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Abstract: Metabolic dysfunction-associated fatty liver disease has become the most common chronic
liver disease as well as the most common cause for liver transplantation. With its different methods
types, elastography of the liver can be used for non-invasive evaluation of the liver fibrosis and
steatosis degree. The article focuses on the description, use, advantages, and limitations of the
currently known elastographic techniques. It proposes a simple risk assessment algorithm for the
liver fibrosis progress evaluation. The following is an overview of the use of liver and spleen
elastography in the detection of clinically relevant portal hypertension. It concludes with research
and technological possibilities that could be important to the field in the upcoming years.
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1. Introduction

Liver steatosis is a pathological fat accumulation in hepatocytes of the liver. It is caused
by a variety of causes, of which by far the most important and most common is the one
resulting from the metabolic system dysfunction [1]. The metabolic syndrome pandemic
has elevated cirrhosis caused by non-alcoholic steatohepatitis (NASH) to the forefront cause
of liver transplantation [1]. In recent years, we have consequently recorded important
milestones when approaching this medical entity, especially those intended for an early
and accurate disease evaluation. The first is an attempt to define more precise diagnostic
criteria for a condition that has so far been based on the exclusion of other chronic liver
diseases and known as non-alcoholic fatty liver disease (NAFLD). A proposal by Eslam M
et al. was made to replace the NAFLD term with the metabolic dysfunction-associated fatty
liver disease (MAFLD), which allows a more precise definition and allows a simultaneous
presence of several etiologically different chronic liver diseases (Figure 1) [1]. Expert
opinions regarding the naming and definition appropriateness are, of course, diverse in the
early response stages. In a sense of an article better recognition, we use the term MAFLD.

Another important achievement coincides with the disease’s prevalence. MAFLD is a
very common condition in the adult population, but on the other hand does not show fre-
quent progression to liver cirrhosis (1–7% long-term chance). Diagnostic evaluation of such
a condition has become both a logistical and a financial burden to the health system [2]. Ad-
equate MAFLD risk stratification and management requires assessment and quantification
of liver parenchymal fat, inflammation, and fibrosis, which is most reliably performed by
histological examination of liver tissue. A modified Brunt or SAF (Steatosis, inflammation
Activity, Fibrosis) score is most common used for histological assessment of changes. Crite-
ria of inflammatory cell infiltration, hepatocyte necrosis and ballooning, and perivenular
fibrosis in addition to steatosis are important for histological assessment of steatohepatitis
(NASH), while MAFLD shows variable degrees of steatosis, but neither necroinflammation
nor ballooning of hepatocytes. The presence and degree of inflammatory activity and
NASH can currently only be assessed by histological examination and is recognized in
lobules and/or portal tracts with a predominantly centrilobular distribution [3]. Due to the
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known deficits of liver biopsy (invasiveness, sampling error, static assessment, need for
an experienced pathologist, interobserver variability, patient anxiety), diagnostic methods
of non-invasive liver assessment are coming to the fore. In the group of blood biomark-
ers/serum scores, MRI/CT imaging and ultrasound, especially elastographic methods, this
article will focus on the last diagnostic methods mentioned—ultrasound methods.
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2. Ultrasonography and MAFLD Evaluation

The cornerstone of modern investigative methods in this field is liver elastography.
The article briefly summarizes some other methods that may be part of advanced ultra-
sound features.

The basic principle of elastography is that an acoustic impulse passes through the liver
tissue and acts as a wavefront that causes minimal displacement of the tissue. This leads to
the formation of shear waves in the liver tissue which spread faster in a stiff medium (i.e.,
cirrhosis) [4].

Figure 2 shows the most common used elastographic methods. Unless otherwise
stated, the term elastography or elastographic examination in this article refers to the most
common used method—transient elastography (TE; Fibroscan©).
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TE is a unidimensional method in which a simultaneous ultrasound (US) represen-
tation of the investigated tissue is obtained as a simple M-mode picture (Figure 2). Other
methods have integrated the elastography module into conventional abdominal US probes.
This enables a morphological analysis of the organ in the grayscale with a superimposed
measuring box in which the liver stiffness is measured. In point shear wave elastography
(pSWE), the measuring box is small in size and there is no visible elastogram (Figure 2). If
the measuring box is larger and has a visible elastogram (every point in the elastogram
is color coded and represents different shear wave speeds), the method is called two-
dimensional shear wave elastography (2D-SWE; Figure 2) [4]. The common advantage
of all three modalities is that they are non-invasive, point of care and able to evaluate a
greater volume of liver parenchyma with lesser variability and more quantitative specimen
evaluation than liver biopsy which reduces sampling error in heterogeneously distributed
liver disease processes [3].

The proposed reliable elastographic measurement requires a minimum of 10 valid (5
in 2D-SWE technique) measurements, in which case >60% of all measurements should be
valid and the ratio of the median valid liver stiffness measurement (LSM) to interquartile
range value (IQR) should be less than or equal to 0.3 [5]. Results indicating IQR/LSM > 30%
in conjunction with LSM ≥ 7.1 kPa are particularly unreliable. IQR/LSM ≤ 0.1 with any
LSM value indicates very reliable measures. IQR/LSM > 0.1 and ≤0.3 with any LSM value
or IQR/LSM > 0.3 with LSM < 7.1 kPa are considered to indicate reliable measures [5].
LSM confounders that are independent of fibrosis include inflammation, cholestasis, food
intake, and portal vein thrombosis. Elevation in ALT (>3 times above the normal value),
alcohol excess, use of diuretics, infiltrative liver diseases, or other comorbid conditions
that lead to hepatic congestion (right heart failure) will also significantly elevate LSM
value [6,7]. TE is studied much more extensively than pSWE or 2D-SWE, but they all
appear to have similar accuracy [3]. Intraobserver agreement for TE is excellent, although
it is lower with lesser degrees of fibrosis, increasing steatosis, and BMI [8]. Around 15% of
results may be unreliable, and failure to obtain any LSM occurs in ∼3% of patients, mostly
due to obesity or operator inexperience [6,7]. pSWE has a very low scan failure rate (0–1%).
However, it is unreliable in 16–24% of subjects and has a learning curve, with intraobserver
agreement increasing after 100 examinations. 2D-SWE does not have validated reliability
criteria and thus invalid scans are typically not reported, although it has a failure rate
of 1–13%, being higher in patients with MAFLD. 2D-SWE also require some degree of
radiological expertise compared to TE, with greater intraobserver variability noted in
less experienced operators [9]. It should be noted that there is a lack of quality criteria,
uniformity in commercial system design, variability in shear wave frequency, sampling
rates, and other technical parameters that limit the comparison of LSM across manufacturer
systems [6,7,10]. Ultrasound elastography embedded in conventional scanners usually
allows the choice of where to place the region of interest (ROI) stiffness box and whether to
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confirm or exclude each single measurement when determining the final value. Thus, the
operator has a greater potential to influence the final findings than with TE where these
choices are not available. Finally, aforementioned factors affecting the final results have
not yet been fully reported for many of the latest equipment, as opposed to the methods
available for more than five years [10]. However, a study on phantoms recently showed
that there is a significant difference in LSM estimates among systems, but no statistically
significant differences were found among observers using the same system, and they also
reported very good agreement between systems [11]. Due to the high dependency of the
proposed cut off values on the specific elastographic technique, it is important to notice
that the following is a revision of mainly TE derived cut off indices. Head to head study
comparisons have proven that when determining the applicable clinical values, the cut
off indices would be usually of slightly higher values in the TE area when compared to
the pSWE and 2D-SWE data. Study interpretation would suggest that the impact of the
size of the evaluated liver tissue area might explain some of the differences between the
methods [3,4,6,8].

As can be seen from the above mentioned references, the field of ultrasound elastog-
raphy is apparently divided into various investigative methods, the advantages, disad-
vantages and differences of which must be known in detail by every clinician that would
like to become expert in the field. In the following subsections, the article deals with the
clinical applicability of elastography namely its use when assessing the degree of liver
fibrosis, liver steatosis and the presence of clinically important portal hypertension. Due to
the high dependence of clinical applicability and reliability of elastographic methods on
reported statistical indices (AUROC studies, positive and negative predictive value of the
result—PPV and NPV), the following terms are used to facilitate comprehensibility of the
article, replacing numerical reporting: <90% PPV or NPV—moderate accuracy; >90% PPV
or NPV—high accuracy.

3. Elastographic Assessment of Liver Fibrosis

For easier comparison, elastographic results are often equated with histological classes
of liver fibrosis rate used in the Metavir score (F0–4; F0 and 1—absence of significant liver
fibrosis; F3 and 4—advanced liver fibrosis). A value of 4 or 5 kPa is usually proposed to
define the absence of any liver fibrosis (F0/1). As in the other fields, it is important to assess
the absence of a clinically significant liver fibrosis (<F2) in a MAFLD patient and to define
the presence of an advanced stage of liver fibrosis that clinically classifies patients to the
compensated advanced chronic liver disease (cACLD; ≥F3). According to the performed
meta-analyses of published studies, at fixed sensitivity, a cut-off of 6.5 kPa is proposed to
exclude the presence of significant fibrosis and a cut-off of 12.1 kPa is required to have a
high specificity when we want to define cACLD [5].

When reviewing the study literature, we can observe a considerable heterogeneity
of the reported cut-off values. A meta-analysis by Cai C et al. suggested 6.3 kPa, 8.2 kPa,
13.4 kPa, and 14.2 kPa as cut-off values for MAFLD patients with fibrosis grades ≥F1,
≥F2, ≥F3, and F4 [12]. A study by Eddowes et al. points out that the cut-off for liver
cirrhosis (F4) is markedly higher at 20.9 kPa when the specificity is set at 90%. In the
same study, cut-off values for F2, F3, and F4 as >8.2 kPa, >9.7 kPa, and >13.6 kPa were
defined. These cut-off values have good sensitivity and specificity with moderate PPV for
F2 and high NPV for F4 [13]. An important study in this area made a comparison between
the histological liver fibrosis assessment and the TE results in several thousand patients
from ten tertiary centers. It estimates that the prediciton value of each assessment can
be improved by setting two basic cut-off values. They propose a dual cut-off of <7 kPa
and >12 kPa to optimize the overall predictive performance of TE when assessing the
presence or absence of cACLD and with which they were able to correctly classify more
than 80% of patients with chronic liver disease. In the gray zone, a formula taking the
patient’s age, male gender, ALT/AST/yGT values, platelet counts, and the presence of
type 2 diabetes into account was proposed [14]. Important study observations show that
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the reliability of the elastographic measurement increases if two consecutive measurements
are performed in a time window of 3–6 months. As reported by the group by Chuah et al.
one-third of patients with LSMs > 12 kPa at first determination had normal values at a
second measurement performed 4–6 months later. One-third of patients with high LSM
may have normal results on repeated examination, whereas a persistent increase in liver
stiffness increased PPV to 65%. By repeating examination in cases with high LSM, one may
spare patients from unnecessary liver biopsy. It is particularly interesting that none of the
patients with a body mass index (BMI) < 30 kg/m2 had a falsely high result. In this way,
less than two percent of the clinically significant fibrosis was missed during the pairwise
measurement and it was determined that a repeat LSM is not necessary when baseline
LSM is ≥20 kPa [15].

When dealing with a MAFLD patient, elastography is more reliable for diagnosing
cirrhosis (F4) with the correct classification in 80–98% of cases than it is for advanced
fibrosis (≥F3). In other words, almost 30% of cases diagnosed as cirrhosis are actually
false positive. However, the method is very reliable for ruling out cirrhosis, with a very
low number of false-negative results (<6%) following stiffness measurements with values
below the established threshold [4].

An important area that causes difficulties in obtaining a reliable result is obesity, which
is very common in the group of MAFLD patients. To combat this problem, TE launched
a two-probe system (M and XL) a couple of years ago where the system automatically
proposes an XL probe in case it assesses the significant impact of skin and subcutaneous
thickness on the result [4]. Recently, it was shown that 2D-SWE has a good accuracy,
success rate, and diagnostic performances in MAFLD patients with obesity. A two-step
strategy using TE followed by 2D-SWE was reported to be even more accurate in cACLD
detection. Multi-step strategies using 2D-SWE may also significantly reduce the need for
liver biopsy [6,11]. Individual authors cite a significantly extended measurement time as a
disadvantage of such evaluation [11].

The result and thus the proposed threshold values for TE are significantly different
when using an M or XL probe (lower when using an XL probe). An important influence
when obtaining a reliable measurement by TE in the field of MAFLD is the concomitant
presence of liver steatosis. Reports in the literature regarding the effect of steatosis on the
elastographic result are somehow contradictory. Thus, certain authors advise that a special
consideration should be given to the importance of steatosis severity in contributing to
liver stiffness in this condition [15,16]. The reported effect of steatosis on pSWE seems to be
the lowest between the three mentioned techniques [16]. On the other hand, an extensive
recent study in this area demonstrates that only fibrosis stage, and not probe type or any
other histological parameters, including liver steatosis, influence LSM values [13].

A simplified flowchart summarises the discussed topic and is proposed for the ev-
eryday clinical use (Figure 3). Note the important disadvantage of the chart—evaluation
of the inflammation (NASH) presence and the inflammatory activity degree. Inclusion of
proposed formulas reported by Papatheodoridi et al. [14] is recommended.
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4. Elastographic Assessment of Liver Steatosis

A standard assessment for the presence of liver steatosis is performed histologically.
Histological grades (S0–S3) follow each other according to the estimated percentage (%) of
steatosis-affected hepatocytes in the histological sample. Absence of liver steatosis (S0) is
defined as <5% hepatocyte involvement (<10% for study purposes), followed by grades S1
(>5% and <33%), S2 (>33% and <66%), and S3 (>66%). In clinical practice, major milestones
in the liver steatosis course are its absence (<S1) and the presence of a clinically significant
liver steatosis grade (≥S2), which has a potentially greater impact on the course of the
disease and metabolic risk of the patient [1].

MRI Proton Density Fat Fraction (MRI-PDFF) is regarded as the most definitive non-
invasive imaging tool for qualitative and quantitative evaluation of liver steatosis with
both high specificity and sensitivity for detecting any grade of histologically confirmed
steatosis. Due to its non-invasiveness, it is used as a comparative standard in studies, but
due to its poorer accessibility and price, it is usually replaced by other methods in everyday
clinical practice [3,17].

Fatty liver has higher US echogenicity than renal cortex and is detectable by standard
US modality when more than 20% of hepatocytes contain histologically visible fat droplets,
with moderate sensitivity and specificity [3,18].

Strictly technically speaking, the following is not an overview of the elastographic
tecniques since the presented data is a computer calculation of the signal that evaluates
liver tissue either by TE or by US B mode signal. In a much simplistic explanation,
all of the mentioned evaluations use the US signal and transform it into the calculated
attenuation indices.

As a key elastography-derived method, the controlled attenuation parameter (CAP) is
used in modern clinical practice, which can be obtained simultaneously with an LSM by
TE (Figure 2). Advantages of CAP include that it is a rapid, point-of-care assessment with
moderate sensitivity and specificity for diagnosing fatty liver [5]. Because of its relatively
low cost compared to MRI-PDFF, CAP is pontentialy suitable for MAFLD screening. The
program provides numeric values expressed as dB/m ranging from 100 to 400 dB/m [5,19].
Two probes, M and XL, are available, and the automatic probe selection software included
in the device recommends using the XL probe when the skin to liver capsule distance is
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>25 mm [5,19]. CAP is displayed only when the LSM is valid because it is computed from
the ultrasound signals used for acquiring LSM [16].

Regarding the reliability criteria, the CAP-IQR should be <40 dB/m [4,7]. A well-
designed study with MRI-PDFF comparison indicates that the use of CAP-IQR of <30 dB/m
is even better [20,21]. More stringent reliability criteria such as CAP-IQR < 20 dB/m or
CAP-IQR/M < 0.1 yielded the highest AUROC values with the highest confidence in the
correct diagnosis of any steatosis. However, applying these criteria in clinical routine would
have left a considerable proportion of patients (60–80%) with unreliable measurements [21].

In the reported studies, considerable variation is observed with respect to the proposed
cut-off values for the assessment of liver steatosis grades. We mention some of the more
important ones.

A study by Cai et al. determined that the average cut-off values for identifying patients
with steatosis grades ≥S1, ≥S2, and S3 were 272 dB/m, 292 dB/m, and 308 dB/m [12].
Another study set the optimal CAP threshold for the detection of any liver steatosis as
defined by MRI-PDFF ≥5% to 288 dB/m with a up to 90% diagnostic accuracy [20]. This
was also confirmed by the study from Cai et al., as a median CAP of >279 dB/m was highly
specific for the S1 presence. A large cohort study using liver biopsy as a reference observed
a moderate performance for diagnosing S1 at an optimal cut-off of >246 dB/m [5]. The
diagnostic performance of CAP for more severe hepatic steatosis (i.e., S2 and S3) tended to
be worse and in line with similar reports [5,12,21].

A meta-analysis of data from more than 2000 patients showed that the optimal cut-off
for distinguishing S0 from S1–3 is 246 dB/m with a moderate AUROC when using the 5%
definition for S0 compared to an optimum of 249 dB/m when using the 10% definition.
Cut-offs of 248 dB/m, 268 dB/m, and 280 dB/m for >S0, >S1, and >S2 were reported as
proposed cut-off values [17]. If we want to achieve high sensitivity and specificity at the
same time and identificate moderate steatosis (<S2), a cut-off of 331 dB/m is sufficient [13].

The literature is quite inconsistent when referring to the impact and interpretation
of the factors involved in calculating the final CAP result. Probe selection impacts CAP
values, and optimal tresholds for the fatty liver diagnosis are reported to be lower using the
M probe vs. the XL probe [5,7,20]. There is still a significant lack of data regarding the limit
values when applying the use of the XL probe [16]. In patients with a higher body mass
(BMI) index and fibrosis stages, CAP tends to overestimate the grade of steatosis [4,12].
NASH patients have an increase in CAP values of 16 dB/m and diabetics an increase
of 13 dB/m. CAP values are increased by 3.9 dB/m per BMI unit. Consequently, the
group of authors recommends that the resulting deduces 10 dB/m from the CAP value for
NASH patients, 10 dB/m for diabetes patients and adds/deduces 4.4 dB/m for each unit
of BMI >/<25 kg/m2 over the range of 20–30 kg/m2 [22].

Two large meta-analyses were performed by Karlas et al. and Petroff et al. Karlas et al.
report that the etiology, fibrosis stage, diabetes, and CAP-IQR were not found to be as-
sociated with discrepancies of the final CAP result. There were 15% of such patients in
the meta-analysis [22]. Quite the opposite is reported by a recent large meta-analysis by
Petroff et al. where they report that CAP values were independently affected by aetiology,
diabetes, BMI, aspartate aminotransferase level, and gender. They state that CAP cut-offs
cannot grade steatosis in patients with MAFLD adequately. They recommend that its
value in a MAFLD screening setting should be studied, ideally with methods beyond
the histological reference standard. They also state an interesting detail that in 90% of
cases when the apparatus suggested the use of an XL probe, the patient had a diagnosis of
MAFLD present [23].

Several attenuation imaging methods, such as attenuation imaging (ATI; Canon Medi-
cal Systems), ultrasound-guided attenuation parameter (UGAP; GE Healthcare Japan Co.),
and attenuation coefficient (ATT; Hitachi), have been developed as new ultrasound-based
methods for the assessment of liver steatosis. The pilot study has already examined ATI,
showing moderate ability of detecting the presence and distinguishing different degrees of
liver steatosis [24].
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The field of liver steatosis assessment using the methods of elastography derived
parameters is relatively new and rapidly evolving. The proposed cut-off values have not
been study validated to the extent as to allow a clinical pathway proposition parallel to
those of liver fibrosis and portal hypertension field. The above mentioned options for
assessing the liver steatosis degree should therefore be used with caution in day-to-day
clinical decisions until reliable cut-off values based on larger meta-analyzes are available.

5. Elastographic Assessment of Clinically Important Portal Hypertension

Elastography is crucial for the non-invasive detection of clinically important portal
hypertension (CSPH) which represents a key complication and a milestone in the transition
between clinical stages in the course of cACLD. Confirmation of CSPH can be performed
by invasive measurement of hepatic venous pressure gradient (HVPG), or by confirming
the presence of varices needing treatment (VNT) via upper endoscopy. VNT are defined as
large (size ≥ 5 mm) or small varices (size < 5 mm) in case of Child-C cirrhosis, or if red
spot signs are present [25].

Elastography allows a non-invasive assessment of the VNT occurrence likelihood. In
doing so, we must be aware of important investigatory limitations, as “linear correlation
between LSM and CSPH decreases for HVPG values higher than 12 mmHg and as such
in advanced stages of cirrhosis, portal pressure becomes less dependent on intrahepatic
resistance to portal flow due to progression of fibrosis, and more related to extra-hepatic
factors, such as hyperdynamic circulation and splanchnic vasodilatation” [26].

In the field of non-invasive CSPH assessment, the recommendations of the Baveno
expert group are used as a scientific basis. According to the Baveno VI consensus, CSPH
may be suspected in patients with an LSM > 20–25 kPa, whereas the combination of an
LSM < 20 kPa and a platelet count of > 150 × 109 counts/mL may be used to safely rule out
VNT. The risk of missing VNT when using these criteria is around 2%, and around 20% of
endoscopies can be spared. The Baveno criteria were lately extended to propose tresholds
of LSM < 25 kPa and platelet counts > 110 × 109 counts/mL In this case, only 1.6% of
cases with VNT are not recognized and 40% of gastroscopies can be spared. Later, the
proposed NAFLD-cirrhosis criteria defined the separate LSM and platelets cut-off values
for the M and XL probe. The spleen stiffness measurement (SSM) has been demonstrated
as an excellent predictor of VNT, with a cut-off value of ≤46 kPa that reliably excludes
VNT. Combined with the Baveno VI criteria, the algorithm was able to spare endoscopy in
44% of patients with <5% risk of missing VNT [4]. SSM may have the possibility to capture
portal hypertension due to pre-sinusoidal or pre-hepatic causes usually not detected by
LSM [25].

The following is an overview of some important field studies in recent years.
The study by Colecchia et al. performed a study analysis of the SSV and Baveno VI

consensus combination and confirmed that 40% of upper gastrointestinal endoscopies in
the observed cohort could be omitted. The inability to measure spleen stiffness with TE was
up to 20%, which is why the investigation was performed US guided. Newer TE systems
have eliminated this problem with the possibility of determining the spleen location by
the concomitant US B-module picture (embedded US guiding system) [27]. The following
multicenter study showed that <30 kPa for M probe and <25 kPa for XL probe were the best
LSM thresholds while sustaining >110 × 109 counts/mL as the best threshold for platelets
and that the NAFLD cirrhosis criteria performed better than Baveno VI and expanded
Baveno VI, enabling 68% of endoscopies to be spared while maintaining a similar rate of
missed VNT [28]. The next study group proposes the calculation of the PLER score as
an important contribution to the field. When platelets value is 17 times higher than the
LSM value, VNT prevalence is less than 5% and endoscopy can be avoided. However, the
reported missed VNT rate was borderline in the MAFLD group (7.4%). When PLER was less
than 6.2, the VNT prevalence was greater than 5% in all clinical settings and endoscopy was
mandatory. The gray zone between the referred PLER scores required a PLEASE calculation
which includes age, sex, INR, and etiology of liver disease [29]. The Asian expert group
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demonstrated in a large study cohort of patients with viral-induced cACLD that LSM/SSM
(LSSM) guided VNT screening proved to be non-inferior to universal endoscopic screening
in patients with cirrhosis. An SSM cut-off value of <41.3 kPa was highly sensitive in ruling
out VNT. Combining tresholds of LSM > 27.3 kPa and SSM > 40.8 kPa was found sensitive
and specific to predict VNT. This combined strategy saved nearly 50% of patients from
upper endoscopy [30]. Patients from the same cohort were then followed. The findings of
the consecutive study suggest that patients defined as having a low risk of VNT by LSSM
would have minimal future risk of incidental variceal bleeding (<1% in 3 years). Similarly,
low risk of bleeding was observed in the low-risk group defined by Baveno VI criteria
(1.7% in 3 years) [31]. The Austrian group evaluated the study by Kim et al. They reported
that ∆SSM variations were related to HVPG variations after non-selective beta blockers
(NSBB) therapy and that an SSM reduction of ≥10% was able to identify responders to
NSBB therapy [26].

Most recently, patients with portosystemic shunting have been found to have an
increased prevalence of esophageal varices, and that varices might be missed by tran-
sient elastography in those cases. Patients with preserved liver function (MELD 6–9 or
Child-Pugh Stage A) and portosystemic shunting showed higher HVPG values and were
found with significantly more portal hypertension related complications such as bleeding
or ascites than those without shunting [25]. Much attention is also paid to the higher
VNT prevalence in non-obese compared to obese patients. Baveno criteria had a worse
performance in non-obese patients where the rate of missed VNT was of about 10%. Care-
ful interpretation of non-invasive scores for ruling out VNT in non-obese patients with
MAFLD-related cirrhosis is recommended [28]. In the unclear case, elastography and
platelet count may be repeated after 6 months and reassessment of the condition should be
performed [28,29].

Once again, a simplified flowchart is proposed as a summation of the topic and as
proposition for the everyday clinical use (Figure 4).Medicina 2021, 57, x FOR PEER REVIEW 10 of 14 
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Figure 4. Elastographic evaluation of VNT presence. Sequential SSM-VNT evaluation is possible
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SSM—spleen stiffness measurement. BMI—body mass index. PLT—platelets count (counts per
microliter of blood). HVPG—hepatic venous pressure gradient.
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6. Elastography and Other MAFLD Areas

Higher baseline LSM and ∆LSM were demonstrated to be associated with liver-related
and all-cause mortality in MAFLD patients. Patients with LSM > 10 kPa were also found to
be associated with higher occurrence of hepatic decompensation and HCC. Over time, the
risk of decompensation increased in a dose-dependent fashion based on ∆LSM, ranging
from 3.8% in those with a >20% ∆LSM decrease to 14.4% in those with a >20% ∆LSM
increase [4,5,32,33]. Patients with LSM > 20 kPa have significantly diminished survival
figures [3]. Significant increase in the risk of cardiovascular events has been reported
in patients with higher grades of liver steatosis [4]. Reports in this area are somehow
contradictory as they were not proven in a related publication (no influence of CAP
measurements on the short-term liver-related events, cancer, or cardiovascular events
prediction) [33]. CAP might be useful as a serial measurement in response to lifestyle or
pharmacological/surgical interventions [13].

Although little attention has been paid to this area so far, steatosis may also be more
common in patients, with cACLD being observed in 77% of the patients in the reported
study [34]. However, a significant liver fat content was almost exclusively observed in
patients with metabolic syndrome. The study showed that CAP can identify any grade
of steatosis and S2–S3 steatosis with moderate accuracy, with results that did not differ
from those obtained in patients with less severe chronic liver disease. The obtained data
support the cut-off of 268 dB/m as accurate to rule out high-grade steatosis in cACLD
patients [34,35]. These data could be particularly important in the light of prior publication
by the same study group where they demonstrated that CAP can be used as a non-invasive
predictor of prognosis in patients with cACLD and could improve the risk stratification
for clinically relevant events and clinical decompensation provided by LSM. In the group
where patients with cACLD of very different etiologies were included, a CAP value > 220
dB/m was significantly associated with decompensation events, even after subanalysis in
the group of patients with LSM > 21 kPa was performed [36].

7. Combining Non-Invasive Tests

To improve the diagnostic accuracy of liver biopsy, recent approaches have led to
combination tests as combination of two unrelated non-invasive tests can provide better
accuracy and overcome limitations of a single test [6]. One strategy is to combine blood test
results with ultrasound elastography and imaging; a notable example includes FAST score:
combination of serum aspartate aminotransferase (AST) with LSM and CAP value. An
alternate strategy is to use these tests in a tandem approach, starting with a readily available
blood-based test followed by elastography. A three-step strategy by performing a second
elastography technique in patients with unreliable or gray zone results further reduced the
need for liver biopsy [37]. With a three-step strategy in which FIB-4 is combined with two
elastography techniques, a study analysis on a large cohort of MAFLD patients proved
that the percentage of unclassified patients is exceptionally low (<5%), with a diagnostic
accuracy greater than 80% [8]. When TE and serum biomarker results are in concordance,
the diagnostic accuracy for significant fibrosis is reportedly increased, but not for cirrhosis.
In cases of unexplained discordance, a liver biopsy should be performed if the results
would change patient management [6].

8. Upcoming Trends in the Field of Ultrasound Elastography

Just recently, TE (Fibroscan, Echosens, Paris, France) has launched Smart Exam equip-
ment, which should improve reliability in the diagnosis and monitoring of steatosis with
Continuous CAP option. This option is also meant to extend TE usage among severely
obese patients because of its ability of continuous measurement of CAP during the entire
examination. In addition, when CAP measurement doesn’t meet the quality criteria they
are automatically rejected. This method might also increase the ability to assess liver
fibrosis and steatosis as it is able to measure both parameters at 28% greater depth than
the previous models. Study reports mention the possibility of using artificial intelligence
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(CNN) programs for ultrasound image analysis. An interesting study compared ultra-
sound images of severely obese patients collected before bariatric surgery. A biopsy was
taken from each patient and the presence of liver steatosis was pathologically assessed. A
comparative CNN program then analyzed the ultrasound-obtained image and reported
the presence or absence of liver steatosis with great reliability and accuracy [38]. A re-
lated study used the CNN program to assess the composition of the histological sample.
Pathologists otherwise involved in large clinical studies performed sample analysis and
labeled fields of steatosis, fibrosis, and inflammation. The CNN program was then able
to process the histological sample with similar accuracy. The method would be useful for
large MAFLD studies that require harmonized opinion of three pathologists regarding
liver specimen composition [39]. 3D elastography methods are being experimented and
are likely to receive transition to the clinical field [40]. Some study models evaluated the
relationship between viscoelasticity and poroelasticity of liver tissue. Viscosity causes
dispersion of the shear wave. Shear wave dispersion ultrasound vibrometry (SDUV) and a
time harmonic elastography (THE) method were reported for measuring liver viscoelas-
ticity in wide soft tissue windows and at greater depths [41]. Further research is needed
to evaluate the diagnostic potential of liver viscosity, but preliminary evidence suggests
that it may be helpful in detecting necroinflammation in the liver [41]. Dispersion slope
(DS) is related to tissue viscosity and can be measured with a new version of 2D-SWE.
DS had high diagnostic performance in discriminating the presence and degree of lobular
inflammation in the reported study [40]. There are several reported study models regarding
US attenuation imaging. The Acoustic Structure Quantification (ASQ) software is based on
the concept that fat droplets within the liver differ from the normal liver parenchyma in
terms of ultrasound echo amplitude distribution, a parameter calculated by using ASQ,
namely focal disturbance ratio showed a strong correlation with liver fat fraction measured
by MRI spectroscopy, and an excellent discriminative ability for steatosis [41]. Similar
imaging model reports that the BSC index measures the returned ultrasound energy from
tissue and provides a quantitative parameter analogous to echogenicity of the liver tis-
sue [3]. The tissue scatter-distribution imaging (TSI-p) and tissue attenuation imaging
parameter (TAI-p) are reported to reflect the local concentration and arrangement of US
signal scattering when passing through the liver tissue infiltrated by fat droplets. In a study
by Jeon et al. where CAP measurements were used as a reference with mostly HBV patients
included, both indices were well correlated when diagnosing the presence and different
grades of steatosis. The authors mention the possibility of the effect of liver fibrosis on the
final US attenuation result [42].

9. Conclusions

Elastography is clinically useful, point of care, and affordable non-invasive method
for mass and rapid assessment of liver fibrosis and steatosis presence/degree, and the
presence of CSPH/VNT. The method shows excellent results when transferring established
data to the MAFLD cohort, with its negative prognostic value being the most importan.
The terminological and diagnostic change from NAFLD to MAFLD will require a detailed
analysis regarding the predictive thresholds value already defined in NAFLD study co-
horts. Due to significant limitations of the results’ positive predictive value, the inability
of elastography to assess the presence and degree of NASH activity, and the arrival of
many different (poorly tested) models on the market, we must also always evaluate many
aspects of the proposed clinical methods and make any clinical decision regarding fur-
ther patients’ management with most care and precision. The applicability of the field
is expected to expand to the field of national prevention programs which could select a
subgroup of MAFLD patients that need further evaluation. Numerous upcoming studies
and consecutive meta-analyses in this field will play an important role and are certain to
bring answers to some of the dilemmas that were briefly presented in the article.
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