SPP Annual Meeting 2013, Bad Boll

Cohomology Rings of Fine Quiver Moduli are Tautologically Presented

H. Franzen
franzen@math.uni-wuppertal.de

Quiver Settings

■ Quiver: directed finite graph Q, vertices Q_{0}, arrows Q_{1}
■ Dimension vector for a quiver Q : tuple d of positive integers $d_{i}\left(\right.$ all $\left.i \in Q_{0}\right)$
■ Stability condition: a linear map $\theta: \mathbb{Z}^{Q_{0}} \rightarrow \mathbb{Z}$

Quiver Settings

■ Quiver: directed finite graph Q, vertices Q_{0}, arrows Q_{1}
■ Dimension vector for a quiver Q : tuple d of positive integers d_{i} (all $i \in Q_{0}$)
■ Stability condition: a linear map $\theta: \mathbb{Z}^{Q_{0}} \rightarrow \mathbb{Z}$

Remark

In the following: Q, d, θ fixed with

- Q acyclic
- $\theta(d)=0$
- d is θ-coprime, i.e. $\theta\left(d^{\prime}\right) \neq 0$ for all $0 \leq d^{\prime} \leq d$ with $0 \neq d^{\prime} \neq d$

Representations

Definition

A representation M of Q consists of

- vector spaces M_{i} (all $i \in Q_{0}$) and
\square linear maps $M_{\alpha}: M_{i} \rightarrow M_{j}($ all $\alpha: i \rightarrow j)$.

Representations

Definition

A representation M of Q consists of

- vector spaces M_{i} (all $i \in Q_{0}$) and

■ linear maps $M_{\alpha}: M_{i} \rightarrow M_{j}($ all $\alpha: i \rightarrow j)$.
Representations of Q form a \mathbb{C}-linear abelian category.

Representations

Definition

A representation M of (Q, d) consists of
■ vector spaces M_{i} (all $i \in Q_{0}$) of dimension d_{i} and
■ linear maps $M_{\alpha}: M_{i} \rightarrow M_{j}($ all $\alpha: i \rightarrow j)$.

Representations

Definition

A representation M of (Q, d) over a variety X consists of
■ vector bundles M_{i} on X (all $i \in Q_{0}$) of rank d_{i} and
■ bundle maps $M_{\alpha}: M_{i} \rightarrow M_{j}($ all $\alpha: i \rightarrow j)$.

Moduli space

Definition

A moduli space of (Q, d) is a variety Y, whose points parametrize the isomorphism classes of representations of (Q, d) (in a functorial way).

Moduli space

Definition

A moduli space of (Q, d) is a variety Y, whose points parametrize the isomorphism classes of representations of (Q, d) (in a functorial way).

Problem: This hardly ever exists.

Moduli space

Definition

A moduli space of (Q, d) is a variety Y, whose points parametrize the isomorphism classes of representations of (Q, d) (in a functorial way).

Definition

A representation M of (Q, d) is called θ-semi-stable if for every sub-representation M^{\prime} of M, we have $\theta\left(d^{\prime}\right) \geq 0$ (where d^{\prime} denotes the dimension vector of M^{\prime}).

Moduli space

Definition

A moduli space of (Q, d, θ) is a variety Y, whose points parametrize the isomorphism classes of θ-(semi-)stable representations of (Q, d) (in a functorial way).

Definition

A representation M of (Q, d) is called θ-semi-stable if for every sub-representation M^{\prime} of M, we have $\theta\left(d^{\prime}\right) \geq 0$ (where d^{\prime} denotes the dimension vector of M^{\prime}).

Universal representation

Let Y be a moduli space of (Q, d, θ).

Definition

A universal representation U of (Q, d, θ) is a representation of (Q, d) over Y such that for every $[M] \in Y$, we have $U_{[M]} \cong M$.

What we know so far

Results about cohomology rings of moduli spaces:
■ Kirwan '84: Cohomology of Quotients in Symplectic Geometry. Nearly explicit description of cohomology ring of moduli space of n ordered points in \mathbb{P}^{1} modulo Sl_{2}.
■ Haussmann, Knudson '98: Calculate above cohomology ring explicitly using Gröbner bases.
■ Ellingsrud, Stromme '89: General result for cohomology ring of GIT-quotient.

Properties of moduli spaces

Remember: Q acyclic, d is θ-coprime

Facts

■ King: There exists a moduli space Y for (Q, d, θ) and a universal representation U.

Properties of moduli spaces

Remember: Q acyclic, d is θ-coprime

Facts

■ King: There exists a moduli space Y for (Q, d, θ) and a universal representation U.
■ King: Y is projective and non-singular.

Properties of moduli spaces

Remember: Q acyclic, d is θ-coprime

Facts

■ King: There exists a moduli space Y for (Q, d, θ) and a universal representation U.
\square King: Y is projective and non-singular. Thus, Y fulfills Poincaré duality, i.e. $H^{2 r-i}(Y) \cong H_{i}(Y)$ ($r=$ complex dimension of Y).

Properties of moduli spaces

Remember: Q acyclic, d is θ-coprime

Facts

■ King: There exists a moduli space Y for (Q, d, θ) and a universal representation U.
\square King: Y is projective and non-singular. Thus, Y fulfills Poincaré duality.
■ Ellingsrud-Stromme: Y is an even-cohomology space, i.e. $H^{2 i+1}(Y)=0($ all $i)$.

Properties of moduli spaces

Remember: Q acyclic, d is θ-coprime

Facts

■ King: There exists a moduli space Y for (Q, d, θ) and a universal representation U.
\square King: Y is projective and non-singular. Thus, Y fulfills Poincaré duality.
■ Ellingsrud-Stromme: Y is an even-cohomology space.
■ King-Walter: The cohomology ring $H(Y):=H^{2 \cdot}(Y ; \mathbb{Q})$ is generated by the Chern classes $c_{v}\left(U_{i}\right)\left(i \in Q_{0}, 1 \leq v \leq d_{i}\right)$ of the universal representation U.

Fix Q, d and θ. Let Y be the moduli space and U the universal representation. Remember:

Fact (King-Walter)

The cohomology ring $H(Y):=H^{2}(Y ; \mathbb{Q})$ is generated by the Chern classes $c_{\nu}\left(U_{i}\right)$ of the universal representation U.

Fix Q, d and θ. Let Y be the moduli space and U the universal representation. Remember:

Fact (King-Walter)

The cohomology ring $H(Y):=H^{2}(Y ; \mathbb{Q})$ is generated by the Chern classes $c_{\nu}\left(U_{i}\right)$ of the universal representation U.

Goal

Find a "natural" defining set of relations between the generators $c_{v}\left(U_{i}\right)$ of $H(Y)$.

Result

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.

Result

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.
Construct a flag bundle $\mathrm{Fl}(U) \rightarrow Y$ with complete flags $\mathscr{U}_{i}{ }^{*}$ of $\left(U_{i}\right)_{\mathrm{Fl}(U)}$ (all vertices $\left.i\right)$.

Result

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.
Construct flag bundle $\mathrm{Fl}(U)$ with flags \mathscr{U}_{i}^{*}. Define maps

$$
\varphi_{\alpha}^{d^{\prime}}: \mathscr{U}_{i}^{d_{i}^{\prime}} \hookrightarrow\left(U_{i}\right)_{\mathrm{Fl}(U)} \rightarrow\left(U_{j}\right)_{\mathrm{Fl}(U)} \rightarrow\left(U_{j}\right)_{\mathrm{Fl}(U)} / \mathscr{U}_{j}^{d_{j}^{\prime}}
$$

for every arrow $\alpha: i \rightarrow j$ and for every $0 \leq d^{\prime} \leq d$ with $\theta\left(d^{\prime}\right)<0$.

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.
Construct flag bundle $\mathrm{Fl}(U)$ with flags $\mathscr{U}_{i}{ }^{*}$. Define maps

$$
\varphi_{\alpha}^{d^{\prime}}: \mathscr{U}_{i}^{d_{i}^{\prime}} \hookrightarrow\left(U_{i}\right)_{\mathrm{Fl}(U)} \rightarrow\left(U_{j}\right)_{\mathrm{Fl}(U)} \rightarrow\left(U_{j}\right)_{\mathrm{Fl}(U)} / \mathscr{U}_{j}^{d_{j}^{\prime}}
$$

for every arrow $\alpha: i \rightarrow j$ and for every $0 \leq d^{\prime} \leq d$ with $\theta\left(d^{\prime}\right)<0$. Call such d^{\prime} forbidden.

Result

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.
Construct flag bundle $\mathrm{Fl}(U)$ with flags \mathscr{U}_{i}^{*}. Define maps $\varphi_{\alpha}^{d^{\prime}}$ for α and forbidden d^{\prime}.
Show that for every $p \in \operatorname{Fl}(U)$, there ex. arrow α with $\left(\varphi_{\alpha}^{d^{\prime}}\right)_{p} \not \equiv 0$.

Degeneracy Classes (after Fulton)

Let $\varphi: E \rightarrow F$ be a map of vector bundles on X. Let \mathscr{E}^{*} and \mathscr{F}^{*} be complete filtrations of E and F, resp. and let $\xi_{i}:=c_{1}\left(\mathscr{E}^{i} / \mathscr{E}^{i-1}\right)$ and $\eta_{j}:=c_{1}\left(\mathscr{F}^{j} / \mathscr{F}^{j-1}\right)$ (i.e. ξ_{i} and η_{j} are the Chern roots of E and F, resp.).

Degeneracy Classes (after Fulton)

Let $\varphi: E \rightarrow F$ be a map of vector bundles on X. Let \mathscr{E}^{*} and \mathscr{F}^{*} be complete filtrations of E and F, resp. and let $\xi_{i}:=c_{1}\left(\mathscr{E}^{i} / \mathscr{E}^{i-1}\right)$ and $\eta_{j}:=c_{1}\left(\mathscr{F}^{j} / \mathscr{F}^{j-1}\right)$ (i.e. ξ_{i} and η_{j} are the Chern roots of E and F, resp.).

Definition

Call $\mathbb{Z}(\varphi):=\prod_{i} \prod_{j}\left(\eta_{j}-\xi_{i}\right) \in H(X)$ the degeneracy class of φ.

Degeneracy Classes (after Fulton)

Let $\varphi: E \rightarrow F$ be a map of vector bundles on X. Let \mathscr{E}^{*} and \mathscr{F}^{*} be complete filtrations of E and F, resp. and let $\xi_{i}:=c_{1}\left(\mathscr{E}^{i} / \mathscr{E}^{i-1}\right)$ and $\eta_{j}:=c_{1}\left(\mathscr{F}^{j} / \mathscr{F}^{j-1}\right)$ (i.e. ξ_{i} and η_{j} are the Chern roots of E and F, resp.).

Definition

Call $\mathbb{Z}(\varphi):=\prod_{i} \prod_{j}\left(\eta_{j}-\xi_{i}\right) \in H(X)$ the degeneracy class of φ.

Remark

Let $Z(\varphi)$ be the closed subset of X of all x with $\varphi_{x}: E_{x} \rightarrow F_{x}$ identically zero.
Then $\mathbb{Z}(\varphi)$ has an inverse image under $H(Z(\varphi)) \rightarrow H(X)$.

Result (continued)

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.
Construct flag bundle $\mathrm{Fl}(U)$ with flags $\mathscr{U}_{i}{ }^{*}$. Define maps $\varphi_{\alpha}^{d^{\prime}}$ for α and "forbidden" d^{\prime}.
For all $p \in \operatorname{Fl}(U)$ there ex. α with $\left(\varphi_{\alpha}^{d^{\prime}}\right)_{p} \not \equiv 0$.

Result (continued)

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.
Construct flag bundle $\mathrm{Fl}(U)$ with flags $\mathscr{U}_{i}{ }^{*}$. Define maps $\varphi_{\alpha}^{d^{\prime}}$ for α and "forbidden" d^{\prime}.
For all $p \in \operatorname{Fl}(U)$ there ex. α with $\left(\varphi_{\alpha}^{d^{\prime}}\right)_{p} \not \equiv 0$, i.e. $\bigcap_{\alpha} Z\left(\varphi_{\alpha}^{d^{\prime}}\right)=\emptyset$.

Result (continued)

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.
Construct flag bundle $\mathrm{Fl}(U)$ with flags $\mathscr{U}_{i}{ }^{*}$. Define maps $\varphi_{\alpha}^{d^{\prime}}$ for α and "forbidden" d^{\prime}.
For all $p \in \operatorname{Fl}(U)$ there ex. α with $\left(\varphi_{\alpha}^{d^{\prime}}\right)_{p} \not \equiv 0$, thus

$$
0=\prod_{\alpha} \mathbb{Z}\left(\varphi_{\alpha}^{d^{\prime}}\right)
$$

Result (continued)

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.
Construct flag bundle $\mathrm{Fl}(U)$ with flags $\mathscr{U}_{i}{ }^{*}$. Define maps $\varphi_{\alpha}^{d^{\prime}}$ for α and "forbidden" d^{\prime}.
For all $p \in \mathrm{Fl}(U)$ there ex. α with $\left(\varphi_{\alpha}^{d^{\prime}}\right)_{p} \not \equiv 0$, thus

$$
0=\prod_{\alpha} \mathbb{Z}\left(\varphi_{\alpha}^{d^{\prime}}\right)
$$

Fact (Grothendieck)

$H(\mathrm{Fl}(U))$ is a free $H(Y)$-module with basis elements $\xi^{\lambda}:=\prod_{i, v} \xi_{i, v}^{\lambda_{i, v}}$ where $0 \leq \lambda_{i, v}<v$.

Result (continued)

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.
Construct flag bundle $\mathrm{Fl}(U)$ with flags $\mathscr{U}_{i}{ }^{\prime}$. Define maps $\varphi_{\alpha}^{d^{\prime}}$ for α and "forbidden" d^{\prime}.
For all $p \in \operatorname{Fl}(U)$ there ex. α with $\left(\varphi_{\alpha}^{d^{\prime}}\right)_{p} \not \equiv 0$, thus

$$
0=\prod_{\alpha} \mathbb{Z}\left(\varphi_{\alpha}^{d^{\prime}}\right)=\sum_{\lambda} \tau^{\lambda}\left(d^{\prime}\right) \cdot \xi^{\lambda}
$$

for some polynomial expressions $\tau^{\lambda}\left(d^{\prime}\right)$ in Chern classes $c_{\nu}\left(U_{i}\right)$.

Fact (Grothendieck)

$H(\mathrm{Fl}(U))$ is a free $H(Y)$-module with basis elements $\xi^{\lambda}:=\prod_{i, v} \xi_{i, v}^{\lambda_{i, v}}$ where $0 \leq \lambda_{i, v}<v$.

Result (continued)

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.
Construct flag bundle $\mathrm{Fl}(U)$ with flags $\mathscr{U}_{i}{ }^{*}$. Define maps $\varphi_{\alpha}^{d^{\prime}}$ for α and "forbidden" d^{\prime}.
Exist $\tau^{\lambda}\left(d^{\prime}\right)$ with $0=\prod_{\alpha} \mathbb{Z}\left(\varphi_{\alpha}^{d^{\prime}}\right)=\sum_{\lambda} \tau^{\lambda}\left(d^{\prime}\right) \xi^{\lambda}$. We call these $\tau^{\lambda}\left(d^{\prime}\right)$ tautological relations.

Result (continued)

Let Q, d and θ as above. Let Y be the moduli space and U a universal rep.
Construct flag bundle $\mathrm{Fl}(U)$ with flags $\mathscr{U}_{i}{ }^{\prime}$. Define maps $\varphi_{\alpha}^{d^{\prime}}$ for α and "forbidden" d^{\prime}.
Exist $\tau^{\lambda}\left(d^{\prime}\right)$ with $0=\prod_{\alpha} \mathbb{Z}\left(\varphi_{\alpha}^{d^{\prime}}\right)=\sum_{\lambda} \tau^{\lambda}\left(d^{\prime}\right) \xi^{\lambda}$. We call these $\tau^{\lambda}\left(d^{\prime}\right)$ tautological relations.

Theorem

$H(Y)$ is the quotient of the polynomial algebra over \mathbb{Q} in $c_{i, v}$ (i vertex of Q and $1 \leq v \leq d_{i}$) modulo the relations

$$
\left(\tau^{\lambda}\left(d^{\prime}\right)\right)\left(c_{i, v} \mid i, v\right)=0
$$

(all λ, all "forbidden" d^{\prime}) and one linear relation among the $c_{i, 1}$'s.

An Example

Let $(Q, d): \stackrel{\longrightarrow}{\bullet}$ and $\theta(m, n)=2 n-3 m$.

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$. 2 3

Source q, sink s and arrows $\alpha_{1}, \alpha_{2}, \alpha_{3}$.

An Example

Fix Y and U.

An Example

Let $(Q, d): \stackrel{\longrightarrow}{\bullet}$ and $\theta(m, n)=2 n-3 m$.
Fix Y and U. Aside: $\operatorname{dim} Y=6$ and Betti numbers 113331 1. A cell decomposition is known.

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$. 2 3

Fix Y and U. Have $\operatorname{Fl}(U)=\operatorname{Fl}\left(U_{q}\right) \times_{Y} \mathrm{Fl}\left(U_{s}\right)$, rep. $U_{\mathrm{Fl}(U)}$ and flags $\mathscr{U}_{q}{ }^{\prime}, \mathscr{U}_{s}{ }^{\text {. }}$.

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$.

Fix Y and U. Have $\mathrm{Fl}(U)=\mathrm{Fl}\left(U_{q}\right) \times_{Y} \mathrm{Fl}\left(U_{s}\right)$, rep. $U_{\mathrm{Fl}(U)}$ and flags $\mathscr{U}_{q}^{*}, \mathscr{U}_{s}^{*}$. Let x_{1}, x_{2} and y_{1}, y_{2}, y_{3} be Chern classes of U_{q} and U_{s}, resp. and ξ_{1}, ξ_{2} and $\eta_{1}, \eta_{2}, \eta_{3}$ the Chern roots.

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$.

Fix Y and U. Have $\mathrm{Fl}(U)=\mathrm{Fl}\left(U_{q}\right) \times_{Y} \mathrm{Fl}\left(U_{s}\right)$, rep. $U_{\mathrm{Fl}(U)}$ and flags $\mathscr{U}_{q}^{*}, \mathscr{U}_{s}^{*}$. Let x_{1}, x_{2} and y_{1}, y_{2}, y_{3} Chern classes, ξ_{1}, ξ_{2} and $\eta_{1}, \eta_{2}, \eta_{3}$ Chern roots.
Basis: $\xi_{2}^{\lambda_{2}} \eta_{2}^{\mu_{2}} \eta_{3}^{\mu_{3}}$ with $\lambda_{2}, \eta_{2}=0,1$ and $\mu_{3}=0,1,2$.

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$.

Fix Y and U. Have $\mathrm{Fl}(U)=\mathrm{Fl}\left(U_{q}\right) \times_{Y} \mathrm{Fl}\left(U_{s}\right)$, rep. $U_{\mathrm{Fl}(U)}$ and flags $\mathscr{U}_{q}^{*}, \mathscr{U}_{s}^{*}$. Let x_{1}, x_{2} and y_{1}, y_{2}, y_{3} Chern classes, ξ_{1}, ξ_{2} and $\eta_{1}, \eta_{2}, \eta_{3}$ Chern roots.
Forbidden: $d^{\prime}=(1,1)$ and $d^{\prime}=(2,2)$.

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$.

Fix Y and U. Have $\mathrm{Fl}(U)=\mathrm{Fl}\left(U_{q}\right) \times_{Y} \mathrm{Fl}\left(U_{s}\right)$, rep. $U_{\mathrm{Fl}(U)}$ and flags $\mathscr{U}_{q}^{*}, \mathscr{U}_{s}^{*}$. Let x_{1}, x_{2} and y_{1}, y_{2}, y_{3} Chern classes, ξ_{1}, ξ_{2} and $\eta_{1}, \eta_{2}, \eta_{3}$ Chern roots.
$1 d^{\prime}=(2,2)$.

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$.

Fix Y and U. Have $\mathrm{Fl}(U)=\mathrm{Fl}\left(U_{q}\right) \times_{Y} \mathrm{Fl}\left(U_{s}\right)$, rep. $U_{\mathrm{Fl}(U)}$ and flags $\mathscr{U}_{q}^{*}, \mathscr{U}_{s}^{*}$. Let x_{1}, x_{2} and y_{1}, y_{2}, y_{3} Chern classes, ξ_{1}, ξ_{2} and $\eta_{1}, \eta_{2}, \eta_{3}$ Chern roots.
$1 d^{\prime}=(2,2)$. Then

$$
0=\mathbb{Z}\left(\varphi_{\alpha_{1}}\right) \cdot \mathbb{Z}\left(\varphi_{\alpha_{2}}\right) \cdot \mathbb{Z}\left(\varphi_{\alpha_{3}}\right)
$$

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$.

Fix Y and U. Have $\mathrm{Fl}(U)=\mathrm{Fl}\left(U_{q}\right) \times_{Y} \mathrm{Fl}\left(U_{s}\right)$, rep. $U_{\mathrm{Fl}(U)}$ and flags $\mathscr{U}_{q}^{*}, \mathscr{U}_{s}^{*}$. Let x_{1}, x_{2} and y_{1}, y_{2}, y_{3} Chern classes, ξ_{1}, ξ_{2} and $\eta_{1}, \eta_{2}, \eta_{3}$ Chern roots.
$1 d^{\prime}=(2,2)$. Then

$$
0=\mathbb{Z}\left(\varphi_{\alpha_{1}}\right) \cdot \mathbb{Z}\left(\varphi_{\alpha_{2}}\right) \cdot \mathbb{Z}\left(\varphi_{\alpha_{3}}\right)=\left(\eta_{3}-\xi_{1}\right)^{3} \cdot\left(\eta_{3}-\xi_{2}\right)^{3}
$$

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$.

Fix Y and U. Have $\mathrm{Fl}(U)=\mathrm{Fl}\left(U_{q}\right) \times_{Y} \mathrm{Fl}\left(U_{s}\right)$, rep. $U_{\mathrm{Fl}(U)}$ and flags $\mathscr{U}_{q}^{\cdot}, \mathscr{U}_{s}^{\cdot}$. Let x_{1}, x_{2} and y_{1}, y_{2}, y_{3} Chern classes, ξ_{1}, ξ_{2} and $\eta_{1}, \eta_{2}, \eta_{3}$ Chern roots.
$1 d^{\prime}=(2,2)$. Then

$$
\begin{aligned}
0 & =\mathbb{Z}\left(\varphi_{\alpha_{1}}\right) \cdot \mathbb{Z}\left(\varphi_{\alpha_{2}}\right) \cdot \mathbb{Z}\left(\varphi_{\alpha_{3}}\right)=\left(\eta_{3}-\xi_{1}\right)^{3} \cdot\left(\eta_{3}-\xi_{2}\right)^{3} \\
& =\tau^{0,0,0}(2,2)+\tau^{0,0,1}(2,2) \cdot \eta_{3}+\tau^{0,0,2}(2,2) \cdot \eta_{3}^{2}
\end{aligned}
$$

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$.

Fix Y and U. Have $\mathrm{Fl}(U)=\mathrm{Fl}\left(U_{q}\right) \times_{Y} \mathrm{Fl}\left(U_{s}\right)$, rep. $U_{\mathrm{Fl}(U)}$ and flags $\mathscr{U}_{q}^{*}, \mathscr{U}_{s}^{*}$. Let x_{1}, x_{2} and y_{1}, y_{2}, y_{3} Chern classes, ξ_{1}, ξ_{2} and $\eta_{1}, \eta_{2}, \eta_{3}$ Chern roots.
$1 d^{\prime}=(2,2)$. Then $0=\tau^{0,0,0}(2,2)+\tau^{0,0,1}(2,2) \cdot \eta_{3}+\tau^{0,0,2}(2,2) \cdot \eta_{3}^{2}$.
$2 d^{\prime}=(1,1)$. Similar.

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$.

Fix Y and U. Have $\mathrm{Fl}(U)=\mathrm{Fl}\left(U_{q}\right) \times_{Y} \mathrm{Fl}\left(U_{s}\right)$, rep. $U_{\mathrm{Fl}(U)}$ and flags $\mathscr{U}_{q}^{*}, \mathscr{U}_{s}^{*}$. Let x_{1}, x_{2} and y_{1}, y_{2}, y_{3} Chern classes, ξ_{1}, ξ_{2} and $\eta_{1}, \eta_{2}, \eta_{3}$ Chern roots.
$1 d^{\prime}=(2,2)$. Then $0=\tau^{0,0,0}(2,2)+\tau^{0,0,1}(2,2) \cdot \eta_{3}+\tau^{0,0,2}(2,2) \cdot \eta_{3}^{2}$.
$2 d^{\prime}=(1,1)$. Similar.
3 Linear relation: $x_{1}=y_{1}$.

An Example

Let $(Q, d): \bullet \longrightarrow$ and $\theta(m, n)=2 n-3 m$.

Fix Y and U. Have $\mathrm{Fl}(U)=\mathrm{Fl}\left(U_{q}\right) \times_{Y} \mathrm{Fl}\left(U_{s}\right)$, rep. $U_{\mathrm{Fl}(U)}$ and flags $\mathscr{U}_{q}^{*}, \mathscr{U}_{s}^{*}$. Let x_{1}, x_{2} and y_{1}, y_{2}, y_{3} Chern classes, ξ_{1}, ξ_{2} and $\eta_{1}, \eta_{2}, \eta_{3}$ Chern roots.
Simplification yields: $H(Y) \cong \mathbb{Q}\left[x_{2}, y_{1}, y_{2}, y_{3}\right] / \mathfrak{a}$, where \mathfrak{a} is generated by

■ $3 x_{2}^{2}-3 x_{2} y_{2}+y_{2}^{2}-y_{1} y_{3}$,
■ $\left(3 x_{2}-2 y_{2}\right) y_{3}$,

- $x_{2}^{3}-y_{1} y_{2} y_{3}+y_{3}^{2}$,

■ $-4 x_{2} y_{1}+y_{1}^{3}+3 y_{3}$,

- $3 x_{2}^{2}-x_{2} y_{1}^{2}$,
- $3 x_{2}^{2}+x_{2} y_{2}-y_{1}^{2} y_{2}$,
- $x_{2} y_{1} y_{2}-3 y_{2} y_{3}$,
- $3 y_{1}^{2}-5 y_{2} y_{3}$, and
- $x_{2}^{3}-x_{2} y_{1} y_{3}$.

Another example

Let $Q: \bullet \bullet \ldots \quad$ with $m=2 r+1$ sources, $d=(1, \ldots, 1,2)$
and $\theta(a)=m a_{s}-2\left(a_{q_{1}}+\ldots+a_{q_{m}}\right)$.
Let Y moduli space and fix a universal rep. U.

Another example

Let $Q: \bullet \bullet \ldots$. with $m=2 r+1$ sources, $d=(1, \ldots, 1,2)$
and $\theta(a)=m a_{s}-2\left(a_{q_{1}}+\ldots+a_{q_{m}}\right)$.
Let Y moduli space and fix a universal rep. $U . Y$ is isomorphic to moduli space of n ordered points in \mathbb{P}^{1} modulo Sl_{2}.

Another example

Let $Q: \bullet \bullet \ldots \quad$ with $m=2 r+1$ sources, $d=(1, \ldots, 1,2)$ and $\theta(a)=m a_{s}-2\left(a_{q_{1}}+\ldots+a_{q_{m}}\right)$.
Let Y moduli space and fix a universal rep. $U . Y$ is isomorphic to moduli space of n ordered points in \mathbb{P}^{1} modulo Sl_{2}.

Proposition

$H(Y) \cong \mathbb{Q}\left[x_{1}, \ldots, x_{m-1}, y\right] / \mathfrak{a}$, where \mathfrak{a} generated by
■ $x_{i}\left(y-x_{i}\right)(\mathrm{all} 1 \leq i \leq m-1)$,

- $\prod_{i \in I^{\prime}}\left(y-x_{i}\right)$, and

$$
\sum_{j=0}^{l-1}(-1)^{j} y^{l-1-j} \sum_{J \subseteq I: \sharp J=j} \prod_{i \in J} x_{i}
$$

all $I^{\prime}, I \subseteq\{1, \ldots, m-1\}$ with $\sharp I^{\prime} \geq r$ and $l:=\sharp I>r$.

Another example

Let $Q: \bullet \bullet \ldots \quad$ with $m=2 r+1$ sources, $d=(1, \ldots, 1,2)$
and $\theta(a)=m a_{s}-2\left(a_{q_{1}}+\ldots+a_{q_{m}}\right)$.
Let Y moduli space and fix a universal rep. $U . Y$ is isomorphic to moduli space of n ordered points in \mathbb{P}^{1} modulo Sl_{2}.

Corollary (cf. Kirwan, using HN methods)

The Poincaré polynomial of $H(Y)$ is

$$
\sum_{n=0}^{2(r-1)}\left(\sum_{v=0}^{\min \{n, r-1-n\}}\binom{2 r}{v}\right) t^{n}
$$

Thank you!

