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Abstract: In this paper, a definition of quadripartitioned single valued bipolar neutrosophic set
(QSVBNS) is introduced as a generalization of both quadripartitioned single valued neutrosophic
sets (QSVNS) and bipolar neutrosophic sets (BNS). There is an inherent symmetry in the definition of
QSVBNS. Some operations on them are defined and a set theoretic study is accomplished. Various
similarity measures and distance measures are defined on QSVBNS. An algorithm relating to
multi-criteria decision making problem is presented based on quadripartitioned bipolar weighted
similarity measure. Finally, an example is shown to verify the flexibility of the given method and the
advantage of considering QSVBNS in place of fuzzy sets and bipolar fuzzy sets.

Keywords: neutrosophic sets; quadripartitioned bipolar neutrosophic sets; similarity measure;
decision making

1. Introduction

Multiple-criteria decision making (MCDM) is a branch of decision making theory where the aim of
an individual is to select the most acceptable alternatives among the feasible ones under some criteria.
This criteria dependence in decision can be found in real life on a regular basis. While handling some
real life decision making problems, a decision maker often faces trouble due to the presence of several
kinds of uncertainties in the data, which is very natural. An attempt was made for the first time
by Zadeh [1] by introducing a novel concept of fuzzy set theory. Immediately after that, several
improvisations of fuzzy sets were made and implemented in the decision making process. For instance,
rough sets by Pawlak [2], intuitionistic fuzzy sets [3], interval valued intuitionistic fuzzy sets [4]
by Atanassov, soft sets by Molodtsov [5], etc. Unlike the classical logic, a fuzzy set associates a
degree of membership value to every element of the universe of discourse, which can range from 0
to 1, whereas an intuitionistic fuzzy set associate a degree of membership µ ∈ [0, 1] and a degree of
non-membership ν ∈ [0, 1], where 0 ≤ µ + ν ≤ 1. The margin of indeterminacy or hesitation π is
defined as π = 1− µ− ν. Smarandache in [6,7] proposed neutrosophic sets. In neutrosophic sets, the
indeterminacy membership function walks along independently of the truth membership or of the
falsity membership. Neutrosophic theory has been widely explored by researchers (see [8–13]) for
application purpose in handling real life situations involving uncertainty. Although the hesitation
margin of neutrosophic theory is independent of the truth or falsity membership, looks more general
than intuitionistic fuzzy sets yet. Recently, in [14] Atanassov et al. studied the relations between
inconsistent intuitionistic fuzzy sets [15], picture fuzzy sets [16], neutrosophic sets [7] and intuitionistic
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fuzzy sets [3]; however, it remains in doubt that whether the indeterminacy associated to a particular
element occurs due to the belongingness of the element or the non-belongingness. This has been
pointed out by Chattejee et al. [17] while introducing a more general structure of neutrosophic set viz.
quadripartitioned single valued neutrosophic set (QSVNS). The idea of QSVNS is actually stretched
from Smarandache,s four numerical-valued neutrosophic logic [18] and Belnap,s four valued logic [19],
where the indeterminacy is divided into two parts, namely, “unknown” i.e., neither true nor false
and “contradiction” i.e., both true and false. In the context of neutrosophic study however, the
QSVNS looks quite logical. Also in their study, Chatterjee et al. [17] analyzed a real life example for a
better understanding of a QSVNS environment and showed that such situations occur very naturally.
They have also solved a decision making problem pertaining to pattern recognition showing the
application capability of QSVNS.

Bipolarity often reflects the tendency of the human mind in reasoning to make a decision on the
basis of +ve and -ve information. Lee [20,21] introduced bipolar fuzzy set as an extension of fuzzy
set. Bipolar fuzzy model with some hybrid structures were studied in [22–25] shows the flexibility of
bipolar fuzzy sets for solving decision making problems. Bipolar fuzzy set and neutrosophic set have
been put together for a more general framework viz. bipolar neutrosophic sets (BNS) by Deli et al. [26].
Sahin et al. [27,28] introduced the Jaccard vector similarity measure, hybrid vector similarity measure,
and dice similarity measure with applications to decision making problems. Jamil et al. [29] applied
bipolar neutrosophic Hamacher averaging operator in group decision making problems. Bipolar
neutrosophic sets help in handling uncertain information in a reliable way. It is an extension of the
bipolar fuzzy set and neutrosophic set, which can deal with real life problems involving positive and
negative information. Looking at the work of Chatteree et al. [17], unlike neutrosophic set, it is in
doubt whether the negative indeterminacy associated to some elements of the universe of discourse is
due to the occurrence of the counter-property or the non-occurrence of the counter-property.

To overcome the aforesaid situation we merged the bipolar neutrosophic set and QSVNS to
introduce a more general structure, namely, quadripartitioned single valued bipolar neutrosophic
sets (QSVBNS). The word “quadripartitioned” refers to four values i.e., in case of QSVBNS the
negative indeterminacy of the BNS is divided into two parts alongside truth and falsity membership
alike QSVNS.

First, we develop some set theoretic results on QSVBNS and then formulas for similarity measures
were framed, and finally a real life problem was dealt with using the MCDM method in this setting. A
comparison was made in application of a real life problem, where it is seen that the use of QSVBN
system gives a better result compared to fuzzy sets and bipolar fuzzy sets. The paper is organized
as follows: Section 2 recalls some preliminaries results. In Section 3, QSVBNS is introduced and
some basic operations on QSVBNS are dealt with; an example of QSVBNS is also presented. Several
similarity measures between QSVBNS are defined and their properties are studied in Section 4. In
Section 5 we give an algorithm based on quadripartitioned bipolar weighted similarity measure to
deal with the multi-criteria decision making problem in a QSVBN environment. Based on the given
algorithm, a real life problem in decision making is solved in Section 6. A detailed discussion about
the obtained result is analyzed in Section 7. Finally, Section 8 concludes the paper.

2. Preliminaries

Definition 1 ([7]). Let X be a universal set. A single valued neutrosophic set A over X is defined as, A =

{〈x, 〈TA(x), IA(x), FA(x)〉〉 : x ∈ X}, where, TA(x), IA(x), FA(x) are respectively called truth-membership
function, indeterminacy-membership function and falsity-membership function. These are defined by TA : X →
[0, 1], IA : X → [0, 1], FA : X → [0, 1] respectively with the property that 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2 ([17]). Let X be a universal set. A quadripartitioned neutrosophic set (QSVNS) A, over X
is defined as, A = {〈x, 〈TA(x), CA(x), UA(x), FA(x)〉〉 : x ∈ X}, where TA(x), CA(x), UA(x), FA(x) are
respectively called truth-membership function, contradiction-membership function, ignorance-membership
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function, and falsity-membership function. These are defined by TA : X → [0, 1], CA : X → [0, 1], UA : X →
[0, 1], FA : X → [0, 1] respectively with the property that 0 ≤ TA(x) + CA(x) + UA(x) + FA(x) ≤ 4.

When X is discrete, A is represented as, A =
n

∑
k=i
〈TA(xi), CA(xi), UA(xi), FA(xi), 〉/xi, xi ∈ X. When X is

continuous, A is represented as,
∫

X
〈TA(x), CA(x), UA(x), FA(x)〉/x, x ∈ X.

Definition 3 ([26]). A bipolar neutrosophic set (BNS) A in X is defined to be an object of the form A =

{〈x, T+(x), I+(x), F+(x), T−(x), I−(x), F−(x)〉 : x ∈ X}, where, T+, I+, F+ are functions from X to [0, 1]
and T−, I−, F− are functions from X to [−1, 0]. The +ve membership degrees T+(x), I+(x), F+(x) denote
respectively the truth-membership, indeterminate-membership, and falsity-membership of x ∈ X corresponding
to a bipolar neutrosophic set A and the -ve membership degrees T−(x), I−(x), F−(x) denote respectively the
truth-membership, indeterminate-membership, and falsity-membership x ∈ X to some implicit counter-property
corresponding to a bipolar neutrosophic set A.

Definition 4 ([17]). Let A and B be two QSVNS. Then

(1) A ⊆ B if TA(x) ≤ TB(x), CA(x) ≤ CB(x), UA(x) ≥ UB(x), FA(x) ≥ FB(x) for all x ∈ X.

(2) The complement of A is denoted by Ac and is defined as Ac =
n

∑
i=1
〈FA(xi), UA(xi), CA(xi), TA(xi), 〉/xi,

xi ∈ X, where TAc(xi) = FA(xi), CAc(xi) = UA(xi) and UAc(xi) = CA(xi), FAc(xi) = TA(xi).

(3) A ∪ B is defined as A ∪ B =
n

∑
i=1
〈TA(xi) ∨ TB(xi), CA(xi) ∨ CB(xi), UA(xi) ∧ UB(xi), FA(xi) ∧

FB(xi)〉/X.

(4) A ∩ B is defined as A ∩ B =
n

∑
i=1
〈TA(xi) ∧ TB(xi), CA(xi) ∧ CB(xi), UA(xi) ∨ UB(xi), FA(xi) ∨

FB(xi)〉/X.

Definition 5 ([26]). Let A1 = 〈x, T+
1 (x), I+1 (x), F+

1 (x), T−1 (x), I−1 (x), F−1 (x)〉, A2 = 〈x, T+
2 (x), I+2 (x),

F+
2 (x), T−2 (x), I−2 (x), F−2 (x)〉 be two bipolar neutrosophic sets (BNS) over the universe of discourse X. Then,

(1) A1 ⊆ A2 if T+
1 (x) ≤ T+

2 (x), I+1 (x) ≤ I+2 (x), F+
1 (x) ≥ F+

2 (x) and T−1 (x) ≥ T+
2 (x), I−1 (x) ≥

I+2 (x), F−1 (x) ≤ F−2 (x).
(2) Ac = 〈x, 1− T+

A (x), 1− I+A (x), 1− F+
A (x),−1− T−A (x),−1− I−A (x),−1− F−A (x)〉.

(3) A1∪A2 = 〈x, max(T+
1 (x), T+

2 (x)), I+1 (x)+I+2 (x)
2 , min(F+

1 (x), F+
2 (x)), min(T−1 (x), T−2 (x)), I−1 (x)+I−2 (x)

2 ,
max(F−1 (x), F−2 (x))〉 for all x ∈ X.

(4) A1∩A2 = 〈x, min(T+
1 (x), T+

2 (x)), I+1 (x)+I+2 (x)
2 , max(F+

1 (x), F+
2 (x)), max(T−1 (x), T−2 (x)), I−1 (x)+I−2 (x)

2 ,
min(F−1 (x), F−2 (x))〉 for all x ∈ X.

3. Quadripartitioned Single Valued Bipolar Neutrosophic Sets

In this section, we introduce the concept of quadripartitioned single valued bipolar neutrosophic
sets (QSVBNS).

Definition 6. A quadripartitioned single valued bipolar neutrosophic set (QSVBNS) A in X defined
as an object of the form A = 〈x, T

P

A
(x), C

P

A
(x), U

P

A
(x), F

P

A
(x), T

N

A
(x), C

N

A
(x), U

N

A
(x), F

N

A
(x)〉 : x ∈ X,

where, T
P

A
, C

P

A
, U

P

A
, F

P

A
: X → [0, 1] and T

N

A
, C

N

A
, U

N

A
, F

N

A
: X → [−1, 0]. The positive membership

degrees T
P

A
(x), C

P

A
(x), U

P

A
(x), F

P

A
(x) denote respectively the truth-membership, a contradiction-membership,

an ignorance membership, and falsity membership of x ∈ X corresponding to a QSVBNS A. The negative
membership degrees T

N

A
(x), C

N

A
(x), U

N

A
(x), F

N

A
(x) denote respectively the truth-membership, a contradiction-

membership, an ignorance membership, and falsity membership of x ∈ X to some explicit counter-property
corresponding to a QSVBNS A.
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With respect to (T
P

A
(x), F

P

A
(x)) and (C

P

A
(x), U

P

A
(x)) and +ve and -ve membership grade, there is a

sense of symmetry in the structure of QSVBNS.

Example 1. Suppose an environment organization desires to know peoples opinion on the following statement:
“The fashion industry has helped economic growth but it also has a bad impact on the environment due to a large
amount of carbon emissions”.
To help the cause, a group of four experts, say X = {x1, x2, x3, x4}, has been asked to give their opinion.
The statement can be divided into two parts as:

(a) The fashion industry has helped economic growth and to a counter property of that:
(b) The fashion industry has a bad impact on the environment due to a large amount of carbon emissions.

It may so happen that the opinion has the following outcomes: “a degree of agreement with statement (a)
and disagreement with statement (b)”, “a degree of agreement and disagreement with both the statements (a)
and (b)”, “a degree of neither agreement nor disagreement regarding both the statements”, and “a degree of
disagreement with statement (a) and agreement with statement (b)”. According to the views of the four experts,
the outcome represented in terms of QSVBNS as follows:

〈0.9, 0.4, 0.3, 0.1,−0.1,−0.4,−0.3,−0.9〉/x1 + 〈0.3, 0.8, 0.2, 0.3,−0.4,−0.4,−0.9,−0.5〉/x2+

〈0.2, 0.5, 0.8, 0.4,−0.2,−0.1,−0.8,−0.3〉/x3 + 〈0.2, 0.5, 0.5, 0.9,−0.8,−0.1,−0.4,−0.2〉/x4

the above QSVBNS reflects that the expert x1 agrees to the fact that the fashion industry has helped economic
growth, whereas the expert x2 believes that fashion industry might have helped economic growth but it also
has affected the environment a bit. On the other side the expert x3 is ignorant regarding the truth of both the
statements and the expert x4 opines that fashion industry does not have much impact on the world economy but
he believes that it causes damage to the environment.

Remark 1. The relationship between QSVBNS and other extensions of fuzzy sets are diagrammatically depicted
in the following figure (Figure 1).

QSVBNSQSVNS Bipolar NS

Neutrosophic Set

Intuitionistic
Fuzzy Set

Fuzzy Set

Figure 1. Relationship of quadripartitioned single valued bipolar neutrosophic sets (QSVBNS) with
other extensions of fuzzy sets. .
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Definition 7. A QSVBNS, A over a universe X is said to be an absolute QSVBNS, denoted by X, if for
each x ∈ X, T

P

A
(x) = 1, C

P

A
(x) = 1, U

P

A
(x) = 0, F

P

A
(x) = 0, T

N

A
(x) = −1, C

N

A
(x) = −1, U

N

A
(x) =

0, F
N

A
(x) = 0.

Definition 8. A QSVBNS, A over a universe X is said to be a null QSVBNS, denoted by Θ, if for each
x ∈ X the membership values are respectively T

P

A
(x) = 0, C

P

A
(x) = 0, U

P

A
(x) = 1, F

P

A
(x) = 1, T

N

A
(x) =

0, C
N

A
(x) = 0, U

N

A
(x) = −1, F

N

A
(x) = −1.

Alongside this, we expound some set theoretic operations on quadripartitioned single valued
bipolar neutrosophic sets over a universe X and analyze some of their properties.

Definition 9. Let A and B be two QSVBNS over X. Then A is said to be included in B, denoted by A ⊆ B,
if for each x ∈ X, T

P

A
(x) ≤ T

P

B
(x), C

P

A
(x) ≤ C

P

B
(x), U

P

A
(x) ≥ U

P

B
(x), F

P

A
(x) ≥ F

P

B
(x) and T

N

A
(x) ≥

T
N

B
(x), C

N

A
(x) ≥ C

N

B
(x), U

N

A
(x) ≤ U

N

B
(x), F

N

A
(x) ≤ F

N

B
(x).

Definition 10. Two QSVBNSs A and B are said to be equal if for each x ∈ X, T
P

A
(x) = T

P

B
(x), C

P

A
(x) =

C
P

B
(x), U

P

A
(x) = U

P

B
(x), F

P

A
(x) = F

P

B
(x) and T

N

A
(x) = T

N

B
(x), C

N

A
(x) = C

N

B
(x), U

N

A
(x) = U

N

B
(x),

F
N

A
(x) = F

N

B
(x).

Definition 11. The complement of a QSVBNS A, denoted by Ac, is defined as, Ac = 〈x, F
P

A
(x), U

P

A
(x),

C
P

A
(x), T

P

A
(x), F

N

A
(x), U

N

A
(x), C

N

A
(x), T

N

A
(x)〉 : x ∈ X, where, T

P

Ac(x) = F
P

A
(x), C

P

Ac(x) = U
P

A
(x),

U
P

Ac(x) = C
P

A
(x), F

P

Ac(x) = T
P

A
(x) and T

N

Ac(x) = F
N

A
(x), C

N

Ac(x) = U
N

A
(x), U

N

Ac(x) = C
N

A
(x), F

N

Ac(x) =

T
N

A
(x), x ∈ X.

Definition 12. The union of two QSVBNS A and B, denoted by A ∪ B is defined as, A ∪ B = 〈x, T
P

A
(x) ∨

T
P

B
(x), C

P

A
(x) ∨ C

P

B
(x), U

P

A
(x) ∧U

P

B
(x), F

P

A
(x) ∧ F

P

B
(x), T

N

A
(x) ∧ T

N

B
(x), C

N

A
(x) ∧ C

N

B
(x), U

N

A
(x) ∨U

N

B
(x),

F
N

A
(x) ∨ F

N

B
(x)〉 : x ∈ X.

Definition 13. The intersection of two QSVBNS, A and B, denoted by A ∩ B is defined as, A ∩
B = 〈x, T

P

A
(x) ∧ T

P

B
(x), C

P

A
(x) ∧ C

P

B
(x), U

P

A
(x) ∨ U

P

B
(x), F

P

A
(x) ∨ F

P

B
(x), T

N

A
(x) ∨ T

N

B
(x), C

N

A
(x) ∨

C
N

B
(x), U

N

A
(x) ∧U

N

B
(x), F

N

A
(x) ∧ F

N

B
(x)〉 : x ∈ X.

Example 2. For two QSVBNS A and B over X given by A = 〈0.8, 0.6, 0.4, 0.1,−0.2,−0.3,−0.5,−0.7〉/x1 +

〈0.6, 0.5, 0.2, 0.3,−0.5,−0.4,−0.7,−0.8〉/x2 + 〈0.2, 0.5, 0.6, 0.7,−0.6,−0.1,−0.5,−0.7〉/x3 and
B = 〈0.6, 0.5, 0.4, 0.3,−0.4,−0.7,−0.5,−0.6〉/x1 + 〈0.4, 0.5, 0.7, 0.5,−0.6,−0.4,−0.3,−0.4〉/x2 +

〈0.3, 0.7, 0.4, 0.2,−0.2,−0.1,−0.4,−0.8〉/x3

(1) Ac = 〈0.1, 0.4, 0.6, 0.8,−0.7,−0.5,−0.3,−0.2〉/x1 + 〈0.3, 0.2, 0.5, 0.6,−0.8,−0.7,−0.4,−0.5〉/x2 +

〈0.7, 0.6, 0.5, 0.2,−0.7,−0.5,−0.1,−0.6〉/x3.
(2) A∪B = 〈0.8, 0.6, 0.4, 0.1,−0.4,−0.7,−0.5,−0.6〉/x1 + 〈0.6, 0.5, 0.2, 0.3,−0.6,−0.4,−0.3,−0.4〉/x2 +

〈0.3, 0.7, 0.4, 0.2,−0.6,−0.1,−0.4,−0.7〉/x3.
(3) A∩B = 〈0.6, 0.5, 0.4, 0.3,−0.2,−0.3,−0.5,−0.6〉/x1 + 〈0.4, 0.5, 0.7, 0.5,−0.5,−0.4,−0.7,−0.8〉/x2 +

〈0.2, 0.5, 0.6, 0.7,−0.6,−0.2,−0.5,−0.8〉/x3.

Theorem 1. Under the aforesaid set-theoretic operation, the quadripartitioned single valued bipolar neutrosophic
sets satisfy the following properties:

(1) Identity law:

• A ∪Θ = A and A ∩ X = A.

(2) Commutative law:
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• A ∪ B = B ∪ A and A ∩ B = B ∩ A.

(3) Associative law:

• (A ∪ B) ∪ C = A ∪ (B ∪ C) and (A ∩ B) ∩ C = A ∩ (B ∩ C).

(4) Distributive law:

• A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) and A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

(5) De-Morgan,s law:

• (A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc.

Proof. Proofs are plain-dealing.

4. Similarity Measure of Quadripartitioned Bipolar Neutrosophic Sets

Here we provide the definition of similarity measure between two QSVBNS A, B over a universe X.

Definition 14. Let QSVBNS(X) indicate the set of all QSVBNS over the universe X. Let S : QSVBNS(X)×
QSVBNS(X)→ [0, 1] be a function satisfying the following properties for all A, B ∈ QSVBNS(X):

(S1) 0 ≤ S(A, B) < 1 and S(A, B) = 1 iff A = B,
(S2) S(A, B) = S(B, A),
(S3) for any A, B, C ∈ QSVBNS(X) with A ⊆ B ⊆ C, S(A, C) ≤ S(A, B) ∧ S(B, C).

then S is said to be a similarity measure.

Based on the membership functions of two QSVBNS, we prescribe some functions which measures
the differences between the membership values of two QSVBNS. Let A, B ∈ QSVBNS. For each
xk ∈ X, k = 1, 2, ..., n and for each i = 1, 2, 3, 4 and j = 1, 2 define the functions δA,B

i , λA,B
j :

QSVBNS(X)×QSVBNS(X)→ [0, 1] respectively,

• δA,B
1 (xk) =

1
2 (|T

P

A
(xk)− T

P

B
(xk)|+ |T

N

A
(xk)− T

N

B
(xk)|),

• δA,B
2 (xk) =

1
2 (|F

P

A
(xk)− F

P

B
(xk)|+ |F

N

A
(xk)− F

N

B
(xk)|),

• δA,B
3 (xk) =

1
4 (δ

A,B
1 (xk) + δA,B

2 (xk) + |C
P

A
(xk)− C

P

B
(xk)|+ |C

N

A
(xk)− C

N

B
(xk)|),

• δA,B
4 (xk) =

1
2 (|U

P

A
(xk)−U

P

B
(xk)|+ |U

N

A
(xk)−U

N

B
(xk)|),

• λA,B
1 (xk) = 1

4 (|T
P

A
(xk)C

P

A
(xk) − T

P

B
(xk)C

P

B
(xk)| + |T

N

A
(xk)C

N

A
(xk) − T

N

B
(xk)C

N

B
(xk)| + |C

P

A
(xk) −

C
P

B
(xk)|+ |C

N

A
(xk)− C

N

B
(xk)|),

• λA,B
2 (xk) =

1
4 (δ

A,B
1 (xk) + δA,B

2 (xk) + |U
P

A
(xk)−U

P

B
(xk)|+ |U

N

A
(xk)−U

N

B
(xk)|).

Remark 2. The function T1(A, B) defined byT1(A, B) = 1− 1
4n

n

∑
k=1

4

∑
i=1

δA,B
i (xk), A, B ∈ QSVBNS(X) is

shown to be a similarity measure in the following theorem.

Theorem 2. T1(A, B) is a similarity measure between two quadripartitioned bipolar neutrosophic sets A and
B over X.

Proof. Since T
P

A
(xk), C

P

A
(xk), U

P

A
(xk), F

P

A
(xk) ∈ [0, 1] and T

N

A
(xk), C

N

A
(xk), U

N

A
(xk), F

N

A
(xk) ∈ [−1, 0] for

all xk ∈ X it follows that δA,B
1 (xk) attains its maximum value 1 whenever one of the positive truth

membership values corresponding to A and B is 1 and the other is 0 and one of the negative truth
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membership values corresponding to A and B is −1 and the other is 0. Similarly for each xk ∈
X, δA,B

1 (xk) attains its minimum value 0 whenever T
P

A
(xk) = T

P

B
(xk) and T

N

A
(xk) = T

N

B
(xk). Thus for all

xk ∈ X, 0 ≤ δA,B
1 (xk) ≤ 1, ∀xk ∈ X. Likewise it can be shown that 0 ≤ δA,B

2 (xk), δA,B
3 (xk), δA,B

4 (xk) ≤ 1.
Therefore for all xk ∈ X we have,

0 ≤ δA,B
1 (xk) + δA,B

2 (xk) + δA,B
3 (xk) + δA,B

4 (xk) ≤ 4
=⇒ 0 ≤ 1

4 [δ
A,B
1 (xk) + δA,B

2 (xk) + δA,B
3 (xk) + δA,B

4 (xk)] ≤ 1

=⇒ 0 ≤ 1
4n

n

∑
k=1

4

∑
i=1

δA,B
i (xk) ≤ 1

=⇒ −1 ≤ − 1
4n

n

∑
k=1

4

∑
i=1

δA,B
i (xk) ≤ 0

=⇒ 0 ≤ 1− 1
4n

n

∑
k=1

4

∑
i=1

δA,B
i (xk) ≤ 1

=⇒ 0 ≤ T1(A, B) ≤ 1

Again, T1(A, B) = 1 ⇐⇒
n

∑
k=1

4

∑
i=1

δA,B
i (xk) = 0 ⇐⇒ δA,B

1 (xk) = δA,B
2 (xk) = δA,B

3 (xk) =

δA,B
4 (xk) = 0 ⇐⇒ T

P

A
(xk) = T

P

B
(xk), C

P

A
(xk) = C

P

B
(xk), U

P

A
(xk) = U

P

B
(xk), F

P

A
(xk) = F

P

B
(xk) and

T
N

A
(xk) = T

N

B
(xk), C

N

A
(xk) = C

N

B
(xk), U

N

A
(xk) = U

N

B
(xk), F

N

A
(xk) = F

N

B
(xk) ⇐⇒ A = B.

It is easy to prove that T1(A, B) = T1(B, A).
Finally let A ⊂ B ⊂ C. Then for all xk ∈ X, we have

T
P
A (xk) ≤ T

P

B
(xk) ≤ T

P

C
(xk), T

N

A
(xk) ≥ T

N

B
(xk) ≥ T

N

C
(xk), C

P

A
(xk) ≤ C

P

B
(xk) ≤ C

P

C
(xk), C

N

A
(xk) ≥

C
N

B
(xk) ≥ C

N

C
(xk), U

P

A
(xk) ≥ U

P

B
(xk) ≥ U

P

C
(xk), U

N

A
(xk) ≤ U

N

B
(xk) ≤ U

N

C
(xk), F

P

A
(xk) ≥ F

P

B
(xk) ≥

F
P

C
(xk), F

N

A
(xk) ≤ F

N

B
(xk) ≤ F

N

C
(xk).

Then, |TP

A
(xk)− T

P

B
(xk)| ≤ |T

P

A
(xk)− T

P

C
(xk)|, |T

N

A
(xk)− T

N

B
(xk)| ≤ |T

N

A
(xk)− T

N

C
(xk)|.

Therefore, 1
2 (|T

P

A
(xk) − T

P

B
(xk)| + |T

N

A
(xk) − T

N

B
(xk)|) ≤ 1

2 (|T
P

A
(xk) − T

P

C
(xk)| + |T

N

A
(xk) −

T
N

C
(xk)|)⇒ δA,B

1 (xk) ≤ δA,C
1 (xk), ∀xk ∈ X ...........................(∗)

Considering a similar process, it can be shown that δA,B
2 (xk) ≤ δA,C

2 (xk), δA,B
3 (xk) ≤ δA,C

3 (xk) and
δA,B

4 (xk) ≤ δA,C
4 (xk).

Therefore,
4

∑
i=1

δA,C
i (xk) ≥

4

∑
i=1

δA,B
i (xk)

⇒
n

∑
k=1

4

∑
i=1

δA,C
i (xk) ≥

n

∑
k=1

4

∑
i=1

δA,B
i (xk)

⇒ 1− 1
4n

n

∑
k=1

4

∑
i=1

δA,B
i (xk) ≥ 1− 1

4n

n

∑
k=1

4

∑
i=1

δA,C
i (xk)

⇒ T1(A, B) ≥ T1(A, C).

Similarly T1(B, C) ≥ T1(A, C). Therefore, T1(A, C) ≤ T1(A, B) ∧ T1(B, C). Hence the proof.

Remark 3. Define T2(A, B) = 1−
[

1
n

n

∑
k=1

(1
4
(
δA,B

1 (xk) + δA,B
2 (xk) + λA,B

1 (xk) + λA,B
2 (xk)

))p
] 1

p
, where p,

a positive integer, is defined to be the order of the similarity.

Theorem 3. T2(A, B) is a similarity measure between two quadripartitioned bipolar neutrosophic sets A and
B over X.
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Proof. T2(A, B) = T2(B, A) is quite obvious.
Under any of the the following condition λA,B

1 (xk) attains its maximum value 1,

(1) T
P

A
(xk) = C

P

A
(xk) = 1 and at least one of T

P

B
(xk) or C

P

B
(xk) is 0 or T

P

B
(xk) = C

P

B
(xk) = 1 and at

least one of T
P

A
(xk) or C

P

A
(xk) is 0,

(2) T
N

A
(xk) = C

N

A
(xk) = −1 and at least one of T

N

B
(xk) or C

N

B
(xk) is 0 or T

N

B
(xk) = C

N

B
(xk) = −1 and

at least one of T
N

A
(xk) or C

N

A
(xk) is 0,

(3) C
P

A
(xk) = 1 and C

P

B
(xk) = 0 or C

P

A
(xk) = 0 and C

P

B
(xk) = 1,

(4) C
N

A
(xk) = −1 and C

N

B
(xk) = 0 or C

N

A
(xk) = 0 and C

N

B
(xk) = −1.

Also the minimum value of λA,B
1 (xk) is 0. Thus 0 ≤ λA,B

1 (xk) ≤ 1 for all xk ∈ X. Also
0 ≤ λA,B

2 (xk) ≤ 1 follows from similar arguments. Therefore,

0 ≤ δA,B
1 (xk) + δA,B

2 (xk) + λA,B
1 (xk) + λA,B

2 (xk) ≤ 4
=⇒ 0 ≤

( 1
4
(
δA,B

1 (xk) + δA,B
2 (xk) + λA,B

1 (xk) + λA,B
2 (xk)

))p ≤ 1, ∀p ≥ 1

=⇒ 0 ≤
n

∑
k=1

(1
4
(
δA,B

1 (xk) + δA,B
2 (xk) + λA,B

1 (xk) + λA,B
2 (xk)

))p ≤ n

=⇒ 0 ≤ 1
n

n

∑
k=1

(1
4
(
δA,B

1 (xk) + δA,B
2 (xk) + λA,B

1 (xk) + λA,B
2 (xk)

))p ≤ 1

=⇒ 0 ≤
[

1
n

n

∑
k=1

(1
4
(
δA,B

1 (xk) + δA,B
2 (xk) + λA,B

1 (xk) + λA,B
2 (xk)

))p
] 1

p ≤ 1

=⇒ 0 ≤ 1−
[

1
n

n

∑
k=1

(1
4
(
δA,B

1 (xk) + δA,B
2 (xk) + λA,B

1 (xk) + λA,B
2 (xk)

))p
] 1

p ≤ 1

=⇒ 0 ≤ T2(A, B) ≤ 1

To show the triangular inequality suppose P ⊂ Q ⊂ R. Then for all xk ∈ X, we have,
T

P

P
(xk) ≤ T

P

Q
(xk) ≤ T

P

R
(xk), T

N

P
(xk) ≥ T

N

Q
(xk) ≥ T

N

R
(xk), C

P

P
(xk) ≤ C

P

Q
(xk) ≤ C

P

R
(xk), C

N

P
(xk) ≥

C
N

Q
(xk) ≥ C

N

R
(xk), U

P

P
(xk) ≥ U

P

Q
(xk) ≥ U

P

R
(xk), U

N

P
(xk) ≤ U

N

Q
(xk) ≤ U

N

R
(xk), F

P

P
(xk) ≥ F

P

Q
(xk) ≥

F
P

R
(xk), F

N

P
(xk) ≤ F

N

Q
(xk) ≤ F

N

R
(xk).

Then δP,R
1 (xk) ≥ δP,Q

1 (xk) and δP,R
2 (xk) ≥ δP,Q

2 (xk) follows from (∗) of Theorem 2. Next
consider λP,Q

1 (xk) and λP,R
1 (xk). From above inequalities we have, T

P

P
(xk)C

P

P
(xk) ≤ T

P

Q
(xk)C

P

Q
(xk) ≤

T
P

R
(xk)C

P

R
(xk)⇒ |T

P

P
(xk)C

P

P
(xk)− T

P

Q
(xk)C

P

Q
(xk)| ≤ |T

P

P
(xk)C

P

P
(xk)− T

P

R
(xk)C

P

R
(xk)|.

Similarly, |TN

P
(xk)C

N

P
(xk) − T

N

Q
(xk)C

N

Q
(xk)| ≤ |T

N

P
(xk)C

N

P
(xk) − T

N

R
(xk)C

N

R
(xk)| and |CP

P
(xk) −

C
P

Q
(xk)| ≤ |C

P

P
(xk)− C

P

Q
(xk)|, |C

P

P
(xk)− C

P

Q
(xk)| ≤ |C

P

P
(xk)− C

P

Q
(xk)|.

Then, 1
4
(
|TP

P
(xk)C

P

P
(xk) − T

P

R
(xk)C

P

R
(xk)| + |T

N

P
(xk)C

N

P
(xk) − T

N

R
(xk)C

N

R
(xk)| + |C

P

P
(xk) −

C
P

R
(xk)| + |C

N

P
(xk) − C

N

R
(xk)|

)
≥ 1

4
(
|TP

P
(xk)C

P

P
(xk) − T

P

Q
(xk)C

P

Q
(xk)| + |T

N

P
(xk)C

N

P
(xk) −

T
N

Q
(xk)C

N

Q
(xk)|+ |C

P

P
(xk)− C

P

Q
(xk)|+ |C

N

P
(xk)− C

N

Q
(xk)|

)
⇒ λP,R

1 (xk) ≥ λP,Q
1 (xk)

Similarly it can shown that λP,R
2 (xk) ≥ λP,Q

2 (xk).

1
4
(
δP,R

1 (xk) + δP,R
2 (xk) + λP,R

1 (xk) + λP,R
2 (xk)

)
≥ 1

4
(
δP,Q

1 (xk) + δP,Q
2 (xk) + λP,Q

1 (xk) + λP,Q
2 (xk)

)
⇒

n

∑
k=1

(1
4
(
δP,R

1 (xk) + δP,R
2 (xk) + λP,R

1 (xk) + λP,R
2 (xk)

))p ≥
n

∑
k=1

(1
4
(
δP,Q

1 (xk) + δP,Q
2 (xk) +

λP,Q
1 (xk) + λP,Q

2 (xk)
))p ⇒ 1 −

[ 1
n

n

∑
k=1

(1
4
(
δP,R

1 (xk) + δP,R
2 (xk) + λP,R

1 (xk) + λP,R
2 (xk)

))p
] 1

p ≤

1−
[ 1

n

n

∑
k=1

(1
4
(
δP,Q

1 (xk) + δP,Q
2 (xk) + λP,Q

1 (xk) + λP,Q
2 (xk)

))p
] 1

p

⇒ T2(P, R) ≤ T2(P, Q)
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It is identical to show T2(P, R) ≤ T2(Q, R). Therefore, T2(P, R) ≤ T2(P, Q) ∧ T2(Q, R).
This completes the proof.

We define below the weighted similarity measure between two QSVBNS A, B over a universe X.

Definition 15. The weighted similarity measure of two QSVBNS A, B is defined as, T w
2
(A, B) = 1 −[

1
n

n

∑
k=1

wk
(1

4
(
δA,B

1 (xk)+ δA,B
2 (xk)+λA,B

1 (xk)+λA,B
2 (xk)

))p
] 1

p
, where, (w1, w2, ....wn)T is the weight vector

assigned to the element x1, x2, .....xn of the universe X, such that 0 ≤ wk ≤ 1, k = 1, 2, ..., n and
n

∑
k=1

wk = 1.

It is effortless to find out that T w
2 (A, B) satisfies the conditions of similarity measure.

Remark 4. We define the following functions based on one particular membership function for two QSVBNSs
A and B over the universe of discourse X, provided the denominators never vanish

T P

T
(A, B) =

n

∑
k=1

min
(

TP
A(xk), TP

B (xk)
)

n

∑
k=1

max
(

TP
A(xk), TP

B (xk)
) , T P

C
(A, B) =

n

∑
k=1

min
(

CP
A(xk), CP

B(xk)
)

n

∑
k=1

max
(

CP
A(xk), CP

B(xk)
) ,

T P

U
(A, B) =

n

∑
k=1

min
(

UP
A(xk), UP

B (xk)
)

n

∑
k=1

max
(

UP
A(xk), UP

B (xk)
) , T P

F
(A, B) =

n

∑
k=1

min
(

FP
A(xk), FP

B (xk)
)

n

∑
k=1

max
(

FP
A(xk), FP

B (xk)
) ,

T N

T
(A, B) =

n

∑
k=1

max
(

T
N

A
(xk), T

N

B
(xk)

)
n

∑
k=1

min
(

T
N

A
(xk), T

N

B
(xk)

) , T N

C
(A, B) =

n

∑
k=1

max
(

C
N

A
(xk), C

N

B
(xk)

)
n

∑
k=1

min
(

C
N

A
(xk), C

N

B
(xk)

) ,

T N

U
(A, B) =

n

∑
k=1

max
(

U
N

A
(xk), U

N

B
(xk)

)
n

∑
k=1

min
(

U
N

A
(xk), U

N

B
(xk)

) , T N

F
(A, B) =

n

∑
k=1

max
(

F
N

A
(xk), F

N

B
(xk)

)
n

∑
k=1

min
(

F
N

A
(xk), F

N

B
(xk)

) .

The following is a definition of generalized similarity measure between two QSVBNS A, B whose value set
is the set of all 2× 4 matrices over R.

Definition 16. Let X = {x1, x2, ....., xn} be a finite universe of discourse. For two QSVBNSs A, B define a
mapping L :QSVBNS(X)× QSVBNS(X)→M2×4(R) by

L(A, B) =

(
T P

T
(A, B) T P

C
(A, B) T P

U
(A, B) T P

F
(A, B)

T N

T
(A, B) T N

C
(A, B) T N

U
(A, B) T N

F
(A, B)

)
,

and a partial order relation “�” on M2×4(R) as:(
a1 a2 a3 a4

a5 a6 a7 a8

)
�
(

b1 b2 b3 b4

b5 b6 b7 b8

)
, if ai ≤ bi ∀i.
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Also define

0̃ =

(
0 0 0 0
0 0 0 0

)
and 1̃ =

(
1 1 1 1
1 1 1 1

)
.

Remark 5. Then for A, B ∈QSVBNS(X)

(1) 0̃ � L(A, B) � 1̃,
(2) L(A, B) = L(B, A),
(3) for A ⊂ B ⊂ C, L(A, C) � L(A, B) ∧ L(B, C).

We give an outline of the proof as:

Let A ⊂ B ⊂ C. Then for all xk ∈ X, T
N

A
(xk) ≥ T

N

B
(xk) ≥ T

N

C
(xk). Consequently, min

(
T

N

A
(xk),

T
N

B
(xk)

)
= T

N

B
(xk), max

(
T

N

A
(xk), T

N

B
(xk)

)
= T

N

A
(xk), min

(
T

N

A
(xk), T

N

C
(xk)

)
= T

N

C
(xk), max(

T
N

A
(xk), T

N

C
(xk)

)
= T

N

A
(xk).

Then we have,
n

∑
k=1

T
N

B
(xk) ≥

n

∑
k=1

T
N

C
(xk)⇒

1
n

∑
k=1

T
N

B
(xk)

≤ 1
n

∑
k=1

T
N

C
(xk)

⇒

n

∑
k=1

T
N

A
(xk)

n

∑
k=1

T
N

B
(xk)

≥

n

∑
k=1

T
N

A
(xk)

n

∑
k=1

T
N

C
(xk)

⇒ T N

T
(A, B) ≥ T N

T
(A, C).

A similar process follows for T N

T
(B, C) ≥ T N

T
(A, C). Hence T N

T
(A, C) ≤ T N

T
(A, B) ∧ T N

T
(B, C).

Hence L is a generalized similarity measure.

Definition 17. Let d :QSVBNS(X)×QSVBNS(X) → R+ ∪ {0} be a mapping satisfying the
following conditions:

(d1) d(A, B) ≥ 0 and d(A, B) = 0 iff A = B,
(d2) d(A, B) = d(B, A),
(d3) d(A, C) ≤ d(A, B) + d(B, C).

Then d is said to be a distance based measure between two QSVBNS A and B.

We now define the Hamming distance, normalized Hamming distance, Euclidean distance,
and normalized Euclidean distance between two QSVBNSs A, B ∈ QSVBNS(X),

(1) The Hamming distance:

• dH(A, B) =
n

∑
k=1

(
|TP

A
(xk) − T

P

B
(xk)| + |C

P

A
(xk) − C

P

B
(xk)| + |U

P

A
(xk) − U

P

B
(xk)| + |F

P

A
(xk) −

F
P

B
(xk)|+ |T

N

A
(xk)− T

N

B
(xk)|+ |C

N

A
(xk)− C

N

B
(xk)|+ |U

N

A
(xk)−U

N

B
(xk)|+ |F

N

A
(xk)− F

N

B
(xk)|

)
,

(2) Normalized Hamming distance:
• dNH(A, B) = 1

8n dH(A, B),

(3) The Euclidean distance:

• dE(A, B) =

(
n

∑
k=1

(
|TP

A
(xk)− T

P

B
(xk)|2 + |C

P

A
(xk)− C

P

B
(xk)|2 + |U

P

A
(xk)−U

P

B
(xk)|2 + |F

P

A
(xk)−

F
P

B
(xk)|2 + |TN

A
(xk) − T

N

B
(xk)|2 + |CN

A
(xk) − C

N

B
(xk)|2 + |UN

A
(xk) − U

N

B
(xk)|2 + |FN

A
(xk) −

F
N

B
(xk)|2

)) 1
2

,

(4) Normalized Euclidean distance:
• dNE(A, B) = dE(A,B)

2n
√

2
.
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5. QBN-Multi-Criteria Decision Making Method

Definition 18. Let U = (u1, u2, ..., um) be a set of alternatives, A = (a1, a2, ..., an) be the set of attributes,

w = (w1, w2, ..., wn)T be the weight vector assigned to aj (j = 1, 2, ...n) such that wk ≥ 0 and
n

∑
k=1

wk = 1.

Let [bij]m×n = 〈TP

ij , C
P

ij, U
P

ij, F
P

ij , T
N

ij , C
N

ij , U
N

ij , F
N

ij 〉 represents the rating values of the alternatives in term
of QSVBNS.

Then,


a1 a2 · · · an

u1 b1,1 b1,2 · · · b1,n
u2 b2,1 b2,2 · · · b2,n
...

...
...

. . .
...

um bm,1 bm,2 · · · bm,n

 is called the QBN-multi-attribute decision making matrix.

The positive ideal QBN solution of the decision matrix [bij]m×n is defined as: b̄∗j =

〈max
i
{TP

ij}, max
i
{CP

ij}, min
i
{UP

ij}, min
i
{FP

ij}, min
i
{TN

ij }, min
i
{CN

ij }, max
i
{UN

ij }, max
i
{FN

ij }, 〉. The negative

ideal QBN solution of the decision matrix [bij]m×n is defined as:

b∗j = 〈min
i
{TP

ij}, min
i
{CP

ij}, max
i
{UP

ij}, max
i
{FP

ij}, max
i
{TN

ij }, max
i
{CN

ij }, min
i
{UN

ij }, min
i
{FN

ij }, 〉.

We now propose an algorithm based on the quadripartitioned weighted similarity measure to
select the best alternative for multi-attribute decision making problem in quadripartitioned bipolar
neutrosophic enviornment which is given in Algorithm 1 :

Algorithm 1: Algorithm based on The quadripartitioned weighted similarty measure

Step 1. Give the QBN-multi-attribute decision making matrix [bij]m×n to the decision maker.
Step 2. Compute the positive ideal QBN solution b̄∗j and negative ideal QBN solution b∗j for the decision
matrix [bij]m×n.
Step 3. Determine T w

2
(b̄∗j , bi) for j = 1, 2, ..., m, the weighted quadripartitioned similarity measure between

positive ideal solution b̄∗j and bi = [bij]1×n for i = 1, 2, ..., m and j = 1, 2, ..., n and T w
2
(b∗j , bi) for j = 1, 2, ..., m,

the weighted quadripartitioned similarity measure between negative ideal solution b∗j and bi = [bij]1×n for
i = 1, 2, ..., m and j = 1, 2, ..., n as:

• T w
2
(b̄∗j , bi) = 1−

[
1
n

n

∑
k=1

wk
(1

4
(
δ

b̄∗j ,bi

1 (xk) + δ
b̄∗j ,bi

2 (xk) + λ
b̄∗j ,bi

1 (xk) + λ
b̄∗j ,bi

2 (xk)
))p
] 1

p
,

• T w
2
(b∗j , bi) = 1−

[
1
n

n

∑
k=1

wk
(1

4
(
δ

b∗j ,bi

1 (xk) + δ
b∗j ,bi

2 (xk) + λ
b∗j ,bi

1 (xk) + λ
b∗j ,bi

2 (xk)
))p
] 1

p
,

Step 4. Figure out the non-increasing order of the average ideal solution,
T w

2
(b̄∗j ,bi)+T w

2
(b∗j ,bi)

2 for j = 1, 2, ..., m
and select the best alternatives.

6. Illustrative Example

The following group decision making problem, which has been studied by Wu et al. [30], is taken
into consideration in a quadripartitioned bipolar neutrosophic environment. Climate change in a
global environment is a worrying sign. Industries have shifted their focus toward green production.
A car company is eager to choose the most suitable green supplier for one of the key elements in
its manufacturing process. After the pre-evaluation, four suppliers Ai, (i = 1, 2, 3, 4), have been
short-listed for evaluation on the basis of the concerned criteria: a1: is the product quality, a2: is
technological capability, and a3: is pollution control. The weight vector of the concerned criteria
are {w1, w2, w3}T = {0.3, 0.3, 0.4}T . To determine the decision information an expert is appointed to
gather the criteria values for the four possible alternatives in a QBN environment which is given in
Algorithm 2.
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Algorithm 2: Decision making algorithm for the four possible alternatives in a QBN environment

Step 1. The decision matrix [bij]4×3 given by the expert shown in Table 1.
Step 2. The positive ideal quadripartitioned bipolar neutrosophic solution and negative ideal quadripartitioned bipolar
neutrosophic solutions are calculated as: Ā∗ = [〈0.8, 0.6, 0.2, 0.2,−0.6,−0.6,−0.4,−0.4〉, 〈0.9, 0.4, 0.2, 0.2,−0.5,−0.3,−0.2,−0.4〉,
〈0.9, 0.6, 0.4, 0.3,−0.5,−0.4,−0.1,−0.3〉] andA∗ = [〈0.4, 0.2, 0.5, 0.5,−0.2,−0.3,−0.7,−0.8〉, 〈0.6, 0.1, 0.6, 0.5,−0.1,−0.2,−0.5,−0.6〉,
〈0.6, 0.1, 0.5, 0.7,−0.1,−0.2,−0.6,−0.8〉]
Step 3. The weighted quadripartitioned similarity measure T w

2 (Ā∗,Ai), i = 1, 2, 3, 4, and T w
2 (A∗,Ai), i = 1, 2, 3, 4 (shown in

Table 2) are computed.

Table 1. Decision making matrix.

a1 a2 a3

A1 〈0.4, 0.5, 0.3, 0.2,−0.6,
− 0.4,−0.5,−0.7〉

〈0.6, 0.1, 0.2, 0.3,−0.4,
− 0.3,−0.2,−0.5〉

〈0.8, 0.6, 0.5, 0.7,−0.3,
− 0.2,−0.1,−0.4〉

A2 〈0.6, 0.4, 0.2, 0.5,−0.4,
− 0.5,−0.7,−0.8〉

〈0.6, 0.2, 0.3, 0.4,−0.5,
− 0.2,−0.3,−0.4〉

〈0.7, 0.4, 0.5, 0.6,
− 0.1,−0.3,−0.4,−0.5〉

A3 〈0.7, 0.2, 0.4, 0.3,
− 0.2,−0.6,−0.4,−0.5〉

〈0.9, 0.3, 0.6, 0.5,
− 0.2,−0.2,−0.5,−0.4〉

〈0.6, 0.1, 0.5, 0.4,
− 0.2,−0.4,−0.6,−0.3〉

A4 〈0.8, 0.6, 0.5, 0.3,
− 0.5,−0.3,−0.6,−0.4〉

〈0.6, 0.4, 0.3, 0.2,
− 0.1,−0.3,−0.4,−0.6〉

〈0.9, 0.6, 0.4, 0.3,
− 0.5,−0.3,−0.6,−0.8〉

7. Discussion

In this section, a detailed analysis about the above introduced algorithm and the obtained result
based on the algorithm is carried through. The weighted quadripartitioned similarity measure between
the alternatives (Aj, j = 1, 2, 3, 4) and the positive ideal quadripartitioned bipolar neutrosophic
solution is shown in Table 2 and the same with the negative ideal quadripartitioned bipolar
neutrosophic solution is given in Table 2. The main objective of the proposed algorithm i.e., the average
ideal solution is obtained. The ranking results based on these similarity measures is highlighted in the
final Table (Table 3).

Deli et al. [28] and Sahin et al. [27], in their study on bipolar neutrosophic sets, obtained the
ranking result without considering the negative ideal solution. From their algorithm, it can be seen that
if the decision maker is asked to choose an alternative emphasizing more on the satisfaction degree
of the given criteria than the satisfaction degree of the counter-property of the criteria, the similarity
measure with the positive ideal solution can be used to get the most suitable alternatives. In the reverse
case, the similarity measure with negative ideal solution will be more fruitful.

In the case of QSVBNS, our algorithm follows the same footstep as Deli et al. [28]; however, the
major difference is that we have used the average of the measure values of positive ideal solution
and negative ideal solution. From the proposed algorithm, it seems that the ranking results to choose
the best alternatives using a positive ideal solution and a negative ideal solution will give exactly
the opposite ranking, but this is not the case, as can be seen in Table 2. The similarity index p in
the weighted quadripartitioned similarity measure also has a big role to play. From the study, we
have found that as the similarity index starts to take more higher values, the formula predicts more
accurately, as the difference between the first two choices of the alternatives starts increasing for higher
values of p. From Figure 2, it is observed that for p = 1, 2, the alternative values are quite close and A3

comes out as the best alternative with a very small margin from A1. For p = 3, A1 overtakes A3 as
the best alternative and as p stars increasing, A1 remains the best among the four alternatives and the
margin of the second best choice A3 starts increasing. The differences between the alternative values is
shown in Figure 2 for p = 1, 2, 3. In Figure 3, it can be observed that for p = 4, 5, 6, A1 enlarge by a
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bit more margin than A3. In Figure 4, the comparison between the best two alternatives A1 and A3 is
shown. It can be seen that for a very large value of p, A1 −A3 ≈ 0.1.

Table 2. Similarity measures for different values of p.

Similarity Index Positive Ideal Solution Negative Ideal Solution Average Ideal Solution

p = 1 T w
2
(Ā∗,A1) = 0.952416

T w
2
(Ā∗,A2) = 0.929125

T w
2
(Ā∗,A3) = 0.936681

T w
2
(Ā∗,A4) = 0.957291

T w
2
(A∗,A1) = 0.94

T w
2
(A∗,A2) = 0.954604

T w
2
(A∗,A3) = 0.960833

T w
2
(A∗,A4) = 0.928791

T w
2
(A∗,A1) = 0.946208

T w
2
(A∗,A2) = 0.941864

T w
2
(A∗,A3) = 0.948757

T w
2
(A∗,A4) = 0.943041

p = 2 T w
2
(Ā∗,A1) = 0.917337

T w
2
(Ā∗,A2) = 0.874914

T w
2
(Ā∗,A3) = 0.889566

T w
2
(Ā∗,A4) = 0.923766

T w
2
(A∗,A1) = 0.895453

T w
2
(A∗,A2) = 0.921020

T w
2
(A∗,A3) = 0.927222

T w
2
(A∗,A4) = 0.870422

T w
2
(A∗,A1) = 0.906395

T w
2
(A∗,A2) = 0.897967

T w
2
(A∗,A3) = 0.908394

T w
2
(A∗,A4) = 0.897094

p = 3 T w
2
(Ā∗,A1) = 0.900428

T w
2
(Ā∗,A2) = 0.847426

T w
2
(Ā∗,A3) = 0.866476

T w
2
(Ā∗,A4) = 0.905738

T w
2
(A∗,A1) = 0.873755

T w
2
(A∗,A2) = 0.904713

T w
2
(A∗,A3) = 0.907610

T w
2
(A∗,A4) = 0.839067

T w
2
(A∗,A1) = 0.887092

T w
2
(A∗,A2) = 0.876069

T w
2
(A∗,A3) = 0.887043

T w
2
(A∗,A4) = 0.872402

p = 4 T w
2
(Ā∗,A1) = 0.890553

T w
2
(Ā∗,A2) = 0.830665

T w
2
(Ā∗,A3) = 0.852716

T w
2
(Ā∗,A4) = 0.893862

T w
2
(A∗,A1) = 0.860959

T w
2
(A∗,A2) = 0.895086

T w
2
(A∗,A3) = 0.894353

T w
2
(A∗,A4) = 0.819565

T w
2
(A∗,A1) = 0.875756

T w
2
(A∗,A2) = 0.862875

T w
2
(A∗,A3) = 0.873535

T w
2
(A∗,A4) = 0.856714

p = 5 T w
2
(Ā∗,A1) = 0.884025

T w
2
(Ā∗,A2) = 0.819257

T w
2
(Ā∗,A3) = 0.843424

T w
2
(Ā∗,A4) = 0.885108

T w
2
(A∗,A1) = 0.852444

T w
2
(A∗,A2) = 0.888633

T w
2
(A∗,A3) = 0.884681

T w
2
(A∗,A4) = 0.806328

T w
2
(A∗,A1) = 0.868235

T w
2
(A∗,A2) = 0.853945

T w
2
(A∗,A3) = 0.864052

T w
2
(A∗,A4) = 0.845718

p = 6 T w
2
(Ā∗,A1) = 0.879341

T w
2
(Ā∗,A2) = 0.810950

T w
2
(Ā∗,A3) = 0.836617

T w
2
(Ā∗,A4) = 0.878257

T w
2
(A∗,A1) = 0.846318

T w
2
(A∗,A2) = 0.883926

T w
2
(A∗,A3) = 0.877287

T w
2
(A∗,A4) = 0.796801

T w
2
(A∗,A1) = 0.862830

T w
2
(A∗,A2) = 0.847438

T w
2
(A∗,A3) = 0.856952

T w
2
(A∗,A4) = 0.837529

p=1 p=2 p=3
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Figure 2. Comparison between the alternatives for different similarity indexes.



Symmetry 2020, 12, 1012 14 of 16

p=4 p=5 p=6
0.82

0.83

0.84

0.85

0.86

0.87

0.88

m
ea

su
re

va
lu

es
→

A1
A2
A3
A4

Figure 3. Comparison between the alternatives for different similarity indexes.
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Figure 4. Comparison between the best two alternatives A1 and A3 for some higher similarity index.

From the above analysis it is clear that A1 is the most suitable alternative to the decision maker.
The proposed method can get the better of the decision making problem with quadripartitioned bipolar
neutrosophic information. Also, the higher similarity index produces a more accurate method by
indicating clear differences between the alternatives. A comparison of the above discussed MCDM
problem is made in a fuzzy system and a bipolar fuzzy system, where it is observed that in a fuzzy
system, the same conclusion is reached at p = 5 and in bipolar fuzzy system the result fluctuate between
A1 and A3. So, we think that the proposed method can serve immensely in decision making purpose.
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Table 3. Ranking results.

Similarity
Index

Based on Positive Ideal
Solution

Based on Negative Ideal
Solution Based on Average Value

p = 1 A4 � A1 � A3 � A2 A3 � A2 � A1 � A4 A3 � A1 � A4 � A2
p = 2 A4 � A1 � A3 � A2 A3 � A2 � A1 � A4 A3 � A1 � A2 � A4
p = 3 A4 � A1 � A3 � A2 A3 � A2 � A1 � A4 A1 � A3 � A2 � A4
p = 4 A4 � A1 � A3 � A2 A2 � A3 � A1 � A4 A1 � A3 � A2 � A4
p = 5 A4 � A1 � A3 � A2 A2 � A3 � A1 � A4 A1 � A3 � A2 � A4
p = 6 A1 � A4 � A3 � A2 A2 � A3 � A1 � A4 A1 � A3 � A2 � A4

8. Conclusions

This paper introduces a novel concept of QSVBNS. Some set theoretic operations and several
similarity measures have been stated. Also, a real life example of QSVBNS is presented for brief
understanding. Decision making problem has been considered in a QSVBN environment and dealt
with successfully.

BNS has been a successful tool for decision maker as bipolarity often occurs as a common
phenomenon in human thinking. QSVBNS comes handy in situations where a person is unsure about
the truth, false, both true and false or neither of them while handling a bipolar information system.
The introduction of QSVBNS will help the cause of decision making problems and open new branch
of neutrosophy. Future work may involve study of aggregation operators involving QSVBNS while
dealing with decision making problems.
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