines Optimalsteuerungsansatzes ideale Dosagetrajektorien ermittelt. Die 

Ergebnisse deuten darauf hin, dass die Variation der Filterhilfsmittelkonzentration zur 

Steigerung der Prozesseffizienz beitragen kann. Für bestimmte Szenarien werden 

gleichzeitig sowohl der integrale Filterhilfsmittelverbrauch als auch der flächenspezifische 

Energieverbrauch um bis zu ≈ 30% bzw. ≈ 	5% reduziert. 

Da die Optimierungsprozedur rechenintensiv ist, wird eine Modellreduktion für das 

Anschwemmfiltrationsmodell durchgeführt. Der Ansatz basiert auf der sogenannten „Proper 

Orthogonal Decomposition“. Darüber hinaus werden verschiedene Adaptionsmethoden 
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untersucht, die sicherstellen, dass das reduzierte Modell auch unter Parametervariationen 

genaue Ergebnisse liefert. Ein Optimierungsszenario wird als Testproblem gelöst, um zu 

prüfen, wie das reduzierte Modell die numerische Effizienz verbessert. Insgesamt kann mit 

dieser Methode die Rechenzeit um den Faktor 10 verringert werden, wobei nur geringe 

Approximationsfehler auftreten. 

In einem abschließenden Diskussionsteil werden aktuelle Entwicklungen, offene 

Fragen und mögliche zukünftige Forschungsarbeiten zur Modellierung der Kuchenfiltration 

näher beleuchtet. Besonderes Augenmerk liegt dabei auf der Frage, wie die beiden 

verschiedenen Filtrationstheorien kombiniert werden können, um neue nutzerfreundliche 

Methoden zur Beschreibung kompressibler Kuchenfiltrationsprozesse zu erhalten. 

Anschließend wird diskutiert, wie die Modelle parametriert werden können. Hierbei werden 

die möglichen Einsatzzwecke neu entwickelter experimenteller Methoden betrachtet. Der 

letzte Abschnitt analysiert, wie die Publikationen dieser Arbeit zu der Entwicklung von 

cyber-physischen Systemen im Bereich der Fest-Flüssig-Trennung beitragen. Dabei können 

das auf der Theorie der Mehrphasenströmung basierende Modell, der Ansatz der optimalen 

Steuerung und die in dieser Arbeit vorgeschlagene Modellreduktionsarchitektur als neu 

verfügbare "Puzzleteile" interpretiert werden, die für die Entwicklung einer nichtlinearen 

modellprädiktiven Regelung von Kuchenfiltrationsprozessen erforderlich sind. 
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Chapter 1 

Introduction 

1.1 Motivation 

Based on the principle of liquid flow through porous media, filtration is an established unit 

operation in the overall domain of mechanical solid-liquid separation processes. Hereby, the 

underlying technique offers various possibilities for phase separation as can be perceived by 

the sheer amount of distinctive industrial applications. To name a few, it poses a crucial step 

in the treatment of wastewater [1], [2], ensuring certain food and beverage qualities [3], 

[4], or the production of pharmaceuticals [5]. 

This work specifically examines the instance of cake filtration. It can be classified as 

a simple yet effective method in which a suspension flows through some membrane. Since 

this filter medium is ideally only permeable to the liquid phase, the solutes accumulate on 

the surface of said porous septum as the so-called filter cake. The particle-free filtrate, on 

the other hand, can be collected at the filter apparatus’ outlet [6]. However, the initial 

simplicity is swiftly affected by effects occurring in real processes, such as cake 

compressibility, cake-internal particle migration, and therewith resulting heterogenous cake 

structures [7], [8]. Due to these phenomena, the process complexity is highly increased, and 

precise model-based investigations are hard to conduct. Consequently, to this day the 

majority of scientific works from this research domain focuses on experimental set-ups 

while still often relying on simplified mathematical models for process evaluation. 

Here is also the point at which the publications included in this publication-based 

thesis intend to enable the use of more sophisticated filtration models as improved 

investigation tools in the spirit of Process Systems Engineering. Thereby, the use of 

simulation models can be perceived as an interconnecting piece between experimental 

studies and purely theoretical analyses [9], [10]. Certainly, mathematical models only serve 

an additional value if they aid in gaining further knowledge about the examined process by, 

e.g., supporting data evaluations, or calculating optimization scenarios. Hence, the intended 

applications and the scientific objectives to be answered are further elaborated in the next 

section. 
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1.2 Objectives 

The overall narrative pervading all following objectives is the use of nonlinear mathematical 

continuum scale models to help facilitate the assessment of experimental data, and to 

improve the performance of cake filtration processes. During the course of this work, the 

focus lies on two different applications.  

First, attention is given to the cake filtration norm VDI1 2762 [11]. Said guideline 

states a model that particularly in the German-speaking filtration community is often used 

as a foundation to evaluate cake filtration data obtained from typical experiments. However, 

despite being last updated in 2010, the model stated in this norm still relies on a linearization 

technique, which is intended to be solved graphically to obtain the unknown process 

parameters. From nowadays perspective this linearization procedure is not only 

anachronistic but also induces systematic statistical errors to the experimental results. By 

the means of Monte Carlo simulations [12], Objective I aims at eliminating said statistical 

errors only by reformulating the mathematical model in a more favorable nonlinear 

expression without altering the underlying established theory. In return, a more concise 

insight into the process data is offered. 

 

 
Objective I 
 
Eliminate the systematic statistical errors induced by the VDI 2762 norm by introducing 

an alternative nonlinear model formulation 

 

 

Second, mathematical models for the special case of filter aid cake filtration are studied. As 

the name suggests, filter aid materials are added to the initial suspension to improve the 

performance of the process [13], [14]. Hereby, particularly the behavior of fibrous filter aids 

such as cellulose and viscose are investigated. These alternatives offer health and 

environmental benefits over traditionally used materials like kieselguhr [15], [16]. 

Nevertheless, fibrous filter aids also pose their own unique utilization challenges due to an 

increased compressible behavior [17]. Therefore, it becomes necessary to obtain a new 

process understanding, as the established phenomenological knowledge from the previously 

mentioned incompressible material system is no longer valid. Moreover, it was found that 

the effect of depth filtration has a significant impact on the filter aid filtration process [18]–

[21]. Hence, the complete system behavior can typically only be captured using complex 

nonlinear mathematical models. As described by Coote [22], this is a challenging task to 

fulfill, and, as such, mathematically describing the process of filter aid filtration by 

 
1 Verein Deutscher Ingenieure, engl. Association of German Engineers 
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mechanistic relationships was not a priority in research until some years ago. Considering 

these preliminaries, the second objective of this thesis reads as follows. 

 

 
Objective II 
 
Develop a mechanistic continuum scale model for filter aid cake filtration including the 

following effects known from real processes: 

§ Cake compressibility 

§ Variable shares of impurity separation by surface and depth filtration 

§ Cake-internal particle migration 

 

 

A challenge in the context of filter aid filtration is to find the ideal filter aid dosage. 

Commonly, the filter aid concentration is sought to maintain a high process efficiency as 

well as a desired filtrate quality, while minimizing the actual filter aid consumption, since 

all these elements have a significant impact on the monetary process cost. Even though it is 

known from experimental studies that such process specific optimal filter aid concentrations 

exist [23]–[25], established techniques in finding these unknown dosages are typically based 

on heuristics and still entail a significant amount of laboratory time [26], [26]. Rigorous 

mathematical investigations, on the other hand, are only applied sparsely in the area of 

solid-liquid separation (e.g., [27], [28]), and are non-existent for compressible fibrous 

systems. 

To reduce this required experimental workload, the developed filtration model from 

Objective II shall be used as a basis to computationally determine the ideal constant filter 

aid dosage while incorporating long-term effects of real filtration processes, such as cake 

compression, and particle migration. Moreover, recent studies indicate that time-dependent 

dosage strategies may further increase the overall process efficiency compared to an 

optimal, but constant filter aid supply to the suspension [22], [29]. To examine this 

hypothesis, the method of optimal control is applied [30], such that the next thesis objective 

can be formulated. 

 

 
Objective III 
 
Develop an optimal control procedure to find filter aid dosage strategies that improve the 

overall filtration efficiency for arbitrary process scenarios and optimization goals 
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The optimization procedure developed in Objective III can be classified as an a priori, or 

feedforward method. Hereby, process disturbances and uncertainties are not taken into 

consideration when using the presented technique. Hence, the dosage strategies discovered 

throughout this work are only transferrable to real-life filtration plants under the 

assumption of ideal surrounding conditions. Another limitation lies in the involved 

computational requirements needed to fulfill Objective III.   

Thus, it is highly desirable to increase the computational efficiency of the continuum 

scale model from Objective II. Lowering the numerical cost does not only make it more 

attractive to use model-based strategies to find ideal filter aid dosages in a practical context. 

Doing so may also create the possibility of conducting real-time online model simulations 

(commonly referred to as digital twin), which can indeed be used to characterize occurring 

process uncertainties [31]. To this end, Objective IV aims at reducing the model complexity 

by employing the method of proper orthogonal decomposition [32]. 

 

 
Objective IV 
 
Increase the computational efficiency of the model introduced in Objective II by employing 

the method of proper orthogonal decomposition  

 

1.3 Thesis Outline 

This work is a publication-based thesis. Therefore, the full-length research papers 

containing the academic findings which answer the previously introduced Objectives are 

included in the Appendix:  

 

• Objective I:   Full-Length Paper I (p. 78) 

• Objectives II & III:  Full-Length Paper II (p. 88) 

• Objective IV:   Full-Length Paper III (p. 103) 

 

In order to help facilitate the understanding of the individual studies, Chapter 2 of the main 

text contains the fundamental theoretical background about the cake filtration topics 

covered in the respective works. In detail, Section 2.1 introduces the physical properties of 

the process, along with the characteristic filtration quantities, and process influencing 

phenomena, such as cake compression, and cake-internal particle migration. Moreover, the 

potential shortcomings of any termini that were introduced in the previous sections without 

further context, as well as the special case of filter aid filtration are further elaborated. 
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Next, Section 2.2 of the same Chapter covers the established continuum scale modeling 

theories in the domain of cake filtration. Thereby, Subsection 2.2.1 introduces the so-called 

Conventional Filtration Theory, which is the foundation for the VDI 2762 guideline’s 

modeling approach (à Objective I). The more elaborate Multiphase Flow Theory is explained 

in Subsection 2.2.2. This theoretical framework is used to fulfill à Objectives II – IV.  

Subsequently, Section 2.3 elaborates further on established process optimization 

techniques for solid-liquid separation processes. Moreover, the theory of numerical 

optimization and optimal control is introduced. Notably, this section only gives a general 

introduction needed to contextualize the underlying concepts. Hence, it does not contain any 

mathematical definitions or actual employed optimization algorithms, since these are 

covered in the individual Methodology, and Methods sections of this thesis, as well as the 

respective research papers. 

Along similar lines, Section 2.4 of the second Chapter introduces the numerical 

concept of model order reduction. The mathematical theory, however, is covered at a later 

stage. Instead, this part is intended to inform about the cruciality of the computational 

efficiency for the model simulations encountered in this work specifically, as well as in the 

domain of process systems engineering in general.  

After, Chapter 3 gives an overview on the scientific methodology. This part includes 

more information on the mathematical concepts elaborated in the previously described 

Sections 2.2, 2.3, and 2.4, as well as on the algorithms employed in the research papers. 

However, as each full-length paper contains an individual and detailed Methods section, this 

Chapter in itself is kept rather brief. It should, therefore, be seen as an outline needed to 

categorize each study in the overall background of numerical techniques. 

Chapter 4 includes summaries of the individual studies. These summaries are 

intended to deliver more information than the corresponding papers’ abstracts. Hereby it is 

ensured that the publications’ respective methods and main findings are explained in 

sufficient detail, such that the following sections can be followed without referring to the 

full-length manuscripts included in the Appendix. 

After all studies are introduced, Chapter 5 discusses the scientific findings in the 

context of the established filtration literature. To this end, the debate does not only entail 

the specific methodic frameworks used to create the research papers but aims at 

interconnecting the results with other state-of-the-art approaches in the overall domains of 

solid-liquid separation, and process systems engineering.  

Finally, Chapter 6 recapitulates the dissertation. After drawing overall conclusions, 

the thesis is closed by summarizing in which fields the theoretical findings may be applied 

to improve established filtration processes.



Chapter 2 Theoretical Background 6 

Chapter 2 

Theoretical Background 

2.1 Physical Properties of Cake Filtration 

The overall goal of cake filtration is to either recover the solid phase from the suspending 

liquid, or to purify and collect the liquid phase as the filtrate. Hereby, a pressure difference 

Δ*	– typically generated by a hydraulic pump, a vacuum, or merely by gravitation acting on 

the suspension – causes the initial slurry to flow through a filter medium. Ideally, the 

suspended particles cannot pass this membrane such that only the pure filtrate exits the 

apparatus’ outlet. Therefore, the solid phase is collected on the inlet’s side of the filter 

medium and forms the so-called filter cake, i.e., a porous agglomerate, which further grows 

over time [33]. This fundamental principle of cake filtration is schematically illustrated in 

Figure 1 for two process times ;' < ;! with =(;) denoting the respective cake heights. 

  
Figure 1 Schematic representation of an idealized cake filtration process. 

 

Notably, different cake filtration set-ups are established in practice, such as tangential flow 

filters, or (semi-)continuous drum filters [34]. This thesis, however, focuses on the 

operation of dead-end cake filtration. In this case, the suspension’s flow direction is 

perpendicular to the filter medium as demonstrated in Figure 1. Arguably, this type is the 

simplest form of cake filtration. Nevertheless, despite the physical simplicity it poses a 

=(;!) 

=(;') 

0 

filtrate 

slurry 

filter cake 

filter medium 
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universal basis to the process, which can be used to draw overall conclusions. The proposed 

methods and findings from this work may then be adapted to more specific challenging case 

studies. 

This subsection only covers those aspects of cake filtration that are relevant to the 

modeling focus of this thesis. These include, e.g., the characteristic process quantities and 

important filtration mechanisms to be captured, as well as the phenomenological aspects of 

filter aid utilization. For further information on the physical properties of cake filtration, it 

is referred to various textbooks, such as [6], [34], [35]. 

2.1.1 Separation Mechanisms 

The solid phase is mainly separated from the suspending liquid via the mechanism of surface 

filtration. As previously described, the impurities are first deposited on top of the filter 

medium, after which subsequently incoming particles transit to the actual phase of cake 

filtration. At first glance, this is the only cause clearing the suspension on a macroscopic 

scale. However, this postulation is only valid if the dimension of the solids either exceeds 

the filter matrix’ pore size, or if an agglomeration of particles builds bridges over said porous 

membrane [6]. Hence, especially in the beginning of the process it can be observed that 

particles may completely clog the septum if they are roughly the same size as the filter 

medium’s pores. This second effect is described as pore blocking, and significantly lowers 

the transmissibility of the overall filter [36], [37]. Furthermore, a slurry’s fine particle 

fraction may pass the surface pores unhindered and migrate through the filter cake. Hereby, 

the particles are only separated along their flow trajectory if they get caught by some 

stopping mechanism. Potential individual causes for this phenomenon can be, e.g., 

mechanical sieving or inter-particular interactions, such as electrostatic effects, or Van-der-

Waals forces [38]–[41]. This act is commonly referred to as depth filtration2. The previously 

introduced particle separation mechanisms are schematically illustrated in Figure 2. 

While a combination of all these effects is expected in cake filtration, especially the 

overlayed mechanism of depth filtration is an important aspect to be covered if filter aids 

are involved in the process as demonstrated in, e.g., [18]–[20], [43]. This is because particles 

separated by depth filtration occupy the cake-internal voids over the process time. Hence, 

just like the pore blocking mechanism, this hard-to-predict effect significantly influences the 

subsequent process and can be the cause for rapidly increasing pressure drops or collapsing 

filtrate flow rates. 

 
2 The mechanism of depth filtration should not be confused with deep bed filtration, which makes use of the 

same mechanism but denotes a different unit operation [42]. 
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Figure 2 Illustration of cake filtration, depth filtration, and pore blocking as separate particle separation 

mechanisms. 

 

Moreover, the suspended fine particles do not only migrate inside the filter cake but may 

also penetrate the filter medium and, thus, lower the final quality of the filtrate. The danger 

of such a potential particle breach happening lies particularly in the beginning of the 

filtration. Only during the course of the process, the filter cake increases in height, and, 

therefore, the fine particles inhibit longer individual flow trajectories, which raises their 

overall capture probability. In general, this is a desirable effect in cake filtration. However, 

once the capture capacity of a filter cake is reached, or if hydrodynamic forces cause the 

detachment of the fine particles from the porous filter matrix, the risk of impurities passing 

the filter medium may increase once again for longer filtration times [44]–[47]. 

As elaborated by Heertjes and Zuideveld [21], the action of depth filtration always 

takes place during the cake filtration processes examined in this work. Nevertheless, the 

extend of each separation mechanism strongly depends on the material systems in use. 

Therefore, a mathematical model should not only be able to distinguish between these 

mechanisms but also to quantify the actual share of impurities to be separated by depth 

filtration, and surface filtration respectively. Only then the calculations portray real-life 

processes precisely. 

2.1.2 Characteristic Quantities 

Figure 1 displays the growing filter cake as an idealized quasi-continuous medium. This 

representation is especially convenient for continuum scale modeling, which is further 

elaborated in Section 2.2. In general, however, a filter cake is a porous matrix which allows 

the liquid phase to pass through the network constructed by internal void. Therefore,  

Figure 3 presents a more accurate illustration of the microscopic physical structure for an 

arbitrary filter cake. In the following, the relevant physical quantities needed for the 

cake filtration depth filtration 

pore blocking 

fine particles  
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mechanistic modeling of cake filtration processes will be introduced by the means of this 

illustration. 
 

 
 

Figure 3 Illustration of an arbitrary filter cake‘s internal pore-structure. 

 

The porosity ( is an intensive quantity crucial to describe filtration processes. It is calculated 

via the following relationship, where I+ denotes the pore-space volume, and I* is the control 

volume, i.e., the overall cake volume [6]. 

 

	
( =

I+
I*
	 (1) 

Notably, the quantification of voids may also be expressed in terms of solidosity (& by 

relating the volume occupied by the solid phase I& to  I*. This quantity is more convenient to 

handle in some modeling approaches [8]. Nevertheless, the information content is equal, 

since it is the complementary to the porosity. Both quantities are linked via 

 

	 (& = 1 − (.	 (2) 

Especially for incompressible cakes the porosity depends on the characteristics of the 

examined material system such as particular shape [48], [49], and particle size distribution 

[50]–[52]. In general, the porosity of a filter cake can be anywhere from ( = 0.1 to ( = 0.9 

[53], [54], with typical values ranging from ( = 0.3 to ( = 0.7 [6]. For instance, filter cakes 

built from monodisperse particles tend to be more porous than polydisperse systems. 

Especially for ideal bi-disperse spheres this effect is well-documented [55]–[57]. This is 

because additional fine particle fractions can populate the pores created by the coarser 

solids. Notably, this phenomenon is closely related to the previously introduced mechanism 

of depth filtration. Randomly orientated loose fibers packings are another material system 

causing high cake porosities [58], [59].  

The permeability ) is a quantity that was patronized by Darcy [60] to predict a liquid 

phase’s flow rate through a porous medium resulting from an applied pressure difference 

(see also Section 2.2.1). Hence, the permeability can be understood as a material property 

that describes the extend of how the flow is impeded by the porous filter matrix. Therefore, 

I* 
I+ 

I& 
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the permeability is strongly affected by porosity, as less pores also decrease the solid phase’s 

ability to conduct the fluid flux. Several approaches exist that try to capture this relationship 

as a mechanistic mathematical formulation [61]. The most established is most likely the 

Kozeny-Carman equation, derived from the Hagen-Poiseuille relationship [62]:  

 

	
) =

4 ⋅ 3
9 ⋅ 0 ⋅ Q

⋅
()

(1 − ()!
	

(3) 

As can be seen in Eq. (3), the permeability is not only directly related to the porosity (, but 

also to the particle size 3, the void network’s tortuosity Q, as well as some material dependent 

empirical form factor 0. However, while the Kozeny-Carman equation yields a high 

prediction accuracy for ideal cases, e.g., some uncompressed porous medium consisting of 

spherical particles, various authors questioned its actual use as an universal model to predict 

the permeability of filter cakes [54], [63], [64]. This is because real filter cakes are often 

inhomogeneous for which Eq. (3) is not valid. Consequently, a number of modifications, 

extensions, and alternative models to describe the permeability ) is described in the 

literature promising a better data correlation to specific cases. Some works include, e.g., 

Happel [65] deducing relationships from the Navier-Stokes theory, Wakeman [66] 

incorporating particle size effects, and Nabovati et al. [67] describing fiber packings. 

Comprehensive collections and discussions of alternative approaches can also be found in, 

e.g., [68]–[70]. Thereby, it is often more convenient to exclude some hard-to-access 

quantities such as the tortuosity τ found in Eq. (3). Vague model assumptions may then be 

exchanged for purely empirical constitutive relationships. Especially exponential, and 

polynomial expressions that directly correlate the permeability ) with the solidosity (&, as 

well as some possibly occurring fine particle deposition (&! have proven to be effective for 

the applications encountered in this thesis [23], [24], [44], [64], [71]. Using the additional 

empirical parameter(s) a, the following equation can therefore be defined as: 

 

	 ) = 7((&, (&!, a)	 (4) 

Often, the permeability ) is reformulated as the quantity of filter cake resistance E, which is 

inversely related via the following equation [33]. 

 

	
) =

1
E
	 (5) 

Notably, E is an intensive quantity independent of the cake height. The extensive quantity, 

i.e., the total filter cake resistance F, can be calculated by linking E to the filter cake thickness 

=, and adding the filter medium resistance F( [34] as described by Eq. (6). 
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	 F = = ⋅ E + F.		 (6) 

Since the filter cake height = can only grow over time, the filter resistance increases strictly 

monotonously during the process. Depending on the filter’s operation mode, this can have 

different impacts on the filtration pressure *, and the filtrate flow rate İ at the filter outlet. 

If the filtration is conducted by applying a constant pressure, the flow rate decreases 

continuously. Vice versa, in constant flow filtration, the resulting pressure drop rises over 

time to maintain the effluent’s flow rate under the increasing filter resistance [33]. The 

typical qualitative time-dependent behaviors for *(;), İ(;), and =(;) in ideal cake filtration 

processes are schematically depicted in Figure 4. 
 

 
 

Figure 4 Idealized qualitative behavior for constant-pressure, and constant flow cake filtration processes. 

 

Since cake-internal particle migration due to the mechanism of depth filtration has a 

significant impact on the process, it is further important to quantify the efficiency of fine 

particle retention. The plethora of capturing mechanisms introduced in the previous 

subsection is usually linked and summarized as the so-called filter coefficient O	 as 

established by Iwasaki [72], and subsequently discussed by e.g., [38], [40], [41]. Considering 

the increase of the capture probability with ongoing process times, and a successive decrease 

once a critical fine particle deposition is reached, O	is traditionally expressed as an empirical 

relationship. Hereby, O typically depends on the fine particle deposition (&! itself, further 

material properties like the solidosity (&, and some empirical system-dependent 

parameter(s) a as described by Eq. (7) [45]. 

 

	 O = 7((&, (&!, a)	 (7) 

Notably, the literature in the domain of solid-liquid separation suffers from a non-uniform 

nomenclature as priorly criticized by Chi Tien [73]. The nomenclature introduced throughout 

this thesis complies with the definitions established by his work. Many of his respective 

! 

! 
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studies had a significant impact to cake filtration modeling, which are built upon another 

very influential 13-part research paper series called the role of porosity in filtration by Tiller 

et al. ([58], [74]–[85]). Therefore, keeping consistent to these works contributes to the 

domain-wide effort of unifying the employed variable definitions. However, it is important 

to keep in mind that many references cited in this work may significantly deviate from this 

standard. 

2.1.3 Cake Compression 

So far, the previous subsections assumed ideal process conditions yielding incompressible 

filter cakes, i.e., the intensive main properties of cake filtration porosity (, and permeability 

) are defined to be constant over the whole cake thickness. This assumption is 

approximatively valid for easy-to-handle solid phases with rigid material properties. 

However, as comprehensively described by Alles and Anlauf [7], the overall filtration 

pressure * yields a stress *& on the solid phase, which causes microscopic effects such as 

particle rearrangement, particle deformation, or particle breakage. In return, the cake is 

often compressed. Hereby, this effect is especially pronounced for, e.g., solid phases from a 

biological origin [86]–[88], or fibrous materials [89], [90]. Figure 5 schematically compares 

an incompressible process with a compressible cake filtration. 
 

 
 

Figure 5 Qualitative behavior for the porosity #, and the permeability $ in an incompressible (left) and a 

compressible (right) cake filtration process. Spatial variations in the compressible case result due 

to compressive stress %! acting on the solid phase. Only compression resulting from particle 

deformation is illustrated. 

 

Qualitatively, the phenomenon of cake compression causes local variations in porosity and 

permeability, i.e., the quantities decrease exponentially over the filter cake height [17], [91], 

[92]. Hereby, the minimum of both quantities is located directly above the filter medium. 

This is often referred to as skin effect [81] which denotes a highly solid cake layer that 

strongly impedes the flow of the liquid phase. Now considering, e.g., a constant flow 

filtration, the overall filtration pressure drop * does not rise linearly as previously indicated 

! ! 

", $ ", $ 

incompressible filtration compressible filtration 
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by Figure 4 but exponentially to maintain the flow rate of the filtrate. Therefore, 

compression is an undesirable effect lowering the process efficiency which may pose a 

limiting factor to the filtration. 

In order to capture the compressive behavior of a material system in constitutive 

relationships, it becomes necessary to not only observe the overall macroscopic filtration 

pressure *, and the filtrate flow rate İ, but also the local pressure and flow variations inside 

the filter cake. Hereby, the pressure * can be assumed to transfer some of its potential as 

solid stress *& onto the solid phase, while some share of liquid pore pressure *% causes the 

interpore flow of the liquid phase, as first proposed by Ruth [93]. This can be described by 

a simple additive term, i.e., * = *% 	+ 	*&. However, other authors proved that different 

relationships 7 – often additionally correlated with the solidosity (&	 – can be valid to link *% 

with *& depending on the material system in use [94], [95]. These relationships 7 result from 

varying definitions of the momentum balance over the filter cake, such that Eq. (8) can be 

formulated for an arbitrary cake filtration process. 

 

	 d*&
d*%

= 7((&)	
(8) 

Using the concepts introduced above, constitutive relationships3 for local porosity (Eq. (9)), 

and permeability (Eq. (10)) variations can be constructed for the material system of interest. 

Various approaches were introduced in, e.g., [43], [96]–[98]. A comprehensive summary of 

many different material laws can also be found in [70], [99]. Hereby, these mostly empirical 

equations have in common that they correlate both, the porosity, and the permeability, with 

the stress acting on the solid phase *&, and possibly some further parameters a. 

 

	 ( = 7(*&, a)	 (9) 

	 ) = 7(*&, a)	 (10) 

The variable liquid pore pressure *% resulting from cake compression also affects the internal 

flow rate H of the liquid phase in the pore space as established by Tiller and Cooper [77]. 

However, due to the heterogenous cake structure, it is inconvenient to directly quantify this 

velocity. Instead, the alternative superficial liquid flow rate C% is often defined via the 

following relationship [27]. 

 

	 C% = H ⋅ (	 (11) 

Hereby, the intra-particular voids are commonly not taken into consideration when 

determining the porosity [100], since they do not affect the flow rate of the liquid phase. 

 
3 In the domain of solid-liquid separation, these constitutive relationships capturing the compressive 
behavior are commonly referred to as material laws. 
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Further, the solid phase moves simultaneously towards the filter medium due to the 

compressive behavior of the filter cake [101]. Therefore, the superficial velocity for the solid 

phase must be introduced as C& as well. However, neither C%, nor C& are described using 

constitutive relationships but are a direct result from mechanical models on continuum level. 

Thus, Section 2.2.2 elaborates further on this topic. 

2.1.4 Filter Aid Utilization 

Filter aids can be used to increase the efficiency of the cake filtration process. Hereby, these 

materials are added to the system if the initial suspension poses problems during the act of 

separation. This can be the case if, e.g., the slurry is very low concentrated, the impurities 

are hard to filter4, the particles do not form a filter cake by themselves, or if simply no other 

solid-liquid separation technique is available [14]. Further, filter aids help in maintaining 

the flexibility of a plant, since various filtration problems can be addressed with the same 

set-up using the correct choice and dosage of different filter aids. However, since the filter 

aids are mixed with the initial solid phase, separating the final filter cake into both particle 

systems is costly. Therefore, this technique is often used for applications in which the filtrate 

is the target of recovery. Some applications include, but are not limited to, the beverage 

production [102], [103], the food industry [104], [105], water treatment [106]–[108], 

biotechnology [109], and the processing industry [13], [104]. 

The action of filter aids mainly originates from mechanical nature by creating a 

highly porous filter matrix [25], [100], [110]. Hereby, the impurity particles attach 

themselves into the created network of voids. Further, the cake permeability is significantly 

increased due to the lower solidosity [92], [109]. At the same time, filter aids also reinforce 

the filter cake, since a higher permeability also causes less stress to act on the solid phase 

which counters the effect of cake compression.  

In the case of dead-end cake filtration, the process of dosing filter aids commonly 

consists of two separate stages referred to as precoat phase [13], and bodyfeed phase5 [24]. 

Hereby, a layer of pure filter aid is first built upon the existing filter medium. This precoat 

ensures that during the initial time span of filtering the slurry no impurity particles cause 

fouling, i.e., pore blocking, of the filter medium, and that no fine particles migrate into the 

filtrate. Afterwards during the bodyfeed stage, a specific filter aid amount is continuously 

dosed to the suspension to be cleared which causes the actual filter cake to form  [14], [43], 

[100]. This process is illustrated in Figure 6.  

Just as in the general case of cake filtration, most of the impurities are directly 

separated along with the filter aid particles via the mechanism of surface filtration. Some 

fine particles, on the other hand, may migrate through the filter cake until they are 

 
4 Unscientifically speaking, for “jellylike”, or “sticky” particles 
5 Sometimes also called primary and secondary filtration phase [18], [111] 
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eventually immobilized by the mechanism of depth filtration [112]. Hence, the precoat 

incorporates these impurities successively during the process as can also be seen in the 

following figure. Various studies showed the importance in describing this phenomenon 

accurately [18]–[21], [111]. 
 

 

 
 

Figure 6 Illustration of the precoat stage (left), and the bodyfeed stage (right); the thickness of the precoat 

layer is illustrated by the horizontal green line. 

 

There exists a variety of different materials that have been successfully identified for the 

use as filter aids. The longest established are those from mineral and fossil origins such as 

diatomaceous earth, commonly referred to as kieselguhr [15], [25], [110]. Hereby, kieselguhr 

is known as a very efficient filter aid, as it has been described to consist of up to 90% voids 

[13]. However, this traditional filter aid also goes along with several problems. First, due to 

its fossil origin it is not an endlessly available resource. Moreover, when exposed to aerosol 

dusts consisting of such filter aids people may become affected by Silicosis [113], which is a 

type of occupational lung disease and may further be the cause to lung cancer [114]. Hence, 

disposal does not only pose ecological issues [115], but is also considered a toxic waste [16].  

Therefore, the use of alternative filter aids is researched on in recent years. Some of 

these alternatives include fibrous filter aids (e.g., cellulose [116], [117], viscose [118], wood 

fibers [104]), or materials from organic origin, such as rice hull ash [119]. Contrary to the 

classical filter aids, these materials are usually easier to recycle, and they tend to form less 

dust during handling. Moreover, due to their morphology and overall softer material 

properties, less wear and tear is caused on process equipment [104]. However, these 

characteristics often also yield substantial compressive behaviors, opposed to those filter 

aids from mineral origin, which can usually be approximated as incompressible [18], [90]. 

As established before, the effect of compression decreases the overall process efficiency 

significantly. Hence, it becomes important to find the ideal filter aid dosage  

(à Objective III) to maintain a profitable process. This underlines the initial motivation to 

find accurate mathematical models (à Objective II) that do not only represent the general 

process of cake filtration, but also cases involving filter aids in order to conduct rigorous 

mathematical optimizations. 

precoat 

precoat stage bodyfeed stage 

filter aid particle 

impurity particle 
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2.2 Continuum Scale Cake Filtration Modeling 

As mentioned in the introduction, the comparably new engineering discipline of process 

systems engineering emerged during the recent decades and aims at interconnecting the 

rapid development of computational capabilities with the more “traditional” domains of 

chemical engineering, and process engineering [120]. Especially complex mathematical 

model simulations benefit strongly from the ever-increasing computing power6, since they 

can be used as a tool to gain new technical insights, and to improve the performance of 

established processes. One possible approach in process systems engineering is to examine 

the same process on various scales using different model formulations. Hereby, the area of 

solid-liquid separation and, thus, filtration is no exception. In their philosophical analysis, 

Kuhn et al. [121] classified the typical scales in cake filtration as the microscopic scale, and 

the macroscopic scale, which are intended to resolve the filtration process on the individual 

pore level, and on the continuum mechanical level, respectively. Additionally, the 

intermediate mesoscopic scale can be defined which intends to only resolve the relevant 

pore-network without the need for simulating the fully resolved filtration unit [122]. 

Figure 7 gives an overview over the respective scales. 
 

 

 
 

Figure 7 Illustration of different scales in cake filtration modeling. Adapted from [27]. 

 

This work especially addresses the use of continuum scale models. Hereby, continuum 

mechanical methods assume the filter cake structure as a whole instead of conducting a 

detailed characterization of the underlying porous media’s heterogenous structures. In order 

to gather the information needed to employ the continuum scale, the method of volume 

averaging can be applied [123]. The functional relationship to calculate the volumetric 

averaged value 〈7〉 for an arbitrary physical quantity 7 depending on the spatial dimension 

e, the control volume I*, as well as the temporal dimension ; is defined in Eq. (12). This 

technique is also illustrated in Figure 7. Further comprehensive information on the method’s 

application to filtration models can be found in [27]. 

 
6 Commonly referred to as Moore’s law 
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〈7(;, e)〉 =

1
I*
f 7(;,
/!

e)	dI	
(12) 

Notably, the technique of volume averaging can be employed over multiple dimensions, i.e., 

a three-dimensional structure can be reduced to a two-dimensional one. At this point once 

again, it may be spatially averaged to a one-dimensional quantity which is the dimension of 

interest in this work. Clearly, this process imposes a significant loss of detail especially in 

regard of heterogenous structures being present in the filter cake. At first glance, the method 

might therefore seem outdated considering that in the domain of solid-liquid separation the 

micro-theoretic and micro-manipulative paradigms are state-of-the-art according to Kuhn et 

al. [121]. However, despite the higher degree of accuracy that may be achieved from 

employing, e.g., pore scale methods, computational times of the corresponding simulations 

can take up to several hours for a single run. Continuum scale models, on the other hand, 

can typically be solved in a matter of seconds. Therefore, they are favorable for the objectives 

of this thesis; especially since the intended optimization procedures for the scenario of filter 

aid filtration require for fast and efficient processing. 

In the following subsections, the two most established continuum scale modeling 

approaches for cake filtration processes are discussed. The first one is known as the 

conventional filtration theory, which advantage is its simplicity. Secondly, the multiphase 

flow theory allows for more detailed insights into the process but requires for numerical 

approximation schemes to be solved. Analyses and summaries of both theories can be found 

in [70], [91]. For the sake of completeness, some further mechanistic modeling techniques 

in the domain of cake filtration include, e.g.: 

• [88], [124], [125] describing the process under consideration of individual particle 

dynamics 

• [126]–[128] employing simulations based on computational fluid dynamics 

• [129]–[131] applying pore-network extraction methods 

• [132]–[134] investigating modeling approaches based on compressional rheology 

• [135], [136] introducing a diffusion-type model architecture in Lagrangian 

coordinates 

2.2.1 Conventional Theory  

The foundation to the conventional theory of cake filtration modeling can be traced back to 

1856, since it is built upon Darcy’s law [60] as defined by the following equation. 

 

	
İ =

g* ⋅ ) ⋅ ,
P ⋅ =

	 (13) 
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In a historical context, this is one of the earliest mathematical relationships to predict the 

resulting fluid flow rate İ through a porous medium depending on the pressure difference 

Δ* applied to the system. Hereby, it is correlated with the solid phase’s permeability ), the 

fluid’s viscosity P, as well as the height =, and cross-sectional area , of said porous medium. 

Initially, Darcy’s law was assumed to be from empirical nature. However, in subsequent 

studies it was also derived mathematically by volumetric averaging of continuity equations 

[137]. Even though the derivation is only valid for the case of creeping Stokes flows, Bear 

[61] specifies that Darcy’s law may produce accurate results for Reynold’s numbers as high 

as 10. Therefore, Eq. (13) can be interpreted as a mechanistic physical model for ideal non-

turbulent flows. 

In order to apply this relationship to cake filtration set-ups, the flow rate of the 

filtrate is often assumed to be affected by two additive terms, namely, the height-specific 

filter cake resistance E, and the filter medium resistance F( as described by Eq. (6). Hence, 

the differential form of Darcy’s law suitable to describe the filtrate flow rate for cake 

filtration processes reads: 

 

	 dI
d;

=
g* ⋅ ,
P

⋅
1

(= ⋅ E + F()
	 (14) 

This expression was similarly developed independently by both, Carman [138], and Hermans 

[139]. As elaborated by Buchwald7 [140], Carman seems to be the first author to use this 

approach in the analysis of cake filtration. Nevertheless, Hermans’ work had a lasting impact 

particularly in the German speaking filtration community. In any case, their respective 

works formed the foundation to what eventually was turned into the VDI 2762 norm [11], a 

three-part standard reference describing the best practices in laboratory cake filtration, and 

subsequent data analysis. Using Eq. (14) as a starting point and conducting a small number 

of steps described in said guideline yields Eq. (15). 

 

	 ;
I
=
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⋅ I +
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	 (15) 

Hereby, < denotes the so-called concentration constant. It is defined by the area covered by 

the filter medium ,, the cake height =, as well as the cumulative filtrate volume I. 

 

	
< =

, ⋅ =
I
	 (16) 

 
7 Notably, the PhD thesis of Buchwald [140] contains many further comprehensive insights to the overall 
historical developments in cake filtration analysis along with detailed derivations of the respective 
mathematical models. 
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Notably, the derivation of Eq. (15) is only valid for the case of constant pressure filtration. 

However, this is the typical operation mode in laboratory environments to characterize the 

properties of the examined material system. Therefore, the formulation for constant flow 

applications is not further elaborated here but can, e.g., be found in [140]. 

The advantage of Eq. (15) lies in its linearized arrangement, i.e., the right-hand side 

can be interpreted as a linear function depending solely on the cumulative filtrate volume 

I(;). Hence, the characteristic quantities E and F( can be found by graphically plotting the 

experimental data as an (ideally) straight line in a 0/-over-I diagram as illustrated in 

Figure 8. Hereby, the intersection with the ordinate yields the value for F(, while using the 

slope allows to directly solve for E. 
 

 
 

Figure 8 Ideal experimental cake filtration data in the case of a constant pressure filtration (left); linearized 

data according to Eq. (15) (right). 

 

Undoubtedly, this model is easy to solve and often yields sufficient accuracy for the 

representation of incompressible cake filtration data. Moreover, due to the method’s age 

established heuristics are available. For example, experienced filtration personal can quickly 

identify problems occurring in the filter cell if the process data deviates from the ideal linear 

function. As stated in the VDI guideline [11] an exponential data profile indicates towards 

pore blocking of the filter medium, and significant cake-internal fine particle migration 

happening. Therefore, even modern works still rely on this approach (e.g., [141]–[145]). 

Nevertheless, the practical use of this initial form of the conventional theory is 

limited if the filter cake is compressible. As a result, systematic errors occur quickly even 

for moderate grades of cake compressibility using the previously introduced procedure. 

Therefore, many analytical extensions to the conventional theory have been derived in which 

compressibility is accounted for, e.g., [25], [74]–[76], [97], [146]. Hereby, particularly the 

works of Ruth [93], and Grace [147] laid the foundation to these formulations. Although 

those approaches may yield satisfying results for specific problems, the overall framework 

is critically assessed by various authors [88], [148], since compression is typically 

underestimated [149], and substantial relative errors of up to 15% [150] to 50% [151] are 

reported. 

Some additional overall drawbacks remain despite the grade of cake compressibility: 

the resulting process quantities only contain or are reconstructed from global information, 

; I 

I ;
I
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i.e., mean values for the overall filter cake [91], [97]. Further, it is impractical to incorporate 

the phenomenon of cake-internal particle migration into the analytical framework of the 

conventional theory [151]. Although approaches exist to quantify the mechanism of depth 

filtration only, e.g., [21], [41], [72], works combining it with the mechanism of surface 

filtration show significant simplifications [43], [152], or require numerical solution 

procedures [112], [153] as they are based on complex systems of first principle partial 

differential equations. 

2.2.2 Multiphase Flow Theory 

The multiphase flow theory emerged due to the drawbacks, and the number of compromises 

imposed by the conventional filtration theory. As discussed by Tien [150], the progression 

into this new framework comprises less restrictive assumptions and, thus, promises to 

predict the process of cake filtration more accurately. Hereby, the transition from the 

conventional theory to the multiphase flow theory was significantly influenced by the paper 

series the role of porosity in filtration under the lead of Tiller, as introduced in Section 2.1.2. 

In 1960, Tiller and Cooper [77] published said series’ part IV, in which the authors identified 

that the liquid phase’s flow rate is not constant over the filter cake height. Ignoring this fact 

might produce significant errors, as demonstrated in Tiller’s and Huang’s successive work 

[154]. 

This is due to the relative movement occurring between the liquid and the solid phase 

resulting from the effect of cake compression. In order to account for this phenomenon, 

Darcy’s law needs to be adjusted as discussed by, e.g., Shirato et al. [155], and Wakeman 

[156]. Using the definition in Eq. (11) for the superficial liquid velocity C%, and superficial 

solid velocity C& the generalized Darcy law including the slipping velocity reads as follows. 

 

	 C%
(
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Further, the mechanistic relationships between the system states porosity (, solidosity (&	, 

as well as C%, and C&, are defined via the mass continuity equations given in Eq. (18) and Eq. 

(19), which are the governing model equations [157]. 

 

	 i(
i;
=
iC%
iK
	 (18) 

	 i(&
i;

=
iC&
iK
	 (19) 



Chapter 2 Theoretical Background 21 

Using the obtained system states allows to derive an accurate mass balance which yields a 

Stefan Problem [158], [159]. Thereby, a moving boundary expression in the form of 1210 may 

be integrated to explicitly track the filter cake growth =(;) over time including compressive 

effects. 

To close the model equations, the constitutive relationships capturing the 

compressive behavior of the filter cake must be determined. These were previously defined 

in Eq. (9) and Eq. (10), and correlate the porous media’s permeability ), as well as the 

porosity ( with the solid stress *&. Hereby, *& is directly coupled with the liquid pore pressure 

through a constitutive relationship defined in Eq. (8) which is derived from a momentum 

balance corresponding to the material system [94], [157].  

Combining these parts of the multiphase flow theory leads to the final cake filtration 

models which significantly influenced this work: the model introduced by Stamatakis and 

Tien [160], and, further, the extended version presented by Tien et al. in [8]. This second 

formulation additionally allows to mechanistically describe the effect of superimposed depth 

filtration by incorporating the filter coefficient O defined in Eq. (7). Thereby, conservation 

equations track the spatio-temporal development of the volumetric fine particle content (&! 

in both, the liquid, and the solid phase. The derivation of these models is also summarized 

in the textbook [91].  

In conclusion, the multiphase flow theory offers two advantages over the 

conventional theory by describing the cake filtration process as a system of partial 

differential equations. Apart from the possibility to accurately describe the temporal and 

spatial developments of all introduced characteristic filtration quantities without the need 

for significant intermediate simplification steps, the mechanism of cake-internal particle 

migration can be seamlessly integrated (à Objective II). However, this approach also 

marked the transition from an analytical framework to a numerical one, i.e., approximation 

schemes are needed to find solutions to the newly derived mathematical model equations 

which makes computations a lot more involved. 

2.3 Remarks on Process Optimization 

Industrially-scaled processes are intended to not only meet desired product criteria but also 

to be conducted economically. Hence, the ideal set of control parameters fulfilling these 

goals must be found. To this end, the technique of mathematical optimization has proven to 

be useful in numerous engineering applications [161], [162]. Naturally, this overall 

procedure has also been adopted in various solid-liquid separation processes. Optimization 

works have been described in the literature for, e.g., depth filters [39], [163], [164], and 

especially for membrane filtration processes [165]–[171]. 

However, this method is only sparsely applied in the domain of cake filtration 

processes. Rare examples include the investigation of ideal system pressures [17], 
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determining optimal filtration cycle times [34], [66], finding desired deposition profiles 

[153], or minimizing the process’ energy expenditure [172]. Even rarer are applications to 

filter aid filtration, despite experimental works showing that it is crucial to find the ideal 

filter aid dosage which leads to an effective filtration [18], [25], [107]. Some historical 

approaches try to optimize the resistance of filter cakes made up from filter aids, and 

impurities using simple analytical models, e.g., in [23], [24], [64]. Further, Tittel [28] and 

Wegner [173] developed methods to find optimal filter aid dosages based on the filter aid 

filtration model developed by Berndt [43]. Notably, all the previously mentioned works 

originated between the 1960s and 1980s which restricted them by the limited computational 

capabilities of their time. 

Latest studies indicate that the process efficiency can be further increased by 

adjusting the filter aid dosage during the process [22]. Typically, those variable control 

functions are obtained by conducting dynamic optimizations, or optimal control procedures. 

This technique has been applied by Kuhn and Briesen to filter aid filtration using an 

analytical approach using a strongly simplified model [29]. Subsequently, in his Ph.D. thesis 

Kuhn [27] implemented a numerical optimal control algorithm using a more elaborate model 

[112], which also includes the effect of depth filtration. Hereby it was demonstrated that 

dynamically varying the filter aid dosage only shows negligible impact for persistent 

suspension compositions. Nevertheless, once the slurry’s impurity concentration varies, a 

time-varying filter aid supply can improve the process efficiency by up to ≈ 10	%. However, 

those works are only valid for classical filter aids, i.e., incompressible systems. Therefore, it 

remains unclear how the behavior of compressible filter aids might influence the optimal 

dosage, or if, e.g., negative impacts from cake compression can be counteracted by variable 

filter aid dosages. Hence, for alternative filter aid materials the process efficiency might be 

improved further (à Objective III). 

Terminologically, this work differentiates between the techniques of optimal control, 

and static optimization. As indicated before, optimal control aims at finding arbitrary control 

functions 8(K) depending on an independent variable K8. Opposed to those dynamically 

varying inputs the static optimization is intended to find a control parameter, i.e., 8	 = 	const. 

In the present context, the static optimization can therefore be assumed to be a special case 

of an optimal control problem. While these definitions seem trivial, a clear distinction is 

important. This is because the static optimization sets a benchmark which could similarly 

be obtained by systematic experimental investigations. Hence, employing an optimal control 

method offers the possibility to outperform such a baseline scenario exclusively through 

rigorous mathematical investigations.  

According to Kirk [30], an optimal control problem requires three distinct parts. 

First, a dynamic model (n:	ℝ( ×ℝ3 ×ℝ4 	→ ℝ3) describing the variable evolution of the 

system state(s) s ∈ ℝ3 depending on the independent variable(s) e ∈ ℝ(, and the vector of 

 
8 In most applications the independent variable & is the time ". However, the optimal control may also be 
calculated in dependence of other domains, e.g., space. 
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control functions (u:		ℝ( → ℝ4). Second, pertinent inequality, and equality conditions, 

(v:		ℝ( ×ℝ3 ×ℝ4 	→ ℝ), and (ℎ:		ℝ( ×ℝ3 ×ℝ4 	→ ℝ), e.g., constraints from physical, 

numerical, or technical nature. Third, some cost functional (x:	ℝ( ×ℝ3 ×ℝ4 	→ ℝ) capturing 

the model’s performance for the assessed control 8. Hence, an arbitrary optimal control 

problem may be formally defined as follows. 

 

	 					min5 			xze, s(e), u(e){	

																													
	+. ;.				

ds
de

= nze, s(e), u(e){			

vze, s(e), u(e){ ≤ 0																																													

ℎze, s(e), u(e){ = 0																																													⎭
⎪
⎬

⎪
⎫

	∀	e ∈ [e6, e7]	

(20) 

Notably, optimization problems are usually denoted as minimization problems. However, 

these can be trivially transformed into maximization problems by multiplying the 

performance index x with −1. Hereby, several types of cost functionals exist which map the 

model’s quantitative behavior to an easily assessable scalar. The most common types are 

called Mayer, and Lagrange functionals which, respectively, either only assess the cost at 

the model’s final state or integrate the cost over the whole domain of interest. The 

combination of both types is referred to as Bolza functional. 

Naturally, optimal control approaches are mathematically challenging since Eq. (20) 

results in an infinite dimensional optimization problem. Therefore, only some simple 

optimal control applications may be solved analytically by fulfilling the necessary conditions 

of optimality [161], [174], [175]. Due to the strong nonlinearities and complex process 

interactions imposed by the multiphase flow theory, those analytical approaches are ruled 

out as infeasible for this work. Nevertheless, numerical approaches can be used to iteratively 

construct an optimal control solution. These are broadly categorized as direct and indirect 

methods [176], [177]. Hereby, indirect methods rely on deriving a boundary value problem 

that satisfies the previously mentioned optimality conditions. Since, both, indirect methods, 

and analytical approaches, are not investigated throughout this work, they are not further 

discussed here. For a review of the corresponding theory it is referred to [178]. Applications 

of the previously mentioned techniques for cake filtration can be found in [27], [29],  

and [153]. 

Instead, the focus lies on direct approaches. These overall techniques rely on a 

straight-forward transformation of the initial optimal control problem stated in Eq. (20) 

into a regular finite-dimensional nonlinear program. One possibility is to discretize the 

domain of the control 8 for which arbitrary functions are then parameterized using a 

numerical optimization algorithm [179], [180]. In general, direct methods are especially 

well-suited for handling optimal control problems that include models consisting of partial 

differential equations, as well as difficult problem constraints [176], [181]. However, 

typically these iterative procedures only approximate the solution, since – from a 

computational perspective – the discretization cannot become infinitely small. The intention 
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of achieving a better accuracy of the control trajectory 8 by either increasing the underlying 

function’s order (*-method) or decreasing the discretization size (ℎ-method) often leads to a 

significantly higher computation time. Therefore, numerically efficient and precise model 

calculations are crucial for this type of optimal control approach – an issue that is closely 

related to à Objective IV and is covered in the next section of this thesis. More information 

and deeper insights on direct methods, the theory of optimal control, as well as numerical 

optimization in general can be found in various textbooks, e.g., [182]–[186].  

2.4 The Role of Computational Efficiency 

If partial differential equations are used to resolve physical quantities on both, the spatial, 

and the temporal dimension, usually numerical techniques are employed that rely on 

discretization schemes producing large systems of ordinary differential equations [187]. In 

return, the corresponding simulations can take up significant computational time spans to 

be solved. As stated in Section 2.2, employing continuum scale models is already in favor of 

low numerical cost compared to alternative methods. Therefore, simple forward simulations 

often do not encounter any temporal computing constraints by themselves. However, 

advanced methods using these models as a foundation to solve further problems – such as 

the optimization procedures encountered in this work – do. This is because the simulations 

must be repeatedly evaluated under parameter variation. Depending on the desired 

accuracy, and the complexity of the algorithm hundreds or thousands of single processing 

runs may add up consequently rendering the intended techniques uneconomic or even 

practically infeasible. 

Thus, particularly the simulation procedures for those models based on the 

multiphase flow theory shall be sped-up in the scope of this thesis. This matter was 

previously addressed in [188]. Hereby, the cake filtration model based on the system of 

partial differential equations introduced in [8] was transformed into a cake thickness-

averaged formulation which yields a simpler model consisting of ordinary differential 

equations only. This does not only make the model easier to implement but also decreases 

the numerical cost significantly. However, due to the averaging approach any transient 

spatial information is lost which limits the model’s applicability in further analyses of the 

cake formation process, and, thus, conducting detailed optimizations. 

Nevertheless, in recent years other numerical techniques were developed to raise the 

computational efficiency of mathematical model simulations independently of the ever-

increasing hardware performance. These approaches can be broadly summarized as reduced 

order modeling (ROM) methods [189]–[191], for which a main property is to explicitly retain 

the underlying full order model’s quantitative solution features. This work focuses on so-

called projection-based model order reduction [192]. Hereby, the most established method 

is probably the technique of proper orthogonal decomposition (POD) [193], [194]. To this 

day, the method has been applied in many engineering disciplines – including some 
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employments of the POD in the domain of fluid flow through porous media, e.g., [195]–[197]. 

However, only one ROM study is known for incompressible cake filtration processes [198], 

and no works exist incorporating either the influence of cake compressibility or examining 

filter aid filtration. Therefore, the POD method is applied to the modeling framework 

introduced in Section 2.2 (à Objective IV).  

Notably, many further extensions to the POD method exist such as several ROM 

adaptation approaches [199], [200] enabling the ROM to represent the underlying full-order 

dynamics under parameter variations which is required for optimization procedures. 

Moreover, some techniques are established to efficiently handle nonlinear terms occurring 

in the reduced model equations, e.g., the discrete empirical interpolation method [201], 

[202], or the gappy POD [203], [204]. However, to explain those features would go beyond 

the scope of this introduction to the POD method. The overall theory on the application of 

projection-based ROM to systems of partial differential equations is summarized in, e.g., the 

following textbooks [187], [205]–[207]. 
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Chapter 3 

Methodology 

This thesis is set exclusively in the methodological domain of computer-aided techniques 

and numerical procedures applied to the process of cake filtration. Hereby, no process data 

from real-world filtration experiments is investigated. Instead, new knowledge is generated 

via means of model-based investigations. This chapter gives a brief outline on the methods 

used to solve the modeling architectures encountered in Section 2.2. Further, those 

techniques employed to address the objectives explained throughout the introduction are 

introduced while referring to the theoretical foundations elaborated in Sections 2.3 and 2.4. 

As the actual methods are explained in detail during the respective studies, the following 

overview is kept short and concise with the intention to avoid unnecessary repetitions. 

Notably, all involved numerical procedures were implemented in MATLAB (The MathWorks, 

Inc., Natick, Massachusetts, US), versions 2018a, 2021b, and 2022b, and can be solved using 

regular consumer-grade computers.   

3.1 Model Simulations 

3.1.1 Monte Carlo Experiments 

Full-Length Paper I (p. 78) examines the occurrence of systematic errors when the model 

stated in the VDI 2762 norm (see Section 2.2.1) is used to evaluate cake filtration data. To 

this end, employing a so-called Monte Carlo method [12] allows to cost-effectively generate 

a vast set of artificial experimental data by repeatedly simulating the incompressible cake 

filtration model with known parameter values. During this process, noise is imposed to the 

ideal computed effluent’s volumetric flow rate İ, as well as the specific cake resistance E. 

These disturbance modes account for two different effects frequently observed in laboratory 

environments. While the scattering flow rate of the filtrate describes small variations that 

may occur during the experiments, a variable filter resistance results due to a possible bias 

in taking samples from the solid phase during the preparation of the experiment. For both 

disturbance modes, the noise level was varied from 0% to 20% of the respective nominal 

variable values. Hereby, the noise is generated from normally distributed (pseudo-)random 
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numbers using MATLAB’s randn algorithm [208]. In total, 3000 in silico filtration 

experiments were computed; each for an assumed total process time of ; = 100	s. 

3.1.2 Handling Partial Differential Equations 

Full-Length Paper II (p. 88), as well as Full-Length Paper III (p. 103) employ the multiphase 

flow theory as introduced in Section 2.2.2 to represent the process of filter aid cake filtration. 

Due to the chosen framework these models comprise partial differential equations which 

can only be solved numerically by approximation techniques. 

The models are classified as a Stefan problem due to the filter cake’s height growth 

over time =(;). Therefore, the Front Fixing Method9 [210] is applied to transform the time-

dependent system boundaries K = [0, =(;)] to the fixed interval M = [0, 1]. This procedure 

allows to employ the Method of Lines as a numerical solution technique in both 

aforementioned Studies [211]. Hereby, the spatial dimension is discretized which converts 

the system of partial differential equations into a set of ordinary differential equations. After 

transformation, each resulting ordinary differential equation describes the temporal 

development of a system state at one distinct coordinate of the filter cake over time. 

Occurring spatial derivatives are approximated using three-point central, and five-point 

upwind finite differencing schemes [187]. The remaining temporal dimension is integrated 

using MATLAB’s ode15s method [212]. As this algorithm is an implicit integration approach, 

it is especially well-suited for stiff systems of ordinary differential equations which usually 

arise when the Method of Lines is applied [187].  

Typically, numerical algorithms contain floating point variables which only fulfill a 

limited machine precision [213]. Therefore, round-of errors might accumulate when basic 

mathematical operations between variables of highly different magnitudes are performed. 

Hence, all model equations are non-dimensionalized through process-inherent scaling of 

variables in order to improve the numerical stability of the solution technique described 

above. 

3.2 Employed Optimization Algorithms 

Full-Length Paper II (p. 88) aims at finding optimal operation strategies to increase the 

overall process efficiency for different filter aid cake filtration processes. To this end,  

Eq. (21) states the examined minimization problem subject to the cake filtration models10 

based on the multiphase flow theory as introduced in Section 2.2.2. 

 

 
9 Sometimes also referred to as Landau transformation [187], [209] 
10 Notably, the formal optimization problem is not stated in its entirety, as the complete formulation would 
be rather involved containing numerous model equations. 
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	 min*,	2"#
4		 (21) 

Hereby, a Lagrange-type cost functional is incorporated by mapping the time-dependent 

pressure drop Δ* ∈ ℝ, and the volumetric flow rate of the effluent İ ∈ ℝ to the scalar value 

of the area-specific energy consumption (4:	ℝ × ℝ × ℝ	 → ℝ) over the process time ; ∈ ℝ: 

 

	 4z;, g*, İ{ 	= ∫ g*(;)İ(;)	d;: 			 (22) 

Moreover, the model’s performance is influenced by two controls to be optimized, i.e., 2 ∈ ℝ 

as the filter aid concentration dosed to the suspension, and =#$ ∈ ℝ as the height of the initial 

precoat layer. 

Study II encompasses two optimization approaches. First, the static optimization is 

examined, where the filter aid concentration is defined as a constant control parameter, i.e., 

 

	 2 = const.	 (23) 

Moreover, physically-motivated inequality constraints are imposed on the controls as the 

height of the precoat layer =#$ cannot be negative. Similarly, the filter aid concentration is 

prevented from taking negative values, and, at the same time, is restricted from exceeding 

the solidosity (& of the filter cake’s top layer.  

 

	 0 ≤ =#$ 	

0 ≤ 2(;) ≤ (&zK = =(;){	

(24) 

The resulting static optimization problem is solved by processing the default gradient-based 

interior-point algorithm provided by MATLAB’s fmincon method [214].  

In the same study, the technique of optimal control is subsequently employed to 

determine the ideal time-varying filter aid concentration 2(;). Hereby, (2:		ℝ → ℝ)	is defined 

as a solution to the optimal control problem stated in Eq. (21) if the corresponding cost 

functional outperforms the benchmark set by the previously described static optimization 

scenario.  To this end, the optimal control trajectory 2 is approximated by a direct ℎ-method. 

In this approach, piecewise linear functions are parameterized over the whole temporal 

domain G. Hereby, the discretization size of these function segments is repeatedly bisected, 

while for each new iteration the optimization procedure is initialized with the obtained 

optimal parameter values from the previous iteration. This algorithm ensures that the newly 

emerging linear functions converge robustly towards a well-defined optimum. Study II gives 

further detailed explanations on the iterative procedure to derive 2. The observant reader 

might also have noticed that the overall procedure is illustrated on this thesis’ cover page. 
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As the previously described method transforms the infinite dimensional optimization 

problem stated in Eq. (21) into a finite-dimensional nonlinear program, it is solved by 

Matlab’s fmincon method, too. For this case, the sequential quadratic programming 

algorithm [214] was chosen while using central finite differencing to obtain the required 

gradient and Hessian. Hereby, the central scheme achieves a higher order of accuracy 

compared to MATLAB’s default forward step scheme [187]. Further, the sequential quadratic 

programming procedure can mimic Newton’s method of optimization for constrained 

problems as described by the corresponding documentation [214]. Since Newton’s method 

of optimization features quadratic convergence characteristics in a local region around the 

optimal solution, it is well-suited for employing the procedure. This is because for each new 

iteration : the optimization algorithm’s initial guess for the control parameters describing 

the trajectory 2 already lies in a local region around the sought-for trajectory refinement. 

Hence, the SQP procedure operates significantly faster than the default interior-point 

algorithm. 

Study III incorporates the same static optimization problem defined in Eq. (21). In 

this paper, the iterative procedure provides a benchmark, too. However, contrary to Study 

II, the optimization task itself is not the main subject of investigation. Instead, the 

optimization scenario merely provides a sample problem to be solved using the model order 

reduction approach. 

Notably, Paper I involves an optimization procedure as well, since the parameter 

estimation problem can be expressed in the following form as an unconstrained least squares 

problem: 

 

	 min; 			x(KÉ, LÉ, a)	

											x =ÑzLÉ< − 7(KÉ< , a){
!

=

<>'
	

(25) 

Here, K is the independent, and L the dependent variable, whereas the R -accent denotes data 

obtained from the Monte Carlo method. Further, 7 is the examined model function, Ö the 

total number of data points, and P the parameter set to be determined. However, the 

implementation and processing of the parameter estimation procedure is trivial. In this 

work, MATLAB’s fminsearch method was employed using standard options which results in 

the computation of the well-known Nelder-Mead Simplex technique [215], a gradient-free 

optimization algorithm.  

3.3 Model Order Reduction 

Full-Length Paper III (p. 103) incorporates a study to increase the computational efficiency 

of the cake filtration model simulation based on the multiphase flow theory described in 
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Section 2.2.2. To this end, a ROM is built using the POD method as introduced in Section 2.4 

by roughly following the main steps outlined in [205]. Hereby, first a representative sample 

data base capturing the system’s dynamics is obtained through simulating the full order 

model. After, performing a singular value decomposition to the data matrix using MATLAB’s 

svd routine yields a collection of corresponding =2-optimal basis functions. This is commonly 

referred to as direct approach in the POD literature. The found set of orthogonal POD modes 

is subsequently truncated, such that the reduced basis captures most of the system’s 

dynamics. In a next step, employing the Galerkin Method [187] allows to project the full 

order model equations onto the diminished POD basis. The resulting system of ordinary 

differential equations is significantly smaller compared to the underlying full order model. 

Finally, after numerical integration the obtained solution features are transformed from the 

reduced order space back to the high dimensional model space. 

During the study, the previously described technique is referred to as local POD, since 

the POD basis is constructed from only one full order model simulation using a single 

representative parameter set. However, poor results are expected for different control 

parameter configurations as required in the benchmark optimization procedure. Therefore, 

two additional extensions to this initial POD method are evaluated. First, the global POD 

approach involves enriching the data matrix used for the singular value decomposition with 

results from multiple full order model simulations under parameter variation. Moreover, the 

Subangle Interpolation Method (SAIM)11 is introduced as a ROM adaptation technique [199]. 

As the name suggests, this approach interpolates one set of basis functions into the other 

while maintaining the required orthogonality properties. 

 
11 The SAIM is a special case of the Grassman manifold technique [216]. 
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Chapter 4 

Full-Length Paper Summaries 

This chapter presents the summaries of the research papers investigating the use of 

nonlinear continuum scale models in cake filtration. The corresponding full-length articles 

along with their meta data, copyright information, as well as contributor roles taxonomy 

(CrediT) are contained in the Appendix on pages 78, 88, and 103, respectively. 

4.1 Publication I – Monte Carlo Study 

The first paper addresses à Objective I of this thesis by proposing an evolution to the widely 

applied VDI 2762 guideline [11] which is intended to evaluate experimental cake filtration 

data. As elaborated in Section 2.2.1, the technique is based on a filtration model (see  

Eq. (15)) in the framework provided by the conventional theory. However, the precision in 

estimating the filter resistance as the parameter of interest is limited due to several 

drawbacks imposed by the linearization procedure described in VDI 2762. First, a 

linearization of the model leads to the distortion of experimental error distributions. Second, 

meaningful linear model graphs can only be obtained, if the full data set is cropped by the 

first few measured values. Since the choice of the number of data points to be dropped lies 

in the individual assessment of the experimenter, a subjective bias is imposed to the overall 

data set, and, therefore, some process information is always lost.  

Hence, the simple premise of this study’s alternative approach lies in resolving  

Eq. (14) as a root function which is then used as the model in the parameter optimization 

problem Eq. (25) stated in Section 3.2. This nonlinear fitting method indeed offers the 

possibility to get a clearer overall picture about the conducted process, as all available 

process data points can be utilized. Further, error distributions remain normally distributed 

under the use of the root-shaped mathematical model. Thus, the method of least squares is 

ideally suited to determine the characteristic process quantities. 

In order to investigate these claims for obtainable practical benefits a big set of 

filtration data is needed. Only then, the so-called law of large numbers [217] can be fulfilled 

to make statistically significant statements. However, it is not feasible to generate this data 

in a real-life laboratory environment – not only due to the sheer number of experiments 

needed, but especially due to the limited replicability of each experimental run. It is most 
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likely impossible to produce multiple real data sets that inhibit the same “true” unknown 

value for the filter resistance. Therefore, the required data was created by employing Monte 

Carlo experiments, as described in Section 3.1.1.  

Using this artificial data base, the filter resistance is estimated using both, the 

original VDI 2762 procedure, as well as the proposed nonlinear fitting method. After, the 

relative errors of the obtained specific filter resistances are calculated under consideration 

of the true parameter value known from the model input to the Monte Carlo runs.  

Upon closer inspection of the error performances for both parameter estimation 

procedures, the advantages of the proposed modified fitting method become clear. Even 

though both techniques achieve comparable accuracies for low noise levels, the nonlinear 

parameter estimation approach manages to stay accurate under the influence of high 

disturbances: for the representative noise level of 10% to the nominal value of the filtrate 

flow rate İ, the nonlinear parameter estimation strategy performs roughly 2 magnitudes 

more precisely. Moreover, it was shown that the VDI 2762 strategy inhibits the tendency to 

underestimate the parameter values which is most likely due to the shifted error 

distribution. In a practical context, this might lead to further problems in process design. 

Arguably, linear models are much easier to solve analytically, or – as a matter of fact 

– graphically as proposed by the VDI 2762 norm. However, the reasoning for simplicity does 

not hold in regard of nowadays repertoire of computational tools12 being available to process 

engineers. Hereby, employing the proposed nonlinear parameter estimation method 

increases the accuracy while still being based on the very same theory. Regarding the 

previous argumentation, the study concludes by challenging the original VDI 2762 guideline 

as best practice. Instead, it is advised to use the modified fitting method in the evaluation of 

incompressible cake filtration data. 

4.2 Publication II – Optimal Control Study 

The overall goal of the second study aims at à Objective III of this thesis, i.e., finding optimal 

strategies for the dosage of filter aids in cake filtration processes. Hereby, especially fibrous 

filter aids are the focus of investigation, since they offer several benefits over the 

traditionally used kieselguhr as elaborated in Section 2.1.4 of this thesis. However, only few 

detailed process models exist that can derive dynamically optimized dosage profiles, none 

of which are suitable to describe filter cakes made up from compressible fibers. 

Therefore, the first half of this study addresses à Objective II, i.e., developing a 

mathematical continuum scale model that is able to accurately describe those filtration 

phenomena known from real processes. Apart from cake compression, effects to be modeled 

include an additional precoat phase, as well as variable shares of interfering depth filtration. 

 
12 In fact, even Microsoft Excel offers the possibility to easily calculate the proposed nonlinear fitting 
method. 
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Hereby, the framework provided by the multiphase flow theory as introduced in Section 

2.2.2 is adapted to the stated problem. Since the resulting system of partial differential 

equations does not inhibit an analytical solution, the model is solved numerically using the 

approximation techniques described in Section 3.1.2 of this thesis.  

The second part of the study is dedicated to solving the actual challenge of finding 

the optimal process conditions. By employing the techniques described in Section 3.2, the 

optimization problem stated in Eq. (21) is solved for two different scenarios. The first run 

considers a simplified model formulation in which cake-internal fine particle migration is 

neglected, i.e., impurities are only separated via the effect of surface filtration. 

Subsequently, the full model including the mechanism of depth filtration is examined for 

various shares of fine particles that are initially immobilized by surface filtration. Moreover, 

both scenarios are evaluated for two different parameter sets in order to represent varying 

extends of cake compressibility. 

Following general conclusions can be drawn from examining the results of all 

scenarios: First, the positive impact time-dependent filter aid dosages offer rises for 

stronger degrees of filter cake compressibility. Further, the more impurities are separated 

by the mechanism of depth filtration, the higher the benefit of an optimal control becomes. 

Hence, the most profit from employing an optimal control procedure can be obtained by 

assuming the edge case of a highly compressible material system with the absence of fine 

particle surface filtration. Hereby, the area-specific energy expenditure is cut by 

approximatively 5% compared to an already optimized process under ideal, but constant 

filter aid dosage. Moreover, using the Lagrangian cost functional of energy minimization the 

time-integral filter aid consumption can be simultaneously reduced by up to 30% for this 

scenario. However, if surface filtration is the lone mechanism of impurity separation 

employing an optimal control procedure shows only negligible impact.  

In conclusion, real filtration processes must be examined for their qualitative 

separation mechanisms in order to assess whether employing an optimal control yields a 

significant impact on the process cost. Nevertheless, it is important to keep in mind that all 

optimal control scenarios are compared to an ideal benchmark. Therefore, only 

implementing the static optimization strategy to a real-world filtration set-up might already 

increase the process performance.  Moreover, the proposed optimization approach can be 

used as a tool to decrease the experimental effort needed to find appropriate filter aid 

dosages to specific filtration problems. 

4.3 Publication III – Model Order Reduction Study 

The optimal control scenarios employed during the previous study involve a significant 

computational load to be solved. Therefore, this third research paper is an extension to 

Publication II by addressing à Objective IV of this thesis, i.e., increasing the numerical 

efficiency of the underlying compressible cake filtration model simulation. To this end, a 
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ROM is built by employing the POD method using data provided through full order model 

simulations13 under sparse parameter variation. Hereby, the local POD, global POD, and 

SAIM are examined on their performance in solving a test problem which calculates the ROM 

for varying control inputs. All the previously described techniques are briefly introduced in 

Section 3.3 of this thesis. 

In this study, the static optimization problem of energy minimization (see Eq. (21)) 

is set as the benchmark, since the qualitative behavior is known from the preceding study. 

The optimization procedure is solved for the initial full order model, as well as the derived 

ROMs. However, the interest does not lie in finding the optimal solution per se. Instead, the 

key performance indicators for the different POD approaches are defined as the numerical 

accuracy, as well as the computational speed. Due to the lack of an analytical solution to the 

full order model, the numerical accuracy is examined by calculating the relative error of the 

ROM simulations compared to those from the full order model. Moreover, the computational 

efficiency is assessed by evaluating the elapsed computational time the ROM needs to solve 

the benchmark problem compared to the full order model.  

By applying the POD method, the dimensionality of the resulting ROM can be 

diminished to ≈ 2	% compared to the underlying full order dimension. Due to the 

significantly smaller system of ordinary differential equations to be integrated the 

computational efficiency is increased approximatively 10-fold when processing the 

benchmark problem using the local POD. Thereby, a low relative error of ≈ 1.4	% can be 

maintained on average over the whole parameter range of interest. Higher numerical 

accuracies are achievable by applying the global POD, or the SAIM, which yield average 

relative errors of ≈ 0.18	%, and ≈ 0.06	%, respectively, compared to the full order model 

simulations. However, using either method also increases the computational load slightly, 

since more full order model simulations are required to generate the necessary data to build 

the ROM.  

In conclusion, each POD method should be chosen in regard of the intended 

application. Employing the local POD, for example, would offer benefits in real-time critical 

environments due to the higher computational efficiency. On the other hand, especially in 

regard of more complex ROM applications such as the optimal control approach introduced 

in Publication II, the SAIM should be preferred over the local POD. This is because for a given 

computational load relative errors of the resulting ROM computations are up to two 

magnitudes lower compared to the other techniques examined. 

 
13 The numerical techniques used to simulate the full order model are mostly identical to those introduced 
in Publication II. To avoid repetitiveness, no further information on the full order model is included in this 
section. 
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Chapter 5 

Overall Discussion 

This chapter elaborates further on the findings of the individual papers. However, as the 

initially stated Objectives of this thesis were already addressed in the respective summaries 

of the previous Chapter, the following discussion does not focus on the individual scope of 

the distinct studies. Instead, they are collectively revisited in the context of advantages, 

challenges, as well as remaining open questions that are offered by employing nonlinear 

mathematical models to the unit operation of cake filtration.  

5.1 Synergies from Combining the Filtration Theories 

Both modeling frameworks investigated in this study, i.e., the VDI 2762 guideline based on 

the conventional theory, as well as the multiphase flow theory, offer their own separate set 

of use cases and drawbacks. The procedures described in Publication I are especially well-

suited to gain a quick overview on the underlying filtration data. Hereby, the modified 

nonlinear fitting method proposed in Publication I increases the accuracy in process 

evaluation.  

Recently, Buchwald [140] investigated similar parameter estimation techniques 

based on nonlinear continuum scale models independently from this study. Apart from 

demonstrating how non-ideal starting phases of cake filtration processes can be accounted 

for by using adapted model formulations, Buchwald also supports the findings from  

Publication I by proving that the nonlinear fitting procedure is less sensitive towards 

experimental errors. However, even though these works address some of the downsides of 

the original linearized VDI 2762 strategy, the limitations elaborated in Section 2.2.1 remain: 

the possibilities of conducting mathematical optimizations are limited, and the applicability 

of the overall method is restricted to incompressible material systems with negligible shares 

of depth filtration. 

Models based on the multiphase flow theory, on the other hand, do not inhibit these 

flaws due to their ability to provide additional dynamic information. As demonstrated in 

Publication II, this enables to indeed take the mechanisms of cake compressibility, as well 

as impurity separation by depth filtration into account in the respective simulations. 

Moreover, the framework may support real filtration set ups by conducting theoretical 
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investigations which help to find ideal operation conditions that increase the overall process 

efficiency significantly. However, the presented nonlinear model equations must be 

approximated by employing numerical algorithms which are not trivial to implement, and 

might involve significant computational times to process.  

This high discrepancy between the complexity of those modeling techniques has been 

discussed before by, e.g., Tien [73]. As also elaborated in Section 2.2.1, extensions to the 

conventional theory exist which promise to capture the mechanism of compressibility 

reliably. However, following Tien’s argumentation, these formulations quickly increase in 

complexity as well, while still producing comparably high relative errors.  Thus, especially 

the phenomenon of cake compression remains difficult to assess mathematically. This is 

particularly critical, since, so far, this thesis clearly distinguished between incompressible 

and compressible filtration processes. However, as extensively discussed by Alles [17] most 

material systems occurring in filtration are – at least to a certain degree – compressible. 

Hence, assuming ideally incompressible filter cakes, such as in the VDI 2762 norm, 

potentially induces additional errors from this layer of model abstraction. Considering these 

preliminaries, the domain of cake filtration suffers from the lack of reliable but simple 

evaluation strategies for only minorly compressible cake filtration processes. 

In order to find better methods, the multiphase flow theory can be taken advantage 

of due to its ability to accurately represent such slight cake compressibility by adjusting the 

according parameters. Hereby, employing the corresponding model simulations as Monte 

Carlo experiments could serve as a basis to generated large data sets with precisely defined 

process properties and known parameter values similarly to the conducted procedure in 

Publication I. Using this approach would allow to first evaluate the quantitative 

compressibility range for which the conventional filtration theory still provides accurate 

predictions. Doing so offers the further possibility to evolve the VDI 2762 strategy in terms 

of defining best practices when to refrain from the incompressible cake filtration model 

stated in said guideline. In return, adapted models that are able to represent the effect of 

(slight) cake compressibility can be developed with the overall goal of user friendliness, as 

well as maintaining simple parametrization procedures. 

Notably, a similar approach has been conducted by Tien and Bai [150]. However, this 

study addressed the validity of the modification to the conventional theory proposed by 

Tiller et al. [218] in comparison to the multiphase flow framework. While the study 

demonstrated that using Tiller’s approach indeed a high accuracy can be achieved even for 

strongly non-ideal filter cakes, the adjustment model is highly complex and, thus, not 

comparable to the simplicity of the VDI 2762 technique. Moreover, the work is based on real 

experimental data which naturally contains uncertainties that potentially distort the 

obtained model statistics. 

Further regarding the VDI 2762 procedure, experienced filtration personnel may also 

assess which qualitative filtration phenomena occur during the process by “reading” 

deviations from the ideal linearized 0/-over-I diagrams, as discussed in Section 2.2.1 (see 
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Figure 8, right).  For the current moment, this heuristic information is lost when the novel 

nonlinear fitting method proposed in Publication I is employed. Nevertheless, such patterns 

in the qualitative change of the nonlinear model function I(;) can be identified by conducting 

further studies. To this end, Monte Carlo experiments may be calculated from models based 

on the multiphase flow theory not only for varying levels of cake compressibility, but also 

under consideration of additional cake filtration phenomena. This allows to investigate the 

VDI 2762 strategy further in regard of, e.g., varying shares of depth filtration. 

5.2 Experimental Considerations 

Regarding this section’s discussion, it is important to keep in mind that this thesis focuses 

on numerical investigations only. Experimental filtration data is not included in this work, 

and, therefore, results from the respective publications included throughout Chapter 4 

should rather be interpreted as from qualitative nature. These theoretical findings provide 

general insights to the cake filtration process, which are intended to be transferred to more 

specific problems. Nevertheless, all employed models can be considered as fundamentally 

validated. Concerning the conventional theory, many applications from the last decades 

show good agreement of the VDI 2762 strategy in comparison to experimental filtration data 

from approximatively incompressible cake filtration experiments [11], [33]. Further, models 

based on the multiphase flow theory have been used to evaluate various material systems in 

laboratory environments [150]. Recently, the modeling framework was also experimentally 

validated for further materials, e.g., microcrystalline cellulose [219] which is similar to the 

intended application of fibrous filter aids in Publication II. 

Hence, this subsection discusses the combination of the respective models with real-

world experimental methods. Hereby, the first part elaborates how to accurately 

parameterize the models in order to enable quantitative predictions. Second, it is discussed 

how further phenomena that may be observed in cake filtration experiments can be 

incorporated mathematically. 

5.2.1 Model Parameterization 

Mechanistic mathematical models can only predict the physical process reliably if the 

corresponding model parameters are determined accurately enough. Hereby, cake filtration 

models pose no exception, for which the characteristic quantities and parameters involved 

in the various constitutive relationships must be estimated. Notably, it is important to 

distinguish between fixed structural model parameters, and control parameters. The latter 

act as model inputs which may be adjusted freely for previously defined ranges. Even though 

this thesis investigates physically motivated mechanistic continuum scale models, an 

increased number of involved structural empirical parameters also amplifies the risk of 
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model overfitting14 [221], [222]. Therefore, each estimated structural parameter must be 

valid for the overall intended control parameter range. 

Some model parameters, e.g., the viscosity P of the suspending liquid, can be obtained 

by measurements through dedicated laboratory equipment. Often, however, model 

parameters can only be estimated indirectly by involving proxy data originating from the 

experiment of interest. As elaborated throughout this thesis, the main purpose of the 

strategy presented in the VDI 2762 norm is, in fact, to relate the measured system state of 

cumulative filtrate volume I to the independent variable time ;. Employing a linear 

regression (see Eq. (15)) can then be used to determine the rather abstract material 

properties of specific filter resistance E, and filter medium resistance F.. All further 

remaining model parameters, i.e., the area covered by the filter medium ,, and the final 

filter cake height =, can be directly found by trivial measurements. Since this procedure is a 

well-documented standard practice, it is, therefore, not further elaborated during this 

subsection. 

However, once further mechanisms, such as cake compression, and particle 

migration, are incorporated into the model architecture, the process of obtaining the model 

parameters becomes a lot more involved. Considering the multiphase flow theory, the 

parameters of specific filter resistance E – or permeability ) (see Eq. (4) and Eq. (10)) –, and 

filter coefficient O (see Eq. (7)) are exchanged for constitutive relationships. Therefore, 

depending on the employed model complexity, 5 to 9 empirical parameters must be 

estimated. Historically, the compressive behavior of a material system is hereby examined 

using dedicated material experiments. As discussed by Tien [91] these methods can be 

broadly categorized into destructive, and non-destructive procedures. In a naïve approach, 

the works of Meeten [223], as well as Smiles and Rosenthal [224] propose to dissect 

compressed porous materials into segments, from which the solidosity can be obtained using 

the known density, weight, and volume properties. Even though such destructive methods 

only allow to inspect the filter cake’s characteristic process quantities for one specific time 

span, additional measurements, such as particle size distributions, can be readily 

implemented. Another established non-destructive method makes use of a so-called 

compression-permeability cell [147]. Hereby, a piston applies a series of pre-defined forces 

to a filter cake sample. After each compression step, the liquid phase flows through the 

compacted material. Under the assumption that the whole compressed cake reaches an 

equilibrium, the pressure data can then be correlated to permeability, and porosity which is 

sufficient to parameterize the constitutive relationships given in Eq. (9) and Eq. (10). Often 

these material laws are simple enough to be solved analytically by linear regression. 

Nevertheless, the method is frequently criticized. As described in, e.g., [79], [80], [101], 

additional effects, such as friction and structural support given by the walls, and piston of 

the compression-permeability cell, can distort the true quantitative compression behavior 

of the examined filter cake samples. 

 
14 A famous intuitive example is Von Neumann's elephant [220]. 
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Alternatively, a least squares parameter estimation problem similar to the one stated in  

Eq. (25) can be defined by using the previously mentioned macroscopic pressure and flow 

data from laboratory cake filtration experiments. Nevertheless, as discussed by Tien [73] 

the full-order system of partial differential equations must be integrated for each iteration 

of the underlying parameter optimization procedure. To this end, Stamatakis and Tien [160] 

employed a simplified parameter estimation approach by using a strongly constrained 

parameter space. However, this technique only yielded inconsistent parameter values. 

Notably, a full-fledged parameter optimization problem is comparable to those problems 

investigated in Publication II. Therefore, it was – most likely due to missing computational 

capabilities – simply not possible to process the method until recently which explains the 

unreliable outcome. 

Hence, the authors simulating the multiphase flow theory typically relied on 

obtaining the required parameter values through compression-permeability measurements, 

as explained in [95]. However, even though the same material systems were examined 

repeatedly, significant deviations in the stated parameter sets can be observed in the studies 

throughout the time, e.g., in [8], [95], [148], [150], [160]. This matter indicates towards 

multiple local minima being present in the high-dimensional parameter search space. 

Moreover, it proves the difficulties in conducting experiments using compressibility-

permeability cells. Further, it remains critical that parameters impacting the fine particle 

migrations were not investigated in the original paper series. For example, in [8] the authors 

waived completely on estimating the filter coefficient O in favor of merely conducting 

qualitative parameter studies using the model’s simulation results. This is because 

established parameter estimation methods known from the unit operation of deep bed 

filtration, such as described in [38], and [225], are not applicable due to the cake’s moving 

boundary in combination with cake compressibility being present. 

Naturally, experimental research in solid-liquid separation made progress during the 

last decades. Therefore, novel process analytical methods became available, which provide 

deeper insights to the process development. Apart from modifications to the established 

methods like compression-permeability cells [7], [226], [227], significant advancements in 

experimental non-invasive in situ techniques can be found in the literature. Hereby, some 

authors investigated techniques based on including probes to the filter chamber that enable 

to quantify the spatial distribution of the liquid pore pressure [91], [228]. Moreover, in an 

early work Shirato et al. [229] tried to support the determination of a filter cake’s local 

porosity by measuring the electric conductivity. Since then, this approach has been 

researched on in the overall area of saturated porous media as discussed in the review by 

Cai et al. [230]. Therefore, working on the development of incorporating such probes to the 

filter cake would help to directly resolve the cake compression inside the filtration unit. 

Thus, the drawback of the dedicated compressibility-permeability cells could be further 

reduced. Moreover, it has been stated that tracking the development of the cake height =(;) 

is a cumbersome task [73]. Therefore, usually only the final cake height is included in 

parameter estimation procedures. However, since the location of the previously mentioned 
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probes at the filter apparatus is known, a sudden change in the measurement values could 

help to additionally quantify the filter cake’s growth rate indirectly. Some groups also 

researched on dedicated sensor set ups which can track the filter cake thickness dynamically 

over time, e.g., by employing optic [231], [232], or acoustic approaches [233]. However, 

these methods require extensive calibration to the specific experiment [91].  

Particularly promising novel approaches are based on imaging techniques. Early 

adopters employed nuclear magnetic resonance measurements [234], [235] which was later 

proven to allow for both, tracking the dynamic development of solidosity, as well as the filter 

cake thickness [236]. Further, the use of x- and à-rays was investigated in a similar way 

[237], [238] [239]. Hereby, a big potential lies in the characterization of cake filtration 

processes using micro-computed tomography. While one of the first reported uses by Tiller 

et al. [84] was still limited, the technique became not only more capable but also more 

accessible. Latest studies employing this imaging method manage to directly estimate the 

permeability, as well as solidosity of the porous material from these measurements [240], 

[241]. Moreover, this method allows to parameterize the filter coefficient in order to 

describe the mechanism of depth filtration, since the spatial distribution of fine particles can 

be directly identified in the solid phase. The viability of resolving particle migration has been 

demonstrated in, e.g., [242]. An overview on the technique of micro-computed tomography 

in porous media can be found in [243]. 

Notably, unparameterized models can also help in optimizing the experimental 

investigations. Since the multiphase flow theory provides insights to the spatial and the 

temporal domain, sensitivities for the unknown parameters can be calculated. In return, this 

sensitivity information may be used to employ the method of model based experimental 

design [244], [245]. This approach allows to find ideal experimental conditions under which 

measured data yields a maximum of information content for the determination of specific 

process parameters. Therefore, the technique can help to significantly reduce the required 

experimental workload which is beneficial for measurements that consume a substantial 

time span to conduct, such as micro-computed tomography imaging. Coincidentally, model 

based experimental design is also closely related to optimal control problems. Particularly 

indirect methods rely on processing sensitivity information [246], such that the 

implementation of one approach also benefits the development of the respective other 

method. 

Concluding this section, experimental data from different origins should be used to 

parameterize the cake filtration models reliably. Due to the increased computational 

capabilities it is now possible to numerically solve the parameter estimation problem 

presented in Eq. (25) using models based on the multiphase flow theory, as well as the 

dynamic data of pressure, volumetric flow rate, and filter cake height. However, only relying 

on such macroscopic process data does not guarantee to produce accurate and consistent 

parameter estimations, since the high-dimensional parameter space may contain multiple 

local minima, all of which satisfy the optimization problem. Therefore, dedicated material 

experiments should be conducted to find a reliable initial guess for the parameter set. Even 
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though no experimental data is presented throughout this thesis, the respective publications 

included in this work originated as part of the research project „Prozessverständnis und 

optimale Steuerung von realen Anschwemmfiltrationsprozessen mit kompressibler 

Filterschicht”15. The interested reader can find more information on the parameterization 

process, and choice of well-suited constitutive relationships for the proposed nonlinear cake 

filtration models in the final report of said research project [247]. Hereby, various of the 

previously described techniques were used to estimate the model parameters. Notably, the 

resulting simulations describe the underlying filtration data accurately which further 

validates the framework of the multiphase flow theory in regard of filter aid cake filtration 

processes and adds support to the findings of à Objective II of this thesis. 

5.2.2 Further Experimental Phenomena 

Models are always an abstraction of reality by employing several assumptions. These 

assumptions are chosen to simplify the underlying mathematical structure, while 

maintaining the necessary qualitative behavior to represent relevant process phenomena. 

Simplifications are essential, since otherwise the numerical complexity of the systems of 

equations, as well as the number of model parameters to be determined would increase 

significantly.   

Hence, one noticeable assumption concerns the impact of the filter medium on the 

cake filtration process. Despite being an obvious and important part to filtration 

experiments, especially in filter aid filtration the filter medium resistance F. is magnitudes 

smaller compared to the overall cake resistance F [20] – even more so, if the resulting filter 

cake is compressible. Therefore, it is common practice in the modeling of cake filtration to 

express the filter medium resistance as a fraction of the cake resistance itself [91], [139] 

which eliminates this quantity completely. In the literature, the filter medium resistance is 

described to only affect the filtration pressure significantly, if the solid particles clog the 

pores of the filter medium [37]. Due to the absence of particle migration in the VDI 2762 

strategy, pore clogging is not intended to be determined using this method. Moreover, for 

the optimization technique introduced in Publication II an inequality constraint was 

employed that prevented fine particles to penetrate the filter medium altogether. Thus, no 

detailed mathematical descriptions for the filter medium were included in this thesis. 

Nevertheless, more studies explored this scenario for other problems that are limited by the 

filter medium’s performance. Hereby, approaches range from simple exponential-type 

empirical relationships [248], [249] to rate-based methods defined by differential equations 

[250]. Employing such models offers the possibility to investigate the optimization and 

 
15 IGF project nr. 19947 BG; supported by the German Federal Ministry for Economic Affairs and Energy via 
AiF and DECHEMA. 
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control of further scenarios, e.g., ideal membrane cleaning conditions via backwashing or 

chemical treatment [251], [252]. 

Notably, the cake compression described during this work is a purely plastic 

deformation, i.e., the model equations do not cover any occurring re-expansion of the porous 

structure after releasing the applied system pressure. This assumption was chosen due to 

the common filtration mode of conducting the solid-liquid separation in uninterrupted 

batches. Hence, the focus lies especially on optimizing the filtration in itself without taking 

following processing steps into consideration. However, once the batch-wise cake filtration 

is connected to extra unit operations in an overall plant, elastic deformation might become 

an important effect to model. At the time of writing this thesis, another research group 

extended the framework of the multiphase flow theory for such elastic cake compression 

[253], [254]. 

The previous subsection elaborated that during compressibility-permeability cell 

experiments walls act as a supporting structure to the filter cake which affects the resulting 

cake compression. As discussed in [255] the wall effect is a general phenomenon in porous 

media which is not accounted for in the presented continuum scale model formulations from 

Publications II and III. Nevertheless, this influence can be assessed by extending the existing 

cake filtration model architectures. To this end, Kuhn [27] presented one possible approach 

which may be seamlessly integrated into his 1D continuum scale cake filtration model [112]. 

Hereby, the technique of optimal control is considered to search for ideal variable filter cell 

dimensions which in return support the cake structure. Another work employing both, 

experimental, and model-based investigations taking advantage of the reinforcing wall 

effect is presented by Bandelt [256] who examines adding packing structures to the filtration 

vessel. 

In cake filtration processes the suspended particles may also be affected by 

sedimentation occurring at the same time [257]. Nevertheless, the volumetric flow rates 

caused by the applied pressure differences outreach naturally occurring sedimentation 

speeds in most cases [258]. If, however, sedimentation cannot be neglected during the solid-

liquid separation process, the determined specific cake resistances are reported to deviate 

by up to a factor of 3.75 when using regular cake filtration models [84]. Notably, some 

authors also described the sedimentation process in a similar approach to the multiphase 

flow theory [259] which makes the effect readily applicable to the presented modeling 

architecture. 

5.3 Transition to Cyber-Physical Systems 

In an industrial context, Cyber-Physical Systems (CPS) denote the combination of digital 

components with their respective physical counterparts [260]. For the case of cake filtration 

this could refer to, e.g., a mathematical model and a filtration plant acting in unison. Hereby, 

particularly the multiphase flow theory can provide the foundation for cake filtration CPS 
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due to the detailed process insights offered from the numerical model simulations. However, 

even though the theoretical foundation of the multiphase flow theory is well-researched in 

the literature since the 1990s, only few recorded uses in academia can be found as elaborated 

by Olivier et al. [70]. Moreover, this framework has most likely not been applied to 

industrially scaled problems yet. One reason is probably the extensive parameterization 

process. Nevertheless, many novel methods became available during the recent years as 

discussed in Section 5.2.1. According to Civan [261] another reason might be the lack of 

computational capabilities allowing for both, conducting numerical optimization 

procedures, as well as real-time simulations. These issues have been addressed by 

Publications II and III throughout Chapter 4 of this thesis. 

Thus, this subsection examines some thoughts regarding the contribution of these 

studies towards the creation of CPS in the domain of cake filtration. Hereby, various 

scenarios are discussed which particularly differ in the requirements for sensor equipment, 

as well as communication and data exchange between the digital and physical components. 

Notably, the focus remains on filter aid filtration processes in order to stay consistent with 

the findings from Publications II and III. Nevertheless, all overall principles can be applied 

with minor adjustments to the generalized case of cake filtration. 

5.3.1 Analysis of Process Optimization 

Publication II determined optimal time-varying filter aid dosage trajectories through 

employing the technique of optimal control. Hereby, à Objective III of this thesis has been 

addressed by providing strategies that minimize the energy consumption by up to 5	% while 

also reducing the filter aid consumption by up to 30	%. Nevertheless, these overall 

theoretical findings must be transferred to physical plants in order to realize the potential 

savings.  

In the proposed implementation, the optimal control procedure acts as an open loop 

control, as illustrated in Figure 9. As can be seen in the scheme, the procedure is 

contextualized as an open loop control since no feedback signals including possibly occurring 

process disturbances, i.e., resulting deviations of the system states from the ideal calculated 

model states, are incorporated into the control technique. Therefore, efforts should be 

undertaken to make the control strategy as robust as possible [262]. Hereby, the 

feedforward control can most likely only show its full potential if the surrounding 

parameters, such as the inlet concentration of the fine particles, are determined a priori by, 

e.g., conducting batch-wise laboratory experiments. Likewise, the filter cell’s PID controller 

must precisely maintain the chosen operation mode, i.e., constant flow or constant pressure, 

in order to conduct the control strategy successfully [263]. 

 

 

 



Chapter 5 Overall Discussion 44 

 

 
 

Figure 9 Scheme for an open loop optimal control of a cake filtration plant. 

 

During the investigations conducted in Publication II the optimization scenario of energy 

minimization was investigated as it seems to be the established standard approach in the 

domain of solid-liquid separation [27], [169], [170], [172]. Thus, comparability is maintained 

with previous studies. Nevertheless, the proposed procedure can be adapted to many further 

use cases as long as the resulting optimization problems consist of well-posed cost 

functionals that can be calculated from the available quantities and inhibit clearly defined 

extrema. Hereby, alternative performance measures could prove to be economically more 

feasible. Some plausible alternative scenarios could be, e.g., the minimization of the overall 

filter resistance F in the form of a Mayer cost functional, or the maximization of the filtration 

time ; until a critical pressure difference Δ* is reached. Although the latter approach 

transforms the procedure into a free-end time optimization problem, which is harder to 

solve due to the variable temporal domain, it could prove to be beneficial in generalized cake 

filtration problems. At the same time, the system can be extended by additional inputs, such 

as controllable filtrate flow rates İ(;). Hereby, Blankert et al. [169] demonstrated that 

varying the flux over time in order to achieve a constant power filtration is optimal for 

membrane filtration processes. 

From a numerical perspective, the optimization procedure proposed in Publication II 

obtains the ideal control functions by employing systematic gradient-based search 

algorithms. However, even though quasi-continuous optimal trajectories can be found 

reliably, some minor numerical artifacts16 in the solution trajectories can be observed upon 

 
16 Often referred to as „wiggles“ in the optimal control literature 

Simulation 

Model 

Optimizer 

setpoint 

iterative 
procedure 

constraints 

cost function 

process 
disturbances 

Cake Filtration 

Plant 

measurable 
system states 

ideal  
input 

optimal control procedure 



Chapter 5 Overall Discussion 45 

closer inspection of, e.g., Figure 11 (b) from said study. Despite making sure to use high 

integration tolerances, as well as a central finite differencing scheme these artifacts are a 

direct result of numerical inaccuracies. Moreover, due to the bisectional grid refinement 

approach the optimal control algorithm is subject to an â(2<) complexity, i.e., unknown 

optimization parameters double with each iteration :. This does not only cause an 

exponentially increasing computational time but also affects the technique’s robustness. 

In order to achieve a smoother approximation, and to increase the efficiency of the 

numerical procedures, the algorithm should be adjusted by more sophisticated methods 

which yield a better numerical stability. For example, employing an internal numerical 

differentiation technique could help in reducing the errors in the estimation of the gradients 

by using the same points for finite differencing that were used to integrate the system of 

differential equations. Further, the optimal control algorithm could benefit from employing 

an adaptive mesh refinement based on a combined hp-method, or a wavelet-based approach. 

Particularly wavelet-based optimal control [264]–[266] proved to be superior to classical  

h-methods by only selectively refining the discretization grid where a high impact to the cost 

function is expected. In return, the degrees of freedom are limited. Additionally, this 

approach would maintain best practice in computer science to avoid exponential time 

complexities where possible. For the sake of completeness, particularly genetic optimization 

algorithms should be mentioned as alternative methods to numerically solve the 

minimization problem stated in Eq. (21). Hereby, the advantages of genetic algorithms have 

been demonstrated in recent years, as they prove to be efficient in iterating towards global 

minima along high-dimensional parameter search spaces frequently occurring in, e.g., 

machine learning models [267], [268].  

Regarding the resulting CPS from employing an optimal control procedure, the 

benefits lie especially in automatically determining mathematically optimal set-points for 

the respective inputs instead of purely relying on heuristic knowledge from the operators. 

Further, the required experimental work in finding ideal controls is reduced. Concerning the 

actual achievable impact from applying the optimal control procedure, it is important to 

keep in mind that the initially stated benefits are compared to an already ideal but constant 

reference dosage scenario. Typically, established filter aid dosing strategies are conducted 

by supplying a constant filter aid concentration which includes a significant safety margin 

to ensure particle-free filtrates. Hence, simply employing the filter aid dosage derived from 

the static optimization approach might yield savings compared to the established 

conservative dosing strategies, since the control’s set point can be shifted closer toward the 

mathematical optimum. Moreover, no additional investments to existing plant 

infrastructure are required to employ this application to real-world filtration set ups.  

Despite obtaining optimal set points through the open loop control, the idea should 

not be confused with an expert system from a terminological perspective. Although both 

techniques show similarities, the latter approach derives control recommendations from 

data-based models rather than mechanistic models. Such data-based decision support 

systems have been investigated for cake filtration processes by, e.g., data mining and setting 
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up decision trees [269], employing fuzzy logic [26], [270], or setting up discrete control 

rules based on human knowledge [271]. Nevertheless, compared to these techniques 

mechanistic models offer deeper insights and allow for rigorous mathematical optimization 

procedures. The optimal time-varying dosage strategies from Publication II, for example, 

cannot be found easily using a data-based model. This is because in typical filter aid cake 

filtration processes the precoat dimension is chosen from established standards, and time-

varying filter aid dosages are not state-of the art. Hence, the required information is simply 

not available in the underlying data sets.  

5.3.2 Real Time Computations 

Achieving a high computational efficiency in the simulation of mathematical models is not 

only important for time-economic reasons. Once a mathematical model fulfills real-time 

requirements, it can serve as a digital twin [272]. This further level in CPS acts as a state 

observer, i.e., system states that cannot be determined directly are reconstructed from 

measurements of other physical quantities [31]. As shown in Figure 10, the simulation model 

does not pose a preceding input stage to the filtration plant as it was the case for the open-

loop control approach from the previous subsection. Instead, both building blocks are 

interconnected in parallel, such that the digital twin can mirror the current states of the 

physical plant [273]. 
 

 

 
 

Figure 10 Scheme for a digital twin of a filtration plant. 

 

Hereby, the models based on the multiphase flow theory proposed in Publication II can be 

adopted as digital twins for filter aid cake filtration processes. This approach allows plant 

operators to gain tailed insights into the process, which otherwise would not be possible. 

This is because no online sensors to determine the system states of solidosity (&, local 

impurity deposition (&!, and, as discussed in Section 5.2.1, even the temporal development 
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of the cake height =(;) are readily available. The biggest advantage offered by 

interconnecting the filtration model with the plant is that random process disturbances, such 

as fluctuating volumetric flow rates, or shifting impurity characteristics, can be monitored 

in real-time. Hence, possibly forming blocking layers due to, e.g., a varying impurity 

concentration [20], or compression [81] can be easily detected. 

In order to fulfill the required computational efficiency, a naïve approach could be to 

rely on Moore’s law, i.e., solving the problem using more potent computing hardware in the 

future. Nevertheless, this would only help to a certain degree. This is because the integrator 

of the system of differential equations is an iterative procedure. Hence, Publication III 

proposed to apply the POD technique to significantly simplify the model structure while 

maintaining most of the simulation’s quantitative accuracy. Since the ROM diminished the 

simulation time by a factor of 10 compared to the full-order model (à Objective IV), the 

architecture is well-suited to be used as a real-time digital twin model for cake filtration 

processes. 

Nevertheless, projection-based model order reduction is not the only surrogate 

modeling technique appropriate to fulfill this task. Apart from linearization approaches 

[274], [275] traditionally encountered in system’s engineering and engineering cybernetics, 

particularly various data-based modeling contributions can be found in the literature for the 

domain of solid-liquid separation. For example, cake filtration predictions based on artificial 

neural networks are described in [269]. Similarly, Fan et al. [276] employed a wavelet neural 

network to a membrane-based ultrafiltration process, and Banerjee et al. [277] explored the 

possibilities of using different machine learning applications to deep bed filtration-type set 

ups. Notably, the determination of problem-appropriate artificial neural network 

architectures involves a high computational load for hyperparameter tuning and the 

corresponding network parameter estimation17. Nevertheless, the resulting machine 

learning models are computationally efficient to solve as, e.g., demonstrated in [278], and 

[279] where the data based models are used to employ optimization calculations.  

Hence, the potential building blocks for the creation of a digital twin in filter aid 

filtration are available, not only due to the insights provided by Publication II and III. 

However, the challenging task of acquiring accurate online process data as a model input 

remains. The process analytical methods, and material experiments used during the model 

parameterization stage (see Section 5.2.1) are not feasible to engage in the actual filtration 

environment. Future research must investigate the usability of novel sensors, such as those 

introduced for the dynamic tracking of the cake growth rate. Further, studies should also 

focus on which combination of more traditional sensors, e.g., to measure the turbidity, 

particle size, and -distribution, yields enough information to employ a robust digital twin. 

To this end, it may additionally be beneficial to combine the mechanistic models with data-

based techniques, e.g., either as physical informed neural networks [280], or by employing 

machine learning based soft sensors. This is because despite many fundamental theoretical 

 
17 In the discipline of machine learning commonly referred to as training 
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investigations on fibrous media (e.g., [281]–[283]) its mechanistic behavior is still poorly 

understood [284]. 

5.3.3 Model Predictive Control 

In a broad context, model predictive control (MPC) is an advanced process control technique 

which provides a higher level of sophistication to the CPS. Hereby, the digital twin 

architecture introduced in the previous section is extended by an additional optimal control 

procedure. Therefore, the digital twin is not only used as a state observer for the current 

time step. Instead, it can be used to simulate the future process outcome under consideration 

of immediate process disturbances [285]. Hence, the determined control strategy offers 

advantages over traditional approaches based on, e.g., PID controllers. While feedback 

controllers only react to deviations from the reference variable, MPC can detect occurring 

process variations as early as possible. The control algorithm may then supply appropriate 

signals to the plant’s actors such that an ideal process trajectory is always maintained [286]. 

Thus, MPC acts proactively to prevent critical deviations from the optimal conditions. The 

MPC architecture is illustrated in Figure 11. Compared to the optimal control scheme 

depicted in Figure 9, the MPC can be defined as a closed loop control, since a feedback signal 

of the measurable process outcome is connected to the controller. 
 

 

 
 

Figure 11 Scheme for a model predictive control approach of a cake filtration plant. 

 

Since both, the real-time simulations using the digital twin, as well as the corresponding 

optimization procedure are computationally expensive, MPC is especially well-suited for 
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comparably slow applications as they appear in, e.g., processes engineering. Despite MPC 

being an established technique since the 1980s in various areas [287], only few model based 

control approaches are described in the domain of solid-liquid separation such as for 

membrane-based processes [288]–[290]. Notably, for these applications the specific process 

performance was increased significantly compared to the respective baseline scenarios. The 

sparsity of the implementation for cake filtration processes is most likely due to the complex 

mathematical models needed to accurately describe the involved material systems, a 

challenging numerical optimization thereof, and a lack of adequate online sensors to 

characterize the occurring process disturbances [273], [287]. 

To this end, Publication II provides a detailed optimization procedure that can be 

employed to determine the ideal reference trajectories. In combination with the discussed 

possible digital twin architecture, these open questions can be readily addressed. Due to the 

underlying modeling framework being based on a system of partial differential equations, 

the resulting control loop can be classified as a nonlinear MPC [176]. Opposed to linear MPC 

which uses, e.g., linearized state-space approximations around desired set-points, 

employing a nonlinear MPC offers the possibility to describe the whole system dynamics. 

Particularly for cake-filtration processes this behavior is necessary as, typically, no 

controllable steady-state can be obtained due to the ever-increasing process pressure in the 

case of a constant rate filtration (compare Figure 4). Hereby, the growing filter cake can 

also be interpreted as the system’s memory, i.e., occurring blocking layers due to a 

suboptimal impurity deposition, or cake compression remain in the apparatus until the 

filtration is restarted. In order to prevent these situations traditional control systems for 

filter aid filtration processes include high safety margins in the filter aid supply. However, 

by employing a MPC these safety margins can be significantly decreased as process 

disturbances may be detected in real time. In return, tweaking the control strategy 

accordingly ultimately leads to decreased cost functionals. 

The remaining challenge is to implement actors to the cake filtration plants that can 

be adjusted by the signals provided from the MPC. For the presented case of filter aid cake 

filtration variable filter aid dosages can be supplied via, e.g., valve control, or mixing 

different types of filter aids using distinctive storage tanks. Hereby, inspiration can also be 

taken from wastewater treatment plants [291], where dynamic dosages of coagulants, and 

reagents are common practice. Moreover, for the generalized case of cake filtration the 

filtrate flow rate can be set as a control variable. For making use of this input only minor 

adjustments to existing plant infrastructure are necessary, since most filtration set-ups 

already incorporate a feedback control to maintain a constant flow rate. Further, variable 

pressure filtrations from simple modifications are described in the literature [91]. 

Therefore, compared to the challenging online data acquisition problem needed to create the 

digital twin, employing the MPC strategies to the real plant is a much simpler task to resolve. 
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5.3.4 System-Wide Integration 

So far, this section solely investigated model-based methods to optimize the cake filtration 

process in itself. However, the relationships illustrated in Figure 4 imply a discontinuity of 

the real-world dead-end cake filtration. Reaching a stopping criterium, i.e., a minimal flow 

rate, or a maximum pressure drop, ends the filtration, and the filter cake undergoes further 

processing by connected unit-operations. Therefore, it is important to also incorporate the 

apparatus’ preceding and proceeding stages. For example, additional mechanical, thermical, 

or chemical steps may be used to further enhance the purity of the filtrate, or the quality of 

the solid phase. Some steps include, but are not limited to, filter cake consolidation, drying, 

washing, or a combination of those [259], [292]–[296]. Hereby, the interconnection of the 

different unit operations is often affected by non-ideal surrounding circumstances, such as 

variable pump efficiency curves as examined by, e.g., Blankert et al. [170] for membrane 

filtration processes, or necessary off-times for cleaning cycles and maintenance of the filter 

chamber, and filter medium [6]. 

Therefore, it only becomes possible to make reliable statements about the overall 

plant efficiency and, thus, process economy, if the whole system is taken into consideration. 

Regarding, for example, applications in pharmaceutical engineering, the overall downstream 

processing phase takes a significant share of the overall production cost [297]. Undoubtedly, 

a notable portion of these cost is occupied by other unit operations such as chromatography 

[298]. However, filtration remains a crucial part in the separation of solutes as especially 

the preparation of sterile water, buffers, and sanitizing agents is costly [297]. Hence, the 

determination of ideal control strategies is a decisive factor for economic operations. Staying 

in the area of pharmaceutical engineering for consistency, Mesbah et al. [299] described a 

MPC application, which encompasses a complete pharmaceutical manufacturing plant 

including the downstream processing phase in one global model. However, this approach is 

based on a linear state-space representation, which only allows for a rudimental description 

of the filtration step. Thus, no detailed optimization of the solid-liquid separation stage is 

possible. No further plantwide nonlinear model-based control applications for cake filtration 

processes are described in the literature. This statement is supported by the work of Bähner 

et al. [300], which examines an optimal scheduling problem of parallelized dead-end 

filtration systems using simplified models as well. Hereby, the authors identified the absence 

of precise simulation models as a missing link to employ a nonlinear MPC – an issue that 

was, in fact, addressed by this thesis. Therefore, a high positive impact on the process 

efficiency can be expected when integrating the proposed MPC architecture to plantwide 

models. 

Notably, this thesis only examined the one-dimensional continuum scale in filtration 

modeling. However, as described in Section 2.2, solid-liquid separation is a complex process 

where mechanisms can be described in various levels of detail from the microscale 

examining individual particles up to the macroscale for the entire process. This subsection’s 

headline could, therefore, not only be interpreted in terms of integrating the overall 
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processing plant, but also as the integration18 of filtration models on various dimensions and 

scales. Staying in the continuum scale regime, the modeling architecture can be extended to 

two- or three-dimensional formulations which offer the possibility of describing, e.g., the 

wall effect explained in Section 5.3.1 in more detail. Hereby, the proposed ROM architecture 

from Publication III can be readily adapted. Moreover, multiscale modeling approaches may 

help to bridge the gap between the micro- and the continuum scale [301]. Modeling the 

particle-particle interactions helps in accurately predicting the behavior of the overall 

separation process – especially in regard of the hard-to-assess characteristics of fibrous 

media. In return, understanding the occurring mechanisms’ interactions on the pore scale 

offers the chance to further optimize the process. The potential of employing such multiscale 

techniques has been demonstrated by Geerling et al. [164] who managed to improve the 

design of depth filters. Subsequent research on extending those multiscale optimizations to 

the problem of (filter aid) cake filtration seems like a logical consequence.

 
18 No pun intended. 



Chapter 6 Conclusions and Outlook 52 

Chapter 6 

Conclusions and Outlook 

Contrary to the dominating experimental research in the domain of filtration, this thesis 

covered mathematical modeling approaches on continuum scale. Employing such theoretical 

techniques offers deeper insights to the process and facilitates the optimization of real 

filtration set-ups. In detail, two distinctive applications were investigated: 

1. Evolving the widely applied VDI 2762 model into a more favorable formulation 

(Publication I) 

2. Optimizing compressible (filter aid) cake filtration models in terms of ideal control 

inputs (Publication II) and computational efficiency (Publication III) 

Despite being based on different theoretical frameworks, both applications share the overall 

narrative of introducing nonlinear equations. Concerning the initial VDI 2762 guideline, 

exchanging the linear model for a nonlinear formulation has proven to eliminate subjective 

errors, and avoids shifted error distributions. Hereby, the established conventional filtration 

theory is maintained, while the nonlinear model can still be solved using standard methods. 

Therefore, it is recommended to introduce the proposed modified fitting method in all 

applications, where the original VDI 2762 guideline is established as the evaluation method 

of choice.  

Further, applying the nonlinear multiphase flow theory to compressible filter aid 

cake filtration offers a better understanding of the process dynamics, since the spatio-

temporal development of the separation process’ characteristic quantities can be described 

in detail. These more precise insights allow for rigorous mathematical optimizations. 

Depending on the exact interplay of occurring filtration mechanisms, the process efficiency 

can be increased significantly, which, ultimately, may also lead to reduce the involved 

monetary process cost. Nevertheless, the corresponding simulation requires for an advanced 

numerical knowledge to be deployed, and a higher experimental effort to be parameterized. 

Thus, one should refrain from classifying either theoretical framework as better, or 

worse. Besides, a mathematical model always remains merely an approximation of reality, 

regardless of the desired degree of detail. Therefore, it is necessary to identify the relevant 

phenomena in specific applications to determine which technique is best suited for the 

individual problem.  

Considering future research on continuum scale modeling in cake filtration, the 

multiphase flow theory is yet to be applied to industrially-scaled processes. Especially in 
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hindsight of filter aid filtration, the numerical techniques that were proposed during this 

work should be connected in the overall domain of CPS and advanced process control, i.e., 

for real-time process monitoring, and model predictive control. Notably, filtration models 

based on the multiphase flow theory can be parameterized more accurately in recent years. 

This is because many novel experimental methods became available, which offer further 

process insights opposed to only examining the classical macroscopic data of the filtrate flow 

rate, and the filtration pressure. Furthermore, by adapting the proposed ROM architecture, 

multidimensional, and multiscale modeling techniques can be incorporated in forthcoming 

studies considering the ever-increasing computational capabilities. 

Apart from the rather pragmatic engineering point of view that focuses on processing 

filtrate which complies with set requirements, continuing future research in this direction 

follows the tradition of dedicating the unit operation to sustainability. After all 

contemplations, optimizing the control parameters reduces the generation of unnecessary 

waste, and minimizes the overall energy consumption. Both effects are, therefore, not only 

beneficial on the economical, but also on the ecological impact.
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Parameter Estimation for Incompressible
Cake Filtration: Advantages of a Modified
Fitting Method

There is a widely used linear strategy to determine the parameters specific cake
resistance and filter medium resistance in incompressible cake filtration. In this
article, it is intended to demonstrate that this strategy has some disadvantages and
should be replaced by an alternative nonlinear approach which yields more exact
results. Even though the gains in precision are small for most cases, the nonlinear
strategy is favored because it involves no extra effort and is grounded in the same
physical theory as the original approach. This claim is based on a broad simula-
tion study using noisy data with known parameter values to compare both fitting
strategies and judge their accuracies.
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1 Introduction

In cake filtration, important parameters are filter cake resis-
tance and filter medium resistance. Resistance of cake and
medium cause pressure drop in the fluid phase and, therefore,
influence the filtration setup, such as choice of filter apparatus
and suitable pumps as well as integration of filtration into the
larger process. As long as filter cakes can be considered incom-
pressible, these two parameters are indeed decisive and are the
only descriptors to be determined by parameter fitting as all
others are known from the experimental conditions [1, 2].
Filter cakes can be considered incompressible depending on
their material properties and the operation conditions. Material
properties are, e.g., compressibility of the primary particles and
friction between the particles [3].

Important operation conditions are flow rate or overall
differential pressure, respectively, and maximal cake height.
Compressibility effects become more pronounced when these
variables increase. In case of compressible filter cakes, further
parameters need to be determined that characterize the com-
pression behavior [4, 5]. Even though many substances can
exhibit compressible behavior during filtration, also the as-
sumption of incompressibility is often valid, especially for
incompressible primary particles and moderate operation con-
ditions. For this reason, we focus only on incompressible cake
filtration in this article and, therefore, on the parameters filter
cake resistance and filter medium resistance.

Additionally, it must be assured that the substance system
considered exhibits pure cake filtration behavior, i.e., that all
newly separated particles are captured on the cake surface only.
If, on the contrary, also depth filtration occurs, i.e., small par-
ticles are separated within the already existing filter cake, the
phenomenological behavior changes and other analysis tools

have to be used [6, 7]. Depth filtration effects can be expected
especially when very broad and possibly multimodal particle
size distributions of the dispersed phase are encountered be-
cause in that case small particles can pass through the pores
created by the larger particles and internally block the previ-
ously built-up cake. However, just as compression, this effect is
neglected and only ideal cake filtration is considered here.

There is a relatively simple and widely used procedure to
determine the parameters filter cake resistance and filter medi-
um resistance, which is reported classically in the guideline
VDI 2762, Part 2 [1]. The approach is also described in over-
view articles and established textbooks [1, 8], used as a refer-
ence for validating alternative strategies [9], and is still em-
ployed in very recent publications [10–12]. It is also standard
in industrial research. For this reason, the classical procedure
must be seen as state-of-the-art.

Before more details are given on the general approach, a
comment on the two characteristic parameters is in order. In
most cases, the sought-for filter cake resistance is used as spe-
cific resistance. In some cases, it refers to filter cake mass, i.e.,
resistance per filter cake mass; sometimes it is expressed in
relation to filter cake height, i.e., resistance per cake height. In
the latter case, specific cake resistance is the inverse of the filter
cake permeability. In the remaining article, we will rely on
height-specific cake resistances; this does, however, not restrict
the generality of the found results because both height- and

Chem. Eng. Technol. 2020, 43, No. 3, 493–501 ª 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA. www.cet-journal.com

Michael Kuhn

Philip Pergam

Heiko Briesen*

This is an open access article under
the terms of the Creative Commons
Attribution-NonCommercial
License, which permits use,
distribution and reproduction in
any medium, provided the original
work is properly cited and is not
used for commercial purposes.

–
Dr. Michael Kuhn, Philip Pergam, Prof. Heiko Briesen
heiko.briesen@tum.de
Technical University of Munich, Chair of Process Systems Engineer-
ing, Gregor-Mendel-Strasse 4, 85354 Freising, Germany.

Research Article 493



mass-specific resistances can easily be converted into each
other, as will be shown later on.

Additionally, it is important to note that the so-called medi-
um resistance does not characterize the used filter medium or
septum alone, but is characteristic for the used medium togeth-
er with the first layers of separated substances. Additional resis-
tance effects resulting from these first layers are, therefore, also
called ‘‘interference resistance’’, referring to the interference
between medium and the separated dispersed phase [13]. The
interaction of the filter medium with the particles to be separat-
ed is, e.g., discussed by Hund et al. [14]. In case of precoat
filtration, the interaction was investigated by Rainer et al.
[15, 16]. Due to the fact that in classical experiments specific
cake resistance is the decisive parameter because it is usually
much larger than the medium resistance, including the inter-
ference effect [1], we will focus in the remaining article mainly
on this variable.

Considering the experimental strategy to determine the
sought-for parameters, a suspension is created with known
mass concentration of the substance to be separated. This sus-
pension is filtered in a laboratory filter cell, either in the mode
of constant flow or constant pressure, where the latter is the
dominant mode of operation because no process control sys-
tem is needed to assure a constant flow rate while the overall
flow resistance increases due to cake growth. For this reason,
also constant pressure filtration is focused upon in this article.
During the whole separation process, the accumulated liquid
mass at the filter outlet is measured by an automatic scale.
Using either the filter cake height at the end of filtration or the
mass of separated matter together with the collected liquid
volume, converted from the mass using the density, as a func-
tion of time, the parameters cake resistance and medium resis-
tance can be calculated [1, 2].

In the next section, the mathematics behind this calculation
procedure is described. So far, it is only noted that the already
mentioned standard method is based on a linear representation
of the measured data and a corresponding linear model formu-
lation that is fitted to these data points [1, 2, 17]. In our opin-
ion, such strategies were very helpful to evaluate experimental
data manually on paper sheets; however, current computer
tools make them obsolete. The aim of this article is to show
that the said linear representation leads to a decreased accuracy
in the parameter fitting procedure. Therefore, an alternative
procedure is proposed. It is based on the same basic model
equations, i.e., the same physical theory, only the data are not
represented linearly and instead a root function is fitted to the
raw data. It is shown that this latter fitting procedure, even
though it does not cause any extra effort and is, as mentioned,
based on the same established theory, leads to more accurate
results.

It is worth mentioning that an analogous development took
place in a completely different field of research, namely enzyme
kinetics based on the Michaelis-Menten equation [18–20]. In
this area, also first linear representations were used to deter-
mine the characteristic parameters. Afterwards, nonlinear fit-
ting of algebraic equations was applied and still later the devel-
opment shifted to the direct use of differential equations [21].
Whereas working with differential equations directly is not re-
quired in case of incompressible cake filtration as all equations

can be solved analytically, the analogy between enzyme kinetics
and filtration holds for the decision between linear and nonlin-
ear fits. As will be seen in Sect. 3, the quality of fits crucially
depends on the distribution of errors. Accordingly, it was found
in enzyme kinetics research that linear plots result in ‘‘error
bars which are asymmetrical’’ [18] and ‘‘suffer from a highly
biased weighting of points and should never be used.’’ [19].

2 Model Equations

Modeling of incompressible cake filtration is briefly recapitu-
lated now. For deriving the general model equation, from
which specific cake and medium resistance are derived, one
starts by decomposing the overall pressure drop across the fil-
ter Dp1) into the pressure drop across the cake Dpc and across
the medium DpM, i.e.:

Dp ¼ DpC þ DpM (1)

For the cake, Darcy’s law is used in the following form:

DpC ¼
Q mH

A k
¼ Q mH r

A
(2)

where Q is the volumetric flow rate, i.e., dV/dt, m is the dynam-
ic viscosity, A is the filter’s cross-sectional area, k denotes the
permeability, and r the height-specific resistance. Cake height
H can be substituted and expressed by:

H ¼ V K
A

(3)

with the factor K, often referred to as concentration constant
[1], being defined as:

K ¼ c
1# eð Þ

¼ H A
V

(4)

and c being the volumetric concentration of impurities in the
suspension; e is the cake’s porosity. Also, for the filter medium
Darcy’s law is applied. However, as the medium height does
not play a role here, specific resistance and height are com-
bined into the total resistance of the medium RM, yielding:

DpM ¼
Q mRM

A
(5)

Putting these components together and writing dV/dt for Q
yields:

Dp ¼ r m K
A2 V

dV
dt
þ RM m

A
dV
dt

(6)

Solving this differential equation by separation of variables
and using the initial condition V(t=0) = 0 leads to:

t ¼ r mK
2 Dp A2 V2 þ RM m

Dp A
V ¼ P2 V2 þ P1 V (7)
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which can be rearranged to

t
V
¼ r mK

2 Dp A2 V þ RM m
Dp A

¼ P2 V þ P1 (8)

as traditionally used for determining the parameters r and RM.
As can be easily seen, in both equations, the parameters P1 and
P2 have the same meaning, namely P1 ¼ RM m Dp Að Þ#1 and
P2 ¼ r mK 2 Dp A2ð Þ#1. As m, Dp, and A are known from the
experimental conditions as well as the used setup, and the final
cake height H, contained in K, can be determined after the ex-
periment, RM can be directly computed from P1 and r from P2.
However, the quadratic Eq. (7) can also be resolved for V, yield-
ing the root function:

V ¼ #P1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

1 þ 4 P2t
p

2 P2
(9)

The claim of the present article is that it makes a difference
whether Eq. (8) or (9) is used for fitting it to the experimental
data and determining RM and r. Before moving on to the
parameter fitting strategy, a remark is made on the specific re-
sistance r. As mentioned, here r is considered as height-specific;
therefore, also the final cake height H is included in the factor
K. However, substituting Km = m/V for K in Eq. (4), where m is
the filter cake mass at the end of filtration, the equation stays
the same, only r takes the meaning of rm, i.e., the mass-specific
resistance [1, 2]. This was meant when we mentioned earlier
that the height- and mass-specific form are equivalent and that
we do not limit the generality of our approach due to the
primary focus on height-specific filter cake resistances.

3 Parameter Estimation

In this section, the fitting strategy is described and some theo-
retical background on parameter estimation is provided.
Regarding notation, the independent variable is denoted by x,
the dependent variable by y. Measured data are marked using a
hat sign, i.e., x̂ and ŷ, and data from the model f depend on the
parameter vector P. In case of the usual least-squares strategy
for N experimentally determined points, the cost function is
formulated as:

J ¼
XN

i¼1

ŷi # f x̂i; Pð Þ
" #2 (10)

and the corresponding optimization problem is:

min
p

J x̂i; ŷi; P
$ %

(11)

Now, different strategies for parameter estimation are formu-
lated; the first is based on the linear model of Eq. (8), the sec-
ond on the nonlinear form of Eq. (9). In the remaining article,
the two cases are referred to as Strategy 1 and 2, respectively.
Strategy 1 is the classical approach known from the literature
[1, 2]. Strategy 2 is the alternative method proposed in this pa-
per. For Strategy 1, the cost function becomes:

J1 ¼
XN

i¼1

t̂i

V̂ i

& '
# P2V̂ i þ P1
$ %( )2

(12)

i.e., a linear parameter fitting problem is encountered. Corre-
spondingly, Strategy 2 yields the following nonlinear cost func-
tion

J2 ¼
XN

i¼1

V̂ i #
#P1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

1 þ 4 P2 t̂i

q

2 P2

0

@

1

A

2

4

3

5
2

(13)

To assess the adequacy of the two fitting strategies proposed
so far, some theoretical background is required. As mentioned,
both Strategy 1 and 2 rely on a least-squares approach. Due to
the fact that both fitting equations, Eqs. (8) and (9), can be
analytically recast into each other, fitting results are expected to
be identical for perfect experimental data, which is, however,
not realistic in an actual experimental setting. So, the main
question is how both approaches deal with real data that are
inevitably noisy.

Least-squares methods can be shown to be reliable for linear
as well as nonlinear cost functions as long as all errors are nor-
mally or at least approximately normally distributed [22]. At
this point, the crucial question is how the errors occurring in
filtration experiments behave. t/V, i.e., the decisive quantity in
case of Strategy 1, is intuitively not expected to scatter in a nor-
mally distributed way. However, if this were the case, Strategy 1
would be reliable to determine the parameters. On the contrary,
Strategy 2 is reliable as long as the errors of V are normally dis-
tributed. The actual distribution of errors for both strategies is
discussed in the next sections when we turn to our simulation
study.

Please note that an increasing error magnitude with larger
values of the independent variable, i.e., liquid volume in case of
Strategy 1 and time for Strategy 2, is not a problem with respect
to the quality of the found parameter values. As the mentioned
heteroscedasticity, i.e., the increasing spread or dispersion of
the observed variables, does not affect the accuracy but only
the efficiency with which the parameters are determined, it is
not further accounted for in this work. Should computational
efficiency be an issue, different strategies to handle heterosce-
dasticity are known in the literature, e.g., by scaling of variables
[22, 23]. To substantiate our claim further, i.e., that the applied
fitting strategy makes a difference, a numerical study is pre-
sented in the following article.

4 Computational Methods and
Simulation Strategy

Strategy 1 and 2 are tested for determining the decisive param-
eters P1 and P2, respectively, RM and r. In this respect, as men-
tioned, the focus is laid on the more important parameter of
specific filter cake resistance r. To truly test a fitting strategy,
the actual parameter values must be known. For that reason,
forward simulations are conducted in which Eq. (9) is solved
with known values of P1 and P2 for 100 s with one data point
per second. These ideal solutions are perturbed with different
levels of noise, and the obtained noisy data are in turn used as
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fictitious experiments to determine the parameter values. In
each case, it is checked how well the true parameter values are
found again as is a common strategy when testing parameter
fitting procedures [24].

Forward simulations as well as parameter fitting are con-
ducted in MATLAB (version 2018a; Mathworks, Natick, MA).
Noise is generated using the function randn which yields nor-
mally distributed random numbers; the optimization problem
is solved with fminsearch in which the maximal number of
iterations and of function evaluations are both set to 1 000 000
while the other options remained at their default settings.

Next, the exact generation of noisy data is explained in more
detail. In all cases, noise is assumed to be normally distributed
with previously defined standard deviations. Flow rate
dV/dt = Q and specific filter cake resistance r are supplied with
noise. In both cases, the level of noise, i.e., its standard devia-
tion, is given in % of the nominal variable value. Please note
that this also implies that the standard deviation changes over
time for the flow rate as dV/dt decreases with time in the mode
of constant pressure filtration. Noise is added to dV/dt because
the flow rate was observed to show some scattering in pub-
lished studies [9] as well as in our own experiments [11].

It is important to mention that normally distributed noise
on dV/dt causes also scattered values of the cumulated volume
V as schematically shown in some publications [1, 2]. As the
noise on dV/dt simply adds up, scattering on V is also normally
distributed because any linear combination of independent
randomly distributed variables is also randomly distributed [9].
Due to this summing up, the error bands on V can become
larger over time which is also in agreement with published ex-
perimental findings [11]. For the reasons discussed, we believe
that our noise model simulates the true flow behavior in con-
stant-pressure filtration quite well, a point we will also elabo-
rate more in the discussion of the results.

However, there is also another possible source of experimen-
tal errors. It can be imagined that r itself is prone to uncertain-
ties, e.g., due to biases when taking samples of the powder or
particle system used for the experiments. To account for this
effect, also normally distributed noise is added to specific cake
resistance r. Noise on dV/dt and r, therefore, accounts for two
different effects: the first covers non-idealities when conducting
the experiment, the second includes uncertainties when prepar-
ing the experiment.

Our two noise modes are illustrated in Fig. 1 where it is
shown how a noisy flow rate (a) influences cumulated volume
V (b); the effect of variations in specific filter cake resistance on
the resulting trajectory of V is also displayed (c). The figure re-
veals that a noisy flow rate results in jagged curves whereas
variations in r still give smooth, but diverging curves. This
behavior is due to the fact that noise on r mimics variations
when preparing the experiment as explained, and, therefore,
only affects the model parameter r in a time-invariant way. A
noisy flow rate, on the other hand, is intended to model tran-
sient effects. As in reality both phenomena often occur
together, their combined effects will be studied later on.

The filter medium resistance RM has not been subjected to
noise because, as justified above, it is not studied in detail here.
Please note that data on experimentally occurring noise are
scarce in the literature; raw data and error bands are often not

shown or only single experimental runs are discussed. There-
fore, we also had to rely on our own lab experiences to choose
realistic noise intensities. However, it is claimed that all noise
levels analyzed in the remaining article are within the range
commonly encountered when conducting filtration experi-
ments.
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Figure 1. Illustration of the noise generation procedure. A noisy
flow rate (a) leads to noise on the cumulative volume (b); varia-
tions in specific filter cake resistance also affect the cumulative
volume (c); three randomly generated data sets are shown
(marked by different symbols) as used in each inner iteration of
the Monte-Carlo method; the noise level on the flow rate is
2.5 % and 20 % on specific filter cake resistance.
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To evaluate the model fits, a two-stage strategy is employed
which is divided into an inner and an outer iteration. In the in-
ner iteration, three-fold experiments are mimicked by generat-
ing three different sets of noisy data, i.e., noise is generated with
three different random number seeds, as displayed in Fig. 1.
These three-fold datasets are used together for one model fit.
In an outer iteration, 1000 repetitions of such triple experi-
ments are performed, again each run with different random
number seeds. By the outer iteration, statistical information is
obtained on the determined parameters, i.e., mainly error bars
on r. Therefore, conclusions can be drawn about which fitting
strategy performs better ‘‘in the long run’’. As computational
methods where repeated use is made of random numbers are
often referred to as Monte-Carlo methods, also the described
procedure can be classified as a Monte-Carlo approach.

5 Results

Using the simulation strategy described in the last section, var-
ious data sets were generated to test and compare parameter
fitting Strategy 1 and 2. For didactic reasons, first some single
selected cases are shown and subsequently turned to overview
representations. The first are more tangible but contain less
information, the second are denser information-wise but,
therefore, also more difficult to interpret.

As expected, no detectable differences between Strategy 1
und 2 are found in case of non-noisy data, i.e., the true param-
eter values can be reliably identified with both approaches.
Thus, this case is not further discussed. Before both strategies
are compared in detail, a problem is considered that can occur
with Strategy 1, i.e., the linear fit. Linear representation of the
data can cause highly nonlinear segments at the beginning of
the experiments. Therefore, no meaningful fits can be con-
ducted without cropping the data for small times. A compari-
son of a full, non-cropped data set and an adapted data set is
shown in Fig. 2 together with the corresponding linear fit; a
10 % noise level on flow rate is used.

In case of the non-cropped data, the fitting error of specific
cake resistance r is 9.66 %; after cropping the data, it can be
reduced to 5.65 %. Error, here and in the remaining article, is
defined as the difference between the parameter value deter-
mined by fitting rf and the true value rt relative to rt, i.e.:

Error ¼ rf # rt

rt
· 100% (14)

For the results of Fig. 2, the first 15 data points, i.e., 15 s, were
cropped. It is important to note that this behavior is no artefact
of the simulation strategy or noise generation method, as the
same behavior was also observed with our own experimental
data. The necessity to crop data sets is also mentioned in the
literature [1]. As cropping of data is not required in case of
Strategy 2, here already is the first advantage of the proposed
method because it avoids the decision of how many data points
to drop, which is always to some degree arbitrary. In the
remaining, article only cropped data are used in case of Strat-
egy 1 to allow a meaningful comparison of the two approaches;
the same cut-off of 15 s is used throughout this work as this
proved a good threshold.

For uncropped data, Strategy 1 would yield a significantly
worse performance than the results shown in the following.
Also, whereas in Fig. 2 only a single experimental run is shown
to illustrate the problem, all subsequent results will be given for
a triple determination, which was described in Sect. 4 as the
internal iteration of our Monto-Carlo method. Please note that
in the following figures the raw data (displayed by circles in
Fig. 2) are omitted and only the fitted lines are presented to-
gether with the confidence intervals of the raw data (given for
every fifth data point) in order to keep the plots clear and
understandable.

Fig. 3 presents curve fits with both strategies for a case with a
low level of noise, i.e., a standard deviation of 1 % on the nomi-
nal value of the flow rate. Already in this case it can be ob-
served that the fitting with Strategy 2 leads to more exact
results: The fitting error of the specific filter cake resistance is
1.944 % as determined by Strategy 1, compared to a value of
1.75 % when using Strategy 2. Insignificant as this difference
may be for all practical purposes, it proves already that the two
methods deviate. Also, the shown fictitious experiments are
quite close to ideal data that are hardly found in real experi-
ments.

Turning from this singular example with only the threefold
inner iteration to the full data set obtained by the additional
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Figure 2. Exemplary comparison of Strategy 1 for the non-
cropped data set (a) and cropped data (b); raw data are dis-
played as circles; continuous lines are the linear fits.
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1000 outer iterations, Strategy 1 yields an average error of
–0.0128 % (± 0.060 %) compared to the value of –0.001 %
(± 0.053 %) in case of Strategy 2. Here and in the following, the
percentage values within brackets are the confidence intervals
of the fitting errors based on a confidence level of 99 %. The
same confidence level is also used in all plots where confidence
intervals are shown. As the reported confidence intervals refer
to the errors, smaller values are not per se an advantage. If, e.g.,
the average error is large but the obtained confidence interval
for that error is small, this only means that the wrong param-
eter value is identified with a low variation.

All results shown so far also underline the trivial truth that
repetition of experiments is important for a reliable determina-
tion of parameters. Single experimental runs, as, e.g., displayed
in Fig. 2, can exhibit large variations and, therefore, lead to in-
exact parameter values. Three-fold repetitions, as used in Fig. 3
and all remaining fits of this article, already lead to an in-
creased accuracy. If many such three-fold experimental runs
are considered, as modeled by our outer iteration (see Sect. 4),
the accuracy can still be improved remarkably.

Next, data with a higher level of noise but the same true spe-
cific filter cake resistance are considered. In Fig. 4, an analogous

comparison is shown for a flow rate-specific noise of 10 %.
Here, the fitting errors become 1.69 % and –0.31 % for
Strategy 1 und 2, respectively. When turning to the full data set
including the 1000 outer iterations, Strategy 1 yields an average
error of –1.024 % (± 0.6 %) compared to the value of 0.0499 %
(± 0.525 %) from Strategy 2. Thus, it can be observed that the
new Strategy 2 becomes more effective, the higher the noise
level on the experimental data is. It also becomes apparent
what was already conjectured in Sect. 3, namely that the distri-
bution of errors matters for the fitting procedure. Whereas
Strategy 2 relies on data with normally distributed errors, a dis-
torted scaling of errors is encountered in Strategy 1 which is
the reason for the worse quality of the determined parameters.

As a third example, noise is added to the specific filter cake
resistance r along with a flow rate-specific noise of 5 %; the
standard deviation of r is 1 % of its nominal value. For this
case, scattered data and fitting results are presented in Fig. 5.
Based on this noisy r, the errors are –4.35 % and –2.95 % for
Strategy 1 und 2, respectively. Including again the outer itera-
tions, average errors of –0.271 % (± 0.29 %) and 0.076 %
(± 0.26 %) are obtained from Strategy 1 and 2, respectively. First
of all, this example demonstrates how important the outer
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Figure 3. Fits of data with low noise level on the flow rate and a
true specific filter cake resistance of 1012 m–2 using the classical
Strategy 1 (a) and the new, nonlinear Strategy 2 (b); confidence
intervals of the raw data are displayed for every fifth value
(green).
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Figure 4. Fits of data with high noise level on the flow rate and
a true specific filter cake resistance of 1012 m–2 using the classi-
cal Strategy 1 (a) and the new, nonlinear Strategy 2 (b); confi-
dence intervals of the raw data are displayed for every fifth
value (green).
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iteration is. Whereas the single example shown in Fig. 5 led to
relatively high fitting errors for both approaches, on the aver-
age Strategy 1 and 2 perform better than in this example. This
shows again that repetition of experiments cannot be overesti-
mated. However, also here Strategy 2 is superior to Strategy 1.

Now the more complex display of results is considered. The
heat maps displayed in Fig. 6 comprise the results of many sin-
gular fits as they were discussed so far; all are shown again for
1000 outer iterations. Various different levels of noise on the
flow rate dV/dt and on specific filter cake resistance r as well as
combinations of both are displayed. The color scale denotes the
resulting fitting errors; areas of green color indicate that the
correct parameter values were identified, blue and red colors
symbolize found parameter values that are too low or too high,
respectively.

In general, Fig. 6 confirms what the single examples dis-
cussed so far already indicated: Strategy 2 consistently performs
better than Strategy 1, i.e., it allows to determine the specific fil-
ter cake resistance with a higher accuracy. Additionally, it can
be seen that, on the average, fitting error increases both with
ascending noise levels on dV/dt and r. For small levels of noise,
e.g., less than 10 % and certainly less than 5 %, both strategies

seem to yield acceptable results. However, it must be taken into
account, that Fig. 6 only shows the long-term behavior. Both
types of noise can still result in considerable fitting errors when
only few experimental runs are considered, as usually done in
experimental practice and as indicated in Fig. 5. An additional
disadvantage of Strategy 1 is that it has a clear tendency to
underestimate the true specific filter cake resistance (mostly the
blue color range is present in Fig. 6a); compare Eq. (14) for our
definition of fitting error. This underestimation might be a
problem for process design because, as a consequence, equip-
ment such as pumps might be chosen undersized.

Before providing some overall conclusions, a few additional
clarifications are required. It is important to note that the qual-
itative behavior displayed in Fig. 6 is the same also for different
nominal values of specific filter cake resistance r. Even though
the nominal value r = 1012 m–2 was used throughout the article,
the findings are unaffected if the decimal power is varied in the
realistic range from 1011 to 1016. Furthermore, the overall time
span and discretization of time points could affect the fitting
results, i.e., the whole experimental time considered and the in-
tervals at which data points are saved. However, it was found
that, excluding unrealistically short experimental times, this
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Figure 5. Fits of data with noise both on flow rate and specific
filter cake resistance; the mean true specific filter cake resistance
is 1012 m–2; comparison of Strategy 1 (a) and the new, nonlinear
Strategy 2 (b); confidence intervals of the raw data are displayed
for every fifth value (green).

a)

b)

Figure 6. Heat maps showing the average fitting errors ob-
tained by Strategy 1 (a) and the new, nonlinear Strategy 2 (b) for
different levels of noise added to the flow rate dV/dt and specif-
ic filter cake resistance r; the mean true specific resistance is
1012 m–2. Dark blue and dark red on the color scale denote the
found parameter values that are too low or too high, respec-
tively.
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effect is negligible. Also, it might be objected that only the new
Strategy 2 was compared with the traditional t/V-V plot (Strat-
egy 1) whereas also some sources suggest to use a dV/dt-V plot
[1]. In answer to this, it must be said that t/V is much more
common in the literature, and, even more importantly, the un-
even scaling of errors does equally occur in the dV/dt-V
approach as in Strategy 1. Also, some conducted simulation
studies confirmed the hypothesis and demonstrated that the
latter strategy performs even worse than Strategy 1. A last
remark about the parameter fitting itself: Both investigated
fitting strategies result in well-posed optimization problems
with pronounced minima regarding the sought-for parameter
r; the obtained solutions are insensitive to the provided initial
values. Fitting errors in case of Strategy 1, therefore, result from
a systematic bias rather than from multiple minima.

6 Conclusions

The present article had a very simple aim, namely, to show that
a nonlinear fit, based on a root function, is superior to the clas-
sical linear strategy when it comes to determining the parame-
ters for incompressible cake filtration, mainly specific filter
cake resistance. There are different advantages of the nonlinear
approach. First of all, a cropping of data, as is often necessary
for small times when using the linear strategy, is not required.
This eliminates a subjective factor in the fitting process and
prevents that useful data points are discarded. However, the
main advantage is that the nonlinear strategy consistently leads
to more exact results.

In order to warrant this claim, a broad Monte-Carlo simula-
tion study with two different noise models was presented.
Firstly, noise was added to the flow rate which mimics varia-
tions in conducting the filtration experiments; secondly, the
nominal values of specific filter cake resistance were supplied
with noise in order to model variations when preparing the
experiment. For both modes of noise, it was checked how well
the two different fitting approaches were able to identify the
true parameter values. In this respect, it must be stressed that
such an evaluation is only possible by a simulation study be-
cause only then the true parameter values are known and,
therefore, the fitting quality can be assessed adequately.

In conclusion, all filtration experimentalists who deal with
incompressible substances, or substances that can be consid-
ered approximately as such under the given process conditions,
are advised to evaluate their data by the nonlinear method pro-
posed in this article. Even though the gain in precision is in the
order of some percent, there is no reason to refrain from using
the nonlinear fit. It is more exact and involves no extra effort
because practically all available software tools nowadays allow
fitting nonlinear functions with a comparable computational
efficiency as linear models. Also, the nonlinear fitting strategy
removes arbitrariness in data point selection. Finally, it requires
no shift to a new theoretical framework as this new approach is
based on the familiar and well-tested theory of incompressible
cake filtration.
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Symbols used

A [m2] cross-sectional area of filter
c [–] volumetric concentration or volume

fraction of impurities
H [m] filter cake height
J [variable] value of cost function
k [m2] permeability
K [–] concentration constant, reference to

filter cake height
Km [kg m–3] concentration constant, reference to

solid mass
m [kg] filter cake mass
N [–] maximal index of measured points
Dp [kg m–1s–2] differential pressure
P [variable] fit parameters
Q [m3s–1] volumetric flow rate
r [m–2] specific or relative resistance
RM [m–1] resistance of filter medium
t [s] time
V [m3] liquid volume
x [–] independent variable
y [–] dependent variable

Greek letters

e [–] porosity or void fraction
m [kg m–1s–1] dynamic viscosity

Sub- and superscripts

C cake
f parameter value determined by fitting
i index
m mass
M medium
t true parameter value
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Optimal dosage strategies for filter aid filtration processes with
compressible cakes
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! Time-varying filter aid dosage is superior to optimal but constant filter aid supply.
! The cost function of energy minimization also reduces overall filter aid usage.
! Constant filter aid supply is approximatively optimal for pure surface filtration.
! Filter aid usage can be reduced by up to " 30% if mainly depth filtration takes place.
! Benefit of employing optimal control rises the more compressible the process is.
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a b s t r a c t

We establish optimal time-dependent dosage strategies for compressible filter aid materials, focusing on
dead-end filter aid filtration processes operated in constant flow mode. To this end, we apply a direct
optimal control approach by repeatedly evaluating a mathematical filtration model with filter aid con-
centration as the unknown time-dependent control function. Our algorithm iteratively constructs the
sought-for trajectory to minimize a cost functional representing previously defined performance goals.
We evaluate our optimal control approach for two different model formulations. In the first one, all impu-
rity particles are separated by pure surface filtration on top of the existing filter cake, whereas in the sec-
ond one, the model is extended toward depth filtration in the filter cake. Particularly for the latter,
optimally controlled dosage strategies yield a significant performance improvement of up to 30% reduced
filter aid consumption compared with the already optimized but constant filter aid dosage.

! 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Adding filter aids to filtration processes is a well-established
technique for separating suspensions that are difficult to handle
(Bennet, 2000; Gasper et al., 2000). Filter aids deliver mechanical
reinforcement to the filter cake structure (Hunt and Flickinger,
2010; Luckert, 2004) and therefore increase the cake’s permeabil-
ity (Rushton, 1985). Newly developed, commercially available fil-
ter aid materials, such as cellulose, are believed to offer
environmental and health benefits (Rettenmaier Söhne, 2022).
Consequently, these filter aids are investigated to potentially
replace traditionally used materials (e.g., kieselgur or perlite)
(Braun et al., 2010; Braun, 2012), which are suspected to give rise
to waste disposal issues and pose a health hazard (Buttrick, 2007;
Bluemelhuber, 2007; World Health Organization International

Agency for Research on Cancer, 1997). Nevertheless, contrary to
the rigid filter aids, the aforementioned additives suffer from
increased compressibility due to their softer material structure
and fibrous morphology (Alles, 2000). Thus, their dosage is more
challenging to handle in practice. Unsuitable concentrations will
exert a significant impact on the filtration performance since filter
cake compression usually takes place near the filter medium, and
the resulting lower-layer blocking (often referred to as skin effect)
leads to a rapid increase in the overall differential pressure
(Alles, 2000; Tiller and Green, 1973).

Various authors identified superimposed fine particle migration
inside the filter cake as an additional factor affecting filtration per-
formance (Berndt, 1981; Tittel, 1987; Hebmüller, 2003; Husemann
et al., 2003; Heertjes and Zuideveld, 1978). Thus, it is common for
the filter aid filtration processes to be accompanied by a so-called
precoat stage (Bennet, 2000). A precoat denotes a layer of pure fil-
ter aid that is deposited on top of the filter medium. The actual
bodyfeed filtration of an impure suspension with ongoing filter

https://doi.org/10.1016/j.ces.2022.117989
0009-2509/! 2022 Elsevier Ltd. All rights reserved.
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aid dosage only follows after precoat deposition (Sutherland and
Hidi, 1966). Hereby, the precoat layer helps prevent the migration
of impurities into the filtrate at the beginning of the process. Nev-
ertheless, an unnecessarily large precoat raises the filter resistance,
whereas an insufficiently small initial layer has too little potential
for separating fine particles. Thus, choosing the precoat height as
an additional control variable imposes further difficulties in the
search for optimal operation strategies.

Although the importance of finding a suitable constant filter aid
dosage during the bodyfeed stage has been acknowledged for dec-
ades (e.g., (Sutherland and Hidi, 1966; Carman, 1938; Haba and
Koch, 1978), theoretical investigations to reduce experimental
work required to find suitable filter aid concentrations are uncom-
mon. This is most likely due to the complex mathematical models
required to portray previously explained effects of real filter aid fil-
tration processes (compare to Section 2.1 Mathematical Models).
Rare examples are the studies of Heertjes and Zuideveld
(Heertjes and Zuideveld, 1978), as well as Berndt (Berndt, 1981),
Wegner (Wegner, 1985), and Tittel (Tittel, 1987), which examined
analytical optimizations using strongly simplified models. Heiden-
reich et al. (Heidenreich et al., 1985) implemented results from
these optimizations into the computational control engine of a
specific filtration plant to ensure optimal dosage. In a recent study,
Iliev et al. derived a detailed mathematical model for incompress-
ible filter cakes influenced by simultaneous depth filtration inside
the cake (Iliev et al., 2018). This research is also summarized in the
thesis of Osterroth (Osterroth, 2018). Although the focus of Oster-
roth’s work lies on in-depth mathematical analysis and model
reduction, an additional optimization study to obtain desired
deposition profiles is included as well. Nonetheless, his work does
not examine filter aid filtration but cake filtration in general.

Even less common are studies examining possible advantages of
time-varying filter aid concentrations. Practical attempts toward
finding those time-dependent dosage strategies are sparse and
mostly based on heuristics rather than systematic investigations
(e.g., (Braun, 2012; Hebmüller, 2003; Coote and Höflinger, 1999).
Only Kuhn and Briesen conducted rigorous mathematical opti-
mizations for incompressible filter aid filtration processes with
and without superimposed effects of depth filtration. Although
the latter follows a numerical optimal control approach (Kuhn,
2018) based on a mathematical continuum-scale model (Kuhn
and Briesen, 2016), the former derives an analytical control solu-
tion using a simplified model (Kuhn and Briesen, 2015). Assuming
the absence of impurity particle migration, they found the optimal
time-dependent filter aid concentration trajectory to be propor-
tional to the time-varying impurities contained in the suspension.
To the best of our knowledge, there were no other theoretical stud-
ies conducted on increasing process performance using time-
dependent filter aid dosage strategies. For related research areas,
Blankert et al. applied dynamic optimization calculations for
dead-end membrane filtration processes (Blankert et al., 2006;
Blankert et al., 2007). Moreover, Kuhn et al. solved an optimal con-
trol problem for deep bed filters (Kuhn et al., 2017), and subse-
quently, Kuhn and Briesen developed an optimal control method
for hollow-fiber membrane filtrations (Kuhn and Briesen, 2021).
All of these examples yielded cost benefits, which supports the
motivation for our work.

To expand Kuhn’s findings, we first apply an optimal control
approach for compressible dead-end filter aid filtration processes
operated in a constant flow mode with surface filtration being
the only mechanism of impurity separation. As a challenging case
study, we consider a constant share of impurities contained in the
suspension and examine the goal of energy minimization. Accord-
ing to Kuhn et al., the optimal solution would be a constant dosage
of filter aids for incompressible cakes (Kuhn and Briesen, 2015),

which we hypothesize to be different when cake compressibility
is considered.

Subsequently, we conduct our optimal control algorithm for an
extended model formulation. Here, operation conditions remain
the same, but now, we focus on simultaneous depth filtration tak-
ing place in the filter cake fundamentally altering filter aid filtra-
tion. As previously explained, fine particle migration has a
significant influence on filtration performance. Kuhn found opti-
mal time-dependent filter aid dosage trajectories that qualitatively
differ from those obtained with his incompressible, pure surface
filtration model (Kuhn, 2018). Consequently, we hypothesized
the same to happen when solving the optimal control problem
for compressible models, including fine particle migration.

2. Methods

2.1. Mathematical models

For our purposes, we require one-dimensional continuum-scale
models comprising systems of partial differential equations. In this
manner, we are able to compute detailed transient simulations
with spatial dependencies. At first glance, this modeling technique
might seem outdated in terms of methods for pore-scale calcula-
tions being available (Kuhn et al., 2017). However, for the chosen
optimization approach, the model must be evaluated repeatedly,
which requires a fast and efficient simulation procedure. Typically,
continuum-scale models can be solved in a few seconds compared
with pore-scale models, whose calculation time can take up to sev-
eral hours, currently rendering optimization infeasible.

2.1.1. Surface filtration with compressible filter cakes (‘‘Surface
Filtration Model”)

Stamatakis and Tien introduced the following mathematical
model in 1991 (Stamatakis and Tien, 1991), in which the effect of
cake compression is mathematically described by the liquid
phase’s relative movement to the solid phase. A comprehensive
derivation of all equations can also be found in (Tien, 2006). Our
derivations mainly follow this model. In cases where we deviate
further explanation will be given throughout the paper. For better
readability, we omit the variable’s dependencies on time and space
t; xð Þ in the equations. These dependencies will only be explicitly
denoted upon their first appearance in the text. Furthermore, a
schematic of the process is given in Fig. 1. All physical quantities
used by the mathematical model are marked in the graphic.

Continuity Eq. (1) is the governing equation of the model. That
partial differential equation describes the filter cake’s time-
dependent spatial development of solidosity es t; xð Þ, i.e., the volu-
metric share of solids within the porous structure.

@es
@t

¼ @

@x
&es

k
l

@ps

@x

! "
& qlm

@es
@x

ð1Þ

Here, k t; xð Þ denotes the filter cake’s permeability and ps t; xð Þ
denotes the compressive stress acting on the solid phase. The con-
stant values l and qlm are the dynamic viscosity and superficial
flow rate at the filter medium outlet, respectively. Notably, the
numeric values for qlm are negative, as the direction of flow is
opposed to the origin of the coordinate system. In filtration litera-
ture, porosity e t; xð Þ may often be used instead of solidosity es. Its
information content is interchangeable (e ¼ 1& es).

To describe time-dependent filter cake height L tð Þ, we replaced
the original differential equation describing the growth rate dL

dt in
Ref. [Tien, 2006, p. 57] by Eq. (2) derived from a mass balance.
Using this relationship yields highly similar results, but it proves
to be faster and numerically more stable during our optimization
procedures.
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dL
dt

¼ c
1
L

R L
0es dx& c

' qlmj j ð2Þ

In the previous equation, c tð Þ denotes the filter aid concentra-
tion contained in the suspension. Notably, impurities are not con-
sidered in Eq. (2). However, we assume that this equation is valid
because in filter aid filtration impurities are often expected to
attach themselves into the voids of the pore network. Thus, these
particles do not significantly contribute to cake growth unless
the filter aid concentration is very small (Berndt, 1981; Tittel,
1987; Hebmüller, 2003; Kuhn, 2018). Ordinary differential equa-
tions, as encountered in Eq. (2), require initial conditions to have
a clearly defined solution. At the first glance, one could argue that
the trivial initial condition L t ¼ 0sð Þ ¼ 0m is suitable for our prob-
lem, as prior to the filtration no particles were present in the sys-
tem. Nevertheless, this is not possible due to numerical restrictions
implemented by Eq. (1). Thus, further details on the procedure for
finding the necessary initial conditionswill be given in Section 2.2.1
Simulation Algorithm.

The original model by Stamatakis and Tien does not consider
dynamic changes of filter aid concentration c in the feed suspen-
sion. Thus, we introduce a new relationship to keep track of the
actual filter aid concentration over time. In Eq. (3), u tð Þ is an arbi-
trary control function that must be parameterized to solve our
optimization problem (compare Sections 2.2.2 Optimization Algo-
rithm and 2.2.3 Optimal Control Algorithm).

c tð Þ ¼ u tð Þ ð3Þ

Now, the dynamic impurity deposition es2 t; xð Þ can be modeled.
Because depth filtration is neglected, we assumed fine particle
deposition at a given spatial location to not change significantly
during the course of the process. Mathematically, this results in a
trivial partial differential equation

@es2
@t

¼ 0; ð4Þ

along with an extra boundary condition

es2 t; x ¼ Lð Þ ¼ es0 ' n0

c
; ð5Þ

with which time- and space-dependent deposition of impurities
can be calculated. Here, n0 is the impurity concentration in the sus-
pension. Furthermore, index 0 applied on es defines the solidosity
at the top layer of the filter cake in its uncompressed state. Kuhn
and Briesen derived boundary condition Eq. (5) in Ref. (Kuhn and
Briesen, 2016). Notably, in this work, n0 is constant. If an optimal
control is required for the case of time-varying impurity concentra-
tions, an additional time-dependent function for n0 in the form of
Eq. (3) must be introduced.

The remaining necessary boundary conditions needed to solve
Eq. (1) are given according to the study of Tien [Tien, 2006, p. 58]:

at t; x ¼ Lð Þ : es ¼ es0 ð6Þ

at t; x ¼ 0ð Þ : k
l

@pl

@x
¼ jqlmj ¼

pl

lRM
ð7Þ

Here, Rm denotes the filter medium resistance and pl t; xð Þ is the
pore liquid pressure. In its most simple form, pl relates to ps as

dpl

dps
¼ &1: ð8Þ

By combining the value for pl known from the boundary condi-
tion in Eq. (7)1 with the pressure relationship in Eq. (8), we can cal-
culate the overall process pressure p0 tð Þ, which will be used to
minimize our cost functional during the subsequent optimization
stage.

p0 ¼ pl þ ps ð9Þ

There are various relationships between the pore liquid pres-
sure pl and the compressive stress ps that have been previously
investigated by Tien et al. (Tien et al., 2001). In this study, since
our focus lies on finding optimal dosage strategies, we only con-
sider Eq. (8). The implementation of alternatives to Eq. (8) is
straightforward, as described in (Tien, 2006). Our proposed opti-
mization procedures are not affected by altering this model refine-
ment option.

Eq. (10) and (11) are two constitutive relationships needed to
close the model. In these equations, pa, d, and b denote empirically
adjustable parameters.

k ¼ kinit ' 1þ ps

pa

! "&d

ð10Þ

ps ¼ pa
es
es0

! "1
b

& 1

 !
ð11Þ

The so-called material laws correlate compressive stress with
permeability and porosity, respectively. Because of their simplicity,
such exponential relationships are commonly used in the cake fil-
tration literature to capture the compressive behavior for a wide
range of materials (e.g., (Alles, 2000; Carman, 1938; Tien et al.,
2001; Sørensen et al., 1996). However, the determined empirical
coefficients are only valid for a constant material composition.
Since we handle time-dependent filter aid concentrations in our
calculations, the cake composition changes, and therefore also
the filter cake’s specific characteristics. To account for these depen-
dencies, we introduce an additional constitutive relationship. Eq.
(12) calculates kinit t; xð Þ as the local initial permeability at an
uncompressed state depending on impurity deposition es2, as well
as the uncompressed permeability k0 and solidosity es0 of the pure
filter aid material.

kinit ¼ k0 ' e&s'es2es0 ð12Þ

Fig. 1. Schematic representation of the Surface Filtration Model.

1 The left-hand side is the well-known Darcy’s law implying movement of the
cake’s solid phase to be 0 at the filter medium.
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As this approach follows Sutherland (Sutherland and Hidi,
1966), the empirical parameter s is known as the Sutherland-
constant in the literature. We deem the introduction of the previ-
ous equation as valid, as specifically the Sutherland equation has
proven to be accurate for filter aid materials (Berndt, 1981;
Heertjes and Zuideveld, 1978).

2.1.2. Combined surface and depth filtration with compressible filter
cakes (‘‘Combined Model”)

In 1997, Tien et al. extended their model toward depth filtration
(Tien et al., 1997), which serves as the foundation for our second
model formulation in this study. Fig. 2 contains a schematic of this
model. Here, impurity particles are no longer instantly immobi-
lized at the filter cake surface as it was the case in the previous sec-
tion. Instead, impurities migrate through the filter cake, where the
fine particles are eventually separated by the mechanism of depth
filtration, as indicated by the green arrow.

The governing relationship is once more a continuity Eq. (13).

@es
@t

¼ @

@x
&es

k
l

@ps

@x

! "
& qlm þ

Z x

0
Ndx

! "
@es
@x

þ 1& esð ÞN ð13Þ

Notably, Eq. (13) is closely related to Eq. (1), except for the rate
of impurity deposition N t; xð Þ, which is an additional factor influ-
encing dynamic development of cake solidosity es. This quantity
can be calculated by Eq. (14) and is composed of the product of
the filter coefficient k t; xð Þ, the local impurity concentration left
in the suspension n t; xð Þ, and a velocity component.

N ¼ ql & qs
1& es
es

####

#### ' k ' n ð14Þ

As we are examining compressible cakes, the solid and the liq-
uid phase move simultaneously. Hence, a relative velocity term
results inside the absolute value parenthesis consisting of ql t; xð Þ
as the liquid phase superficial velocity and qs t; xð Þ as the solid
phase superficial velocity. Both quantities are given by the follow-
ing two equations2:

ql ¼ &es
k
l

@ps

@x
þ 1& esð Þqlm þ 1& esð Þ

Z x

0
Ndx ð15Þ

qs ¼ es
k
l

@ps

@x
þ esqlm þ es

Z x

0
Ndx ð16Þ

Moreover, the filter coefficient k can be expressed by Eq. (17).
The constitutive relationship has been simplified compared with
the original model’s equation. This is because for filter aid filtra-
tion, it is expected for the filtration efficiency to be amplified when
additional impurities are deposited as the capture probability of
impurities increases (Kuhn, 2018; Zamani and Maini, 2009).

k ¼ k0 1þ kc ' es2
1& es

! "
ð17Þ

Although we still examine an initial constant share of impuri-
ties n0 in the suspension, we need an additional conservation equa-
tion for said fine particles, as impurities are not separated instantly
by surface filtration, as was the case in the first model. Thus, the
partial differential Eq. (18) accounts for depth filtration by tracking
the dynamic spatial fine particle content left in the suspension.

@ enð Þ
@t

¼ & @ qlnð Þ
@x

& N ð18Þ

Similarly, the conservation Eq. (19) describes the dynamic
development of separated impurities es2.

@es2
@t

¼ & @

@x
qs
es2
es

! "
þ N ð19Þ

The boundary conditions needed to solve this system of partial
differential equations are provided by Tien et al. (Tien et al., 1997):

at t; x ¼ Lð Þ : es ¼ es0 ð20Þ

es2 ¼ 0 ð21Þ

n ¼ n0 ð22Þ

at t; x ¼ 0ð Þ : k
l

@pl

@x
¼ qlmj j ¼ pl

lRM
ð23Þ

Thus far, Eq. (21) and (22) indicate that impurities are only sep-
arated by depth filtration inside the filter cake. However, in filter
aid filtration, it is more realistic that some share of impurities is
separated at the top of the filter cake, and only the remaining fine
particle fraction will be exposed to depth filtration (Tittel, 1987;
Hebmüller, 2003). This can be modeled by the following boundary
conditions, where c denotes the share of impurities immobilized at
the filter cake’s uppermost layer.

at t; x ¼ Lð Þ : es2 t; x ¼ Lð Þ ¼ es ' c ' n0

c
ð24Þ

n ¼ 1& cð Þ ' n0 ð25Þ

For the filter cake’s growth rate dL
dt, we reuse Eq. (2). Here, the

same argumentation of impurities not significantly contributing
to the filter cake height applies. Details on the implementation of
the required initial conditions are provided in Section 2.2.1 Simu-
lation Algorithm.

All following model calculations were carried out using model
parameters provided by Tien [Tien, 2006, p. 70; 87]. The parameter
sets represent high cake compressibility (parameter set HC) and
low cake compressibility (parameter set LC). Values for k0 and s
had to be adjusted because Eq. (12) is not part of the original

Fig. 2. Schematic representation of the Combined Model.

2 Differentiating Eq. (15) with respect to x results in the right hand side of Eq. (13),
which leads back to the basic continuity equation @es

@x ¼ @ql
@x for flow through porous

media. The same relationship applies to Eq. (1).
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model. Thus, we freely selected the parameter values with a focus
on keeping the model simulations in realistic ranges of filtration
pressure and solidosity. Moreover, we handled the additional
parameter c in two ways. First, cwas set to 0 to reproduce the orig-
inal boundary conditions. Subsequently, we varied the value of c to
examine how a changing share of depth filtration will affect the
optimal operating conditions. Appendix A contains the parameter
values used for the simulations.

Neither of the models was directly developed for filter aid filtra-
tion but for the cake filtration process in general. Nevertheless, we
are confident that combined with our assumptions, the model is
valid for representing different filter aid filtration processes using
the original parameters. This can be further justified by the follow-
ing two reasons:

a) Filter aid filtration can be defined as a specific case of cake
filtration. Here, the initial suspension contains a bi-
disperse particle size distribution. The fine particle fraction
represents the impurity particles, and the coarse particle
fraction is the filter aid material. For our application, the
share of the coarse particle fraction can be actively manipu-
lated by our optimal control approach.

b) The values of the mostly incompressible parameter set LC
were estimated on the basis of experiments with calcium
carbonate filter cakes. Calcium carbonate is – although
rarely – used as a filter aid material in itself (Carman, 1938).

Despite all evidence justifying our adaptations, we emphasize
that the following simulations do not represent any specific exper-
imental set-ups and must rather be regarded as qualitative param-
eter studies.

2.2. Numerical procedures

2.2.1. Simulation algorithm
Because of the dynamic filter cake growth described by Eq. (2),

the system’s upper boundary x ¼ L tð Þ is time-dependent. Thus,
both models can be mathematically defined as moving boundary
problems. To numerically solve this class of problems, Tien et al.
applied the following transformation:

z ¼ x
L

ð26Þ

This approach is known as the front fixing method (Crank,
1984) and ensures that every height coordinate is defined in the
range of z ¼ 0 to z ¼ 1 for all times.

Apart from applying the front fixing method, the models were
scaled by process-inherent nondimensionalization of the variables.
Even when using double precision variables, machine precision
only reaches a maximum of 2:2 ' 10&16 (The MathWorks, Inc.),
which can lead to loss of significance if mathematical operations
between variables of highly different magnitudes are performed.
Albeit the studies of Tien et al. demonstrate that solutions for sin-
gle forward simulations are possible without treating the model
equations, we experienced significant convergence problems dur-
ing numerical optimization without proper scaling. This is most
likely due to the imprecisely estimated gradients required for the
optimization algorithms. Appendix B contains the necessary rela-
tionships for applying both, the front fixing method, and nondi-
mensionalization, along with the resulting model equations.

All final equations are solved using the method of lines as a
numerical solution technique, which has been successfully applied
previously by Tien et al. (Tien et al., 1997) as well as Kuhn and Brie-
sen (Kuhn and Briesen, 2016). The method of lines transforms an
initial partial differential equation into a system of ordinary differ-
ential equations, where each ordinary differential equation repre-

sents one coordinate in space. Local dependencies are then
coupled via spatial derivatives approximated by finite differences.
Here, we chose an equidistant discretization grid with 150 mesh
points. First-order spatial derivatives are approximated by a five-
point upwind finite difference scheme, and second-order spatial
derivatives are calculated using a five-point central finite differ-
ence scheme. More information on the theory as well as practical
hints on the numerical implementation is provided in Ref.
(Schiesser and Griffiths, 2009; Wouwer et al., 2014).

However, solving both models by applying the previously
explained numerical techniques renders direct implementation of
initial conditions impossible, as explained in Section 2.1 Mathe-
matical Models. If L 0sð Þ were set to 0m, the upper and lower
boundary would be located on the same point, such that the spatial
dimension could not be discretized as required by the method of
lines. Thus, we implemented an extended initialization procedure.
For the Surface Filtration Model, a simplified cake filtration model
based on an incompressible mass balance (Eq. (27)) was solved
analytically for a simulation time span of t ¼ 1s.

L tð Þ ¼ c
es0

qlmj jt ð27Þ

For such short durations, almost no pressure drop occurs over
the system. Hence, it is justified to assume an incompressible filter
cake development for the said time span. Consequently, Darcy’s
law for laminar flow through porous media can be used to calcu-
late the pore liquid pressure profile along the filter cake height
for each grid point x ¼ 0m ::: x ¼ L 1sð Þ.

pl ¼
l
k
x qlmj j ð28Þ

By setting p0 1sð Þ ¼ pl 1s; L 1sð Þð Þ, the solid stress ps 1s; xð Þ is
obtained for each discretized coordinate using Eq. (9). Subse-
quently, Eq. (11) can be used to calculate the solidosity profile
es 1s; xð Þ. Moreover, the initialized impurity deposition profile
es2 1s; xð Þ is assumed to be constant and can be calculated by Eq.
(5). The resulting values L 1sð Þ, es 1s; xð Þ, and es2 1s; xð Þ are supplied
as initial conditions to the corresponding full model equations.
Finally, the simulation is computed for the user-defined simulation
time span T minus 1s, which is the time span covered by the ini-
tialization procedure.

For the Surface Filtration Model, the impurity deposition will
influence the pressure drop, but fine particles will not migrate into
the filtrate by definition. Hence, the precoat stage is negligible. This
is not the case for the Combined Model. Therefore, the simulation
must be expanded into a three-stage procedure in the case of
simultaneous depth filtration taking place. First, the initialization
phase follows the procedure explained above, except that the
required initial values for n (Eq.(18)) and !s2 (Eq. (19)) are now
set to 0 due to the nature of the precoat stage with no impurities
being present in the system. Second, the full model is calculated
for an infinite simulation time span with the parameter n0 being
set to 0; the integration of the corresponding system of ordinary
differential equations only stops with the help of an event function
after reaching the desired precoat height LPC . Third, the parameter
n0 is set to the user-defined impurity concentration and the body-
feed stage is calculated for the simulation time span using the end
values of the precoat stage as initial values.

With these preparations, the resulting time-dependent system
of ordinary differential equations can be solved by standard meth-
ods. We implemented all numerical procedures in Matlab 2021b
(supplier: The MathWorks, Inc., Natick, Massachusetts, USA). For
time integration, we used Matlab’s ode15s as an implicit ordinary
differential equation solver. Implicit solvers are computationally
expensive but superior in handling stiff systems of differential
equations, which usually arise when solving partial differential
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equations by employing the method of lines. Moreover, ode15s can
handle mass matrices, which is useful for treating the boundary
conditions as a system of differential–algebraic equations. More
information is provided in Ref. (Wouwer et al., 2014). For the inte-
grator’s options, absolute and relative error tolerances ‘AbsTol’ and
‘RelTol’ were set to the low value of 1e-8. These options ensure
accurate model simulations to numerically compute the gradients
required for the optimization procedures as precisely as possible.

All calculations were performed on a regular desktop computer
(processor: Intel" CoreTM i5-8400, performance: 2.80 GHz, memory:
16 GB RAM). Computation times were approximately 0:5 s for one
simulation of the Surface Filtration Model and 7 s for a single simu-
lation of the Combined Model.

2.2.2. Optimization algorithm
First, we apply static optimizations for both models, which pro-

vide reference scenarios to evaluate the possible benefits of opti-
mally controlled solutions. In this study, all optimizations were
executed with the performance goal of minimizing the overall
energy expenditure. Mathematically, this can be represented by
the following nonlinear optimization problem:

min
up

e: ð29Þ

Here, the cost functional e denoting area-specific energy con-
sumption can be calculated by the time integral in Eq. (30), com-
prising the superficial filtrate flow qlm and the pore liquid
pressure difference along the filter cake height.

e ¼
Z T

0
qlmj j pl t; Lð Þ & pl t; 0ð Þð Þdt ð30Þ

Herein, up denotes the respective control variables solving the
optimization problem Eq. (29). As per definition, the goal of static
optimization is to find a mathematically optimal constant filter aid
dosage. Thus, the only unknown optimization parameter up for the
Surface Filtration Model is a scalar parametrizing the control func-
tion u tð Þ contained in Eq. (3) as a constant value, as described by
Eq. (31).

c tð Þ ¼ up ¼ const
0 < up < es0

ð31Þ

Since the precoat height is an additional control variable for the
Combined Model, up becomes a vector containing the following two
optimization parameters.

c tð Þ ¼ up1 ¼ const
LPC ¼ up2

0 < up1 < es0
0 < up2

ð32Þ

Moreover, optimizations for the Combined Model are feasible if
the inequality condition Eq. (33) is satisfied.

R T
0 jqlmjn t;0ð Þdt
R T
0 jqlmjdt

<
n0

nfrac
ð33Þ

Introducing nfrac ensures that the final impurity concentration in
the filtrate cannot exceed a previously defined fraction of the initial
impurity concentration contained in the suspension. Notably, due
to the nature of transport equations, Eq. (33) cannot be defined
as an equality condition where the right-hand side is set to 0. For
all following optimizations of the Combined Model, nfrac was set to
100, i.e., the impurity concentration in the filtrate must be more
than 100 times smaller than the concentration initially contained
in the suspension.

All nonlinear optimizations were performed by Matlab’s fmin-
con function using the default interior-point algorithm. The opti-
mizer’s options were set to use central finite differences to
calculate the necessary gradients. Doing so requires double the
model evaluations and therefore has a large impact on the compu-
tational cost. However, central schemes can calculate the required
gradients with higher precision. Hence, robustness and speed of
convergence are significantly improved. Matlab’s Parallel Comput-
ing Toolbox was enabled for finite differencing to counteract the
additional computation time.

2.2.3. Optimal control algorithm
Optimal control is distinguished from static optimization by

allowing the respective controls to be time- and/or space-
dependent functions. Since optimal control theory is a large field
of research in itself, only some important aspects needed to con-
textualize our optimal control approach are revisited here. More
fundamental information and theoretical investigations on this
topic can e.g. be found in Refs. (Betts, 2010; Lewis et al., 2012).
Some basic terminology and strategies are briefly introduced in
the following.

Numerical methods for solving optimal control problems can be
broadly categorized into indirect and direct approaches. Indirect
methods are usually more accurate as they solve the necessary
conditions for optimality through the transformation of the opti-
mal control problem into a boundary value problem. However,
direct methods are typically easier to implement for complex sys-
tems, such as the one in this study. This is because, for direct meth-
ods, the optimal control problem can be expressed as a finite-
dimensional nonlinear optimization problem, as already intro-
duced in the Subsection 2.2.2 Optimization Algorithm. A well-
established technique is to discretize the control function’s domain
into a mesh of g subintervals. Thereafter, an arbitrary control func-
tion is parametrized for each respective subinterval. Theoretically,
with g?1, the solution of the nonlinear program converges
toward the true solution of the optimal control problem within
machine precision. A reasonable choice of subintervals g secures
a good approximation to the solution of the optimal control prob-
lem. Consequently, the accuracy of the transformed optimal con-
trol problem can be increased by either decreasing the
discretization size of the underlying mesh (h-method) or by raising
the degree of the arbitrary control function (p-method).

We based our optimal control algorithm on a first-order h-
method with iterative bisectional mesh refinement, as it proved
to be successful in our previous studies (Kuhn, 2018; Kuhn and
Briesen, 2021). The following figure depicts the method
schematically.

As shown in Fig. 3, the filter aid concentration c tð Þ is the sought-
for trajectory in our specific application. To find this function, the
simulation time span is split into a number of gi subintervals,
where the amount of subintervals doubles with each iteration i.
Thus, the arbitrary control function u tð Þ introduced in Eq. (3) can
be defined for each subinterval as a piecewise-linear function:

cgi tð Þ ¼ ugi ;p1 ' t þ ugi ;p2
0 < cgi tð Þ < es0

ð34Þ

Herein, the index gi applied on c tð Þ denotes the iteration-
dependent subinterval discretization set of the filter aid concentra-
tion, and ugi ;p is the associated vector of control parameters. Hence,
the nonlinear program parametrizes the unknown control param-
eters ugi ;p1 and ugi ;p2 to solve the optimization problem introduced
in Eq. (29).

The optimal control procedure is initialized with the optimal
constant filter aid dosage obtained from the static optimization
approach. Subsequently, all following refinement steps are initial-
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ized with the optimal parameter values known from the respective
previous iterations. Notably, the control procedure is identical for
both model formulations, except that the inequality condition Eq.
(33) must be met for the Combined Model. The precoat height LPC
was not handled as an additional optimal control parameter, as
was the case for the static optimization procedure. We noticed that
including LPC in the optimal control algorithm has a negligible
effect on the cost function but primarily increases computation
time. Hence, LPC was fixed to the value obtained in the preceding
static optimization. In this study, optimal control solutions were
obtained by setting the number of iterations to five for the Surface
Filtration Model and four for the Combined Model.

All nonlinear optimizations were carried out by Matlab’s fmin-
con function using the sequential quadratic programming algo-
rithm. The optimizer’s options were set to use central finite
differences to calculate high precision gradients while using the
Parallel Computing Toolbox for accelerating computing times.

3. Results and discussion

3.1. Optimization of the surface filtration model

First, results for the Surface Filtration Model are examined. Static
optimizations were calculated for both parameter sets to deter-
mine the optimal constant filter aid concentrations c while mini-
mizing the area-specific energy expenditures. Unless stated
otherwise, the impurity concentration n0 for the parameter set HC
is 0:01, and for the parameter set LC 0:005 for all following scenar-
ios. Fig. 4 shows how varying c for different simulation runs results
in a parabola-shaped cost functional. The respective global minima
are marked as orange circles and can be determined easily by the
optimization algorithm. For the cost comparison, absolute values

were transformed into a relative scale representing percentual
increases in the area-specific energy consumption if the process
is not executed at the optimum.

The parabola shape results due to two reasons affecting the
pressure drop, and thus, having a negative impact on energy
expenditure. On the one hand, low filter aid dosage leads to a
low cake height which in itself would be beneficial for the overall
cake resistance. However, due to the lack of filter aid particles, local
impurity depositions are more pronounced, and the filter cake’s
pores will clog more easily. In return, the local permeability
decreases rapidly. On the other hand, a high supply of filter aid
lowers the impurity deposition. In this case, local permeability
would be more beneficial compared to the previous example. Nev-
ertheless, the filter cake’s growth rate will rise drastically, which
consequently increases the total filter resistance. Both phenomena
hinder the flow of the liquid phase through the porous filter cake.

Fig. 3. Schematic representation of the iterative optimal control procedure. a: initialization with a statically optimized solution; b: first iteration with one interval; c: second
iteration with two subintervals; d: third iteration with four subintervals.

Fig. 4. Globally optimal constant filter aid dosage c for the Surface Filtration Model.
blue: cost function for parameter set HC; green: cost function for parameter set LC.
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Hence, the global optima displayed in Fig. 4 can be interpreted as a
trade-off between both effects to prevent the pressure drop from
increasing exponentially, while maintaining the specified constant
flow filtration.

Furthermore, the existence of single global minima enables us
to find unique optimal operation curves along the domain of pos-
sible impurity concentrations for each parameter set. As an exam-
ple, Fig. 5 shows these operation curves for both parameter sets. If
depth filtration is negligible, the optimal constant filter aid dosage
can be directly obtained for varying impurity concentrations and
otherwise identical operation conditions. Such optimal curves
might yield benefits in real process set-ups, e.g., if batches of the
same type of suspension with a varying share of impurities must
be filtered.

3.2. Optimal control of the surface filtration model

Time-varying optimal filter aid dosage strategies c tð Þ for the
Surface Filtration Model are constructed according to our optimal
control algorithm. The calculated trajectories are displayed in
Fig. 6 for both parameter sets. Previously obtained optimized but
constant solutions for the filter aid concentrations are plotted
alongside, as they represent the benchmarks for the optimal con-
trol solutions. The qualitative shapes of the resulting dosage func-
tions are similar for both parameter sets: optimally controlled filter
aid concentration trajectories begin at higher concentrations com-
pared to the reference cases but subsequently decrease. Toward
the end of the process, a small ascent in the filter aid concentration
can be observed.

Supplying a higher share of filter aids at the beginning of the
process results in a greater filter cake growth rate compared with

the reference scenario (Fig. 7(a)) but according to Eq. (5) also low-
ers the impurity deposition near the filter medium where com-
pression affects permeability the most. Thus, the dosage strategy
helps in counteracting the so-called skin effect. By contrast, a lar-
ger number of impurity particles are accepted in the top layers of
the filter cake, as no further filtration potential is needed toward
the end of the process.

However, the obtained performance benefits by time-varying
filer-aid dosages are hardly recognizable. Fig. 7(b) displays the fil-
tration pressure over time. Calculating the area-specific energy
consumption from the liquid pressure drop yields " 0:31% relative
energy savings for parameter set HC and " 0:003% relative energy
savings for parameter set LC compared with the respective bench-
mark scenarios. By applying the optimal solution for the minimiza-
tion of area-specific energy expenditure, area-specific filter aid
consumption, calculated by

Vc ¼
Z T

0
jqlmj ' c tð Þdt ð35Þ

is also decreased. Therefore, relative filter aid consumption is
reduced by " 0:49% for parameter set HC and " 0:098% for param-
eter set LC compared with the optimized constant dosage.

Recall, that this work only investigates filtration processes oper-
ated in constant flow mode. Therefore, the diagram for the filtrate
flow q tð Þ ¼ const of a simulation with optimal filter aid dosage will
be equal to those of sub-optimal simulations. Since the cumulative
filtrate volume is merely the integral of the filtrate flow,

V ¼
Z T

0
qlmj jdt ð36Þ

the resulting linear functions are identical as well. Due to the
lack of information content relevant to our work, these graphs
are omitted here.

For the parameter set HC, the existence of a time-varying opti-
mal control solution to our minimization problem verifies our ini-
tial hypothesis of cake compression affecting the qualitative
solution known from Kuhn and Briesen (Kuhn and Briesen,
2015). Furthermore, the optimal control solution for parameter
set LC shows much lower variations compared with the trajectory
of parameter set HC. Here, variations only appear in the fourth dec-
imal. This behavior is in accordance with the findings of Kuhn and
Briesen as well, and, therefore our optimization calculations are
further validated by their work. According to them, in the case of
an incompressible cake filtration with a constant share of impuri-
ties the optimal filter aid dosage profile depending on time is con-
stant. Indeed, for a real use case the minor variations shown in the
trajectory of Fig. 4(b) can be interpreted as constant.

Fig. 5. Optimal operation curves for the Surface Filtration Model. blue: operation
curve for parameter set HC; green: operation curve for parameter set LC.

Fig. 6. Time-dependent filter aid dosage for the Surface Filtration Model obtained by the optimal control method (blue) and optimal constant benchmark (orange). a:
parameter set HC; b: parameter set LC.
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Nevertheless, savings in energy as well as in filter aid consump-
tion compared with the static optimal conditions are moderate at
best, if depth filtration is neglected. Especially in hindsight of
unavoidable experimental noise in a real-world environment,
obtained performance gains < 1% may be irrelevant. However,
note that these are only the additional savings obtained by intro-
ducing time-varying operation strategies compared with an
already optimized but constant dosage. Such optimal static filter
aid supply marks a hard theoretical benchmark, which we assume
to be rarely realized in practice purely by intuition. Thus, merely
obtaining the benchmark might already be beneficial for real pro-
cesses. Moreover, it was neither guaranteed that a time-varying
optimal control solution exists, nor that it would yield a significant
performance benefit. In fact, there is no a priorimethod available to
assess how an optimal control approach affects the cost functional.
Therefore, it was necessary to evaluate the influence of a dynamic
filter aid dosage using the full-scale optimal control algorithm.

3.3. Optimization of the combined model

Next, we examine static optimizations for the Combined Model.
The calculated optima are also single global minima, comprising
the optimal combination of filter aid concentration c and the pre-
coat height LPC : Fig. 8(a) displays the area-specific energy con-
sumption depending on the bodyfeed filter aid concentration
with an optimal precoat height. Once again absolute values were
transformed onto a relative scale. The qualitative solution behavior
is similar to the results known from the Surface Filtration Model,
and the outcome can be explained with the same argumentation
as before. Fig. 8(b) shows the opposite case, namely, area-specific
energy consumption depending on precoat height with an optimal

bodyfeed filter aid concentration. The energy consumption is
observed to increase monotonically for higher precoats with the
unbounded minimum being located at LPC ¼ 0m. This trivial oper-
ation point describes no filtration taking place initially, and thus,
no energy is spent on the process. To maintain the desired filtration
performance, the true feasible minimum is defined by the inequal-
ity condition Eq. (33), which is plotted as a black vertical line. The
nonlinear program finds the smallest possible optimal precoat
height, such that the overall filter resistance is minimized and
impurities are prevented from migrating into the filtrate.

3.4. Optimal control of the combined model

Subsequently, the calculated constant optima are compared
with the results obtained via the optimal control procedure. The
solutions for scenario c ¼ 0, i.e., where no impurities are separated
by surface filtration, are displayed in Fig. 9. Fine particle migration
is observed to affect the qualitative shape of the filer-aid dosage
trajectory. Function c tð Þ starts near 0, from where it will quickly
rise to a maximum higher than the concentration known from
the statically optimized case. A phase of the monotonous decrease
can be observed from here. In the last time intervals, the filter aid
supply approaches 0 again.

With the optimal control approach, the time-dependent filter
aid dosage leads to a redistribution of separated impurities es2, as
shown in Figure 10(a). Using these strategies, an accumulation of
fine particles at the lower filter cake layers is prevented. In this
spatial region, a greater impurity deposition is the cause of filter
cake blocking due to a higher compression taking place. Instead,
the optimized filter aid trajectories cause a more uniform distribu-
tion of impurity deposition for wide time spans of the process.

Fig. 7. Quantities for the Surface Filtration Model resulting from the optimal control method (blue) and the optimal constant benchmark (orange) for parameter set HC. a:
time-dependent filter cake growth; b: time-dependent filtration pressure.

Fig. 8. Globally optimal constant control variables for the Combined Model using parameter set HC. a: filter aid dosage c; b: precoat height LPC
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Only toward the end of the filtration, the impurities are accumu-
lated at the top of the filter cake, where permeability is not
strongly affected by compression. Avoiding impurity deposition
in the lower filter cake regions along with the overall lower filter
cake height (Figure 10(b)) yields a lower total filter resistance
and therefore a lower pressure drop (Figure 10(c)). Initially, the
pressure drop rises quicker compared with the reference case
due to a faster cake growth rate resulting from a higher filter aid
supply. However, the area-specific energy consumption is smaller
at the end of the process, as the lower cake layers are ‘‘prepared”
for long-term effects (Figure 10(d)). Notably, in Figure 10(d) values
were converted into a relative scale, with 100 % representing the
end value obtained by static optimization.

Applying this strategy, compared with the constant reference
scenario, the following performance benefits can be achieved for
the Combined Model. The area-specific energy consumption was

lowered by " 4:5% for parameter set HC and by " 0:9% for param-
eter set LC. Moreover, according to Eq. (35), the relative filter aid
consumption is reduced by " 29:1% for parameter set HC and by
" 14:9% for parameter set LC compared with the already optimized
constant dosage. While savings in energy consumption may still
seem moderate – reaching 5 % only under certain conditions –
the filter aid consumption was drastically reduced.

The same optimal control approach was applied for an assumed
c ¼ 0:5, i.e., where 50 % of impurities are initially separated by sur-
face filtration. In total, the qualitative solutions are similar to the
previous results of scenario c ¼ 0: However, variations of the filter
aid dosage over the simulation time span are not as pronounced
(Fig. 11). This causes a smaller gain of the performance index com-
pared with the previous example. Relative savings are " 0:35%
(parameter set HC) / 0:15% (parameter set LC) for area-specific
energy expenditure and " 4:7% (parameter set HC) / " 4:5% (pa-

Fig. 9. Time-dependent filter aid dosage for the Combined Model (c ¼ 0) obtained by the optimal control method (blue) and optimal constant benchmark (orange). a:
parameter set HC; b: parameter set LC.

Fig. 10. Quantities for the Combined Model resulting from the optimal control method (blue) and optimal constant benchmark (orange) for parameter set HC. a: impurity
deposition at t = 750 s (dotted lines) and t = 1000 s (solid line/dashed line); b: filter cake height; c: filtration pressure; d: area-specific energy consumption.
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rameter set LC) for filter aid consumption compared with the opti-
mized constant dosage benchmark case. Obtaining a lower benefit
was expected, as this scenario approaches the first optimal control
example of the Surface Filtration Model, where no depth filtration is
taking place.

Our findings are backed by the work of Heertjes and Zuideveld
(Heertjes and Zuideveld, 1978), who observed an accumulation of
impurities near the precoat/bodyfeed interface for different exper-
imental set-ups. In case of such a blocking event happening, the
pressure drop is significantly increased. To avoid this effect, the
authors proposed to apply strategies to form a homogenous impu-
rity deposition profile along the filter cake height. They prevented
the formation of blocking regions by varying the filter aid type.
With the currently available enhanced theoretical models and
computational capabilities, we achieved this goal by only varying
filter aid concentration over time.

Notably, our calculated optimal dosage profiles are compared
with already optimized reference cases. We assume that in real-
life scenarios, filter aid bodyfeed concentrations are still often
obtained by intuition, heuristics, and ‘‘trial and error,” rather than
by rigorous mathematical optimizations. Thus, the static optimiza-
tion approach alone might outperform currently established filter
aid dosage strategies in industrial practice without requiring addi-
tional investments in plant instrumentation. Moreover, we did not
examine time-varying impurities contained in the suspension to
evaluate the effect of cake compression on the optimization. Natu-
rally, practical benefits of optimal control will be even larger, if the
dynamic impurity supply can be quantified. Lastly, the perfor-
mance index of area-specific energy minimization might not be
the economically most feasible. Nevertheless, the optimal control
approach can easily be extended for combined cost functions or
multivariable controls, such as qlm tð Þ; i.e., a time-varying filtrate
flow.

4. Conclusions

We applied optimization algorithms on compressible filter aid
filtration models based on the multiphase cake filtration theory.
Albeit this theory has been derived in the 1980s and 1990s, it did
– to the best of our knowledge – not find a practical use for indus-
trially scaled processes. By applying these models, we close a gap
in the theoretical investigations on optimal operation conditions,
and, therefore, contribute to reduce the experimental work
required to determine the optimal process control.

The obtainable performance benefits from time-varying filter
aid dosages for a constant supply of impurities strongly depend
on specific process conditions. In conclusion, the more impurities
are separated by depth filtration in the filter cake, the higher the

positive effect of optimal control becomes. In the extreme case of
100 % depth filtration, time-dependent filter aid trajectories will
lead to the reduction of up to " 29:1% filter aid usage as well as
" 4:5% energy consumption. Nevertheless, if all impurities are sep-
arated by surface filtration, the benefit of optimal control is negli-
gible. Herein, the efforts required to employ time-varying filter aid
dosages in real processes are probably not justified.

We emphasize that the results are only valid to construct qual-
itative statements, as the models along with their parameters have
been developed for cake filtration processes in general. We are
confident that the results obtained in this study represent theoret-
ically obtainable benefits for filter aid filtrations. However, espe-
cially when considering compressible filter aid materials such as
fibers, the adapted models most likely require fine tuning of pres-
sure relationships (Tien et al., 2001) as well as an additional
parameter estimation with actual experimental data.
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Fig. 11. Time-dependent filter aid dosage for the Combined Model (c ¼ 0:5) obtained by the optimal control method (blue) and optimal constant benchmark (orange). a:
parameter set HC; b: parameter set LC.

Table A1
Parameter values used for model simulations.

Parameter Set HC Material
system with high
compressibility

Parameter Set LC Material
system with low
compressibility

k0 m2$ %
10&12* 10&11*

n0 &½ * 0:01 0:005
pa Pa½ * 1200 44000
qlm

m
s

$ %
&2 ' 10&4 &5 ' 10&4

RM m&1
$ %

1010** 1010**
s &½ * 10* 10*
T s½ * 1000 1000
b &½ * 0:09 0:13
d &½ * 0:49 0:57
es0 &½ * 0:27 0:20
The following parameters are only used for the Combined Model:
nfrac &½ * 100** 100**
c &½ * 0/ 0:5 ** 0/ 0:5 **
k0 m&1$ %

100 100**
kc &½ * 5 5**
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Appendix A. Model parameters

The following parameters were used in this study (see
Table A1). Simulation parameters are adapted from Ref. [Tien,
2006, p. 70; 87].

Parameters indicated with * do not correspond to the original
value. These parameters are contained in Eq. (12), which is not part
of the original models. We adjusted the parameter values with a
focus on keeping the model simulations in realistic ranges of filtra-
tion pressure and solidosity. Parameters indicated with ** are
based on assumptions. We emphasize that the parameter values
do not correspond to real experimental set-ups and are only used
to represent qualitative behavior of different degrees of filter cake
compressibility.

Appendix B. Numerical transformations

The front fixing method (Crank, 1984) is used to define the
height coordinates of time-dependent system boundaries in the
ranges of z ¼ 0 to z ¼ 1 by applying the following relationship:

z ¼ x
L
: ðB-1Þ

Conversion of the governing partial differential equations is
achieved by the transformations Eq. (B-2) and Eq. (B-3). Here, the
^-symbol denotes quantities in the fixed coordinate system.

@f
@x

¼ 1
L
@bf
@z

ðB-2Þ

@f
@t

¼ @bf
@t

& z
L
dL
dt

@bf
@z

ðB-3Þ

The following relationships were used to eliminate dimensions:

ec ¼ c
es0

ðB-4Þ

ek ¼ k
k0

ðB-5Þ

ekinit ¼
kinit
k0

ðB-6Þ

eL ¼ L
L+ref

ðB-7Þ

en ¼ n
es0

ðB-8Þ

en0 ¼ n0

es0
ðB-9Þ

eN ¼
NL+ref
jqlmj

ðB-10Þ

epa ¼
pak0

jqlmjlL
+
ref

ðB-11Þ

epl ¼
plk0

jqlmjlL
+
ref

ðB-12Þ

eps ¼
psk0

jqlmjlL
+
ref

ðB-13Þ

eql ¼
ql

jqlmjes0
ðB-14Þ

eqlm ¼ qlm

jqlmjes0
¼ & 1

es0
ðB-15Þ

eqs ¼
qs

jqlmjes0
ðB-16Þ

eRm ¼ RMk0
L+ref

ðB-17Þ

et ¼ tjqlmj
L+ref

ðB-18Þ

eu ¼
uL+ref
es0qlm

ðB-19Þ

ex ¼ x
L+ref

ðB-20Þ

ees ¼
es
es0

ðB-21Þ

ees2 ¼ es2
es0

ðB-22Þ

ek ¼ k
k0

ðB-23Þ

3

After minor rearrangements, the resulting system of equations
for the Surface Filtration Model reads as follows. Note that all quan-
tities are already transformed into the fixed coordinate system, but
the ^-symbols are omitted for readability. The integral term in
equation Eq. (2) from the main text can be approximated as the

mean value ee
&

s due to the equidistant mesh used to discretize the
governing equations. Moreover, Eq. (3) from the main text was
transformed into the form of Eq. (B-26), which describes the
dynamic variation of the filter aid concentration as an ordinary dif-
ferential equation. This transformation does not alter the model
structure. Initially introduced linear functions can be represented
by setting the right-hand side of Eq. (B-26) to a constant value
and accordingly selecting an initial value ec t ¼ 0ð Þ for said equation.

3 L+ref ¼ Lðt ¼ 1sÞ according to Eq. 27 for the Surface Filtration Model L+ref ¼ LPC ; for
the Combined Model.
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Constant filter aid dosages as required for the static optimization

are obtained by setting eu et
& '

¼ 0. Then, the initial value ec t ¼ 0ð Þ
becomes the process-defining uniform filter aid dosage. Compared
with the original form, the implementation of the transformed
equation into the combined numerical optimization and integra-
tion procedure proved to be simpler, and we noticed a small
improvement in the convergence properties.

@ees
@et

¼ 1
eL2

@

@z
&eesek

@eps

@z

! "
þ 1
eL

1þ z
deL
det

 !
@ees
@z

ðB-24Þ

deL
det

¼
ec

ees
&
&ec

ðB-25Þ

dec
det

¼ eu et
& '

ðB-26Þ

dees2
det

¼ 1
eL
@ees2
@z

ðB-27Þ

at et; z ¼ 0
& '

:
ek
eL
@epl

@z
¼ 1 ¼

epl

eRM

ðB-28Þ

at et; z ¼ 1
& '

: ees ¼ 1 ðB-29Þ

at et; z ¼ 1
& '

: ees2 ¼
eesen0

ec
ðB-30Þ

eps ¼ epa ees
1
b & 1

& '
ðB-31Þ

ekinit ¼ e&s'ees2 ðB-32Þ

ek ¼ ekinit ' ees
&d
b ðB-33Þ

Similarly, for the Combined Model, we obtain the following:

@ees
@et

¼ @eql

@z
þ z
eL
deL
det

@ees
@z

ðB-34Þ

@ees2
@et

¼ & @eqsees2
@z

þ
eN
es0

þ z
eL
deL
det

@ees2
@z

ðB-35Þ

@en
@et

¼ 1
1& es0ees

!s0
@ees
@et

& z
eL
deL
det

@ees
@z

 !
en & 1

eL
es0

@eqlen
@z

&
eN
es0

 !

þ z
eL
deL
det

@en
@z

ðB-36Þ

deL
det

¼
ec

ees
&
&ec

ðB-37Þ

dec
det

¼ eu et
& '

ðB-38Þ

at et; z ¼ 0
& '

:
ek
eL
@epl

@z
¼ 1 ¼

epl

eRM

ðB-39Þ

at et; z ¼ 1
& '

: ees ¼ 1 ðB-40Þ

at et; z ¼ 1
& '

: ees2 ¼
eescen0

ec
ðB-41Þ

at et; z ¼ 1
& '

: en ¼ 1& cð Þen0 ðB-42Þ

eql ¼
1
eL

&eesek
@epl

@z

! "
& 1

es0
& ees

! "
1þ eL

Z z

0

eNdz
! "

ðB-43Þ

eqs ¼
1
eL
eesek

@epl

@z

! "
& ees 1& eL

Z z

0

eNdz
! "

ðB-44Þ

eN ¼ eql & eqs
1& es0ees
es0ees

! "! "
L+ref k0eke2s0en ðB-45Þ

ek ¼ 1þ kces0ees2
1& esees2

! "
ðB-46Þ

eps ¼ pa ees
1
b & 1

& '
ðB-47Þ

ekinit ¼ e&s'ees2 ðB-48Þ

ek ¼ ekinit ' ees
&d

b ðB-49Þ

Note that the dynamic viscosity l is eliminated from all govern-
ing equations by the shrewd selection of nondimensionalization
relationships.
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Glossary

Roman letters
c: filter aid concentration in suspension [-]
cgi : discretized filter aid concentration in suspension [-]
f : arbitrary function; Appendix only [-]
i: current iteration of mesh refinement [-]
e: area-specific energy consumption [J/m&2]
k: permeability of filter cake; compressed [m2]
k0: permeability of pure filter aid; uncompressed [m2]
kinit : permeability of filter cake; uncompressed [m2]
L: filter cake height [m]
LPC : filter cake height; precoat stage [m]
n: impurity concentration in suspension [-]
n0: initial impurity concentration in suspension [-]
nfrac: maximum fraction of n0 allowed in the filtrate [-]
N: rate of deposition for impurities [s-1]
p0: process pressure [Pa]
pa: empirical compression parameter [Pa]
pl: liquid pore pressure [Pa]
ps: compressive stress acting on solid phase [Pa]
ql: superficial flow rate of liquid phase [m/s]
qlm: superficial flow rate of liquid phase at filter medium [m/s]
qs: superficial flow rate of solid phase [m/s]
RM: filter medium resistance [m&1]
s: empirical Sutherland parameter [-]
t: Time [s]
T: simulation time span [s]
u: filter aid dosage control function [s&1]
up: vector of control parameters [variable]
ugi ;p: vector of control parameters associated to discretization set gi [variable]
Vc: area-specific filter aid consumption [m]
V: area-specific filtrate volume [m]
x: height coordinate [m]
z: height coordinate treated by front fixing method [-]
Greek letters
b: empirical compression parameter [-]
d: empirical compression parameter [-]
e: porosity [-]
es: solidosity [-]
es0: solidosity; uncompressed [-]
es2: impurity deposition [-]
c: fraction of impurities separated by surface filtration [-]
k: filter coefficient [m&1]
k0: initial filter coefficient [m&1]
kc : empirical filter coefficient parameter [-]
gi : number of subintervals at iteration i [-]
l: dynamic viscosity [Pa's]
Accents
&: mean values; Appendix only
^: quantities treated by front fixing method; Appendix only
, : nondimensional variables; Appendix only
+: adjusted parameter value; Appendix only
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A B S T R A C T   

This work aims to increase the computational efficiency of a complex mathematical cake-filtration model with 
strong nonlinearities representing cake compression. To this end, we employ a hybrid data driven approach using 
the technique of proper orthogonal decomposition. Hereby, a few sample simulations from the initial system of 
partial differential equations are used as the foundation to find optimal, globally defined basis functions, which 
in return offer the possibility to build a reduced-order model. In summary, the dimension of the reduced order 
model is diminished by ≈98% compared to the full order model, which translates to a net decrease of ≈90 % 
computational time needed to solve a benchmark optimization problem. This significant numerical speed-up 
offers the possibility to use the reduced order model in further advanced process control and optimization 
methods.   

1. Introduction 

During recent decades, mathematical models have gained significant 
momentum as a tool in various engineering disciplines. More specif-
ically, in the area of process systems engineering, the respective model 
simulations may serve as a basis for process design, process optimiza-
tion, and process control (Kuhn and Briesen, 2019; Stephanopoulos, 
2009). Especially for the latter two applications, the simulation algo-
rithms are subject to computational time constraints since the models 
must be evaluated repeatedly. However, even though computational 
capabilities are increasing continuously, non-linear, high dimensional, 
and/or multi-scale models might still be demanding to solve in reason-
able time spans (Geerling et al., 2019; Biegler et al., 2014), potentially 
rendering above applications infeasible for certain problems at the 
current time. 

We in fact encountered such computational cost restrictions in a 
recent study, where we employed an optimal control algorithm for 
different compressible cake filtration models (Pergam et al., 2022). The 
calculation time took up to a day for some of the evaluated scenarios due 
to the complexity of the underlying non-linear partial differential 
equations. For our past work, this was merely an economic issue. 
Nonetheless, it is impossible to use the mathematical models as a basis 
for e.g., cyber-physical systems in process monitoring (Hoffmann et al., 
2021) or closed-loop model predictive control approaches (Grüne and 

Pannek, 2011), since the simulations must fulfill real-time requirements 
here. This motivates our efforts in implementing numerical techniques 
to significantly reduce the computational cost of said mathematical 
problems. 

In recent years, data-driven surrogate modeling approaches are more 
and more focused on by researchers in the area of process engineering to 
solve previously mentioned problem. Some of these techniques include 
the application of, e.g., sparse identification of nonlinear dynamics 
(SINDy) in combination with machine learning (Bhadriraju et al., 2019), 
physics-informed neural networks (Cai et al., 2021), combining mech-
anistic and data-based methods as hybrid modeling techniques (often 
referred to “grey box” models) (Zendehboudi et al., 2018), or linear 
modelling concepts from control theory, such as Koopman operators 
(Narasingam and Kwon, 2020). Another possible data-driven approach 
is projection-based model order reduction (MOR) (Baur et al., 2014). 
Several of such MOR approaches, such as Rational Interpolation and 
Balanced Truncation, have been described in the literature (see e.g., 
(Benner et al., 2015)). We will, however, focus on global dimensional 
reduction of the underlying compressive cake filtration model by the 
technique of proper orthogonal decomposition (POD) (Liang et al., 
2002; Chatterjee, 2000) during the course of this work. So far, POD 
based reduced order models (ROM) have been applied widely in many 
engineering applications, e.g., in the analysis of turbulent fluid flows 
(Berkooz et al., 1993; Smith et al., 2005), aerodynamics (Bui-Thanh 
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et al., 2004; Bui-Thanh et al., 2003; Hall et al., 2000), mechanical sys-
tems (Lu et al., 2019; Kerschen et al., 2005), process engineering 
(Bremer et al., 2017; Marquardt, 2002; Ly and Tran, 2002; Nguyen et al., 
2020), and population balance modeling (Feng et al., 2017; Khlopov and 
Mangold, 2016; Khlopov and Mangold, 2016; Khlopov and Mangold, 
2015; Krasnyk et al., 2012) to name a few. Nevertheless, POD methods – 
as well as MOR in general – have merely found sparse recognition in the 
research area of solid-liquid separation. To the best of our knowledge, 
only Osterroth et al. (2017) made use of a ROM for a linear incom-
pressible cake filtration process. Depending on the scenario, they 
managed to reduce the computational cost by up to 90-95 % enabling 
the model simulation to be viable for extensive parameter studies. In a 
broader context, however, filtration can also be interpreted as a problem 
of fluid flow through porous media for which POD had been introduced 
before (Ghasemi and Gildin, 2016; Ghasemi, 2015; Ghasemi and Gildin, 
2015; Alotaibi et al., 2015; Gildin et al., 2013; Li and Hu, 2012). 
Therefore, more applications from related research areas, such as 
viscous fingering (Chaturantabut and Sorensen, 2011), reservoir engi-
neering (Wang et al., 2018; Heijn et al., 2004), and groundwater flow 
(Dey and Dhar, 2020; Winton et al., 2011; Siade et al., 2010; Vermeulen 
et al., 2006) can be found. Moreover, the here to be investigated cake 
filtration models are categorized as mathematical moving- or 
free-boundary problems. In this context, some POD frameworks (Hinze 
et al., 2014; Utturkar et al., 2005; Sidhu et al., 2018), and applications 
for, e.g., phase-field problems (Redeker and Haasdonk, 2014; 
López-Quiroga, 2018; Volkwein, 2001) exist. When the previously 
mentioned studies included information on numerical efficiency, the 
respective elapsed simulation time was reduced significantly by up to 
1–3 magnitudes, i.e., computational speed increases: ≈2.5 × in 
López-Quiroga (2018); ≈13 × in Li and Hu (2012); ≈45 × in Ghasemi 
and Gildin (2016); ≈230 × for Wang et al. (2018); ≈500 × for Dey and 
Dhar (2020); ≈700 × for Chaturantabut and Sorensen (2011); ≈1250 ×
for Volkwein (2001), while retaining sufficiently detailed solution fea-
tures of the dynamic full order models (FOM). 

Previously mentioned numbers support our hypothesis of POD based 
MOR being a suitable tool to enable our computationally expensive 
model for use in advanced process control methods with real-time re-
quirements. This does not only expand the POD applications in the area 
of moving boundary problems, but also is the first application for 
compressible cake filtration processes. Hereby, the effect of compress-
ibility induces exponential non-linearities to the governing model 
equations. It is therefore not clear a priori what benefits a derived ROM 
yields, especially compared to those of a linear cake filtration ROM. 
Moreover, in the context of solid-liquid separation processes, it is not 
clear how the proposed ROM of the underlying moving boundary 
problem performs in combination with an optimization framework. 
Hence, we will first review the complex non-linear mathematical model 
in the following sections. Subsequently, we will present a short overview 
of the POD method and how it can be used to obtain a ROM representing 
the dynamics of the FOM. Finally, we will solve an optimization problem 
as a benchmark for both, the FOM and the ROM, in order to examine the 
computational cost benefits. 

2. Methods 

Since this work is a numerical study, we will focus on mathematical 
methods for evaluating the process of dead-end cake filtration (Tien, 
2006). Hereby, a pressure gradient causes the perpendicular flow of an 
impure suspension through a filter medium. While the liquid phase exits 
the apparatus as the filtrate, the solid phase is accumulated on top of 
said filter medium. The so-called filter cake increases in height during 
the course of the process, which further enhances the efficiency of 
fine-particle separation, but also increases the overall filter resistance 
over time. Ideally, the filter cake is approximatively incompressible, i.e., 
the characteristic quantities are independent of a growing filtration 
pressure that is needed to maintain a constant volumetric flow rate. 

However, in many applications, the aggregated solids are compressible 
due to particle deformation, breakage, rearrangement, or other 
morphological effects causing an inefficient exponential decrease in 
permeability (Alles and Anlauf, 2003; Alles, 2000). Further general in-
formation on the physical properties of cake filtration can be found in 
various textbooks, e.g., (Tien, 2006; Tarleton and Wakeman, 2007; 
Wakeman and Tarleton, 1999). 

2.1. Full order cake filtration model 

The model to be studied is based on a continuum-scale approach 
introduced by Stamatakis and Tien in 1991 (Stamatakis and Tien, 1991). 
Its foundation is the well-known continuity equation of liquid flow 
through porous media: 

∂εs

∂t = ∂ql

∂x (1) 

Hereby, partial differential Eq. (1) describes the spatiotemporal 
development of solidosity1 εs depending on the non-linear liquid phase’s 
superficial velocity ql, which offers further information about the system 
quantities on the time and space domain t and x. The original paper 
presents more like a framework for general compressible cake filtration 
processes and describes the mathematical derivation in detail. In the 
following, however, we will focus on compressible filter aid cake filtra-
tion processes. As the name suggests, filter aid materials, such as 
kieselguhr or cellulose, are added to the suspension in order to increase 
the process efficiency of hard-to-handle suspensions (Bennet, 2000; 
Gasper, 2000). This is a special case of cake filtration with two highly 

Fig. 1. Schematic representation of the filter aid Filtration Model. Adapted 
from (Pergam et al., 2022). 

1 The information content of the solidosity is equal to the more commonly 
used quantity porosity ε using the relationship ε = 1− εs. 
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distinctive particle fractions offering the benchmark optimization 
problem of finding the ideal filter aid dosage (see Section 2.4 Optimi-
zation). Notably, all of our findings can be easily adapted to enable 
theoretical investigation of further case studies on general compressible 
filter cakes without filter aids. 

With Eq. (1) being the mechanistic foundation, the final adapted 
system of partial differential equations can be obtained after a number of 
derivations and rearrangements found in (Pergam et al., 2022). To 
further facilitate the understanding of the cake filtration process, a 
schematic of the process is given in Fig. 1. All system states and the 
corresponding boundary conditions used by the mathematical model are 
marked in the graphic. 

The resulting mathematical model to represent compressible filter 
aid cake filtration processes reads as follows: 

∂εs

∂t = 1
L

∂ql

∂z + z
L

dL
dt

∂εs

∂z (2)  

ql =
1
L

(
− εsk

∂ps

∂z

)
−
( 1

ε∗s
− εs

)
(3)  

dpl

dps
= −1 (4)  

ps = pa

(
ε

1
β
s − 1

)
(5)  

k = kinit⋅ε
−δ

β
s (6)  

kinit = exp
(
− s ε∗s nimp

c

)
(7) 

The governing relationship (2) is defined by the superficial fluid 
velocity ql(t, z), which is calculated using the non-linear Eq. (3). Here, 
k(t, z) denotes the permeability and ps(t, z) is the solid stress acting on 
the filter cake, which ultimately leads to an increasing solidosity εs(t,z). 
Thereby, the compressive behavior for the material system is defined by 
the closing relationships Eqs. (5) and (6). Moreover, the solid stress is 
directly correlated to the liquid pore pressure pl(t, z) via Eq. (4). Since 
permeability is not only affected by compression but also by the volu-
metric concentration-ratio of filter aids c to impurities nim, the additional 
constitutive relationship (7), often referred to as Sutherland law 
(Sutherland and Hidi, 1966), defines the initial permeability at an un-
compressed state. 

The second system state, i.e., filter cake height over time L(t), is 
described by the following growth rate: 

dL
dt = c

εs − c (8) 

Hereby, Eq. (8), is dependent on the cake’s time-dependent space- 
averaged solidosity εs, as well as the supplied volumetric filter aid 
concentration c in the suspension. Notably, c is also the control 
parameter that may be adjusted by the optimization procedure. 

All empirical model parameters, β, ε∗s , δ, pa and s must be determined 
from experimental data. Finally, using εs0 as the uncompressed solid-
osity of the filter cake and setting qlm as the constant superficial filtrate 
velocity at the filter outlet, the appropriate initial and boundary con-
ditions read: 

for (t = 0, z) : εs = εs0
L = 1 (9)  

at (t, z= 0) : ql = qlm (10)  

at (t, z= 1) : εs = εs0 (11) 

Since we already introduced the FOM in detail in Pergam et al. 
(2022), we will omit a further analysis and discussion of the model 

equations here. We will only briefly explain some important numerical 
aspects in the following. 

Note that the upper system boundary (height L(t)) is time dependent 
due to the cake growth rate defined by Eq. (8), which classifies the 
filtration model as a moving boundary problem. Therefore, the initial 
spatial dimension x has been treated by the front-fixing method2 (Tay-
ler, 1985). The resulting governing relationship in Eq. (2) is thus not 
defined on x, but depends on z. Hereby, z spans a new alternate coor-
dinate system from 0 to 1 for each time step t. 

Moreover, the complete mathematical model defined in Eq. (2) to (7) 
is given in a non-dimensionalized formulation. Mathematically, using 
non-dimensionalization offers two main advantages:  

1. Since non-dimensionalization is based on process-inherent scaling of 
variables, highly different orders of magnitude in quantities may be 
reduced such that they are numerically easier to handle. We noticed 
that convergence properties significantly improved with the intro-
duction of non-dimensionalization. The relationships used for non- 
dimensionalization can be found in Appendix B of (Pergam et al., 
2022).  

2. Non-dimensionalization may also yield a simplification of the model 
equations themselves. If the variables used for scaling are chosen 
carefully, some parameters can be eliminated completely. This is the 
reason why certain important, but constant process quantities, i.e., 
volumetric flow rate at the filter outlet and viscosity, do not appear 
any longer in the model Eq. (2) to Eq (7). 

It is important to mention that non-dimensionalization does not alter 
the outcome of the qualitative solution features. Yet, similar to Kuhn’s 
argumentation (Kuhn, 2018; Kuhn and Briesen, 2016), a 
non-dimensional model supports the process of drawing overall con-
clusions from numerical studies independent of operating conditions, 
and, ultimately, offers the possibility to apply the general results to more 
specific problems. 

The non-dimensional parameter values used for the simulation can 
be found in Table 1. All parameters were obtained using the non- 
dimensionalization procedure described in Appendix B of (Pergam 
et al., 2022). Notably, some of the non-dimensionalized parameters 
depend on the varying filter aid concentration c. The stated parameters 
are valid for the reference control c = 0.37, as this was the initial value 
for the optimization algorithm in our previous study. Therefore, the 
numeric values of these parameters must be adjusted if the models are 
not evaluated at the reference control parameter, i.e., for each iteration 
during the benchmark optimization problem introduced in Section 2.4 
Optimization. 

All numerical procedures used in this work have been implemented 
in MATLAB 2022b (The MathWorks, Inc., Natick, Massachusetts, US). 
The system of partial differential equations was solved using the method 
of lines (MOL) (Wouwer et al., 2014; Schiesser and Griffiths, 2009). 

Table 1 
Non-dimensional parameter values used for all calculations  

n [ − ] 0.037 
pa [ − ] 51 
qlm [ − ] -3.7 
s [ − ] 10 
T [ − ] 1700 
β [ − ] 0.09 
εs

∗ [ − ] 0.27 
εs0 [ − ] 1 
δ [ − ] 0.49  

2 Sometimes also referred to as Landau Transformation in the literature 
(Wouwer et al., 2014; Landau, 1950) 
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Hereby, the partial spatial derivatives were approximated using a 
three-point centered finite differencing scheme, and the boundary con-
ditions are implemented in vector form (see Eq. (17)). 

The total number of discretization stencils for the fixed coordinate 
system z was 250. Notably, the qualitative solution features of the non- 
linear model can be obtained using far fewer discretization points con-
ducting simple forward simulations. However, the optimization and 
especially the optimal control procedure from (Pergam et al., 2022) 
require precisely calculated gradients. These are only obtainable if 
during the model evaluations a high-resolution discretization is used 
such that the approximation errors are as low as possible. Otherwise, the 
optimizations might become numerically unstable, and it is not guar-
anteed to find the unique global solution for varying parameter sets. 
Therefore, the previously mentioned discretization is chosen as our 
benchmark case. Hereby, the calculation time scales approximatively 
exponentially with an increased discretization, which further underlines 
the utility of a ROM framework. 

For time integration, we used MATLAB’s ode15s as an implicit or-
dinary differential equation solver (Shampine and Reichelt, 1997). All 
calculations were performed on a regular desktop computer (processor: 
Intel® Core™ i5-8400, performance: 2.80 GHz, memory: 16 GB RAM). 

2.2. Reduced order model 

The main idea of reduced order modeling lies in replacing the FOM 
with a proxy model that captures sufficient details of the initial model’s 
dynamics, but at the same time is much more efficient to solve (Brunton 
and Kutz, 2019). As stated in the introduction, we focus on using a POD 
approach to reduce the model’s dimensions. Hereby, the fundamental 
idea is similar to the Galerkin method as explained in detail in (Wouwer 
et al., 2014), which assumes that the unknown function f(x, t) solving a 
partial differential equation can also be expressed in the following form: 

f (t, x) ≈
∑N

i=1
Φi(x)mi(t) (12) 

The right-hand side of Eq. (12) enables the initial unknown solution 
to be split into two parts, one of which depends either on time or space. 
Thus, the coefficients mi(t) can be interpreted as weighting factors of 
how the solution is reconstructed by the corresponding globally defined 
basis functions Φi(x) over time. To numerically solve an arbitrary 
problem using the Galerkin method, some general basis functions that 
are easy to integrate and differentiate, such as polynomials or Fourier 
modes, are usually introduced a priori. However, since the qualitative 
solution features for most problems are not known beforehand, a typi-
cally large number of previously mentioned basis functions must be 
chosen. This in return requires the costly computation of a high amount 
of the related parameters mi(t). 

Instead, POD creates the possibility to find an L2-optimal set of basis 
functions, i.e., the minimal number of modes required to represent the 
original field f(t, x) (Chatterjee, 2000). The complete set of POD modes 
thus effectively reduces the dimension of the model, since the optimal 
number of modes N is usually much smaller than the grid points used to 
solve the FOM with established discretization approaches. Moreover, 
the dynamics of the system can often also be captured with sufficient 
detail by truncating the total number of modes N, which further di-
minishes the dimension and ultimately enables a true ROM to be 
created. 

Since the POD can only be performed using an available dataset, it is 
mandatory to collect experimental data, or, as in our case, create 
appropriate data snapshots using the FOM. Therefore, let A = [f(t1, z),
⋯, f(tn, z)] ∈ Rn×nt be a matrix containing the discretized solution of the 
FOM in the spatial domain z ∈ Rnat various sampling times t ∈ Rnt . 
Using the snapshot matrix A, there are two separate approaches in 
finding the POD modes, commonly referred to as direct and indirect 
methods (Wouwer et al., 2014; Chatterjee, 2000). For the direct method, 

the POD can be obtained by employing the singular value decomposition 
(SVD): 

A = UΣVH (13) 

Following the derivation of Chatterjee (Chatterjee, 2000), the left 
singular vectors of A are then contained in the columns of U ∈ Rn×n and 
can be directly defined as the POD modes Φi ∈ Rn. Notably, using this 
procedure yields discretized, i.e., point based functions. The basis 
functions Φi = coliU are not of analytical nature. The Hermitian 
transpose of the matrix V contains the right singular vectors of A, which 
are of no further need at this point. Lastly, Σ is a corresponding diagonal 
matrix, comprising the unique, non-negative singular values Σ =
diag(σi) ∈ Rn×nt linked to the equally ranked POD mode. Notably, the 
singular values σi are sorted according to size, beginning with the 
biggest element. Therefore, the relative proportion of the singular value 
σi compared to the sum of all singular values 

∑n
i=1σi directly identifies 

the significance of the corresponding POD mode Φi: 

E = σi∑N
i=1σi

⋅100% (14) 

In POD literature, E is referred to as the energy capture, i.e., the 
detail level of solution features to be represented per basis function in 
percent. Using this definition, it becomes easy to identify the final 
number of required modes N to apply the Galerkin method in Eq. (12): 
the sum of E for the first N basis functions should exceed a previously 
defined energy capture of the ROM. Additional modes do not contribute 
any significant solution features and may be truncated. In this work, we 
set a desired energy capture of 99.99 %. 

Remarkably, it might be more efficient to make use of the indirect 
POD method, in the literature commonly referred to method of snap-
shots, if the spatial dimension n is larger than the temporal dimension nt 
as has been stated by various authors, e.g. (Wouwer et al., 2014; Cha-
turantabut and Sorensen, 2011; Chatterjee, 2000). Hereby, first 
computing the right-side matrix-multiplication AAT yields a smaller 
dimensional problem. Readily available eigenvalue decomposition 
routines can then be used to obtain the POD modes (Weiss, 2019). 
However, numerical errors due to machine precision bounds may affect 
the accuracy of this alternative approach (Chaturantabut and Sorensen, 
2011). 

Consequently, we will employ the direct method in the following, 
since the snapshots from the FOM were of dimension nt = 500 and n =
250. The SVD can then be easily calculated in MATLAB (or comparable 
scientific computing tools), i.e., [U,Sigma,~] = svd(A);. More infor-
mation on the mathematical theory of the SVD can be found in, e.g., 
(Golub, 1996). 

The method’s name suggests that an important property of POD is 
the orthogonality of the obtained POD modes, i.e., 
∫ 1

0
ΦiΦ∗

j dz =
{ 0 for i ∕= j

1 for i = j
(15) 

As derived in detail by e.g., (Brunton and Kutz, 2019), this mathe-
matical property enables the final dimensional reduction of the FOM. 
Hereby, partial differential Eq. (2) is projected onto the obtained POD 
basis using the following procedure. First, the system’s state εs is 
substituted by εs = Φ(z)m(t) as defined by the Galerkin method in Eq. 
(12): 

Φ ∂m
∂t = 1

L
∂ql
∂z + 1

L
dL
dt

∂Φ
∂z m (16) 

Now, the resulting left-hand side of the Galerkin discretized gov-
erning relationship in Eq. (16) may be elegantly simplified by applying 
the orthogonality condition from Eq. (15). This step is conducted via the 
left matrix multiplication with ΦT. After introducing the finite difference 
matrix D to approximate the remaining spatial derivatives and the 
corresponding vectors bql and bεs representing the boundary conditions, 
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the fully discretized and dimensionally reduced model formulation 
reads: 

∂m
∂t = ΦT

(1
L D(

ql + bql

)
+ z

L
dL
dt D(Φm+ bεs )

)
(17)  

ql =
1
L ((Φm+ bεs )kDps) −

( 1
ε∗s
−(Φm+ bεs )

)
(18)  

ps = pa

(
(Φm + bεs )

1
b − 1

)
(19)  

k = kinit(Φm + bεs )
−δ

β (20) 

Subsequently inserting Eq. (18) – Eq. (20) into Eq. (17), as well as 
rearranging some terms, the final ROM reads as follows. 

∂m
∂t = 1

L2F1
(
(NL)1−δ

β D(NL)
1
β
)
+ 1

L (F2m+F345) +
1
L

dL
dt (F6m+F7) (21)  

NL = Φm + bεs (22)  

F1 = kinitpaΦTD (23)  

F2 = ΦTD 1
ε∗s

(24)  

F3 = ΦTDΦ (25)  

F4 = ΦTDbεs (26)  

F5 = ΦTDbql (27)  

F345 = −F3 + F4 + F5 (28)  

F6 = ΦTzDΦ (29)  

F7 = ΦTzDbεs (30) 

Even without any numerical examples, it is easy to see that the 
reason for the increased computational efficiency is due to the smaller 
dimension N≪ n of Eq. (21), which merely requires the numerical 
integration of the coefficients m on the time domain. Hereby, the above 
procedure is especially efficient on linear terms, i.e., for F2⋯F7. To 
obtain these coefficient matrices, high-dimensional matrix multiplica-
tions must be performed in Eq. (24) to Eq. (30). This procedure makes up 
the bulk of the computational load, but can be pre-calculated only once 
and stored in memory for reuse during numerical integration. 

Notably, this is not the case for the non-linear term, i.e., NL. Even 
though the required coefficient matrix F1 may be pre-calculated as well 
to save some computing efforts, matrix NL indeed needs to be recon-
structed in the full-dimensional space for each iteration of the simulation 
procedure. For our application, however, this is not problematic, since 
by using the ROM, the nonlinearities could be reduced to merely one 
term, which yields only a minor performance sink. Further approaches 
for non-linear model reduction have been introduced that rely on sparse 
sampling of the underlying data matrix A (e.g. gappy POD, (discrete) 
empirical interpolation method, etc. (Brunton and Kutz, 2019; Chatur-
antabut and Sorensen, 2010; Chaturantabut and Sorensen, 2009)). 
Nevertheless, as can be seen in the next section, the proposed POD 
approach already yields a substantial increase of computational effi-
ciency, even without additional treatment of the nonlinearities. 

Since the cake height L(t) resulting from the cake growth rate dL
dt in 

Eq. (8) is a single ordinary differential equation, this system state cannot 
be reduced in dimensionality. It is however directly dependent on the 
mean value of the system state εs, the obtainment of which would 
require a costly computation using the reconstructed n-dimensional field 
of the FOM. Nevertheless, the computational efficiency can be 

significantly increased by pre-calculating the mean value of each basis 
function. The resulting averaged set of POD modes Φ may then be used 
to simplify Eq. (8) as follows. 

dL
dt = c

Φm − c
(31) 

The calculation of Eq. (31) now only requires a vector multiplication 
of the size N≪n. 

2.3. Basis adaptation 

The ROM may be built by populating the snapshot matrix A with the 
results of a FOM simulation using the initial parameter set correspond-
ing to the reference control stated in Table 1. In the following, we will 
refer to this procedure as local POD. However, it is not guaranteed that 
the POD modes obtained from such a single dataset can also simulate the 
effects of a varying filter aid concentration yielding variable parameter 
sets accurately. 

Arguably, the simplest method to find a POD basis that is approx-
imatively valid for varying filter aid concentrations c is to enrich the 
snapshot matrix A used in the SVD (see Eq, (13)) with the data of several 
FOM simulations using different control values in the parameter range of 
interest. This approach is commonly referred to as global POD. In this 
work, the global POD basis was obtained using two different sample 
controls. However, a global basis might quickly yield a lower accuracy 
than a single representative basis for a given amount of POD modes used 
by the ROM. The computational cost is thus significantly increased, not 
only by the larger ROM dimension required to obtain a desired error 
tolerance, but especially by the higher amount of FOM simulations 
needed to acquire the initial data set (Osterroth et al., 2017; Amsallem 
and Farhat, 2008). 

Another approach to enable the ROM to represent the FOM under 
parameter variations is called POD- or ROM-adaptation (Vetrano et al., 
2012). Notably, many techniques exist that are often based on interpo-
lation between POD modes or expanding Taylor series around a given 
POD basis (Osterroth, 2018; Osterroth et al., 2017). However, recall that 
an important property for model order reduction is the orthogonality of 
the POD base (see Eq. (15)). Now, for example, a simple interpolation 
between two POD bases from different parameter sets does not neces-
sarily yield a new orthogonal base. Many of these techniques therefore 
require an additional expensive step of re-orthogonalization (Lieu and 
Lesoinne, 2004). 

In the following, we will focus on the so-called sub-angle interpola-
tion method (SAIM). For two available POD bases, the SAIM exploits the 
principal angles, i.e., the set of angles transforming one subset spanned 
by the POD basis into the other. An interpolation algorithm using these 
principal angles then enforces the orthogonality of the newly interpo-
lated basis and thus automatically fulfils the MOR requirements. We 
follow the procedure as summarized by (Vetrano et al., 2012). For more 
theoretical information and a detailed derivation, we refer to (Bjorck 
and Golub, 1973). First, a SVD is performed for the product of the POD 
bases Φ1 and Φ2, which are associated with the manually set control 
parameters c1 and c2. In this work, the values for both concentrations are 
identical to those of the global POD approach in order to maintain 
comparability. 

ΦT
1 Φ2 = UΓVH (32) 

Hereby, the principal angles cosθ(c1, c2) are contained in the diago-
nal matrix Γ = diag(θi) ∈ RN×N. Performing a linear interpolation yields 
the principal angles from the reference point c1 to the desired 
parameter ci. 

θ(c1, ci) =
(

ci − c1
c2 − c1

)
θ(c1, c2) (33) 

Next, the principal vectors for the first and second POD base can be 
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calculated. 

Y = UΦ1

Z = VΦ2
(34) 

The sought-for POD basis Φi may then be interpolated at an arbitrary 
filter aid concentration ci using Eq. (35). 

Φi(ci) = Ucos(c1, c2) +
V −

(
UTV

)
U

⃒⃒⃒⃒
V −

(
UTV

)
U
⃒⃒⃒⃒2 sinθ(c1, ci) (35) 

Notably, a limitation of the SAIM is that only a single parameter 
variation can be taken into account, which is suitable for our benchmark 
problem as will be seen below. However, Amsallam and Farhat also 
proved that the SAIM is a special case of the so-called Grassman-Mani-
fold method (Amsallem and Farhat, 2008). This generalization of the 
SAIM allows a ROM adaptation for more than one varying parameter. 
Therefore, the SAIM can also be interpreted as a differential geometry 
procedure. Hereby, each of the initial POD bases form a subspace that 
compose a manifold. From here, the POD bases are mapped to a space 
that is tangential to the beforementioned manifold taking one of the 
single subspaces as reference. The interpolation is then performed in 
said tangential space. Finally, re-mapping the results to the initial 
manifold creates the adapted POD basis. 

The sampling locations for both, the global POD and the SAIM, were 
set to the filter aid concentrations c1 = 0.1850, and c2 = 0.4815. It is 
important to mention that the sampling locations of the POD bases must 
enclose the control’s optimum. Otherwise, the employed techniques 
yield no substantial accuracy benefits over the local POD approach. 
Therefore, the control values for sampling were chosen such that they 
may reflect a wide range of filter aid dosages that might occur in real 
processes. This requires an engineer’s expert knowledge for the 
observed cake filtration process in order to achieve low relative errors. 
In this study, we presume this condition to be met due to our previous 
work in (Pergam et al., 2022). Nevertheless, desired error tolerances 
may also be preserved using automated adaptive POD methods. These 
approaches usually rely on automated selection of appropriate snap-
shots, basis sampling locations, reduction and online enrichment of the 
computed POD bases, and/or continuous adjustment of the employed 
reduced order dimension N such that a desired error tolerance is 
maintained. An introduction to POD adaption can be found in (Benner 
et al., 2021). These methods could, e.g., help to preserve the high pre-
cision reduced order model, if time-dependent controls should be 
considered in the presented filtration problem. 

2.4. Optimization 

In order to evaluate the numerical efficiency of our ROM approach, 
we chose the benchmark problem of energy minimization, i.e., 

min
c

e. (36) 

Hereby, the filter aid concentration c in the filter inlet is defined as 
the system’s control parameter. The effect of c on the process energy 
consumption e can be calculated as the time integral of the superficial 
filtrate flow rate multiplied by the pressure drop (see (Pergam et al., 
2022; Kuhn, 2018; Kuhn and Briesen, 2015)). However, since we assume 
a constant flow rate, this scaling factor can be discarded for numerical 
investigations. Therefore, the reduced cost function can be approxi-
mated taking only into account the constantly increasing filtration 
pressure p0

3: 

e =
∫ T

0
p0 dt (37) 

Since the filter aid concentration cannot be negative and must be 
smaller than the solidosity of the filter cake εs, the control is bounded as 
0 < c < εs. Mechanistically, this quantity causes two distinctive ef-
fects that ultimately increase the filtration pressure continuously over 
time for the case of constant flow filter aid filtration processes:  

1. A high filter aid dosage increases the cake growth rate (see Eq. (8)) 
thus raising the overall filter resistance  

2. A low filter aid dosage significantly decreases the permeability of the 
material system (see Eq. (7)). 

Therefore, the existence of a single, global minimum, i.e., an ideal 
filter aid dosage acting as a trade-off between both effects, is guaranteed. 
This aspect is not only known from previous theoretical (Pergam et al., 
2022; Kuhn, 2018; Heertjes and Zuideveld, 1978; Tittel, 1987) but also 
experimental (Haba and Koch, 1978; Sutherland and Hidi, 1966; Car-
man, 1938) works. Notably, the cost function Eq. (37) might not be the 
economically most feasible for real-life applications. However, any 
desired optimization problem with clearly defined minima may be 
applied without major adjustment to the MOR procedure presented in 
this work. 

We used MATLAB’s fmincon function with standard options for 
solving the optimization problem Eq. (36). Hereby, the gradient-based 
interior-point algorithm (The MathWorks, 2022) systematically iter-
ates from a starting point for c towards the minimum of the cost function 
Eq. (37). 

To examine the performance of the ROM solving the benchmark Eq. 
(36), we will analyze the achievable numerical accuracy. To this end, the 
relative error RE is calculated with the system quantities fFOM from a 
FOM simulation and fROM for ROM results: 

RE = ||fFOM − fROM ||
||fFOM ||

⋅100%. (38) 

Notably, Eq. (38) will not only be evaluated for temporal de-
pendencies as RE(t), but also for parameter variations as RE(c). More-
over, the time-averaged relative error REt may also be obtained from the 
results of the previous equation to acquire further conclusive informa-
tion using the following integral. 

REt =
1
T

∫T

0

RE(t)dt (39) 

Furthermore, the average relative error of the cost function e over the 
control parameter range c1⋯cnc may be calculated using Eq. (40), where 
nc denotes the total number of discrete elements in said parameter range. 

REe =
1
nc

∑nc

i=1
RE(ci) (40) 

In spite of the achievable increase in computational efficiency of the 
ROM compared to the FOM, we will analyze: 

1. The computational time needed to solve the FOM in order to popu-
late the snapshot matrix A (see Eq. (13)) as well as the corresponding 
SVD to obtain the final POD basis (stage 1).  

2. The elapsed time needed for the repeated time integration of the 
ROM to solve the benchmark problem Eq. (36) (stage 2). 

3. Results 

First, we will investigate the POD basis obtained by the snapshots of 
a single FOM simulation using the parameters stated in Table 1. After the 
SVD is performed, the singular values can be studied to evaluate energy 
capture of the corresponding POD modes. Fig. 2 shows how much in-
fluence each mode has on the representation of the dynamics of the 
FOM. Note that the numerical digits of the singular values are already 

3 p0 can be obtained using constitutive relationship (4) and solving pl + ps 
= p0 
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transformed into a relative percentual scale. 
It can be observed that higher ranked basis functions quickly lose 

significance in the representation of the data. Moreover, starting from 
mode index i = 82, a plateau is reached. However, these latter modes do 
not contain any further information about the process dynamics but the 
respective singular values merely reflect numerical noise due to round- 
off errors occurring at 2.2⋅10−16 using double precision variables (The 
MathWorks, 2022). Therefore, the whole dynamic spectrum of the FOM 
can be represented with a POD basis containing ≈80 modes in total. 
Furthermore, all POD modes > 3 may be truncated since the sum of 
these first three basis functions already capture an energy level of 
≈99.9927 %, and thus exceed our set accuracy level of at least 99.99 % 
of the dynamics to be represented. This is also marked in Fig. 2 by the 
orange horizontal line. Accordingly, we yield a ROM with N = 3 degrees 
of freedom for the system state εs to represent the FOM. 

The final POD basis for the initial parameter set is shown in Fig. 3(a). 
Lower ranked basis functions capture more of the model’s dynamics, 
which can also be observed in the spatial variations of the respective 
mode. For instance, the first mode (blue) only shows minor changes over 
time. However, since higher mode indices capture faster and less sig-
nificant solution features, the corresponding basis functions qualita-
tively contain more variational features. Since the ROM was built using 
the previously introduced POD basis, Fig. 3(b) shows how the parame-
ters mi describe the impact of the respective POD mode over time for a 
single simulation. While temporal dependencies can especially be 
observed for the first and second mode, the parameter m3 corresponding 
to the third basis functions quickly approaches zero. Therefore, it can 
once again be observed that the latter mode only has a minor effect 
when the simulated results are transformed back into the full dimension 
using the linear combination of Eq. (12). Notably, this behavior is in 
accordance with POD theory (Wouwer et al., 2014). 

Since the qualitative and quantitative behavior of filtration specific 
system quantities, most importantly solidosity εs, permeability k, time 
dependent filter cake height L(t), and filtration pressure p0(t), are 
already analyzed in detail in (Pergam et al., 2022), we avoid plotting the 
FOM simulations as well as the results from the reconstructed ROM 
throughout the main text. Results of conducted forward simulations 
using the initial parameter set stated in Table 1 can be found in the 
Appendix A. Instead, we will investigate how the system states from a 
simulation of the ROM using the initial parameter set (see Table 1) 
perform in terms of the transient relative error RE(t). 

Fig. 4 displays the percentual accuracy of the system states εs and L. 
The highest temporal relative errors compared to the FOM simulation 
occur in the beginning of the simulated time span and subsequently 

decrease towards the end of the process. Taking into account all 
reconstructed states, the maximum transient error of RE(t) ≈ 1% occurs 
in the beginning of the process for the solidosity at the cake height z =
0.8, normalized by the front-fixing method. In total, the time averaged 

relative error is REt ≈ 0.09 % for εs and REt ≈ 0.07 % for L(t), which is 
quite low and represents the FOM fairly well. 

However, the previously described achieved numerical accuracy is 
not completely representative, since the ROM calculations only repro-
duced a FOM simulation using the same set of reference parameters. 
Therefore, we will next analyze the benchmark problem Eq. (36), which 
uses the previously analyzed ROM to examine the model’s behavior 
under parameter variation, in detail. The cost function Eq. (37), i.e., the 
reduced process energy consumption e depending on the control c, is 
plotted in Fig. 5 for both, the ROM, as well as the FOM. 

Note that the values of the energy consumption e are scaled as ẽ to 
the global minimum as reference, such that the percentual increase of 
process energy can be directly read from the ordinate axis if the simu-
lation is not conducted at the optimum. Same re-scaling applies to the 
abscissa; i.e., the transformed optimal filter aid concentration ̃c was set 
to 1 so that multiples of this dosage may be identified quickly. Notably, 
all re-scaled variables are denoted by a tilde (~) accent. Since the ROM 
was built using only one data snapshot at the reference filter aid con-
centration ̃c = 1.265, the reduced order model is especially accurate for 
this initial value. While the extremal point can still be found with 
reasonable accuracy, i.e., with a relative error of RE(c̃) ≈ 0.2% (see also 
the dotted line in Fig. 6), error margins increase significantly the further 
the control parameter ̃c deviates from the initial data set. The mean error 
REe for the cost function displayed in Fig. 5 is ≈1.4 % compared to the 
FOM with a maximum RE(c̃) ≈ 5.7 % at the right boundary of the 
parameter range. 

In order to enable the ROM to perform better over wide ranges of 
parameter variations, we will next analyze the performance of the global 
ROM approach and the SAIM for ROM adaptation. We compare the re-
sults of the previously mentioned techniques to the local POD basis 
created by the snapshots of only one parameter set. Fig. 6 shows the 
control-dependent relative error performance in comparison to the local 
POD approach. 

Using the first three POD modes again, the average error REe for the 
shown parameter range of the filter aid concentration ̃c is ≈1.7 % with a 
maximum relative error RE(c̃) ≈ 4.8 % at ̃c = 2.5. Thus, the global POD 
performs worse compared to the local POD as indicated by the blue 
function, especially considering that the minimal error from the local 
POD cannot be reached either. This is because the global ROM was built 
to represent a wide parameter range of ̃c instead of only one operation 
condition as was the case for the local POD. Therefore, the POD modes 
must now comprise a bigger information content on how to reflect these 
parameter variations. This ultimately leads to a loss of captured energy E 
per basis function. Consequently, the number of significant POD modes 
has to be increased to five in order to meet our chosen detail level. Re- 
building the ROM using these significant basis functions, it can be seen 
that the relative error depending on the control c is significantly 
decreased, now averaging at REe ≈ 0.19 %. Notably, the accuracy is 
most likely increased by one order of magnitude compared to the FOM 
since the energy capture exceeds the desired energy capture by far, i.e., 
99.9994 %. Moreover, the global POD yields a more uniformly distrib-
uted relative error with two minima located near the initial sampling 
locations. In total, the accuracy of these minimal errors can also reach 
the magnitude of the local POD. 

Next, the numerical performance of the SAIM is examined as a ROM 
adaptation method. The necessary data snapshots were obtained using 
the same sampling location as was the case in the global ROM, i.e., ̃c1 =
0.633, and c̃2 = 1.645. Since the SAIM needs the same amount of 

FOM simulations as the global POD to populate the initial snapshot 
matrix A, five modes were chosen in total in order to create an equal 
baseline for comparing the performance of both methods. Fig. 7 contains 

Fig. 2. Singular values σi describing the energy capture E, i.e., level of FOM 
dynamics represented per POD mode in percent (blue). The horizontal line 
represents the energy threshold for mode truncation (orange). 
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Fig. 3. (a) Final POD basis consisting of 3 modes defined for the whole spatial domain z. (b) Parameters m over time showing the impact of the respective POD modes 
in Eq. (12) to reconstruct the full-dimensional data field. This basis is valid to represent FOM simulations using the initial parameter set. 

Fig. 4. Transient relative error RE(t) for the system states εs, and L obtained by 
the ROM compared to the FOM simulations using the initial parameter set. 

Fig. 5. Cost function Eq. (37) depending on filter aid concentration c. FOM 
(blue), local ROM (green), optimal filter aid dosage (orange). 

Fig. 6. Relative error RE(c̃) of the cost function Eq. (37) resulting from the 
ROM compared to the FOM. Local POD basis obtained with one sampling 
location (grey); global POD basis obtained with two sampling locations and 
three modes (blue) / five modes (orange). 

Fig. 7. Relative error RE(c̃) of the cost function Eq. (37) of the ROM compared 
to the FOM. SAIM basis (blue); global POD basis (orange); local POD 
basis (grey). 
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the relative error of the cost function depending on the filter aid con-
centration RE(c̃) for the SAIM (blue) compared to the global ROM (or-
ange), as well as the local ROM (grey). 

Here, the relative error depending on the filter aid concentration ̃c is 
uniformly distributed for the parameter range near the optimal dosage 
since the sampling locations enclose said point. Therefore, the SAIM 
qualitatively performs similar to the global POD. In direct comparison 
however, the SAIM-obtained minimal relative errors outperform the 
global POD by up to two orders of magnitude. This is also captured by 
the average error for the cost function, which results in REe ≈ 0.06 % 
performing one magnitude better over the whole parameter range. Upon 
closer inspection, one can also see that the global POD does not yield the 
minimal relative errors at the exact POD sampling locations, but only in 
a region near the sampling ordinates of the control ̃c. This is because the 
global POD basis must represent all data in an L2-optimal way. Contrary, 
this tradeoff must not be fulfilled by the SAIM – the minimal errors in the 
relative error graphs are indeed located at the exact snapshot ordinates. 
Here, both POD bases must only represent the local sampling locations, 
after which one set of optimal modes is interpolated into the other. Thus, 
the obtained bases maintain more of the original solution features of the 
FOM. 

Considering the varying number of employed basis functions, and 
the varying preparation work needed for each method, a more mean-
ingful comparison may be the computational time required to solve each 
ROM. Therefore, we will next analyze the computational cost caused by 
our optimization procedure to solve the benchmark problem Eq. (36). 
All results are collected in Table 2 for easier comparison. Notably, we 
normalized the calculation times to the procedure solving the bench-
mark problem using the FOM, where the global minimum was obtained 
after 41 separate model evaluations. 

In total, the reduced computational times in stage 2 are comparably 
small for all three introduced POD techniques. Independent of the 
method, the benchmark problem can be calculated approximatively 10 
times faster using the different ROMs compared to the FOM. Remark-
ably, the ROM using three global POD modes does not necessarily 
perform faster than the counterpart using five modes. This is due to the 
overall higher relative errors that lead to a slower numerical conver-
gence during the optimization procedure since the necessary gradients 
cannot be determined as precisely. Examining the numbers of necessary 
model evaluations to solve the benchmark problem reflects the same 
behavior: the higher the average relative error REe, the more ROM 
evaluations have to be performed. In total, ≈40–60 runs must be 
simulated in order to find the global minimum using the presented 
ROMs, which is similar to the FOM benchmark. 

When regarding the overall simulation time, it is clear that stage 1 has 
the biggest impact on the calculations: two instead of one FOM simu-
lations are necessary to obtain all required snapshots to employ the 
global POD and the SAIM. Moreover, the computational load in stage 1 is 
slightly higher for the SAIM, since an additional SVD has to be per-
formed (see Eq. (32)). Compared to the local ROM, the global POD 
approach needs ≈20 % (five modes) to ≈50 % (three modes) more time 

to solve the benchmark problem, while the SAIM has an additional ≈25 
% impact on the computational cost. However, comparing the SAIM to 
global POD using five modes, these differences resulting from additional 
calculation steps are negligible, and most likely don’t have a significant 
impact on real applications. 

Also taking into consideration the achieved numerical accuracies 
shows how the SAIM is superior compared to the global POD in terms of 
representing parameter variations for our compressible cake filtration 
model. Far lower relative errors can be achieved since the basis does not 
comprise all global information but merely local details for two separate 
sample data sets. Choosing the same number of modes as in the global 
POD yields an interpolated basis that mostly maintains the accuracy 
level of the reference bases. Another advantage becomes clear consid-
ering that the SAIM needs exactly as many FOM simulations as the 
global POD to build the ROM. Therefore, for a given elapsed time span, 
the SAIM will outperform global POD. Furthermore, it is safe to say that 
due to the mathematical properties of the SAIM, this method is used 
preferably over naïve interpolation approaches. This is because a costly 
re-orthogonalization of the adapted POD base can be omitted, which in 
return offers additional benefits in acceleration of the computations. 

Remarkably, even the local POD performs fairly well per an average 
error of REe ≈ 1% over the whole parameter range, which might be 
insignificant if the ROM simulations shall support real-life processes. 
However, note that the benchmark problem Eq. (36) is a simple version 
of the overall control problem since the unknown control is chosen to be 
constant. Transformed into a real time scale, the optimization problem 
only takes approximative 100 s to solve using the FOM. This time span 
does not pose significant expenses, and would not require a ROM 
approach to solve for a real application. Nevertheless, the optimization 
problem is merely intended to be a benchmark. Other problems, e.g., 
infinite-dimensional optimal control tasks, result in far more complex 
transient parameter variation computations. Therefore, the achieved 
90% reduction of the computational cost is also to be expected in said 
applications, such that the initial day-long elapsed time spans we 
encountered in (Pergam et al., 2022) may be reduced by several hours. 
Moreover, our proposed ROM framework enables the model for online 
evaluations. Combining this with optimal time-dependent filter aid 
dosage strategies delivers all necessary components to develop a 
non-linear model predictive control approach, which will be addressed 
in future studies. 

In conclusion, advanced model-based optimization, and control 
procedures need as high of an accuracy as possible in order to reliably 
calculate the gradients required for the underlying optimization algo-
rithm. Especially in this regard, the SAIM might unlock further uses of 
MOR in solid liquid separation processes since it offers great potential 
for low computational cost as well as for the satisfaction of error margins 
for wide parameter ranges. 

4. Conclusions 

We showed how POD based MOR can serve as a powerful data-driven 

Table 2 
Dimension, i.e., number of states, number of model evaluations to solve the benchmark problem Eq. (36) using the FOM and the ROM, computational cost, and 
numerical accuracy of the ROM compared to the FOM using local POD, global POD, and the SAIM.   

Dimension4 Number of evaluations Elapsed time REe 
FOM ROM stage 1 stage 2 total 

FOM (reference) 250 41 - - 1 1 - 
Local ROM 3 1 53 0.024 0.062 0.086 1.4487 % 
Global ROM-3 3 2 57 0.049 0.081 0.130 1.7128 % 
Global ROM-5 5 2 41 0.049 0.053 0.102 0.1845 % 
SAIM ROM 5 2 40 0.051 0.057 0.108 0.0586 %  

4 Note, that each scenario has to solve for the additional state L(t), yielding the final dimension N+ 1. However, since this state cannot be reduced in dimensionality, 
it was not accounted for in Table 2.  
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tool to increase the computational speed of a complex mechanistic 
compressible cake filtration model. Notably, this work does not only 
expand the ROM applications in the context of solid-liquid separation, 
but also embeds seamlessly into the class of moving boundary problems 
facing strong non-linearities due to the exponential constitutive re-
lationships Eqs. (5)–(7). Hereby, we were able to reduce the high 
dimensional model of partial differential equations to a ROM comprising 
only three dimensions, which roughly translates into a 98% reduction in 
dimensionality. Moreover, we employed the SAIM as a ROM adaptation 
method in order to solve a benchmark optimization problem. To this 
end, the SAIM takes advantage of performing the interpolation of the 
respective POD modes in a tangential space. Due to special mathemat-
ical aspects of differential geometry, the necessity of an additional re- 
orthogonalization of the newly interpolated basis is eliminated. For 
our application, the SAIM-based ROM performs up to 2 magnitudes 
more accurately compared to a simple global POD approach while 
requiring similar computational costs. Using this procedure, the 
benchmark problem can be solved approximately 10 times faster 
compared to an optimization using the FOM. To the best of our knowl-
edge, the initial mathematical model did not find any use in actual 
industrially scaled problems, which is most likely due to computational 
restrictions. The achieved significant speed-up therefore enables the 
ROM for potential use as a time-economic tool in process design, or in 
time-sensitive environments, such as model-based advanced process 
control methods. Moreover, we are confident that our findings can also 
be adapted to 2D or 3D problems to describe local effects of the filter 
cake in higher detail. Since single simulations for such model formula-
tions usually take up to several hours to calculate, they are currently 
infeasible for applications requiring repeated evaluations (e.g., optimi-
zations, or real-time applications). Therefore, MOR could serve as a tool 
to overcome this issue as well. 

Glossary  

Roman letters 
A [–] snapshot matrix 
bεs [–] boundary condition vector for εs 

bql [–] boundary condition vector for ql 

c [–] volumetric filter aid concentration 
in suspension 

D [–] finite difference matrix 
E [%] POD energy capture 
e [–] reduced energy consumption 
F [–] pre-calculated coefficient matrix for 

the ROM 
f [–] arbitrary function(s) 
I [–] identity matrix 
i [–] index of m, Φ, σ, and for 

interpolated parameter c 
j [–] index of σ 
k [–] permeability of filter cake; 

compressed 
k0 [–] permeability of pure filter aid; 

uncompressed 
kinit [–] permeability of filter cake; 

uncompressed 
L [–] filter cake height 
m [–] time-dependent coefficient 
N [–] total number of basis functions 
NL [–] non-linear terms of the ROM 

requiring reconstruction 
n [–] size of spatial discretization 
nc [–] number of discrete values in a given 

parameter range for c 
nimp [–] volumetric impurity concentration 

in suspension 
nt [–] size of temporal discretization 
p0 [–] process pressure 

(continued on next column)  

(continued ) 

pa [–] empirical compression parameter 
pl [–] liquid pore pressure 
ps [–] compressive stress acting on solid 

phase 
ql [–] superficial flow rate of liquid phase 
qlm [–] superficial flow rate of liquid phase 

at filter medium 
RE [%] relative error 
s [–] empirical Sutherland parameter 
T [–] simulation time span 
t [–] time 
U [–] left singular orthonormal basis 

vectors from SVD 
V [–] right singular orthonormal basis 

vectors from SVD 
x [–] height coordinate 
Y [–] principal vectors associated with Φ1 
z [–] height coordinate treated by front 

fixing method 
Z [–] principal vectors associated with 

Φ2 
Greek letters 
β [–] empirical compression parameter 
Γ [–] diagonal matrix comprising 

principal angles from SVD 
δ [–] empirical compression parameter 
ε [–] porosity 
εs [–] solidosity 
εs0 [–] solidosity of uncompressed filter 

cake 
Φ [–] global basis function 
Σ [–] diagonal matrix comprising 

singular values from SVD 
Accents 
− mean values  
∼ re-scaled variables  
∗ scaling parameter resulting from 

non-dimensionalization  
bold vectors or matrices   

Notably, most variables and parameters do not include units due to 
our non-dimensionalized mathematical model. 
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Appendix A. Full order model simulations 

This appendix includes sample simulations of the FOM for the most important system quantities. The following plots do not contain any new 
findings, and may be found similarly in previously conducted studies (compare, e.g., (Pergam et al., 2022; Tien, 2006; Stamatakis and Tien, 1991)). 
However, the figures are intended to help the understanding of the qualitative spatio-temporal development of the system states and corresponding 

constitutive relationships, especially regarding the interpretation of the examined relative errors in subsection 3. 
Fig. A-1(a) displays the cake height L over time. As we examine the operation mode of a constant volumetric filtrate flow rate, the function should 

grow linearly in the ideal case of an incompressible process. However, due to cake compression affecting the filtration process, the cake growth rate dL
dt 

slowly decays over time, since especially the lower cake layers are compacted. This can be observed in Fig. A-1(b) displaying the cake solidosity εs over 
cake height L for three representative process times. Since the filter cake becomes denser during the course of the process, naturally the characteristic 
quantity of permeability k, as described by the constitutive relationship Eq. (6), decreases over time. This can be observed in A-1(c). In return, the 
filtration pressure p0 rises exponentially (Fig. A-1(d)), compared to the ideal case of a linear rise in process pressure of an incompressible cake filtration 
process. Notably, the pressure drop is processed in Eq. (37) by calculating the time integral over p0 which equals the cost functional to be minimized. 
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