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11. Symmetrization

Symmetrization is a process that takes a region and some straight line (the axis), and produces

a new region that’s symmetric with respect to that axis.

• We define symmetrization, and explore its effect on area and perimeter. This is elemen-

tary geometry!

• We discuss some examples, including an in-depth look at symmetrization of triangles.

• Finally, returning to the principal frequency, symmetrization provides inequalities be-

tween the principal frequencies of different regions.

(11a) Definition and first properties. Fix a line l in the plane. Given a region U , sym-

metrization with respect to the axis l works as follows. Take any line l⊥ perpendicular to l, look

at the total length of U ∩ l⊥, and draw the open interval of the same length inside l⊥ centered

on the point l ∩ l⊥. The union of those intervals, for all l⊥, is the symmetrization of U , written

as Sl(U). It is a new region, symmetric with respect to l. The easiest situation is when U is

convex, in which case U ∩ l⊥ consists of a single interval. Then, we just slide the interval along

l⊥ until it becomes symmetric with respect to l, and apply the same to all l⊥ to form Sl(U). In

the non-convex case, one may have to merge several intervals into one, but the idea is the same.

Example 11.1. Take a triangle. Mostly, if we symmetrize it, we get a kite (a quadrilateral which

is symmetric with respect to reflection along one diagonal):

(11.1)

The exception to “mostly” is symmetrization with respect to an altitude, which gives another

triangle (necessarily an isosceles one, because of the symmetry):

(11.2)

Example 11.2. Take a circular strip, lying between two concentric circles. In this case, when we

symmetrize, we have to merge pairs of intervals. This looks as follows:

(11.3)
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In formulae, we would have

(11.4)
U = {c ≤

√
x2 + y2 ≤ d},

Sl(U) = {c ≤ |x| ≤ d, |y| ≤
√
d2 − x2} ∪ {|x| ≤ c, |y| ≤

√
d2 − x2 −

√
c2 − x2}.

Lemma 11.3. The area of Sl(U) is the same as that of U .

This is due to the definition of area as integral of the function that gives the lengths of l ∩ l⊥
(Cavalieri’s principle of indivisibles if you’re historically minded, or Fubini’s theorem for the

analytically informed).

Theorem 11.4. The perimeter of Sl(U) is less or equal than the perimeter of U .

Let’s look at the situation (not the most general one, but close enough) familiar from calculus,

where U is the region between two graphs f(x) and g(x),

(11.5) U = {a ≤ x ≤ b, f(x) ≤ y ≤ g(x)}.

Here, we’re assuming f(x) ≤ g(x), and that f(a) = g(a), f(b) = g(b). The perimeter of U is then

just the sum of the lengths of the two graphs,

(11.6)

∫ b

a

√
1 + f ′(x)2 +

√
1 + g′(x)2 dx .

Let’s symmetrize with respect to the x-axis,

(11.7) Sl(U) = {a ≤ x ≤ b, |y| ≤ 1
2 (g(x)− f(x))}.

This is the region between the graph of 1
2 (f(x)− g(x)) and

1
2 (g(x)− f(x)), so we have a similar

formula for the perimeter,

(11.8)

∫ b

a

2
√

1 + 1
4 (g

′(x)− f ′(x))2 dx .

The claim is that the integrand here is less or equal than that in the previous formula. If we

write F = f ′(x), G = g′(x), then what we need is

(11.9) 2
√
1 + (G− F )2/4 ≤

√
1 + F 2 +

√
1 +G2.

This inequality holds for all numbers F and G. One can prove it by squaring repeatedly and

cleaning up terms, which we’ll leave to you.

(11b) Isosceles triangles. As discussed before, if we take a triangle and symmetrize it with

respect to an altitude, we get another triangle, which is always isosceles. What if we already

start with an isosceles triangle, let’s call it T? One of its altitudes is the axis of symmetry, so

symmetrizing with respect to that changes nothing. Let’s symmetrize with respect to one of the

two other altitudes, and call this process altitude symmetrization S(T ). (Up to congruence, it

doesn’t matter which of the two altitudes you pick.)

(11.10)
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Lemma 11.5. Take an isosceles triangle which is not equilateral. If we apply altitude symmetriza-

tion to it, then the new triangle has smaller perimeter than the old one.

This is an elementary geometry exercise, which we’ll skip. Let’s look generally at the perimeters

of isosceles triangles. For simplicity, we use triangles with area
√
3/4, so that the equilateral one

has side-length 1. An isosceles triangle with are
√
3/4 and base b has height h (measured with

respect to the base) and perimeter

(11.11) p = b+ 2
√

(b/2)2 + h2 = b+
√
b2 + 4h2 = b

(
1 +

√
1 +

3

b4

)
.

Let’s look at the function p = p(b):

(11.12)
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It has an absolute minimum p(1) = 3 corresponding to the equilateral triangle. For every p > 3,

there are exactly two values b with p(b) = p. This has the following consequence:

Theorem 11.6. Start with any isosceles triangle, and apply altitude symmetrization over and

over. The result is a sequence of isosceles triangles, which either turns equilateral after finitely

many steps, or else becomes closer and closer to equilateral in the limit.

Proof. As before, we just discuss triangles with area
√
3/4. One can scale the discussion up

and down to any area. As the theorem says, it’s an option to get an equilateral triangle after

finitely many steps. If that’s not the case, then by our previous Lemma, we get a sequence of

triangles with bases b1, b2, b3, · · · > 0 and perimeters p1, p2, p3, · · · > 3, with

(11.13) p1 > p2 > p3 > · · ·

If the limit of those pn is 3, then by looking at the graph of the function, we see that the limit

of the bn must be 1, so we are converging to an equilateral triangle. What if the limit of the

pn is some number p > 3? To that number correspond two values of b, meaning two isosceles

triangles. Because of the limiting process, at least one of those two must have the property that

its perimeter doesn’t decrease under isosceles symmetrization, which contradicts our Lemma. So

p > 3 is after all impossible! □

(11c) Back to the principal frequency. With respect to symmetrization, the principal

frequency behaves like the perimeter:

Theorem 11.7. The principal frequency of Sl(U) is less or equal than that of U .
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The theorem is proved using the minimizing idea from the previous lecture: one takes a test

function f on U , and produces another function Sl(f) on Sl(U), such that

(11.14)

∫
Sl(U)

Sl(f)
2 =

∫
U

f2,

∫
Sl(U)

∥∇Sl(f)∥2 ≤
∫
U

∥∇f∥2.

Obviously, the gap in this explanation is the definition of Sl(f), and why it has those properties.

There are geometric ways to understand this, which are quite similar to our discussion of the be-

haviour of the perimeter, but we prefer not to get into that discussion here. It’s the consequences

which make this fact interesting.

Example 11.8. Take an a× b rectangle, rotated by some angle α. We assume that the angle of

rotation is small enough so that the x-axis still passes through the b-side, and symmetrize with

respect to that axis.

(11.15)
α

a
b

The outcome is a hexagon symmetric with respect to the x-axis, and also with respect to rotation

by 180◦. It has the following measurements:

(11.16) b
cos(α)

b sin(α)

a cos(α)

Therefore, if we take a, b and α so that b sin(α) = 1
2 , b/ cos(α) =

√
3, a cos(α) = 3

2 , the sym-

metrized shape is a regular hexagon with side-length 1. The quotient of the first two equations

says that sin(2α) = 2 sin(α) cos(α) = 1/
√
3, and with that at hand, one can calculate everything.

For the fundamental frequency of the hexagon, this yields a reasonably good bound (much better

than what one gets from putting a rectangle inside the hexagon)

(11.17) λ ≤ π
√

1

a2
+

1

b2
=

2π

3

√
5− 4

3

√
6 = 2.75794 . . .

As a more serious application, suppose that we start with a triangle. By repeated symmetrization

as in our previous discussion, we can turn it into a triangle which is either equilateral or very very

close to it. In the latter case it contains a slightly smaller equilateral triangle, and is contained

in a slightly larger equilateral one, so the fundamental frequency is very close to that of the

equilateral one, and we can actually make the error as small as we want. So we’ve proved this:

Corollary 11.9. Among all triangles with a given area, the equilateral one achieves the mini-

mum of the principal frequency.
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