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Summary. This paper continues my investigations of arithmetics formulated rele-
vantly. (See references [1], [10], [12], and [9].) It is proved again that relevant Peano
arithmetic R¥ and relevant true arithmetic R*# (with the w-rule) are demon-
strably consistent by simple finitary arguments. E.g., it requires little more than
truth-tables to show that 0 = 1 is a non-theorem. This removes much of the sting
from Godel’s second theorem. Regard for relevance bounds the harm that even
potential contradictions can do. But Godel still collects his dues, since proving
negation-consistency remains annoyingly (and ineluctably) non-constructive.
To the extent that ~ in Formalese is unlike not in English, as it seems to be,
Godel’s theorems are dirty tricks.

1.

Being mainly self-educated in beginning logic, I was alarmed to read in [2]
that Godel had shown that elementary number theory is either inconsistent
or incomplete. “What,” thought I to myself, “could this possibly mean?”
Could it be in doubt that 2+2 = 4? Might one multiply 27 and 37 and get
9987 What is going on here?

More mature reflection convinces one that what is going on is a logical
dirty trick. Speaking at his most persuasive, Godel in [3] conned a certain
sentence G into saying of itself that it was unprovable.! We all know where
the story goes from there, at least intuitively. If G is false, then it is provable
after all, which engenders contradiction. So G had better be true. And, as
this reasoning can be carried out in any sufficiently strong, consistent and
effective system S, the moral is (or is alleged to be) that

(I) S is incomplete, containing an unprovable truth (Gédel’s first the-
orem), and

(II) S lacks the means to formalize a proof of its own consistency
(Godel’s second theorem).

I shall throw no stones at (I) here. But (II) is another matter. The idea behind
it is said to be (in, e. g., [3] and [4]) that we can formalize the proof of (I).
This leaves us with the following S-theorem:?

* This paper is in its final form and no similar paper has been or is being submitted
elsewhere.

! G is 17 gen r, says [3].

2 We follow [3] in using “Wid” (for “widerspruchsfrei”) for “consistent”.
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(A) kg Wid (S) D G.

In view of the rule DE of modus ponens, if we could prove in S that S
is consistent then we could also prove in S its non-theorem G. As this is
impossible (unless things have gone very badly wrong), we cannot prove
Wid (S) either.

There is no doubt that [3] is an amazing and an incredible achievement
in logic, and that it has been seen as such since its publication over 60 years
ago. Still, there is something about the result that does not seem to ring
true.> What I wish to offer here are philosophical corrections of the logic
that induces the false chime. The first crux lies in the little sign ‘~’. This
sign is supposed to mean ‘not’. The real import of Godel’s arguments may be
summed up succinctly thus: ‘~’ never means what it is supposed to mean,
within a particular sufficiently strong system intended seriously to formalize
mathematics.

To be sure, we can claim to give a semantic interpretation of an effectively
presented arithmetic, and tell the world that on this interpretation ‘~’ means
‘not’. The world will then ask how it comes about that on some occasions
on which A is false, we cannot prove ~A in the system. We shall perhaps
reply that relative to the interpretation the system is (negation-)incomplete.
But how much more accurate it would be to reply instead that, because of
certain formal anomalies in the technical engineering, we just cannot so fix
things that ‘~’ works within the system the way that ‘not’ is to be taken as
working in English.

We make this point clear, on Godelian grounds, with respect to (standard
classical Peano arithmetic) P#.> We suppose some standard coding (Gédel
numbering) that assigns to each formula A a unique natural number I. We
assume that this coding is an effective mapping from formulas to natural
numbers, and we shall henceforth use A’ for the formula with Godel number
1.5 (The scheme of [4] will do for the purpose of furnishing such a (Gédel)
numbering.) Let N be the set of all natural numbers; and, taking our formal
system S abstractly, we identify natural numbers with the corresponding
numerals of the system.

3 So much so, I was informed by van Fraassen when he was editor of the Journal
of Philosophical Logic, that a chief source of manuscripts submitted to that
journal were “fix-ups” for Godel’s theorems.

* In view of the Liar Paradox and associated anomalies, we might more candidly
have to admit that we don’t know how ‘not’ really works in English, either.

5 Take P# to be the system S of [4, p. 102f]; equivalently, let it be the system
PA of [7)].

6 Even more elegant is the course of simply identifying the formula A’ with
the number I. One might read [3] as suggesting this very course. For as it
doesn’t really matter what the formal objects constituting a denumerable
formal system are, they might as well be the natural numbers. This is
Godel numbering with a vengeance!
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Then, as is well-known, there is an open formula Pz,” with sole free
variable z, which serves as a provability predicate for P# in the following
sense:

(1) For all natural numbers I, PI is a theorem of P# iff A’ is a theorem
of P¥#.

Taking truth in the standard model N in the usual Tarskian sense, we have
also

(2) For all natural numbers I, PI is true iff A is a theorem of P#.
So on our semantic understanding of ~ we have immediately from (2),

(3) For all natural numbers I, ~PI is true iff A’ is not a theorem of
P#.

But on Godelian grounds we do not have

(4) For all natural numbers I, ~PI is a theorem of P# iff A’ is not
a theorem of P#.

A counterexample to (4) is our old friend “I am unprovable,” alias 17 gen r.

Viewed extrinsically, as in (3), we may perhaps think of ‘~’ as a for-
mal counterpart of ‘not’. Viewed systematically, and given (1), what clearer
demonstration could we ask than (4) of the proposition that ‘~’ doesn’t work
formally in P# the way that ‘not’ works intuitively in English?® And we now
fix the considerations and notation set out above for the rest of the paper
(including the standard Goédel numbering, which we need not specify fur-
ther). These considerations are central to an examination of the character
and import of Godel’s second theorem. It is of little interest that we cannot
prove the consistency of P# within itself, unless P# has the vocabulary to
say that it is consistent (and moreover that what it says in this vocabulary
is in fact unprovable).

Let us reflect. First, nobody ever expected P# to be muttering intro-
spectively about itself at all. P# was constructed to say that 5+ 3 = 8, that
every number > 1 has a prime divisor, and the like. It was not constructed
to say that nobody ever loved it before Hilbert, that it often wishes it were
complete, or (for present purposes) that it is consistent.

Of course, after Godel we are all prepared to believe that P# does in-
trospect, in code. And this has made its psychoanalysis (or whatever the
equivalent process is in formal systems) a regular element in training logi-
cians. As in all psychoanalysis, there is a certain indistinctness in the method.
When, e. g., P# seems to be saying, “Every natural number is the sum of
4 squares,” we may suppose that it is bragging, “Show me a sentential tau-
tology I can’t prove!” Or maybe it is complaining, “I can only demonstrate

7 In [3] we have “Bew” (for “beweisbar”) instead of “P” (for “provable”).
8 Recall that (4) must fail, on pain of bankruptcy otherwise for the standard
arithmetical mythology!
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Fermat’s Last Theorem for regular primes.” And this should lead to a little
humility on our part. Stripped of the code, P# is still saying “Every natural
number is the sum of 4 squares.” The rest we read into what it says; and,
since P# is incomplete, we err even in simple arithmetic if we try to interpret
what it says categorically.

Second, we must exercise unusual care in finding a technical form for
Godel’s second theorem.’® We must formalize the statement “I am consis-
tent,” uttered by P# about itself. There are a couple of ways in which our
previous worries about negation will come to the fore. For all of our classically
equivalent ways (1)-(6) in section 3 below of saying that formal arithmetic
is consistent will assert that something-or-other is not provable. If we are
worried about our capacity to express ‘not’ in P# then we shall have most
distressing worries about how to say that arithmetic is consistent, even in
code.

Third, one begins to wonder what Godel’s second theorem adds to his
first theorem. No one expects us to be able to prove what we cannot say.
And it then seems otiose to claim that any effective, finitary proof of the
consistency of formal arithmetic would yield a proof in P# of a formula that,
so far as P# is concerned, is only a dubious candidate for the role of being
the statement in the vocabulary of P# which expresses its consistency. We
don’t linger over these issues. We even take a rather orthodox stand with
respect to them. But we do note that they are exacerbated when we ask
“What particular form, even in English, should the statement that P# (or
any formal arithmetic) is consistent take?” We devote the next two sections
to some of these problems.

2.

We ask ourselves first why we (or Hilbert, or Godel) should care whether
arithmeticl® is consistent. We answer immediately that, mainly, we do not
care. Put optimistically, we are so strongly convinced that arithmetic is con-
sistent that demonstrating its consistency is just a game—the game of seeing
how little, or how much, is required for a formal consistency proof. After all,
it was the reliability of mathematical analysis that truly worried Hilbert and
others. And since the ultimate effect of the great 19th and early 20th century
programs was to substitute insecurity in reasonings about sets for insecurity
in reasonings about infinitesimals and series, the neck-wringing that Godel
administered to these programs in 1931 leaves us having registered no gain
on the main point.!?

® Feferman said so in [5], and Godel appended a footnote to the same effect to

the translation of [3].

or at least any part of it of which serious use is going to be made

1 Tndeed, they have led to a certain abandonment of the main point, all hands
being needed (as Reid aptly puts it in [6]) to defend the homeland of arithmetic.

10
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But while we are playing the game, what we are presumably concerned
to show is that our intuitive arithmetic is reliable, by establishing that our
carefully chosen formal counterparts of that arithmetic are reliable. So long
as we accept Gddel’s first theorem, part of that task remains beyond us. For
according to that theorem no effectively presented formal system in the ordi-
nary first-order vocabulary will serve as a fully acceptable formal counterpart
of intuitive arithmetic.

So any effective formal arithmetic is at best a partial arithmetic. We can
improve this situation in a couple of ways. First, it is clear that being partial
is not to be confused with being unreliable. It is sad to have to relate that
this is the point at which the usual appeals to Godel’s second theorem tend to
descend into perversity. For it is claimed that no bag of mathematical tricks
can be demonstrated to be reliable, except on appeal to some trick that isn’t
in the bag. So we are confronted with a picture (on the usual story) on which
the reliability of any mathematical system (save such as are inadequate for
whole number arithmetic) can only be demonstrated in some system less
reliable, prima facie, than the system from which we began.

This picture, if accurate, severs mathematical logic from its chief founda-
tional purpose—namely, making possible a rigorous reconstruction of intu-
itive mathematics. One gets the impression rather that even the reconstruc-
tion of simple arithmetic is dubious enough, and that every step on becomes
even more dubious. And it is accordingly no wonder that many mathematical
logicians have gone off to live in a world of their own—a world, frankly, that
has little relevance to mathematics, even less to the philosophy of mathemat-
ics, and almost none to general philosophy. For the depressing picture is that
more than intuitive mathematics must be assumed in order to reconstruct
intuitive mathematics. Chauvinist mathematicians (e. g., Poincaré), who al-
ways bridled at the suggestion that their discipline was just pure logic, may
find cause to rejoice in this picture. But logicians must weep, for it denigrates
exact thought for the sake of the old mumbo-jumbo.

We began to talk about consistency, but we have slipped in this section
into talk about reliability. Consistency is a formal property of formal systems
(though, depending on the author, it may be any one of several properties, not
necessarily related). Reliability is an intuitive property, measuring a formal
system against the purposes for which it was designed. And let it be clear
from the outset that it is reliability that is most desired. We wish that our
formal systems shall be adequate to their purposes. And whatever formal
property we decide to identify with the honorific ‘consistent’, it is of interest
only insofar as possession of this property is a guide to (and hopefully a
guarantee of) the system’s reliability.
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3.

Now let us pick up a few stones. Already in [4] was Feferman’s [5] cited,
which does present a plausible candidate for Wid (S) which is a theorem of
suitable S. What are we to conclude from that? Only that the proof of (A) of
section 1 will then break down, unless (God forbid) S is already inconsistent.
But, in choosing our stones, let us forget (temporarily) about trying to find
a way to say in S that S is consistent. What, in English, is a reasonable
way of saying this? Here are some.

(1) There exists a formula A such that A is a non-theorem of S

(2) 0 =1 is a non-theorem of S

(3) All numerically incorrect equations!? A are non-theorems of S

(4) All algebraically incorrect polynomial equations!® A are
non-theorems of S

(5) ~(0=0) is a non-theorem of S

(6) For no formula A are both A and ~A theorems of S

These are intended as increasingly stringent criteria for consistency.!*
But except for the option (7) of the last footnote, these criteria all come
classically to the same thing. For intuitively (6) implies (5), and so forth
until we get to the fact that (2) implies (1). But (1) implies (6), completing
the circle, on account of the implicational paradox A&~A D B. So classical
logic blurs what are intuitively clear distinctions.

Relevant and other substructural logics L exist that excise some of the
evils of classical logic. Perhaps if we choose one of these L in which to for-
mulate our formal arithmetic S, the distressing equivalence of all of (1)-(6)
will disappear. And we need go no further than the Church-Anderson-Belnap
system R of [8] and [9] to reach this goal.1®> Here for example is a list of pos-
tulates to be added to the first-order relevant logic R3% of [9]'¢ to formulate
the first-order relevant Peano arithmetic R¥.

R#tlz=y—o2' =9
R#2z=y>(z=2-y=2)
R#3z+0=<z

12 A formula t = u without free variables is correct if so by primary school arith-
metic, else it is incorrect. 27 x 37 = 999 is correct. 2 + 2 = 5 is incorrect.

13 A polynomial equation t=u is correct if so by high school algebra, else it is
incorrect. Thus, e. g., (z + y)(z + y) = zz + zy + yy is incorrect. Correct is
(z+y)(z+y) =zz +2zy + yy.

4 Another criterion begs for admission here—namely, (7) no arithmetic false-
hood is a theorem of S. But (7) jumps from the Deep End into the Standard
Numerical Mythology. We do not jump with it—yet!

18 As Mortensen and I point out in [10], the stronger Dunn-McCall system RM
will also do.

16 Before [9], R"* was called RQ. See [10]-[12] for the vocabulary of R¥ and its
notational conventions.
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R#d z+y =(x+y)

R#5 2x0=0

R#6 cxy =(zxy)+z

R#7T ' =y wz=y

R#8 ~(z' =0)

R#9 A0 & Vz(Az — Az') - Yz Az'7
As rules we take

—E From A — B and A infer B
VI From A infer Vz A

Unfortunately for R#, it is even less satisfactory than P# as a vehicle for
formal arithmetic.'® But there is a repair R#¥#, which adds the following
w-rule:

V012... Infer Vz Az from all of A0, Al,...,An,..., for every numeral n.

We borrow from previous results to show that R¥# (and a fortiori R#)
is consistent.

4.

Where n is any natural number, we let £, be the integers {0,1,...,n — 1}
modulo n. Note that + and X are naturally defined on F x. And we let S3
be the 3-valued matrix on {+1,0,—1} defined as follows:!°
-+ -1 0 +1
-1 41 +1 +1
x0 [ -1 0 +1
*+1] -1 -1 41

The x’ed elements 0 and +1 are designated values, and we set m < n in
S3 if m — n is designated. (Note that < is just the usual order on —1,0,+1.)
Letting — be defined by the table above, define the other connectives on S3
by

~m = -—m,
m&n = min(m,n), and
m Vn = max(m,n).

Where D is a domain of individuals, we can also interpret the quantifiers
in S3 by setting

17 This induction postulate may be stated as a rule RMI for R¥. [13] rightly
prefers RMI in weaker logics.

18 Ackermann’s rule v (DE) fails for R¥. See Friedman and Meyer’s [11].
19 The 3-valued Sugihara matrix S3 appears early and often in [8] and [9].
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VzAz = min(Ad : d € D)
dzAz = max(Ad : d € D),

where for each d € D we have Ad as the “truth-value” in S3 that results from
evaluating Az at d. We can now complete a standard interpretation I
of each of the F x in S3 by specifying the value of I on atomic sentences. In
the simplest case, where n = 2 and F x = {0,1}, we set

(=2t) I(0=0)=I(1=1) =0, and
(=2f) I(0=1) =I(1=0) = —1.

It is readily observed that all theorems of R*## take non-negative values on
I.2° This immediately shows that R¥# (and a fortiori R¥) is consistent
in senses (1) and (2) of section 3 , by a completely elementary argument.
So much for the demise of the Hilbert program purportedly brought on by
Godel!

What about the notions (3)-(6) of III? (3) is in principle no more difficult
than (2); for any number equation ¢t = u will reduce to one m = n, where m
and n are numerals; assuming without loss of generality that m < n, we can
further reduce an incorrect number equation to n — m = 0, where n — m is
a positive integer. We generalize (=2t) and (=2f) above to define standard
I by

(=nt) I(k=k)=0for all k € F
(=nf) I(j = k) = -1, for all distinct j,k € F x

And it is now clear that all theorems of R## take a designated value on each
standard I in S3 while for each incorrect number equation it is trivial to
find a F  that refutes it. That’s consistency in sense (3). And we can extend
this proof to get consistency in sense (4), observing that every incorrect
polynomial equation has a substitution instance in natural numbers which
is numerically incorrect. So R*# is polynomially consistent as well.

We have, however, taken these methods about as far as we can. In par-
ticular, we cannot get from the £ a simple proof that R¥# is negation-
consistent or even that ~(0 = 0) is unprovable, which are (6) and (5) re-
spectively of ITI. Consider the latter. As our standard interpretation I will
assign 0 to each k = k, it will similarly assign —0 = 0 to ~(k = k). As
0 is itself a designated value in S3, this is no way to show that negated
identities are unprovable. Moreover since A& ~A — ~(0 = 0) is a theorem
scheme of R¥# (indeed, already of R#), we cannot use the F to establish
negation-consistency either.

Still, if one thing doesn’t work, we can try another. Defining material
implication D as usual by

D) ADB=g¢s~AVB,
(D) ADB=4~AVB

20 The nice thing here is that we have actually made the w-rule V012... finitary.
For, mod 2, the quantifiers are just ranging over 0 and 1!
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we already have provable in R#
(8) ~(0=0)D0=1,

in view of the theoremhood of 0 = 0. Of course (8) is also provable in R##.
But R##, unlike R¥, admits DE, as [12] demonstrates. So, as 0=1 has a
finitary refutation mod 2, we can rest content that ~(0 = 0) is also a non-
theorem; similarly, since if any contradiction were a theorem then so also
would ~(0 = 0) be provable, we can assert that R## is negation-consistent.

So we can. But the pleasant finitary character of our appeal to S3 through
the F is gone and lost forever?! when we go through the DE proof of [12].
Granted, on Gddelian grounds a charge will be made somewhere for a proof
of negation-consistency. And the charge in this case is the non-constructive
character of the argument of [12].

5.

What, I have been asked, is the relation between R# and R#¥# and more
familiar systems like classical P#? When I first published a few of my results
about relevant arithmetic in the abstract [1], it was my hope that R¥ would
exactly contain P#, in the sense that every theorem A of P# would be a
theorem of R#, on direct truth-functional translation. This was not to be, on
account of Friedman’s contribution to [11]. But there are nonetheless several
exact translations on which P# is a truth-functional subsystem of R#. Thus
all theorems of P# are on these translations theorems of R#, whence all
classical metatheory goes through.

R## is quite another kettle of fish. It stands to R¥ as classical true
arithmetic P## stands to P#. It is proved in [12] (though already noted in
[1]) that P## is contained in R## on direct truth-functional translation.
This disposes immediately of many questions that one might have had
about R##. Its theorems are not recursively enumerable; nor is it recursively
axiomatizable. (Why? Because the truths of P## aren’t r.e.)

A referee has called attention to an apparent incoherence between sec-
tion 1 (in which we said that Godelian troubles arose because ‘~’ does not
mean ‘not’) and section 3 (in which we complained that what is most wanted
in formal systems for arithmetic and other stuff is reliability). This is a
good point, though I wish here to reiterate both claims. Naturally we want
our systems to be reliable; and I say that relevant systems are (demonstra-
bly) more reliable than the standard brands. For we can rest reasonably
content with what has been shown here. We have sidestepped the layers and
layers of Gédelian uncertainty by showing that some sorts of mistakes just
can’t happen, if we formulate our theories relevantly. This has been a point
all too easily overlooked in the debates for and against the adequacy of

21 Just like “my darling Clementine”



256 Robert K. Meyer

truth-functional insights. To have faith is a wonderful thing (perhaps). But
in logic, reason is supposed to rule. And not merely actual contradiction
but also potential contradiction can undermine a system that is formulated
truth-functionally. Regard for relevance bounds the harm that even poten-
tial contradictions can do.

But Godel bites the truth-functionalist even more deeply. What are we
to make of a statement

~(721 is provable)

when this is the very statement #7217 As I said at the outset, this is a dirty
trick. And dirty tricks ought not to be confused with profound metaphysical
insights about ‘not’. We rest our case!
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