
Precise Interprocedural Analysis
using Random Interpretation

Sumit Gulwani
gulwani@cs.berkeley.edu

George C. Necula
necula@cs.berkeley.edu

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720-1776

ABSTRACT
We describe a unified framework for random interpretation
that generalizes previous randomized intraprocedural anal-
yses, and also extends naturally to efficient interprocedural
analyses. There is no such natural extension known for de-
terministic algorithms. We present a general technique for
extending any intraprocedural random interpreter to per-
form a context-sensitive interprocedural analysis with only
polynomial increase in running time. This technique in-
volves computing random summaries of procedures, which
are complete and probabilistically sound.

As an instantiation of this general technique, we obtain
the first polynomial-time randomized algorithm that discov-
ers all linear relationships interprocedurally in a linear pro-
gram. We also obtain the first polynomial-time randomized
algorithm for precise interprocedural value numbering over
a program with unary uninterpreted functions.

We present experimental evidence that quantifies the pre-
cision and relative speed of the analysis for discovering linear
relationships along two dimensions: intraprocedural vs. in-
terprocedural, and deterministic vs. randomized. We also
present results that show the variation of the error proba-
bility in the randomized analysis with changes in algorithm
parameters. These results suggest that the error probabil-
ity is much lower than the existing conservative theoretical
bounds.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs; F.3.2

This research was supported by NSF Grants CCR-0326577,
CCR-0081588, CCR-0085949, CCR-00225610, CCR-0234689,
NASA Grant NNA04CI57A, Microsoft Research Fellowship for
the first author, and Sloan Fellowship for the second author. The
information presented here does not necessarily reflect the posi-
tion or the policy of the Government and no official endorsement
should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05,January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

[Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages—Program analysis

General Terms
Algorithms, Theory, Verification

Keywords
Interprocedural Analysis, Random Interpretation, Random-
ized Algorithm, Linear Relationships, Uninterpreted Func-
tions, Interprocedural Value Numbering

1. INTRODUCTION
A sound and complete program analysis is undecidable [11].

A simple alternative is random testing, which is complete but
unsound, in the sense that it cannot prove absence of bugs.
At the other extreme, we have sound abstract interpreta-
tions [2], wherein we pay a price for the hardness of program
analysis in terms of having an incomplete (i.e., conservative)
analysis, or by having algorithms that are complicated and
have long running-time. Random interpretation is a prob-
abilistically sound program analysis technique that can be
simpler, more efficient and more complete than its determin-
istic counterparts [5, 6], at the price of degrading soundness
from absolute certainty to guarantee with arbitrarily high
probability.

Until now, random interpretation has been applied only
to intraprocedural analysis. Precise interprocedural anal-
ysis is provably harder than intraprocedural analysis [15].
There is no general recipe for constructing a precise and
efficient interprocedural analysis from just the correspond-
ing intraprocedural analysis. The functional approach pro-
posed by Sharir and Pnueli [20] is limited to finite lattices
of dataflow facts. Sagiv, Reps and Horwitz have generalized
the Sharir-Pnueli framework to build context-sensitive anal-
yses, using graph reachability [16], even for some kind of
infinite domains. They successfully applied their technique
to detect linear constants interprocedurally [19]. However,
their generalized framework requires appropriate distribu-
tive transfer functions as input. There seems to be no obvi-
ous way to automatically construct context-sensitive trans-
fer functions from just the corresponding intraprocedural
analysis. We show in this paper that if the analysis is based
on random interpretation, then there is a general procedure
for lifting it to perform a precise and efficient interprocedu-
ral analysis.

Our technique is based on the standard procedure summa-
rization approach to interprocedural analysis. However, we
compute randomized procedure summaries that are prob-
abilistically sound. We show that such summaries can be
computed efficiently, and we prove that the error probabil-
ity, which is over the random choices made by the algorithm,
can be made as small as desired by controlling various pa-
rameters of the algorithm.

We instantiate our general technique to two abstractions,
linear arithmetic (Section 7) and unary uninterpreted func-
tions (Section 8), for which there exist intraprocedural ran-
dom interpretation analyses. For the case of linear arith-
metic, our technique yields a more efficient algorithm than
the existing algorithms for solving the same problem. For
the case of unary uninterpreted functions, we obtain the first
polynomial-time and precise algorithm that performs inter-
procedural value numbering [1] over a program with unary
uninterpreted function symbols.

In the process of describing the interprocedural random-
ized algorithms, we develop a generic framework for describ-
ing both intraprocedural and interprocedural randomized
analyses. This framework generalizes previously published
random interpreters [5, 6], guides the development of ran-
domized interpreters for new domains, and provides a large
part of the analysis of the resulting algorithms. As a novel
feature, the framework emphasizes the discovery of relation-
ships, as opposed to their verification, and provides generic
probabilistic soundness results for this problem.

Unlike previous presentations of random interpretation,
we discuss in this paper our experience with implement-
ing and using an interprocedural random interpreter on a
number of C programs. In Section 10, we show that the er-
ror probability of such algorithms is much lower in practice
than predicted by the theoretical analysis. This suggests
that tighter probability bounds could be obtained. We also
compare experimentally the randomized interprocedural lin-
ear relationship analysis with an intraprocedural version [5]
and with a deterministic algorithm [19] for the related but
simpler problem of detecting constant variables.

This paper is organized as follows. In Section 2, we present
a generic framework for describing intraprocedural random-
ized analyses. In Section 3, we explain the two main ideas
behind our general technique of computing random proce-
dure summaries. In Section 4, we formally describe our
generic algorithm for performing an interprocedural ran-
domized analysis. We prove the correctness of this algorithm
in Section 5 and discuss fixed-point computation and com-
plexity of this algorithm in Section 6. We instantiate this
generic algorithm to obtain an interprocedural algorithm for
discovering linear relationships, and for value numbering in
Section 7 and Section 8 respectively. In Section 9, we de-
scribe how to avoid large numbers that may arise during
computation, so that arithmetic can be performed using fi-
nite number of bits. Section 10 describes our experiments.

2. RANDOM INTERPRETATION
In this section, we formalize the intraprocedural random

interpretation technique, using a novel framework that gen-
eralizes existing random interpreters.

2.1 Preliminaries
We first describe our program model. We assume that

the flowchart representation of a program consists of nodes

S2S1

S

(c) Join Node

S

x := e

S0

(a) Assignment Node

S

Call P0

(d) Procedure Call

S0

S

S1 S2

(b) Conditional Node

*

Figure 1: Flowchart nodes

of the kind shown in Figure 1(a), (b) and (c). In the assign-
ment node, x denotes a program variable, and e is either
some expression or ?. Non-deterministic assignments x :=?
represent a safe abstraction of statements (in the original
source program) that our abstraction cannot handle pre-
cisely. We also abstract the conditional guards by treating
them as non-deterministic.

A random interpreter executes a program on random in-
puts in a non-standard manner. An execution of a random
interpreter computes a state ρ at each program point π. A
state is a mapping from program variables to values v over
some field F.

A random interpreter processes ordinary assignments (x :=
e, where e is an expression) by updating the state with the
value of the expression being assigned. Expressions are eval-
uated using an Eval function, which depends on the under-
lying domain of the analysis. We give some examples of Eval
functions in Section 2.3, where we also describe the proper-
ties that an Eval function must satisfy. Non-deterministic
assignments x :=? are processed by assigning a fresh ran-
dom value to variable x. A random interpreter executes
both branches of a conditional. At join points, it performs
a random affine combination of the joining states using the
affine join operator (φw). We describe this operator and its
properties in Section 2.2. In presence of loops, a random
interpreter goes around loops until a fixed point is reached.
The number of iterations nrIters required to reach a fixed
point is abstraction specific.

In Section 2.4, we discuss how to verify or discover pro-
gram equivalences from such random executions of a pro-
gram. We also give a bound on the error probability in
such an analysis. We give both generic and abstraction spe-
cific results. Finally, in Section 2.5, we give an example of
the random interpretation technique for linear arithmetic to
verify assertions in a program.

We use the notation Pr(E) to denote the probability of
event E over the random choices made by a random in-
terpreter. Whenever the interpreter chooses some random
value, it does so independently of the previous choices and
uniformly at random from some finite subset F̃ of F. Let
q = |F̃ |. (In Section 9, we argue the need to perform arith-
metic over a finite field, and hence choose F = Zq, the field
of integers modulo q, for some randomly chosen prime q. In
that case F̃ = F.)

2.2 Affine Join Operator
The affine join operator φw takes as input two values v1

and v2 and returns their affine join with respect to the weight
w as follows:

φw(v1, v2)
def
= w × v1 + (1− w)× v2

The affine join operator can be thought of as a selector be-
tween v1 and v2, similar to the φ functions used in static
single assignment (SSA) form [3]. If w = 1 then φw(v1, v2)
evaluates to v1, and if w = 0 then φw(v1, v2) evaluates to
v2. The power of the φw operator comes from the fact that
a non-boolean (random) choice for w captures the effect of
both the values v1 and v2.

The affine join operator can be extended to states ρ in
which case the affine join is performed with the same weight
for each variable. Let ρ1 and ρ2 be two states, and x be a
program variable. Then,

φw(ρ1, ρ2)(x)
def
= φw(ρ1(x), ρ2(x))

For any polynomial P and any state ρ, we use the notation
[[P]]ρ to denote the result of evaluation of polynomial P in
state ρ. The affine join operator has the following useful
properties. Let P and P ′ be two polynomials that are linear
over program variables (and possibly non-linear over other
variables). Let ρw = φw(ρ1, ρ2) for some randomly chosen
w from a set of size q. Then,

A1. Completeness: If P and P ′ are equivalent in state ρ1

as well as in state ρ2, then they are also equivalent in
state ρw.

([[P]]ρ1 = [[P ′]]ρ1) ∧ ([[P]]ρ2 = [[P ′]]ρ2) ⇒
[[P]]ρw = [[P ′]]ρw

A2. Soundness: If P and P ′ are not equivalent in either
state ρ1 or state ρ2, then it is unlikely that they will
be equivalent in state ρw.

([[P]]ρ1 6= [[P ′]]ρ1) ∨ ([[P]]ρ2 6= [[P ′]]ρ2) ⇒

Pr([[P]]ρw = [[P ′]]ρw) ≤ 1

q

2.3 Eval Function
A random interpreter is equipped with an Eval function

that takes an expression e and a state ρ and computes a field
value. The Eval function plays the same role as an abstract
interpreter’s transfer function for an assignment operation.
Eval is defined in terms of a symbolic counterpart SEval that
translates an expression into a polynomial over the chosen
field F. This polynomial is linear in program variables, and
may contain random variables as well, which stand for ran-
dom field values chosen during the analysis. Eval(e, ρ) is
computed by replacing program variables in SEval(e) with
their values in state ρ, replacing the random variables with
some random values, and then evaluating the result over the
field F.

Eval function for Linear Arithmetic.The random inter-
pretation for linear arithmetic was described in a previous
paper [5]. The following language describes the expressions
in this domain. Here x refers to a variable and c refers to
an arithmetic constant.

e ::= x | e1 ± e2 | c× e

The SEval function for this domain simply translates the
linear arithmetic syntactic constructors to the corresponding
field operations. In essence, Eval simply evaluates the linear
expression over the field F.

Eval function for Unary Uninterpreted Functions.The
random interpretation for uninterpreted functions was de-
scribed in a previous paper [6]. We show here a simpler
SEval function, for the case of unary uninterpreted func-
tions. The following language describes the expressions in
this domain. Here x refers to a variable and F refers to a
unary uninterpreted function.

e ::= x | F (e)

The SEval function for this domain is as follows.

SEval(x) = x

SEval(F (e)) = aF × SEval(e) + bF

Here aF and bF are random variables, unique for each unary
uninterpreted function F . Note that in this case, SEval pro-
duces polynomials that have degree more than 1, although
still linear in the program variables.

2.3.1 Properties of theSEval Function
The SEval function should have the following properties.

Let x be any variable and e1 and e2 be any expressions.
Then,

B1. Soundness: The SEval function should not introduce
any new equivalences.

SEval(e1) = SEval(e2) ⇒ e1 = e2

Note that the first equality is over polynomials, while
the second equality is in the analysis domain.

B2. Completeness: The SEval function should preserve all
equivalences.

e1 = e2 ⇒ SEval(e1) = SEval(e2)

B3. Referential transparency:

SEval(e1[e2/x]) = SEval(e1)[SEval(e2)/x]

B4. Linearity: The SEval function should be a polynomial
that is linear in program variables.

Property B2 need not be satisfied if completeness is not
an issue. This is of significance if the underlying theory is
difficult to reason about, yet we are interested in a sound and
partially complete reasoning for that theory. For example,
the following SEval function for “bitwise or operator” (||)
satisfies all the above properties except property B2.

SEval(e1||e2) = SEval(e1) + SEval(e2)

This SEval function models commutativity and associativity
of the || operator. However, it does not model the fact that
x||x = x. In this paper, we assume that the SEval function
satisfies all the properties mentioned above. However, the
results of our paper can also be extended to prove relative
completeness for a theory if the SEval function does not
satisfy property B2.

2.4 Analysis and Error Probability
A random interpreter performs multiple executions of a

program as described above, the result of which is a collec-
tion of multiple, say t, states at each program point. Let Sπ

denote the collection of t states at program point π. We can
use these states to verify and discover equivalences.

The process of verifying equivalences and the bound on
the error probability can be stated for a generic random
interpreter. The process of discovering equivalences is ab-
straction specific; however a generic error probability bound
can be stated for this process too.

2.4.1 Verifying Equivalences
The random interpreter declares two expressions e1 and e2

to be equivalent at program point π iff for all states ρ ∈ Sπ,
Eval(e1, ρ) = Eval(e2, ρ). We denote this by Sπ |= e1 = e2.
Two expressions e1 and e2 are equivalent at program point π
iff for all program states ρ that may arise at program point π
in any execution of the program, [[e1]]ρ = [[e2]]ρ. We denote
this by π |= e1 = e2.

The following properties hold:

C1. The random interpreter discovers all equivalences.

π |= e1 = e2 ⇒ Sπ |= e1 = e2

C2. With high probability, any equivalence discovered by
the random interpreter is correct.

π 6|= e1 = e2 ⇒ Pr(Sπ |= e1 = e2) ≤
�

d

q

�t

d = (nj + ∆)× nrIters

Here nj denotes the number of join points in the program,
and q denotes the size of the set from which the random
interpreter chooses random values. For defining ∆, consider
every sequence of assignments “x1 := e1; . . . ; xm := em”
along acyclic paths in the program. ∆ is the maximum de-
gree of any polynomial SEval(ei[ei−1/xi−1] · · · [e1/x1]), where
1 ≤ i ≤ m. The arguments to SEval are expressions com-
puted on the path, expressed symbolically in terms of the
input program variables. For example, ∆ is 1 for the linear
arithmetic abstraction. For the abstraction of uninterpreted
functions, ∆ is bounded above by the size of program (mea-
sured in terms of number of function applications). Intu-
itively, we add nj to ∆ to account for the multiplications
with the random weights at join points. Note that the error
probability in property C2 can be made arbitrarily small by
choosing q to be greater than d and choosing t appropriately.

The proof of property C1 follows from a more general
property (property D1 in Section 5) that states the com-
pleteness of an interprocedural random interpreter. The
proof of property C2 is by induction on the number of steps
performed by the random interpreter, and is similar to the
proof of Theorem 2 (in Section 5) that states the soundness
of an interprocedural random interpreter.

2.4.2 Discovering Equivalences
We now move our attention to the issue of discovering

equivalences. Although, this usage mode was apparent from
previous presentations of random interpretation, we have
not considered until now the probability of erroneous judg-
ment for this case.

The process of discovering equivalences at a program point
is abstraction specific. However, we do present a generic up-
per bound on the probability of error. For the case of linear
arithmetic, the set of equivalences at a program point π can
be described by a basis (in the linear algebraic sense) of the
set of linear relationships that are true at point π. Such a
basis can be mined from Sπ by solving a set of simultaneous
linear equations. For the case of uninterpreted functions,
the set of all equivalences among program expressions can
be described succinctly using an equivalence value graph [7].
This equivalence value graph can be built by first construct-
ing the value flow graph [13] G of the program and then
assigning t values V1(m), . . . , Vt(m) to each node m in G
as follows. A node m in a value flow graph G is either a
variable x, or an F -node F (m1), or a φ-node φ(m1, m2) for
some nodes m1, m2 in G. We use Si to denote the ith state
in sample S.

Vi(x) = Si(x)

Vi(F (m)) = Eval(F (Vi(m))), Si)

Vi(φ
j(m1, m2)) = φ

w
j
i
(Vi(m1), Vi(m2))

Here wj
i denotes the ith random weight chosen for the jth

phi function φj in the value flow graph G. The nodes with
equal values are merged, and the resulting graph reflects all
equivalences among program expressions.

The following theorem states a generic upper bound on
the probability that the random interpreter discovers any
false equivalence at a given program point.

Theorem 1. For any program point π,

Pr(∃e1, e2 : π 6|= e1 = e2 ∧ Sπ |= e1 = e2) ≤
�

dkv

q

�bt/kvc

where d is as described in Section 2.4.1 and kv is the max-
imum number of program variables visible at any program
point.

The proof of Theorem 1 follows from a more general theo-
rem (Theorem 2 in Section 5) that we prove for analyzing the
correctness of an interprocedural random interpreter. Note
that we must choose t greater than kv, and q greater than
dkv.

For specific abstractions, it may be possible to prove bet-
ter bounds on the error probability. For example, for the
theory of linear arithmetic, it can be shown that the error

probability is bounded above by
�

dβ
q

�t−kv

, where β = te
t−kv

,

e being the Euler constant 2.718 · · ·. For the theory of unary
uninterpreted functions, it can be shown that the error prob-

ability is bounded above by k2
vt2
�

d
q

�t−2

. This latter bound

implies that a small error probability can be achieved with
a value of t slightly greater than 2, as opposed to the generic
bound, which requires t to be greater than kv for achieving
a low error probability. The proofs of these specific bounds
follow from more general theorems that we state in Section 7
(Theorem 8) and Section 8 (Theorem 10) for analyzing the
error probability of the interprocedural analysis for these
abstractions.

This completes the description of the generic framework
for random interpretation. We show an example next, and
then we proceed to extend the framework to describe inter-
procedural analyses.

a := 0;
b := i;

a := i-2;
b := 2;

c := b – a;
d := i – 2b;

Assert (c + d = 0);
Assert (c = a + i);

i = 3, a = -4, b = 7

i = 3

i = 3, a = -4, b = 7
c = 23, d = -23

c := 2a + b;
d := b – 2i;

i = 3, a = 1, b = 2i = 3, a = 0, b = 3

i = 3, a = -4, b = 7
c = -1, d = 1

i = 3, a = -4, b = 7
c = 11, d = -11

True

True False

False

w1 = 5

w2 = 2

*

*

Input: i

Figure 2: A code fragment with four paths. Of the
two equations asserted at the end the first one holds
on all paths but the second one holds only on three
paths. The numbers shown next to each edge repre-
sent values of variables in a random interpretation.

2.5 Example
In this section, we illustrate the random interpretation

scheme for discovering linear relationships among variables
in a program by means of an example.

Consider the procedure shown in Figure 2 (ignoring for
the moment the states shown on the side). We first con-
sider this procedure in isolation of the places it is used (i.e.,
intraprocedural analysis). Of the two assertions at the end
of the procedure, the first is true on all four paths, and the
second is true only on three of them (it is false when the
first conditional is false and the second is true). Regular
testing would have to exercise that precise path to avoid
inferring that the second equality holds. Random interpre-
tation is able to invalidate the second assertion in just one
(non-standard) execution of the procedure.

The random interpreter starts with a random value 3 for
the input variable i and then executes the assignment state-
ments on both sides of the conditional using the Eval func-
tion for linear arithmetic, which matches with the standard
interpretation of linear arithmetic. In the example, we show
the values of all live variables at each program point. The
two program states before the first join point are combined
with the affine join operator using the random weight w1 = 5.
Note that the resulting program state after the first join
point can never arise in any real execution of the program.
However, this state captures the invariant that a + b = i,
which is necessary to prove the first assertion in the proce-
dure. The random interpreter then executes both sides of
the second conditional and computes an affine join of the
two states before the second join point using the random
weight w2 = 2. We can then verify easily that the resulting
state at the end of the procedure satisfies the first asser-
tion but does not satisfy the second. Thus, in one run of
the procedure we have noticed that one of the (potentially)
exponentially many paths breaks the invariant. Note that

choosing w to be either 0 or 1 at a join point corresponds to
executing either the true branch or the false branch of its
corresponding conditional; this is what naive testing accom-
plishes. However, by choosing w (randomly) from a set that
also contains non-boolean values, we are able to capture the
effect of both branches of a conditional in just one interpre-
tation of the program. In fact, there is a very small chance
that the random interpreter will choose such values for i, w1

and w2 that will make it conclude that both assertions hold
(e.g., i = 2, or w1 = 1).

In an interprocedural setting, the situation is more com-
plicated. If this procedure is called only with input argu-
ment i = 2, then both assertions hold, and the analysis is
expected to infer that. One can also check that if the ran-
dom interpreter chooses i = 2, then it is able to verify both
the assertions, for any choice of w1 and w2. We look next
at what changes are necessary to extend the analysis to be
interprocedural.

3. INFORMAL DESCRIPTION OF THE
ALGORITHM

Our algorithm is based on the standard summary-based
approach to interprocedural analysis. Procedure summaries
are computed in the first phase, and actual results are com-
puted in the second phase. The real challenge is in comput-
ing context-sensitive summaries, i.e., summaries that can
be instantiated with any context to yield the most precise
behavior of the procedures under that context.

In this section, we briefly explain the two main ideas be-
hind our summary computation technique that can be used
to perform a precise interprocedural analysis using a precise
intraprocedural random interpreter.

3.1 Random Symbolic Run
Intraprocedural random interpretation involves interpret-

ing a program using random values for the input variables.
The state at the end of the procedure can be used as a sum-
mary for that procedure. However, such a summary will not
be context-sensitive. For example, consider the code frag-
ment in Figure 2. The second assertion at the end of the
code fragment is true in the context i = 2, but this condi-
tional fact is not captured by the random state at the end
of the code fragment.

The first main idea of the algorithm is that in order to
make the random interpretation scheme context-sensitive,
we can simply delay choosing random values for the input
variables. Instead of using states that map variables to field
values, we use states that map variables to linear polyno-
mials in terms of input variables. This allows the flexibility
to replace the input variables later depending on the con-
text. However, we continue to choose random weights at
join points and perform a random affine join operation.

As an example, consider again the code fragment from be-
fore, shown now in Figure 3. Note that the symbolic random
state at the end of the code fragment (correctly) does not
satisfy the second assertion. However, in a context where
i = 2, the state does satisfy c = a+ i since c evaluates to 2
and a to 0.

This scheme of computing partly symbolic summaries is
surprisingly effective and guarantees context-sensitivity, i.e.,
it entails all valid equivalences in all contexts. In contrast,
there seems to be no obvious way to extend an arbitrary

a := 0;
b := i;

a := i-2;
b := 2;

c := b – a;
d := i – 2b;

Assert (c + d = 0);
Assert (c = a + i);

a = 8-4i, b=5i-8

a = 8-4i, b = 5i-8
c = 21i-40, d = 40-21i

c := 2a + b;
d := b – 2i;

a = i-2, b = 2a = 0, b = i

a = 8-4i, b = 5i-8
c = 8-3i, d = 3i-8

a = 8-4i, b = 5i-8
c = 9i-16, d = 16-9i

True

True False

False

w1 = 5

w2 = 2

*

*

Input: i

Figure 3: An illustration of symbolic random inter-
pretation on the code fragment shown in Figure 2.
Note that the second assertion is true in the context
i = 2, and the symbolic random interpreter verifies
it.

intraprocedural abstract interpretation scheme to perform a
context-sensitive interprocedural analysis. This is the case,
for example, for the intraprocedural abstract interpretation
for linear arithmetic that was first described by Karr [9] in
1976. An interprocedural abstract interpretation for linear
arithmetic was described by Müller-Olm and Seidl [14] only
recently in 2004.

3.2 Multiple Runs
Consider the program shown in Figure 4. The first asser-

tion in procedure B is true. However, the second assertion is
false since the non-deterministic conditional (which arises as
a result of our conservative abstraction of not modeling the
conditional guards) in procedure A can evaluate differently
in the two calls to procedure A, even with the same input.
If we use the same random symbolic run for procedure A at
different call sites in procedure B, then we incorrectly con-
clude that the second assertion holds. This happens because
use of the same run at different call sites assumes that the
non-deterministic conditionals in the called procedure are
resolved in the same manner in different calls. This prob-
lem can be avoided if a fresh or independent run is used at
each call point. By fresh run, we mean a run computed with
a fresh choice of random weights at the join points.

One naive way to generate n fresh runs for a procedure P
is to execute n times the random interpretation scheme for
procedure P , each time with a fresh set of random weights.
However, this may require computing an exponential num-
ber of runs for other procedures. For example, consider a
program in which each procedure Fi calls procedure Fi+1

two times. To generate a run for F0, we need 2 fresh runs
for F1, which are obtained using 4 fresh runs for F2, and so
on.

The second main idea in our algorithm is that we can
generate the equivalent of t fresh runs for a procedure P if

x = 5·2-7 = 3
y = 5·1-7 = -2
z = 5·1-7 = -2

u = 5i-7

w = 5 u = 3u = i+1

u := i+1; u := 3;

return u;

*

Procedure A

Input: i

Assert (x = 3);
Assert (y = z);

x := A(2);
y := A(1);
z := A(1);

Procedure B

Figure 4: A program with 2 procedures. The first
assertion at the end of procedure B is true, while
the second assertion is not true, because procedure
A may run different branches in different runs. This
figure demonstrates that use of just one random
symbolic run is unsound.

t fresh runs are available for each of the procedures that P
calls, for some parameter t that depends on the underlying
abstraction. This idea relies on the fact that an affine com-
bination of t runs of a procedure yields the equivalent of a
fresh run for that procedure. For an informal geometric intu-
ition, note that we can obtain any number of fresh points in
a 2-dimensional plane by taking independent random affine
combinations of three points that span the plane.

In Figure 5, we revisit the program shown in Figure 4
and illustrate this random interpretation technique of using
a fresh run of a procedure at each call site. Note that we
have chosen t = 2. The t runs of the procedure are shown
in parallel by assigning a tuple of t values to each variable
in the program. Note that procedure B calls procedure A

three times. Hence, to generate 2 fresh runs for procedure
B, we need 6 fresh runs for procedure A. The figure shows
computation of 6 fresh runs from the 2 runs for procedure
A. The first call to procedure A uses the first two of these
6 runs, and so on. Note that the resulting program states
at the end of procedure B satisfy the first assertion, but not
the second assertion thereby correctly invalidating it.

4. INTERPROCEDURAL RANDOM
INTERPRETATION

We now describe the precise interprocedural randomized
algorithm, as a standard two-phase computation. The first
phase, or the bottom-up phase, computes procedure sum-
maries by starting with leaf procedures. The second phase,
or top-down phase, computes the actual results of the analy-
sis at each program point by using the summaries computed
in the first phase. In presence of loops in the call graph and
inside procedures, both phases require fixed-point computa-
tion, which we address in Section 6. We first describe our
program model.

4.1 Preliminaries
A program is a set of procedures, each with one entry and

one exit node. We assume that the flowchart representation
of a procedure consists of nodes of the kind shown in Fig-
ure 1. For simplicity, we assume that the inputs and outputs

u = [5i-7,7-2i]

w =[5,-2] u = [3,3]u = [i+1,i+1]

u := i+1; u := 3;

return u;

*

Procedure A

Input: i
Run 1: u = φ7(5i-7,7-2i)

= 47i-91
Run 10: u = φ6(5i-7,7-2i)

= 40i-77
Run 2: u = φ3(5i-7,7-2i)

= 19i-35
Run 20: u = φ0(5i-7,7-2i)

= 7-2i
Run 3: u = φ5(5i-7,7-2i)

= 33i-63
Run 30: u = φ1(5i-7,7-2i)

= 5i-7

Fresh Runs for Procedure A

x = [47·2-91, 40·2-77] = [3,3]
y = [19·1-35, 7-2·1] = [-16,5]
z = [33·1-63, 5·1-7] = [-30,-2]

Assert (x = 3);
Assert (y = z);

x := A(2);
y := A(1);
z := A(1);

Procedure B

Figure 5: A program with two procedures, which is also shown in Figure 4. This figure illustrates the random
interpretation technique of computing multiple random symbolic runs (in this example, 2) for a procedure,
and using them to generate a fresh random symbolic run for every call to that procedure. Run j and Run
j′ are used at the jth call site of procedure A while computing the two runs for procedure B. Note that this
technique is able to correctly validate the first assertion and falsify the second one.

of a procedure are passed as global variables. We use the
following notation:

• IP : Set of input variables for procedure P .

• OP : Set of output variables for procedure P .

• kI : Maximum number of input variables for any pro-
cedure.

• ko: Maximum number of output variables for any pro-
cedure.

• kv: Maximum number of visible variables at any pro-
gram point.

• n: Number of program points.

• f : Fraction of procedure calls to the number of pro-
gram points.

• r: Ratio of number of φ assignments (in the SSA ver-
sion of the program) to the number of program points.

Note that the set IP includes the set of all global variables
read by procedure P directly as well as the set IP ′ for any
procedure P ′ called by P . Similarly for set OP .

4.2 Phase 1
A summary for a procedure P , denoted by YP , is either

⊥ (denoting that the procedure has not yet been analyzed,
or on all paths it transitively calls procedures that have not
yet been analyzed), or is a collection of t runs {YP,i}t

i=1. A
run is a mapping from output variables in OP to random
symbolic values, which are linear expressions in terms of
the input variables IP of procedure P . The value of t is
abstraction dependent. (For linear arithmetic, the value of
t = kI +kv +c suffices, for some small constant c. For unary
uninterpreted functions, the value of t = 4 + c suffices.)

To compute a procedure summary, the random interpreter
computes a sample S at each program point, as shown in
Figure 1. A sample is either ⊥ or a sequence of t states. A
state at a program point π is a mapping of program variables
(visible at point π) to symbolic (random) linear expressions

in terms of the input variables of the enclosing procedure.
We use the notation Si to denote the ith state in sample S.

The random interpreter starts by initializing to ⊥ the
summaries of all procedures, and the samples at all pro-
gram points except at procedure entry points. The samples
at entry points are initialized to Si(x) = x for every input
variable x and 1 ≤ i ≤ t. The random interpreter com-
putes a sample S at each program point from the samples
at the immediately preceding program points, and using the
summaries computed so far for the called procedures. The
transfer functions for the four kinds of flowchart nodes are
described below. After the random interpreter is done inter-
preting a procedure, the summary is simply the projection
of the sample (or the t states) at the end of the procedure
to the output variables of the procedure. The random inter-
preter interprets each flowchart node as follows.

Assignment Node.See Figure 1(a). Let S be the sam-
ple before an assignment node x := e. If S is ⊥, then the
sample S′ is defined to be ⊥. Otherwise, the random inter-
preter computes S′ by executing the assignment statement
in sample S as follows.

S′
i(x) =

(
rand() if e is ?

Eval(e, Si) otherwise

S′
i(y) = Si(y), for all variables y other than x.

Here rand() denotes a fresh random value.

Conditional Node.See Figure 1(b). Let S be the sample
before a conditional node. The samples S1 and S2 after the
conditional node are simply defined to be S. This reflects
the fact that we abstract away the conditional guards.

Join Node.See Figure 1(c). Let S1 and S2 be the two sam-
ples immediately before a join point. If S1 is ⊥, then the
sample S after the join point is defined to be S2. Similarly,
if S2 is ⊥, then S = S1. Otherwise, the random interpreter
selects t random weights w1, . . . , wt to perform a join oper-
ation. The join operation involves taking a random affine

combination of the corresponding states in the two samples
S1 and S2 immediately before the join point.

Si = φwi(S
1
i , S2

i)

Procedure Call.See Figure 1(d). Let S be the sample
before a call to procedure P ′, whose input (global) vari-
ables are i1, . . . , ik. If S is ⊥, or if the summary YP ′ is ⊥,
then the sample S′ after the procedure call is defined to be
⊥. Otherwise the random interpreter executes the proce-
dure call as follows. The random interpreter first generates
t fresh random runs Y1, . . . , Yt for procedure P ′ using the
current summary (t runs) for procedure P ′. Each fresh run
Yi for procedure P ′ is generated by taking a random affine
combination of the t runs in the summary of procedure P ′.
This involves choosing random weights wi,1, . . . , wi,t with
the constraint that wi,1 + · · ·+ wi,t = 1, and then doing the
following computation.

Yi(x) =

tX
j=1

wi,j × YP ′,j(x)

The effect of a call to procedure P ′ is to update the values
of the variables OP ′ that are written to by procedure P ′.
The random interpreter models this effect by updating the
values of the variables OP using the fresh random runs Yi

(computed above) as follows.

S′
i(x) =

(
Yi(x)[Si(i1)/i1, . . . , Si(ik)/ik] if x ∈ OP ′

Si(x) otherwise

4.3 Phase 2
For the second phase, the random interpreter also main-

tains a sample S (which is a sequence of t states) at each
program point, as in phase 1. The samples are computed
for each program point from the samples at the preceding
program points in exactly the same manner as described in
Section 4.2. However, there are two main differences. First,
the states are mapping of program variables to constants,
i.e., elements of the field F. Second, the sample S at the
entry point of a procedure P is obtained as an affine com-
bination of all the non-⊥ samples at the call sites to P . Let
these samples be S1, . . . , Sk. Then for any variable x,

Si(x) =

kX
j=1

wi,j × Sj
i (x)

where wi,1, . . . , wi,k are random weights with the constraint
that wi,1 + · · · + wi,k = 1, for all 1 ≤ i ≤ t. This affine
combination encodes all the relationships (involving input
variables of procedure P) that hold in all calls to procedure
P .

4.4 Optimization
Maintaining a sample explicitly at each program point

is expensive (in terms of time and space complexity) and
redundant. For example, consider the samples before and
after an assignment node x := e. They differ (at most) only
in the values of variable x.

An efficient way to represent samples at each program
point is to convert all procedures into minimal SSA form [3]
and to maintain one global sample for each procedure in-
stead of maintaining a sample at each program point. The

values of a variable x in the sample at a program point π are
represented by the values of the variable vx,π in the global
sample, where vx,π is the renamed version of variable x at
program point π after the SSA conversion. Under such a
representation, interpreting an assignment node or a proce-
dure call simply involves updating the values of the modified
variables in the global sample. Interpreting a join node in-
volves updating the values of φ variables at that join point
in the global sample.

This completes the description of the interprocedural ran-
dom interpretation. We sketch next the proof of correctness.

5. CORRECTNESS OF THE ALGORITHM
A sample Sπ computed by the random interpreter at a

program point π has the following properties. We use the
term input context, or simply, context, to denote any set
of equivalences between program expressions involving only
the input variables.)

D1. Completeness: In all input contexts, Sπ entails all
equivalences that hold at π along the paths analyzed
by the random interpreter.

D2. Soundness: With high probability, in all input con-
texts, Sπ entails only the equivalences that hold at π
along the paths analyzed by the random interpreter.
The error probability γ(t) (assuming that the preced-
ing samples satisfy property D2) is bounded above by

γ(t) ≤ qkI

�
dkv

q

�bt/kvc

where d = nj +nc+∆. Here nj refers to the number of
join points and nc refers to the number of procedure
calls along any path analyzed by the random inter-
preter. ∆ refers to the maximum degree of SEval(e)
for any expression e computed by the random inter-
preter (and expressed in terms of the input variables
of the program) along any path analyzed by it. 1

We briefly describe the proof technique used to prove these
properties. Detailed proof can be found in the full version
of the paper [8].

First we hypothetically extend the random interpreter to
compute a fully-symbolic state at each program point, i.e.,
a state in which variables are mapped to polynomials in
terms of the input variables and random weight variables
corresponding to join points and procedure calls. A key
part of the proof strategy is to prove that the fully-symbolic
state at each point captures exactly the set of equivalences
at that point in any context along the paths analyzed by
the random interpreter. In essence, a fully-symbolic inter-
preter is both sound and complete, even though it might
be computationally expensive. The proof of this fact is by
induction on the number of steps performed by the random
interpreter.

Property D1 follows directly from the fact that the t states
that make up a sample in the random interpreter can all be
obtained by instantiating the random variables in the fully-
symbolic state.

1 ∆ is 1 for the linear arithmetic abstraction. For the ab-
straction of uninterpreted functions, ∆ is bounded above by
the maximum number of function applications processed by
the random interpreter along any path analyzed by it.

We now prove property D2 in two steps. (For practical
reasons, we perform arithmetic over the finite field Zq, which
is the field of integers modulo q, for some randomly chosen
prime q. This is described in more detail in Section 9. Hence,
we compute and show that the value of γ(t) is small under
this assumption. It is possible to do the proof without this
assumption, but the proof is more complicated.)

Step 1.We first bound the error probability that a sam-
ple S with t states does not entail exactly the same set of
equivalences as the corresponding fully-symbolic state ρ̃ of
degree d in a given context. The following theorem speci-
fies a bound on this error probability, which we refer to as
the discovery factor D(d, t). It is possible to prove better
bounds for specific abstractions.

Theorem 2. D(d, t) ≤
�

dkv
q

�bt/kvc
.

The proof of this theorem is in the full version of the pa-
per [8]. Note that this theorem also provides a bound on
the error probability in the process of discovering equiva-
lences for the intraprocedural analysis (Theorem 1).

Step 2.Next we observe that it is sufficient to analyze the
soundness of a sample in a smaller number of contexts (com-
pared to the total number of all possible contexts), which
we refer to as a basic set of contexts. If a sample entails
exactly the same set of equivalences as the corresponding
fully-symbolic state for all contexts in a basic set, then it
has the same property for all contexts.

Let N denote the number of contexts in any smallest basic
set of contexts. The following theorem specifies a bound on
N . It is possible to prove better bounds for specific abstrac-
tions.

Theorem 3. N ≤ qkv .

The proof of this theorem is in the full version of the pa-
per [8].

The probability that a sample Sπ is not sound in any of
the contexts is bounded above by the probability that Sπ is
not sound in any one given context multiplied by the size of
any basic set of contexts. Thus, the error probability γ(t)
mentioned in property D2 is bounded above by D(d, t)×N .

6. FIXED POINT COMPUTATION AND
COMPLEXITY

The notion of loop that we consider for fixed point compu-
tation is that of a strongly connected component (SCC). For
defining SCCs in a program in an interprocedural setting,
we consider the directed graph representation of a program
that has been referred to as supergraph in the literature [16].
This directed graph representation consists of a collection of
flowgraphs, one for each procedure in the program, with the
addition of some new edges. For every edge to a call node,
say from node n1 to call node n2 with the call being to pro-
cedure P , we add two new edges: one from node n1 to start
node of procedure P , and the other from exit node of pro-
cedure P to node n2. Now consider the DAG D of SCCs
of this directed graph representation of the program. Note
that an SCC in DAG D may contain nodes of more than

one procedure 2 (in which case it contains all nodes of those
procedures).

In both phase 1 and phase 2, a random interpreter pro-
cesses all SCCs in the DAG D in a top-down manner. It
goes around each SCC until a fixed point is reached. In
phase 1, a sample computed by the random interpreter rep-
resents sets of equivalences, one for each context. A fixed
point is reached for an SCC in phase 1, if for all points π in
the SCC and for all contexts C (for the procedure enclos-
ing point π), the set of equivalences at π in context C has
stabilized. In phase 2, a sample computed by the random
interpreter represents a set of equivalences; and fixed point
is reached for an SCC, if for all points π in the SCC, the set
of equivalences at π has stabilized. Let H1 and H2 be the
upper bounds on the number of iterations required to reach
a fixed point across any SCC in phase 1 and 2 respectively.

To prove a bound on H1, we first observe that there exists
a concise deterministic representation for the sets of equiv-
alences, one for each context, that can arise at any program
point. The set of all equivalences in one given context can
usually be succinctly described. For example, the set of all
linear equivalences can be represented by a basis [9]. For the
domain of uninterpreted functions, the set of all Herbrand
equivalences can be described by a value graph [7]. How-
ever, it it challenging to represent these sets concisely for
all contexts, which are potentially infinite in number. We
illustrate such a representation by means of an example.

Consider the following program fragment.

if (*) then { x := a; }

else { x := 3; }

if (*) then { y := b; z := c; }

else { y := 2; z := 2; }

The sets of equivalences for all contexts can be represented
by the pair 〈E, L〉, where E is a set of relationships involving
program variables and a set of “join” variables λ,

x− 3 + λ1(3− a) = 0

y − 2 + λ2(2− b) = 0

z − 2 + λ3(2− c) = 0

and L is the following set of relationships among λ’s.

λ2 = λ3

The above set of equations capture all equivalences among
the program expressions in all contexts. For example, note
that these equations imply that x = 3 in the context {a =
3}, or y = z in the context {b = c}.

Theorem 4 stated below describes more precisely this rep-
resentation.

Theorem 4. At any program point π, the sets of equiv-
alences for all contexts can be described by a pair 〈E, L〉,
where E is a set of ` ≤ kv equations of the form:

pi +

aiX
j=1

λj
ip

j
i = 0 1 ≤ i ≤ `

with the following properties:

2This happens when the call graph of the program contains
a strongly connected component of more than one node.

E1. For all 1 ≤ i ≤ `, p1
i = 0, . . . , pai

i = 0 are independent
equations that are linear over the input variables of the
enclosing procedure, and ai ≤ kI .

E2. p1 = 0, . . . , p` = 0 are independent equations that are
linear over the program variables visible at π.

and L is a set of linear relationships among λj
i ’s.

The proof of Theorem 4 is in the full version of the paper [8].
It must be pointed out that the representation described by
the above theorem is only of academic interest; it has been
introduced for proving a bound on H1. It is not clear how
to construct such a representation efficiently.

We now state and prove the theorem that bounds H1.

Theorem 5. H1 ≤ (2kI + 1)kv + 1.

Proof. Consider the representation 〈E, L〉 of the sets of
equivalences for all contexts (as described in Theorem 4)
that can arise at a program point π. For any pair 〈E, L〉, we
define measure M(〈E, L〉) to be the sum of the size of L and

the sum of integers in the set {1+kI−ai | pi +
aiP

j=1

pj
i ∈ E}.

Now suppose that at some program point in an SCC,
the sets of equivalences for all contexts are described by
〈E1, L1〉 in some iteration and by 〈E2, L2〉 in a later iter-
ation. Then it must be the case that for all contexts C,
the set of equivalences described by 〈E2, L2〉 in context C
is implied by the set of equivalences described by 〈E1, L1〉
in context C. Using this, it can be shown that if 〈E1, L1〉
and 〈E2, L2〉 do not represent the same sets of equivalences,
then M(〈E2, L2〉) < M(〈E1, L1〉). Note that M(〈E, L〉) is
non-negative with a maximum value of (2kI + 1)kv. Hence,
H ≤ (2kI + 1)kv + 1.

The following theorem states a bound on H2.

Theorem 6. H2 ≤ kv + 1.

The proof of the above theorem follows from the observation
that the set of equivalences at any program point in phase
2 can be represented by a set of at most kv equations that
are linear over the program variables visible at that point.

We have described a worst-case bound on the number
of iterations required to reach a fixed point. However, we
do not know if there is an efficient way to detect a fixed
point since the random interpreter works with randomized
data-structures. Hence, the random interpreter blindly goes
around each SCC as many times as is sufficient for reach-
ing fixed-point. Note that the edges in an SCC S can be
decomposed into a DAG DS and a set of back-edges. If a
random interpreter processes the nodes inside an SCC S in
a top-down manner according to their ordering in the DAG
DS , then it needs to process each SCC for H1(b + 1) steps
in phase 1 and for H2(b + 1) steps in phase 2, where b de-
notes the number of back-edges in that SCC. Note that this
guarantees that a fixed point has been reached. Since b is
typically very small, as experiments also suggest, we ignore
it in our further discussion.

We now state the time complexity of the random inter-
preter as a function of the error probability. We assume
a unit time complexity for our arithmetic operations since
we perform arithmetic over a small finite field. However,
performing arithmetic over a finite field may lead to some
additional error probability, which we analyze in Section 9.

Theorem 7. For any constant c, if we choose t = kIkv +
c, then the random interpreter runs in time O(nkvk2

I t(1 +
r + ftko)) and has an error probability of O((1

q
)c).

Proof. The total number of samples computed by the
random interpreter is ns = n(H1 + H2). We assume the use
of optimization described in Section 4.4. The computation
of a sample across an assignment node takes O(kIt) time
(assuming that the expression assigned is of constant size,
and the Eval function takes O(kI) time). The processing of
a join node takes O(pkIt) time, where p is the number of φ
assignments at the join node after SSA conversion. The cost
of executing a procedure call is O(kIt2ko). Hence, the total
cost of computing all samples is O(nskIt(1 + r + ftko)).

Each sample can be unsound with an error probability of
γ(t), which is defined in property D2 in Section 5. Hence, the
total error probability is bounded above by nsγ(t). Assum-
ing that q is significantly greater than the various parame-
ters d, kI , kv, n, the error probability decreases exponentially
with c, where c = t− kIkv.

If we perform arithmetic using 32 bit numbers, then q ≈ 232

and the error probability can be made arbitrarily small with
even a small value of c. The ratio r is bounded above by
kv. However, it has been reported [3] that r typically varies
between 0.3 to 2.8 irrespective of program size. If we re-
gard kI and ko to be constants, since they denote the size
of the interface between procedure boundaries and are sup-
posedly small, then the complexity of our algorithm reduces
to O(nk2

v), which is linear in the size of the program and
quadratic in the maximum number of visible program vari-
ables at any program point.

7. APPLICATION TO DISCOVERING
LINEAR RELATIONSHIPS

In this section, we apply the generic interprocedural anal-
ysis developed in the earlier sections to the abstraction of
linear arithmetic. For this abstraction, it is possible to prove
a better bound on one of the parameters D(d, t), which con-
trols the complexity of the generic algorithm.

Theorem 8. D(d, t) ≤
�

d
q

te
t−kv

�t−kv

. Here e denotes

the Euler constant 2.718 · · ·.

The proof of Theorem 8 is in the full version of the paper [8].
Theorem 8 implies the following complexity bound, which

is better than the generic bound.

Theorem 9. For any constant c, if we choose t = kv +
kI+c, then the random interpreter runs in time O(nkvk2

I t(1+
r + ftko)) and has an error probability of O((1

q
)c).

It must be mentioned that the above bound is a conser-
vative bound in terms of the constraint on t. Experiments
discussed in Section 10 suggest that even t = 3 does not
yield any error in practice.

Related Work.Recently, Muller-Olm and Seidl gave a de-
terministic algorithm (MOS) that discovers all linear rela-
tionships in programs that have been abstracted using non-
deterministic conditionals [14]. The MOS algorithm is also
based on computing summaries of procedures. However,
their summaries are deterministic and consist of linearly

x := i1; x := i3;

*

Input: i1, i2, i3

x := i2;

y := 4;
z := x;

y := 0;
z := 0;

*

{ x = i1, y = 4, z = i1 }

{ x = i2, y = 4, z = i2 }

{ x = i3, y = 4, z = i3 }

{ x = i1, y = i1, z = 5 }

{ x = i2, y = i2, z = 5 }

{ x = i3, y = i3, z = 5 }

{ x = i1, y = 0, z = 0 }

{ x = i2, y = 0, z = 0 }

{ x = i3, y = 0, z = 0 }

Few instantiations of (for random values of αi’s)

{ x = α1i1+α2i2+(1-α1-α2)i3,
y = α34+α4x+(1-α3-α4)0,
z = α5x+α65+(1-α5-α6)0 }

Deterministic Summary:

Randomized Summary:

y := x;
z := 5;

Figure 6: A code fragment that illustrates the dif-
ference between the deterministic summaries com-
puted by MOS algorithm and the randomized sum-
maries computed by our algorithm.

independent runs of the program. The program shown in
Figure 6 illustrates the difference between the deterministic
summaries computed by MOS algorithm and the random-
ized summaries computed by our algorithm. The MOS al-
gorithm maintains the (linearly independent) real runs of
the program, and it may have to maintain as many as k2

v

runs. The runs maintained by our algorithm are fictitious as
they do not arise in any concrete execution of the program;
however they have the property that (with high probability
over the random choices made by the algorithm) they entail
exactly the same set of equivalences in all contexts as do the
real runs. Our algorithm needs to maintain only a few runs.
The conservative theoretical bounds show that kv + kI runs
are required while experiments suggest that even 3 runs are
good enough.

The authors have proved a complexity of O(nk8
v) for the

MOS algorithm assuming a unit cost measure for arithmetic
operations. However, it turns out that the arithmetic con-
stants that arise in MOS algorithm may be so huge that
Ω(2n) bits for required for representing constants, and hence
Ω(2n) time is required for performing a single arithmetic
operation. Thus, the complexity of MOS algorithm is expo-
nential in n. Program Pm shown in Figure 7 in Section 9
illustrates such an exponential behavior of MOS algorithm.
The MOS algorithm can also use the technique of avoiding
large arithmetic constants by performing arithmetic modulo
a randomly chosen prime, as described in Section 9. How-
ever this makes MOS a randomized algorithm; and the com-
plexity of our randomized algorithm remains better than
that of MOS. It is not clear if there exists a polynomial time
deterministic algorithm for this problem.

Sagiv, Reps and Horwitz gave an efficient algorithm (SRH)
to discover linear constants interprocedurally in a program [19].
Their analysis only considers those affine assignments whose

right hand sides contain at most one occurrence of a vari-
able. However, our analysis is more precise as it treats all
affine assignments in a precise manner, and also it discovers
all linear relationships (not just constants).

The first intraprocedural analysis for discovering all linear
relationships was given by Karr much earlier in 1976 [9]. The
fact that it took several years to obtain an interprocedural
analysis to discover all linear relationships in linear programs
demonstrates the complexity of interprocedural analysis.

8. APPLICATION TO VALUE NUMBERING
In this section, we discuss the application of our tech-

nique to discovering equivalences among expressions built
from unary uninterpreted functions. This abstraction is very
useful in modeling fields of data-structures and can be used
to compute must-alias information. For this abstraction, it
is possible to prove better bounds on the parameters D(d, t)
and N , which control the complexity of the generic algo-
rithm.

Theorem 10. D(d, t) ≤ k2
vt2
�

d
q

�t−2

.

The proof of Theorem 10 is similar to the proof of Theo-
rem 8 and is based on the observation that any equivalence
in the theory of unary uninterpreted functions involves only
2 variables, rather than kv variables.

Theorem 11. N ≤ k2
vq2.

The proof of Theorem 11 is given in the full version of the
paper [8].

Theorem 10 and Theorem 11 imply the following com-
plexity bound, which is better than the generic bound.

Theorem 12. For any constant c, if we choose t = 4+ c,
then the random interpreter runs in time O(nkvk2

I t(1 + r +
ftko)) and has an error probability of O(1

qc).

Related Work.There have been number of attempts at de-
veloping intraprocedural algorithms for global value num-
bering, which is the problem of discovering equivalences in
a program with non-deterministic conditionals and uninter-
preted functions. Until recently, all the known algorithms
were either exponential or incomplete [10, 17, 18]. Recently,
we presented a randomized [6] as well as a deterministic [7]
polynomial time complete algorithm for this problem.

We are not aware of any complete interprocedural algo-
rithm for value numbering. Gil and Itai have characterized
the complexity of a similar problem, that of type analysis of
object oriented programs in an interprocedural setting [4].

9. ARITHMETIC IN A FINITE FIELD
We first illustrate the problem that arises from perform-

ing arithmetic over an infinite field. Consider the program
shown in Figure 7. Any summary-based approach for dis-
covering linear relationships will essentially compute the fol-
lowing summary for procedures Fm and Gm:

Fm(x) = 22m

x

Gm(x) = 22m

x

Note that representing the arithmetic constant 22m

using
standard decimal notation requires Ω(2m) digits.

F0(x) = { return 2x; }

Fi(x) = { t := Fi−1(x); return Fi−1(t); }

G0(x) = { return 2x; }

Gi(x) = { t := Gi−1(x); return Gi−1(t); }

Main() = { t1 := Fm(0); t2 := Gm(0);

Assert(t1 = t2); }

Figure 7: A program Pm for which any determin-
istic summary based interprocedural analysis would
require Ω(2m) space and time for manipulating arith-
metic constants (assuming standard binary repre-
sentation). The program Pm contains 2m + 3 proce-
dures Main, Fi and Gi for every integer i ∈ {0, . . . , m}.
A randomized analysis does not have this problem.

The problem of big numbers can be avoided by performing
computations over the finite field Zq, which is the field of in-
tegers modulo q, for some randomly chosen prime q, instead
of working over the infinite field [12]. However, this may
result in an additional error probability in the algorithm,
if the soundness property (property B1) of the SEval func-
tion described in Section 2.3.1 breaks down. The soundness
of SEval function for the abstraction of uninterpreted func-
tions does not rely on the underlying field; hence performing
arithmetic over a finite field in that case does not introduce
any additional error probability. However, the soundness
of SEval function for linear arithmetic abstraction breaks
if arithmetic is performed over a finite field. We next de-
scribe the resulting additional error probability in that case
for both discovering and verifying equivalences.

For the purpose of discovering equivalences, we need to
run the algorithm described in Section 4 two times, each
time with an independently chosen random prime, say q1

and q2. The equivalences discovered in the first run of the
algorithm are verified in the second run of the algorithm.
This is required because if there is an equivalence involv-
ing large constants, say y = bx for some large constant b
and variables x and y, then the first run of the algorithm
will print out an spurious equivalence y = (b mod q1)x.
The second run of the algorithm will (very likely) invali-
date this spurious equivalence since the probability that b
mod q1 = b mod q2 for randomly chosen large enough q1

and q2 is very small. However, note that this technique does
not discover the equivalence y = bx; in general it does not
discover equivalences that involve constants that are larger
than the randomly chosen prime numbers. Perhaps this is
the best that can be hoped from a polynomial time algo-
rithm since the size of the constants in equivalences may be
exponential in the size of the program, as illustrated by the
example in Figure 7. The resulting additional error proba-
bility for discovering equivalences is given by the product of
the number of independent equivalences discovered and the
additional error probability for verifying an equivalence.

The additional error probability for verifying an equiva-
lence is simply the error probability that two given distinct
integers are equal modulo a random prime q. The following
property states this error probability.

Prime Used
t 983 65003 268435399

E1
a E2 E3 E1 E2 E3 E1 E2 E3

2 1.7 0.2 95.5 0.1 0 95.5 0 0 95.5
3 0 0 64.3 0 0 3.2 0 0 0
4 0 0 0.2 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0

a Ei = ((m′
i −mi)/m′

i)× 100
m′

1 = # of reported variable constants x=c
m′

2 = # of reported variable equivalences x=y
m′

3 = # of reported dependent induction variables
mi = # of correct relationships of the corresponding
kind

Table 1: The percentage Ei of incorrect relationships
of different kinds discovered by the interprocedural
random interpreter as a function of the number of
runs and the randomly chosen primes on a collection
of programs, which are listed in Table 2. The to-
tal number of correct relationships discovered were
m1 = 3442 constants, m2 = 4302 variable equivalences,
and m3 = 50 dependent induction variables.

Property 13. The probability that two distinct m bit in-
tegers are equal modulo a randomly chosen prime less than
U is at most 1

u
for U > 2um log (um).

Theoretically, the size of constants that can arise in the
equivalences can be O(2n), as illustrated by the example
in Figure 7. Hence, theoretically, to make the error proba-
bility arbitrarily small, we need to work with primes whose
size is O(n). However, in practice, the size of all equiva-
lences is bounded by a small constant, and hence working
with a small constant sized prime yields a low error proba-
bility. Our experiments suggest that a 32 bit prime is good
enough in practice, as it did not yield any false equivalence.

10. EXPERIMENTS
In the earlier part of this paper we have expanded the

body of theoretical evidence that randomized algorithms
may have certain advantages, such as simpler implementa-
tions and better computational complexity, over determin-
istic ones. In this paper, for the first time, we investigate
experimentally the behavior of these algorithms. The goal
of these experiments are threefold: (1) attempt to measure
experimentally the soundness probability and how it varies
with certain parameters of the algorithm, (2) measure the
running time and effectiveness of the interprocedural ver-
sion of the algorithm, as compared with the intraprocedural
version, and (3) perform a similar comparison with a deter-
ministic interprocedural algorithm.

We ran all experiments on a Pentium 1.7GHz machine
with 1Gb of memory. We used a number of programs, up to
28,000 lines long, some from the SPEC95 benchmark suite,
and others from similar measurements in previous work [19].
We measured running time using enough repetitions to avoid
timer resolution errors.

We have implemented the interprocedural algorithm de-
scribed in this paper, in the context of the linear equalities
domain. The probability of error grows with the complex-
ity of the relationships we try to find, and shrinks with the

Random Inter. Random Intra. Determ. Inter.
Program Lines in x=c x=y dep Time2 Time3 ∆x=c ∆x=y ∆dep Speedup3 ∆in Speedup2

go 28622 63 1700 796 6 47.3 70.4 170 260 3 107 17 1.9
ijpeg 28102 31 825 851 12 3.8 5.7 34 1 9 24 3 2.3
li 22677 53 392 2283 9 34.0 51.4 160 1764 6 756 20 1.3
gzip 7760 49 525 372 2 2.0 3.05 200 12 1 39 6 2.0
bj 2109 0 117 9 0 1.2 1.8 0 0 0 11 0 2.3
linpackc 1850 14 86 16 1 0.07 0.11 17 1 1 9 0 1.8
sim 1555 3 117 296 0 0.35 0.54 3 11 0 22 0 1.7
whets 1275 9 80 2 6 0.03 0.05 17 1 0 9 0 1.5
flops 1151 0 52 4 4 0.02 0.03 0 0 0 22 0 2.0

Table 2: The column “in” shows the number of linear relationships involving the input variables at the start of
procedures. The column “x=c” shows the number of variables equal to constant values. The column “x=y”
shows the number of variable equivalences. The column “dep” shows dependent loop induction variables.
The “Timet” columns show running time (in seconds) for t = 2 and t = 3. The columns labeled “∆” show
how many fewer relationships of a certain kind are found with respect to the interprocedural randomized
algorithm. The columns labeled “Speedupt” columns show how many times faster is each algorithm with
respect to the interprocedural randomized one with a given value of t.

increase in number of runs and the size of the prime num-
ber we use for modular arithmetic. The last two parameters
have a direct impact on the running time.3

We first ran the interprocedural randomized analysis on
our suite of programs, using a variable number of runs, and
three prime numbers of various sizes. We consider here
equalities with constants (x=c), variable equalities (x=y),
and linear induction variable dependencies among variables
used and modified in a loop (dep).4 Table 1 shows the num-
ber of erroneous relationships reported in each case, as a
percentage of the total relationships found for the corre-
sponding kind.

These results are for programs with hundreds of variables,
for which the theory requires t > kv, yet in practice we do
not notice any errors for t ≥ 4. Similarly, our theoretical
probability of error when using small primes, are also pes-
simistic. With the largest prime shown in Table 1 we did
not find any errors if we use at least 3 runs. 5 In fact, for
the simpler problem of discovering equalities, we do not ob-
serve any errors for t = 2. This is in fact the setup that
we used for the experiments described below that compare
the precision and cost (in terms of time) of the randomized
interprocedural analysis with that of randomized intrapro-
cedural analysis and deterministic interprocedural analysis.

The first set of columns in Table 2 show the results of the
interprocedural randomized analysis for a few benchmarks
with more than 1000 lines of code each. The column head-
ings are explained in the caption. We ran the algorithm with
both t = 2 and t = 3, since the smaller value is faster and suf-
ficient for discovering equalities between variables and con-
stants. As expected, the running time increases linearly with
t. The noteworthy point here is the number of relationships
found between the input variables of a procedure.

In the second set of columns in Table 2 we show how many

3For larger primes, the arithmetic operations cannot be in-
lined anymore.
4We found many more linear dependencies, but report only
the induction variable ones because those have a clear use
in compiler optimization.
5With only 2 runs, we find a linear relationship between any
pair of variables, as expected.

fewer relationships of each kind are found by the intraproce-
dural randomized analysis, and how much faster that anal-
ysis is, when compared to the interprocedural one. The
intraprocedural analysis obviously misses all of the input re-
lationships and consequently misses some internal relation-
ships as well, but it is much faster. The loss of effective-
ness results are similar to those reported in [19]. Whether
the additional information collected by the interprocedural
analysis is worth the extra implementation and compile-time
cost will depend on how the relationships are used. For com-
piler optimization it is likely that intraprocedural results are
good enough, but perhaps for applications such as program
verification the extra cost might be worth paying.

Finally, we wanted to compare our interprocedural algo-
rithm with similar deterministic algorithms. We have imple-
mented and experimented with the SRH [19] algorithm, and
the results are shown in the third set of columns in Table 2.
SRH is weaker than our algorithm, in that it searches only
for equalities with constants. It does indeed find all such
equalities that we also find. In theory, there are equalities
with constants that we can find but SRH cannot, because
they are consequences of more complex linear relationships.
However, the set of benchmarks that we have looked at does
not seem to have any such hard-to-find equalities. For com-
parison with this algorithm, we used t = 2, which is suf-
ficient for finding equalities of the form x = c and x = y.
However, we find a few more equalities between the input
variables (∆in), and numerous equalities between local vari-
ables, which SRH does not attempt to find. On average,
SRH is 1.5 to 2.3 times faster than our algorithm. Again,
the cost may be justified by the expanded set of relationships
that we discover.

A fairer comparison would have been with the MOS [14]
algorithm, which is the most powerful deterministic algo-
rithm known for this problem. However, implementing this
algorithm seems quite a bit more complicated than either
of our algorithm or SRH. We also could not obtain an im-
plementation from anywhere else. Furthermore, we spec-
ulate that due to the fact that MOS requires data struc-
tures whose size is O(k4

v) at every program point, it will not
fare well on the larger examples that we have tried, which
have hundreds of variables and tens of thousands of program

points. Another source of bottleneck may be the complexity
of manipulating large constants that may arise during the
analysis.

11. CONCLUSION
We described a unified framework for random interpre-

tation, along with generic completeness and probabilistic
soundness theorems, both for verifying and for discovering
relationships among variables in a program. These results
can be instantiated directly to the domain of linear relation-
ships and, separately, of Herbrand equivalences, to derive ex-
isting algorithms and their properties. This framework also
provides guidance for instantiating the algorithms to other
domains. It is, however, an open problem if a complete al-
gorithm can be obtained for a combination of domains, such
as linear arithmetic and Herbrand equivalences.

The most important result of this paper is to show that
random interpreters can be extended in a fairly natural way
to an interprocedural analysis. This extension is based on
the observation that a summary of a procedure can be stored
concisely as the results of a number of intraprocedural ran-
dom interpretations with symbolic values for input variables.
Using this observation, we have obtained interprocedural
randomized algorithms for linear relationships (with better
complexity than similar deterministic algorithms) and for
Herbrand equivalences (for which there is no deterministic
algorithm).

Previously published random interpretation algorithms re-
semble random testing procedures, from which they inherit
trivial data structures and low complexity. The algorithms
described in this paper start to mix randomization with sym-
bolic analysis. The data structures become somewhat more
involved, essentially consisting of random instances of oth-
erwise symbolic data structures. Even the implementation
of the algorithms starts to resemble that of symbolic deter-
ministic algorithms. This change of style reflects our belief
that the true future of randomization in program analysis is
not in the form of a world parallel to traditional symbolic
analysis algorithms, but in an organic mixture that exploits
the benefits of both worlds.

Acknowledgments
We thank the anonymous reviewers for their useful feedback
on a draft of this paper.

12. REFERENCES
[1] P. Briggs, K. D. Cooper, and L. T. Simpson. Value

numbering. Software Practice and Experience,
27(6):701–724, June 1997.

[2] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Proceedings of the 4th ACM Symposium on Principles
of Programming Languages, pages 234–252, 1977.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, 13(4):451–490, Oct. 1990.

[4] J. Y. Gil and A. Itai. The complexity of type analysis
of object oriented programs. Lecture Notes in
Computer Science, 1445:601–634, 1998.

[5] S. Gulwani and G. C. Necula. Discovering affine
equalities using random interpretation. In 30th ACM
Symposium on Principles of Programming Languages,
pages 74–84. ACM, Jan. 2003.

[6] S. Gulwani and G. C. Necula. Global value numbering
using random interpretation. In 31st ACM Symposium
on Principles of Programming Languages, pages
342–352, Jan. 2004.

[7] S. Gulwani and G. C. Necula. A polynomial-time
algorithm for global value numbering. In 11th Static
Analysis Symposium, volume 3148 of Lecture Notes in
Computer Science. Springer, 2004.

[8] S. Gulwani and G. C. Necula. Precise interprocedural
analysis using random interpretation. Technical
Report UCB//CSD-04-1353, University of California,
Berkeley, 2004.

[9] M. Karr. Affine relationships among variables of a
program. In Acta Informatica, pages 133–151.
Springer, 1976.

[10] G. A. Kildall. A unified approach to global program
optimization. In 1st ACM Symposium on Principles of
Programming Language, pages 194–206. ACM, Oct.
1973.

[11] W. Landi. Undecidability of static analysis. ACM
Letters on Programming Languages and Systems,
1(4):323–337, Dec. 1992.

[12] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[13] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, San Francisco,
2000.

[14] M. Müller-Olm and H. Seidl. Precise interprocedural
analysis through linear algebra. In 31st Annual ACM
Symposium on Principles of Programming Languages,
pages 330–341. ACM, Jan. 2004.

[15] T. Reps. On the sequential nature of interprocedural
program-analysis problems. Acta Informatica,
33(8):739–757, Nov. 1996.

[16] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In 22nd ACM Symposium on POPL,
pages 49–61. ACM, 1995.

[17] B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Global value numbers and redundant computations.
In 15th ACM Symposium on Principles of
Programming Languages, pages 12–27, 1988.

[18] O. Rüthing, J. Knoop, and B. Steffen. Detecting
equalities of variables: Combining efficiency with
precision. In Static Analysis Symposium, volume 1694
of Lecture Notes in Computer Science, pages 232–247.
Springer, 1999.

[19] M. Sagiv, T. Reps, and S. Horwitz. Precise
interprocedural dataflow analysis with applications to
constant propagation. Theoretical Computer Science,
167(1–2):131–170, 30 Oct. 1996.

[20] M. Sharir and A. Pnueli. Two approaches to
interprocedural data flow analysis. In S.S. Muchnick
and N.D. Jones, editors,. Program Flow Analysis:
Theory and Applications, pages 189–234, 1981.

	Introduction
	Random Interpretation
	Preliminaries
	Affine Join Operator
	Eval Function
	Properties of the SEval Function

	Analysis and Error Probability
	Verifying Equivalences
	Discovering Equivalences

	Example

	Informal Description of the Algorithm
	Random Symbolic Run
	Multiple Runs

	Interprocedural Random Interpretation
	Preliminaries
	Phase 1
	Phase 2
	Optimization

	Correctness of the Algorithm
	Fixed Point Computation and Complexity
	Application to Discovering Linear Relationships
	Application to Value Numbering
	Arithmetic in a Finite Field
	Experiments
	Conclusion
	References -9pt

