

Technische Hochschule Ingolstadt

Fakultät: Maschinenbau

Studiengruppe: MB7

Studienschwerpunkt "Entwicklung und Konstruktion"

Rechnergestützte Auslegung und Analyse von Tragkonsolen

Abschlussarbeit zur Erlangung des akademischen Grades Bachelor of Engineering (B. Eng.)

vorgelegt von

Gurleen Kaur

ausgegeben am: 25.11.2020

abgegeben am: 12.01.2021

Erstprüferin: Prof. Dr. Elke Feifel

Zweitprüfer: Prof. Dr.-Ing. Dallner Rudolf

Erklärung

Ich erkläre hiermit, dass ich die Arbeit selbständig verfasst, noch nicht anderweitig für Prüfungszwecke vorgelegt, keine anderen als die angegebenen Quellen oder Hilfsmittel benützt sowie wörtliche und sinngemäße Zitate als solche gekennzeichnet habe.

Ingolstadt, 12.01.2021

Gurleen Kour

Inhaltsverzeichnis

Αl	obild	ungsv	erzeichnis	III
Ta	abelle	enverz	zeichnis	IV
Αl	okürz	zungsv	verzeichnis	V
S	ymbo	olverze	eichnis	VI
1.	Ei	nleitur	ng	1
2.	G	rundla	gen	2
	2.1	We	rkstoffmechanische Eigenschaften in Verbindung mit Fertigungsverfahren	2
	2.2	Die	FKM-Richtlinie	5
	2.3	VD	I-Richtlinie 2330	6
3.	Va	ariante	envergleich	7
4.	M	ethodi	ik	8
	4.1	Ber	echnungsablauf in FEM	8
	4.	1.1	Randbedingungen	8
	4.	1.2	Konvergenzstudie	9
	4.2	Aus	slegung der Tragkonsole	12
	4.	2.1	Statische Analyse	12
	4.	2.2	Dynamische Analyse	13
	4.3	Dim	nensionierung der Schraubenverbindung	15
	4.4	Aus	swertung in KISSsoft	17
5.	Re	echne	rischer Festigkeitsnachweis nach FKM-Richtlinie	18
	5.1	Sta	tischer Festigkeitsnachweis	18
	5.	1.1	Beanspruchung	18
	5.	1.2	Festigkeit	18
	5.	1.3	Sicherheitsfaktoren	21
	5.	1.4	Nachweis	22
	5.2	Ern	nüdungsfestigkeitsnachweis	23
	5	2 1	Beanspruchung	23

	5.2	.2	Festigkeit	23
	5.2	.3	Sicherheitsfaktoren	32
	5.2	.4	Nachweis	33
	5.3	Ver	gleich der Ergebnisse	34
	5.4	Zus	ammenfassung der Ergebnisse	35
6	. Red	chnei	rischer Festigkeitsnachweis nach VDI-Richtlinie 2230	36
	6.1	Gru	ınddaten	36
	6.2	Nac	chgiebigkeit von Schraube und Bauteil	38
	6.3	Krä	fte an der Schraubenverbindung	40
	6.4	Nac	chweis	42
	6.5	Ver	gleich der Ergebnisse	44
	6.6	Erg	ebnisbewertung	45
7	. Aus	sblick	ζ	46
Li	Literaturverzeichnis			VII
A	nhang			48

Abbildungsverzeichnis

Abbildung 2.1 Gefüge von GJS	3
Abbildung 2.2 Gefüge von GJL	3
Abbildung 2.3 Ablauf vom statischen und dynamischen Festigkeitsnachweis	6
Abbildung 3.1 Verallgemeinerte Skizze des Modellaufbaus	7
Abbildung 4.1 Skizze Kraftfläche in Draufsicht	9
Abbildung 4.2 Netzfeinheit bei Walzprofil	10
Abbildung 4.3 Netzfeinheit bei Gussvariante ohne Seitenwand	10
Abbildung 4.4 Netzfeinheit bei Gussvariante mit Seitenwand	10
Abbildung 4.5 Konvergenzstudie	11
Abbildung 4.6 Belastungsarten	13
Abbildung 4.7 Skizze einer Flanschverbindung	15
Abbildung 5.1 Effektiver Durchmesser	19
Abbildung 5.2 Auswahl der Sicherheitsfaktoren gegen Bruch und Fließen	21
Abbildung 5.3 Haigh-Diagramm	30
Abbildung 5.4 Skizze Bauteil-Wöhlerkennlinie für 2. Hauptspannung	32
Abbildung 5.5 Auswahl der Material-Sicherheitsfaktoren	32
Abbildung 6.1 Schraubenverbindung	38
Abbildung 6.2 Verspannungsschaubild Vorspannen	40
Abbildung 6.3 Verspannungsschaubild schwellende Belastung	42

Tabellenverzeichnis

Tabelle 3.1 Bemaßung der verschiedenen Konsolen	8
Tabelle 4.1 Materialkennwerte	g
Tabelle 4.2 Vergleichswerte und Streckgrenze für statische Analyse	12
Tabelle 4.3 Vergleichswerte und Zugfestigkeit für dynamische Analyse	14
Tabelle 4.4 Kräfte an Schraubenverbindung	16
Tabelle 6.1 Abmessung der Schraube	36
Tabelle 7.1 Statische und dynamische Traglasten	46

Abkürzungsverzeichnis

ANSYS ANSYS Workbench

CAD Computer Aided Design

CATIA Konstruktionssoftware CATIA V5
DIN Deutsches Institut für Normung

FE Finite Elemente

FEM Finite Elemente Methode

FKM Forschungskuratorium Maschinenbau

GJL Grauguss mit Lamellengraphit

GJS Gusseisen mit Kugelgraphit

KISSsoft Berechnungssoftware KISSsoft

S235 Unlegierter Baustahl

TGL Technische Normen, Gütevorschriften und Lieferbedinungen

VDI Verein Deutscher Ingenieure

Symbolverzeichnis

Zeichen	Erklärung	Einheit
	Festigkeitsnachweis der Tragkonsole	
a_{BK} a_{G} a_{GH} a_{M} $a_{R,\sigma}$ a_{SK} A $A_{\sigma,st}$ $A_{ref,st}$	Zyklischer Auslastungsgrad Konstante (Stützzahl) Überlagerung der zyklischen Auslastungsgrade Konstante (Bauteil-Dauerfestigkeit) Konstante (Rauheitsfaktor) Vergleichsspannungsgrad Bruchdehnung Hoch beanspruchte Oberfläche Referenzoberfläche	- - - - - - % mm ² mm ²
$b_G \ b_M$	Konstante (Stützzahl) Konstante (Bauteil-Dauerfestigkeit)	-
$d_{eff} \ d_{eff,N}$	Effektiv Durchmesser Effektiver Normdurchmesser	mm mm
$egin{array}{c} arepsilon_0 & & & & & & & & & & & & & & & & & & &$	Minimale ertragbare Dehnung Ertragbare Dehnung Ertragbare wechselplastische Dehnung Referenzdehnung E-Modul	% % - % MPa
$f_{W,\sigma}$ F F_a $F_{a,\mathrm{zul}}$ F_{\max} F_{zul}	Zugdruckwechselfestigkeitsfaktor Überlastfall Dynamische Belastung Zulässige Belastung für die dynamische Auslegung Statische Belastung Zulässige Belastung für die statische Auslegung	- N N N N
G_{σ}	Spannungsgefälle	N/mm ²
h	Mehrachsigkeit	-
j _{ges} j _m j _p j _D j _F j _S	Gesamtsicherheitsfaktor (statisch) Nachweis gegen Bruch Nachweis gegen Fließen Gesamtsicherheitsfaktor (dynamisch) Materialfaktor Gussfaktor Lastfaktor	- - - - -
$k_{\sigma} \ k_{st} \ K_{d} \ \widetilde{K_{f}} \ K_{p} \ K_{t,\sigma}$	Bauteil-Wöhlerexponent Weibull-Exponent Technologischer Größenfaktor Kerbwirkungszahl Plastische Formzahl Formzahl für eine Ersatzstruktur	- - - -

K_{A}	Anisotropiefaktor	-
$K_{AK,\sigma}$	Mittelspannungsfaktor	-
$K_{BK,\sigma}$	Betriebsfaktor	-
$K_{NL,E}$	Faktor für GJL	-
$K_{R,\sigma}$	Rauheitsfaktor	-
$K_{\mathcal{S}}$	Schutzsicherheitsfaktor	-
K_T	Temperaturfaktor	-
K_V	Randschichtfaktor	-
K_{WK}	Konstruktionsfaktor	-
L_e	Elastische Grenzlast	N
$\stackrel{\scriptscriptstyle L_e}{L_p}$	Vollplastische Traglast	N
M_{σ}	Mittelspannungsempfindlichkeit	-
n'	Konstante (Stützzahl)	-
n_{σ}	Stützzahl	-
n_{bm}	Bruchmechanische Stützzahl	-
n_{pl}	Plastische Stützzahl	-
n_{st}	Statische Stützzahl	-
n_{vm}	Verformungsmechanische Stützzahl	-
N_D	Knickpunktzyklenzahl	-
$N_{D,\sigma}$	Zyklenzahl	-
$P_{\ddot{U}}$	Überlebenswahrscheinlichkeit	%
r	Radius der Tragkonsole	mm
R	Spannungsverhältnis	-
R_e	Streckgrenze für Stahlbauteile	MPa
R_m	Zugfestigkeit	MPa
$R_{m,N,min}$	Minimale Zugfestigkeit	MPa
$R_{m,N}$, $R_{p,N}$	Normfestigkeiten	MPa
$R_{m,bm}$	Referenz-Zugfestigkeit	MPa
R_p	Fließgrenze (verallgemeinert für Streckgrenze und 0,2%	MPa
D	Dehngrenze) 0,2%-Dehngrenze für Gussbauteile	MPa
$R_{p0,2}$	Mittlere Rautiefe	
R_Z	wittiere Kautiere	μm
$\sigma_1, \sigma_2, \sigma_3$	Hauptspannungen	MPa
$\sigma_{a,zul}$	Zulässige Ausschlagsamplitude für die dynamische Auslegung	MPa
$\sigma_{b,zul}$	Zulässige Biegespannung	MPa
σ_m	Mittelspannung	MPa
σ_{m1} , σ_{m2} , σ_{m3}	Spannung am Nachweispunkt (KISSsoft)	MPa MPa
σ_o	Oberspannung	мРа МРа
σ_u	Unterspannung Vergleichsspannung	MPa
σ_v	Werkstoff-Wechselfestigkeit	MPa
$\sigma_{w,zd}$	Zulässige Spannung für die statische Auslegung	MPa
$\sigma_{zul} \ \sigma_{AK}$	Bauteil-Dauerfestigkeit	MPa
σ_{BK}	Bauteil-Betriebsfestigkeit	MPa
σ_{H}	Hydrostatische Spannung	MPa
σ_{SK}	Statische Bauteilfestigkeit	MPa
σ_{WK}	Bauteil-Wechselfestigkeit	MPa
S	Dicke der Tragkonsole	mm

υ	Querkontraktionszahl	-
x, y, z	Achsenbezeichnung eines kartesischen Koordinatensystems	-
	Schraubenverbindung	
α	Steigungswinkel	0
α_A	Anziehfaktor	-
A_p	Gepresste Fläche am Bauteil unter dem Schraubenkopf	mm ²
A_N	Nennquerschnitt	mm ²
A_B	Ersatzquerschnitt der verspannten Bauteile	mm ²
A_K	Kernquerschnitt	mm² mm²
A_S	Spannungsquerschnitt	111111-
β	Teilflankenwinkel	0
d	Nenndurchmesser	mm
d_2	Flankendurchmesser	mm
d_K	Kerndurchmesser	mm
d_S	Spannungsdurchmesser	mm
D_A	Breite der Tragkonsole	mm
D_I	Durchmesser des Durchgangslochs	mm
D_K	Kopfauflagedurchmesser	mm
δ_B	Nachgiebigkeit des Bauteils	mm/N
$\delta_{\mathcal{S}}$	Nachgiebigkeit der Schraube	mm/N
f_{BM}	Setzbetrag der Bauteile	mm
f_{SM}	Setzbetrag der Schraube	mm
f_Z	Setzbetrag	μm
F_a	Kraftausschlag	N
F_A	Axialkraft	N
F_{Ao}	Oberlast	N
F_{Au}	Unterlast	N
F_{BA}	Flanschentlastungskraft	N
F_K	Klemmkraft	N
F_{M}	Montagevorspannkraft Querkraft	N N
F_Q		
F_S	Schraubenkraft	N
F_{SA}	Zusätzliche Schraubenkraft	N N
F_V	Vorspannkraft Vorspannverluste	N
F_Z	voispailivelluste	IN
l_K	Klemmlänge	mm
μ_G	Reibzahl im Gewinde	-
μ_K	Reibzahl der Auflagefläche	-
μ_T	Reibungskoeffizent Matriaches Oswinde	-
M	Metrisches Gewinde	-
M_A	Anziehmoment	Nm
n	Krafteinleitungsfaktor	-

ρ	Reibwinkel	0
p	Flächenpressung	MPa
P	Steigung des Gewindes	mm
r_m	Mittlerer Auflageradius	mm
σ_l	Leibung	MPa
$\sigma_{\!A}$	Ausschlagsfestigkeit	MPa
σ_{SA}	Spannungsdifferenz	MPa
S_D	Sicherheit gegen Dauerbruch	-
S_F	Sicherheit gegen Fließen	-
S_P	Sicherheit gegen Pressen	-
$ au_a$	Scherspannung	MPa
Φ	Kräfteverhältnis	-
x_2	Variable	-

1. Einleitung

Eisen ist das meistverwendete Metall weltweit und wird als Basiswerkstoff in allen Formen und Bereichen im täglichen Leben eingesetzt. Es ist das gebräuchlichste Konstruktionswerkstoff in der Maschinenbauindustrie. Die Gründe dafür liegen in seiner Verfügbarkeit, die es preiswerter machen im Vergleich zu anderen Werkstoffen. Allein in Deutschland werden jährlich bis zu 50 Millionen Tonnen Stahl und ca. 4 Millionen Tonnen Gusseisen hergestellt.¹

Dabei ist der Maschinenbau nach dem Straßenfahrzeugbau der zweitwichtigste Abnehmerbereich für die Gusskomponente, dessen Anteil am gesamten Gussabsatz bei 25 bis 30 % liegt. Im Maschinenbau sind Gusskomponenten prägende Elemente der Gesamtkonstruktion.² Ein viel verwendetes Bauteil stellt die Tragkonsole dar, die durch unterschiedliche Anforderungen wie Unterstützung beim Abfangen von Kräften oder durch Verbindungen an anderen Bauteilen, mit unterschiedlichen Beanspruchungen belastet wird. Die Tragkonsole aus Gusseisen gehört zu den maßgebenden Varianten im Maschinenbau, dabei sind Variationen in Herstellung und Werkstoff kaum zu finden.

Durch hohe Anforderungen an die gestalteten Gussbauteile müssen bereits im frühen Stadium des Designs Richtlinien zur Gestaltung der Komponente beachtet werden. Ferner werden durch diese hohen Anforderungen und dem Wettbewerbsmarkt gegensätzliche Standards geschaffen, die schwer sind einzuhalten und miteinander zu vereinbaren. Die Kosten sollen zum einen niedrig gehalten werden, zum anderen muss die Konstruktion optimal ausgelegt sein und auch den ökologischen Standards genügen.³

Für eine optimale Auslegung der Gusskomponente müssen die zulässigen Beanspruchungen aufeinander abgestimmt sein und durch rechnerische Sicherheitsnachweise entsprechend der gültigen Richtlinien geprüft werden, um die ergebenden Belastungen für das örtliche Gefüge zuzulassen. Der fortschreitenden technischen Entwicklung und den Ansprüchen an Innovationsfähigkeit und Hochtechnologieeinsätzen tragen die Unternehmen durch verstärkten Leichtbau sowie durch Optimierung von Komponenten Rechnung.⁴

Um diese Ziele umzusetzen, wird mit Computer Aided Design-Konstruktionen (CAD) und Finite Elemente Methoden-Analysen (FEM) operiert. Daneben können Variationen in den Bauteileigenschaften die gewünschten Effekte hervorrufen. Die zugrundeliegende Forschungsfrage der Arbeit lautet: "Wie kann die Variation von Werkstoff und Konstruktion durch eine rechnergestützte Simulation zur Optimierung von Bauteilen beitragen?". Diese Themenstellung ist vor allem für Konstrukteure und Analysten relevant, die durch die große

¹ Vgl. Magin 2016.

² Vgl. Bundesverband der Deutschen Gießerei-Industrie e.V. a.

³ Vgl. Bundesverband der Deutschen Gießerei-Industrie e.V. 2007b, S. 7.

⁴ Vgl. Bundesverband der Deutschen Gießerei-Industrie e.V. a.

Varianz von Normen und Richtlinien eine Vielfalt an Optimierungs- und Gestaltungsmöglichkeiten haben.

2. Grundlagen

2.1 Werkstoffmechanische Eigenschaften in Verbindung mit Fertigungsverfahren

Der vorliegende Abschnitt thematisiert, inwiefern eine funktionsgerechte Werkstoffauswahl in Verbindung mit den Fertigungsverfahren die vorliegende Belastung eines Bauteils, in diesem Fall Tragkonsole, beeinflusst. Verglichen werden dabei Gusseisen mit Kugelgraphit (GJS) und Walzstahl bzw. Stahl. Beide Werkstoffe zählen zu den Untergruppen von Eisen und unterscheiden sich im Wesentlichen durch den Kohlenstoffanteil, der bei GJS über 2 % liegt und bei Stählen unter 2 %.⁵ Die Eisenbasiswerkstoffe sind nach wie vor die gebräuchlichsten Konstruktionswerkstoffe. Gründe hierfür sind:

- Kostengünstige Verfahren für die Gewinnung von Roheisen aus Erz.
- Durch verschiedene Verfahren (Wärmebehandlung, Härtung, Vergütung, etc.) können Streckgrenze und Zugfestigkeit variiert werden und ideal für den benötigen Bereich angepasst werden.
- Eisenbasiswerkstoffe können durch Zugabe von metallischen und nichtmetallischen Legierungselementen die Festigkeitskennwerte zusätzlich variieren und somit an verschiedene Bauteilanforderungen angepasst werden.
- Eisenbasiswerkstoffe können beliebig oft stofflich wiederverwertet werden. Diese Eigenschaft resultiert aus der Tatsache, dass Eisen- und Stahlschrott ohne Einschränkungen eingeschmolzen werden können. Ausgenommen werden dabei die Einschränkungen durch die Zusammensetzung von Schrott und legierten Elementen, da beispielsweise aus legiertem Schrott kein unlegierter Stahl hergestellt werden kann.⁶

Gusseisen

Bei komplexen Bauteilgeometrien mit vorzugsweise hoher Festigkeit bietet sich vor allem Gusseisen an, da es durch den niedrigen Schmelzpunkt und die dünnflüssige Schmelze eine gute Gießbarkeit aufweist, die durch Zugabe von Silicium verstärkt werden kann. Anzumerken ist, dass Gusseisen durch seinen hohen Kohlenstoffanteil nicht für das Schmieden geeignet ist, weil es zu Sprödigkeit und Härte führt. Unterschieden wird zwischen weißem und grauem

2

⁵ Vgl. Grote 2014, S. 242.

⁶ Vgl. Magin 2016.

Gusseisen, wobei sich beide Bezeichnungen auf die Bruchfläche beziehen. Bei ersterem liegt der Kohlenstoff in Form von Graphit vor und bei grauen Gusseisen (Grauguss) in Form von Zementit. Aus den unterschiedlichen Gefügebildungen und Ausscheidungen von Kohlenstoff resultieren die verschiedenen Sorten von Gusseisen. Am häufigsten wird Gusseisen mit Lamellengraphit (GJL) verwendet, das im Vergleich zu Stahl durch eine geringe Zähigkeit und Verformbarkeit gekennzeichnet ist. Dort liegt, anders als bei GJS, der Graphit in Lamellenstruktur vor. GJS hat eine deutlich höhere Zähigkeit und Festigkeit als GJL, da durch jede Lamelle im Gefüge eine Kerbe entsteht, infolgedessen Dauerschwingfestigkeit, Zugfestigkeit und Bruchdehnung abnehmen. Durch Wärmebehandlung oder Zugabe von Legierungselementen können diese Eigenschaften verbessert werden mit dem Ziel zur Festigung eines ferritischen Grundgefüge.⁷

Ebenso effektiv wäre dabei die Herstellung eines Härtungs- oder Vergütungsgefüges oder eine Randschichtbehandlung, da die Temperaturen einer Wärmebehandlung bereits beim Gießen von GJS herrschen.⁸ Die unterschiedliche Gefügestruktur von GJS und GJL sind in Abbildungen 2.1 und 2.2 dargestellt.

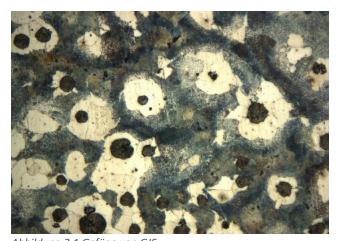


Abbildung 2.1 Gefüge von GJS Quelle: Gießereigesellschaft Böhmerfeld 2018

Abbildung 2.2 Gefüge von GJL Quelle: Gießereigesellschaft Böhmerfeld 2018

Stahl

Die vielseitige Verwendung von Stahl als Konstruktionswerkstoff ist auf die Eigenschaften zurückzuführen, die durch Legierungselemente und Wärmebehandlung variabel sind. Stahl zeichnet sich durch eine hohe Festigkeit, gute Bruchdehnung, Steifigkeit und Umformbarkeit aus, die sich den unterschiedlichsten Anforderungen anpassen. Anzumerken ist, dass sich diese Gruppe von Merkmalen durch die Gefügebestandteile von Stahl – genauer: durch die Abkühlgeschwindigkeit und den Kohlenstoffanteil – sowie den Anteil anderer

3

⁷ Vgl. Grote 2014 S. 260-261.

⁸ Vgl. Magin 2016.

Legierungselemente erklären lassen.9

Wie Gusseisen wird auch Stahl in verschiedene Gruppen unterteilt. In Bezug auf die chemische Zusammensetzung wird zwischen legierten und unlegierten Stählen unterschieden, bei den Anforderung und Gebrauchseigenschaften zwischen Grund-, Qualitäts- und Edelstählen. Maßgebend für die Auswahl der Stahlsorte sind insbesondere die Mindestwerte für die Streckgrenze und Zugfestigkeit, ebenso relevant bei der Tragkonsole, die Kerbarbeit. Vorwiegend im Maschinenbau eingesetzt wird unlegierter Baustahl wegen seiner mechanischen Eigenschaften wie Schweißeignung. ¹⁰

Fertigungsverfahren

Die im Rahmen der Arbeit analysierten Tragkonsolen basieren hinsichtlich der Fertigungsverfahren auf Gieß- und Walzprozessen.

Gießen

Das Gießen gehört zu der Hauptgruppe Urformen unter den Fertigungsverfahren und ist nach DIN 8580, eine Norm vom Deutschen Institut der Normung (DIN) für die Einteilung und Begriffe der Fertigungsverfahren, als formschaffendes Verfahren definiert, das aus formlosem Stoff einen festen Körper schafft. Zu den wesentlichen Vorteilen zählen, dass komplexe Bauteilstrukturen herstellbar sind, eine sehr gute Werkstoffausnutzung gewährleistet ist und fast alle Bauteile verarbeitbar sind. Im Gegensatz dazu gelten als Nachteile die Gefahr von Poren- und Lunkerbildung, das Risiko einer Gefügeänderung und die relativ lange Abkühlungszeit. Ein weiterer Nachteil ist, dass sich das Gießen bei kleinen Losgrößen und geringen Stückzahlen kaum rentiert.¹¹

Walzen

Das Walzen wird nach DIN 8580 als Druckumformverfahren in die Hauptgruppe der Umformverfahren eingeordnet und gilt als Verfahren, dass die Umlagerung von Stoffteilchen erzwingt. Das Walzen weist gegenüber anderen Fertigungsverfahren einen geringen Materialverlust bei der Fertigung, hohe Genauigkeit und Oberflächengüte und geringe Fertigungszeiten auf. Dagegen nachteilig ist, dass in den meisten Fällen besonders normierte Werkzeuge benötigt werden und sich deswegen das Walzen erst bei größeren Serien rentiert.¹²

⁹ Vgl. Grote 2014, S. 248-249.

¹⁰ Vgl. Lehberger 2019, S. 47-48.

¹¹ Vgl. Lehberger 2019, S. 217 f; Grote, 2014, S. 1347.

¹² Vgl. Lehberger 2019, S. 239-245.

Zusammenfassend lässt sich sagen, dass durch die Verbindung zwischen GJS mit dem Gießen und Stahl mit dem Walzen vor allem die werkstoffmechanischen Eigenschaften der Tragkonsole verbessert und variiert. In Anhang 1 ist ein direkter Vergleich zwischen GJS und dem verwendeten unlegierten Baustahl S235 vermerkt.

2.2 Die FKM-Richtlinie

Der Rechnerischer Festigkeitsnachweis für Maschinenbauteile, FKM-Richtlinie, ist 1994 in Kraft getreten und wurde auf Grundlage der früheren Richtlinie 2260 von dem Verein Deutscher Ingenieure (VDI), ehemaliger TGL-Standards (Technische Güte- und Lieferbedingungen) und mithilfe weiterer Quellen weiterentwickelt. Es handelt sich um eine vom Forschungskuratorium Maschinenbau e.V. veröffentliche Richtlinie, die ein allgemeines Verfahren zur Berechnung der Festigkeit für Bauteile vorlegt. Die neueste Version, die sechste, überarbeitete Ausgabe der FKM-Richtlinie ist seit 2012 verfügbar und wurde in den Bereichen des statischen Festigkeitsnachweises und durch ein Berechnungskonzept in der FKM-Richtlinie mit den neusten Forschungsergebnissen überarbeitet.13

Die Richtlinie ist für folgende Anwendungsfälle ausgerichtet:

- für stab-, flächen- und volumenförmige Bauteile,
- Stahl, zuzüglich nichtrostend, bei Bauteiltemperaturen von -40 °C bis 500 °C,
- Eisengusswerkstoffe bei Bauteiltemperatur von -25 °C bis 500 °C,
- Aluminiumwerkstoffe bei Bauteiltemperatur von -25 °C bis 200 °C,
- für Bauteile, die durch Schweißen oder nicht spannender Bearbeitung hergestellt sind,
- für eine Auslegung mit Nennspannung und örtlichen Spannungen.

Der für alle Anwendungsbereiche einheitliche Berechnungsablauf beschreibt den statischen und dynamischen Festigkeitsnachweis. Der dynamischen Festigkeitsnachweis, auch Ermüdungsfestigkeitsnachweis, charakterisiert je nach Beanspruchungsarten Dauer-, Zeitund Betriebsfestigkeitsnachweis. Zudem wird bei den Festigkeitsnachweisen zwischen der Nennspannung, die hauptsächlich in Wellen auftritt, und der örtlichen Spannungen, die bei flächen- und volumenförmigen Bauteilen vorkommen, unterschieden.¹⁴

In Abbildung 2.3 ist der Berechnungsauflauf des statischen Festigkeitsnachweises auf der linken Seite und der des Ermüdungsfestigkeitsnachweises auf der rechten Seite zu sehen. Das Allgemeine Vorgehen ist bei beiden Festigkeitsnachweisen ähnlich: die jeweiligen Kennwerte werden ermittelt, die Sicherheitsfaktoren für die Beanspruchung werden festgelegt

¹³ Vgl. FKM-Richtlinie 2012, S. 10.

¹⁴ Vgl. Wächter 2017, S. 6-7.

und mit diesen Werten wird ein Nachweis durchgeführt. Bei dem FKM-Nachweis der Tragkonsolen in dieser Arbeit ist diesem Vorgang entsprechend verfahren worden, auf das in den folgenden Kapiteln genauer eingegangen wird.

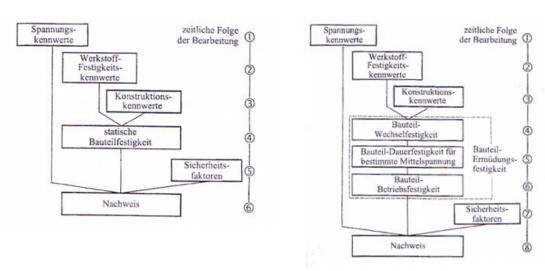


Abbildung 2.3 Ablauf vom statischen und dynamischen Festigkeitsnachweis Quelle: FKM-Richtlinie 2012, S. 15

Der Nachweis setzt sich aus der in Abbildung 2.3 ersichtlichen Bauteilen zusammen und ist dann erbracht, wenn die jeweiligen Kennwerte zusammen mit Beanspruchungen und benötigten Sicherheitsfaktoren einen Auslastungsgrad von höchstens 100 % erbringen.

2.3 VDI-Richtlinie 2330

Die Auslegung der Schraubenverbindung für die Tragkonsolen wurde anhand der VDI-Richtlinie 2230 ermittelt. Die Richtlinie beschreibt die systematische Berechnung hochbeanspruchter Schraubenverbindungen zylindrischer Einschraubverbindungen. Sie wird seit 40 Jahren in der Praxis angewendet und entstand unter Beachtung der Vorgaben und Empfehlungen der VDI-Richtlinie 1000. Ähnlich wie die bereits aufgeführte FKM-Richtlinie stellt die VDI-Richtlinie einen systematische Rechenablauf für Schraubenverbindungen dar, der die maximale Ausnutzung der Schraubentragfähigkeit gewährleistet.¹⁵

Zum Anwendungsbereich der Richtlinie zählen Stahlschrauben in hochbeanspruchten und hochfesten Schraubenverbindungen und einer Betriebsbelastung, die kraftschlüssig übertragen wird. Diese setzt sich vorwiegend aus einer statischen oder dynamischen Axialkraft zusammen, zudem können zusätzliche Biegemomente oder Querkräfte auftreten. Falls die Kontaktfläche in den inneren Fugen die zulässige Abmessung überschreitet, können die ermittelten Werte Ungenauigkeiten aufweisen. Außerdem sind die Werkstoffeigenschaften, mit der die Richtlinie operiert, nur auf Raumtemperaturen ausgelegt, sodass bei niedrigen oder

_

¹⁵ Vgl. VDI 2230 2015, S. 3.

hohen Temperaturen diese Werte beachten werden müssen. Nicht berücksichtigt in der Richtlinie werden extreme Beanspruchung (Korrosion), stoßartige und stochastische Beanspruchung.¹⁶

3. Variantenvergleich

Auf den Grundlagen der bereits angeführten Eigenschaften und Anforderungen werden in den folgenden Kapiteln drei Modellvarianten gegenübergestellt.

Die Modelle sind eingeteilt in

- Konsole als Walzprofil ohne seitliche Aussteifung
- Konsole als Gussbauteil ohne seitliche Aussteifung
- Konsole als Gussbauteil mit seitlichen Aussteifungen.

Im Allgemeinen lehnt sich die Geometrie der analysierten Tragkonsolen der handelsüblichen Gusskonsole¹⁷ an. Zudem entspricht das Walzprofil einem gleichschenkliges Winkelprofil nach EN 10056-1.

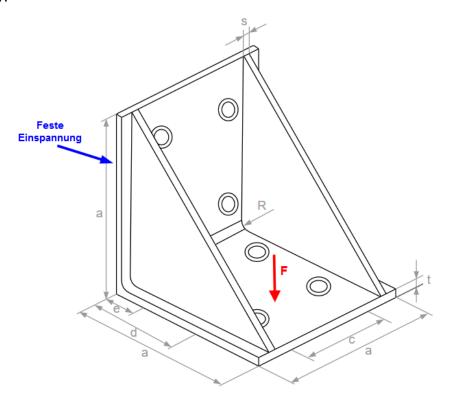


Abbildung 3.1 Verallgemeinerte Skizze des Modellaufbaus Quelle: Eigene Aufnahme

Die in Abbildung 3.1 aufgezeigte Skizze mit der Tabelle 3.1 umfasst den Modellaufbau der Tragkonsole für die einzelnen Varianten.

In der Skizze ebenfalls abgebildet ist die seitliche Versteifung, die nur für eine Konsole relevant

¹⁶ Vgl. VDI 2230 2015, S. 5-6.

¹⁷ Vgl. IBF Automation.

ist. In der Skizze außer Acht gelassen sind die Abrundungsradien an den verschiedenen Außenkanten. Diese sind im Bereich von 2 bis 3 mm ausgelegt.

Die Auslegung gilt für eine Konsole, die an einer Platte t = 20 mm mit vier Schrauben montiert ist und mit statischer und dynamischer Betriebskraft belastet wird.

	Walzprofil	Guss ohne Seitenwand	Guss mit Seitenwand
Breite/Höhe a in mm	100	100	100
c in mm	50	50	50
d in mm	75	75	75
e in mm	30	30	30
Dicke t in mm	9	9	9
Radius R in mm	12	5	5
Seitenwanddicke s in mm	-	-	6,1
Bohrungsdurchmesser in mm	9	9	9

Tabelle 3.1 Bemaßung der verschiedenen Konsolen

Quelle: Eigene Darstellung

4. Methodik

4.1 Berechnungsablauf in FEM

Neben dem eigentlichen Festigkeitsnachweis für die Auslegung der Tragkonsolen besteht ein wesentlicher Aufwand in der Ermittlung der inneren Beanspruchungen. Hierfür wird das Finite Elemente (FE) Programm ANSYS Workbench (ANSYS) angewendet. Im Rahmen der Bachelorarbeit wurde sich auf eine Berechnung mit örtlichen Spannungen beschränkt. Betrachtet wird somit nur die höchstbeanspruchte Stelle, welche die Kerbe darstellt.

4.1.1 Randbedingungen

Für die Berechnung in ANSYS wurden die drei Modellvarianten zunächst mittels CAD in CATIA V5 (CATIA) konstruiert (siehe Anhang 2). Für eine gleichmäße Kraftübertragung wurde zudem eine Kraftfläche konstruiert, die in ANSYS mit einer Dicke von 1 mm festgelegt wurde. Die Kraftfläche ist bei allen Varianten analog mit den Abmaßen, die in Abbildung 4.1 dargestellt sind, angelegt worden. Als nächster Schritt wurden die Modelle in ANSYS implementiert. Die Schraubenverbindung an der Stahlplatte wird durch eine feste Einspannung in ANSYS simuliert. Die Krafteinleitung findet über eine negative Kraft F in z-Richtung statt, die auf die Kraftfläche wirkt und somit eine Verformung nach unten darstellt.

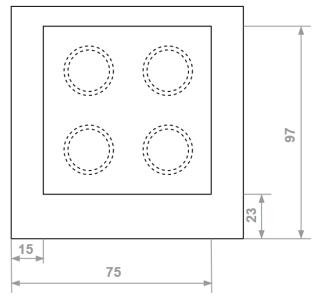


Abbildung 4.1 Skizze Kraftfläche in Draufsicht

Quelle: Eigene Darstellung

4.1.2 Konvergenzstudie

Nach der Implementierung in ANSYS wurde eine Konvergenzstudie mit den Modellen durchgeführt. Das Ziel der Studie war es, die Anzahl der Elemente herauszufinden, bei denen die Spannungsgröße, in diesem Fall die Vergleichsspannung σ_V , in der höchstbeanspruchten Stelle konstant bleibt. Sobald Anzahl und Größe der Elemente, bei denen sich der Wert dem Endwert mit einem geringen relativen Fehler von ungefähr < 1% annähert, gefunden ist, kann immer mit dem gleichen Elementnetz gerechnet werden. Jedoch kann mit steigender Elementanzahl auch die Berechnungszeit steigen. Um den Aufwand für eine Netzfeinheitsstudie so gering wie möglich zu halten, wurde ausgehend von einem groben Netz, das automatisch bei ANSYS generiert wird, bei allen Modellen die Berechnungen durchgeführt. In ANSYS wird eine "Convergence"-Funktion bereitgestellt, die auf Grundlage der adaptiven Netzverfeinerung arbeitet und somit Elementgröße und Anzahl für jeden Lösungsschritt automatisch an die Komplexität der Kerbe anpasst. Das Netz wird dabei mit quadratischen Tetraederelementen generiert. Der E-Modul E und die Querkontraktionszahl v sind in ANSYS nach Tabelle 4.1 hinterlegt.

	Walzprofil	Gussvariante ohne	Gussvariante mit
		Seitenwand	Seitenwand
E-Modul E in MPa	210.000	170.000	170.000
Querkontraktionszahl v	0,30	0,27	0,27

Tabelle 4.1 Materialkennwerte Quelle: Eigene Darstellung In den Abbildungen 4.2 bis 4.4 ist der Vergleich zwischen dem groben Netz (erster Lösungsschritt) und dem auskonvergierten Netz (letzter Lösungsschritt) aufgezeigt.

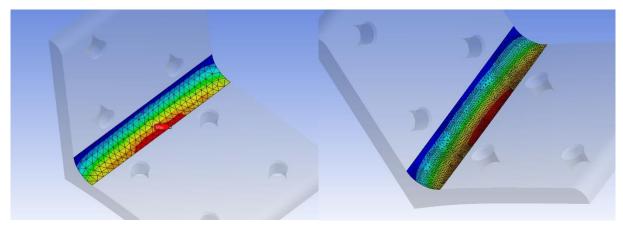


Abbildung 4.2 Netzfeinheit bei Walzprofil Quelle: Screenshot von ANSYS

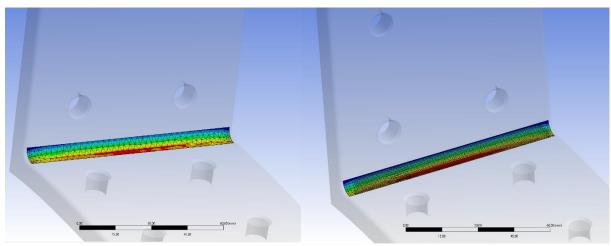


Abbildung 4.3 Netzfeinheit bei Gussvariante ohne Seitenwand Quelle: Screenshot von ANSYS

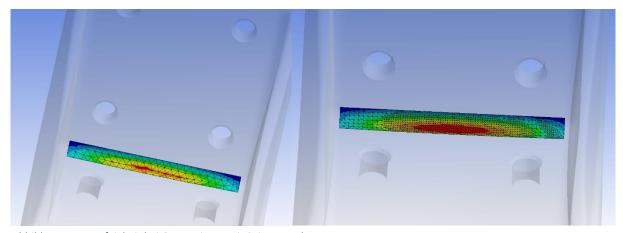


Abbildung 4.4 Netzfeinheit bei Gussvariante mit Seitenwand Quelle: Screenshot von ANSYS

Neben der automatischen Netzverfeinerung wurde zudem ein "Mapped Face Meshing" auf die Kerben gelegt. Das Face Meshing führt zu einer übersichtlichen Strukturierung des Netzes an der ausgewählten Stelle und vermeidet dadurch Verzerrung und Spannungsspitzen.

Die Abhängigkeit der Vergleichsspannungen wurde in ANSYS in drei Lösungsschritte unterteilt. Das auskonvergierte Netz hat bei dem Walzprofil eine Abweichung von 0,687 % bei circa 167.000 Elementen, die Gussvariante ohne Seitenwand 1,17 % bei circa 146.000 Elementen und die Gussvarianten mit Seitenwand eine Abweichung von 2,18 % bei circa 151.000 Elementen (siehe Anhang 3). Das Diagramm in Abbildung 4.5 zeigt den Verlauf der Vergleichsspannungen in Abhängigkeit der drei Lösungsschritte. Der stationäre Endwert, die Vergleichsspannungen σ_{zul} wurden mit der Formel 1.1 in Kapitel 4.2.1 berechnet. Für das weitere Vorgehen wurde mit den auskonvergierten Netzen gerechnet, da diese eine ausreichende Genauigkeit aufweisen.

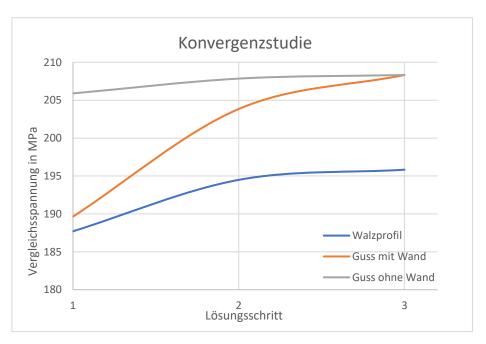


Abbildung 4.5 Konvergenzstudie
Quelle: Eigene Darstellung

4.2 Auslegung der Tragkonsole

4.2.1 Statische Analyse

Für eine optimale Auslegung der Tragkonsole, hinsichtlich der bereits aufgezählten Eigenschaften der Konstruktion und Werkstoffkunde, wird anhand einer statischen Analyse geprüft, wie hoch die maximale Traglast der verschiedenen Tragkonsolen ist. Die Last wird bei der statischen Analyse als konstant und ruhend angenommen. Bei dem ersten Rechendurchlauf wird mit einem Vergleichswert operiert, welcher am Ende der Berechnung durch ein Rückwärtsverfahren nachjustiert wird, um den Vergleichsspannungsgrad a_{SK} für die jeweilige Variante effizient zu nutzen. Für den Vergleichswert wird angenommen, dass die zulässige Spannung σ_{zul} durch

$$\sigma_{zul} \le \frac{R_P}{1,2} \tag{1.1}$$

berechnet wird.

Die Werte für die Fließgrenze R_P , der jeweiligen Variante sind aus Tabelle 4.2 zu entnehmen. Es ist anzumerken, dass die Fließgrenze als verallgemeinerter Begriff für die Streckgrenze R_e bei dem Walzprofil und für die 0,2%-Dehngrenze $R_{p0,2}$ bei den Gussvarianten steht. Der Vergleichswert stellt einen Quotienten zwischen der Fließgrenze und der üblichen Sicherheit¹⁸ gegen Fließen für duktile Werkstoffe dar. Daraus ergeben sich die Werte für σ_{zul} in der Tabelle 4.2.

	Walzprofil	Guss ohne Seitenwand	Guss mit Seitenwand
R_P in MPa	235	250	250
σ_{zul} in MPa	196	208	208
F_{zul} in N	5657	4511	25221

Tabelle 4.2 Vergleichswerte und Streckgrenze für statische Analyse

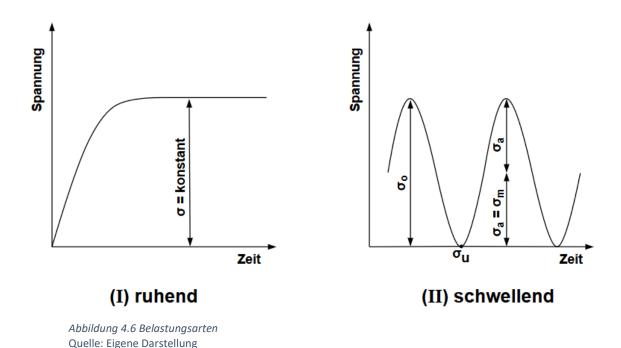
Quelle: Eigene Darstellung

Aus den Ergebnissen ist zu erkennen, dass die zulässige Spannung der Gussbauteile identisch und im Vergleich zu dem Walzprofil höher sind. Dieser Unterschied basiert auf der Tatsache, dass die Fließgrenze und somit die Elastizität bei GJS höher ist als bei S235.

Um die zulässige Belastung F_{zul} für die Tragkonsolen zu berechnen, wurde die Konsole in ANSYS mit 1 N in negativer z-Richtung beansprucht und über den Dreisatz die Kraft F_{zul} ermittelt. Exemplarisch ist die Rechnung für das Walzprofil aufgezeigt:

$$1 N \cong 0,0346 MPa$$
$$5657 N \cong 195 MPa$$

¹⁸ Vgl. Decker 2018a, S. 112.


Das gleiche Vorgehen wurde bei beiden Gussvarianten angewendet. Die Ergebnisse sind in Tabelle 4.2 angegeben. Aus den Ergebnissen lässt sich erschließen, dass die Gussvariante mit Seitenwand eine deutlich höhere Kraft aufnehmen kann als die anderen Varianten. Zudem ist zu erwähnen, dass das Walzprofil ca. 20 % zusätzlicher Kraft aufnehmen kann als die Gussvariante ohne Seitenwand.

In Anhang 4 sind die Modelle in ANSYS dargestellt. Im Kontrast zu dem analysierten Bereich, der Kerbe, sind ebenfalls Ausschnitte der vollständigen Tragkonsole eingefügt. Hier ist kritisch anzumerken, dass der Vergleich der zulässigen Vergleichsspannungen aufzeigt, inwiefern Spannungsspitzen die simulierten Ergebnisse beeinträchtigen.

Für die Ermittlung der maximalen Traglast wird mithilfe der berechneten Vergleichswerte ein statischer Festigkeitsnachweis nach FKM-Richtlinie durchgeführt, auf den in Kapitel 5 näher eingegangen wird.

4.2.2 Dynamische Analyse

Ähnlich zu der bereits aufgeführten statischen Analyse wird bei der dynamischen Untersuchung geprüft, wie hoch die maximale Traglast ist, um eine optimale Auslegung der Tragkonsole für die verschiedenen Varianten zu ermitteln. Die dynamische Traglast wird als schwellend angenommen.

In Abbildung 4.6 sind die statische (I) und die schwellende (II) Belastungsart abgebildet. Bei der schwellenden Belastung schwingt die Spannung zwischen einer Oberspannung σ_o und einer Unterspannung σ_u , wobei σ_u = 0 beträgt. Das bedeutet, dass im Fall der Tragkonsole

von einer maximalen Last und einer völligen Entlastung auszugehen ist, die Spannung bleibt somit nur im positiven Bereich. Der Höchstwert erweist sich als konstant.

Die Vergleichswerte für die zulässige Ausschlagsamplitude $\sigma_{a,zul}$, für die die Tragkonsolen optimal ausgelegt werden, ist mit

$$\sigma_{a,zul} \le 0.1 \cdot R_m \tag{1.2}$$

definiert. Die Werte für die Zugspannung R_m sind in Tabelle 4.3 aufgelistet. Der Vergleichswert für die zulässige Ausschlagsamlitude $\sigma_{a,zul}$ ist in Anlehnung zur zulässigen Spannung nach dem Decker¹⁹ getroffen und wird über ein Verhältnis mit der Zugfestigkeit zu

$$\frac{\sigma_{b,zul}}{R_m} \approx \frac{360 \, MPa}{37 \, MPa} \approx 0.10 \tag{1.3}$$

berechnet. Die Vergleichswerte sind ebenfalls in Tabelle 4.3 aufgezählt. Die Werte für die Gussvarianten sind höher als beim Walzprofil. Der Grund hierfür liegt darin, dass Baustahl eine geringere Zugfestigkeit aufweist als GJS.

	Walzprofil	Guss ohne Seitenwand	Guss mit Seitenwand
R _m in MPa	360	400	400
$\sigma_{a,zul}$ in MPa	36	40	40
$F_{a,zul}$ in N	1040	866	4842

Tabelle 4.3 Vergleichswerte und Zugfestigkeit für dynamische Analyse

Quelle: Eigene Darstellung

Für die Ermittlung der schwellenden Belastung wurde in ANSYS, wie bereits bei der statischen Analyse beschrieben, die Konsole mit 1 N in negativer z-Richtung belastet und mittels des Dreisatzes der Vergleichswert berechnet. Die Rechnung für das Walzprofil kann beispielsweise wie folgt angegeben werden:

$$1 N \cong 0,0346 MPa$$
$$1040 N \cong 36 MPa$$

Die Werte für alle Varianten sind in Tabelle 4.3 vermerkt. Deutlich erkennbar ist, dass die Gussvariante mit Seitenwand die höchste Kraft aufnehmen kann. Zwischen Walzprofil und Gussvariante ohne Seitenwand kann das Walzprofil circa 17 % höhere Kräfte aufnehmen. Die Modelle sind jeweils für die Kerbe und für die vollständige Konsole in ANSYS in Anhang 5 dargestellt.

Die Berechnung der maximalen schwellenden Traglast wird ähnlich der statischen Analyse anhand der Vergleichswerte und einem Ermüdungsfestigkeitsnachweis nach FKM-Richtlinie durchgeführt und durch eine Rückwärtsrechnung ideal für den zyklischen Auslastungsgrad a_{BK} ausgelegt. Dies wird in Kapitel 5 ausführlich erklärt.

¹⁹ Vgl. Decker 2018a, S. 113.

4.3 Dimensionierung der Schraubenverbindung

Im Fokus dieses Kapitels liegt die funktionsgerechte Auslegung der Flanschverbindung. Für eine zweckgemäße Nutzung der Tragkonsole ist diese durch vier Schrauben an einer Stahlplatte verschraubt. Um die Schraubenverbindung rechnerisch auszulegen und somit die Kräfte und Verformungen an der Schraube zu ermitteln, erfolgt die Dimensionierung der Schraubenverbindung auf der Grundlage der Ergebnisse aus dem Ermüdungsfestigkeitsnachweis. Die dort ermittelte Betriebskraft F_a , die auf die Tragkonsole wirkt, wird zwischen der Axialkraft F_A und der Querkraft F_Q unterschieden.

Die erforderliche Schraubenabmessung beschränkt sich dabei darauf, dass nur die obere Schraubenreihe die verschiedenen Kräfte aufnimmt. Die Axialkraft wird über das Momentengleichgewicht ermittelt und wirkt ebenso wie die Querkraft zu jeweils 50 % auf eine Schraube. Darüber hinaus wird vereinfacht angenommen, dass die Betriebskraft F_a zentriert auf die Konsole wirkt. Eine Skizze der Flanschverbindung ist in Abbildung 4.7 sichtbar.

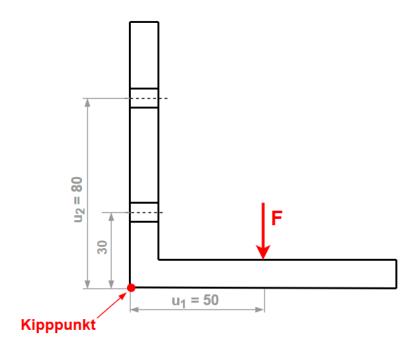


Abbildung 4.7 Skizze einer Flanschverbindung Quelle: Eigene Darstellung

Für die Berechnung der Axialkraft F_A wird am Kipppunkt ein Momentengleichgewicht aufgestellt:

$$\Sigma M_A = -u_1 \cdot F_a + u_2 \cdot F_A$$

$$\Leftrightarrow F_A = \frac{u_1}{u_2} \cdot F_a \tag{1.4}$$

Die Querkraft F_Q lässt sich aus

$$F_Q = \frac{F_a}{2} \tag{1.5}$$

berechnen. Da die Betriebskraft F_a schwellend wirkt, gilt für die Oberlast F_{Ao} die Formel 1.4 und für die Unterlast $F_{Au} = 0$. In Tabelle 4.4 sind die Ergebnisse für alle Varianten aufgelistet. Auf den Wert für die schwellende Betriebskraft F_a wird in Kapitel 5 ausführlicher eingegangen.

	Walzprofil	Guss ohne Seitenwand	Guss mit Seitenwand		
F_a in N	2921	1534	8601		
F_{Ao} in N	1825	951	5376		
F_Q in N	1460	768	4300		

Tabelle 4.4 Kräfte an Schraubenverbindung

Quelle: Eigene Darstellung

Für eine erste Abmessung der Schrauben ist eine Vordimensionierung anhand der berechneten Werte für Axial- und Querkraft ausreichend. Zuerst ist mit der Bedingung

$$F_{Amax} \le F_{Omax} \cdot \mu_T \tag{1.6}$$

zu prüfen, welche der Kräfte maßgebend ist. Der Reibungskoeffizient μ_T^{20} wird für die jeweiligen Materialpaarungen auf

$$\mu_T = 0.10$$

festgelegt, um eine ausreichende Sicherheit bei einer dynamischen Beanspruchung zu gewährleisten. Da die Tragkonsole stark querbeansprucht wird, ist das Produkt zwischen Querkraft und Reibungskoeffizient größer als die Axialkraft bei allen Varianten und die Vordimensionierung wird mit der jeweiligen Querkraft durchgeführt. In Anhang 6 ist der Vorgang der Vordimensionierung exemplarisch mit dem Walzprofil durchgeführt worden. Durch die Vordimensionierung ergibt sich für die jeweiligen Variante eine Schraube

- M12 x 8.8 für das Walzprofil,
- M10 x 8.8 für die Gussvariante ohne Seitenwand,
- M20 x 8.8 für die Gussvariante mit Seitenwand.

Zur Prüfung der Schraubenverbindungen wird ein Festigkeitsnachweis nach VDI-Richtlinie 2230 in Kapitel 6 durchgeführt.

²⁰ Vgl. Decker 2018b, S. 120.

4.4 Auswertung in KISSsoft

Die Auslegung der Tragkonsole und den damit verbundenem Festigkeitsnachweis kann durch verschiedene Methoden gelöst werden. Im Rahmen dieser Bachelorarbeit wurde die Auswertung des Festigkeitsnachweises per Hand durchgeführt sowie mithilfe der Software KISSsoft (KISSsoft). KISSsoft ist ein Berechnungsprogramm, das vorwiegend in Industriegetriebe, Fahrzeugbau, Turbogetriebebau, Windkraft und weiteren Sonderbereichen seine Anwendung findet. Durch zahlreiche Design- und Optimierungsmöglichkeiten sowie dem Einsatz von international anerkannten Berechnungsnormen ist KISSsoft eine flexibel einsetzbare Berechnungssoftware.²¹

Durch wenige Parametereinstellungen kann geprüft werden, ob die Betriebskraft bei der Auslegung der Konsole für statische und dynamische Belastung zulässig ist. Bei der Schraubenverbindung in KISSsoft besteht die Möglichkeit, durch Eingabe unterschiedlicher Parameter den Nenndurchmesser für die Schraube berechnen zulassen. Dieser fällt in der Regel circa zwei Durchmesser zu groß aus.

Hinsichtlich der Berechnungsmethoden orientiert sich KISSsoft stellenweise weder an der FKM-Richtlinie noch an VDI-Richtlinie 2230, woraus leichte Abweichungen in den Ergebnissen resultieren. Außerdem sind verschiedene Grunddaten wie Streckgrenzen, Zugfestigkeit, E-Modul in KISSsoft oftmals unterschiedlich definiert, was ebenfalls zu Abweichungen führen kann. Für einen äquivalenten Ergebnisvergleich werden diese Unterschiede bei der Berechnung in KISSsoft angepasst.

²¹ Vgl. KISSsoft 2020.

5. Rechnerischer Festigkeitsnachweis nach FKM-Richtlinie

5.1 Statischer Festigkeitsnachweis

Im Folgenden wird ein statischer Festigkeitsnachweis nach FKM-Richtlinie durchgeführt, der eine optimale Auslegung der Betriebskraft berechnet. Die Auswertung basiert auf dem zuvor durchgeführten FKM-Nachweis mit den Vergleichswerten aus Kapitel 4.2.1, der im Anhang 8 angeführt ist. Der FKM-Nachweis wurde durch ein Rückwärtsverfahren ideal auf den Vergleichsspannungsgrad a_{SK} ausgelegt, wodurch das Bauteil zu 100 % belastet wird. Zudem ist anzumerken, dass der Festigkeitsnachweis in diesem Kapitel nur für das Walzprofil durchgeführt wurde. Die Werte der Gussvarianten sind in Anhang 9 vermerkt.

5.1.1 Beanspruchung

Der statische Festigkeitsnachweis wird mit der Vergleichsspannung nach Mises σ_V (Gestaltänderungsenergiehypothese) durchgeführt. Die Vergleichsspannung wird in ANSYS durch Angabe der belastenden Kraft $F_{max} = 4628$ N ermittelt. Die resultierende Vergleichsspannung $\sigma_V = 160$ MPa liegt in der Kerbe am maximal beanspruchten Punkt, der im Folgenden als kritische Stelle betrachtet wird.

Die hydrostatische Spannung σ_H lässt sich ebenfalls in ANSYS ermitteln. Hierfür wird die kritische Stelle ausgewählt. Mittels einer benutzerdefinierten Lösung werden die drei Hauptspannungen eingetragen, die über den Körper gemittelt werden sollen. Hierfür ergibt sich eine Spannung von σ_H = 77,0 MPa.

Die Mehrachsigkeit berechnet sich für alle Materialien einheitlich aus

$$h = \frac{\sigma_H}{\sigma_V} \ . \tag{2.1}$$

Für das Walzprofil lässt sich mit der Gl. 2.1 eine Mehrachsigkeit berechnen von

$$h = \frac{77,0 \, MPa}{160 \, MPa} = 0.481 \, .$$

5.1.2 Festigkeit

Werkstofffestigkeit

Die erforderlichen Werkstoffkennwerte werden für den statischen Festigkeitsnachweis durch die Zugfestigkeit R_m und die Fließgrenze R_p definiert. Für die Berechnung der Kennwerte werden die Norm-Zugfestigkeit $R_{m,N}$ und Norm-Fließgrenze $R_{p,N}$ herangezogen, die für einen effektiven Durchmesser $d_{eff,N}$ festgelegt sind und eine Überlebenswahrscheinlichkeit²² von $P_0 = 97,5$ % aufweisen. Zugfestigkeit und Fließgrenze sind für den Normdurchmesser von $d_{eff,N} = 40$ mm bei der FKM-Richtlinie²³ mit $R_{m,N} = 360$ MPa und $R_{p,N} = 235$ MPa für S235

18

²² Vgl. FKM-Richtlinie 2012, S. 68.

²³ Vgl. Ebd. S. 113.

hinterlegt. Die Umrechnung der Normwerte für die spezifischen Auslegung der Konsole erfolgt über

$$R_m = K_{d,m} \cdot K_A \cdot R_{m,N},$$

$$R_p = K_{d,p} \cdot K_A \cdot R_{p,N}.$$
(2.2)

Dabei steht K_d für den technologischen Größenfaktor und K_A für den Anisotropiefaktor. Die Ermittlung der Faktoren K_d erfolgt über den effektiven Durchmesser d_{eff} , der je nach Querschnittsform aus der FKM-Richtlinie zu entnehmen ist. Für die Tragkonsole wird der Querschnitt Nummer 3 herangezogen, da die Breite der Konsole wesentlich größer als die Dicke ist. Für das Walzprofil tritt durch die Verwendung von Baustahl Fall 2 ein. Die Gussvarianten werden Fall 1 zugeordnet. In Abb. 5.1 ist der effektive Durchmesser dargestellt.

Nr.	Querschnittsform	Fall 1	Fall 2	
3	////// s	2s	s	

Abbildung 5.1 Effektiver Durchmesser
Quelle: In Anlehnung an FKM-Richtlinie 2012, S. 70

Der Durchmesser entspricht der Dicke s der Tragkonsole, woraus sich ein Durchmesser von d_{eff} = 9 mm für das Walzprofil ergibt. Der technologische Größenfaktor K_d^{24} resultiert aus der Bedingung

$$d_{eff} \le d_{eff,N} : K_{d,m} = K_{d,p} = 1.$$
 (2.3)

Der Anisotropiefaktor K_A^{25} für Walzteile mit einer Zugfestigkeit bis 600 MPa beträgt $K_A = 0.90$. Mit den verschiedenen Faktoren kann durch die Gl. 2.2 die Werkstoffkennwerte

$$R_m = 1 \cdot 0.90 \cdot 360 MPa = 324 MPa$$

 $R_p = 1 \cdot 0.90 \cdot 235 MPa = 212 MPa$

für das Walzprofil errechnet werden.

Bauteilfestigkeit

Die statische Bauteilfestigkeit σ_{SK} bezeichnet die ertragbare Vergleichsspannung am Nachweispunkt, der kritischen Stelle. Die Berechnung erfolgt mit

$$\sigma_{SK} = R_p \cdot n_{pl} \,. \tag{2.4}$$

²⁴ Vgl. FKM-Richtlinie 2012, S. 69.

²⁵ Vgl. Ebd. S. 71.

Die plastische Stützzahl n_{pl} stellt die Ausschöpfung der Tragreserven eines Bauteils dar, zu Fließbeginn bis zur vollplastischen Traglast. Berechnet wird sie über das Doppelkriterium

$$n_{pl} = MIN\left(\sqrt{E \cdot \frac{\varepsilon_{ertr}}{R_p}}; K_p\right). \tag{2.5}$$

Die ertragbare Dehnung ε_{ertr} hängt von der Mehrachsigkeit h und der Bruchdehnung A des Werkstoffes ab und wird ermittelt durch

$$\varepsilon_{ertr} = \varepsilon_0 + 0.3 \cdot \left(\frac{\varepsilon_{ref} - \varepsilon_0}{0.3}\right)^{3 \cdot h}$$
 (2.6)

Dabei ist ε_0 die minimale ertragbare Dehnung bei hoher Mehrachsigkeit und ε_{ref} die Referenzdehnung. Die FKM-Richtlinie²⁶ definiert die minimale ertragbare Dehnung für Stahl mit ε_0 = 5 % und die Referenzdehnung ε_{ref} gleich der Bruchdehnung A = 17 %. Aus diesen Werten lässt sich mit der Gl. 2.6 eine ertragbare Gesamtdehnung errechnen von

$$\varepsilon_{ertr} = 0.05 + 0.3 \cdot \left(\frac{0.17 - 0.05}{0.3}\right)^{3.0.481} = 13.0 \%.$$

Für die Bestimmung der plastischen Stützzahl n_{pl} , welche die Tragreserven bis zur vollplastischen Traglast kennzeichnet, muss die plastische Formzahl K_p herangezogen werden. Berechnet wird sie durch

$$K_p = \frac{vollst "andige Traglast"}{elast is che Grenzlast},$$
 (2.7)

wobei das Verhältnis angibt, um wieviel die elastische Grenzlast L_e am Nachweispunkt gesteigert werden kann, bevor die vollplastische Traglast L_p erreicht ist und es zum plastischen Kollaps kommt. Beide Werte wurden in ANSYS ermittelt. Das genaue Vorgehen wird in Anhang 7 beschrieben. Für die plastische Formzahl ergibt sich $K_p = 1,06$.

Der E-Modul E für S235 ist 210.000 MPa. In dem Doppelkriterium für die plastische Stützzahl liegen durch die ermittelten Werte folgender Vergleich vor

$$n_{pl} = MIN\left(\sqrt{210000 \, MPa \cdot \frac{0,13}{212 \, MPa}}; 1,06\right)$$
 $n_{pl} = MIN(11,4; 1,06).$

Im weiteren wird mit einer plastischen Stützzahl von n_{pl} = 1,06 gerechnet. Mit der Gl. 2.4 wird die Bauteilfestigkeit auf

$$\sigma_{SK} = 212 MPa \cdot 1,06 = 224 MPa$$

festgelegt.

2/

²⁶ Vgl. FKM-Richtlinie 2012, S. 75-76.

5.1.3 Sicherheitsfaktoren

Die erforderlichen Sicherheitsfaktoren für den statischen Festigkeitsnachweis setzen sich aus dem Lastfaktor j_S und dem Materialfaktor j_F zusammen. Die Sicherheitsfakoren beziehen sich auf eine Überlebenswahrscheinlichkeit von $P_{\ddot{U}} = 97,5$ % der Festigkeitskennwerte. Im Allgemeinen wird der Sicherheitsfaktor durch

$$j = j_S \cdot j_F \tag{2.8}$$

definiert. Durch eine sichere Lastaufnahme der Tragkonsole kann für den Lastfaktor 27 ein $j_F=1$ angenommen werden. Der Materialfaktor setzt sich aus Einzel-Sicherheitsfaktoren zusammen, die speziell für das Walzprofil aus j_m (Nachweis gegen Bruch) und j_p (Nachweis gegen Fließen), in beiden Fällen bei normaler Temperatur, beinhalten. Für eine mittlere Schadensfolge bei hoher Auftretenswahrscheinlichkeit ergeben sich die folgenden Sicherheiten aus der Abbildung 5.2:

$$j_m = 1.85$$

 $j_p = 1.40$

Der Gesamt-Sicherheitsfaktor bildet sich aus den Einzel-Sicherheitsfaktoren mit

$$j_{ges} = j_S \cdot \left[j_Z \cdot MAX \left(\frac{j_m}{K_{T,m}} \cdot \frac{R_p}{R_m}; \frac{j_p}{K_{T,p}} \right) \right]. \tag{2.9}$$

			Schadensfolgen		
			Hoch	Mittel	Niedrig
Wahrscheinlichkeit des Auftretens der Spannung oder Spannungskombination	Hoch	j _m j _p	2,0 1,5	1,85 1,4	1,75 1,3
	Niedrig	j _m	1,8 1,35	1,7 1,25	1,6 1,2

Abbildung 5.2 Auswahl der Sicherheitsfaktoren gegen Bruch und Fließen Quelle: Wächter 2017, S. 55

Die in Gl. 2.9 angewendeten Faktoren $K_{T,m}$ und $K_{T,p}$ sind Temperaturfakoren²⁸, die bei normaler Temperatur

$$K_T = 1$$

betragen. Der zusätzliche Teil-Sicherheitsfaktor j_Z wird für die Gussvarianten benötigt, da er dort als Gussfaktor j_G fungiert.

Der Gesamt-Sicherheitsfakor für das Walzprofil lässt sich aus den gegebenen Werten berechnen zu

$$j_{ges} = 1 \cdot MAX\left(\frac{1,85}{1} \cdot \frac{212 MPa}{324 MPa}; \frac{1,40}{1}\right) = 1,40.$$

²⁷ Vgl. FKM-Richtlinie 2012, S. 80.

²⁸ Vgl. Ebd. S. 71.

5.1.4 Nachweis

Der Nachweis wird durch die Berechnung des Auslastungsgrades a_{SK} für die Vergleichsspannung erbracht. Bei hoher Mehrachsigkeit muss weiterhin ein Nachweis der hydrostatischen Spannung geliefert werden, der in diesem Fall für alle drei Varianten der Tragkonsole nicht notwendig ist, da die Bedingung

$$h_{min} < h < h_{max} \tag{2.10}$$

erfüllt ist mit

$$-1,333 < 0,481 < 1,333.$$

Der Auslastungsgrad a_{SK} stellt den Quotienten zwischen der ertragbaren Spannung σ_{SK} und den Gesamt-Sicherheitsfaktor j_{ges} dar. Berechnet wird er aus:

$$a_{SK} = \frac{\sigma_V}{\sigma_{SK}/j_{qes}} \le 1.$$
(2.11)

Damit der statische Festigkeitsnachweis erbracht ist, muss der Wert kleiner oder gleich eins sein. Der Auslastungsgrad ergibt sich zu:

$$a_{SK} = \frac{160 MPa}{224 MPa/1,40} = 1,00$$
.

Somit ist die Tragkonsole für das Walzprofil hinsichtlich der statischen Festigkeit optimal ausgelegt.

5.2 Ermüdungsfestigkeitsnachweis

Im Folgenden wird ein Ermüdungsfestigkeitsnachweis nach FKM-Richtlinie durchgeführt, der eine optimale Auslegung der dynamischen Betriebskraft umfasst. Die Auswertung basiert auf dem zuvor durchgeführten FKM-Nachweis mit den Vergleichswerten aus Kapitel 4.2.2, der im Anhang 8 angeführt ist. Der FKM-Nachweis wurde durch ein Rückwärtsverfahren ideal auf den zyklischen Auslastungsgrad a_{BK} ausgelegt, wodurch das Bauteil zu 100 % beansprucht ist. Zudem ist anzumerken, dass der Festigkeitsnachweis in diesem Kapitel nur für das Walzprofil durchgeführt wurde. Die Werte der Gussvarianten sind in Anhang 9 vermerkt.

5.2.1 Beanspruchung

Die Tragkonsole wird im dynamischen Zustand schwellend belastet mit einer Kraft F_a = 2921 N. Diese Kraft wird in ANSYS auf die Kraftfläche aufgetragen und dabei wird eine Amplitudenspannung von σ_a = 101 MPa ermittelt. Die schwellende Belastung wirkt als Einstufenkollektiv. Aufgrund der konstanten Amplitude und der Tatsache, dass die Mittelspannung σ_m gleich der Amplitudenspannung ist, gilt für das Spannungsverhältnis

$$R = \frac{\sigma_m - \sigma_a}{\sigma_m + \sigma_a} = \frac{101 \, MPa - 101 \, MPa}{101 \, MPa + 101 \, MPa} = 0.$$
 (3.1)

Für die Hauptspannungsrichtung wird der Ermüdungsfestigkeitsnachweis einzeln berechnet und im Anschluss überlagert. Die Hauptspannungskomponenten

$$\sigma_1 = 113 MPa$$
,
 $\sigma_2 = 32,4 MPa$,
 $\sigma_3 = 0,781 MPa$

wurden für die Kerbe in ANSYS ermittelt. Da es sich um einen ebenen Spannungszustand handelt, weil die Kerbe nicht direkt belastet wird, wird als Hauptspannung $\sigma_3 = 0$ angenommen.

5.2.2 Festigkeit

Werkstoffkennwerte

Nach diesem Kapitel werden die erforderlichen Werkstoff-Festigkeitswerte für den Ermüdungsfestigkeitsnachweis ermittelt. Es wird die Werkstoff-Wechselfestigkeit $\sigma_{W,zd}$ bestimmt für eine Zyklenzahl $N_{D,\sigma}=10^6$, die bei Wöhlerlinientyp I für Dauerfestigkeit steht. Berechnet wird sie mit

$$\sigma_{W,zd} = f_{W,\sigma} \cdot R_m \,. \tag{3.2}$$

Der Zugdruckwechselfestigkeitsfaktor²⁹ für S235 liegt bei $f_{W,\sigma}$ = 0,45. Die Wechselfestigkeit lässt sich mithilfe der Zugfestigkeit, die mit der Gl. 2.2 im statischen Festigkeitsnachweis berechnet wurde, mit der Gl. 3.2

$$\sigma_{Wzd} = 0.45 \cdot 212 \, MPa = 146 \, MPa$$

ermitteln.

Bauteil-Wechselfestigkeit

Die Bauteil-Wechselfestigkeit $\sigma_{WK,\sigma 1}$ und $\sigma_{WK,\sigma 2}$ in den zwei Hauptspannungsrichtungen berechnet sich mithilfe der Konstruktionsfaktoren $K_{WK,\sigma 1}$ und $K_{WK\sigma 2}$ aus der Zugdruckwechselfestigkeit und wird berechnet durch:

$$\sigma_{WK,\sigma 1} = \frac{\sigma_{W,zd}}{K_{WK,\sigma 1}}$$

$$\sigma_{WK,\sigma 2} = \frac{\sigma_{W,zd}}{K_{WK,\sigma 2}}.$$
(3.3)

Die Konstruktionsfaktoren beinhalten für Stahlbauteile die folgenden Einflüsse:

- Stützzahl n_σ
- Rauheitsfaktor K_R
- Kerbwirkungszahl $\widetilde{K_f}$
- weitere Faktoren

Die Stützzahl kann seit der aktuellen Auflage der FKM-Richtlinie durch zwei verschiedene Verfahren berechnet werden. Im Allgemeinen steht die Stützzahl für die verschiedenen Effekte, die durch die Konstruktion eine unterschiedliche Spannungsverteilung im Nachweispunkt aufweisen und somit durch die Stützzahl gewichtet werden. Berechnet wird sie entweder mit dem Vorgehen nach Stieler oder mit einem werkstoffmechanischen Vorgehen. Für einen Vergleich der beiden Vorgehensweisen und gegebenenfalls der Abweichungen wurden für alle drei Varianten beide Verfahren berücksichtigt.

Für die Berechnung der Stützzahlen wird zunächst das senkrecht zur Spannungsrichtung bezogene Spannungsgefälle G_{σ} benötigt. Da in diesem Fall das Spannungsgefälle direkt an der maximalen Spannung betrachtet wird, kann diese näherungsweise mit dem Radius r nach der Gleichung

$$G_{\sigma} = \frac{2}{r} \tag{3.4}$$

Berechnet werden. Bei dem Walzprofil mit dem Radius r = 12 mm ergibt sich ein Spannungsgefälle von

$$G_{\sigma,1} = \frac{2}{12 \ mm} = 0.167 \ \frac{1}{mm}.$$

²⁹ Vgl. FKM-Richtlinie 2012, S. 87.

Für das fehlende Spannungsgefälle in der zweiten Hauptspannungsrichtung wird nach FKM-Richtlinie³⁰ mit einer Stützzahl von $n_{\sigma,2}=1$ gerechnet.

Stützzahl nach Stieler

Die Berechnung nach Stieler wird mit der Gleichung, für die $0.1 \ mm^{-1} < G_{\sigma} < 1 \ mm^{-1}$ gilt,

$$n_{\sigma,1} = 1 + \sqrt{G_{\sigma,1} \cdot mm} \cdot 10^{-\left(a_G + \frac{R_m}{b_G \cdot MPa}\right)}$$
 (3.5)

operiert. Die Konstanten a_G und b_G werden aus der Tabelle 4.3.2 der FKM-Richtlinie entnommen:

$$a_G = 0.50$$

 $b_G = 2700$.

Daraus resultiert eine Stützzahl von

$$n_{\sigma,1} = 1 + \sqrt{0,167 \frac{1}{mm} \cdot mm} \cdot 10^{-\left(0,50 + \frac{324 \, MPa}{2700 \, \cdot MPa}\right)} = 1,10.$$

Werkstoffmechanische Stützzahl

Die werkstoffmechanische Stützzahl besteht aus drei Einzelfaktoren

$$n_{\sigma} = n_{st} \cdot n_{vm} \cdot n_{bm} \,. \tag{3.6}$$

Statische Stützzahl nst.

Die statische Stützzahl ergibt aus dem Verhältnis einer hoch beanspruchen Oberfläche von einer Referenzprobe und der Tragkonsole

$$n_{st} = \left(\frac{A_{ref,st}}{A_{\sigma,st}}\right)^{\frac{1}{k_{st}}}. (3.7)$$

Für die Referenzprobenoberfläche³¹ gilt

$$A_{ref,st} = 500 \, mm^2$$
.

Diese ist in Bezug auf eine Rundprobe mit einem 8 mm-Durchmesser und einen zylindrischen Abstand von 20 mm. Die hoch beanspruchte Oberfläche der Tragkonsole, der Kerbe, kann sowohl in ANSYS als auch in CATIA entnommen werden und beträgt

$$A_{\sigma,st} = 1880 \ mm^2$$
.

Der Weibull-Exponent k_{st} für Stahl wird nach FKM-Richtlinie³² mit $k_{st}=30$ angegeben. Die statische Stützzahl berechnet sich mit der Gl. 3.7 zu

$$n_{st} = \left(\frac{500 \, mm^2}{1880 \, mm^2}\right)^{\frac{1}{30}} = 0.957 \, .$$

³⁰ Vgl. FKM-Richtlinie 2012, S. 92.

³¹ Vgl. Ebd. S. 91.

³² Vgl. Ebd. S. 91.

Verformungsmechanische Stützzahl n_{vm}

Die verformungsmechanische Stützzahl n_{vm} bezeichnet die Makrostützwirkung und wird nur für duktile Stähle und Aluminiumknetlegierungen verwendet. Für alle anderen Werkstoffe, in diesem Fall die beiden Versionen mit GJS, gilt

$$n_{vm} = 1. (3.8)$$

Für Stahl wird es mit

$$n_{vm} = \sqrt{1 + \frac{E \cdot \varepsilon_{pl,W}}{\sigma_W} \cdot (n_{st})^{\frac{1}{n_t} - 1}}$$
 (3.9)

berechnet. Die dauerfest ertragbare wechselplastische Dehnung $\varepsilon_{pl,W}^{~33}$ wird für Stahl mit einer Zugfestigkeit \leq 600 MPa durch

$$\varepsilon_{pl,W} = 2 \cdot 10^{-4}$$

definiert. Die Konstante 34 n' ist für Stahl mit

$$n' = 0.15$$

festgelegt. Die Werkstoff-Wechselfestigkeit σ_W und die statische Stützzahl n_{st} werden aus den vorherigen Rechnungen übernommen. Daraus ergibt sich eine verformungsmechanische Stützzahl von

$$n_{vm} = \sqrt{1 + \frac{210000 \, MPa \cdot 2 \cdot 10^{-4}}{146 \, MPa} \cdot (0.957)^{\frac{1}{0.15} - 1}} = 1.11 \,.$$

Bruchmechanische Stützzahl n_{bm}

Die bruchmechanische Stützzahl steht für das langsame Entstehen einer Rissbildung. Berechnen lässt sich diese Stützzahl mit Hilfe von

$$n_{bm} = \frac{5 + \sqrt{G \cdot mm}}{5 \cdot n_{vm} \cdot n_{st} + \frac{R_m}{R_{m,bm}} \cdot \sqrt{\frac{7,50 + \sqrt{G \cdot mm}}{1 + 0,20 \cdot \sqrt{G \cdot mm}}}}$$
(3.10)

Die Referenz-Zugfestigkeit $R_{m,bm}$ für Stahl ist gemäß FKM-Richtlinie 35 mit

$$R_{m hm} = 680 MPa$$

festgelegt.

³³ Vgl. FKM-Richtlinie 2012, S. 91.

³⁴ Vgl. Ebd. S. 92.

³⁵ Vgl. Ebd. S. 92.

Eingesetzt mit den bereits berechneten Werten ergibt sich eine bruchmechanische Stützzahl von

$$m_{bm} = \frac{5 + \sqrt{0,167 \frac{1}{mm} \cdot mm}}{5 \cdot 1,11 \cdot 0,957 + \frac{324 MPa}{680 MPa} \cdot \sqrt{\frac{7,50 + \sqrt{0,167 \frac{1}{mm} \cdot mm}}{1 + 0,20 \cdot \sqrt{0,167 \frac{1}{mm} \cdot mm}}}} = 0,815.$$

Da der Wert kleiner als eins ist, gilt nach FKM-Richtlinie, dass

$$n_{bm} = 1 \tag{3.11}$$

ist.

Mit den berechneten Einzelfaktoren kann durch Gl. 3.6 die werkstoffmechanische Stützzahl für die Tragkonsole aus S235 berechnet werden:

$$n_{\sigma} = 0.957 \cdot 1.11 \cdot 1 = 1.06$$
.

Aus der Berechnung der Stützzahlen mithilfe beider Ansätze lässt sich folgern, dass sich beide Verfahren in Bezug auf das Ergebnis ähneln, aber darin unterscheiden, dass sich die Stützzahl nach Stieler hauptsächlich auf das Spannungsgefälle, während sich die werkstoffmechanische Stützzahl auf die Eigenschaften von Bauteil und Beanspruchung konzentriert. Im weiteren Verlauf wird mit der Stützzahl von Stieler gerechnet, weil diese größer ist und somit eine höhere Festigkeit aufweist.

Rauheitsfaktor

Der Rauheitsfaktor gibt an, inwiefern die Oberflächenrauheit der Tragkonsole den Ermüdungsfestigkeitsnachweis beeinflusst. Berechnet wird der Rauheitsfaktor $K_{R,\sigma}$ durch

$$K_{R,\sigma} = 1 - a_{R,\sigma} \cdot \lg\left(\frac{R_z}{\mu m}\right) \cdot \lg\left(\frac{2 \cdot R_m}{R_{m,N,min}}\right).$$
 (3.12)

Die mittlere Rauheit R_z ³⁶ für Walzhaut liegt bei $R_z=200~\mu m$. Die Konstante $a_{R,\sigma}$ und die minimale Zugfestigkeit $R_{m,N,min}$ für Stahl³⁷ ist definiert durch

$$a_{R,\sigma} = 0.22$$

$$R_{m,N,min} = 400 MPa.$$

Werden diese Werte in Gl. 3.12 eingesetzt, ergibt sich ein Rauheitsfaktor von

$$K_{R,\sigma} = 1 - a_{0,22} \cdot \lg\left(\frac{200 \, \mu m}{\mu m}\right) \cdot \lg\left(\frac{2 \cdot 324 \, MPa}{400 \, MPa}\right) = 0.894 \, .$$

_

³⁶ Vgl. FKM-Richtlinie, 2012, S. 93.

³⁷ Vgl. Ebd. S. 93.

Schätzwert der Kerbwirkungszahl

Der Schätzwert der Kerbwirkungszahl $\widetilde{K_f}$ ist berechenbar durch die Formzahlen für eine Ersatzstruktur:

$$\widetilde{K_f} = MAX(K_{t,\sigma}/n_{\sigma}; 1). \tag{3.13}$$

Die Formzahl für eine Ersatzstruktur wird berücksichtigt, wenn die Oberflächenrauheit, je nach Kerbschärfe, einbezogen werden soll. Für Näherungen soll gelten:

$$K_{t,\sigma_1} = MAX \left(10^{0,066 - 0,36 \cdot \lg(r/b)}; 1 \right)$$

$$K_{t,\sigma_1} = MAX \left(10^{0,066 - 0,36 \cdot \lg(12 \ mm/100 \ mm)}; 1 \right)$$

$$K_{t,\sigma_1} = MAX (1,05; 1) = 1,05.$$
(3.14)

Da in y-Richtung kein Radius vorhanden ist, wird für diesen Fall folgender Schätzwert aus der FKM-Richtlinie³⁸ verwendet:

$$K_{t,\sigma^2} = 2.$$

Mit den Form- und Stützzahlen lassen sich mit der G. 3.13 die Kerbwirkungszahlen der einzelnen Hauptspannungsrichtungen

$$\widetilde{K_{f,1}} = MAX(1,05/1,10;1) = 1$$

 $\widetilde{K_{f,2}} = MAX(2/1;1) = 2$

berechnen.

Weitere Faktoren

Für den Konstruktionsfaktor werden ferner

- der Randschichtfaktor K_V
- der Schutzsicherheitsfaktor K_S
- der Faktor für GJL K_{NL,E}

benötigt. Da die Tragkonsole ohne eine Randschichtverfestigung hergestellt wurde, beträgt der Randschichtfaktor³⁹ $K_V = 1$. Weil der Schutzsicherheitsfaktor ausschließlich bei Aluminiumgusswerkstoffen und der GJL Faktor nur bei GJL berücksichtigt werden, liegen diese bei eins⁴⁰.

Der Konstruktionsfaktor wird mit der Gleichung

$$K_{WK,\sigma} = \frac{1}{n_{\sigma}} \left[1 + \frac{1}{\widetilde{K_f}} \cdot \left(\frac{1}{K_R} - 1 \right) \right] \cdot \frac{1}{K_V \cdot K_S \cdot K_{NL,E}}$$
(3.15)

berechnet.

³⁸ Vgl. FKM-Richtlinie 2012, S. 89.

³⁹ Vgl. Ebd. S. 95.

⁴⁰ Vgl. Ebd. S. 95.

Durch einsetzten der zuvor berechneten Faktoren, können für die Hauptspannungsrichtung folgende Konstruktionsfaktoren angegeben werden:

$$K_{WK,\sigma 1} = \frac{1}{1,10} \left[1 + \frac{1}{1} \cdot \left(\frac{1}{0.894} - 1 \right) \right] \cdot \frac{1}{1 \cdot 1 \cdot 1} = 1,02$$

$$K_{WK,\sigma 2} = \frac{1}{1} \left[1 + \frac{1}{2} \cdot \left(\frac{1}{0.894} - 1 \right) \right] \cdot \frac{1}{1 \cdot 1 \cdot 1} = 1.06.$$

Die Bauteil-Wechselfestigkeit kann nun unter Berücksichtigung der Konstruktionsfaktoren mit den Gleichungen aus 3.3 ermittelt werden

$$\sigma_{WK,\sigma 1} = \frac{\sigma_{W,zd}}{K_{WK,\sigma 1}} = \frac{146 MPa}{1,02} = 143 Pa$$

$$\sigma_{WK,\sigma 2} = \frac{\sigma_{W,zd}}{K_{WK,\sigma 2}} = \frac{146 MPa}{1,06} = 138 MPa.$$

Bauteil-Dauerfestigkeit

Bei der Bauteil-Dauerfestigkeit wird die Amplitude nach gegebener Mittelspannung berechnet. Im Allgemeinen wird die Amplitude der Bauteil-Dauerfestigkeit über

$$\sigma_{AK} = K_{AK,\sigma} \cdot \sigma_{WK} \tag{3.16}$$

errechnet. Dabei steht $K_{AK,\sigma}$ für den Mittelspannungsfaktor, welcher von Mittelspannungsempfindlichkeit, Mittelspannungsbereich und Überlastfall abhängig ist.

Mittelspannungsempfindlichkeit

Die Mittelspannungsempfindlichkeit M_{σ} stellt die Veränderung der Amplitude der Bauteil-Dauerfestigkeit in Abhängigkeit der Mittelspannung dar. Ermittelt wird diese über

$$M_{\sigma} = a_M \cdot 10^{-3} \cdot R_m / MPa + b_M.$$
 (3.17)

Die Konstanten a_M und b_M werden durch die FKM-Richtlinie⁴¹ für Stahl durch

$$a_M = 0.35$$

$$b_{M} = -0.1$$

definiert. Dadurch lässt sich für die Mittelspannungsempfindlichkeit

$$M_{\sigma} = 0.35 \cdot 10^{-3} \cdot 324 \, MPa \, / MPa - 0.1 = 0.0134$$

berechnen.

-

⁴¹ Vgl. FKM-Richtlinie, 2012, S. 97.

Mittelspannungsbereich

Im Allgemeinen sind vier Spannungsbereiche zu unterscheiden, die zwischen einem Druckschwellbereich und einem hohen Zugschwellbereich variieren. In Abbildung 5.3 ist ein Dauerfestigkeitsschaubild für Normalspannungen aufgezeigt, welches auch Haigh-Diagramm genannt wird. In diesem Diagramm werden die Mittelspannungsbereiche durch das Spannungsverhältnis R unterschieden.

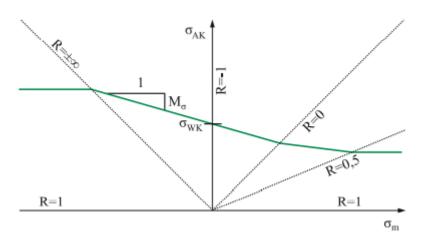


Abbildung 5.3 Haigh-Diagramm Quelle: Wächter, 2017, S. 89

Die schwellende Belastung der Traglast gehört durch das Spannungsverhältnis R = 0 zu Bereich II, einem Druckwechselbereich.

Der Überlastfall stellt die mögliche Laststeigerung im Betrieb dar und wird in vier verschiedene Fälle unterteilt. Für die Auslegung der Tragkonsole wird der Überlastfall F2 betrachtet, bei dem das Spannungsverhältnis R konstant bleibt und der auch, der in der Praxis am häufigsten genutzte Lastfall ist.

Im Bereich II und im Überlastfall F2 wird der Mittelspannungsfaktor mit

$$K_{AK} = \frac{1}{1 + M_{\sigma} \cdot \sigma_m/\sigma_a} \tag{3.18}$$

berechnet. Durch die schwellende Belastung beträgt das Verhältnis zwischen Mittelspannung und Amplitudenspannung stets eins bei allen Hauptspannungen. Dadurch ergibt sich

$$K_{AK} = \frac{1}{1 + 0.0134 \cdot 1} = 0.987.$$

Damit lässt sich Amplitude der Dauerfestigkeit für die Hauptspannung wie folgt berechnen:

$$\sigma_{AK,1} = 0.9868 \cdot 143,10 \, MPa = 141 \, MPa$$

$$\sigma_{AK.1} = 0.9868 \cdot 137,64 MPa = 136 MPa.$$

Bauteil-Betriebsfestigkeit

Die Bauteil-Betriebsfestigkeit berechnet die Amplitude je nach Spannungskollektiv und Bauteil-Wöhlerlinie. Berechnet wird sie mittels der Gleichung

$$\sigma_{BK} = K_{BK,\sigma} \cdot \sigma_{AK} \,. \tag{3.19}$$

Der Betriebsfestigkeitsfaktor $K_{BK,\sigma}$ ist von Spannungskollektiv und Wöhlerlinie abhängig. In diesem Fall wird wegen des Einstufenkollektivs mit der Bauteil-Wöhlerlinie Typ I gerechnet. Für einen Nachweis der Dauerfestigkeit und einer Grenzspannungsamplitude bei N = ∞ gilt für den Betriebsfestigkeitsfaktor⁴²

$$K_{BK,\sigma} = 1 \, f \ddot{\mathbf{u}} r \, \overline{N} \, \ge \, N_D \,. \tag{3.20}$$

Mit der zuvor aufgeführten Gl. 3.16 und dem Betriebsfestigkeitsfaktor berechnet sich die Bauteil-Betriebsfestigkeit zu

$$\sigma_{BK,1} = 1 \cdot 141 \, MPa = 141 \, MPa$$
 $\sigma_{BK,2} = 1 \cdot 136 \, MPa = 136 \, MPa$.

Zusätzlich muss für jede Spannungskomponente die Bedingung der Begrenzung der Maximalamplitude gelten, wenn

$$\sigma_{BK} \geq \sigma_{BK,max}$$
, dann
$$\sigma_{BK} = \sigma_{BK,max} \ und \ K_{BK} = \frac{\sigma_{BK,max}}{\sigma_{AK}} \ . \tag{3.21}$$

Berechnet wird $\sigma_{BK,max}$ mit

$$\sigma_{BK,max} = 0.75 \cdot R_P \cdot n_{pl}$$

$$\sigma_{BK,max} = 0.75 \cdot 324 \, MPa \cdot 1.06 = 168 \, MPa \, .$$
(3.22)

Damit ist die Bedingung nicht erfüllt und es kann mit dem Wert der Bauteil-Betriebsfestigkeit, der durch Gl. 3.19 berechnet wurde, fortgefahren werden.

Die Bauteil-Wöhlerkennlinie stellt den Zusammenhang zwischen der Spannungsamplitude und der ertragbaren Lastwechsel dar und wird für jede Spannungskomponente einzeln bestimmt. In Abbildung 5.4 ist eine Skizze der Wöhlerkennlinie für die 2. Hauptspannung aufgezeigt. Die Knickpunktzyklenzahl N_D und der Bauteil-Wöhlerexponent k sind durch die FKM-Richtlinie⁴³ festgelegt und ist für das Walzprofil und die Gussvarianten gleich

$$N_D = 10^6$$
 $k_{\sigma} = 5$.

Durch die Wöhlerlinie wird der Zusammenhang zwischen der Spannungsamplitude und der Lastwechsel kenntlich und speziell in Abbildung 5.4 unter den Varianten verglichen. Es wird ersichtlich, dass für die gleiche Knickpunktzyklenzahl das Walzprofil eine kleinere Spannungsamplitude im Vergleich zu den Gussvarianten.

-

⁴² Vgl. FKM-Richtlinie, 2012, S. 104.

⁴³ Vgl. Ebd. S. 103.

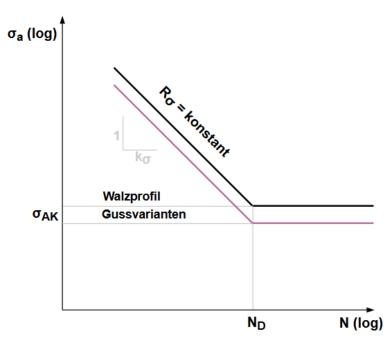


Abbildung 5.4 Skizze Bauteil-Wöhlerkennlinie für 2. Hauptspannung Quelle: Eigene Darstellung

5.2.3 Sicherheitsfaktoren

Ähnlich wie bei den Sicherheitsfaktoren im statischen Festigkeitsnachweis gelten diese bei einer mittleren Überlebenswahrscheinlichkeit von $P_{\ddot{U}} = 97,5$ % und sind in Teilsicherheitsfakoren untergliedert.

Der Last-Sicherheitsfaktor⁴⁴ j_S wird als eins angenommen. Der Grund hierfür liegt darin, dass es sich um eine sichere Lastaufnahme handelt.

Für den Material-Sicherheitsfaktor j_F kann mit der Abbildung 5.5 ein Wert von

$$j_F = 1,40$$

ermittelt werden. Dieser gilt für eine mittlere Schadensfolge bei keiner regelmäßigen Inspektion.

j _F		Schaden	Schadensfolgen		
		Hoch	Mittel	Niedrig	
Regelmäßige Inspektion	Nein	1,5	1,4	1,3	
(im Sinne der Schadensfrüherkennung)	Ja	1,35	1,25	1,2	

Abbildung 5.5 Auswahl der Material-Sicherheitsfaktoren

Quelle: Wächter, 2014, S. 107

⁴⁴ Vgl. FKM-Richtlinie 2012, S. 107.

32

Der Gesamt-Sicherheitsfaktor j_D lässt sich aus

$$j_D = j_S \cdot \frac{j_F}{K_{T,D}} \tag{3.23}$$

berechnen. Der Temperaturfaktor $K_{T,D}$ beträgt bei normalen Temperaturen eins. Für den Gesamt-Sicherheitsfaktor ergibt sich

$$j_D = 1 \cdot \frac{1,40}{1} = 1,40.$$

5.2.4 Nachweis

Für den Ermüdungsfestigkeitsnachweis muss mit jeder Spannungskomponente ein Nachweis erbracht werden. Der zyklische Auslastungsgrad berechnet sich aus

$$a_{BK,\sigma} = \frac{\sigma_a}{\sigma_{BK}/j_D} \,. \tag{3.24}$$

Mit den eingesetzten Werten für die Spannungskomponente ergibt sich

$$a_{BK,\sigma 1} = \frac{113 MPa}{141 MPa/_{1,40}} = 1,12$$

$$a_{BK,\sigma 2} = \frac{32,4 MPa}{136 MPa/1.40} = 0,334.$$

Für den zyklischen Auslastungsgrad für zusammengesetzte Spannungsarten gilt

$$a_{BK,\sigma v} = q \cdot a_{NH} + (1 - q) \cdot a_{GH} \le 1.$$
 (3.25)

Für Stahl⁴⁶ ist q = 0. Die Überlagerung a_{GH} wird über

$$a_{GH} = \sqrt{\frac{1}{2} \cdot \left[\left(s_{a,1} - s_{a,2} \right)^2 + \left(s_{a,2} - s_{a,3} \right)^2 + \left(s_{a,3} - s_{a,1} \right)^2}$$
 (3.26)

berechnet, wobei $s_{a,1}$. $s_{a,2}$ und $s_{a,3}$ für $a_{BK,\sigma 1}$, $a_{BK,\sigma 2}$ und $a_{BK,\sigma 3}$ stehen.

Daraus ergibt sich für

$$a_{GH} = \sqrt{\frac{1}{2} \cdot [(1,124 - 0,334)^2 + (0,334)^2 + (-1,12)^2} = 1,00$$
.

Der zusammengesetzte Auslastungsgrad für die Tragkonsole als Walzprofil ergibt

$$a_{BK,\sigma v}=1\cdot a_{GH}=1{,}00.$$

Die Tragkonsole ist somit optimal für die schwellende Belastung ausgelegt.

⁴⁵ Vgl. FKM-Richtlinie, 2012, S. 88.

⁴⁶ Vgl. Ebd. S. 109.

5.3 Vergleich der Ergebnisse

Soll eine Vergleichsrechnung der Festigkeitsnachweise in KISSsoft durchgeführt werden, müssen die Beanspruchung und die Werkstoffdaten in der Berechnungssoftware hinterlegt werden. Für die Basisdaten wurde bei allen drei Varianten ein volumenförmiges Bauteil mit Überlastfall F2 angegeben. Zudem muss zur Berechnung des jeweiligen Spannungsgefälles bei den Basisdaten der Radius für die Kerbe angegeben werden. Der Radius wurde der entsprechenden Tragkonsole für die x-Richtung angepasst. Die Faktoren in den Grunddaten wurden lediglich insofern geändert, als dass die hochbeanspruchte Oberfläche aus Kapitel 5.2.2 für jede Konsole eingetragen wurde. Das weitere Vorgehen unterscheidet zwischen statischer und dynamischer Auswertung, sodass diese getrennt aufgeführt werden.

Statischer Nachweis

Bei dem statischen Nachweis wurde die Spannung am Nachweispunkt σ_{m1} als konstant angenommen und mit den jeweiligen Werten der Vergleichsspannung σ_v aus Kapitel 5.1.1 operiert. Da die Beanspruchung im statischen Nachweis konstant ist, wurden die Spannungen σ_{m2} , und σ_{m3} gleich null gesetzt. In die Betriebsdaten wurde außerdem die plastische Formzahl, wie sie in Kapitel 5.1.2 berechnet wurde, eingetragen. Im Fall der Werkstoffdaten wurde für die jeweilige Variante der Werkstoff hinterlegt, dessen weitere Eigenschaften wie Zugfestigkeit, Streckgrenze, etc. bereits in der KISSsoft Datenbank hinterlegt sind. Anzumerken ist, dass wegen der Walzbehandlung des Walzprofils die Zugfestigkeit R_m und Streckgrenze R_e manuell angepasst wurden. Der Grund hierfür liegt darin, dass die Berechnungssoftware bei der Umrechnung der Normwerte den Anisotropiefaktor K_A für Walzteile nicht berücksichtigt, sondern mit dem Wert aus der FKM-Richtlinie für Längs-Bearbeitungsrichtungen verfährt. Der Rauheitsfaktor R_Z und der effektive Durchmesser d_{eff} wurden den vorangegangenen Berechnungen entnommen. Für den weiteren Rechnungsverlauf sind keine zusätzlichen Informationen notwendig. Aus den mittels KISSsoft Ergebnissen zeigt sich, dass mit den angegebenen ermittelten Vergleichsspannungsgrad von a_{SK} = 100 % erzielt wird. Dieser stimmt mit dem bereits berechneten Vergleichsspannungsgrad aus dem statischen Festigkeitsnachweis vollständig überein.

Ermüdungsfestigkeitsnachweis

Der Ermüdungsfestigkeitsnachweis unterscheidet sich vom statischen Nachweis in KISSsoft dadurch, dass die Spannungen am Nachweis nicht als konstant angenommen werden, sondern wie in der bereits ausgeführten Rechnung in Kapitel 5.2 als schwellend betrachtet wird. Die Spannungen am Nachweispunkt σ_{m1} und σ_{m2} stellen die Hauptspannungen σ_{1} und σ_{2} dar. Als Lastkollektiv wird die Einstufenbeanspruchung für beide Spannungen ausgewählt,

zur Aufbringung der schwellenden Last für den Nachweis $\sigma_m = \sigma_a$ angenommen. Die Basisdaten und Werkstoffdaten werden dabei aus dem statischen Nachweis übernommen. Die Berechnung mittels KISSsoft für den dynamischen Auswertung ermittelt eine hundertprozentige Auslastung des Walzprofils und für die Gussvarianten eine 100,75 %-ige Auslastung. Abweichungen zwischen den mithilfe der Berechnungssoftware ermittelten Werten und den Daten der FKM-Richtlinie können auftreten, da sich KISSsoft nicht in allen Gebieten streng an die FKM-Richtlinie hält und zudem stellenweise die Grundwerte in KISSsoft unterschiedlich hinterlegt sind. Da die Abweichung bei den Gussvarianten unter 1 % liegt, wird diese nicht weiter analysiert.

5.4 Zusammenfassung der Ergebnisse

In Bezug auf den Festigkeitsnachweis für sowohl die statische als auch die dynamische Belastung wird resümiert, dass die Kräfte für die statische Belastung wesentlich höher angenommen werden, als zulässig ist. Konträr dazu werden diese bei der dynamischen Belastung wesentlich niedriger eingeschätzt. Durch die ausführliche Berechnung in Kapitel 5 wurde aufgezeigt, inwiefern die Werkstoffe und Geometrien hinsichtlich ihrer Beanspruchung variieren. Zudem wurde durch die genaue Berechnung aufgezeigt, durch welche Faktoren eine zusätzliche Optimierung sinnvolle wäre. Durch das genaue Anführen der Ergebnisse war es möglich, einen Vergleich zwischen der Berechnung gemäß der FKM-Richtlinie und derjenigen mithilfe des Berechnungsprogramms KISSsoft zu ziehen. Besonders augenfällig ist dabei, dass spezielle Umformverfahren, die bei der Bearbeitung besonders querbeansprucht werden, in KISSsoft nicht berücksichtigt werden und somit eigene Werte für eine exakte Berechnung hinterlegt werden müssen. Bei dem Vergleich der einzelnen Varianten untereinander ist zudem anzumerken, dass nach dem Vorgehen der FKM-Richtlinie nahezu keine Unterschiede zwischen den beiden Gussvarianten bestehen. Werkstoffkennwerte wie auch Konstanten sind für beide Varianten nahezu einheitlich, obwohl zwischen den Varianten ein bedeutsamer Unterschied hinsichtlich der Betriebskräfte liegt. Die Simulation in ANSYS war in vielen Bereichen der Festigkeitsnachweise vorteilig, da durch die Simulation des Betriebszustandes eventuelle Fehler in der Berechnung im frühen Verlauf des Nachweises behoben werden konnten. Durch die Konstruktion in CAD konnten die Bauteile bereits vor der Simulation und Festigkeitsberechnung veranschaulicht und somit individuell verschiedene Abmaße bereits im Vorfeld geändert werden. Folglich konnten potenzielle Fehler in der Berechnung vermieden werden und im Hinblick auf die Forschungsfrage der Vergleich der Varianten gesichert werden. Unter Berücksichtigung der Ergebnisse der Nachweise kann davon ausgegangen werden, dass die standardmäßige Gusskonsole verglichen mit den anderen Varianten wesentlich höhere Kräfte aufnehmen und daher als vorteilig angesehen werden kann. Nichtsdestotrotz kann aber als kostengünstigere Alternative das Walzprofil in Betracht gezogen werden.

6. Rechnerischer Festigkeitsnachweis nach VDI-Richtlinie 2230

Der Rechnerische Festigkeitsnachweis wird nach VDI-Richtlinie 2230 durchgeführt und basiert auf der Vordimensionierung in Anhang 6. Exemplarisch wird das Vorgehen anhand der Schraubenverbindung mit der Walzvariante durchgeführt. Für die Gussvariante sind die Ergebnisse in Anhang 10 hinterlegt.

6.1 Grunddaten

Die Axialkraft F_A und die Querkraft F_Q berechnen sich wie in Kapitel 4.3 erläutert mit den Gleichungen 1.4 und 1.5 zu

$$F_A = \frac{u_1}{u_2} \cdot F_a = \frac{50 \text{ mm}}{80 \text{ mm}} \cdot 2921 \text{ N} = 1825 \text{ N}$$

$$F_Q = \frac{F_a}{2} = \frac{2921 \text{ N}}{2} = 1460 \text{ N}.$$

Abmessungen

Für die Schraubenverbindung mit dem Walzprofil wird eine Zylinderschraube mit Innensechskant DIN EN ISO 4762 M12 x 8.8 - 25 verwendet. Die Stahlplatte, an der die Tragkonsole verschraubt wird, ist aus unlegierten Baustahl S235 und hat eine Dicke von d = 20 mm. Die Abmessungen der Schraube sind in Tabelle 6.1 angegeben:

Schrauhe	mit m	atrischen	ISO-G	Cowinda
N HIHIINP	,,,,,	IPITISI NIPN	1311-1	IPWITTI

Schraube hite inchischen 150-Gewinge				
Nenndurchmesser d in mm	12			
Steigung des Gewindes P in mm	1,75			
Kopfauflagedurchmesser D_K in mm	18			
Durchmesser des Durchgangsloches D _i in mm	13,5			
Abmessungen und Querschnitte für das gewählte Gewinde				
Flankendurchmesser d₂ in mm	10,863			
Kerndurchmesser d $_K$ in mm	9,853			
Spannungsdurchmesser d_S in mm	10,358			
Nennquerschnitt A _N in mm ²	113			
Spannungsquerschnitt A_S in mm^2	84,3			
$Kernquerschnitt A_K in mm^2$	76,3			

Tabelle 6.1 Abmessung der Schraube Quelle: In Anlehnung an Decker 2018b, S. 70

Reibzahlen, Winkel und Anziehfaktor

Die Reibzahlen μ_G für das Gewinde und μ_K der Auflagefläche werden für die Schraube durch verschiedene Oberflächen- und Schmierzustände angegeben.

Für die Reibzahlen wurden anhand der VDI-Richtlinie⁴⁷ folgende Werte ermittelt:

$$\mu_G = 0.12$$

$$\mu_K = 0.12$$
.

Der Steigungswinkel α gibt den Winkel an, unter dem die Kraft am Gewindegang angreift, und wird über

$$\tan \alpha = \frac{P}{d_2 \cdot \pi} \tag{4.1}$$

berechnet. Mit den Werten aus Tabelle 6.1 ergibt sich ein Steigungswinkel

$$\tan \alpha = \frac{1,75 \ mm}{10.863 \ mm \cdot \pi} = 0,05155.$$

Der Reibungswinkel ρ bezeichnet den Winkel, unter welchem die aus der Flächenpressung p resultierende Kraft am Gewindegang angreift. Berechnet wird diese über

$$\tan \rho = \frac{\mu_G}{\cos \beta} \ . \tag{4.2}$$

Der Teilflankenwinkel β beträgt für ein metrisches Gewinde $\beta=30^\circ$. Daraus ergibt sich für den Reibungswinkel

$$\tan \rho = \frac{0,12}{\cos 30^{\circ}} = 0,1392.$$

Für den Anziehfaktor α_A^{48} wird ein drehmomentgesteuertes Anziehen mit einem Drehschrauben angenommen und ist somit durch den Wert

$$\alpha_{A} = 1,70$$

definiert. Die zulässige Montagevorspannkraft, mit der die Schaftschraube am maßgebenden Querschnitt A_S beansprucht werden kann, wird über

$$F_{M,zul} = \frac{\sigma_v \cdot A_S}{\sqrt{1 + 3 \cdot (\frac{2 \cdot d_2 \cdot \tan(\alpha + \rho)}{d_S})^2}}$$
(4.3)

berechnet.

Die zulässige Vergleichsspannung σ_v mit einer Streckgrenze⁴⁹ von $R_{p0,2}$ = 640 MPa ergibt sich aus

$$\sigma_v = 0.9 \cdot R_{p0,2} = 0.9 \cdot 640 \, MPa = 567 \, MPa \,.$$
 (4.4)

Für die zulässige Montagvorspannkraft bedeutet dies einen Wert von

$$F_{M,zul} = \frac{567 \, MPa \, \cdot 84,3 \, mm^2}{\sqrt{1 + 3 \, \cdot \left(\frac{2 \, \cdot 10,863 \, mm \cdot (0,0516 + \, 0,1392)}{10,375}\right)^2}} = 39910 \, N.$$

⁴⁷ Vgl. Decker, 2018b, S. 73.

⁴⁸ Vgl. Ebd. S. 72.

⁴⁹ Vgl. Ebd. S. 71.

6.2 Nachgiebigkeit von Schraube und Bauteil

Durch das Anziehen der Schraubenverbindung wird die Schraube gedehnt und die verschraubten Bauteile werden gestaucht. Dabei wird unter der Elastischen Nachgiebigkeit die Verlängerung oder Verkürzung bei Einheitskraft (1 N) verstanden.⁵⁰ Die Nachgiebigkeit der Schraube setzt sich aus den Einzelelementen zusammen, wobei die unterschiedlichen Querschnitte und Längen der Schraube berücksichtigt werden. Die Schnittdarstellung der Schraubenverbindung ist durch Abbildung 6.1 aufgezeigt.

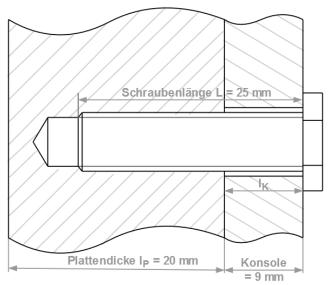


Abbildung 6.1 Schraubenverbindung
Quelle: Eigene Darstellung

Die Nachgiebigkeit der Schraubenverbindung für das Walzprofil setzt sich zusammen aus

$$\delta_{S} = \frac{1}{E_{S}} \cdot \begin{pmatrix} \frac{Schraubenkopf}{0.4 \cdot d} & freies Gewinde & eingeschraubtes Gewinde & Bauteilgewinde \\ \hline \frac{0.4 \cdot d}{A_{N}} & + & \frac{\widehat{l_{fG}}}{A_{S}} & + & \frac{0.5 \cdot d}{A_{K}} & + & \frac{0.4 \cdot d}{A_{N}} \end{pmatrix}. \quad (4.5)$$

Die maßgebende Klemmlänge beträgt in der Schraubenverbindung $l_K = 9$ mm. Das E-Modul für die Stahlschraube ist E = 210000 MPa.

Durch Einsetzen der Werte ergibt sich

$$\delta_S = \frac{1}{210000 \, MPa} \cdot \left(\frac{0.4 \cdot 12 \, mm}{113 \, mm^2} + \frac{9 \, mm}{84.3 \, mm^2} + \frac{0.4 \cdot 12 \, mm}{113 \, mm^2} + \frac{0.4 \cdot 12 \, mm}{113 \, mm^2} \right)$$

$$= 1.34 \cdot 10^{-6} \frac{mm}{N}$$

-

⁵⁰ Vgl. Decker 2018a, S. 308.

Die Nachgiebigkeit der verspannten Bauteile, in diesem Fall der Konsole, wird sinngemäß zur Nachgiebigkeit der Schraube über

$$\delta_B = \frac{L_K}{E_B \cdot A_B} \tag{4.6}$$

berechnet. Dabei wird der Ersatzquerschnitt der verspannten Bauteile A_B bei

$$D_A \ge D_K + L_K \tag{4.7}$$

 $100 \ mm \ge 18 \ mm + 9 \ mm = 27 \ mm$

mit

$$A_B = \frac{\pi}{4} \cdot (D_K^2 - D_I^2) + \frac{\pi}{4} \cdot D_K \cdot L_K \cdot [(x_2 + 1)^2 - 1]. \tag{4.8}$$

Die Variable x_2 wird berechnet durch

$$x_2 = \sqrt[3]{L_K \cdot D_K / (L_K + D_K)^2}$$

$$x_2 = \sqrt[3]{9 \, mm \cdot 18 \, mm / (9 \, mm + 18 \, mm)^2} = 0,606.$$
(4.9)

Der Ersatzquerschnitt ergibt sich daraus zu

$$A_B = \frac{\pi}{4} \cdot ((18 \, mm)^2 - (13.5 \, mm)^2) + \frac{\pi}{4} \cdot 18 \, mm \cdot 9 \, mm \cdot [(0.6057 + 1)^2 - 1] = 212 \, mm^2.$$

Mit der Gl. 4.6 wird nun die Nachgiebigkeit der Bauteile berechnet:

$$\delta_B = \frac{9 \; mm}{210000 \; MPa \; \cdot 212 \; mm^2} = 2,02 \; \cdot \; 10^{-7} \; \frac{mm}{N} \, .$$

Das Kräfteverhältnis im Betriebszustand wird durch

$$\Phi_K = \frac{\delta_B}{\delta_S + \delta_B} \tag{4.10}$$

ermittelt. Durch das Einsetzen der Nachgiebigkeit ergibt sich

$$\Phi_K = \frac{2,02 \cdot 10^{-7} \frac{mm}{N}}{1,34 \cdot 10^{-6} \frac{mm}{N} + 2,02 \cdot 10^{-7} \frac{mm}{N}} = 0,131.$$

Vorspannverluste durch Setzen

Neben der elastischen Formänderung kann Setzerscheinigung auftreten. Dadurch verändern sich Dicke der Bauteile und Lage der Schraube um einen Setzbetrag f_Z . Nach VDI 2230⁵¹ kann für eine gemittelte Rautiefe R_Z von 10 µm bis 40 µm bei einer Schubbelastung ein Setzbetrag

von

$$f_Z = 10 \ \mu m$$

auftreten. Mit dem Kräfteverhältnis errechnen sich die Vorspannverluste F_Z zu

$$F_Z = \frac{f_Z \cdot \Phi_K}{\delta_B} = \frac{10 \ \mu m \cdot 0.136}{2.02 \cdot 10^{-7} \ \frac{mm}{N}} = 6480 \ N. \tag{4.11}$$

⁵¹ Vgl. Decker 2018b, S. 76.

Die Vorspannkraft F_V , die durch das Setzen verbleibt, berechnet sich aus

$$F_V = F_{M,zul} - F_Z = 39910 N - 6712 N = 33430 N.$$
 (4.12)

Die Setzbeträge der Schraube und der Konsole werden über die Gleichungen

$$f_{SM} = F_{M,zul} \cdot \delta_S = 39910 \, N \cdot 1,34 \cdot 10^{-6} \, \frac{mm}{N} = 0,0535 \, mm$$
 (4.13)

$$f_{BM} = F_{M,zul} \cdot \delta_B = 39910 \, N \cdot 2,02 \cdot 10^{-7} \, \frac{mm}{N} = 0,00808 \, mm$$
 (4.14)

berechnet. Das Vorspannen der Schraubenverbindung wird über die Abbildung 6.2 mit dem Verspannungsschaubild grafisch dargestellt.

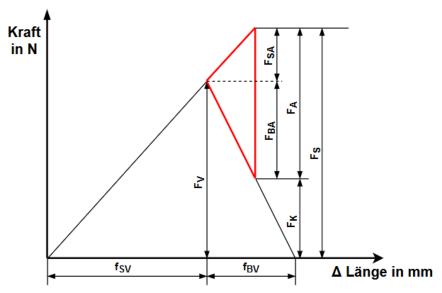


Abbildung 6.2 Verspannungsschaubild Vorspannen Quelle: In Anlehnung an Decker 2018a, S. 312

6.3 Kräfte an der Schraubenverbindung

Bei der Berechnung der Schraubenkräfte wird der für die Schraube ungünstigste Fall angenommen und somit mit einem Krafteinleitungsfaktor von

$$n = 1$$

gerechnet. Durch das Setzen an der Schraubenverbindung wird die Schraube zusätzlich neben der Klemmkraft und der äußeren Betriebskraft belastet. Die Schraube wird dadurch weiter gedehnt und der Flansch gleichzeitig weniger gestaucht. Die Kraft muss eine zusätzliche Beanspruchung F_{SA} aufbringen. Berechnet wird die zusätzliche Schraubenkraft durch

$$F_{SA} = n \cdot \Phi_K \cdot F_A \,. \tag{4.15}$$

Für die Betriebskraft gilt in diesem Fall $F_A = F_{Ao}$. Dadurch kommt es zu einer zusätzlichen Schraubenkraft von

$$F_{SA} = 1 \cdot 0.131 \cdot 1825 N = 239 N.$$

Durch die Zusatzkraft an der Schraube wirkt am Bauteil eine Flanschentlastungkraft von

$$F_{BA} = F_A - F_{SA} \tag{4.16}$$

$$F_{BA} = 1825 N - 239 N = 1586 N.$$

Weil die Schrauben durch eine schwingende Betriebskraft beansprucht werden, wird die Schraube mit einem Kraftausschlag F_a belastet, der sich berechnen lässt aus

$$F_a = 0.5 \cdot n \cdot \Phi_K \cdot (F_{Ao} - F_{Au})$$

$$F_a = 0.5 \cdot 1 \cdot 0.131 \cdot (1825 N - 0) = 120 N.$$
(4.17)

Vorzuschreibendes Schraubenanziehmoment

Damit die Schraubenverbindung auf eine bestimmte Montagevorspannkraft F_M angezogen werden kann, muss ein Anziehmoment M_A betrachtet werden. Die maximale Montagevorspannkraft lässt sich über

$$F_{M,max} = \alpha_A \cdot (F_K + F_{BA} + F_Z) \tag{4.18}$$

ermitteln. Die Klemmkraft F_K wurde bereits in Kapitel 4.3 erwähnt und lässt sich über

$$F_K = F_O \cdot \mu_T \tag{4.19}$$

$$F_K = 1460.4 \, N \cdot 0.10 = 14604 \, N$$

berechnen. Daraus ergibt sich eine maximale Montagevorspannkraft von

$$F_{M,max} = 1.7 \cdot (14603 \, N \cdot 1586 \, N \cdot 6480 \, N) = 38539 \, N.$$

Die minimale Montagevorspannkraft berechnet sich aus

$$F_{M,min} = \frac{F_{M,max}}{\alpha_A} = \frac{38539 \, N}{1.7} = 22670 \, N \,.$$
 (4.20)

Das vorzuschreibende Anziehmoment M_A kann berechnet werden mit

$$M_A = F_M \cdot (0.16 \cdot P + 0.58 \cdot \mu_G \cdot d_2 + \mu_K \cdot r_m). \tag{4.21}$$

Die mittlere Auflageradius r_m berechnet sich aus

$$r_m = 0.25 \cdot (D_K + D_I) = 0.25 \cdot (18 \, mm + 13.5 \, mm) = 7.875 \, mm$$
. (4.22)

Damit kann durch Gl. 4.21 das Anziehmoment wie folgt angegeben werden:

$$M_A = 38919 \ N \cdot (0.16 \cdot 1.75 \ mm + 0.58 \cdot 0.12 \cdot 10.863 \ mm + 0.12 \cdot 7.875 \ mm)$$

 $M_A = 76.3 \ Nm$.

Die Schraubenkraft F_S wird mit der Oberlast F_{Ao} und der Klemmkraft F_K berechnet:

$$F_S = F_{Ao} + F_K = 1825 N + 14604 N = 16429 N$$
 (4.23)

Die Abbildung 6.3 veranschaulicht die berechneten Kräfte im Verspannungsschaubild grafisch.

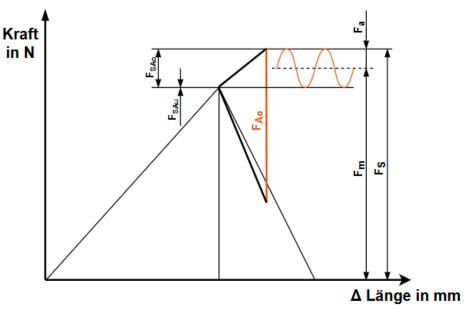


Abbildung 6.3 Verspannungsschaubild schwellende Belastung Quelle: In Anlehnung an Decker 2018a, S. 316

6.4 Nachweis

Mit dem Schraubenanziehmoment M_A wird festgelegt, dass die Spannungsdifferenz σ_{sa} im maßgebenden Schraubenquerschnitt die zulässige Vergleichsspannung σ_v nicht überschreitet. Da die Beanspruchung auf Grund des Setzens abnimmt und dadurch eine Spannungszunahme durch die Schraubenzusatzkraft F_{SA} berücksichtigt wird, muss eine Sicherheit der 0,1-fachen Dehngrenze beachtet werden:

$$\sigma_{sa} = \frac{F_{SA}}{A_S} \le 0.1 \cdot R_{p0,2}$$

$$\frac{239 N}{84.3 mm^2} \le 0.1 \cdot 640 MPa$$

$$2.84 MPa \le 64 MPa$$
(4.24)

Für die schwellende Belastung muss die Sicherheit gegen Dauerbruch der Schraube berechnet werden. Dabei muss der Spannungsausschlag σ_a unter dem Wert der zulässigen Spannung liegen. Die zulässige Spannungsausschlag $\sigma_{a,zul}$ wird über die Ausschlagsfestigkeit σ_{a} vie folgt berechnet:

$$\sigma_{a,zul} = 0.9 \cdot \sigma_A = 0.9 \cdot 50 \, MPa = 45 \, MPa$$
. (4.25)

-

⁵² Vgl. Decker 2018b, S. 76.

Somit gilt für eine Sicherheit gegen Dauerbruch

$$\sigma_a = \frac{F_a}{A_S} \le \sigma_{a,zul} . \tag{4.26}$$

Mit den berechneten Werten von

$$\frac{120 \, N}{84.3 \, mm^2} = 1{,}42 \, MPa \, \le 45 \, MPa$$

liegt der Spannungsaussschlag weit unter der zulässigen Grenze und kann somit als sicher gelten.

Durch die Schraubenkraft F_S wird der Schraubenkopf auf die Konsole gepresst. Damit sich die Konsole örtlich nicht zu stark verformt und dabei auch der Setzbetrag durch Kriechen zunimmt, muss die Flächenpressung p_B unter dem zulässigen Wert liegen.

$$p_B = \frac{F_S}{A_P} \le p_{B,zul} \tag{4.27}$$

Die am Bauteil durch den Schraubenkopf gepresste Fläche wird über

$$A_P = \frac{\pi}{4} \cdot (D_K^2 - D_I^2) \tag{4.28}$$

$$A_P = \frac{\pi}{4} \cdot ((18 \, mm)^2 - (13.5 \, mm)^2) = 111 \, mm^2$$

ermittelt. Die zulässige Flächenpressung nach VDI 2230 53 ist durch

$$p_{b,zul} = 300 MPa$$

definiert.

Die Sicherheit gegen Flächenpressung ist in diesem Fall gewährleistet:

$$\frac{16429 \, N}{111 \, mm^2} = 148 \, MPa \, \le 300 \, MPa$$

Zum Abschluss werden explizit die Sicherheiten der Schraubenverbindung nochmals angeführt:

Die Sicherheit gegen Fließen kann angegeben werden mit

$$S_F = \frac{F_{M,zul}}{F_{M,max}} = \frac{39910 \, N}{38919 \, N} = 1,04 \, .$$
 (4.29)

Die Sicherheit gegen Dauerbruch liegt bei

$$S_D = \frac{\sigma_{a,zul}}{\sigma_a} = \frac{45 \text{ MPa}}{1.47 \text{ MPa}} = 31.7.$$
 (4.30)

Letztlich kann die Sicherheit gegen Pressen ermittelt werden durch

$$S_P = \frac{p_{B,zul}}{p_B} = \frac{300 \text{ MPa}}{148 \text{ MPa}} = 2,03.$$
 (4.31)

Der Nachweis für die Schraubenverbindung ist somit erbracht und entspricht der VDI 2230 Norm.

-

⁵³ Vgl. Decker 2018b, S. 76.

6.5 Vergleich der Ergebnisse

mit dem Festigkeitsnachweis in Verglichen Kapitel müssen Fall 5 im der Schraubenberechnung mit KISSsoft wesentlich mehr Einstellungen geändert werden, um einen Vergleich mit der VDI-Richtlinie zu gewährleisten. Im Allgemeinen wurde für die Berechnung eine einzelne Schraubenverbindung unter Längs- und Querbespruchung angenommen. Dabei wurden die schwellenden Betriebskräfte und die Querkraft für die jeweilige Variante festgelegt. Die Schraubendaten wurden durch eigene Eingabe vervollständigt. Der Grund hierfür liegt darin, dass bei den Schrauben in KISSsoft in den meisten Fällen eine Schaftlänge angenommen wird, welche bei der Auslegung der Schraubenverbindung nicht berücksichtigt wurde. Zudem entsprechen die Kennwerte für die Festigkeitsklasse 8.8 nicht dem VDI Standard und wurden somit in KISSsoft angepasst. Die Oberflächenrauheit für Gewinde und Kopfauflage wurden indessen nicht verändert. Zudem wurde der Anziehfaktor durch das Anziehen mit dem Drehmomentschlüssel festgelegt. Bei der Angabe der verspannten Bauteile, welche in diesem Fall maßgebend die Konsole sind, wurden die Werte für Zugfestigkeit, Streckgrenze, etc. den Berechnungen aus Kapitel 5 angepasst. Die Stahlplatte wurde neben der Konsole nicht als verspanntes Bauteil definiert, um die Klemmlänge l_K = 9 mm gemäß der VDI-Richtlinie festzulegen. Die Stahlplatte ist bereits in den Schraubendaten durch ein Sackloch ohne Tiefe definiert worden. Die Vorgaben bei der Schraubenberechnung wurden auf die zulässige Montagevorspannkraft F_M festgelegt. Die Kräfte durch das Setzen wurden durch den Setzbetrag f_Z bestimmt. Außerdem wurden die Reibzahlen für das Gewinde und Kopfauflage mit den festgelegten Werten ermittelt.

Die Ergebnisse der Schraubenverbindung weichen im Vergleich zu dem Festigkeitsnachweis und den bereits berechneten Werten ab. Es liegen Schwankungen zwischen ca. 100 - 200 N zu den berechneten Werten nach VDI-Richtlinie vor. Diese Schwankungen können auf verschiedene Ursachen zurückgeführt werden. Zum einen wird die Nachgiebigkeit in KISSsoft ausführlich berechnet. Dabei wird berücksichtigt, dass die Bauteile durch die Betriebslast nicht zentrisch belastet werden und es sich um Platten, nicht um Hohlzylinder, handelt. Die Nachgiebigkeit, die in Kapitel 6.2 berechnet wurde, ist vergleichbar mit der Flanschnachgiebigkeit in KISSsoft. Ein weiterer Grund für die Abweichung ist, dass in KISSsoft die Schraubenkraft F_S durch

$$F_S = F_{SA} + F_V$$

berechnet wird. Da die Schraubenkraft nach KISSsoft nur für das Anziehen der Schraubenverbindung wirkt, wird in Kapitel 6 mit der Langzeit wirkenden Schraubenkraft gerechnet. Außerdem ist zu erwähnen, dass die Basisinformationen bezüglich Schraubendaten, Werkstofffestigkeit sowie zulässige Spannungs- und Presswerte in diesem Fall stark von der FKM-Richtlinie abweichen und somit auch Unterschiede zwischen den Ergebnissen verursachen.

6.6 Ergebnisbewertung

Die Ergebnisse aus der Festigkeitsrechnung der Schraubenverbindungen ergeben, dass die verwendeten Schrauben für die jeweiligen Tragkonsole im Hinblick auf Flächenpressung, Dauerbruch und Fließen die Mindestsicherheit bieten. Bei allen drei Versionen ist die Sicherheit gegen Dauerbruch im hohen Maße erfüllt. Die Sicherheit gegen Pressen ist ebenfalls bei den Schraubenverbindungen ausreichend gegeben. In Bezug auf die Sicherheit gegen Fließen liegen die Gussvarianten im typischen Bereich bei einer Sicherheit von ca. 1,2. Das Walzprofil erreicht mit den Schraubenverbindungen nur den Mindestwert. Für eine optimale Auslegung der Schraubenverbindung würde sich deshalb eine Schraube mit größeren Abmaßen anbieten. Für das Walzprofil wurde eine weitere Auswertung mit einer Schraube M14 in KISSsoft ausgeführt. Die Sicherheit gegen Fließen liegt bei dieser Schraubenverbindung bei $S_F = 1,68$ und somit über dem maßgebenden Bereich.

Im Allgemeinen entsprechen die Schrauben den Mindestsicherheiten für die Flanschverbindung zwischen Tragkonsole und der Stahlplatte. Kleinere Abmaße der Schrauben würden den Festigkeitsnachweis nicht erfüllen. Der Grund hierfür liegt primär in der hohen Querkraft, die die Schraube ausgehend von der Betriebskraft aufnehmen. Alternativ zu den berechneten Schraubenverbindungen können

- Passschrauben,
- Spannstift,
- Scherbuchsen,
- Drucksteckschrauben

verwendeten werden, um die hohe Querkraft aufzunehmen und gegebenenfalls die Schraubenabmaße zu verkleinern. Die Querkräfte werden dadurch über eine form- oder reibschlüssige Verbindung übertragen und in der zugehörigen Festigkeitsberechnung wird die Leibung σ_l und Abscherung τ_a berechnet.⁵⁴

_

⁵⁴ Vgl. Decker 2018a, S. 323-324.

7. Ausblick

Ziel der Bachelorarbeit war es, eine Analyse und Auslegung von Tragkonsolen durchzuführen. Dabei lag ein besonderer Fokus auf der Fragestellung, inwiefern eine rechnergestützte Bearbeitung den Festigkeitsnachweis für die Tragkonsolen und die Schraubenverbindungen erleichtert. Die Ergebnisse der Analyse zeigen mit Blick auf die Konsolenauslegung, dass die standardmäßige Form der Konsole durchaus für die Gussvarianten mit Seitenwand gerechtfertigt ist. Verglichen mit dem Walzprofil und der Gussvariante ohne Seitenwand kann die Gussversion mit Seitenwand sowohl bei der statischen als auch bei der dynamischen Beanspruchung ein Vielfaches der Kräfte der anderen Varianten aufnehmen. In Tabelle 7.1 ist ein Vergleich für die Traglasten aufgeführt.

	Walzprofil	Gussvariante ohne	Gussvariante mit	
		Seitenwand	Seitenwand	
Statische	4629	2762	15441	
Traglast F_V in N				
Dynamische	2921	1536	8601	
Traglast F_A in N				

Tabelle 7.1 Statische und dynamische Traglasten

Quelle: Eigene Darstellung

Für kostengünstigere Alternativen können aber die beiden Versionen ohne Seitenwand durchaus herangezogen werden. Vor allem für das Walzprofil, welches ohnehin kostengünstiger ist, sind die Beanspruchungswerte für Anwendungen in diesem Beanspruchungsgrad geeignet. In direktem Vergleich zwischen Walzprofil und Gussvarianten ohne Seitenwand schneidet das Walzprofil besser ab. Mit einer bis zu doppelt so hohen statischen und dynamischen Betriebskraft weist das Walzprofil gute Ergebnisse auf. Die Festigkeit kann durch Wärmebehandlung oder andere Legierungselemente zudem gesteigert werden. Außerdem kann in Betracht gezogen werden, auch das Walzprofil per Schweißen mit Seitenversteifungen auszustatten. Problematisch wird es in diesem Fall in Bezug auf die Schweißnähte. Der Vergleich zwischen der Gussvariante mit Seitenversteifung und dem Walzprofil mit geschweißten Seitenversteifungen muss im Rahmen dieser Bachelorarbeit aus Gründen des Umfangs ausbleiben, stellt aber eine interessante Fragestellung für weiterführende Forschungen dar. Für eine höhere Festigkeit, Härte und einen höheren Verschleißwiderstand – vor allem um einer Rissbildung bei den Gussvarianten entgegenzuwirken - stellt eine Wärmebehandlung keine adäquate Lösung dar. Denn beim Gießen von GJS herrschen bereits die Temperaturen einer Wärmebehandlung. Hier könnte in Erwägung gezogen werden, ob die Änderung der gebundenen Kohlenstoffe, das Herstellen

eines Härtungs- und Vergütungsgefüges oder eine Randschichtbehandlung die gewünschten Ergebnisse erzielen. Mit Blick auf die Flanschverbindung würde sich für die Verbindung der Gussvariante mit einer Seitenwand wegen der hohen Betriebskräfte eine Schraubenverbindung anbieten, die vor allem die Querkraft aufnimmt. Diese sind bereits in Kapitel 6.6 aufgezählt. Für das Walzprofil und die Gussvariante ohne Seitenwand bietet sich gemäß den Ergebnissen aus Kapitel 6 eine Schraubenverbindung mit den vermerkten Aspekten an, wie sie dort benannt ist.

Die Berechnungen mit den verwendeten Programmen für eine rechnergestützte Simulation haben für eine Veranschaulichung des Themas und Einarbeitung gesorgt und Fehler in den Berechnungen frühzeitig aufgezeigt. Wird dies auf Projekte in Unternehmen angewandt, so kann es zu einer Senkung der Entwicklungszeiten und somit zu einer Kostenverringerung in der Entwicklung kommen. Schwachstellen können frühzeitig erkannt werden, was positive Folgen wie die Reduktion der Versuchsreihen und die Kostenverminderung in der Produktion zeitigt. Durch die Verkürzung der Entwicklungszeiten können neue Produkte schneller auf den Markt gebracht werden. Zudem werden die wesentlichen Eigenschaften für eine Konstruktion überprüft und bereits erste Prototypen können gute Resultate erbringen.

Literaturverzeichnis

Michael, 2016. FEM-Praxis mit Solidworks [online]. Simulation BRAND, durch Kontrollrechnung und Messung verifizieren. 3. Auflage. Wiesbaden: Springer Vieweg [Zugriff am: 15.12.2020]. **PDF** e-Book. **ISBN** 978-3-658-09387-7. Verfügbar unter: https://doi.org/10.1007/978-3-658-09387-7 1

BUNDESVERBAND DER DEUTSCHEN GIEßEREI-INDUSTRIE E.V., [kein Datum]. *Maschinenbau* [online]. Düsseldorf: Bundesverband der Deutschen Gießerei-Industrie, [kein Datum] [Zugriff am: 18.12.2020]. Verfügbar unter: https://www.bdguss.de/einsatzgebiete-maerkte/maschinenbau/

BUNDESVERBAND DER DEUTSCHEN GIEßEREI-INDUSTRIE E.V., 2007. Gusseisen mit Kugelgraphit [online]. Herstellung – Eigenschaften – Anwendung. Düsseldorf: Bundesverband der Deutschen Gießerei-Industrie [Zugriff am: 19.12.2020]. PDF. Verfügbar unter: https://www.kug.bdguss.de/fileadmin/content/Publikationen-Normen-Richtlinien/buecher/Gusseisen_mit_Kugelgraphit_klein.pdf

DECKER, Karl-Heinz und andere, 2018. *Maschinenelemente: Funktion, Gestaltung und Berechnung.* 20., neu bearbeitete Auflage. München: Hanser. ISBN 978-3-446-45029-5

DECKER, Karl-Heinz und andere, 2018. *Maschinenelemente: Tabellen und Diagramme.* 20., neu bearbeitete Auflage. München: Hanser. ISBN 978-3-446-45304-3

FORSCHUNGSKURATIORIUM MASCHINENBAU E. V., 2012. *FKM-Richtlinie:* Rechnerischer Festigkeitsnachweis für Maschinenbau. Frankfurt am Main: VDMA Verlag, 00.00.2012

GIEßEREIGESELLSCHAFT BÖHMERFELD MBH & CO., 2018. Gusseisen mit Kugelgraphit (Sphöroguss) [online]. Geseke: Gießereigesellschaft Böhmfeld, [kein Datum] [Zugriff am: 01.12.2020]. Verfügbar unter: https://www.boehmfeld.de/werkstoffe/gusseisen-mit-kugelgraphit

GIEßEREIGESELLSCHAFT BÖHMERFELD MBH & CO., 2018. Gusseisen mit Lamellengraphit (Grauguss) [online]. Geseke: Gießereigesellschaft Böhmfeld, [kein Datum] [Zugriff am: 01.12.2020]. Verfügbar unter: https://www.boehmfeld.de/werkstoffe/gusseisenmit-lamellengraphit

GROTE, Karl-Heinrich und Jörg FELDHUSEN, 2014. *Dubbel [online]. Taschenbuch für den Maschinenbau.* 24., aktualisierte und erweitere Auflage. Berlin: Springer Viewegh [Zugriff am: 01.12.2020]. PDF e-Book. ISBN 978-3-642-38891-0. Verfügbar unter: https://doi.org/10.1007/978-3-642-38891-0

IBF AUTOMATION GMBH, [kein Datum], *Serie 50 – Gusskonsole 100x100x100* [online]. Freudenberg: IBF Automation GmbH, [kein Datum] [Zugriff am: 23.14.2020]. Verfügbar unter: https://www.aluminiumprofil.de/konsole-5.html

KISSSOFT AG, 2020. *Unsere Geschichte* [online]. Bubikon: KISSsoft, [kein Datum] [Zugriff am: 10.12.2020]. Verfügbar unter: https://www.kisssoft.com/de/facts/about-us/our-history

LEHBERGER, Jürgen, Georg PYZALLA und Heinrich WEBER, 2019. *Technologie.* 17., Auflage. Köln: Westermann. ISBN 978-3-427-40610-5

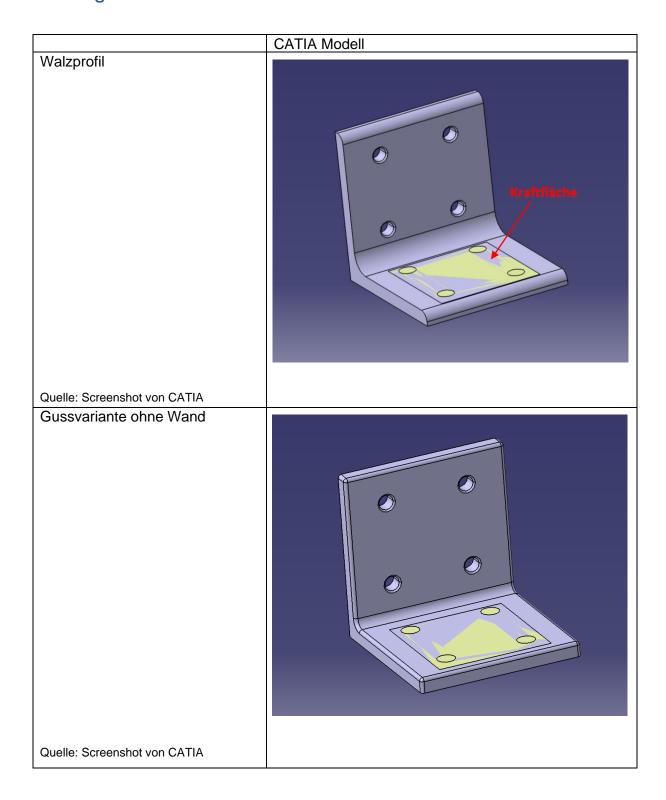
MAGIN, Wolfgang, 2006. *Die Hitze macht's* [online]. *Einführung in die Werkstoffkunde – Eisenbasiswerkstoffe.* Leinfelden-Echterdingen: Konradin Verlag, 01.03.2006 [Zugriff am: 16.12.2020]. Verfügbar unter: https://beschaffung-aktuell.industrie.de/rohstoffe/die-hitzemachts/

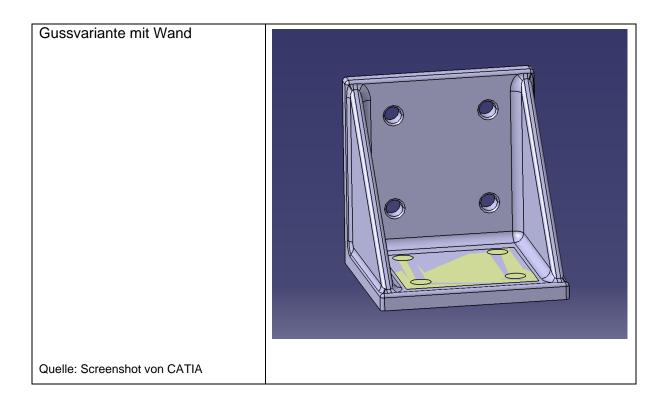
OVERHAGEN, Christian, 2018. *Modelle zum Walzen von Flach- und Vollquerschnitten* [Dissertation]. Essen: Universität Duisburg-Essen

VEREIN DEUTSCHER INGENIEURE E.V., 2015. VDI 2230: Systematische Berechnung hochbeanspruchter Schraubenverbindungen: Zylindrische Einschraubenverbindung. Düsseldorf: Beuth, 00.11.2015

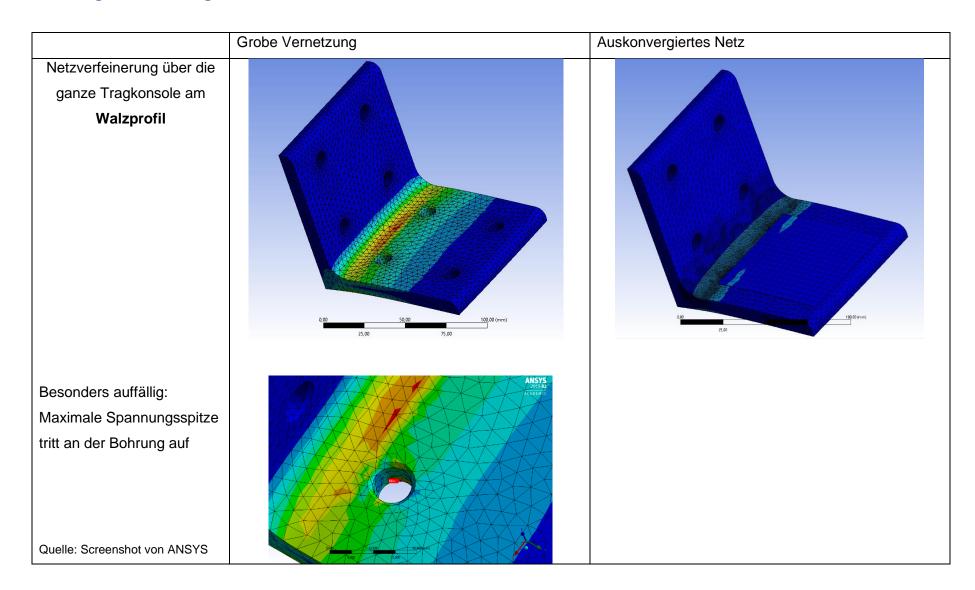
WÄCHTER, Michael, Christian MÜLLER und Alfons ESDERTS, 2017. *Angewandter Festigkeitsnachweis nach FKM-Richtlinie* [online]. *Kurz und bündig.* Wiesbaden: Springer Vieweg [Zugriff am: 20.09.2020]. PDF e-Book. ISBN 978-3-658-17459-0. Verfügbar unter: https://doi.org/10.1007/978-3-658-17459-0

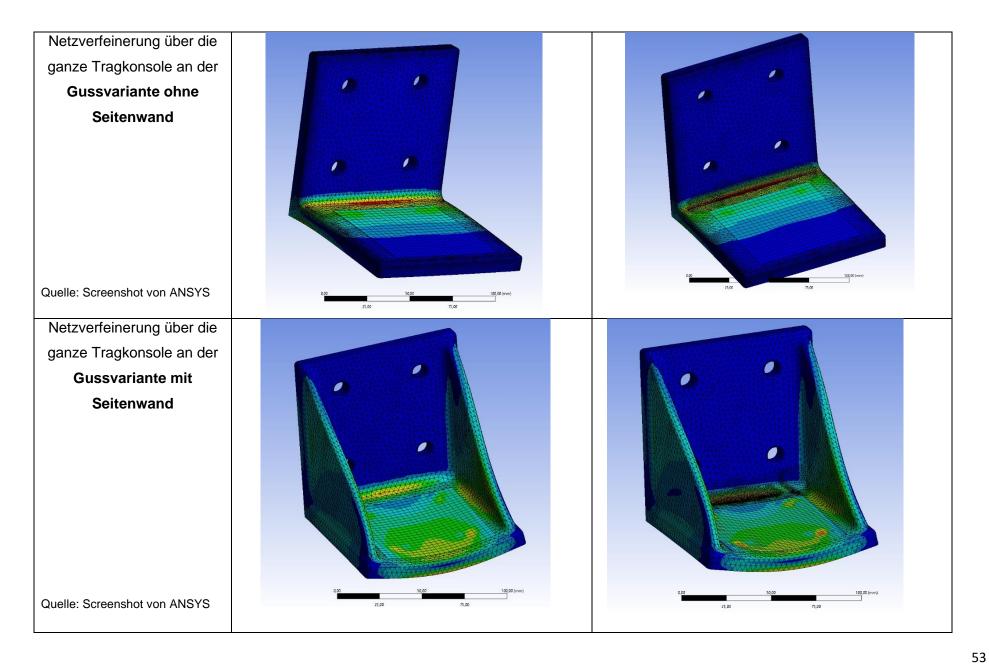
WÜRTH INDUSTRIE GMBH & CO, [kein Datum]. *Dimensionierung von metrischen Schraubenverbindungen* [online]. Bad Mergentheim: Würth Industrie [Zugriff am: 15.12.2020]. PDF. Verfügbar unter: https://www.wuerthindustrie.com/web/media/de/pictures/wuerthindustrie/technikportal/dinokapitel/Kapitel_06_DINO_techn_Teil.pdf


Anhang


Anhang 1: Vergleich zwischen S235 und GJS-400-15	. 49
Anhang 2: CAD – Konstruktion	. 50
Anhang 3: Konvergenz	. 52
Konvergenztabelle	. 54
Anhang 4: Vergleichsspannungen für die statische Analyse in ANSYS	. 55
Anhang 5: Ausschlagsamplitude für die dynamische Analyse in ANSYS	. 57
Anhang 6: Vordimensionierung	. 59
Anhang 7: Berechnung der plastischen Formzahl Kp	. 60
Anhang 8: FKM-Nachweis mit Vergleichswerten [Excel-Tabelle]	. 61
Anhang 9: FKM-Nachweis mit optimaler Auslegung der Tragkonsole [Excel-Tabelle]	. 67
Anhang 10: Schraubenberechnung nach VDI 2230 [Excel-Tabelle]	. 73

Anhang 1: Vergleich zwischen S235 und GJS-400-15


	S235	GJS-400-15
Werkstoff	Unlegierter Baustahl	Gusseisen mit Kugelgraphit
Gefügezusammensetzung	Fast 100% Ferrit	Fast 100% Ferrit
Namensgebung	Steht für die Streckgrenze	Steht für Zugfestigkeit und Bruchdehnung
Zugfestigkeit R _m	250 MPa	400 MPa
Streckgrenze R _p	235 MPa	360 MPa
Bruchdehnung A	17 %	15 %
Schmelzpunkt	1250 – 1460 °C	1150 °C
Gefügeausschnitt	Abbildung 1 Gefügebild GJS Quelle: Gießereigesellschaft Böhmerfeld, 2018a	Abbildung 2 Gefügebild S235 Quelle: Gießereigesellschaft Böhmerfeld, 2018b
Quelle: Lehberger 2019	Kugelgraphitkristalle in dunklen, rundlichen Körnern – ca. 80 % Ferrit, 20 % Kugelgraphit	Ferrit (hell), Perlit (dunkel)


Anhang 2: CAD – Konstruktion

Anhang 3: Konvergenz

Konvergenztabelle

Die folgende Tabelle 1 zeigt die Simulationsergebnisse von ANSYS zu der Konvergenzstudie der jeweiligen Varianten.

Walzprofil				
<u> </u>				
Nummer	Spannung	Knoten	Abweichung	Elemente
	in MPa		in %	
1	188	51793	10,0	33004
2	194	99454	3,55	66826
3	196	239045	0,687	167703
Guss mit Wand				
Nummer				
1	190	109222	10,0	70731
2	204	152032	7,21	101426
3	208	220671	2,18	151192
Guss ohne Wand				
Nummer				
1	206	153704	10,0	99638
2	208	203790	3,79	137516
3	208	216158	1,17	145915

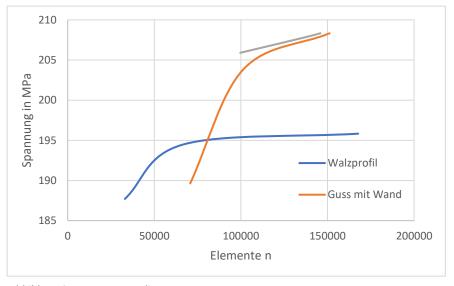
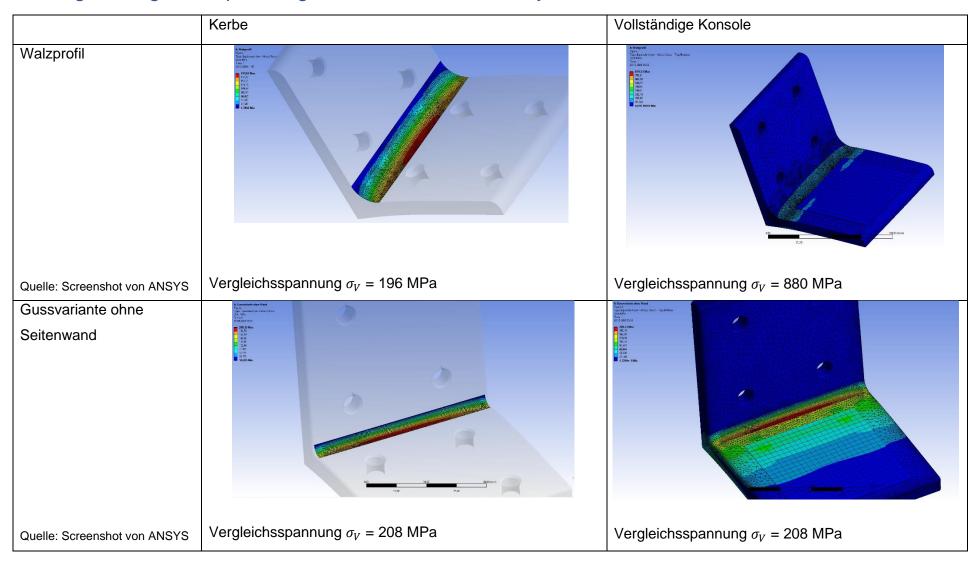
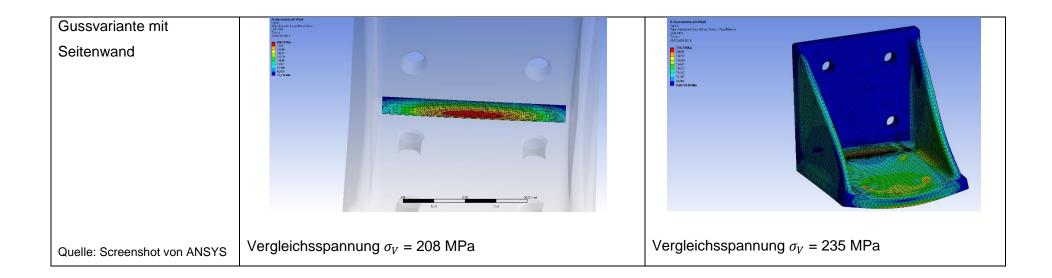
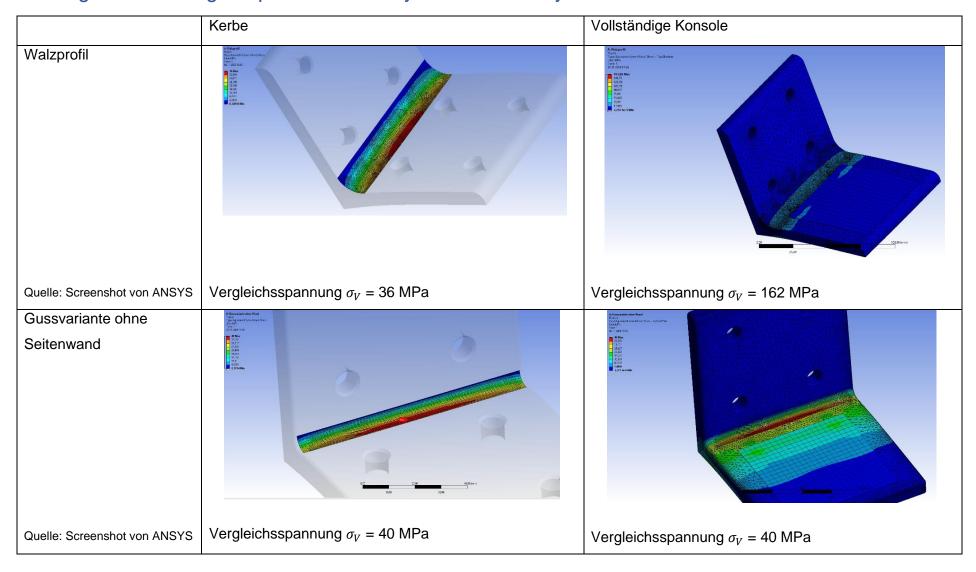


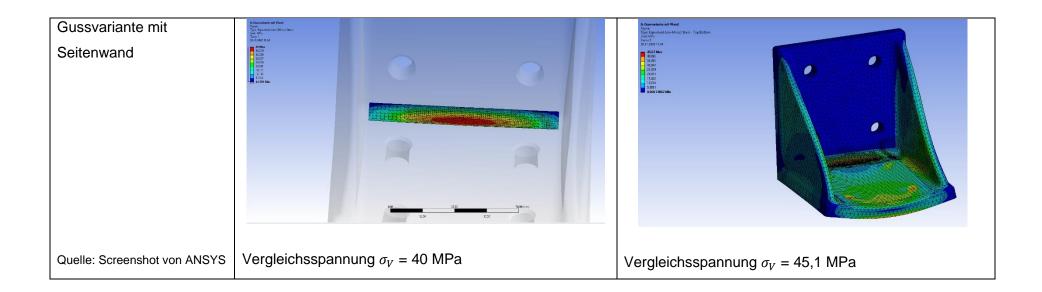
Abbildung 3 Konvergenzstudie


Tabelle 1 Daten zur Konvergenzstudie aus ANSYS


Quelle: Eigene Darstellung

ANSYS hat die Konvergenz in drei Lösungsschritten ermittelt. Die nebenstehende Abbildung 3 zeigt die Spannung in Abhängigkeit der Elemente. Dabei ist zu erkennen, dass das Walzprofil stetig auf den stationären Endwert konvergiert ist, die Gussvarianten ohne Seitenwand schon zu Beginn eine hohe Anzahl an Elementen hat und somit die Elementanzahl nicht stark ansteigt und bei der Gussvariante mit Seitenwand während des Konvergenzablaufes ein rasanten Anstieg der Vergleichsspannung gibt.


Abbildung 4.5 basiert ebenfalls auf den Werten der Tabelle 1.


Anhang 4: Vergleichsspannungen für die statische Analyse in ANSYS

Anhang 5: Ausschlagsamplitude für die dynamische Analyse in ANSYS

Anhang 6: Vordimensionierung

Mit der unten abgebildeten Tabelle wird durch eine überschlägige Rechnung eine prinzipielle Abmessung für die Schraube ermittelt. In Spalte 1 ist die zulässige Montagevorspannkraft F_M dargestellt und in Spalte 2 – 4 die Nenndurchmesser mit der jeweiligen Festigkeitsklasse. Da es sich bei der Tragkonsolenauslegung um einen Standardfall handelt, wird mit der Festigkeitsklasse 8.8 gerechnet.

Das Vorgehen wird exemplarisch für das Walzprofil durchgeführt:

- 1. Zuerst wird in Spalte 1 mit F_Q (= 1460 N) die Kraft ausgewählt \Rightarrow Zeile 5
- 2. Die Maßgebende Kraft ist die Querkraft $F_Q \Rightarrow$ + 4 Zeilen
- 3. Das Anziehen erfolgt mit einfachen Drehschrauber ⇒ + 2 Zeile

	1	2	3	4
	Kraft in N	Nenndurchmesser in mm Festigkeitsklasse		
		12.9	10.9	8.8
	250			
	400			
	630			
	1.000	МЗ	M3	M3
	1.600	МЗ	M3	M3
	2.500	МЗ	M3	M4
	4.000	M4	M4	M5
	6.300	M4	M5	M6
+ 4	10.000	M5	M6	M8
	16.000	M6	M8	M10
+ 2	▶25.000	M8	M10	M12
	40.000	M10	M12	M14
	63.000	M12	M14	M16
	100.000	M16	M18	M20
	160.000	M20	M22	M24
	250.000	M24	M27	M30
	400.000	M30	M33	M36
	630.000	M36	M39	

Tabelle 2 Vordimensionierung

Quelle: Würth, S. 1787

Für die normgerechte Auslegung der Schraubenverbindung kann zu Beginn mit einer Schraube M12 x 8.8 gerechnet werden und gegebenenfalls der Durchmesser angepasst werden.

Anhang 7: Berechnung der plastischen Formzahl K_p

Für die Berechnung der plastischen Formzahl K_p für das Walzprofil gilt für die Berechnung die Gleichung 2.7

$$K_p = \frac{vollständige Traglast}{elastische Grenzlast}.$$

Dabei stellt das Verhältnis die Steigerung der elastischen Grenzlast L_e am Nachweispunkt dar, bevor es zum Erreichen der vollplastischen Traglast L_p und dadurch zum plastischen Kollaps kommt. Die elastische Grenzlast L_e wird durch Erreichen der Streckgrenze $R_e=235\,MPa$ in ANSYS ermittelt. Dabei wird vorgegangen wie bereits zur Ermittlung der statischen Betriebskraft in Kapitel 4.2.1 über Dreisatz. In diesem Fall sieht die Rechnung wie folgt aus:

$$1 N \cong 0.0346 MPa$$

$$6788 N \cong 235 MPa$$

Somit ergibt sich für die elastische Grenzlast von L_e = 6788 N.

Für die Berechnung der plastischen Traglast wurde die Materialeigenschaft für das Walzprofil durch eine isotrope Elastizität angepasst. Dort würde die bereits genannte Streckgrenze hinterlegt. In Anschluss wurde die Konsole mit einer steigenden Kraft belastet und sobald im Spannungsschaubild die Spannung nicht verändert, kann die Kraft für den letzten steigenden Lastschritt als vollplastische Traglast angenommen werden. In diesem Fall ist die Streckgrenze am 8. Lastschritt erreicht worden und somit liegt eine plastische Traglast von $L_p = 7200$ N vor. In der folgenden Abbildung 4 ist ein Ausschnitt für diesen Lastschritt angefügt.

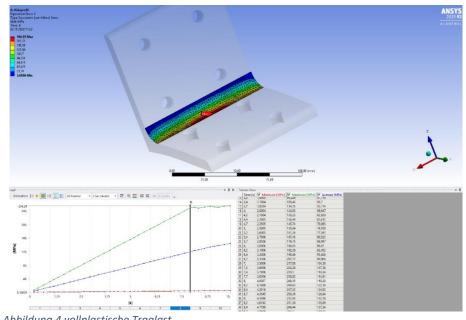


Abbildung 4 vollplastische Traglast Quelle: Screenshot aus ANSYS Das Nachjustieren für die statische und dynamische Traglast wurde anhand der berechneten Werte für den jeweiligen Auslastungsgrad durchgeführt. Da sowohl die statische Traglast als auch die dynamische Traglast linear mit den Auslastungsgraden verknüpft sind, wird durch Reduzierung der Kraft bei dem statischen Nachweis und Erhöhung der Kraft bei dem dynamischen Nachweis, die Kraft so lange verändert, bis die jeweiligen Auslastungsgrade eine hundertprozentige Auslastung der Tragkonsolen versprechen.

	Anl	hang 8: FKM-Nach	weis mit Vergleicl	nswerten			
Geg:	Material	Streckgrenze R_p in MPA	Zugfestigkeit R_m in MPA	Dicke s in mm	E-Modul in MPA	Bruchdehnung A in %	
Walzprofil nach EN10056-1	S235	235			2	210.000	17%
Guss ohne Wand	GJS-400-15	250	400	9	9 1	.70.000	15%
Guss mit Wand	GJS-400-15	250	400	9	9 1	70.000	15%
	Walzprofil	Guss ohne Seitenwand	Guss mit Seitenwand	ANSYS	Anmerkung		
Statischer Festigkeitsnachweis							
Vergleichsspannung sigma_zul in MPA	196		208	3			
max. Kraft F_zul in N	5657	4511	25221	L x	Vergleichskraft		
Hydrostatische Spannung sigma_ H in MPA	94,1	98,5	96,8	3 x			
Mehrachsigkeit h	0,481	0,473	0,465	5	ebener Spannungszustan	d (Kerbe ist nicht belastet)	
Werkstoffkennwerte							
Probenstücknormwerte							
R_m,N in MPA	360	400	400				
R_p,N / R_e,N in MPA	235	250	250)	R_e,N für Walzprofil		
d_eff,N in mm	40	60	60)			
Effektiver Durchmesser d_eff in mm	9	18	18	3	Nr. 3: Walzprofil Fall 2, G	uss Fall 1	
Technologischer Größenfaktor K_d,m	1	1	1	L			
Technologischer Größenfaktor K_d,p	1	1	1				
Anisotropiefaktor K_A	0,9	1	1	L			
<u>Bauteil-Normwerte</u>							
R_m in MPA	324	400	400)			
R_p in MPA	212	250	250				
Druck- und Schubfestigkeitsfaktoren							
Druckfestigkeitsfaktor f_sigma	1	1	1				
Temperaturfaktor K_T,m	1						

Konstruktionskennwerte					
Für Walzprofil					
Vollplastische Traglast L_p in N	7200			х	
Elastische Grenzlast L_e in N	6788			х	
Plastische Formzahl K_p	1,06				
Für Guss					
Plastische Formzahl K_p,a		1	1		
Minimum der ertragbaren Dehnung ε_0	5%	4%	4%		
Referenzdehnung ε_ref	17%	6%	6%		
Ertragbare Gesamtdehnung ε _ertr	13,0%	4,64%	4,69%		
Plastische Stützzahl n_pl	1,06	1	1		
Bauteilfestigkeit					
sigma_SK in MPA	224	250	250		
Sicherheitsfaktoren					
Lastfaktor j_S	1	1	1		
Einzel-Sicherheitsfaktoren (Materialfaktoren)	4.05	4.05	4.05		Schadensfolge: mittel, Wahrscheinlichkeit: hoch
j_m	1,85 1,4	1,85 1,4	1,85 1,4		
j_p	1,4	1,4	1,4		
Teil-Sicherheitsfaktor für Guss					
j_G		1,4	1,4		Für nicht zerstörungsfrei geprüfte Bauteile
<u></u>		1,7	1,1		Tur ment zerstorungsmer geprünte bautene
Gesamt-Sicherheitsfaktor j_ges	1,4	1,96	1,96		
Gesum sienemensjuktor j_ges	±, i	1,50	1,30		
Nachweis					
Vergleichsspannungsgrad a_SK	1,22	1,63	1,63		
3 , 3 3 =		·			
Kontrolle der Mehrachsigkeit					
Da bei allen drei Varianten h_min < h < h_max, K	ontrolle nicht erforderlich.				

1040	866	4842	X	Vergleichskraft
40,4	44,7	44,5	Х	
11,5	11,9	11,2	х	
0,28	1,13	1,06	х	ebener Spannungszustand, sigma_3 wird als 0 angenommen
0	0	0		schwellende Belastung
0,45	0,34	0,34		
146	136	136		
1	1	1		Normale Temperatur
12	5	5		
0,167	0,4	0,4		
0,5	0,05	0,05		
2700	3200	3200		
1,10	1,42	1,42		
1	1	1		In sigma_2 Richtung kein Spannungsgefällle, deswegen n_sigma,2 = 1
0,957	0,960	0,985		
500	500	500		
1879,6	752,99	578,75	х	
30	10	10		
	11,5 0,28 0 0 0,45 146 1 1 1 2 0,167 0,5 2700 1,10 1 0,957 500 1879,6	1040 866 40,4 44,7 11,5 11,9 0,28 1,13 0 0 0 0,45 0,34 146 136 1 1 1 1 2 5 0,167 0,4 0,5 0,05 2700 3200 1,10 1,42 1 1 0,957 0,960 500 500 1879,6 752,99	1040 866 4842 40,4 44,7 44,5 11,5 11,9 11,2 0,28 1,13 1,06 0 0 0 0,45 0,34 0,34 146 136 136 1 1 1 1 1 1 0,5 0,05 0,05 2700 3200 3200 1,10 1,42 1,42 1 1 1 0,957 0,960 0,985 500 500 500 1879,6 752,99 578,75	1040 866 4842 x 40,4 44,7 44,5 x 11,5 11,9 11,2 x 0,28 1,13 1,06 x 0 0 0 0 0 0 0 0 0 0,45 0,34 0,34 146 136 136 1 1 1 1 1 1 1 1 1 1 0,142 1,42 1,42 1,42 1,42 1,42 1,42 1,42

Verformungsmechanische Stützzahl n_vm	1,11	1	1	
wechselplastische Dehnugn ɛ_pl,W	2*10^-4	-	1	
n_Strich	0,15			
1_50.16.1	0,25			
Bruchmechanische Sützzahl n_bm,1	1,02			
	-74-			
Referenzzugfestigkeit R_m,bm in MPA	680			
Spannungsgradient G_1	0,167			
n_sigma,1,2	1,081	0,960	0,985	
<u>Rauheitsfaktor</u>				
mittlere Rauheit R_z in mm	0,2	0,2	0,2	
Konstante a_R,sigma	0,22	0,16	0,16	
Konstante R_m,N,min in MPA	400	400	400	
Rauheitsfaktor K_R,sigma	1,03	1,03	1,03	
Kerbwirkungszahl K_f	2	1,5	1,5	
Randschichtfaktor K_V	1	1	1	
Schutzfaktor K_S	1	1	1	
Faktor K_NL,E	1	1	1	
Konstruktionsfaktoren K_WK,sigma,1	0,897	0,688	0,688	
Konstruktionsfaktoren K_WK,sigma,2	0,984	0,978	0,978	
Bauteilfestigkeit				
Devited March and Frational Statement May 4 in AADA	162	400	100	
Bauteil-Wechselfestigkeit sigma_WK,1 in MPA Bauteil-Wechselfestigkeit sigma_WK,2 in MPA	163 148	198 139	198 139	
Bauten-wechseijestigkeit sigma_wk,2 in MPA	148	139	139	
Bauteil-Dauerfestigkeit				
Dauten-Dauerrestigkeit				
Mittelspannungsempfindlichkeit M_sigma	0,0134	0,22	0,22	
Konstante a_M	0,35	0,35	0,35	
Konstante a_M Konstante b_M	-0,1	0,08	0,08	
Nonstante b_ivi	-0,1	0,08	0,08	
Eigenspannungsfaktor K_E,sigma	1	1	1	
=-0eokarımanıBorancor iv_E)diğima	±	1	-	
				ı

<u>Dauerfestigkeitsschaubild</u>				
Dauerrestigkertsschaubliu				
Überlastungsfall 2 / Bereich 2				Spannungsverhältnis R konstant, für R = 0
Mittelspannungsfaktor K_AK	0,987	0,820	0,820	K_AK = K_AK,1 = K_AK,2, sigma_m/sigma_a = 1
<u>-</u>	5,201	5,5=5	2,220	
Dauerfestigkeit sigma_AK,1 in MPA	160	162	162	
Dauerfestigkeit sigma_AK,2 in MPA	146	114	114	
Bauteil-Betriebsfestigkeit				
Einstufenkollektiv (konst. Amplitude)				
Bauteil-Wöhlerlinie Typ 1 (Stahl und Eisengu	usswerkstoffe)			
Betriebsfestigkeitsfaktor K_BK	1	1	1	K_BK = K_BK,1 = K_BK,2, Für N = ∞
sings at DV 4 in A4DA	100	460	460	
sigma_BK,1 in MPA	160			
sigma_BK,2 in MPA	146	114	114	
Bauteil-Wöhlerlinie				
Knickpunktzyklenzahl N_D,sigma	10^6	10^6	10^6	
k_sigma	5			
K_3igilia	3		3	
Begrenzung der Maximalamplitude				
sigma_BK,max in MPA	168	188	188	
Betriebsfestigkeit sigma_BK,1 in MPA	160	162	162	Vergleich, Bedingung nicht erfüllt
Betriebsfestigkeit sigma_BK,2 in MPA	146	114	114	Vergleich, Bedingung nicht erfüllt
Sicherheitsfaktoren				
Last-Sicherheitsfaktor j_S	1			
Material-Sicherheitsfaktor j_F	1,4	·	,	regelmäßige Inspektion: nein, Schadenfolge: mittel
Gussfaktoren j_G		1,4	1,4	nicht zerstörungsfrei geprüfte Gussstücke
Gesamtsicherheitsfaktor j_D	1,4	1,96	1,96	
Gesumisienemensjuktor j_D	1,4	1,90	1,90	

Nachweis				
zyklischer Auslastungsgrad a_BK,sigma,1	0,314	0,484	0,484	
zyklischer Auslastungsgrad a_BK,sigma,2	0,345	0,688	0,688	
sigma_a,1 = sigma_a in MPA	36	40	40	
Überlagerung der Spannungsarten				
Konstante q	0	0,264	0,264	
a_NH	0,345	0,688	0,688	
a_GH	0,331	0,612	0,612	
a_BK,sigmav	0,331	0,632	0,632	

	Anhan	g 9: FKM-Nachwei	is mit optimaler A	uslegung	der Tragkons	sole	
Geg:			<u> </u>				hochbeanspruchte Fläche A in mm^2
Walzprofil nach EN10056-1	S235	235	360			17%	1879,60
Guss ohne Wand	GJS-400-15	250	400	9	170.000	15%	752,99
Guss mit Wand	GJS-400-15	250	400	9		15%	578,75
	Walzprofil	Guss ohne Wand	Guss mit Wand	Anmerkung			
Statischer Festigkeitsnachweis							
Vergleichsspannung sigma_v in MPA	160	128	128				
max. Kraft F_max in N	4629	2762	15441	max. Kraft für st	atische Sicherheit		
Hydrostatische Spannung sigma_ H in MPA	77,0	60,3	59,2				
Mehrachsigkeit h	0,481	0,473	0,464	ebener Spannun	gszustand (Kerbe ist	nicht belastet)	
Werkstoffkennwerte							
Probenstücknormwerte							
R_m,N in MPA	360		400				
R_p,N / R_e,N in MPA	235			R_e,N für Walzp	rofil		
d_eff,N in mm	40	60	60				
	_						
Effektiver Durchmesser d_eff in mm	9	18	18	Nr. 3: Walzprofil	Fall 2, Guss Fall 1		
Taskardariaskan CaïOanfaltan K. dua	1	4	4				
Technologischer Größenfaktor K_d,m	1						
Technologischer Größenfaktor K_d,p	1	1	1				
Anisotropiefaktor K_A	0,9	1	1				
Allisotropieraktor k_A	0,9	1	1				
Bauteil-Normwerte							
R_m in MPA	324	400	400				
R_p in MPA	212		250				
	212	230	250				
Druck- und Schubfestigkeitsfaktoren							
2							
Druckfestigkeitsfaktor f_sigma	1	1	1				
Temperaturfaktor K_T,m	1	1	1				

Konstruktionskennwerte				
Für Walzprofil				
Vollplastische Traglast L_p in N	7200			
Elastische Grenzlast L_e in N	6788			
Plastische Formzahl K_p	1,06			
	_,			
Für Guss				Für Gussbauteile ist die plastische Formzahl durch die FKM-Richtlinie vorgegeben.
Plastische Formzahl K_p,a		1	1	
Minimum der ertragbaren Dehnung ε_0	5%	4%	4%	
Referenzdehnung ε_ref	17%	6%	6%	
Ertragbare Gesamtdehnung ε _ertr	13,0%	4,64%	4,69%	
		75.77	,,	
Plastische Stützzahl n_pl	1,06	1	1	
	_,	_		
Bauteilfestigkeit				
sigma_SK in MPA	224	250	250	
Sicherheitsfaktoren				
Lastfaktor j_S	1	1	1	
Einzel-Sicherheitsfaktoren (Materialfaktoren)				Schadensfolge: mittel, Wahrscheinlichkeit: hoch
j_m	1,85	1,85	1,85	
j_p	1,4	1,4	1,4	
Teil-Sicherheitsfaktor für Guss				
j_G		1,4	1,4	Für nicht zerstörungsfrei geprüfte Bauteile
Gesamt-Sicherheitsfaktor j_ges	1,4	1,96	1,96	
Nachweis				
Vergleichsspannungsgrad a_SK	1,00	1,00	1,00	
Kontrolle der Mehrachsigkeit				
lrei Varianten h_min < h < h_max, Kontrolle nicht	t ertorderlich.			
_				
KISSsoft				
Auslastungsgrad a_SK,max	100%	100%	100%	Bei Walzprofil Zugfestigkeit und Streckgrenze auf Walzen abstimmen. (K_A - Wert)

Dynamischer Festigkeitsnachweis				
sigma_a in MPA	101	70,9	71,0	
F_a in N	2921	1536	8601	max. Kraft für Dauerfestigkeit
sigma_1 in MPA	113	79,3	79,0	
sigma_2 in MPA	32,4	21,2		
sigma_3 in MPA	0,781	2,01	1,88	ebener Spannungszustand, sigma_3 wird als 0 angenommen
Spannungsverhältnis R	0	0	0	schwellende Belastung
Werkstoffkennwerte				
Zugdruckwechselfestigkeitsfaktor f_W,sigma	0,45	0,34	0,34	
Wechselfestigkeit sigma_W,zd in MPA	146	136	136	
Temperaturfaktor				
Town overhout and A. T. D.	1	1	1	Normale Temperatur
Temperaturfaktor K_T,D	1	1		Normale Temperatur
Konstruktionswerte				
Stützzahlen				
Stützzahl nach Stieler		_		
Kerbradius r_1 in mm	12	5		
Spannungsgefälle G_sigma,1	0,167	0,4	0,4	
Konstante a_G	0,5	0,05	0,05	
Konstante b_G	2700	3200	3200	
_				
n_sigma,1	1,10	1,42	1,42	
n_sigma,2	1	1		In sigma_2 Richtung kein Spannungsgefällle, deswegen n_sigma,2 = 1
Werkstoffmechanische Stützzahl				
Statische Stützzahl n_st	0,957	0,960	0,985	
Referenzoberfläche A_ref,st in mm^2	500	500	500	
hochbeanspruchte Oberfläche A_sigma,st in	1880	753	579	
Weibull-Exponent	30	10	10	

Verformungsmechanische Stützzahl n_vm	1,11	1	1	Für Gussbauteile bereits von FKM-Richtlinie vorgegeben.
wechselplastische Dehnugn ɛ_pl,W	2*10^-4	-	_	The Constitution of the Co
n_Strich	0,15			
1_0	5,25			
Bruchmechanische Sützzahl n_bm,1	1			Die bruchmechanische Stützzahl wird für Gussbauteile nicht beachtet.
Referenzzugfestigkeit R_m,bm in MPA	680			
Spannungsgradient G_1	0,167			
n_sigma,1,2	1,06	0,960	0,985	
Rauheitsfaktor				
mittlere Rauheit R_z in mikrometer	200	200	200	
Konstante a_R,sigma	0,22	0,16	0,16	
Konstante R_m,N,min in MPA	400	400	400	
Rauheitsfaktor K_R,sigma	0,894	0,889	0,889	
Kerbwirkungszahl K_f,1	1	1,01	1,01	
Kerbwirkungszahl K_f,2	2	1,5	1,5	
Formzahl für Ersatzstruktur K_t,sigma,1	1,05	1,44	1,44	
Randschichtfaktor K_V	1	1	1	
Schutzfaktor K_S	1	1		
Faktor K_NL,E	1	1	1	
Konstruktionsfaktoren K_WK,sigma,1	1,02	0,790	0,790	
Konstruktionsfaktoren K_WK,sigma,2	1,06	1,08	1,08	
Bauteilfestigkeit				
Bauteil-Wechselfestigkeit sigma_WK,1 in MPA	143	172	172	
Bauteil-Wechselfestigkeit sigma_WK,2 in MPA	138	126	126	
Bauteil-Dauerfestigkeit				
Mitteles and an arrange for the late of th	0.0404		2.22	
Mittelspannungsempfindlichkeit M_sigma	0,0134	0,22	0,22	
Konstante a_M	0,35	0,35	0,35	
Konstante b_M	-0,1	0,08	0,08	
Figure and the state of the sta	4			
Eigenspannungsfaktor K_E,sigma	1	1	1	

			Consequence of State of Discontinue file D. O.
2 227	2 222		Spannungsverhältnis R konstant, für R = 0
0,987	0,820	0,820	K_AK = K_AK,1 = K_AK,2, sigma_m/sigma_a = 1
136	103	103	
erkstoffe)			
1	1	1	K_BK = K_BK,1 = K_BK,2, Für N = ∞
136	103	103	
		10^6	
5	5	5	
168	188	188	
			Vergleich, Bedingung nicht erfüllt
136	103	103	Vergleich, Bedingung nicht erfüllt
1	1		
1,4	1,4		regelmäßige Inspektion: nein, Schadenfolge: mittel
	1,4	1,4	nicht zerstörungsfrei geprüfte Gussstücke
1,4	1,96	1,96	
1,12	1,10	1,10	sigma_a = sigma_a,1
0,334	0,403	0,379	sigma_a = sigma_a,2
	141 136 rkstoffe) 1 141 136 10^6 5 168 141 136 1,41 1,4	141 141 141 141 136 103 103 103 103 103 103 103 103 103 103	141

Überlagerung der Spannungsarten				
Konstante q	0	0,264	0,264	
a_NH	1,12	1,10	1,10	
a_GH	1,00	0,96	0,97	
a_BK,sigmav	1,00	1,00	1,00	
KISSsoft				
Auslastungsgrad a_BK,KISS	100,00%	100,75%	100,75%	Bei Walzprofil sigma_zd geändert.

	Anhang 10: Schi	raubenberechn	ung nach VDI	2230
Schraubenberechnung				
	Walzprofil	Guss ohne Wand	Guss mit Wand	Anmerkungen
F_a in N	2921	1536		dynamische Auslastung an Konsole
Schraubenanzahl n	2	2	2	
Abstand zur Kippkante Lx in mm	50	50	50	
Abstand zur Kippkante Ly in mm	80			
F_Q in N	1460			Klemmkraft je Schraube
F K in N	14604	7680		
F_Ao in N	1825	960		I .
F_Au in N	0	0		
F_S in N	16429	8640		
_				
Überschlägige Dimensionierung				
Reibungszahl μ_T	0,1	0,1	0,1	
Vergleich von F_A,max < F_K in N	14604	7680	<u> </u>	F_K größer, für Dim. F_Q
4 Schritte für Ermittlung mit F_Q, 1 Schritt für Anziehen mi				
Schraube	M12x8.8	M10x8.8	M20x8.8	
	Gewinde	Festigkeitsklasse	Länge	E-Modul in MPA
Zylinderschraube mit Innensechskant DIN EN ISO 4762	M20 / M12 / M10	8.8	25	210000
		Werkstoff	Dicke t in mm	
Stahlplatte		S235	20	210000
Konsole		S235	9	210000
		GJS	9	70000
Schraube mit metrischen ISO-Gewinde				
Nenndurchmesser d in mm	12	10	20	
Steigung des Gewindes P in mm	1,75			
Kopfauflagedurchmesser D_K in mm	1,73			
Durchmesser des Durgangsloches D_I in mm	13,5			
Durenmesser des Durgungsioches D_1 III IIIIII	13,3	11	22	

Abmessungen und Querschnitte für das gewählte Gewinde				
Flankendurchmesser d_2 in mm	10,863	9,026	18,376	
Kerndurchmesser d K in mm	9,853	8,16	16,933	
Spannungsdurchmesser d_S in mm	10,358	8,593	17,655	
Nennquerschnitt A_N in mm^2	113	78,5	314	
Spannungsquerschnitt A_S in mm^2	84,3	58	245	
Kernquerschnitt A_K in mm^2	76,3	52,3	225	
		2_/2		
Festigkeit der Stahlschraube				
Strechgrenze R_e/R_p0,2 in MPA	640	640	660	
zul. Vergleichsspannung sigma_V von Streckgrenze	90%	90%	90%	
Reibzahlen				
Reibzahl im Gewinde μ_G	0,12	0,12	0,12	
Reibzahl an der Auflagefläche μ_K	0,12	0,12	0,12	
Anziehfaktor α_A	1,7	1,7	1,7	Drehmomentgesteuertes Anziehen
Steigungswinkel tan α	0,05155	0,05318	0,04354	
Reibungswinkel tan ρ	0,1392	0,1392	0,1392	
Teilflankenwinkel β in °	30	30	30	
zul. Montagevorspannkraft F_M,zul in N	39910	27369	121524	
Nachgiebigkeit von Schraube/BT und Kraftverhältnis				
Länge, freies (nicht eingeschraubtes) Gewinde in mm	9	9	9	
Klemmlänge I_K in mm	9	9	9	
Breite des Bauteils D_A in mm (Konsole)	100	100	100	
Querschnitte für nicht eingeschraubtes Gewinde				
A_K in mm^2	76,3	52,3	225	
Nachgiebigkeit der Schraube δ_S in mm/N	1,34E-06	1,76E-06	6,45E-07	
mittlerer Auflageradius r_m in mm	7,875	6,75	13	
Ersatzquerschnitt A_B in mm^2	212	197	479	
Faktor x_2	0,606	0,613	0,562	

Nachgiebigkeit des Bauteils δ_B in mm/N	2,02E-07	6,54E-07	2,68E-07	
,	,-	-,-	,,,,,,	
Kraftverhältnis ф_K	0,131	0,271	0,294	
·-	,	,	•	
Vorspannkraftverluste durch Setzen				
Setzbetrag f_Z in mm	0,01	0,01	0,01	
Vorspannverlust F_Z in N	6480	4143	10953	
_				
Vorspannkraft F_V in N	33430	23226	110571	
Setzbetrag der Schraube f_SM in mm	0,0535	0,0482	0,0784	
Setzbetrag der Schraube f_BM in mm	0,00808	0,01790	0,03259	
Kräfte an der Schraubenverbindung				
Angriffspunkt der äußeren Betriebskraft F_A				
Krafteinleitungsfaktor n	1	1	1	
bei ruhender Betriebskraft				
Differenzkraft in der Schraube F_SA in N	239	260	1579	
Differenzkraft im Bauteil F_BA in N	1586	700	3796	
Dynamische Betriebskraft F_a in N	120	130	790	
Kräfte an Schraubenverbindung				
max. Montagevorspannkraft F_M,max in N	38539	21288	98183	
min. Montagevorspannkraft F_M,min in N	22670	12522	57755	
max. Schraubenanziehmoment M_A,max in Nm	76,3	35,7	318,0	
min. Schraubenanziehmoment M_A,min in Nm	44,9	21,0	187,1	
vorzuschreibende Montagevorspannkraft F_M,zul in N	40000	27500		aus Decker 2018b, S. 74
zulässiges Schraubenanziehmoment M_A,zul in Nm	79	46	390	aus Decker 2018b, S. 74

Kontrollen			
(1) Spannungsdifferenz sigma_sa in MPA	2,84	4,48	6,45
Spannungsdifferenz kleiner als 10% der Dehngrenze in MPA	64	64	66
(2) Spannungsausschlag sigma_a in MPA	1,42	2,24	3,22
Kraftamplitude F_a in N	120	130	790
Mittelkraft des Lastspiels in der Schraube F_m in N	16309	8510	47591
Ausschlagfestigkeit sigma_A in MPA	50	50	40
zul. Spannungsausschlag sigma_A,zul in MPA	45	45	36
(3)zul. Flächenpressung p_B,zul in MPA	300	480	480
Flächenpressung p_B in MPA	148	81	148
Sicherheiten			
Sicherheit gegen Fließen S_F	1,04	1,29	1,24
Sicherheit gegen Dauerbruch S_D	31,7	20,1	11,2
Sicherheit gegen Pressung S_P	2,03	5,89	3,24