$\operatorname{D-MAVT}/\operatorname{D-MATL}$

Analysis II

FS 2021

Prof. Dr. Ana Cannas Prof. Dr. Urs Lang

Serie 26

Am Ende des Übungsblattes finden sich die numerischen Lösungen der offenen Aufgaben, so dass Sie Ihre Lösungen rechtzeitig kontrollieren können.

MC-Aufgaben

1. Es ist das folgende autonome System

$$\dot{x}_1 = x_1 + 2x_2 + 3
 \dot{x}_2 = 2x_1 + x_2$$

von linearen Differenzialgleichungen 1. Ordung gegeben. Welche der folgenden Aussagen sind wahr?

- (a) Es gibt keinen Gleichgewichtspunkt.
- (b) (0,0) ist Gleichgewichtspunkt.
- (c) (1,-2) ist Gleichgewichtspunkt.
- (d) (-1,2) ist Gleichgewichtspunkt.

2. Betrachten Sie das folgende System

$$\begin{cases} \dot{x} = bx - y \\ \dot{y} = x - by. \end{cases}$$

Für b=1 ist die Lösung zu den Anfangsbedingungen x(0)=1,y(0)=0 gleich...

- (a) $x(t) = e, y(t) = te^t$
- (b) x(t) = t + 1, y(t) = t
- (c) x(t) = t, y(t) = t
- (d) $x(t) = e^t, y(t) = te^t$

3. Für die Lösung (x(t), y(t)) des Systems

$$\begin{cases} \dot{x} + \dot{y} = 4 x, \\ \dot{x} - \dot{y} = 6 y, \end{cases}$$

welche die Anfangsbedingungen x(0) = 1 und y(0) = 0 erfüllt, gilt

- (a) $x(1) + y(1) = 2e^3$.
- (b) $2x(1) + y(1) = 2e^3$.
- (c) $x(1) + 2y(1) = 2e^3$.
- (d) $x(1) + y(1) = e^3$.
- 4. Wenn man zwei beliebig oft differenzierbare Funktionen addiert, dann werden ihre Taylorreihen an einem Punkt x_0
- (a) addiert.
- (b) addiert, aber man erhält die Taylorreihe an der Stelle $2x_0$.
- (c) addiert, aber man erhält die Taylorreihe an der Stelle x_0^2 .
- (d) es kann keine allgemein gültige Aussage getroffen werden.
- 5. Der Konvergenzradius der Reihe $\sum_{k=0}^{\infty} 2^k x^k$ ist
- (a) 0
- (b) $\frac{1}{2}$
- (c) 2
- (d) ∞
- 6. Die Entwicklung der Funktion $f(x) = \frac{1}{x}$ als Potenzreihe um $x_0 = 1$ lautet
- (a) $\sum_{k=0}^{\infty} (x-1)^k$
- (b) $\sum_{k=0}^{\infty} x^k$
- (c) $\sum_{k=0}^{\infty} (-1)^k (x-1)^k$
- (d) $\sum_{k=1}^{\infty} (-1)^k (x-1)^{k-1}$

- 7. In welchem Bereich konvergiert die Potenzreihe $\sum\limits_{k=1}^{\infty}\frac{k^3(-1)^{k+1}(2x-1)^{2k}}{5^{2k}}?$
- (a) (-1,2)
- (b) (-4,5)
- (c) (-2,2)
- (d) (-2,3)
- 8. Welche der folgenden Aussagen über die Lösungen der Differentialgleichung

$$y''(x) + xy'(x) + y(x) = 0$$

sind korrekt?

- (a) Für eine Potenzreihe $y(x)=\sum_{n=0}^\infty a_nx^n,$ die die Gleichung löst, gilt $(n+2)a_{n+2}+a_n=0$ für $n\geq 0.$
- (b) Die eindeutige Lösung mit y(0) = 0, y'(0) = 1 ist eine gerade Funktion, dh. y(-x) = y(x).
- (c) Die eindeutige Lösung mit y(0) = 1, y'(0) = 0 ist $y(x) = e^{-x^2/2}$.
- (d) Jede Lösung y erfüllt entweder y(-x) = y(x) oder y(-x) = -y(x).

Offene Aufgaben

9. Lösen Sie das Differentialgleichungssystem

$$\left\{ \begin{array}{lcl} \dot{x} & = & -x+y \\ \dot{y} & = & -x-3y \end{array} \right.$$

mit Anfangsbedingungen

$$x(0) = 0, y(0) = 1.$$

- 10. Finden Sie die allgemeine Lösung des Differentialgleichungssystems $\begin{cases} \dot{x} = 2x y \\ \dot{y} = x + 2y \end{cases} .$
- 11. Skizzieren Sie das Phasenporträt des folgenden Differentialgleichungssystems

$$\begin{cases} \dot{x} = 2x \\ \dot{y} = \frac{x}{y} \end{cases}.$$

Hinweis: Betrachten Sie y als y(x) und lösen Sie die Differentialgleichung $\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$.

12. Finden Sie alle Gleichgewichtspunkte des Systems

$$\dot{x}(t) = x(t)^2 + y(t)^2 - 1$$

 $\dot{y}(t) = x(t)^2 - y(t)^2$.

Bestimmen Sie, welche Gleichgewichtspunkte stabil sind. Hinweis: Betrachten Sie für die Stabilität das linearisierte System.

13. Berechnen Sie die Taylorreihe um $x_0 = 0$ der folgenden Funktionen f.

(a)
$$f(x) = \sinh(x)$$
;

(b)
$$f(x) = x^2 \ln(1 + x^4)$$
.

14. Entwickeln Sie die Funktion

$$f(x) = \frac{2}{1 - x + x^2 - x^3}$$

in eine Potenzreihe $\sum\limits_{n=0}^{\infty}a_nx^n$ und bestimmen Sie deren Konvergenzradius.

Hinweis: Führen Sie zunächst eine Partialbruchzerlegung von f(x) durch.

- **15.** Berechnen Sie für die folgenden Potenzreihen den Konvergenzbereich $(x_0 \rho, x_0 + \rho)$.
 - (a) $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n;$
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n n!}{5^{n^2} n^n} x^n;$
 - (c) $\sum_{n=1}^{\infty} \frac{9^n}{n} x^{2n}$;
 - (d) $\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n}} (x+3)^n$.
- 16. Bestimmen Sie das Taylorpolynom 6. Ordnung der Lösung des Anfangswertproblems

$$y''(x) + xy'(x) + x^2y = 0,$$
 $y(0) = 0,$ $y'(0) = 1.$

17. Finden Sie eine Rekursionsformel für die Taylor-Koeffizienten a_n der Lösung $y(x) = a_0 + a_1x + a_2x^2 + \cdots$ des Anfangswertproblems

$$y''(x) + x^3y(x) = x,$$
 $y(0) = 0,$ $y'(0) = 0,$

und bestimmen Sie a_0, a_1, \ldots, a_{10} .

Numerische Lösungen

- **9.** $x(t) = te^{2t}$ $y(t) = (1-t)e^{-2t}$.
- **10.** $x(t) = e^{2t}(C_1 \cos t + C_2 \sin t), \ y(t) = e^{2t}(C_1 \sin t C_2 \cos t).$
- **12.** Die Gleichgewichtspunkte $\left(\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}\right)$ und $\left(-\sqrt{\frac{1}{2}}, -\sqrt{\frac{1}{2}}\right)$ sind instabil. $\left(\sqrt{\frac{1}{2}}, -\sqrt{\frac{1}{2}}\right)$ ist instabil. $\left(-\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}\right)$ ist stabil.
- **13.** (a) $\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2k-1}}{(2k-1)!} + \dots$
 - (b) $x^2 \ln(1+x^4) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{4k+6}$.
- **14.** $f(x) = \sum_{k=0}^{\infty} (2x^{4k} + 2x^{4k+1}) = \sum_{n=0}^{\infty} a_n x^n$, Konvergenzradius ist 1.
- **15.** (a) (-e, e)
 - (b) Konvergiert für alle $x \in \mathbb{R}$.
 - (c) $\left(-\frac{1}{3}, \frac{1}{3}\right)$.
 - (d) $\left(-\frac{7}{2}, -\frac{5}{2}\right)$.
- **16.** $y(x) = x \frac{1}{6}x^3 \frac{1}{40}x^5$.
- **17.** $a_0 = 0 = a_1 = a_2 = a_4 = a_5 = a_6 = a_7 = a_9 = a_{10}, \ a_3 = \frac{1}{6}, \ a_8 = -\frac{1}{8 \cdot 7 \cdot 6}.$