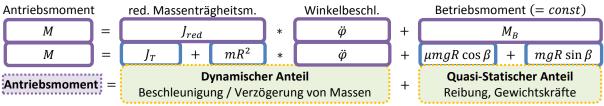
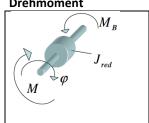
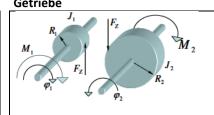

SYS_A - ANTRIEBE


Selbstgeführte Mot	> 3000min ⁻¹		Fremdgeführte Motore	n n		
Mechanischer Komn	Mechanischer Kommutator				Lastabhängige Drehzahl	Frequenzstarre Dreh- zahl
Wechselstrom- Motoren	Gleichstrom- Motoren				Asynchronmotoren	Synchronmotoren
Wechselstrom – Kommutatormotor (Universalmotor)	Reihenschluss Nebenschluss fremderregter Doppelschluss permanenterre Motor	motor Mot. smot.	Motor mit Magnet- läufer: Blockstromtechni Sinusstromtechni AC-Servomotor Geschalteter Re- luktanzmotor	ik	Drehstrommotor Käfigläufer Wechselstrommot.: Kondensatormotor, Widerstands- hilfsstrangmotor Spaltmotor	Drehstrommotor Magnetläufer Hybridläufer Wechselstrommotoren Magnet-, Reluktanz- Hysteresemotor Schrittmotoren Magnet-, Reluktanz- Hybridschrittmotor
Stator: Spule	Stator: Magnet		Stator: Spulen		Stator Spulen	
Rotor: Spule	otor: Spule Rotor: Spule		Rotor: Magnet		St/Rt: asynchron	St/Rt: synchron
Motor: nicht robust	, teuer, laut		Motor: robust, leise, günstig		Motor: robust, leise, g	ünstig
Elektronik: günstig			Elektronik: teuer		Elektronik: sehr teuer	


Selbstkühlung ohne Lüfter Eigenkühlung eigener Lüfter Fremdkühlung fremder Lüfter

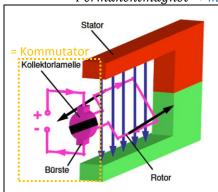

Kühlung

Drehmoment

Drehmoment

Umfangsgeschwindigkeit

 $v_1 = v_2$,


Übersetzungsverhältnis

 $i = \frac{Antriebsdrehzahl}{Abtriebsdrehzahl}$

Reduktion der Massenträgheit mit $1/i^2n$ Reduktion des Moments mit 1/in

Gleichstrommotor

Permanentmagnet \rightarrow magn. Fluss $B \rightarrow$ Lorentzkraft \rightarrow Drehung des Rotors (mit Umpolung)

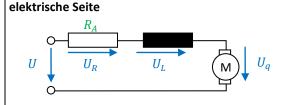
Lorentzkraft

$$\overrightarrow{F_L} = \overrightarrow{l} * \overrightarrow{l} \times \overrightarrow{B} = Q * \overrightarrow{v} \times \overrightarrow{B}$$
$$F = \overrightarrow{l} * l * B = Q * v * B$$

Erzeugte Moment

$$M_{i} = \underbrace{I * l * B * d * N}_{M_{i} = \underbrace{I * k_{M}}$$

Induzierte Spannung


$$U_q = B * l * v (pro Leiter)$$

$$U_q = 2NBl \frac{d}{2} \omega (pro N)$$

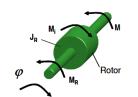
$$U_q = k_M \omega = k_u n = \frac{1}{k_n} n$$

ang acs Rotors (mit ompotang)						
$k_M = lBdN$	Drehmomentkonstante					
$k_M = \frac{U - RI}{\omega}$	$[k_M] = \frac{Nm}{A}$					
$k_u = lBdN \frac{2\pi}{60}$	Generatorkonstante					
$k_n = \frac{1}{k_u}$	Drehzahlkonstante					
$v = \frac{d}{2}\omega$	Umfangsgeschwindigkeit					
N	Anzahl Wicklungen (≠ Anz. Leiter)					
n	Drehzahl					

Betriebsdaten bei 25°C (quasi-statisch)

$$U = U_q + U_R$$

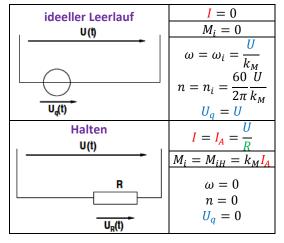
$$U = k_M \omega + R * \frac{M_i}{k_M}$$


$$U_*(avasi - statisch) = 0$$

$$U_L(quasi - statisch) = 0$$
 $U_R = R * I$

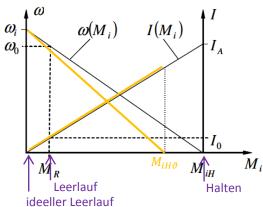
mechanische Seite

Μi Erzeuates Drehmoment: Wird von der Lorentzkraft erzeugt


Abgegebenes Moment: Steht an der Welle zur Verfügung

$$\frac{M_i}{\text{erzeugtes Moment}} = \frac{M_B}{\text{Belastung moment}} + \frac{M_R}{\text{Reibmoment}}$$

$$M_R(quasi-statisch) = const.$$
 $M_R(Leerlauf) = \frac{I_0 k_M}{R} = \frac{U * k_M - \omega_0 k_M^2}{R}$
 $M = M_B = M_{mech}$


Betriebszustände

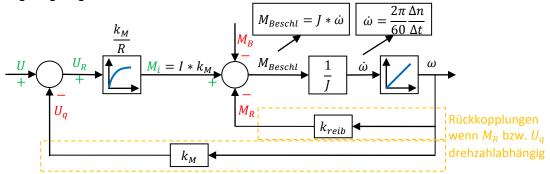
Grössen

0.000							
ω_i	ideelle Leerlaufwinkelgeschwindigkeit						
n_i	ideelle Leerlaufdrehzahl $[min^{-1}]$						
n_B	Betriebsdrehzahl						
I_A	Anlaufstrom						
M_{iH}	erzeugtes Anhaltemoment						
M_H	M _H abgegebenes Anhaltemoment						
$M_H \ _ \ M_{iH} $							
$M_H = k_M I_A - k_M * I_0$							

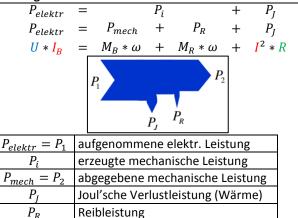
Drehzahl-Drehmoment Kennlinie

Drehzahl

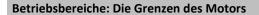
$$n_B = n_i \left(1 - \frac{M_i}{M_{iH}} \right), \qquad n_{\eta max} = n_i \left(1 - \frac{M_{\eta max} + M_R}{M_{iH}} \right)$$

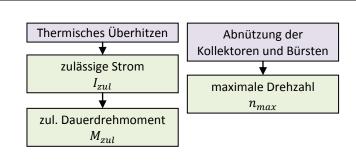

Winkelgeschwindigkeit

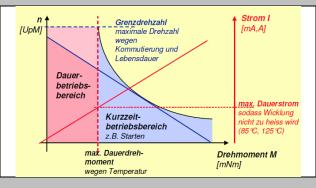
$$\omega = \omega_i \left(1 - \frac{M_i}{M_{iH}} \right), \qquad \left\{ I = \frac{M_i}{k_M} \right\}$$


Kennliniensteigung

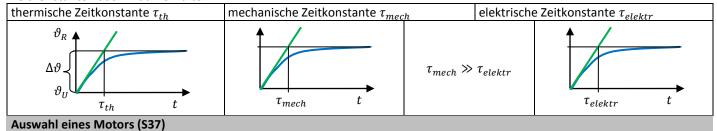
$$\frac{\Delta n}{\Delta M} = \frac{R}{k_M^2} \frac{30}{\pi}$$


Regelungsdiagramm




Leistungbilanz

Maximale Leistung	aximaler Wirkungsgrad
$M_{P_2 max} = \frac{M_H}{2}$	$M_{\eta \; max} = \sqrt{M_{iH} M_R} - M_R$
$P_{2 max} = \frac{\omega_i}{4} \frac{(M_{iH} - M_R)^2}{M_{iH}}$	$\eta_{max} = \left(1 - \sqrt{\frac{M_R}{M_{iH}}}\right)^2$
P_{2max} M_H M_H	η_{max} M
P=U*I,	$\eta = \frac{P_2}{P_1}$



Amaurvemanten				
Grundfragen	Zeit bis Betriebstemperatur	Zeit zum Erreichen der Drehzahl		
Antwort	thermische Zeitkonstante:	mit Last:	ohne Last:	
	$t = 5 * t_{th} \rightarrow 99,3\%$	mech. Zeitkonstante	elekt.magn. Zeitkonstante	
		$\tau_{mech} = \frac{(J_R + J_{red})R}{k_M^2}$	$ au_{elektr.mech} = rac{J_R R}{k_M^2}$	
	senträgheitsmoment des Rotors I. Massenträgheitsm. der Last	$n(t) = n_B \left(1 - e^{-\frac{t}{\tau_{mech.}}} \right)$	$n(t) = n_0 \left(1 - e^{-\frac{t}{\tau_{el.mech.}}} \right)$	
		$\to t = -\tau_{mech.} \ln \left(1 - \frac{n}{n_B} \right)$	$\to t = -\tau_{el.mech.} \ln \left(1 - \frac{n}{n_0} \right)$	

Zeitkonstanten aus Anlaufverhalten

M(t), P(t), Überlastzeit, au_{th} , Übersetzung i, Wirkungsgrad η , Versorgungssp., Belastungsstrom, max. Strom

Betriebsdaten bei Betriebstemperatur (statisch)

$R_A \neq const$ R_A ist temperature	abhängig →	$I \neq const$ $\omega = const$ $M_B = const$ k	$_{\rm M}={ m const}$		
dynamisch	$artheta_R$	Rotortemperatur, Ankertemperatur			
$\vartheta_R = \vartheta_U + \Delta\vartheta \left(1 - e^{-\frac{t}{\tau_{th}}}\right)$	$artheta_U$	Umgebungstemperatur	Wärmefluss		
,	$\Delta artheta$	Temperaturdifferenz			
stationär	τ.,	thermische Zeitkonstante	Motorgehäuse		
$\vartheta_R = \vartheta_U + \Delta \vartheta$	$ au_{th}$	thermisene zertkonstante	Rotor		
$R_{th} = R_{th1} + R_{th2}$ $\Delta \vartheta = P_J * R_{th}$ $\Delta \vartheta = \frac{R_{th} I_B^2 R}{1 - R_{th} I_B^2 R \alpha}$ R_{th1}, R_{th2}		Thermische Widerstände (Ändern durch Kühlrippen oder Einbauen eines Lüfters)	∂_R R_{ih1} R_{ih2} ∂_U		
$P_I = R_{\vartheta} * \frac{I_B^2}{I_B^2} \qquad \qquad R_{\vartheta}$		temperaturabhängiger Widerstand			
$I_B = \frac{M_B + M_R}{L}$	7	Belastungsstrom			
$I_B = \frac{r_B + r_R}{k_M}$ I_B		(Motorstrom im Betriebspunkt)			
$R_{\vartheta} = R(1 + \alpha \Delta \vartheta)$	überall ein ϑ	anhängen, wo etwas temperaturabhängig ist	t. hier: $\delta=artheta$		

Kenngrösse	Bei 25°C	Bei Betriebstemperatur 🔑 🐧
Motorspannung	$U = k_{\scriptscriptstyle M} \omega + RI$	$U = k_{\scriptscriptstyle M} \omega + R_{\scriptscriptstyle \delta} I \qquad \qquad ^{\scriptscriptstyle \Phi}$
Inneres Moment	$M_i = Ik_M$	Unverändert
Aufgenommene elektrische Leistung (konstante Span- nungsquelle)	$P_1 = UI$	Unverändert
Anlaufstrom	$I_A = \frac{U}{R}$	$I_{AS} = \frac{U}{R_S}$
Reibungsmoment	$M_R = k_M I_0$	Unverändert
Erzeugtes Anhaltemoment	$M_{iH} = k_M I_A$	$M_{iH\delta} = k_M I_{A\delta}$
Verfügbares Anhaltemoment	$M_H = M_{iH} - M_R$	$M_{H\delta} = M_{iH\delta} - M_R$
Ideelle Leerlaufwinkelge- schwindigkeit	$\omega_i = \frac{U}{k_M}$	Unverändert, da eine Span- nungsspeisung vorgegeben ist
Ideelle Leerlaufdrehzahl	$n_i = \frac{60}{2\pi} \frac{U}{k_M}$	Unverändert, da eine Span- nungsspeisung vorgegeben ist
Strom-Drehmoment Kennlinie	$M_i = k_M I$	Unverändert
Winkelgeschwindigkeit- Drehmoment Kennlinie	$\omega = \omega_i \left(1 - \frac{M_i}{M_{iH}} \right)$	$\omega_{\delta} = \omega_{i} \left(1 - \frac{M_{i}}{M_{iH\delta}} \right)$
Drehzahl-Drehmoment Kenn- linie	$n = n_i \left(1 - \frac{M_i}{M_{iH}} \right)$	$n_{\delta} = n_i \left(1 - \frac{M_i}{M_{iH\delta}} \right)$
Abgegebene mechanische Leistung	$P_2 = \omega_i \frac{M(M_{iH} - M - M_R)}{M_{iH}}$	$P_{2\delta} = \omega_i \frac{M(M_{iH\delta} - M - M_R)}{M_{iH\delta}}$
Abgegebenes Moment bei maximaler Leistung	$M_{P2\max} = \frac{1}{2} (M_{iH} - M_R)$	$M_{P2\max\delta} = \frac{1}{2} (M_{iH\delta} - M_R)$
Maximale abgegebne mechanische Leistung	$P_{2\max} = \frac{\omega_i}{4} \frac{\left(M_{iH} - M_R\right)^2}{M_{iH}}$	$P_{2\max\delta} = \frac{\omega_i}{4} \frac{(M_{iH\delta} - M_R)^2}{M_{iH\delta}}$
Wirkungsgrad	$\eta = \frac{M(M_{iH} - M - M_R)}{M_{iH}(M + M_R)}$	$\eta_{\delta} = \frac{M(M_{iH\delta} - M - M_R)}{M_{iH\delta}(M + M_R)}$
Abgegebenes Moment bei maximalem Wirkungsgrad	$M_{\eta \max} = \sqrt{M_{iH} M_R} - M_R$	$M_{\eta \max \delta} = \sqrt{M_{iH\delta} M_R} - M_R$
Maximaler Wirkungsgrad	$\eta_{\text{max}} = \left(1 - \sqrt{\frac{M_R}{M_{iH}}}\right)^2$	$\eta_{\max \delta} = \left(1 - \sqrt{\frac{M_R}{M_{iH\delta}}}\right)^2$

Schrittmotoren

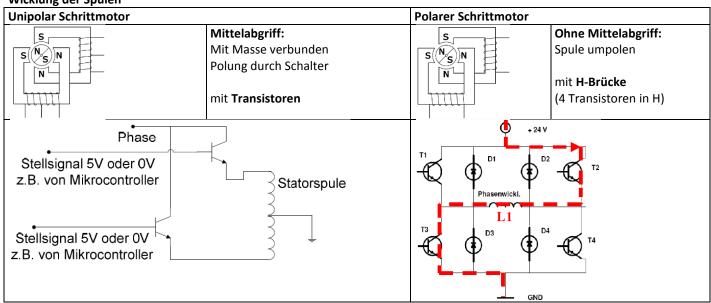
Einsatzgebiet

- Exakte, günstige Positionierung, da man auf teure Dreh- oder Winkelgeber verzichten kann
- Drehmoment nimmt mit steigender Impulsfrequenz ab.
- Wird die Impulsfrequenz überschritten, tritt Schlupf auf. = Motor verliert Schritte.

Aufbau und Betrieb Permanentmagnet-Schrittmotoren VR-Schrittmotor (Reluktanzmotor) Hybrid-Schrittmotor Winding 12 Rotor Stator Bewegung durch schrittweise Bewegung durch Ausrichtung des Rotors Aufbau Kombination aus VR- und Beschaltung der Statorspulen der mit der angesteuerten Phase durch Permanent-/Schrittmotor einzelnen Phasen. Magnetfeld Rotor: magnetisierten Permanentmagneten, an dessen Enden -> Änderung der Polarität des Stator: verzahnt, trägt die Spulen Statorfeldes Rotor: laminierte, verzahnte Eisenbleche zwei gezahnte Scheiben sind. Stator: Zähne mit Spule = Phase Vorteile: kostengünstig Vorteile: grössere Auflösungen,

Phase: 2 gegenüberliegende bestromte Ständerspulen

Betriebsarten


Rotor: Pole / Polpaare

Vollschr	ittb	etri	eb			Halbschrittbetrieb						Mikroschritt-Betrieb
4 Schritt	e, d	lie d	en l	Roto	or	Genauere Positionierung				erui	ng	Verfeinerung der Schritte durch eine stufenweise
nach red	hts	lau	fen	lass	en:	durch do	opp	elte	Sch	ritte	e (8)	Erhöhung oder Verringerung der Phasen.
Schritt	L1	L2	L3	L4		Schritt	Schritt L1 L2 L3 L4			Theoretisch beliebig viele Einzelschritte.		
0	1	1	0	0		0	1	0	0	0		
1	0	1	1	0		1	1	1	0	0		
2	0	0	1	1		2	0	1	0	0		
3	1	0	0	1		3	0	1	1	0		
grösseres Haltemoment												

höhere Drehmomente

Ansteuerungstechnik

Wicklung der Spulen

Dynamisches Verhalten

- Ein Schrittmotor wird durch eine **Folge von Impulsen** betrieben
- Maximale Frequenz beim Beschleunigen/Abbremsen ohne Schrittfehler ist die Start-/Stop-Frequenz
- Höhere Schrittfrequenz als Start-/Stop-Frequenz ist der Betriebsbereich

Auslegung von Schrittmotor-Antrieben

Schrittwinkel lpha

Wie viel Grad sich die

Achse bei einem Vollschritt dreht.

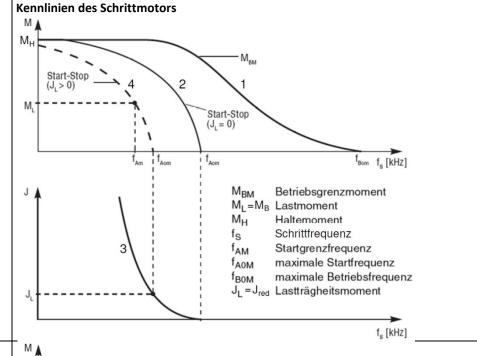
2π	Z	Schritte je Umdr.
$\alpha = \frac{1}{Z}$	p	Anzahl Poolpaare
z = 2 p m	m	Anzahl Phasen

Nennstrom

Maximal zulässiger Strom pro Phase

Nennspannung

Spannung bei stehendem Motor


Schrittfrequenz und Drehzahl

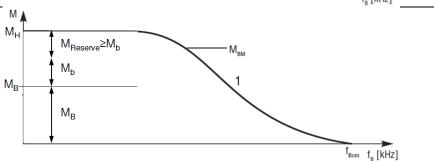
Frequenz und Drehzahl des Motors.

$$\omega = \alpha * f_s \frac{f_s}{\alpha} \frac{\text{Schrittfrequenz}}{\text{Schrittwinkel}}$$

Haltemoment M_H

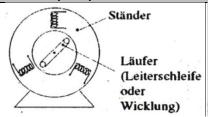
maximales statisches Drehmoment

max. Beschleunigungsmoment


$$M_b = (J_{Rotor} + J_{red}) * \ddot{\varphi}$$
$$\ddot{\varphi} = \frac{\Delta \omega}{\Delta t}$$

Betriebsmoment

$$M_{BM} \ge M_B + M_b$$


min. Moment


$$M_{min} = M_B + 2M_b$$

Asynchronmotoren, Pulsweitenmodulation und Frequenzumrichter

Funktionsprinzip & Aufbau

f	n_d	Drehfelddrehzahl
$n_d = \frac{J_1}{m}$	f_1	Netzfrequenz
p	p = 2	Polpaarzahl
	n_s	Schlupfdrehzahl
$n_s = n_d - n$	n	Drehzahl des Läufers

Verdoppelung der Polpaare = Halbierung der Drehfehlddrehzahl

Prinzip: Statorwicklung -> rotierendes Magnetfeld -> Lenzschen Regel -> Drehung

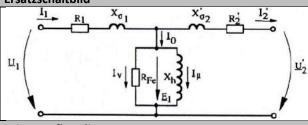
Eigenschaften: sehr robuste und fast wartungsfreie Konstruktion, unwesentliche Beeinflussung der Drehzahl

Speisung: Drehstromnetz, in Stern oder Dreieckschaltung

Asynchronmotor mit Schleifringläufer (AMSL)

Sternschaltung Vorteile:

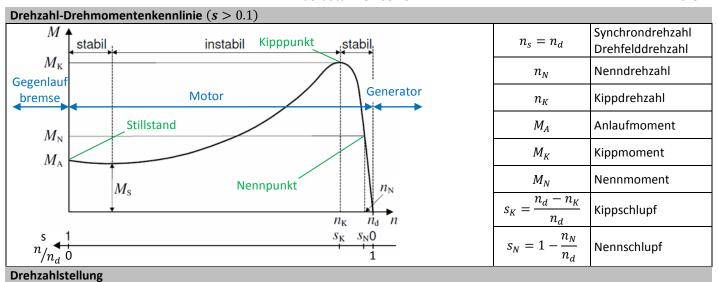
Läuferkreis von aussen elektrisch zugänglich

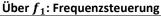

Asynchronmotorm mit Käfigläufer (AMKL)

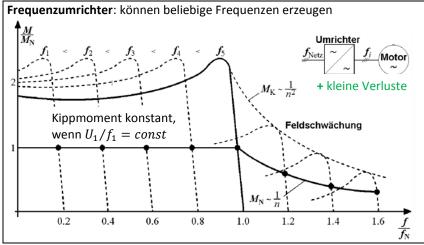
Vorteile:

robust, wenig störanfällig, wartungsfrei, auch mit Frequenzumrichter für geregelte Antriebe

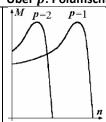
Ersatzschaltbild

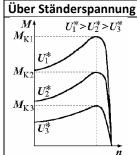

Ähnlichkeit mit Transformator

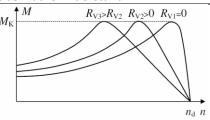

Gemeinsam: Gleiches Ersatzschaltbild


ι	Unterschied: Schlupf							
	$s = \frac{n_d - n}{n_d}$	$0 < s \le 1$	Schlupf					
	$f_2 = s * f_1$	f_2	Frequenz des Läuferstroms					

Leistungsflussdiagramm


$P_{ m S}$	P_S	augenommene Wirkleistung	$= 3 * U_1 * I_1 * \cos \varphi$	
	V_{Fe}	Eisenverlustleistung	$= 3 * R_{Fe} * I_V^2$	
V_{Fe}	V_{Cu1}	Ständer-Kupferverlustleistung	$= 3 * R_1 * I_1^2$	
V_{Cul}	M_i	inneres Moment		
$P_{\rm i}$	P_i	übertragene Wirkleistung	$= 2\pi * n_d * M_i$	
	V_{Cu2}	Läufer-Kupferverlustleistung	$= P_i * s$	
$V_{\text{Cu}2}$	P_{mi}	innere mechanische Leistung	$= 2 * \pi * n * M_i$	
$P_{\rm mi}$	V_R	Reibungsverlustleistung		
V_{R}	М	an die Welle abgegebenes Moment	$= \frac{3}{2\pi n_d} \frac{{U_1^*}^2}{R_2'} s$	
P_{M}	P_{M}	mechanische Leistung	$=2\pi*n*M$	


Über p: Polumschaltung


p ist ganzzahlig -> Stufengetriebe Sterungsmöglichkeiten Schaltung von 2 getrennten Wicklungen

Kombination von 2 Wicklungen mit dazuschalten der zweiten Wicklung

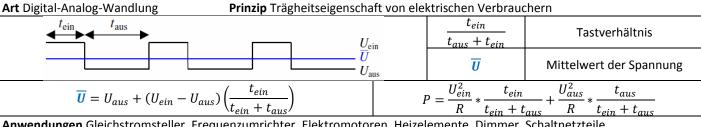
Über s: Schlupfsteuerung

einfach, billig; bei grossem Schlupf grosse Läuferverluste; Achten, dass bei sehr kleinen Spannungen noch ein Schnittpunkt in der Motorkennlinie gefunden wird

nur bei Schleifringläufermotoren; unverändertes Kippmoment gut für Schwerstanläufe; schlechten Wirkungsgrad -> Wärme

Auslegung eines Asynchronmotors

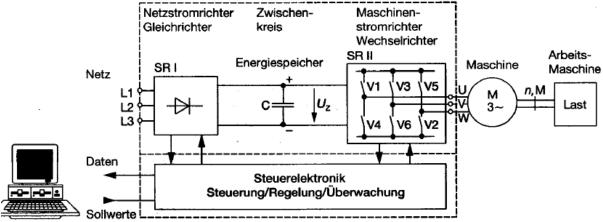
Keine Thermische Überlastung	$M_{rms} < M_N$, $M_{max} < M_S$,	$M_{max} < M_A$
Damit der Meter hei Schwankungen nicht stehen bleiht	ohne Frequenzumrichter:	$1.6 * M_N \le M_K$
Damit der Motor bei Schwankungen nicht stehen bleibt	mit Frequenzumrichter:	$M_N \leq M_K$


Über Läuferwiderstand

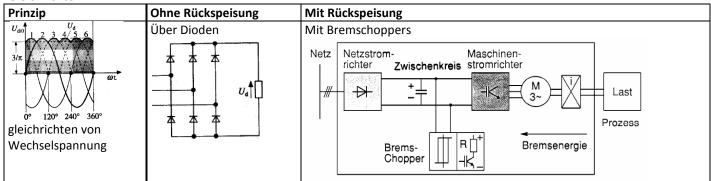
Anlassen von Asynchronmotoren

Variationen

Al	Duele star and stallen	4 Channe 2 Durahadaadaadhaan
l Anlasstransformatoren	l Drehstromsteller	11. Stern. 2. Dreieckschaltung


PWM (Pulsweitenmodulation)

Anwendungen Gleichstromsteller, Frequenzumrichter, Elektromotoren, Heizelemente, Dimmer, Schaltnetzteile **Vorteile** Oberwellen lassen sich sehr leicht ausfiltern


Frequenzumrichter

Ein Geräte, das aus einer Wechselspannung/Drehspannungssystem mit bestimmter Frequenz ein in Amplitude und Frequenz veränderbares Drehspannungssystem generiert.

Vorteile: Grosse Verbraucher können auch wieder in das Netz zurückspeisen

Gleichrichter

Umrichter mit fester Zwischenkreisspannung (Pulsumrichter)

Vorteil	Die Ausgangsspannung kann mit einer Pulssteuerung verstellt werden. (stufenlos)			
Prinzip	Betrachten von Rechteckspannung und Dreieckspannung.			
	Bei Schneidung wird der zugehörige Schalter der Phase betätigt.			
URechteck, UDreieck				
0.5				
	0.6 0.4			
	02			
	02			
	-0.4			

Weitere Formeln

ASM als Motor Kloss'sche Bezeichnung	$\frac{M}{M_K} = \frac{2}{\frac{S}{S_K} + \frac{S_K}{S}}$
Strangstrom -> Leiterstrom	$I_S = I_L/\sqrt{3}$