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1. Introduction

Let R be a Riemann surface and G a properly discontinuous group of con-
formal automorphisms of R. For the sake of simplicity we assume that every
nontrivial element of G has no fixed points in R. Suppose that R=G is con-
formally equivalent to neither the plane C nor the sphere ĈC. For p A R let
DG

p ðRÞ denote the class of simply connected domains D on R containing p such
that gðDÞVD ¼ j for any g A GnfidRg. Then every D A DG

p ðRÞ carries a unique
complete conformal metric dsD with curvature �1. In our previous work [4]
we considered the function D 7! ðdsR=dsDÞðpÞ on DG

p ðRÞ, where dsR denotes a
complete conformal metric on R with constant curvature, and proved that DG

p ðRÞ
contains a unique element that maximizes the function. Such an element is
called a hyperbolically maximal domain for G.

Hyperbolically maximal domains possess distinguished properties. For ex-
ample, they are locally finite fundamental domains for G. Each hyperbolically
maximal domain D is associated with a G-invariant meromorphic quadratic dif-
ferential j such that Dnfpg is swept out by closed horizontal trajectories of j;
the point p is a double pole of j.

This property of hyperbolically maximal domains leads us to the study of
domains dominated by quadratic di¤erentials. Specifically, we call a domain D
on R a G-circularizable domain if there is a G-invariant meromorphic quadratic
di¤erential j with poles in 6

g A G
gðDÞ such that every noncritical point in D lies

on a closed horizontal trajectory of j that stays entirely in D. Circularizable
domains are subject to fairly strong topological restrictions. They turn out to be
simply connected domains whose boundaries are locally finite branched polygons.

Several analytic and geometric properties of hyperbolically maximal do-
mains given in [4] are shared with circularizable domains. In fact, hyperbolically
maximal domains for G are G-circularizable and those properties come from
circularizability. Circularizable domains thus deserve to be studied in detail.
We begin with the definition of a circularizable domain. In §3 we show that
a circularizable domain D satisfies gðDÞVD ¼ j for g A GnfidRg provided D
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contains no fixed points of nontrivial elements of G. In §4 we investigate
the boundaries of circularizable domains. In the final section we give a nec-
essary and su‰cient condition for a G-circularizable domain to be hyperbolically
maximal for G.

The authors are grateful for the referee’s careful reading.

2. Basic properties

Let R be any Riemann surface and j a meromorphic quadratic di¤erential
on R. We denote by ordq j the algebraic order of j at q A R. For a subset E
of R we mean by PjðEÞ the set of poles of j in E. In other words PjðEÞ is the
set of points q A E for which ordq je�1. Its cardinality is denoted by aPjðEÞ.

Definition 2.1. We say that a domain D on R is circularizable if there is a
meromorphic quadratic di¤erential j on R such that

(i) PjðDÞ0j and
(ii) the (maximal) horizontal trajectory passing through any noncritical point

of j in D is closed and stays entirely in D.
The di¤erential j is called a circularizer of D. The pair ðD; jÞ is called a cir-
cularized domain.

Remark. Assume that R is a subdomain of another Riemann surface R 0.
If a domain D on R is a circularizable domain on R 0, then, trivially, D is
a circularizable domain on R. However, the converse is not necessarily true
because circularizers of D on R may not be extended meromorphically on R 0.

Example 2.1. Let D be the unit disk in the complex plane C, and set
ĈC ¼ CU fyg. For a A D set ja ¼ �dz2=ðz� aÞ2ð1� azÞ2. Then ðĈC; jaÞ, ðĈCa; jaÞ
and ðD; jaÞ are circularized domains on ĈC, where ĈCa ¼ ĈCnf1=ag.

It should be noted that all the domains in Example 2.1 are simply connected.
In fact we have the following proposition.

Proposition 2.1. A circularizable domain is simply connected.

Proof. Let ðD; jÞ be a circularized domain on R. Take a noncritical point
of j in D. By (ii) the horizontal trajectory a of j passing through the point
is closed and stays entirely in D. Consider a subdomain D of D which includes
a and is swept out by closed horizontal trajectories of j freely homotopic in D
to a. We may assume that D is maximal with respect to the inclusion relation.
Then D is either a torus or a ring domain (see Strebel [5, §9]). If D is a torus,
then it coincides with R by compactness, and hence we have PjðRÞ ¼ PjðDÞ ¼ j,
which contradicts (i). Thus D must be a ring domain.

We claim that the relative boundary b :¼ qDVD of D in D is nonempty
and discrete. To see that b0j we have only to note that j is holomorphic
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everywhere on D and has at least one pole in D. If b were not discrete, then
it would contain a noncritical point q of j. The closed horizontal trajectory t
of j containing q stays entirely in b, so that t is a component of b. It is now
easy to construct a ring domain D0 swept out by closed horizontal trajectories of
j such that DU tYD0 HD, which contradicts the maximality of D.

For any p A b, by discreteness, there exists a connected neighborhood U HD
of p such that U V b ¼ fpg. The punctured neighborhood Unfpg is connected
and is hence included in D. This implies that DU b is open in D. Since it is
also closed in D, it follows that DU b ¼ D. We have D ¼ Dnb, for DV b ¼ j.
This shows that the connectivity of D is smaller than that of D. Since D is
doubly connected, we conclude that D is simply connected. r

Remark. As is seen from the above proof, b ¼ DnD. Since PjðDÞHDnD,
we know that bIPjðDÞ. If bnPjðDÞ were nonempty, we could take q A
bnPjðDÞ. Since j is holomorphic at q, there is a horizontal arc t of j ema-
nating from q. By the discreteness of b we have tVD0j. Let t 0 be the closed
horizontal trajectory of j passing through a point of tVD. Then tH t 0 HD.
Since q is an end point of t, it belongs to t 0 so that q A D. This contradicts
q A b. Thus b ¼ PjðDÞ.

If Riemann surfaces R1 and R2 are conformally equivalent to each other,
then we write R1 GR2. The following corollary follows at once from Propo-
sition 2.1.

Corollary 2.1. Let D be a circularizable domain on R.
(i) If qD ¼ j, then R ¼ DG ĈC;C or D.
(ii) If qD contains an isolated boundary point, then RG ĈC and DGC.

The following proposition concerns the behavior of circularizers on a corre-
sponding circularizable domain.

Proposition 2.2. Let ðD; jÞ be a circularized domain on R. Then
(i) DnPjðDÞ is swept out by closed horizontal trajectories of j, which are

of the same j-length,
(ii) aPjðDÞ ¼ 1 or 2,
(ii 0) aPjðDÞ ¼ 2 , D is compact , DG ĈC, and
(iii) ordq j ¼ �2 for q A PjðDÞ.

Proof. Let D and b be as before. Since DnPjðDÞ ¼ Dnb ¼ D, we have
the first half of (i). The rest of (i) follows from the general theory (see [5, §9.3]).
Taking the connectivities of D and D into account, we obtain (ii) and (ii 0). For
q A PjðDÞ there is a domain G with q A G such that qG is a closed horizontal
trajectory of j in D. We can apply Teichmüller’s lemma (cf. [5, Theorem 14.1])
to verify assertion (iii). r
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Remark. There exists a conformal mapping w of D into ĈC such that

j ¼ �c
dw2

w2

for some positive constant c. The image wðDÞ is either the sphere or the plane
or a disk centered at the origin. The domain D carries a complete conformal
metric dsD of constant curvature k, where

k > 0 if wðDÞ is the sphere;

k ¼ 0 if wðDÞ is the plane;

k < 0 if wðDÞ is a disk.

8<
:

The closed horizontal trajectories of j in D are concentric circles with respect
to the metric dsD. Compare this fact with [3, Theorem 1].

Now assume that a group G of conformal automorphisms of R acts properly
discontinuously on R. A G-circularizable domain on R is, by definition, a cir-
cularizable domain whose circularizer j is G-invariant. We call j a G-circularizer
of the domain, and the pair ðD; jÞ a G-circularized domain.

If ðD; jÞ is a G-circularized domain, then so is ðgðDÞ; jÞ for any g A G. If,
in addition, D is noncompact, then PjðDÞ ¼ fpg and PjðgðDÞÞ ¼ fgðpÞg for some
p A D by Proposition 2.2 (ii) and (ii 0).

Important examples of circularizable domains are hyperbolically maximal
domains introduced in [4]. We first recall the definition. Let DGðRÞ be the
class of simply connected domains D on R such that gðDÞVD ¼ j for all
g A GnfidRg. Denote by R� the set of points of R which are fixed by no
nontrivial elements of G. For p A R� let DG

p ðRÞ be the set of D A DGðRÞ with

p A D. When G ¼ fidRg, we abbreviate DGðRÞ and DG
p ðRÞ to DðRÞ and DpðRÞ,

respectively. If R�=GZC; ĈC, then any D A DG
p ðRÞ is conformally equivalent to

D so that it carries a (unique) complete conformal metric dsD with constant
curvature �1. For D1;D2 A DG

p ðRÞ we write D1 �
p
D2 if ðdsD2

=dsD1
ÞðpÞe 1.

Then ðDG
p ðRÞ;�

p
Þ is a quasi-ordered class, which contains a unique maximum ([4,

Theorem 3.1 0]); A simply connected domain D on R is called hyperbolically
maximal for G if it is maximal in ðDG

p ðRÞ;�
p
Þ for some p A DVR�.

The next proposition is an immediate consequence of [4, Proposition 3.1].

Proposition 2.3. A hyperbolically maximal domain for G is G-circularizable.

Compact G-circularizable domains appear only in special cases. To show
this, we need the following lemma.

Lemma 2.1. Assume that RG ĈC. If there is a G-invariant meromorphic
quadratic di¤erential j with aPjðRÞ ¼ 2, then G is cyclic or dihedral.
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Proof. Let f : R ! ĈC be conformal and set G ¼ f � G � f �1 and Q ¼
f ðPjðRÞÞ. Then Q is G-invariant with aQ ¼ 2. Since G acts properly dis-
continuously on ĈC, it is a finite group. By Jones-Singerman [2, Lemmas 2.13.3
and 2.13.4] it is cyclic or dihedral, and so is G. r

Proposition 2.4. If there exists a compact G-circularizable domain on R,
then R is conformally equivalent to ĈC and G is either cyclic or dihedral.

Proof. Let D be a compact G-circularizable domain on R. Since D is
compact, we have D ¼ R. On the other hand, DG ĈC by Proposition 2.2 (ii 0).
Hence RG ĈC. Another part of Proposition 2.2 (ii 0) together with Lemma 2.1
implies that G is cyclic or dihedral. r

Remark. The converse of Proposition 2.4 is also true. This will be verified
at the end of the final section.

Proposition 2.5. Let D be a G-circularizable domain on R. If the bound-
ary qD in R is empty or contains an isolated point, then G is either cyclic or
dihedral.

The proof will be given after Proposition 3.1 is established.

3. Behavior of G-circularizable domains under the action of G

We next study the behavior of circularizable domains under the action of
the discontinuous group. For EHR we denote by GE the stabilizer in G of E.
When E ¼ fpg, we abbreviate Gfpg to Gp.

Lemma 3.1. If ðD; jÞ is a G-circularized domain, then Gp HGD for any
p A PjðDÞ.

Proof. Let p A PjðDÞ. If D is compact, then D ¼ R so that GD ¼ GIGp.
Otherwise, gðDÞnfgðpÞg is a ring domain for any g A G. It is swept out by closed
horizontal trajectories of g�j ¼ j, where g�j denotes the pull-back of j via g.
It follows that for any g A Gp either DH gðDÞ or DI gðDÞ. By replacing g with
g�1 if necessary, we may assume that DI gðDÞ. Since G acts properly dis-
continuously on R, the stabilizer Gp is finite so that gk ¼ idR for some positive
integer k. Therefore, we obtain

DI gðDÞI g2ðDÞI � � �I gkðDÞ ¼ D

and hence gðDÞ is identical with D, as desired. r

Proposition 3.1. For any noncompact G-circularizable domain D there exists
p A D such that Gp ¼ GD.
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Proof. Let j be a G-circularizer of D. Since D is noncompact, aPjðDÞ ¼ 1
by Proposition 2.2 (ii) and (ii 0), so that j has a single double pole p in D. By
Lemma 3.1 we have Gp HGD. To show the converse inclusion relation recall
that PjðgðDÞÞ ¼ fgðpÞg holds for any g A G. If g A GD, then fgðpÞg ¼ PjðgðDÞÞ ¼
PjðDÞ ¼ fpg. This proves that Gp IGD. r

Remark. Let D and j be as in Lemma 3.1. In the proof of Proposition 3.1
we have actually shown that if D is noncompact, then Gp ¼ GD for the pole p of
j in D.

Proof of Proposition 2.5. Assume first that qD ¼ j. It follows from Cor-
ollary 2.1 (i) that R is conformally equivalent to ĈC or C or D. If RG ĈC, then
D is compact so that G is cyclic or dihedral by Proposition 2.4. Otherwise, we
have G ¼ GD ¼ Gp for some p A D by Proposition 3.1. Since G acts properly dis-
continuously on R, we know that G ¼ Gp is cyclic.

Next, if qD contains an isolated point, then by Corollary 2.1 (ii) we know
that RG ĈC and DGC. In particular, RnD is a singleton, say fpg. Then p is
a critical point of a circularizer of D, for, otherwise, the horizontal trajectory of
j passing through p would meet D without staying entirely in D. It follows that
ðR; jÞ is a circularized domain, and the assertion follows from Proposition 2.4
since R is compact and G-circularizable. r

Proposition 3.2. Suppose that one of the following conditions is satisfied:
(a) RZ ĈC.
(b) G is neither cyclic nor dihedral.

Let D be a G-circularizable domain on R. Then for any g A G, either gðDÞ ¼ D or
gðDÞVD ¼ j holds.

Proof. Let j be a G-circularizer of D. It has a single double pole p in D
since D is noncompact by Proposition 2.4.

Suppose that gðDÞVD0j. By Lemma 3.1 we have only to show that
g A Gp. If gðpÞ were di¤erent from p, then PjðgðDÞVDÞ ¼ PjðgðDÞÞVPjðDÞ ¼
fgðpÞgV fpg ¼ j. By Proposition 2.2 (i) every point in gðDÞVD lies on a closed
horizontal trajectory of j staying entirely in gðDÞVD. By the same argument as
in the proof of Proposition 2.1 we deduce that gðDÞVD is a ring domain swept
out by closed horizontal trajectories of j. Since p A DngðDÞ and gðpÞ A gðDÞnD,

the domain gðDÞUD is topologically a sphere. Therefore RG ĈC, which con-
tradicts (a). Moreover, since aPjðRÞ ¼ 2, it follows from Lemma 2.1 that G is
cyclic or dihedral, which violates (b). Thus gðpÞ ¼ p, or equivalently, g A Gp.

r

Proposition 3.3. Suppose that one of (a) and (b) in Proposition 3.2 is sat-
isfied. Let ðD; jÞ be a G-circularized domain. Then p A D is a pole of j if Gp

is nontrivial.
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Proof. Note that D is noncompact and simply connected. Let q be the
pole of j in D. By the remark following Proposition 3.1 we know Gq ¼ GD.
On the other hand Gp HGD by Lemma 3.1. Hence we have fidRg0Gp HGD ¼
Gq. Since any nontrivial conformal automorphism of D has at most one fixed
point in D, it follows that p ¼ q. r

Theorem 3.1. Let R� denote the set of points of R which are fixed by no
nontrivial elements of G. Let D be a G-circularizable domain on R. If DHR�,
then gðDÞVD ¼ j for all nontrivial g A G.

Proof. If R� is conformally equivalent to ĈC, then G is trivial and there is
nothing to prove. Otherwise D is noncompact by Proposition 2.2 (ii 0) so that
there exists p A D such that GD ¼ Gp by Proposition 3.1. Since DHR�, we
know that GD ¼ Gp ¼ fidRg. Now the theorem is an immediate consequence of
Proposition 3.2. r

Proposition 3.4. Assume that no elements of G other than idR have a fixed
point on R. Then a domain D on R is G-circularizable if and only if pðDÞ is
circularizable, where p is the natural projection of R onto R=G. If this is the
case, p induces a bijection between the G-circularizers of D and the circularizers
of pðDÞ.

Proof. Suppose first that ðD; jÞ is a G-circularized domain. Because of the
G-invariance j is projected to a meromorphic quadratic di¤erential c on pðRÞ.
By Theorem 3.1 we know that pjD : D ! pðDÞ is a holomorphic bijection, which
implies that ðpðDÞ;cÞ is a circularized domain on pðRÞ.

Assume conversely that ðpðDÞ;cÞ is a circularized domain on pðRÞ. Then
the pullback j of c via p is a G-invariant meromorphic quadratic di¤erential
on R. Since p : R ! pðRÞ is a smooth unlimited covering and pðDÞ is simply
connected by Proposition 2.1, it follows from the monodromy theorem that
pjD : D ! pðDÞ is a holomorphic bijection. Hence ðD; jÞ is a G-circularized
domain on R. r

Remark. Let G be an arbitrary group of automorphisms of R acting
properly discontinuously on R. If D is a G-circularizable domain on R with
DHR�, then pðDÞ is a circularizable domain on pðRÞ.

4. The boundary of a circularizable domain

In this section we investigate geometric properties of boundaries of circu-
larizable domains. The simplest cases have been investigated in Corollary 2.1
and Proposition 2.5. General circularizable domains have a fairly regular
boundary. To describe the regularity we recall some definitions from algebraic
geometry. By a geometric simplicial complex we mean a collection K of a‰ne
simplices in Ry such that
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(a) if s A K , then any face of s is in K, and
(b) if s; t A K , then sV t is a face of both s and t, or is empty

(cf. [1, Definition IV.21.2]). Note that K may be an infinite set. The dimension
of K is, by definition, the supremum of the dimensions of simplices in K. Set
jK j ¼ 6

s AK s. If for any p A jK j there is a neighborhood U of p in Ry such
that U meets only finitely many simplices in K , then we say that K is locally
finite. A topological space X is said to be a polyhedron if there exists a ho-
meomorphism of jK j onto X for some geometric simplicial complex K . If the
dimension of K is n, then X is called an n-polyhedron. It is called locally finite
if K is.

We are particularly interested in 1-polyhedra, which will be called branched
polygons. An end of a branched polygon X is, by definition, a point of X whose
corresponding point on jKj constitutes a 0-simplex in K which is included in
exactly one 1-simplex of K .

Theorem 4.1. The boundary of a circularizable domain is a locally finite
branched polygon if it contains more than one point.

For the proof we first study the behavior of circularizers on the relative
boundary qD.

Proposition 4.1. Suppose that ðD; jÞ is a circularized domain. Then for
q A qD

(i) ordq jf�2, and
(ii) if ordq j ¼ 0, then the horizontal trajectory of j passing through q lies

entirely on qD.
Moreover, j has a double pole on qD if and only if RG ĈC and DGC.

Proof. By [5, Theorems 7.2 and 7.4] for any q A R with ordq je�2 either
(a) there is a neighborhood U of q such that every horizontal trajectory ray

of j which enters into U tends to q, or
(b) there is a simply connected neighborhood U of q such that Unfqg is

swept out by closed horizontal trajectories of j.
If ordq j < �2, then (b) never occurs.

Now, assume that q A qD. If ordq je�2, then we can find a neighborhood
U of q as in (a) or (b). The intersection U VD contains a noncritical point q 0 of
j. Since j is a circularizer of D, the horizontal trajectory t 0 passing through q 0

is closed. This shows that (a) does not occur. Hence ordq j ¼ �2, and t 0 stays
in U VD. If q 00 A Unfqg does not belong to D, then the closed horizontal
trajectory passing through q 00 cannot meet D. Since D is connected, it follows
that q is an isolated point of qD. Hence RG ĈC and DGC by Corollary 2.1 (ii).

Next, let q A qD and ordq j ¼ 0. Then there is a local coordinate z about q
with zðqÞ ¼ 0 such that j has the representation j ¼ dz2 (cf. [5, Theorem 5.1]).
The horizontal trajectory t passing through q does not meet D. Since q is on the
boundary of D, there is a sequence fqng in D for which qn ! q as n ! y. The
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horizontal trajectories tn containing qn lie entirely in D. The metric
ffiffiffiffiffiffi
jjj

p
in-

duces a distance function on R, which defines the same topology on R. Observe
that for any p A t there exists a point pn A tn such that the j-distance between p
and pn is at most the j-distance between q and qn. Hence p is in the closure of
D. This proves that t is on the boundary of qD. r

Proof of Theorem 4.1. By Corollary 2.1 and Proposition 4.1 the boundary
qD has no isolated points and consists of horizontal trajectories and critical
points of a circularizer j of D. If qD itself is a closed horizontal trajectory of
j, then we have nothing to do. Otherwise, each of the horizontal trajectories is
mapped onto an open segment on C by the mapping p 7!

Ð p ffiffiffi
j

p
. The Euclidean

length of the segment is identical with the j-length of the trajectory. The total
sum of the j-lengths of the trajectories does not exceed the j-length of a closed
horizontal trajectory of j in D. Therefore, qD includes at most countably many
horizontal trajectories.

If q A qD, then m :¼ ordq jf�1 by Proposition 4.1. We can thus find a
local coordinate z about q with zðqÞ ¼ 0 such that j has the representation

j ¼ mþ 2

2

� �2
zm dz2

(cf. [5, Theorem 6.2]). Set Ur ¼ fq 0 A R j jzðq 0Þj < rg for r > 0 and consider the
curves

bk : ð0; rÞ C t 7! z�1ðteð2kþ1Þpi=ðmþ2ÞÞ; k ¼ 0; 1; . . . ;mþ 1;

on Ur. Then bk is a vertical arc of j. If b�1
k ðUr VDÞ is nonempty, then it is

an open interval of the form ðs; rÞ, where 0e s < r, because no vertical arc of
j can be a cross-cut of D. Replacing r with a smaller one if necessary, we may
assume that for each k the set b�1

k ðUr VDÞ is either ð0; rÞ or empty. Note that
if bkðtÞ A D, then the maximal horizontal arc in Ur of j that passes through the
point bkðtÞ stays entirely in D. Consequently, each sector

q 0 A Urnfqg
���� 2k

mþ 2
< arg zðq 0Þ < 2ðk þ 1Þ

mþ 2

� �

is either included in D or disjoint from D, from which we conclude that
ðqDnfqgÞVUr consists of finitely many horizontal arcs of j emanating from
q. It is now easy to see that qD is a locally finite branched polygon. r

We see from the above proof that the following proposition holds:

Proposition 4.2. Let ðD; jÞ be a circularized domain on R with aqDf 2.
Then qD is a branched polygon without ends if and only if j has no poles on qD.

Remark. The boundary of a circularizable domain on R consists of piece-
wise analytic arcs unless it reduces to a point.
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The following proposition refines [4, Theorem 4.1] on boundaries of hy-
perbolically maximal domains.

Corollary 4.1. The boundary of a hyperbolically maximal domain for G is
a locally finite branched polygon without ends.

Proof. Let D be hyperbolically maximal for G. Then DGD. By [4,
Proposition 3.1] a G-circularizer of D has no poles on qD. Thus the corollary
follows from Corollary 2.1 and Proposition 4.2. r

Proposition 4.3. Let D be a circularizable domain on R with aqDf 2. Let
Q be a prime end of D with impression in R. Then the interior angle of D at Q is
equal to 2p=m for some m A N.

The proof is exactly the same as that of [4, Proposition 4.2], and may be
omitted.

5. A characterization of hyperbolically maximal domains

By Proposition 2.3, if D is hyperbolically maximal for G, then it is G-
circularizable. From the following theorem we know when the converse is true.
For EHR we define GðEÞ ¼ 6

g AG gðEÞ. We set GðpÞ ¼ GðfpgÞ for p A R.

Theorem 5.1. Suppose that R�=GZC; ĈC. Then a G-circularizable domain
D on R is hyperbolically maximal for G if and only if

(i) DHR�,
(ii) the area of RnGðDÞ vanishes, and
(iii) qD is a branched polygon without ends.

Proof. The necessity of conditions (i)–(iii) follows from Corollary 4.1 and
[4, Proposition 3.1]. To prove the su‰ciency let j be a G-circularizer of D and
take a pole p of j in D. Proposition 3.4 implies that pðDÞ is a circularizable
domain on pðR�Þ and that j is projected to a circularizer c of pðDÞ. Since pðDÞ
is hyperbolic by the assumption that R�=GZC; ĈC, we know that pðpÞ is the only
pole of c in pðDÞ (cf. Proposition 2.2 (ii) and (ii 0)).

Set E � ¼ R�nGðDÞ. We claim that c has no poles on pðE �Þ ¼ pðR�ÞnpðDÞ.
Since pðE �Þ is of zero area by assumption (ii), it is exactly the boundary of
pðDÞ. It thus follows from Theorem 4.1 that pðE �Þ is a locally finite branched
polygon. Since p is locally homeomorphic on R�, we conclude that for any
q A E � there exists a neighborhood U of q for which ðE �nfqgÞVU is a disjoint
union of finitely many Jordan arcs with one end tending to q. Hence q is on the
boundary of a component of UnE �. Since this component is included in a G-
image gðDÞ of D and E � never meets GðDÞ, we infer that q is on the boundary
of gðDÞ. This proves that pðE �Þ ¼ pðqDÞV pðR�Þ. By assumption (iii) the
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branched polygon pðE �Þ has no ends. Consequently, c is holomorphic on pðE �Þ
by Proposition 4.2.

We have shown that c is holomorphic throughout on pðR�ÞnfpðpÞg. In
view of [4, Proposition 3.1] we see that D, as a subdomain of R�, is hyper-
bolically maximal for G. It then follows from [4, Proposition 2.1] that D, as a
subdomain of R, is hyperbolically maximal for G, too. r

Example 5.1. Fix an integer kf 2 and let Gk be the rotation group
generated by gk : z 7! e2pi=kz acting on the unit disk D. Then

Dk :¼ z A D j jarg zj < p

k

� �

is a Gk-circularizable domain. To show this, take a real z0 in Dk and let
w ¼ f ðzÞ be the conformal mapping of fz A D j 0 < arg z < p=kg onto fw A D j
0 < arg w < pg with f ð0Þ ¼ �1, f ðz0Þ ¼ 0 and f ð1Þ ¼ 1. We use the Schwarz
reflection principle to extend f to a meromorphic function on fz A D j �p=k <
arg z < 3p=kg. Because f ðzÞ ¼ f ðzÞ and f ðgkðzÞÞ ¼ 1=f ðzÞ hold for z A Dk, we
have f ðgkðzÞÞ ¼ 1=f ðzÞ. Thus the function

h :¼ 1

2
f þ 1

f

� �

satisfies h � gk ¼ h on Dk, which enables us to extend h to a single-valued
meromorphic function on the punctured disk Dnf0g. Since f : Dk ! D is con-
formal, 0 is a removable singularity of h. We note that h is a meromorphic Gk-
automorphic function on D with hD 1. The Gk-invariant meromorphic dif-
ferential

j :¼ h 0ðzÞ2

1� hðzÞ2
dz2

on D is a circularizer of Dk since

j ¼

f 0ðzÞ
2

1� 1

f ðzÞ2

 !( )2

1� 1

4
f ðzÞ þ 1

f ðzÞ

� �2 dz2 ¼ � dw2

w2

on Dk. By Theorem 5.1 the domain Dk is hyperbolically maximal for Gk.

Remark. A hyperbolically maximal domain can be maximal simultaneously
in two or more classes DG

p ðRÞ. In fact in the above example the domain Dk is
maximal in DGk

p ðDÞ for any real and positive p A D.

Example 5.2. For a positive integer k let ĜGk be the dihedral group
generated by the rotations z 7! e2pi=kz and z 7! z�1 of ĈC. Then ĈC is a ĜGk-
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circularizable domain. In fact the ĜGk-invariant meromorphic quadratic di¤er-
ential �z�2 dz2 is a circularizer of ĈC. Needless to say, ĈC is also a G-circularizable
domain for any subgroup G of ĜGk.

We see from Example 5.2 that the converse of Proposition 2.4 is also
valid. We thus have the following

Proposition 2.4 0. There exists a compact G-circularizable domain on R if
and only if R is conformally equivalent to ĈC and G is either cyclic or dihedral.

Proof. We have only to show the ‘‘if part’’. Assume that RG ĈC and that
G is either cyclic or dihedral. Let f be a conformal mapping of R onto ĈC.
Then f � G � f �1 is a (finite) cyclic or dihedral group of Möbius transformations.
By normalizing f so that f � G � f �1 is a subgroup of ĜGk in Example 5.2 for
some k (see [2, Proof of Theorem 2.13.5]) we see that R is G-circularizable. r
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