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The electron density

The quantity | (x1,x2, . . .xN)|2dx1dx2 . . . dxN is the probability of finding electron

1 in dx1, electron 2 in dx2, etc. Integrating over the space-spin coordinates of

electrons 2, 3, . . . , N , together with the spin coordinate of electron 1, gives
✓Z

· · ·
Z

| (x1,x2, . . .xN)|2ds1dx2 · · · dxN

◆
dr1 , (1)

which is the probability of finding electron 1 in volume element dr1, whilst the other

electrons are anywhere. Multiplying by N gives the probability of finding any electron

in dr1,
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dr1 = ⇢(r1)dr1 , (2)

The quantity ⇢(r1) is the electron density

⇢(r1) = N
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‣ Probability of finding electron 1 in dx1, 
electron 2 in dx2 etc

‣ Probability of finding electron 1 in 
volume element dr1 (other electrons 
can be anywhere)

‣ Probability of finding any 
electron in dr1

‣ Integrate over spin-space coordinates of electrons 2–N and spin of 1:

‣ ρ(r) is the electron density

Introductory notes
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Density

‣Wave function: a complicated function of 4 x Nel variables. Not a physical “object”. Wave 
function based methods scale poorly with system size and have high requirements on 
basis sets to properly describe the electron–electron cusp. 

‣Density: a much simpler function of three variables. Experimental observable.  
If we can use it directly, we might be able to come up with a simpler theory…

Isovalue surfaces (electrons per unit volume)

DFT: a quantum mechanical theory where the density is the central quantity
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Information from the density

The density has cusps  
at the positions of the nuclei.

We can fully define the Hamiltonian of the system simply by examining the density!

By integrating the density we get the 
total number of electrons. Nel =

Z
⇢(r)dr

The shape of the cusps is directly 
related to the atomic number Z.

d⇢

dr

���
r=R↵

= �2Z↵⇢(R↵)
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Information from the density

Define Hamiltonian

Determine 
Wavefunction

Energy, etc

Solve Schrödinger 
equation

Calculate energy 
and other 
properties 

Density

Find positions of 
nuclei, atomic 
charges, Nel

DFT

In principle the ground state density contains everything there is to know.  
What is needed to make the connection (conceptually and practically)?
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Density Functional Theory

A function f(x) maps a number to another number. 
A functional F[f] takes a function as input and returns a number. 

We need a way to go from the density ρ(r) to the energy E,  
i.e. we need to express the energy as a functional of the density, E[ρ]

Hamiltonian

Owing to the Born–Oppenheimer approximation we perform a quantum calculation only on electrons; 
nuclei are “external” fixed objects which exert their potential to the electrons.

External potential

Rigorous Proof: The Hohenberg–Kohn Theorems

Phys. Rev. 136 B864 (1964)

The electronic Hamiltonian is

Ĥ = T̂ + V̂ne + V̂ee = �
NX

i

1

2
r2

i
+

NX

i

v(ri) +
NX

i<j

1

rij

(6)

where the external potential is

v(ri) = �
X

A

ZA

rAi

(7)

Theorem 1: ‘The electron density determines the external potential’
6

Ĥ = T̂ + V̂ee + V̂en = �
NX
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Hohenberg–Kohn theorems

1st HK theorem: a universal density functional exists 
The electron density determines the external potential. 
There is a one-to-one correspondence between densities and external potentials  
(different external potentials always correspond to different densities) 
⇒ the electronic energy can be expressed completely as a functional of the density

2nd HK theorem: variational principle for the density 
only the exact ground-state density ρ(r) of H minimizes the value of its ground-
state energy functional

E(1)
el [⇢(1)]  E(1)

el [⇢]

⇒ One can already use all of the above to do calculations!  
Minimize the energy with respect to var. density by constraining

Z
⇢(r)dr = Nel

E[⇢] = FHK[⇢] +

Z
v(r)⇢(r)dr
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Kohn–Sham DFT
Evaluation of kinetic energy has been a central problem. 

Assume a fictitious system of independent (non-interacting) electrons that have precisely 
the same density ρ(r) as the real physical system. 

Non-interacting system: decoupled coordinates, separable Hamiltonian. 

⇒ Slater determinant: we are back to calculating orbitals!
The Hamiltonian for a system of non-interacting electrons moving in an external

potential ve↵(r) is

Ĥ = �
NX

i

1

2
r2

i
+

NX

i

ve↵(ri) (38)

This is separable—the exact wavefunction is just a single determinant constructed

from orbitals that are the solutions to
✓
�1

2
r2 + ve↵(r)

◆
'i(r) = ✏i'i(r) (39)

The density and kinetic energy of this non-interacting system are just

⇢(r) =
NX

i

'
2
i
(r) Ts[⇢] =

NX

i

h'i| �
1

2
r2|'ii (40)

Summary: Solve Eqns (39) (the ‘Kohn–Sham equations’) using ve↵ = v(r) + �J [⇢]
�⇢(r) +

�EXC[⇢]
�⇢(r) and evaluate ⇢(r) and Ts[⇢] using Eqn. (40). Then evaluate the total energy

of the real system as E =
R

⇢(r)v(r)dr + Ts[⇢] + J [⇢] + EXC[⇢].

An exact theory! Nobel Prize, 1998

Majority of T [⇢] now described exactly; just need to approximate smaller EXC[⇢].
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Recall that the electronic energy can be written exactly as

E[⇢] =

Z
⇢(r)v(r)dr + F [⇢] (29)

Kohn and Sham defined

F [⇢] = Ts[⇢] + J [⇢] + EXC[⇢] (30)

where J is the classical Hartree (Coulomb) repulsion of the density

J [⇢] =
1

2

ZZ
⇢(r1)⇢(r2)

r12
dr1dr2 (31)

and Ts[⇢] is the kinetic energy of a system of non-interacting electrons with density

⇢. Given that

F [⇢] = T [⇢] + Vee[⇢] (32)

it follows that the the exchange–correlation energy is

EXC[⇢] = T [⇢]� Ts[⇢] + Vee[⇢]� J [⇢] (33)
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E[⇢] = FHK[⇢] +

Z
v(r)⇢(r)dr Write F as

Because it follows that

⇒ guess EXC functionals, use them in the Kohn–Sham orbital optimization procedure
⇒ EXC is the magic ingredient that corrects other errors, self-interaction, correlation…
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Kohn–Sham DFT

NOTE: Kohn–Sham DFT is exact. No approximations made.

How to approximate the exact functional?

• Importance: problem is shifted from optimizing densities to optimizing orbitals 

• Kohn–Sham orbitals are “special”… 

• Is Kohn–Sham DFT a “single determinant method”?

One way is to exploit known limits. Example: the Uniform Electron Gas 

No nuclei but a uniform background of positive charge. The electrons move in this 
homogeneous medium forming a Uniform Electron Gas (UEG). In the UEG there is 
a very large number of electrons in a large volume V, so that the electronic density 
ρ(r) is constant. Τhe kinetic energy of the electrons in this system is proportional 
to ρ(r)5/3 V. 
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Local Density Approximation (LDA/LSDA)

The exchange–correlation energy

Fundamental problem: don’t know how to write down the exchange–correlation en-

ergy EXC[⇢]. Common approximations include (omitting spin labels for clarity):

Local density approximation (LDA)

EXC =

Z
F (⇢)dr (56)

Generalised gradient approximation (GGA)

EXC =

Z
F (⇢,r⇢)dr (57)

Meta GGAs

EXC =

Z
F (⇢,r⇢,r2

⇢)dr (58)

Hybrids

EXC =

Z
F (⇢,r⇢)dr + ⇠E

0
X (59)

Jacob’s Ladder! We now consider all these (and others) in turn . . .

25

Depends only on the scalar value of the density. 
Assumes that the exchange-correlation energy at every position in 
space for the molecule is the same as it would be for the uniform 
electron gas (UEG) having the same density as found at that 
position.

Kinetic energy directly derived, similarly straightforward expression for exchange. 
A similar analysis for the kinetic energy gives

T = CF

Z
⇢

5/3(r)dr CF =
3

10

�
3⇡2

�2/3
[Thomas� Fermi] (64)

Ceperley and Alder used quantum Monte-Carlo to simulate the uniform electron gas

and hence determined the correlation energy. This was put into a functional form

by Vosko, Wilk, and Nusair (VWN) and later updated by Perdew and Wang (PW).

Again, it is a functional of just the density.

In the LDA, the exchange and correlation components of EXC are approximated using

the Dirac and VWN/PW expressions, i.e. we apply locally a result that is valid for a

uniform gas of electrons.

The LDA can be surprising successful in some cases (eg molecular structures), but

there is one very serious problem—it significantly overbinds molecules. It is therefore

of limited use in Chemistry, although it is still widely used in Physics. Why?!

27

The local density approximation (LDA, 1965)

Start with a model where exact results can be derived: the uniform electron gas. This

is an infinite system of constant electron density (balanced by a positive background).

The exchange energy is defined by (recall Hartree–Fock)

EX = �1

4

ZZ |⇢1(r1, r2)|2

r12
dr1dr2 (60)

where ⇢1 is the 1-particle density matrix

⇢1(r1, r2) = 2
X

i

'i(r1)'i(r2) (61)

Evaluating the exchange energy using the KS orbitals for a uniform gas

'(kx, ky, kz) =
1

V 1/2
exp(ik.r) (62)

gives (after some maths—see book)

EX = CX

Z
⇢

4/3(r)dr CX = �3

4

✓
3

⇡

◆1/3

[Dirac] (63)

26Several different expressions for the correlation energy:  
VWN (Vosko, Wilk, and Nusair), PW (Perdew and Wang), … 

LDA is exact only for constant-density systems, yet it is already more accurate than 
Hartree–Fock as a general electronic structure theory.
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Generalized Gradient Approximation (GGA)

Introduces additional dependence on the gradient of the density at 
a given point (“non-local functionals”) 
Most GGA functionals are created as “add-ons” to LDA.

Note that for GGA functionals,

EXC[⇢] =

Z
F (⇢,r⇢)dr (73)

the XC contribution to the Kohn–Sham (Fock) matrix is
Z

⌘↵ vXC ⌘� dr =

Z
⌘↵

✓
@F

@⇢
�r · @F

@r⇢

◆
⌘� dr (74)

which requires the second derivative of F . In practical calculations, we avoid this by

evaluating the mathematically equivalent (integration by parts)
Z

⌘↵ vXC ⌘� dr =

Z
⌘↵

@F

@⇢
⌘� dr +

Z
@F

@r⇢
·r(⌘↵⌘�) dr (75)

Many other GGAs in the literature! Two approaches

1. Derived from theoretical arguments, eg PW91,PBE

2. Derived from a semi-empirical fit, eg (BLYP), OLYP, HCTH

31

And this is where the fun begins!

Do not contain empirical parameters: (focus on satisfying constraints and norms)

Do contain empirical parameters: (focus on reproducing known quantities)

Exchange: B86, PBE, … | Correlation: PW91 

Exchange: B, CAM, O, PW, mPW, X, … | Correlation: B88, P86, LYP

The historical tension between the “first principles” and the fitting 
approaches continues to this day and shows no signs of resolution!

GGA functionals first enabled real computational chemistry to be done! 
Still an excellent choice for many tasks in quantum chemistry. 
BP86 usually fine for geometry optimizations!

2 Schools  
of DFT
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Meta-GGA

Try to achieve further improvement by including dependence 
on the Laplacian of the density (in practice: kinetic energy 
density).

The exchange–correlation energy

Fundamental problem: don’t know how to write down the exchange–correlation en-

ergy EXC[⇢]. Common approximations include (omitting spin labels for clarity):

Local density approximation (LDA)

EXC =

Z
F (⇢)dr (56)

Generalised gradient approximation (GGA)

EXC =

Z
F (⇢,r⇢)dr (57)

Meta GGAs

EXC =

Z
F (⇢,r⇢,r2

⇢)dr (58)

Hybrids

EXC =

Z
F (⇢,r⇢)dr + ⇠E

0
X (59)

Jacob’s Ladder! We now consider all these (and others) in turn . . .

25

Examples: B95, B98, TPSS, VSXC, M06-L, SCAN 

Usually limited improvement compared to GGAs.
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Hybrid functionals

The exchange–correlation energy

Fundamental problem: don’t know how to write down the exchange–correlation en-

ergy EXC[⇢]. Common approximations include (omitting spin labels for clarity):

Local density approximation (LDA)

EXC =

Z
F (⇢)dr (56)

Generalised gradient approximation (GGA)

EXC =

Z
F (⇢,r⇢)dr (57)

Meta GGAs

EXC =

Z
F (⇢,r⇢,r2

⇢)dr (58)

Hybrids

EXC =

Z
F (⇢,r⇢)dr + ⇠E

0
X (59)

Jacob’s Ladder! We now consider all these (and others) in turn . . .
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Also known as Adiabatic Connection Method (ACM) 
functionals.They include fractions of exact Hartree-Fock 
exchange energy, calculated as a functional of the Kohn-Sham 
MOs. Controlled error cancellation.

Most famous example: B3LYP (20% HF exchange).  
Probably Hundreds of other functionals in this part of the DFT supermarket! 
In combination with meta-GGAs: hybrid meta-GGA functionals, e.g. TPSSh (10% HF). 
Range-separated functionals, variable exchange, e.g. CAM-B3LYP, ωB97. 
Often superior for spin state problems and spectroscopic properties.

HF exchange as adjustable parameter: a blessing or a curse?

• Low-spin/high-spin energy splittings for Fe complexes


• Cu-O2 adducts


• Reaction barriers


• Valence isomerism and bonding in transition metal clusters

in this field. In some cases, experimental observations do not relate to the electronic
ground state of the considered molecule or fragment, and solvent or other medium
effects can be large.
A final factor is that it is far more difficult to carry out benchmark accuracy ab

initio studies of transition metal compounds than it is for small main-group species.
Even for main group compounds, the successful description of bonding to within
chemical accuracy requires the use of very large basis sets and very high levels of
correlation.36 For transition metal compounds, this requirement is if anything more
severe (e.g. the basis set should be at the very least of triple zeta size, and include f
and g functions, and much larger basis sets may be needed). Also, in many cases a
more complicated multi-reference treatment of correlation is required. Taken
together, this means that obtaining well converged wavefunction-based results is
too difficult for this approach to provide a straightforward and abundant source of
high accuracy data with which to test DFT.
Nevertheless, some authors do try to use accurate wavefunction computations to

test the accuracy of DFT. In many cases discrepancies with DFT are found and it is
often concluded that the DFT methods are wrong. In many cases, an equally
plausible interpretation is that the wavefunction computation is deficient, either due
to the use of small basis sets or to an inadequate description of correlation.37 This
problem can be illustrated by an example. A number of enzymes involve binding of
dioxygen to a dinuclear copper(I) centre to give an adduct that can exist in two
forms, as shown in Fig. 1. Experiment suggests that the more stable form has a
bridging doubly negative peroxide ligand with an oxygen–oxygen bond. The bis-oxo
form, in which this bond in broken and the copper ions are formally in the þ3
oxidation state, is a possible intermediate in various oxidation reactions.
Density functional calculations on these dicopper complexes identify two minima

corresponding to the different isomers. Using the B3LYP functional, the peroxide
form is significantly more stable than the dioxo form, by 18.7 kcal mol"1, when
L= ammonia.38 The same authors found the dioxo form to be favoured by as much
as 12.7 kcal mol"1 using the CASPT2 multireference wavefunction method. This
suggests that B3LYP is in error by more than 30 kcal mol"1. This system has
however been reinvestigated using a more accurate multi-reference configuration
interaction method using large basis sets, and the peroxide structure has then been
found to be more stable, by an amount similar to that found using B3LYP.39 The
authors suggest that with the necessarily rather limited active space used in the
earlier study, the correlation treatment of the two isomers is unbalanced. In general,
the well-known difficulties of treating transition metal compounds with traditional
wavefunction correlated methods means that great caution is needed before such a
calculation is used to decide that a particular DFT method has ‘failed’ (or that it is
highly accurate!).

Fig. 1 Peroxide and bis-m-oxo forms of dicopper oxygen adducts. The ancillary ligands L are
protein sidechains such as histidine-derived imidazole.

214 | Annu. Rep. Prog. Chem., Sect. C, 2006, 102, 203–226
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They mix standard DFT exchange and correlation with HF exchange and an 
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Inorganics 2019, 7, 57 2 of 14

(BS-DFT) [23–31]. Various spectroscopic properties can be subsequently obtained using spin-projection
techniques applied to single-determinant broken-symmetry solutions.

The BS-DFT approach has been used extensively in the study of exchange-coupled transition
metal complexes, with documented achievements as well as failures. The chemical nature of a given
system, the DFT functional, and the methodological details of the approach interact in physically
non-transparent ways that lead to inconsistent and unpredictable behavior. This has so far precluded
the establishment of a universally applicable BS-DFT approach, encouraging instead the empirical
choice of an “optimal” functional for a specific type of chemical system. For manganese complexes a
series of benchmark studies that compared generalized gradient approximation (GGA), meta-GGA,
hybrid, and hybrid-meta-GGA functionals have suggested that hybrid functionals perform better
than non-hybrid functionals for the prediction of exchange-coupling constants [32–43]. Pure GGA
functionals tend to yield too large antiferromagnetic exchange couplings, a result attributed to excessive
delocalization of spin density. Moderate admixture of Hartree–Fock (HF) exchange appears to provide
an adequate counterbalance to this behavior for manganese systems, so that the calculated exchange
coupling constants agree better with experiment when the BS-DFT results are used with spin projection.
Still, there is no magic number for the exact exchange admixture and the best compromise for a given
type of system depends on other features of the functional. Although the popular B3LYP hybrid
functional (20% HF exchange) [44,45] has been used with reasonably good results, the hybrid-meta-GGA
TPSSh functional (10% HF exchange) [46] is a better and more widely validated choice, not only
for exchange coupling constants but for a range of molecular properties [34,47–50]. This choice of
functional is not necessarily transferable, as demonstrated for example by the fact that TPSSh is no
longer at the methodological sweet spot for the calculation of exchange coupling constants even for
complexes of metal ions isoelectronic with manganese [51]. The adequate performance of a given
functional for a restricted chemical space and the emergence of inconsistent behavior or large deviations
outside this restricted space are typical of standard BS-DFT approaches.

Double-hybrid density functionals (DHDFs) [52] are regarded as “higher-rung” DFT methods
compared to hybrid and meta-GGA functionals. They mix standard DFT exchange (EDFT

X ) and
correlation (EDFT

C ) with HF exchange (EHF
X ) and an additional second-order perturbation theory

contribution (EPT2
C ):

E
DHDF
XC = (1� ↵X)E

DFT
X + ↵XE

HF
X + (1� ↵C)E

DFT
C + ↵CE

PT2
C

The E
PT2
C contribution is obtained through a Møller–Plesset perturbational term (MP2) based on

Kohn–Sham orbitals that are self-consistently optimized with respect to the first three terms:

E
PT2
C =

1
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X

ia

X

jb

h
(ia
��� jb) � (ib

��� ja)
i2

ei + ej � ea � eb

The archetypal example is the B2-PLYP functional [53] that uses the B88 and LYP functionals for
exchange and correlation, mixing HF exchange (↵X = 0.53) and perturbational correction (↵C = 0.27).
The percentage of HF exchange in DHDFs is usually considerably higher than that in most standard hybrid
functionals. DHDFs have been shown to perform robustly and with generally superior results compared
to other DFT methods in numerous benchmarks involving various types of energetics [52,54–58].

Studies involving exchange-coupled systems are comparatively scarce. Schwabe and Grimme [59]
evaluated double-hybrid DFT on a set of organic compounds and a few simple copper complexes [60],
supporting the good performance of the method. Rajaraman and coworkers [61] reported that the
double-hybrid B2-PLYP functional performed better than hybrid functionals such as B3LYP, PBE0,
or TPSSh for the description of magnetic coupling in Gd(III)–radical complexes. Vogiatzis et al. [62]
also reported that B2-PLYP performs well within the BS-DFT approach for dinuclear paddlewheel
complexes, however they also noted that it is inferior to B3LYP in the case of a trichromium system [62].

The PT2 contribution is obtained through a Møller–Plesset 
perturbational term (MP2) based on Kohn–Sham orbitals 
that were self-consistently optimized with respect to the 
first three terms.
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(BS-DFT) [23–31]. Various spectroscopic properties can be subsequently obtained using spin-projection
techniques applied to single-determinant broken-symmetry solutions.

The BS-DFT approach has been used extensively in the study of exchange-coupled transition
metal complexes, with documented achievements as well as failures. The chemical nature of a given
system, the DFT functional, and the methodological details of the approach interact in physically
non-transparent ways that lead to inconsistent and unpredictable behavior. This has so far precluded
the establishment of a universally applicable BS-DFT approach, encouraging instead the empirical
choice of an “optimal” functional for a specific type of chemical system. For manganese complexes a
series of benchmark studies that compared generalized gradient approximation (GGA), meta-GGA,
hybrid, and hybrid-meta-GGA functionals have suggested that hybrid functionals perform better
than non-hybrid functionals for the prediction of exchange-coupling constants [32–43]. Pure GGA
functionals tend to yield too large antiferromagnetic exchange couplings, a result attributed to excessive
delocalization of spin density. Moderate admixture of Hartree–Fock (HF) exchange appears to provide
an adequate counterbalance to this behavior for manganese systems, so that the calculated exchange
coupling constants agree better with experiment when the BS-DFT results are used with spin projection.
Still, there is no magic number for the exact exchange admixture and the best compromise for a given
type of system depends on other features of the functional. Although the popular B3LYP hybrid
functional (20% HF exchange) [44,45] has been used with reasonably good results, the hybrid-meta-GGA
TPSSh functional (10% HF exchange) [46] is a better and more widely validated choice, not only
for exchange coupling constants but for a range of molecular properties [34,47–50]. This choice of
functional is not necessarily transferable, as demonstrated for example by the fact that TPSSh is no
longer at the methodological sweet spot for the calculation of exchange coupling constants even for
complexes of metal ions isoelectronic with manganese [51]. The adequate performance of a given
functional for a restricted chemical space and the emergence of inconsistent behavior or large deviations
outside this restricted space are typical of standard BS-DFT approaches.

Double-hybrid density functionals (DHDFs) [52] are regarded as “higher-rung” DFT methods
compared to hybrid and meta-GGA functionals. They mix standard DFT exchange (EDFT

X ) and
correlation (EDFT

C ) with HF exchange (EHF
X ) and an additional second-order perturbation theory

contribution (EPT2
C ):
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The archetypal example is the B2-PLYP functional [53] that uses the B88 and LYP functionals for
exchange and correlation, mixing HF exchange (↵X = 0.53) and perturbational correction (↵C = 0.27).
The percentage of HF exchange in DHDFs is usually considerably higher than that in most standard hybrid
functionals. DHDFs have been shown to perform robustly and with generally superior results compared
to other DFT methods in numerous benchmarks involving various types of energetics [52,54–58].

Studies involving exchange-coupled systems are comparatively scarce. Schwabe and Grimme [59]
evaluated double-hybrid DFT on a set of organic compounds and a few simple copper complexes [60],
supporting the good performance of the method. Rajaraman and coworkers [61] reported that the
double-hybrid B2-PLYP functional performed better than hybrid functionals such as B3LYP, PBE0,
or TPSSh for the description of magnetic coupling in Gd(III)–radical complexes. Vogiatzis et al. [62]
also reported that B2-PLYP performs well within the BS-DFT approach for dinuclear paddlewheel
complexes, however they also noted that it is inferior to B3LYP in the case of a trichromium system [62].

Archetypal example: B2PLYP. Current “best”: PWPB95

Considered among the best functionals available (“top-rung”)

Victims of even more refitting and purpose-focused optimization (SCS-MP2, SOS-MP2) … 
for kinetics, for thermochemistry, for …
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a weakly antiferromagnetically coupled Mn(III,III) dimer (S = 0) [64]. Complex 3 is a mixed-valence
system with asymmetric ligation [65] that facilitates spin localization. This complex has a moderate
antiferromagnetic coupling resulting in a spin doublet (S = 1/2) ground state and has been the subject
of a recent study [20] that evaluated the use of the density matrix renormalization group [66] in
the multireference treatment of exchange coupling [18,22]. Complex 4 is a classic example of a
strongly coupled bis-µ-oxo Mn(IV,IV) system [67]. Finally, complex 5 reaches the far limit of strong
antiferromagnetic coupling [68]. The tris-µ-oxo ligation in complex 5 brings the manganese ions in such
close proximity that, in addition to ligand-mediated superexchange, direct metal–metal interaction
contributes significantly in stabilizing the low-spin state [39]. This situation is common in face-sharing
d3–d3 systems [51,69].

Table 1. Dinuclear manganese complexes considered in this study, with their crystallographic identifiers,
Mn oxidation states, Mn···Mn distance R (in Å), and exchange coupling constant J (in cm�1).

Compound a Refcode Ox. States R J Ref.

1 [Mn2O(O2BPh)2(Me3tacn)2](PF6)2 TIPFAZ IV, IV 3.185 +10 [63]
2 [Mn2O(OAc)2(H2O)2(bpy)2](PF6)2‚ 1.75H2O GEFKAD III, III 3.131 �3.4 [64]
3 [Mn2O2(OAc)(Me3tacn)(OAc)2] KUVPEW III, IV 2.665 �90 [65]
4 [Mn2O2Cl2(bpea)2](ClO4)2 ZEQGOR IV, IV 2.756 �147 [67]
5 [Mn2O3(Me3tacn)2](PF6)2‚ H2O VADDAF IV, IV 2.297 �390 [68]

a Definition of ligand abbreviations: Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane; bpy = bipyridine; bpea =
N,N-bis(2-pyridylmethyl)ethylamine.

3. Selection of Functionals

Recent years have seen a surge in interest in DHDFs and, as a result, a rapid increase in the
number of variants and modified forms [52,58,70]. In the present study we aim at a modest selection
of functionals that is nevertheless representative of all widely available types of double-hybrid
methods. A few non-double-hybrid methods were included to facilitate comparisons with the
DHDFs. These are the GGA functional BLYP, the meta-GGA functionals TPSS [71] and SCAN [72],
the hybrid functionals B3LYP (20% HF exchange) [44,45] and PBE0 (25% HF exchange) [73], and the
hybrid-meta-GGA functional TPSSh (10% HF exchange) [46]. The selected double-hybrid functionals
include B2-PLYP [53], which is the first modern functional where a PT2 contribution replaces part
of the DFT correlation; it combines B88 for DFT exchange with LYP for DFT correlation, with a HF
exchange coe�cient ↵X = 0.53 and a PT2 coe�cient ↵C = 0.27. mPW2-PLYP is similar but uses mPW
exchange with ↵X = 0.55 and ↵C = 0.25. A series of reparametrized versions of the B2-PLYP functional
are B2GP-PLYP (↵X = 0.65 and ↵C = 0.36), B2K-PLYP (↵X = 0.72 and ↵C = 0.42), and B2T-PLYP
(↵X = 0.60 and ↵C = 0.31), which were respectively suggested as more suitable for general-purpose
calculations, kinetics, and thermochemistry [74].

In the spin-component-scaled MP2 approach (SCS-MP2) [75] a separate scaling factor is used
for the correlation energy contribution of opposite-spin (EOS�PT2

C ) and same-spin (ESS�PT2
C ) electron

pairs. This is usually an improvement over MP2 because it can take account of the fact that
same-spin correlation is already present at the HF level. SCS-MP2 was also used in the context of
double-hybrid density functional theory. Here we test functionals from the dispersion-corrected
spin-component-scaled double-hybrid family (DSD) [76–78], which follow the formula:

E
DSD
XC = (1� ↵X)E

DFT
X + ↵XE

HF
X + cCE

DFT
C + cOE

OS�PT2
C + cSE

SS�PT2
C + Edisp

DSD-PBEP86 employs PBE exchange and P86 correlation with ↵X = 0.70, cC = 0.43, cO = 0.53,
and cS = 0.25, while DSD-PBEB95 combines PBE exchange with B95 correlation and has coe�cients
↵X = 0.66, cC = 0.55, cO = 0.46, and cS = 0.09. It is noted that the scaling factors for the SCS-MP2 part
were reparametrized and do not follow the original SCS-MP2 definition [75]. Finally, the PWPB95
functional [55] uses reparametrized PW91 exchange and B95 correlation, but instead of SCS-MP2 it
employs the scaled-opposite-spin approach (SOS-MP2) [79] that considers exclusively the correlation

BUT not without important exceptions and unexpected failures
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that incorporates the kinetic energy density [92–96]:

!(r) = 1
2

∑

i

|∇ i(r)|2 (46)

The TPSS functional has been implemented into several major codes
now and has been shown to perform well for transition metal con-
taining systems [97].

A significant boost in the application of DFT to chemistry has
been achieved in 1993 by Becke who proposed the use of so-
called hybrid functionals [98,99] that incorporate a fraction of the
non-local HF exchange. While this admixture has been motivated
by the so-called ‘adiabatic-connection’ method, it remains largely
empirical in character and many workers have chosen to adjust the
fraction of exact exchange to fit their needs and whishes. By far the
most popular of these hybrid functionals is the B3LYP method, that
can be written as [100]:

EB3LYP
XC = aEHF

X + (1 − a)ELSD
X + bEB88

X + ELSD
C + c(ELYP

C − ELSD
C ) (47)

where the empirical constants a, b, c have the values 0.20, 0.72 and
0.81, respectively. The accuracy of energetic predictions with the
B3LYP functional for small molecules has been really astonishing
and is competitive with correlated wavefunction approaches. Since
the B3LYP functional also proved to be one of the best functionals for
property predictions it rapidly became the ‘workhorse’ of applied
quantum chemistry. However, some points must be made: (a) the
high accuracy pertains to the basis set limit and does not carry over
to the small double-" type basis sets that are often used in applica-
tion studies; (b) the benchmarks are usually done on collections of
small molecules that do not contain open-shell transition metals.
The results of such studies are not necessarily representative of real
life chemistry applications.

In fact, more recently detailed benchmark studies have revealed
significant points of concern about the application of the B3LYP
functional.

Several authors found that the errors of the B3LYP predic-
tions increase disproportionately with increasing molecular size. In
particular, Grimme, who reported a detailed comparison of wave-
function and DFT methods for atomization energies (Table 2) and
used large basis sets, found many errors in his test set that exceed
20 kcal/mol [101]. This did not occur for other functionals and the

Table 2
Performance of different standard functionals in extensive thermochemical tests (in
kcal/mol)

Density functional

BP86 PBE TPSS TPSSH B3LYP PBE0

G2/97′ test set (N = 156)
Mean deviation 0.39 0.17 0.73 0.39 0.33 −0.25
Mean absolute deviation 2.79 2.87 3.06 2.74 2.12 2.28
Maximum deviation 24.2 25.9 21.7 19.8 14.5 14.7

Second test set (N = 67)
Mean deviation −4.6 −2.66 −4.52 −3.55 −6.91 −0.88
Mean absolute deviation 8.77 7.74 8.45 7.02 8.46 4.63
Maximum deviation 87.4 79.0 70.3 52.9 77.9 36.9

Numbers taken from Grimme [101] (N denotes the number of molecules in the test
sets).

study concluded that of the investigated functionals PBE0 [102,103]
performed the best and very similarly to a hybrid version of TPSS
with 25% HF exchange (which may be called TPSS0).

Several authors found discouragingly large errors (exceeding
10 kcal/mol) even in seemingly simple systems – for example for
the isomerisation energies of hydrocarbons (Fig. 4). This discon-
certing situation was interpreted in a paper by Grimme [104]. In
comparing wavefunction and DFT results, he concluded that the
errors of the DFT methods arise from correlation effects at medium
electron–electron distances, i.e. from electrons occupying adjacent
bonds. Such correlation effects are not included in the standard DFT
models since the correlation energy is calculated from the values of
the densities and gradients at a given point in space. Thus, the DFT
correlation effects are too short-sighted and hence the stability of
branched structures is significantly underestimated (Fig. 4).

It is readily anticipated that similar situations must be prevalent
throughout chemistry and hence one is well advised to view the
theoretical results always with much care and seek feedback from
experiment wherever possible.

A small collection of standard functionals that find frequent
use in chemistry is shown below in Table 3 together with some
comments.

We finally wish to mention a last class of density functionals for
which some promising results have been obtained. They have been

Fig. 4. Unexpectedly large errors from standard DFT calculations for the isomerization energy from octane (left) to iso-octane (right). The sign of the experimental isomerization
energy is dominated by correlation effects since the HF method predicts the wrong sign but already a modest correlated wavefunction-based method (SCS-MP2) gives good
agreement with experiment. DFT misses on the medium range “bond/bond” electron correlation effects and hence underestimates the stability of the branched isomer (taken
from [509]).

Origin: deficiency in medium-range correlation - DFT is too “short-sighted”

Semi-empirical fix in the form of an add-on term: D3BJ, D4 (Grimme).

Similar deficiency in any systems where dispersion is important.
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O 1 0 0 1.20 0.0 0.00

H 1 2 0 1.10 120.0 0.00

H 1 2 3 1.10 120.0 180.00

*

9.3.2.9 The Standard Computational Levels

WARNING: The keywords below no longer change the basis set for the calculation. The

default basis set is def2-SVP and any changes to it must be specified explicitly! This makes

these keywords somewhat less helpful and their use is discouraged.

Standard calculation levels are defined below

Calculation-Level

Parameter
Quick

DFT

Quick

Opt

Medium

Opt

Good

Opt
Acc Opt

DFT

Energy

DFT

En-

ergy+

RunTyp Energy Opt Opt Opt Opt Energy Energy

Functional BP BP BP BP BP B3LYP B3LYP

RI On On on on on o↵1 o↵1

SCFConv Loose Tight Tight Tight Tight Normal Normal

GeoConv - Normal Normal Normal Tight - -

Grid2 2/3 2/4 2/4 3/5 4/5 4/5 4/5

1 – The RI approximation can be used in these calculations by using ! RIJONX in the input

2 – The first and second number refer to the dual-grid feature of ORCA

You can easily override these defaults by simply typing the appropriate keyword that changes one of the settings

given above (for example if you want MediumOpt but with the PBE functional simply give ! MediumOpt

PBE).

9.3.2.10 Treatment of Dispersion Interactions with DFT-D3

Introduction
DFT-D3 is an atom-pairwise (atom-triplewise) dispersion correction which can be added to the KS-DFT

energies and gradient [2]:

EDFT-D3 = EKS-DFT + Edisp (9.31)

Edisp is then the sum of the two- and three-body contributions to the dispersion energy: Edisp = E(2) + E(3).

The most important is the two-body term which is given at long range by:
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Edisp = �

X

A<B

X

n=6,8

sn
CAB

n

rnAB

(9.32)

CAB
n denotes the averaged (isotropic) nth-order dispersion coe�cient for atom pair AB, and rAB is their

internuclear distance. sn is a functional-dependent scaling factor (see below). In the general case, an adequate

damping function must be employed.

Damping Functions
In order to avoid near singularities for small rAB , the dispersion contribution needs to be damped at short

distances. One possible way is to use rational damping as proposed by Becke and Johnson [315–317]:

E(2) = �

X

A<B

X

n=6,8

sn
CAB

n

rnAB + f(RAB
0 )n

(9.33)

with [317]

RAB
0 =

s
CAB

8

CAB
6

(9.34)

and

f(RAB
0 ) = a1R

AB
0 + a2. (9.35)

Damping the dispersion contribution to zero for short ranges (as in Ref. [2]) is also possible:

E(2) = �

X

A<B

X

n=6,8

sn
CAB

n

rnAB

fd,n(rAB) (9.36)

with

fd,n =
1

1 + 6( rAB

sr,nRAB

0
)�↵n

(9.37)

Note that the RAB
0 used with this damping are from Ref. [2]. For more information on the supported damping

functions, see Ref [120]. In the ORCA program the dispersion correction with zero damping is invoked by

the keyword ! D3ZERO. The default is the recommended variant with Becke-Johnson damping and is invoked

by the keyword ! D3BJ or simply ! D3.

Beneficial in the vast majority of cases, but always be careful…

A more important question:  
relative energies are wrong - are spectroscopic properties also “wrong”?
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! CAUTION !

• It is possible that FLOAT may lead to unacceptable errors. Thus it is
not the recommended option when MP2 or RI-MP2 gradients or relaxed
densities are computed. For this reason the default is DOUBLE.

• If you have convinced yourself that FLOAT is OK, it may save you a
factor of two in both storage and CPU.

Global memory use. Some ORCA modules (in particular those that perform some kind of wavefunction

based correlation calculations) require large scratch arrays. Each module has an independent variable

to control the size of these dominant scratch arrays. However, since these modules are never running

simultaneously, we provide a global variable MaxCore that assigns a certain amount of scratch memory to all

of these modules. Thus:

%MaxCore 4000

sets 4000 MB (= 4 GB) as the limit for these scratch arrays. This limit applies per processing core.

Do not be surprised if the program takes more than that – this size only refers to the dominant work areas.

Thus, you are well advised to provide a number that is significantly less than your physical memory. Note

also that the memory use of the SCF program cannot be controlled: it dynamically allocates all memory that

it needs and if it runs out of physical memory you are out of luck. This, however, rarely happens unless you

run on a really small memory computer or you are running a gigantic job.

6.2.2 Density Functional Methods

For density functional calculations a number of standard functionals can be selected via the “simple input”

feature. Since any of these keywords will select a DFT method, the keyword “DFT” is not needed in the

input. Further functionals are available via the %method block. References are given in section 9.3.2.1.

Table 6.2: Density functionals available in ORCA.

Local and gradient corrected functionals

HFS Hartree–Fock–Slater Exchange only functional

LDA or LSD Local density approximation (defaults to VWN5)

VWN or VWN5 Vosko–Wilk–Nusair local density approx. parameter set “V”

VWN3 Vosko–Wilk–Nusair local density approx. parameter set “III”

PWLDA Perdew-Wang parameterization of LDA

BP86 or BP Becke ’88 exchange and Perdew ’86 correlation

BLYP Becke ’88 exchange and Lee-Yang-Parr correlation

OLYP Handy’s “optimal” exchange and Lee-Yang-Parr correlation

GLYP Gill’s ’96 exchange and Lee-Yang-Parr correlation

XLYP The Xu and Goddard exchange and Lee-Yang-Parr correlation

PW91 Perdew-Wang ’91 GGA functional

24 6 General Structure of the Input File

mPWPW Modified PW exchange and PW correlation

mPWLYP Modified PW exchange and LYP correlation

PBE Perdew-Burke-Erzerho↵ GGA functional

RPBE “Modified” PBE

REVPBE “Revised” PBE

PWP Perdew-Wang ’91 exchange and Perdew ’86 correlation

Hybrid functionals

B1LYP The one-parameter hybrid functional with Becke ’88 exchange

and Lee-Yang-Parr correlation (25% HF exchange)

B3LYP and B3LYP/G The popular B3LYP functional (20% HF exchange) as defined

in the TurboMole program system and the Gaussian program

system, respectively

O3LYP The Handy hybrid functional

X3LYP The Xu and Goddard hybrid functional

B1P The one-parameter hybrid version of BP86

B3P The three-parameter hybrid version of BP86

B3PW The three-parameter hybrid version of PW91

PW1PW One-parameter hybrid version of PW91

mPW1PW One-parameter hybrid version of mPWPW

mPW1LYP One-parameter hybrid version of mPWLYP

PBE0 One-parameter hybrid version of PBE

PW6B95 Hybrid functional by Truhlar

BHANDHLYP Half-and-half hybrid functional by Becke

Meta-GGA and hybrid meta-GGA functionals

TPSS The TPSS meta-GGA functional

TPSSh The hybrid version of TPSS (10% HF exchange)

TPSS0 A 25% exchange version of TPSSh that yields improved ener-

getics compared to TPSSh but is otherwise not well tested

M06L The Minnesota M06-L meta-GGA functional

M06 The M06 hybrid meta-GGA (27% HF exchange)

M062X The M06-2X version with 54% HF exchange

B97M-V Head-Gordon’s DF B97M-V with nonlocal correlation

B97M-D3BJ Modified version of B97M-V with D3BJ correction by Najibi

and Goerigk

SCANfunc Perdew’s SCAN functional

Range-separated hybrid functionals

wB97 Head-Gordon’s fully variable DF !B97

wB97X Head-Gordon’s DF !B97X with minimal Fock exchange

wB97X-D3 Chai’s refit incl. D3 in its zero-damping version

wB97X-V Head-Gordon’s DF !B97X-V with nonlocal correlation

wB97X-D3BJ Modified version of !B97X-V with D3BJ correction by Najibi

and Goerigk

wB97M-V Head-Gordon’s DF !B97M-V with nonlocal correlation

wB97M-D3BJ Modified version of !B97M-V with D3BJ correction by Najibi

and Goerigk

CAM-B3LYP Handy’s fit

6.2 Keyword Lines 25

LC-BLYP Hirao’s original application

Perturbatively corrected double-hybrid functionals (add the prefix RI- or DLPNO-

to use the respective approximation for the MP2 part)

B2PLYP Grimme’s mixture of B88, LYP, and MP2

B2PLYP-D B2PLYP with Grimme’s empirical dispersion correction from

2006 (D2) [1]

B2PLYP-D3 B2PLYP with Grimme’s atom-pairwise dispersion correction

from 2010 [2] and Becke-Johnson damping (D3BJ)

mPW2PLYP mPW exchange instead of B88, which is supposed to improve

on weak interactions.

mPW2PLYP-D mPW2PLYP with Grimme’s empirical dispersion correction

from 2006 (D2)

B2GP-PLYP Gershom Martin’s “general purpose” reparameterization

B2K-PLYP Gershom Martin’s “kinetic” reparameterization

B2T-PLYP Gershom Martin’s “thermochemistry” reparameterization

PWPB95 Goerigk and Grimme’s mixture of modified PW91, modified

B95, and SOS-MP2

DSD-BLYP Gershom Martin’s “general purpose” double-hybrid with B88

exchange, LYP correlation and SCS-MP2 mixing, i.e. not incl.

D3BJ correction

DSD-PBEP86 Gershom Martin’s “general purpose” double-hybrid with PBE

exchange, P86 correlation and SCS-MP2 mixing, i.e. not incl.

D3BJ correction

DSD-PBEB95 Gershom Martin’s “general purpose” double-hybrid with PBE

exchange, B95 correlation and SCS-MP2 mixing, i.e. not incl.

D3BJ correction

Range-separated double-hybrid functionals (add the prefix RI- or DLPNO- to use the

respective approximation for the MP2 part)

wB2PLYP Goerigk and Casanova-Páez’s range-separated DHDF, with

the correlation contributions based on B2PLYP, optimized for

excitation energies

wB2GP-PLYP Goerigk and Casanova-Páez’s range-separated DHDF, with the

correlation contributions based on B2GP-PLYP, optimized for

excitation energies

Dispersion corrections (see 8.1.4.6 and 9.3.2.11 for details)

D4 density dependent atom-pairwise dispersion correction with

Becke-Johnson damping and ATM

D3BJ Atom-pairwise dispersion correction to the DFT energy with

Becke-Johnson damping

D3ZERO Atom-pairwise dispersion correction with zero damping

D2 Empirical dispersion correction from 2006 (not recommended)
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Functionals in ORCA

!	B3LYP	D3BJ	RIJCOSX	def2-TZVP	def2/J	Grid5	GridX7

%method	
			functional	B3LYP	
			ScalHFX	0.15	
end

%method	
			Exchange	X_B88	
			Correlation	C_LYP	
			ACM	a,	b,	c	
end

390 9 Detailed Documentation

X_TPSS # TPSS meta GGA exchange [273]

X_B97D # Grimme’s modified exchange for the B97-D GGA [1]

X_B97BECKE # Becke’s original exchange for the B97 hybrid [274]

X_SCAN # Perdew’s constrained exchange for the SCAN mGGA [257]

Correlation C_NOC # no correlation

C_VWN5 # Local VWN-V parameters [275]

C_VWN3 # Local VWN-III parameters [275]

C_PWLDA # Local PW ’91 [276]

C_P86 # Perdew ’86 correlation [277]

C_PW91 # Perdew-Wang ’91 correlation [269]

C_PBE # PBE correlation [252]

C_LYP # LYP correlation [278]

C_TPSS # TPSS meta-GGA correlation [273]

C_B97D # Grimme’s modified correlation for the B97-D GGA [1]

C_B97BECKE # Becke’s original correlation for the B97 hybrid [274]

C_SCAN # Perdew’s constrained correlation for the SCAN mGGA [257]

# for hybrid functionals. Reference, Becke [264]

ACM ACM-A, ACM-B, ACM-C

# ACM-A: fraction of HF-exchange in hybrid DFT

# ACM-B: scaling of GGA part of DFT exchange

# ACM-C: scaling of GGA part of DFT correlation

# "extended" hybrid functional

ScalLDAC 1.0 # scaling of the LDA correlation part

ScalMP2C 0.0 # fraction of MP2 correlation mixed into

# the density functional

end

Hybrid Density Functionals. The hybrid DFs [264, 279] are invoked by choosing a nonzero value for

the variable ACM. (ACM stands for “adiabatic connection model”). Specifically, these functionals have the

following form:

EXC = aEX
HF + (1 � a)EX

LSD + bEX
GGA + EC

LSD + cEC
GGA (9.3)

Here, EXC is the total exchange/correlation energy, EX
HF is the Hartree-Fock exchange, EX

LSD is the local

(Slater) exchange, EX
GGA is the gradient correction to the exchange, EC

LSD is the local, spin-density based

part of the correlation energy and EC
GGA is the gradient correction to the correlation energy. This brings

us to a slightly awkward subject: several hybrid functionals with the same name give di↵erent values in

di↵erent programs. The reason for this is that they either choose slightly di↵erent default values for the

parameters a, b and c and or they di↵er in the way they treat the local part of the correlation energy. Di↵erent

parameterizations exist. The most popular is due to Vosko, Wilk and Nusair (VWN, [275]). However, VWN

in their classic paper give two sets of parameters - one in the main body (parameterization of RPA results;

known as VWN-III) and one in their table 5 of correlation energies (parameterization of the Ceperley/Alder

Monte Carlo results; known as VWN-V). Some programs choose one set, others the other. In addition a

slightly better fit to the uniform electron gas has been produced by Perdew and Wang [276]. The results
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parameter hybrids) is, I believe, in the right direction. Thus the one parameter hybrids have the simple

form:

EXC = EX
DFT + a0 �EX

HF � EX
DFT

�
+ EC

DFT (9.5)

with a0 = 1
4 which is the same as putting: a = a0, b = 1 � a0 and c = 1 in the three parameter hybrids and

this is how it is implemented. The one parameter hybrid PBE0 has been advertised as a hybrid functional of

overall well balanced accuracy [259].

Extended “double-hybrid” functionals. In addition to mixing the HF-exchange into a given DF, Grimme

has proposed to mix in a fraction of the MP2 correlation energy calculated with hybrid DFT orbitals. [110]

Such functionals may be refered to as “extended” hybrid functionals. Grimme’s expression is:

EXC = aEHF
X + (1 � a)EDFT

X + (1 � c)EDFT
C + cEMP2

C (9.6)

Such functionals can be user-defined in ORCA as follows:

%method

ScalHFX = a

ScalDFX = 1-a

ScalGGAC = 1-c

ScalLDAC = 1-c

ScalMP2C = c

end

Grimme recommends the B88 exchange functional, the LYP correlation functional and the parameters a=0.53

and c=0.27. This gives the B2PLYP functional which appears to be a fair bit better than B3LYP based on

Grimme’s detailed evaluation study.

Presently, this methodology covers single points, analytic gradients (hence all forms of geometry optimization,

relaxed scans, and transition state searches), and frequencies and other second derivatives (without the frozen

core approximation in the MP2 part). Note that you need to choose %mp2 density relaxed end in order

to get the correct response density which is consistent with first order properties as analytic derivatives.

By default this density is not calculated since its construction adds significant overhead to the calculation.

Therefore you have to specifically request it if you want to look at the consistent density. You can also choose

%mp2 density unrelaxed end which would give you the unrelaxed (expectation value like) density of the

method at considerably less computational cost. However, this is not recommended since the changes to the

relaxed density are considerable in our experience and the unrelaxed density has a much weaker theoretical

status than its relaxed counterpart.

Range-separated hybrid functionals. ORCA supports functionals based on the error function splitting

of the two-electron operator used for exchange as first realized by Hirao and coworkers [124]:

r�1
12 = erfc(µ · r12) · r�1

12| {z }
SR

+erf(µ · r12) · r�1
12| {z }

LR

(9.7)

%method	
			ScalHFX		=	a	
			ScalDFX		=	1-a	
			ScalGGAC	=	1-c	
			ScalLDAC	=	1-c	
			ScalMP2C	=	c	
end
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where erf(x) = 2p
⇡

R x
0 exp(�t2)dt and erfc(x) = 1� erf(x). Note that the splitting is only applied to exchange;

one-electron parts of the Hamiltonian, the electron-electron Coulomb interaction and the approximation for

the DFT correlation are not a↵ected. Later, Handy and coworkers generalized the ansatz to: [125]

r�1
12 =

1 � [↵ + � · erf(µ · r12)]

r12| {z }
SR

+
↵ + � · erf(µ · r12)

r12| {z }
LR

(9.8)

The splitting has been described in graphical form (according to Handy and coworkers), along the terminology

of ORCA, in Figure 9.1:

0 ∞
r12

0%

20%

40%

60%

80%

100%

α, ACM-A

β, RangeSepScal

ACM-B

DFT exchange

exact exchange

Figure 9.1: Graphical description of the Range-Separation ansatz. The gray area corresponds to
Hartree-Fock exchange. ↵ and � follow Handy’s terminology. [125]

The splitting has been used to define the !B97 family of functionals where the short-range part (SR) is

described by DFT exchange and the long-range part by exact exchange/Hartree-Fock exchange. The same is

true for CAM-B3LYP and LC-BLYP. It is possible to use a fixed amount of Hartree-Fock exchange (EXX)

and/or a fixed amout of DFT exchange in this ansatz.

Functional Keyword fixed EXX variable part µ/bohr-1 fixed DFT-X Reference

!B97 WB97 — 100% 0.40 — [127]

!B97X WB97X 15.7706% 84.2294% 0.30 — [127]

!B97X-D3 WB97X-D3 19.5728% 80.4272% 0.25 — [128]

!B97X-V WB97X-V 16.7% 83.3% 0.30 — [129]

!B97X-D3BJ WB97X-D3BJ 16.7% 83.3% 0.30 — [131]

CAM-B3LYP CAM-B3LYP 19% 46% 0.33 35% [125]

LC-BLYP LC-BLYP — 100% 0.33 — [126]

The currently available speed-up options are RIJONX and RIJCOSX. Otherwise, integral-direct single-

point calculations, calculations involving the first nuclear gradient (i.e. geometry optimizations), frequency

calculations, TDDFT, TDDFT nuclear gradient, and EPR/NMR calculations are the only supported job

types thus far. In principle, it is possible to change the amount of fixed Hartree-Fock exchange (ACM-A) and

the amount of variable exchange (RangeSepScal) and µ, though this is not recommended. The amount of

fixed DFT Exchange (ACM-B) can only be changed for CAM-B3LYP and LC-BLYP. In other words, ACM-B

%method	
			RangeSepEXX	true	
			RangeSepMu	0.25		
			RangeSepScal	0.7	
			ACM	0.2,	0.1,	1.0	
end
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where erf(x) = 2p
⇡

R x
0 exp(�t2)dt and erfc(x) = 1� erf(x). Note that the splitting is only applied to exchange;

one-electron parts of the Hamiltonian, the electron-electron Coulomb interaction and the approximation for

the DFT correlation are not a↵ected. Later, Handy and coworkers generalized the ansatz to: [125]

r�1
12 =

1 � [↵ + � · erf(µ · r12)]

r12| {z }
SR

+
↵ + � · erf(µ · r12)

r12| {z }
LR
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The splitting has been described in graphical form (according to Handy and coworkers), along the terminology

of ORCA, in Figure 9.1:

Figure 9.1: Graphical description of the Range-Separation ansatz. The gray area corresponds to
Hartree-Fock exchange. ↵ and � follow Handy’s terminology. [125]

The splitting has been used to define the !B97 family of functionals where the short-range part (SR) is

described by DFT exchange and the long-range part by exact exchange/Hartree-Fock exchange. The same is

true for CAM-B3LYP and LC-BLYP. It is possible to use a fixed amount of Hartree-Fock exchange (EXX)

and/or a fixed amout of DFT exchange in this ansatz.

Functional Keyword fixed EXX variable part µ/bohr-1 fixed DFT-X Reference

!B97 WB97 — 100% 0.40 — [127]

!B97X WB97X 15.7706% 84.2294% 0.30 — [127]

!B97X-D3 WB97X-D3 19.5728% 80.4272% 0.25 — [128]

!B97X-V WB97X-V 16.7% 83.3% 0.30 — [129]

!B97X-D3BJ WB97X-D3BJ 16.7% 83.3% 0.30 — [131]

CAM-B3LYP CAM-B3LYP 19% 46% 0.33 35% [125]

LC-BLYP LC-BLYP — 100% 0.33 — [126]

The currently available speed-up options are RIJONX and RIJCOSX. Otherwise, integral-direct single-

point calculations, calculations involving the first nuclear gradient (i.e. geometry optimizations), frequency

calculations, TDDFT, TDDFT nuclear gradient, and EPR/NMR calculations are the only supported job

types thus far. In principle, it is possible to change the amount of fixed Hartree-Fock exchange (ACM-A) and

the amount of variable exchange (RangeSepScal) and µ, though this is not recommended. The amount of

fixed DFT Exchange (ACM-B) can only be changed for CAM-B3LYP and LC-BLYP. In other words, ACM-B

* Several dispersion corrections
* Additionally: Libxc functionals

* Grids important in DFT
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Which functional should I use?

(m)GGA – Hybrid – Double Hybrid  
sequence generally true 
but depends on system and property 
Main problem: inconsistency, unpredictability. 

Literature is crucial.  
Benchmarking is important. But: 
How to use it? How to do it? 
How not to get lost in it?

You cannot get an easy answer for the “best” functional. Too many parameters! It is 
essential to understand how they interrelate in your case.

Many types of system or properties are absent or under-represented in standard 
benchmark sets. E.g. most evaluation studies cannot sufficiently address the 
enormous chemical space of transition metal systems, heavier elements, …

System – Property – Method

What can I calculate with DFT? What functional should I choose?

How to choose a method without relying on intentional bias & error cancellation?



Dimitrios A. Pantazis Max-Planck-Institut für Kohlenforschung 

Which functional should I use?

GGA functionals adequate, sometimes better than hybrids. 
BP86 a decent choice, perhaps TPSS. Include dispersion corrections. 
Use with RI approximation (fast!)

Geometries

(m)GGA – Hybrid – Double Hybrid sequence generally true, but quality 
of results very system-dependent. 
Frequencies: often GGA sufficient 
Optical: TD-DFT… 
EPR: advantage of hybrid functionals for g, ZFS, hyperfines;  
TPSSh a favorite in many studies, but no general recipes 
NMR: less sensitive, but go with a hybrid 
Mössbauer: choose a hybrid, strong support for double-hybrids

Spectroscopy:

“How accurate is DFT?” - Distinct physical origin of energy differences

(m)GGA – Hybrid – Double Hybrid sequence generally true for 
thermodynamics, reaction barriers. Also true for redox potentials, but the 
situation is less clear for spin-state energetics.  
* Double hybrids discouraged for exchange coupling interactions!

Energies:



Basis Sets
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Linear Combination of Atomic Orbitals (LCAO)

The SCF procedure involves solving single-electron equations for molecular orbitals.

Can we think of a general, transferable, computer-friendly approach?

Is there a way to standardize this task and make it transferable? 

We will express the molecular orbitals as linear combinations of atomic orbitals. 

Each atom comes with its set of AOs. We can construct any molecule we want and express 
any MO of this molecule in terms of the standard AOs of its constituent atoms.

We need a standard set of building blocks, so that we don’t have to guess or search for 
possible mathematical forms of MOs.

CHEM6085   Density Functional Theory 4

Example: find the AOs from which the MOs of the following molecules will 
be built

The Hartree-Fock Roothaan Method

It is difficult to vary the orbitals themselves. Rather what one does is to expand the 
orbitals in another set of auxiliary functions, the „basis set“

     
ψ

i
(x) = c

µi
ϕ

µ
(x)

µ
∑

If the basis set {φ} would be mathematically „complete“, the expansion would be 
exact. In practice, we have to live with less than complete basis set expansions. 

Carrying out the variation now with respect to the unknown „MO coefficients“ c 
leads to the famous Hartree-Fock Roothaan equations. The MO coefficients must 
satisfy the following coupled set of nonlinear equations: 

     
F

µν
(c)c

µi
ν
∑ = ε

i
c
νi
S

µν
ν
∑ (all µ,i)

   Fψi
= ε

i
ψ

i ⇔

   

ε
i

= Orbital Energyof Orbital i

F = FockOperator

S = OverlapMatrix
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Basis functions

Let’s generalize this: 

Use more than one function for an “atomic orbital”  
(more flexible representation of MOs) 

Use mathematical forms that are convenient for calculations  
(if they are not all that good, compensate by higher number)

We call these more “general atomic orbitals” basis functions

We assign a set of fixed functions (a basis set) to each atom. Then the task of finding the 
MOs is reduced to optimizing the MO expansion coefficients in terms of these fixed basis 
functions.

The Hartree-Fock Roothaan Method

It is difficult to vary the orbitals themselves. Rather what one does is to expand the 
orbitals in another set of auxiliary functions, the „basis set“

     
ψ

i
(x) = c

µi
ϕ

µ
(x)

µ
∑

If the basis set {φ} would be mathematically „complete“, the expansion would be 
exact. In practice, we have to live with less than complete basis set expansions. 

Carrying out the variation now with respect to the unknown „MO coefficients“ c 
leads to the famous Hartree-Fock Roothaan equations. The MO coefficients must 
satisfy the following coupled set of nonlinear equations: 

     
F

µν
(c)c

µi
ν
∑ = ε

i
c
νi
S

µν
ν
∑ (all µ,i)

   Fψi
= ε

i
ψ

i ⇔

   

ε
i

= Orbital Energyof Orbital i

F = FockOperator

S = OverlapMatrix
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Slater vs Gaussian type functions (STF / GTF)

Slater-type functions (exponent contains -r) are 
great because they best resemble hydrogen 
AOs and have the right shape close to the 
nucleus (cusp) and far from the nucleus (rate of 
decay)

But it is computationally simpler to use 
Gaussian-type functions (exponent -r2).• In practice, fixed linear

combinations of “primitive”
Gaussian functions are used

• These are called “Contracted
Gaussians” (CGs):

• The simplest kind of CGs are the
STO-nG basis sets

• These basis sets attempt to
approximate Slater-type orbitals
(STOs) by n primitive Gaussians

10

Contracted Gaussian functions

STO-1G

STO-2G

STO-3G

E.g. STO-nG functions for the 1s
orbital of a hydrogen atom

CHEM6085   Density Functional Theory

To compensate for their worse shape, we use several GTFs at 
the same time. 
A single GTF is called a primitive. 

The exponent (ζ) determines how diffuse the function is. 
Several primitives can be combined into a linear combination to 
form a contracted GTF, with fixed contraction coefficients.

Left: example of STO-nG progression
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Minimal vs. expanded basis sets

STO-nG: one CGTF per atomic orbital. Not flexible enough.

Double-zeta (DZ): two GTFs (contracted or not) per AO. 
Similarly: triple-zeta (TZ), quadruple-zeta (QZ) etc 

In practice: use multiple (c)GTFs only for the valence space.

Families of basis sets: 
Pople-type: 3-21G, 6-31G, 6-31G*, 6-31+G, 6-311G, …

Ahlrichs–Weigend: def2-SVP, def2-TZVP, …

Correlation consistent basis sets: cc-pVDZ, cc-pVTZ, aug-cc-pVT, cc-pVQZ, …

Property-optimized basis sets: EPR-II, EPR-III, CP(PPP), aug-cc-pVTZ-J, …

Relativistic basis sets: cc-pVTZ-DK, ZORA/DKH-SARC-TZVP, …

More flexibility: 
• polarization functions = higher angular momentum than the valence occupied orbitals 

(can also be viewed as correlation functions) 
• diffuse functions = functions with same angular momentum but smaller exponent 

(important for weak interactions, anions)
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How does it look like?

#  Basis set for element : C 
 NewGTO C 
 S 5 
   1    4232.6100000000      0.0023413403
   2     634.8820000000      0.0179264279
   3     146.0970000000      0.0870196239
   4      42.4974000000      0.2967017109
   5      14.1892000000      0.6883875263
 S 1 
   1       1.9666000000      1.0000000000
 S 1 
   1       5.1477000000      1.0000000000
 S 1 
   1       0.4962000000      1.0000000000
 S 1 
   1       0.1533000000      1.0000000000
 S 1 
   1       0.0479000000      1.0000000000
 P 4 
   1      18.1557000000      0.0185340026
   2       3.9864000000      0.1154420160
   3       1.1429000000      0.3862060535
   4       0.3594000000      0.6400890887
 P 1 
   1       0.1146000000      1.0000000000
 D 1 
   1       0.5500000000      1.0000000000

contracted GTF

primitive GTFs

exponents coefficients

contracted GTF
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Effective core potentials

Replace the inner functions by a single potential.  

One way to include relativistic effects. 

Not to be used when properties that depend on the density near the core are studied. 

Examples: SDD, LANL2DZ, … 

Our suggestion: better to use an approximate relativistic Hamiltonian (e.g. DKH2, ZORA) with 
appropriate all-electron basis sets (e.g. SARC-TZVP)

Auxiliary basis sets

Used in the approximate solution of certain integrals (RI approximations) 
e.g. Coulomb (J), exchange (K) 
Fit the density or actual products of basis functions 
• def2/J, def2/JK, xxx/C, …
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Relativistic Hamiltonians and Basis Sets

Douglas–Kroll–Hess (DKH) or Zero-order regular approximation (ZORA) 

They have different behavior close to the nucleus. 

Require tailor-made basis sets, e.g.: cc-pVTZ-DK,  SARC-ZORA-TZVP. 

(ORCA might complain if an adapted basis set is not detected)
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Relativistic Hamiltonians and Basis Sets

IRON	
S			20	
1									4.316265E+06											8.048803E-06	
2									6.463424E+05											6.258306E-05	
3									1.470897E+05											3.290239E-04	
4									4.166152E+04											1.387355E-03	
5									1.359077E+04											5.023256E-03	
6									4.905750E+03											1.610140E-02	
7									1.912746E+03											4.590034E-02	
8									7.926043E+02											1.136154E-01	
9									3.448065E+02											2.283869E-01	
10								1.558999E+02											3.221159E-01	
11								7.223091E+01											2.383661E-01	
12								3.272506E+01											7.404667E-02	
13								1.566762E+01											9.214197E-02	
14								7.503483E+00											9.339790E-02	
15								3.312223E+00											1.573965E-02	
16								1.558471E+00										-4.186682E-04	
17								6.839140E-01											5.376318E-05	
18								1.467570E-01										-3.816654E-05	
19								7.058300E-02											4.319603E-05	
20								3.144900E-02										-3.401019E-06

IRON	
S			20	
1									4.316265E+06											1.400000E-04	
2									6.463424E+05											4.050000E-04	
3									1.470897E+05											1.119000E-03	
4									4.166152E+04											2.907000E-03	
5									1.359077E+04											7.571000E-03	
6									4.905750E+03											1.981800E-02	
7									1.912746E+03											5.073400E-02	
8									7.926043E+02											1.187290E-01	
9									3.448065E+02											2.311640E-01	
10								1.558999E+02											3.193220E-01	
11								7.223091E+01											2.336480E-01	
12								3.272506E+01											7.402200E-02	
13								1.566762E+01											9.095200E-02	
14								7.503483E+00											8.889800E-02	
15								3.312223E+00											1.430200E-02	
16								1.558471E+00										-3.870000E-04	
17								6.839140E-01											8.000000E-06	
18								1.467570E-01										-2.500000E-05	
19								7.058300E-02											3.200000E-05	
20								3.144900E-02										-1.000000E-06

cc-pVDZ cc-pVDZ-DK

Similar modifications for other relativistic versions and property-optimized basis sets. 

Most common: s-decontraction, tight primitives (also for Finite Nucleus calculations)
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Combination of Methods and Basis Sets

XXIX

– RIJ + COSX: <basis>/ J auxiliaries, COSX grid controlled by the GRIDX keyword.

• GGA DFT functional

– Exact J + GGA-XC: no auxiliary functions needed, DFT grid controlled by the GRID keyword.

– RIJ + GGA-XC: <basis>/ J auxiliaries, DFT grid controlled by the GRID keyword.

• Hybrid DFT functional

– Exact J + exact K + GGA-XC: no auxiliary functions needed, DFT grid controlled by the GRID keyword.

– RIJ + exact K (RIJONX, RIJDX) + GGA-XC: <basis>/ J auxiliaries, DFT grid controlled by the GRID

keyword.

– RIJ + RIK (RIJK) + GGA-XC: <basis>/ JK auxiliaries, DFT grid controlled by the GRID keyword.

– RIJ + COSX + GGA-XC: <basis>/ J auxiliaries, COSX grid controlled by the GRIDX keyword, DFT

grid controlled by the GRID keyword.

There are a lot of basis sets! Which basis should I use when?

ORCA o↵ers a variety of methods and a large choice of basis sets to go with them. Here is an incomplete

overview:

Method Approximation basis set (and auxiliaries)

CASSCF/NEVPT2 <basis>

CASSCF/NEVPT2 RI-JK <basis>+ <basis>/JK

CASSCF/NEVPT2 RIJCOSX <basis>+ <basis>/J + <basis>/C

CASSCF/NEVPT2 TrafoStep RI <basis>+ <basis>/JK or <basis>/C

NEVPT2-F12 TrafoStep RI <basis>-F12 + <basis>-F12/CABS + <basis>/JK or <basis>/C

TDDFT <basis>

TDDFT Mode RIInts <basis>+ <basis>/C

MP2 <basis>

F12-MP2 <basis>-F12 + <basis>-F12/CABS

RI-MP2 <basis>+ <basis>/C

HF+RI-MP2 RIJCOSX <basis>+ <basis>/C + <basis>/J

F12-RI-MP2 <basis>-F12 + <basis>-F12/CABS + <basis>/C

DLPNO-MP2 <basis>+ <basis>/C

HF+DLPNO-MP2 RI-JK <basis>+ <basis>/C + <basis>/JK

F12-DLPNO-MP2 <basis>-F12 + <basis>-F12/CABS + <basis>/C

CCSD <basis>

RI-CCSD <basis>+ <basis>/C

(D)LPNO-CCSD <basis>+ <basis>/C

HF+(D)LPNO-CCSD RIJCOSX <basis>+ <basis>/C + <basis>/J

F12-CCSD <basis>-F12 + <basis>-F12/CABS

F12-RI-CCSD <basis>-F12 + <basis>-F12/CABS + <basis>/C

HF+F12-RI-CCSD RI-JK <basis>-F12 + <basis>-F12/CABS + <basis>/C + <basis>/JK
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Many choices in ORCA, additional choices online
9.3 Choice of Basis Set 325

6-311G(2d) H–Br cc-pCVTZ-PP2 Ca, Sr, Ba, Ra

6-311G(2d,p) H–Br cc-pCVQZ-PP2 Ca, Sr, Ba, Ra

6-311G(2d,2p) H–Br cc-pCV5Z-PP2 Ca, Sr, Ba, Ra

6-311G(2df) H–Br aug-cc-pCVDZ-PP2 Ca, Sr, Ba, Ra

6-311G(2df,2p) H–Br aug-cc-pCVTZ-PP2 Ca, Sr, Ba, Ra

6-311G(2df,2pd) H–Br aug-cc-pCVQZ-PP2 Ca, Sr, Ba, Ra

6-311G(3df) H–Br aug-cc-pCV5Z-PP2 Ca, Sr, Ba, Ra

6-311G(3df,3pd) H–Br cc-pwCVDZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G* H–Br cc-pwCVTZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G** H–Br cc-pwCVQZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(d) H–Br cc-pwCV5Z-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(d,p) H–Br aug-cc-pwCVDZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(2d) H–Br aug-cc-pwCVTZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(2d,p) H–Br aug-cc-pwCVQZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(2d,2p) H–Br aug-cc-pwCV5Z-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(2df) H–Br cc-pVDZ-DK H–Ar, Sc–Kr

6-311+G(2df,2p) H–Br cc-pVTZ-DK H–Ar, Sc–Kr, Y–Xe, Hf–Rn

6-311+G(2df,2pd) H–Br cc-pVQZ-DK H–Ar, Sc–Kr, In–Xe, Tl–Rn

6-311+G(3df) H–Br cc-pV5Z-DK H–Ar, Sc–Kr

6-311+G(3df,3pd) H–Br aug-cc-pVDZ-DK H–Ar, Sc–Kr

6-311++G** H–Br aug-cc-pVTZ-DK H–Ar, Sc–Kr, Y–Xe, Hf–Rn

6-311++G(d,p) H–Br aug-cc-pVQZ-DK H–Ar, Sc–Kr, In–Xe, Tl–Rn

6-311++G(2d,p) H–Br aug-cc-pV5Z-DK H–Ar, Sc–Kr

6-311++G(2d,2p) H–Br cc-pwCVDZ-DK Li–Be, Na–Mg, Ca–Zn

6-311++G(2df,2p) H–Br cc-pwCVTZ-DK Li–Be, Na–Mg, Ca–Zn, Y–Xe, Hf–Rn

6-311++G(2df,2pd) H–Br cc-pwCVQZ-DK Li–Be, Na–Mg, Ca–Zn, In–Xe, Tl–Rn

6-311++G(3df,3pd) H–Br cc-pwCV5Z-DK Li–Be, Na–Mg, Ca–Zn

SV H–Kr aug-cc-pwCVDZ-DK Li–Be, Na–Mg, Sc–Zn

SV(P) H–Kr aug-cc-pwCVTZ-DK Li–Be, Na–Mg, Sc–Zn, Y–Xe, Hf–Rn

SVP H–Kr aug-cc-pwCVQZ-DK Li–Be, Na–Mg, Sc–Zn, In–Xe, Tl–Rn

TZV H–Kr aug-cc-pwCV5Z-DK Li–Be, Na–Mg, Sc–Zn

TZV(P) H–Kr Partridge-1 H, Li–Sr

TZVP H–Kr Partridge-2 H, Li–Kr

TZVPP H–Kr Partridge-3 H, Li–Zn

QZVP H–Kr Partridge-4 Sc–Zn

QZVPP H–Kr ANO-SZ H–Ar, Sc–Zn

DKH-SV(P) H–Kr LANL083 Na–La, Hf–Bi

DKH-SVP H–Kr LANL08(f)3 Sc–Cu, Y–Ag, La, Hf–Au

DKH-TZV(P) H–Kr LANL2DZ3 H, Li–La, Hf–Bi, U–Pu

DKH-TZVP H–Kr LANL2TZ3 Sc–Zn, Y–Cd, La, Hf–Hg

DKH-TZVPP H–Kr LANL2TZ(f)3 Sc–Cu, Y–Ag, La, Hf–Au

DKH-QZVP H–Kr Sapporo-DZP-2012 H–Xe

DKH-QZVPP H–Kr Sapporo-TZP-2012 H–Xe

ZORA-SV(P) H–Kr Sapporo-QZP-2012 H–Xe

ZORA-SVP H–Kr Sapporo-DKH3-DZP-2012 K–Rn

ZORA-TZV(P) H–Kr Sapporo-DKH3-TZP-2012 K–Rn

ZORA-TZVP H–Kr Sapporo-DKH3-QZP-2012 K–Rn

ZORA-TZVPP H–Kr SARC-DKH-SVP Hf–Hg

ZORA-QZVP H–Kr SARC-DKH-TZVP Xe–Rn, Ac–Lr

ZORA-QZVPP H–Kr SARC-DKH-TZVPP Xe–Rn, Ac–Lr

def2-mSVP1 H–Rn SARC-ZORA-SVP Hf–Hg

def2-mTZVP1 H–Rn SARC-ZORA-TZVP Xe–Rn, Ac–Lr

def2-SV(P)1 H–Rn SARC-ZORA-TZVPP Xe–Rn, Ac–Lr

def2-SVP1 H–Rn SARC2-DKH-QZV La–Lu

def2-TZVP(-f)1 H–Rn SARC2-DKH-QZVP La–Lu

def2-TZVP1 H–Rn SARC2-ZORA-QZV La–Lu

def2-TZVPP1 H–Rn SARC2-ZORA-QZVP La–Lu

def2-QZVP1 H–Rn D95 H, Li–Li, B–Ne, Al–Cl
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def2-QZVPP1 H–Rn D95p H, Li–Li, B–Ne, Al–Cl

def2-SVPD1 H–La, Hf–Rn EPR-II H, B–F

def2-TZVPD1 H–La, Hf–Rn EPR-III H, B–F

def2-TZVPPD1 H–La, Hf–Rn IGLO-II H, B–F, Al–Cl

def2-QZVPD1 H–La, Hf–Rn IGLO-III H, B–F, Al–Cl

def2-QZVPPD1 H–La, Hf–Rn UGBS H–Th, Pu–Am, Cf–Lr

DKH-def2-SV(P) H–Kr CP Sc–Zn

DKH-def2-SVP H–Kr CP(PPP) Sc–Zn

DKH-def2-TZVP(-f) H–Kr Wachters+f Sc–Cu

DKH-def2-TZVP H–Kr cc-pVDZ-F12 H–Ar

DKH-def2-TZVPP H–Kr cc-pVTZ-F12 H–Ar

DKH-def2-QZVPP H–Kr cc-pVQZ-F12 H–Ar

ZORA-def2-SV(P) H–Kr cc-pVDZ-PP-F122 Ga–Kr, In–Xe, Tl–Rn

ZORA-def2-SVP H–Kr cc-pVTZ-PP-F122 Ga–Kr, In–Xe, Tl–Rn

ZORA-def2-TZVP(-f) H–Kr cc-pVQZ-PP-F122 Ga–Kr, In–Xe, Tl–Rn

ZORA-def2-TZVP H–Kr cc-pCVDZ-F12 Li–Ar

ZORA-def2-TZVPP H–Kr cc-pCVTZ-F12 Li–Ar

ZORA-def2-QZVPP H–Kr cc-pCVQZ-F12 Li–Ar

ma-def2-mSVP1 H–Rn Coulomb-fitting auxiliary basis sets (AuxJ)

ma-def2-SV(P)1 H–Rn def2/J H–Rn

ma-def2-SVP1 H–Rn def2-mTZVP/J H–Rn

ma-def2-TZVP(-f)1 H–Rn SARC/J H–Rn, Ac–No

ma-def2-TZVP1 H–Rn Coulomb and exchange-fitting auxiliary basis sets (AuxJK)

ma-def2-TZVPP1 H–Rn def2/JK H–Ba, Hf–Rn

ma-def2-QZVP1 H–Rn def2/JKsmall H–Ra, Th–Lr

ma-def2-QZVPP1 H–Rn cc-pVTZ/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-SV(P) H–Kr cc-pVQZ/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-SVP H–Kr cc-pV5Z/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-TZVP(-f) H–Kr aug-cc-pVTZ/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-TZVP H–Kr aug-cc-pVQZ/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-TZVPP H–Kr aug-cc-pV5Z/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-QZVPP H–Kr SARC2-DKH-QZV/JK La–Lu

ma-ZORA-def2-SV(P) H–Kr SARC2-DKH-QZVP/JK La–Lu

ma-ZORA-def2-SVP H–Kr SARC2-ZORA-QZV/JK La–Lu

ma-ZORA-def2-TZVP(-f) H–Kr SARC2-ZORA-QZVP/JK La–Lu

ma-ZORA-def2-TZVP H–Kr Auxiliary basis sets for correlated methods (AuxC)

ma-ZORA-def2-TZVPP H–Kr def2-SVP/C H–La, Hf–Rn

ma-ZORA-def2-QZVPP H–Kr def2-TZVP/C H–La, Hf–Rn

old-SV H–I def2-TZVPD/C H–La, Hf–Rn

old-SV(P) H–I def2-TZVPP/C H–La, Hf–Rn

old-SVP H–I def2-TZVPPD/C H–La, Hf–Rn

old-TZV H–I def2-QZVPP/C H–La, Hf–Rn

old-TZV(P) H–I def2-QZVPPD/C H–La, Hf–Rn

old-TZVP H–I cc-pVDZ/C H–Ar, Ga–Kr

old-TZVPP H–I cc-pVTZ/C H–Ar, Sc–Kr

old-DKH-SV(P) H–I cc-pVQZ/C H–Ar, Sc–Kr

old-DKH-SVP H–I cc-pV5Z/C H–Ar, Ga–Kr

old-DKH-TZV(P) H–I cc-pV6Z/C H–He, B–Ne, Al–Ar

old-DKH-TZVP H–I aug-cc-pVDZ/C H–He, Be–Ne, Mg–Ar, Ga–Kr

old-DKH-TZVPP H–I aug-cc-pVTZ/C H–He, Be–Ne, Mg–Ar, Sc–Kr

old-ZORA-SV(P) H–I aug-cc-pVQZ/C H–He, Be–Ne, Mg–Ar, Sc–Kr

old-ZORA-SVP H–I aug-cc-pV5Z/C H–Ne, Al–Ar, Ga–Kr

old-ZORA-TZV(P) H–I aug-cc-pV6Z/C H–He, B–Ne, Al–Ar

old-ZORA-TZVP H–I cc-pwCVDZ/C B–Ne, Al–Ar, Ga–Kr

old-ZORA-TZVPP H–I cc-pwCVTZ/C B–Ne, Al–Ar, Sc–Kr

ANO-pVDZ H–Ar, Sc–Zn cc-pwCVQZ/C B–Ne, Al–Ar, Ga–Kr

ANO-pVTZ H–Ar, Sc–Zn cc-pwCV5Z/C Li–Ne, Al–Ar

ANO-pVQZ H–Ar, Sc–Zn aug-cc-pwCVDZ/C B–Ne, Al–Ar, Ga–Kr
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External sources of basis sets

https://bse.pnl.gov/bse/portal
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External sources of basis sets

http://www.cosmologic-services.de/basis-sets/basissets.php
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External sources of basis sets

http://www.grant-hill.group.shef.ac.uk/ccrepo/index.html
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Definition of basis sets in ORCA

%basis	
			basis	"def2-TZVP"	
			aux			"def2/J"	
			auxJK	"def2/JK"	
			auxC		"def2-TZVP/C"	
			CABS		"cc-pVDZ-F12-OptRI"	
end

!	B3LYP	def2-TZVP	def2/J	Decontract	DecontractAux

%basis	
			basis	"def2-TZVP"	
			NewGTO	C		"def2-QZVPP"	end	
			NewGTO	Fe	"CP(PPP)"	end	
end

%basis	
			NewGTO	H		
			S	3		
			1					144.0976000000						0.0870196239	
			2						32.7787000000						0.2967017109	
			3							6.1862000000						0.6883875263	
			S	1		
			1							0.8000000000						1.0000000000	
			end	
			AddGTO	O	
			D	1	
			1	0.500		1.000	
			end	
			auxJ	"AutoAux"	
end

%basis	
			GTOname	"newbasis.bas"	
end

# Lots of customization!

%basis	
			NewGTO	Pt	"SARC-ZORA-TZVP"	
end	

%method	IntAcc	6.0	end
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Which basis set should I use?

The basis set is only one ingredient…

Au complex → relativity! → ECPs? or scalar relativistic Hamiltonian e.g. DKH2? 
⇒ need DKH-adapted basis sets, e.g. SARC

Examples:

Coupled-cluster calculation → requires careful convergence to basis set limit  
⇒ cc-pVnZ family of basis sets plus extrapolation. Or F12?

M. Isegawa, F. Neese, D. A. Pantazis, J. Chem. Theory Comput. 2016, 12, 2272-2284

case study on redox potentials: CCSD(T) vs DFT with basis set size

Spectroscopic properties (e.g. Mössbauer shifts, hyperfine coupling constants) ⇒ need 
appropriately optimized basis sets, e.g. CP(PPP), EPR-III 
(here bigger is not better!)

System – Property – Method

Anionic system or specific properties may require diffuse functions
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Hierarchy of post-Hartree–Fock methods

‣HF theory - fundamental issues: Coulomb and Fermi hole

‣Use the “unoccupied orbitals” 
‣ Perturbation theory (MP2) 
‣ Single-reference methods: Coupled-Cluster 
‣ Increase flexibility in Ψ: more than one determinant - multi-

reference methods 
‣Configuration interaction  -  Complete Active Space CI  -  

CAS-SCF, … 
‣Other approaches - MRCI, DDCI, SORCI, …

post-HF methods:

O
rb
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l E

ne
rg

y

i
j
k

a

b

c
d

e

Well-defined hierarchy of methods - but also with increasing cost and complexity. 
CCSD(T) is a highly successful and robust approach. 
Multi-reference methods are demanding in their application, but allow access to 
properties or levels of accuracy otherwise unattainable!
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Example

M. Isegawa, F. Neese, D. A. Pantazis, J. Chem. Theory Comput. 2016, 12, 2272-2284

What if the computed 
numbers with the smaller 
basis set are better than with 
the larger?
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Basis set Extrapolation

!	CCSD(T)	Extrapolate(2/3)

8.1 Single Point Energies and Gradients 73

The correlation energy is supposed to converge as:

E(1)
corr =

X�E(X)
corr � Y �E(Y )

corr

X� � Y �
(8.2)

The theoretical value for � is 3.0. However, it was found by Truhlar and confirmed by us, that for 2/3

extrapolations � = 2.4 performs considerably better.

For a number of basis sets, we have determined the optimum values for ↵ and � [84]:

↵23 �23 ↵34 �34

cc-pVnZ 4.42 2.46 5.46 3.05

pc-n 7.02 2.01 9.78 4.09

def2 10.39 2.40 7.88 2.97

ano-pVnZ 5.41 2.43 4.48 2.97

saug-ano-pVnZ 5.48 2.21 4.18 2.83

aug-ano-pVnZ 5.12 2.41

Since the � values for 2/3 are close to 2.4, we always take this value. Likewise, all 3/4 and higher extrapolations

are done with � = 3. However, the optimized values for ↵ are taken throughout.

Using the keyword ! Extrapolate(X/Y,basis), where X and Y are the corresponding successive cardinal

numbers and basis is the type of basis set requested (= cc, aug-cc, cc-core, ano, saug-ano, aug-ano,

def2) ORCA will calculate the SCF and optionally the MP2 or MDCI energies with two basis sets and

separately extrapolate.

The keyword works also in the following way: ! Extrapolate(n,basis) where n is the is the number of

energies to be used. In this way the program will start from a double-zeta basis and perform calculations

with n cardinal numbes and then extrapolates the di↵erent pairs of basis sets. Thus for example the keyword

! Extrapolate(3,CC) will perform calculations with cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets and then

estimate the extrapolation results of both cc-pVDZ/cc-pVTZ and cc-pVTZ/cc-pVQZ combinations.

Let us take the example of the H2O molecule at the B3LYP/TZVP optimized geometry. The reference values

have been determined from a HF calculation with the decontracted aug-cc-pV6Z basis set and the correlation

energy was obtained from the cc-pV5Z/cc-pV6Z extrapolation. This gives:

E(SCF,CBS) = -76.066958 Eh

EC(CCSD(T),CBS) = -0.30866 Eh

Etot(CCSD(T),CBS) = -76.37561 Eh

Now we can see what extrapolation can bring in:

!CCSD(T) Extrapolate(2/3) TightSCF Conv Bohrs

* int 0 1

O 0 0 0 0 0 0

H 1 0 0 1.81975 0 0

Extrapolate(X/Y,	basis)	
basis:	cc,	aug-cc,	cc-core,	ano,	def2

Extrapolate(n,	basis),	e.g.	Extrapolate(3,	cc)

74 8 Running Typical Calculations

H 1 2 0 1.81975 105.237 0

*

NOTE:

• The RI-JK and RIJCOSX approximations work well together with this option and RI-MP2 is also

possible. Auxiliary basis sets are automatically chosen and can not be changed.

• All other basis set choices, externally defined bases etc. will be ignored — the automatic procedure

only works with the default basis sets!

• The basis sets with the “core” postfix contain core correlation functions. By default it is assumed

that this means that the core electrons are also to be correlated and the frozen core approximation is

turned o↵. However, this can be overriden in the method block by choosing, e.g. %method frozencore

fc electrons end!

• So far, the extrapolation is only implemented for single points and not for gradients. Hence, geometry

optimizations cannot be done in this way.

• The extrapolation method should only be used with verytight SCF. For open shell methods, additional

caution is advised.

This gives:

Alpha(2/3) : 4.420 (SCF Extrapolation)

Beta(2/3) : 2.460 (correlation extrapolation)

SCF energy with basis cc-pVDZ: -76.026430944

SCF energy with basis cc-pVTZ: -76.056728252

Extrapolated CBS SCF energy (2/3) : -76.066581429 (-0.009853177)

MDCI energy with basis cc-pVDZ: -0.214591061

MDCI energy with basis cc-pVTZ: -0.275383015

Extrapolated CBS correlation energy (2/3) : -0.310905962 (-0.035522947)

Estimated CBS total energy (2/3) : -76.377487391

Thus, the error in the total energy is indeed strongly reduced. Let us look at the more rigorous 3/4

extrapolation:

Alpha(3/4) : 5.460 (SCF Extrapolation)

Beta(3/4) : 3.050 (correlation extrapolation)

SCF energy with basis cc-pVTZ: -76.056728252

SCF energy with basis cc-pVQZ: -76.064381269

Extrapolated CBS SCF energy (3/4) : -76.066687152 (-0.002305884)

= cc-pVDZ, cc-pVTZ


