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1. Introduction

Let R be a Riemann surface and I" a properly discontinuous group of con-
formal automorphisms of R. For the sake of simplicity we assume that every
nontrivial element of I' has no fixed points in R. Suppose that R/T" is con-
formally equivalent to neither the plane C nor the sphere C. For pe R let
@pr (R) denote the class of simply connected domains D on R containing p such
that y(D)N D = @ for any y € I'\{idg}. Then every D e :@;(R) carries a unique
complete conformal metric dsp with curvature —1. In our previous work [4]
we considered the function D+ (dsg/dsp)(p) on EZPF(R), where dsp denotes a
complete conformal metric on R with constant curvature, and proved that Qpr (R)
contains a unique element that maximizes the function. Such an element is
called a hyperbolically maximal domain for T.

Hyperbolically maximal domains possess distinguished properties. For ex-
ample, they are locally finite fundamental domains for I'.  Each hyperbolically
maximal domain D is associated with a I'-invariant meromorphic quadratic dif-
ferential ¢ such that D\{p} is swept out by closed horizontal trajectories of ¢;
the point p is a double pole of ¢.

This property of hyperbolically maximal domains leads us to the study of
domains dominated by quadratic differentials. Specifically, we call a domain D
on R a I'-circularizable domain if there is a I'-invariant meromorphic quadratic
differential ¢ with poles in UyerV(D) such that every noncritical point in D lies
on a closed horizontal trajectory of ¢ that stays entirely in D. Circularizable
domains are subject to fairly strong topological restrictions. They turn out to be
simply connected domains whose boundaries are locally finite branched polygons.

Several analytic and geometric properties of hyperbolically maximal do-
mains given in [4] are shared with circularizable domains. In fact, hyperbolically
maximal domains for I' are I'-circularizable and those properties come from
circularizability. Circularizable domains thus deserve to be studied in detail.
We begin with the definition of a circularizable domain. In §3 we show that
a circularizable domain D satisfies y(D)ND =0 for ye I'\{idg} provided D
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contains no fixed points of nontrivial elements of I'. In §4 we investigate
the boundaries of circularizable domains. In the final section we give a nec-
essary and sufficient condition for a I'-circularizable domain to be hyperbolically
maximal for T.

The authors are grateful for the referee’s careful reading.

2. Basic properties

Let R be any Riemann surface and ¢ a meromorphic quadratic differential
on R. We denote by ord, ¢ the algebraic order of ¢ at ge R. For a subset £
of R we mean by FP,(E) the set of poles of ¢ in E. In other words P,(E) is the
set of points g € E for which ord, ¢ < —1. Its cardinality is denoted by #P,(E).

DEerINITION 2.1.  We say that a domain D on R is circularizable if there is a
meromorphic quadratic differential ¢ on R such that
(i) P,(D)#0 and
(ii) the (maximal) horizontal trajectory passing through any noncritical point
of ¢ in D is closed and stays entirely in D.
The differential ¢ is called a circularizer of D. The pair (D, @) is called a cir-
cularized domain.

Remark. Assume that R is a subdomain of another Riemann surface R’.
If a domain D on R is a circularizable domain on R’, then, trivially, D is
a circularizable domain on R. However, the converse is not necessarily true
because circularizers of D on R may not be extended meromorphically on R’.

 Example 2.1. Let D be the unit disk in the complex plane C, and set
C=CU{w}. ForaeDsety,=—dz*/(z—a)*(1—az)>. Then (C,p,), (Cup,)
and (D,¢,) are circularized domains on C, where C, = C\{l/a}.

It should be noted that all the domains in Example 2.1 are simply connected.
In fact we have the following proposition.

ProPOSITION 2.1. A circularizable domain is simply connected.

Proof. Let (D,¢) be a circularized domain on R. Take a noncritical point
of ¢ in D. By (ii) the horizontal trajectory « of ¢ passing through the point
is closed and stays entirely in D. Consider a subdomain A of D which includes
o and is swept out by closed horizontal trajectories of ¢ freely homotopic in A
to o. We may assume that A is maximal with respect to the inclusion relation.
Then A is either a torus or a ring domain (see Strebel [5, §9]). If A is a torus,
then it coincides with R by compactness, and hence we have P,(R) = P,(A) =0,
which contradicts (i). Thus A must be a ring domain.

We claim that the relative boundary f:=JdAND of A in D is nonempty
and discrete. To see that f # () we have only to note that ¢ is holomorphic
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everywhere on A and has at least one pole in D. If f were not discrete, then
it would contain a noncritical point ¢ of ¢. The closed horizontal trajectory t
of ¢ containing ¢ stays entirely in f, so that 7 is a component of f. It is now
easy to construct a ring domain A’ swept out by closed horizontal trajectories of
¢ such that AUt < A’ = D, which contradicts the maximality of A.

For any p € 8, by discreteness, there exists a connected neighborhood U < D
of p such that UNS = {p}. The punctured neighborhood U\{p} is connected
and is hence included in A. This implies that AU is open in D. Since it is
also closed in D, it follows that AUBS = D. We have A= D\B, for AN = 0.
This shows that the connectivity of D is smaller than that of A. Since A is
doubly connected, we conclude that D is simply connected. O

Remark. As is seen from the above proof, f = D\A. Since P,(D) = D\A,
we know that f > P,(D). If p\P,(D) were nonempty, we could take ge€
P\P,(D). Since ¢ is holomorphic at ¢, there is a horizontal arc 7 of ¢ ema-
nating from ¢g. By the discreteness of f we have tNA # @. Let ¢’ be the closed
horizontal trajectory of ¢ passing through a point of tNA. Then t =t < A.
Since ¢ is an end point of 7, it belongs to 7’ so that g € A. This contradicts
gep. Thus = P,(D).

If Riemann surfaces R; and R, are conformally equivalent to each other,
then we write R} =~ R;. The following corollary follows at once from Propo-
sition 2.1.

CorOLLARY 2.1. Let D be a circularizable domain on R.
(i) If 0D =0, then R=D = C,C or D. .
(i) If 0D contains an isolated boundary point, then R = C and D = C.

The following proposition concerns the behavior of circularizers on a corre-
sponding circularizable domain.

PropOSITION 2.2. Let (D,¢) be a circularized domain on R. Then

(i) D\P,(D) is swept out by closed horizontal trajectories of ¢, which are
of the same ¢-length,

(ii) #P,(D)=1 or 2, R

(ii") #P,(D) =2 < D is compact < D = C, and

(iii) ordy, ¢ = =2 for q € P,(D).

Proof. Let A and f be as before. Since D\P,(D) = D\f =A, we have
the first half of (i). The rest of (i) follows from the general theory (see [5, §9.3]).
Taking the connectivities of D and A into account, we obtain (ii) and (ii’). For
g € P,(D) there is a domain G with ¢ € G such that 0G is a closed horizontal
trajectory of ¢ in A. We can apply Teichmiiller’s lemma (cf. [5, Theorem 14.1])
to verify assertion (iii). O
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Remark. There exists a conformal mapping w of D into C such that

dw?
= —C——
? w2
for some positive constant ¢. The image w(D) is either the sphere or the plane
or a disk centered at the origin. The domain D carries a complete conformal
metric dop of constant curvature x, where

x>0 if w(D) is the sphere,
k=0 if w(D) is the plane,
<0 if w(D) is a disk.

The closed horizontal trajectories of ¢ in D are concentric circles with respect
to the metric dop. Compare this fact with [3, Theorem 1].

Now assume that a group I' of conformal automorphisms of R acts properly
discontinuously on R. A T-circularizable domain on R is, by definition, a cir-
cularizable domain whose circularizer ¢ is ['-invariant. We call ¢ a [-circularizer
of the domain, and the pair (D,¢) a I'-circularized domain.

If (D,¢) is a I'-circularized domain, then so is (y(D),¢) for any ye . If]
in addition, D is noncompact, then P,(D) = {p} and P,(y(D)) = {y(p)} for some
p € D by Proposition 2.2 (ii) and (ii’).

Important examples of circularizable domains are hyperbolically maximal
domains introduced in [4]. We first recall the definition. Let 2T (R) be the
class of simply connected domains D on R such that y(D)ND =0 for all
ye I'\{idg}. Denote by R* the set of points of R which are fixed by no
nontrivial elements of I. For p e R* let @pr (R) be the set of D e 2" (R) with
peD. When ' = {idg}, we abbreviate 2" (R) and @I,F(R) to Z(R) and Z,(R),
respectively. If R*/T" 2 C, C, then any D e 9; (R) is conformally equivalent to
D so that it carries a (unique) complete conformal metric dsp with constant
curvature —1. For Dy, D, e 2, (R) we write Dy <D, if (dsp,/dsp,)(p) < 1.

. . . P, . .
Then (a@; (R), =) is a quasi-ordered class, which contains a unique maximum ([4,
p

Theorem 3.1’]); A simply connected domain D on R is called hyperbolically
maximal for T if it is maximal in (@;(R),j) for some pe DNR".

The next proposition is an immediate cponsequence of [4, Proposition 3.1].
PrOPOSITION 2.3. A hyperbolically maximal domain for T is T'-circularizable.

Compact I'-circularizable domains appear only in special cases. To show
this, we need the following lemma.

LemMMA 2.1. Assume that R=C. If there is a T-invariant meromorphic
quadratic differential ¢ with #P,(R) =2, then T is cyclic or dihedral.
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Proof. Let f:R— C be conformal and set G=folof! and Q=
f(Py(R)). Then Q is G-invariant with #Q =2. Since G acts properly dis-
continuously on C, it is a finite group. By Jones-Singerman [2, Lemmas 2.13.3
and 2.13.4] it is cyclic or dihedral, and so is I O

ProroSITION 2.4. If there exists a compact T-circularizable domain on R,
then R is conformally equivalent to C and T is either cyclic or dihedral.

Proof. Let D be a compact I'-circularizable domain on R. Since D is
compact, we have D = R. On the other hand, D =~ C by Proposition 2.2 (ii’).
Hence R =~ C. Another part of Proposition 2.2 (ii’) together with Lemma 2.1
implies that I' is cyclic or dihedral. O

Remark. The converse of Proposition 2.4 is also true. This will be verified
at the end of the final section.

PropoSITION 2.5. Let D be a T-circularizable domain on R. If the bound-

ary 0D in R is empty or contains an isolated point, then T is either cyclic or
dihedral.

The proof will be given after Proposition 3.1 is established.

3. Behavior of I'-circularizable domains under the action of I'

We next study the behavior of circularizable domains under the action of
the discontinuous group. For E = R we denote by 'z the stabilizer in I" of E.
When E = {p}, we abbreviate I';,, to I}.

Lemma 3.1. If (D,¢) is a I'-circularized domain, then I, = I'p for any
p € Py(D).

Proof. Let pe P,(D). If D is compact, then D =R so that I'p =T o T,
Otherwise, y(D)\{y(p)} is a ring domain for any y e . Tt is swept out by closed
horizontal trajectories of y*¢p = ¢, where y*p denotes the pull-back of ¢ via y.
It follows that for any y € I, either D < y(D) or D > y(D). By replacing y with
77! if necessary, we may assume that D > y(D). Since I' acts properly dis-
continuously on R, the stabilizer I, is finite so that y* =idg for some positive

integer k. Therefore, we obtain
D>y(D) = y*(D) > 27"(D) =D
and hence y(D) is identical with D, as desired. O

ProPOSITION 3.1.  For any noncompact T-circularizable domain D there exists
peD such that ')y =Tp.
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Proof.  Let ¢ be a I'-circularizer of D. Since D is noncompact, *P,(D) = 1
by Proposition 2.2 (ii) and (ii’), so that ¢ has a single double pole p in D. By
Lemma 3.1 we have I, cI'p. To show the converse inclusion relation recall
that P,(y(D)) = {y(p)} holds for any yeI'. If y e I'p, then {y(p)} = P,(y(D)) =
P,(D) = {p}. This proves that I}, > I'p. O

Remark. Let D and ¢ be as in Lemma 3.1. In the proof of Proposition 3.1
we have actually shown that if D is noncompact, then I', = I'p for the pole p of
@ in D.

Proof of Proposition 2.5. Assume first that 0D = 0. It follows from Cor-
ollary 2.1 (i) that R is conformally equivalent to C or C or D. If R~ C, then
D is compact so that I" is cyclic or dihedral by Proposition 2.4. Otherwise, we
have I' =I'p =T, for some p € D by Proposition 3.1. Since I" acts properly dis-
continuously on R, we know that I' =T, is cyclic.

Next, if D contains an isolated point, then by Corollary 2.1 (ii) we know
that R~ C and D = C. In particular, R\D is a singleton, say {p}. Then p is
a critical point of a circularizer of D, for, otherwise, the horizontal trajectory of
@ passing through p would meet D without staying entirely in D. It follows that
(R,9) is a circularized domain, and the assertion follows from Proposition 2.4
since R is compact and I'-circularizable. ]

PROPOSITION 3.2.  Suppose that one of the following conditions is satisfied:
(a) R£C.
(b) T is neither cyclic nor dihedral.
Let D be a T'-circularizable domain on R. Then for any y € I, either y(D) = D or
»(D)ND =0 holds.

Proof. Let ¢ be a I'-circularizer of D. It has a single double pole p in D
since D is noncompact by Proposition 2.4.

Suppose that »(D)ND # (. By Lemma 3.1 we have only to show that
yel,. If y(p) were different from p, then P,(y(D)ND) = P,(y(D))NP,(D) =
{y(p)} N{p} =0. By Proposition 2.2 (i) every point in (D) N D lies on a closed
horizontal trajectory of ¢ staying entirely in p(D) N D. By the same argument as
in the proof of Proposition 2.1 we deduce that y(D)N D is a ring domain swept
out by closed horizontal trajectories of ¢. Since p € D\y(D) and y(p) € y(D)\D,
the domain p(D)UD is topologically a sphere. Therefore R =~ C, which con-
tradicts (a). Moreover, since *P,(R) = 2, it follows from Lemma 2.1 that T is
cyclic or dihedral, which violates (b). Thus y(p) = p, or equivalently, y e I,.

O

PrOPOSITION 3.3.  Suppose that one of (a) and (b) in Proposition 3.2 is sat-
isfied. Let (D,¢) be a TI'-circularized domain. Then p e D is a pole of ¢ if T,
is nontrivial.
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Proof. Note that D is noncompact and simply connected. Let g be the
pole of ¢ in D. By the remark following Proposition 3.1 we know I'y = I'p.
On the other hand I', < I'p by Lemma 3.1. Hence we have {idg} #I, c I'p =
I'y. Since any nontrivial conformal automorphism of D has at most one fixed
point in D, it follows that p = g. O

THEOREM 3.1. Let R* denote the set of points of R which are fixed by no
nontrivial elements of T'.  Let D be a T-circularizable domain on R. If D < R*,
then y(D)ND =0 for all nontrivial yeT.

Proof. If R* is conformally equivalent to C, then T is trivial and there is
nothing to prove. Otherwise D is noncompact by Proposition 2.2 (ii’) so that
there exists p e D such that I'p =T, by Proposition 3.1. Since D <= R*, we
know that I'p =T, = {idg}. Now the theorem is an immediate consequence of
Proposition 3.2. |

PrROPOSITION 3.4.  Assume that no elements of T other than idg have a fixed
point on R. Then a domain D on R is U-circularizable if and only if n(D) is
circularizable, where 7 is the natural projection of R onto R/T. If this is the
case, 7 induces a bijection between the T'-circularizers of D and the circularizers

of n(D).

Proof. Suppose first that (D, ¢) is a I'-circularized domain. Because of the
I-invariance ¢ is projected to a meromorphic quadratic differential  on n(R).
By Theorem 3.1 we know that z|, : D — n(D) is a holomorphic bijection, which
implies that (z(D),¥) is a circularized domain on 7(R).

Assume conversely that (z(D),y) is a circularized domain on n(R). Then
the pullback ¢ of  via n is a I'-invariant meromorphic quadratic differential
on R. Since 7: R — n(R) is a smooth unlimited covering and zn(D) is simply
connected by Proposition 2.1, it follows from the monodromy theorem that
n|p : D — wn(D) is a holomorphic bijection. Hence (D,¢) is a I'-circularized
domain on R. O

Remark. Let T'" be an arbitrary group of automorphisms of R acting
properly discontinuously on R. If D is a I'-circularizable domain on R with
D = R*, then n(D) is a circularizable domain on zn(R).

4. The boundary of a circularizable domain

In this section we investigate geometric properties of boundaries of circu-
larizable domains. The simplest cases have been investigated in Corollary 2.1
and Proposition 2.5. General circularizable domains have a fairly regular
boundary. To describe the regularity we recall some definitions from algebraic
geometry. By a geometric simplicial complex we mean a collection K of affine
simplices in R* such that
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(a) if o € K, then any face of ¢ is in K, and

(b) if 6,7 € K, then ¢N7 is a face of both ¢ and 7, or is empty
(cf. [1, Definition IV.21.2]). Note that K may be an infinite set. The dimension
of K is, by definition, the supremum of the dimensions of simplices in K. Set
|K| =1J,.x0. If for any p e K| there is a neighborhood U of p in R* such
that U meets only finitely many simplices in K, then we say that K is locally
finite. A topological space X is said to be a polyhedron if there exists a ho-
meomorphism of |K| onto X for some geometric simplicial complex K. If the
dimension of K is n, then X is called an n-polyhedron. It is called locally finite
if K is.

We are particularly interested in 1-polyhedra, which will be called branched
polygons. An end of a branched polygon X is, by definition, a point of X whose
corresponding point on |K| constitutes a O-simplex in K which is included in
exactly one 1-simplex of K.

THEOREM 4.1. The boundary of a circularizable domain is a locally finite
branched polygon if it contains more than one point.

For the proof we first study the behavior of circularizers on the relative
boundary dD.

PropPoOSITION 4.1.  Suppose that (D,¢) is a circularized domain. Then for
qedD
(i) ord, ¢ = -2, and
(ii) if ord, ¢ =0, then the horizontal trajectory of ¢ passing through q lies
entirely on 0D. A
Moreover, ¢ has a double pole on 0D if and only if R=~C and D = C.

Proof. By [5, Theorems 7.2 and 7.4] for any ¢ € R with ord, ¢ < —2 either
(a) there is a neighborhood U of ¢ such that every horizontal trajectory ray
of ¢ which enters into U tends to ¢, or
(b) there is a simply connected neighborhood U of ¢ such that U\{q} is
swept out by closed horizontal trajectories of ¢.
If ord, ¢ < —2, then (b) never occurs.
Now, assume that g € dD. If ord, ¢ < —2, then we can find a neighborhood
U of ¢ as in (a) or (b). The intersection U N D contains a noncritical point ¢’ of
@. Since ¢ is a circularizer of D, the horizontal trajectory t’ passing through ¢’
is closed. This shows that (a) does not occur. Hence ord, ¢ = —2, and 7’ stays
in UND. If ¢" € U\{q} does not belong to D, then the closed horizontal
trajectory passing through ¢” cannot meet D. Since D is connected, it follows
that ¢ is an isolated point of 6D. Hence R =~ C and D =~ C by Corollary 2.1 (ii).
Next, let g € D and ord, ¢ = 0. Then there is a local coordinate { about g
with {(g) = 0 such that ¢ has the representation ¢ = d¢? (cf. [5, Theorem 5.1]).
The horizontal trajectory 7 passing through ¢ does not meet D. Since ¢ is on the
boundary of D, there is a sequence {g,} in D for which ¢, — ¢ as n — co. The
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horizontal trajectories 7, containing g, lie entirely in D. The metric \/m in-
duces a distance function on R, which defines the same topology on R. Observe
that for any p € t there exists a point p, € 7, such that the ¢-distance between p
and p, is at most the p-distance between ¢ and ¢,. Hence p is in the closure of
D. This proves that 7 is on the boundary of dD. O

Proof of Theorem 4.1. By Corollary 2.1 and Proposition 4.1 the boundary
0D has no isolated points and consists of horizontal trajectories and critical
points of a circularizer ¢ of D. If 0D itself is a closed horizontal trajectory of
@, then we have nothing to do. Otherwise, each of the horizontal trajectories is
mapped onto an open segment on C by the mapping p — jp /¢. The Euclidean
length of the segment is identical with the ¢-length of the trajectory. The total
sum of the ¢-lengths of the trajectories does not exceed the ¢-length of a closed
horizontal trajectory of ¢ in D. Therefore, 0D includes at most countably many
horizontal trajectories.

If g e 0D, then m := ord, ¢ = —1 by Proposition 4.1. We can thus find a
local coordinate { about ¢ with {(¢) =0 such that ¢ has the representation

m J’» 2 2 m
» = (T) {mde
(cf. [5, Theorem 6.2]). Set U, ={q’ € R||{(q")| < p} for p > 0 and consider the
curves

B (0,p)3 1 C_l(le@kﬂ)m/(mz)), k=0,1,...,m+1,

on U,. Then f, is a vertical arc of ¢. If /)’,:l(U/, N D) is nonempty, then it is
an open interval of the form (s,p), where 0 < s < p, because no vertical arc of
@ can be a cross-cut of D. Replacing p with a smaller one if necessary, we may
assume that for each k the set ;' (U, N D) is either (0,p) or empty. Note that
if B, (¢) € D, then the maximal horizontal arc in U, of ¢ that passes through the
point f3,(7) stays entirely in D. Consequently, each sector

{vevnia) 2 <amecn <2

is either included in D or disjoint from D, from which we conclude that
(0D\{q})N U, consists of finitely many horizontal arcs of ¢ emanating from
g. It is now easy to see that 0D is a locally finite branched polygon. O

We see from the above proof that the following proposition holds:

ProPOSITION 4.2.  Let (D,¢) be a circularized domain on R with #0D = 2.
Then 0D is a branched polygon without ends if and only if ¢ has no poles on 0D.

Remark. The boundary of a circularizable domain on R consists of piece-
wise analytic arcs unless it reduces to a point.
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The following proposition refines [4, Theorem 4.1] on boundaries of hy-
perbolically maximal domains.

COROLLARY 4.1. The boundary of a hyperbolically maximal domain for T is
a locally finite branched polygon without ends.

Proof. Let D be hyperbolically maximal for I'. Then D ~D. By [4,
Proposition 3.1] a I'-circularizer of D has no poles on dD. Thus the corollary
follows from Corollary 2.1 and Proposition 4.2. O

PROPOSITION 4.3.  Let D be a circularizable domain on R with #0D = 2. Let
Q be a prime end of D with impression in R. Then the interior angle of D at Q is
equal to 2n/m for some m e N.

The proof is exactly the same as that of [4, Proposition 4.2], and may be
omitted.

5. A characterization of hyperbolically maximal domains

By Proposition 2.3, if D is hyperbolically maximal for I, then it is T'-
circularizable. From the following theorem we know when the converse is true.
For E < R we define I'(E) = (), 7(E). We set T'(p) =I({p}) for peR.

THEOREM 5.1.  Suppose that R*/T % C,C. Then a T-circularizable domain
D on R is hyperbolically maximal for T if and only if

(i) Dc R,

(i) the area of R\I'(D) vanishes, and

(iii) 0D is a branched polygon without ends.

Proof. The necessity of conditions (i)—(iii) follows from Corollary 4.1 and
[4, Proposition 3.1]. To prove the sufficiency let ¢ be a I'-circularizer of D and
take a pole p of ¢ in D. Proposition 3.4 implies that 7(D) is a circularizable
domain on 7(R*) and that ¢ is projected to a circularizer ¥ of n(D). Since n(D)
is hyperbolic by the assumption that R*/T" ¢ C,C, we know that z(p) is the only
pole of ¥ in n(D) (cf. Proposition 2.2 (ii) and (ii")).

Set E* = R*\I'(D). We claim that y has no poles on n(E*) = n(R*)\n(D).
Since m(E*) is of zero area by assumption (ii), it is exactly the boundary of
n(D). Tt thus follows from Theorem 4.1 that n(E*) is a locally finite branched
polygon. Since 7 is locally homeomorphic on R*, we conclude that for any
q € E* there exists a neighborhood U of ¢ for which (E*\{q})NU is a disjoint
union of finitely many Jordan arcs with one end tending to ¢. Hence ¢ is on the
boundary of a component of U\E*. Since this component is included in a I'-
image y(D) of D and E* never meets I'(D), we infer that ¢ is on the boundary
of y(D). This proves that n(E*) ==(dD)N=n(R*). By assumption (iii) the
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branched polygon n(E*) has no ends. Consequently,  is holomorphic on 7(E*)
by Proposition 4.2.

We have shown that i is holomorphic throughout on n(R*)\{n(p)}. In
view of [4, Proposition 3.1] we see that D, as a subdomain of R*, is hyper-
bolically maximal for I'. It then follows from [4, Proposition 2.1] that D, as a
subdomain of R, is hyperbolically maximal for T', too. O

Example 5.1. Fix an integer k =2 and let Gy be the rotation group
generated by g : z — e2™/*z acting on the unit disk D. Then

Dy = {zeD|argz|<Z}

is a Gy-circularizable domain. To show this, take a real zy in D, and let
w =f(z) be the conformal mapping of {zeD|0 < argz < rn/k} onto {weD|
0 <argw <z} with f(0)=—1, f(z0) =0 and f(1) =1. We use the Schwarz
reflection principle to extend f to a meromorphic function on {zeD|-n/k <

arg z < 3n/k}. Because f(Z) =f(z) and f(gr(2)) = 1/f(z) hold for z € Dy, we
have f(gx(z)) = 1/f(z). Thus the function

=30+

satisfies hogy =h on Dy, which enables us to extend 4 to a single-valued
meromorphic function on the punctured disk D\{0}. Since f: D; — D is con-
formal, 0 is a removable singularity of . We note that /4 is a meromorphic G-
automorphic function on D with 4 # 1. The Gji-invariant meromorphic dif-
ferential

/ 2
@ = W) dz?

1 —h(2)?

on D is a circularizer of Dy since

(05}
L2 1)) aw?
1

-l (s +%)

on D;. By Theorem 5.1 the domain D; is hyperbolically maximal for Gy.

Remark. A hyperbolically maximal domain can be maximal simultaneously
in two or more classes 2! (R). In fact in the above example the domain Dy is
maximal in EZ[f;k (D) for any real and positive p € D.

Example 5.2. For a positive integer k let G be the dihedral group
generated by the rotations z — ¢?/kz and z+ z=! of C. Then C is a G-
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circularizable domain. In fact the Gy-invariant meromorphic quadratic differ-
ential —z~2 dz? is a circularizer of C. Needless to say, C is also a G-circularizable
domain for any subgroup G of Gy.

We see from Example 5.2 that the converse of Proposition 2.4 is also
valid. We thus have the following

PROPOSITION 2.4".  There exists a compact T-circularizable domain on R if
and only if R is conformally equivalent to C and T is either cyclic or dihedral.

Proof:  We have only to show the “if part”. Assume that R =~ C and that
I' is either cyclic or dihedral. Let f be a conformal mapping of R onto C.
Then f ol o f~!is a (finite) cyclic or dihedral group of Mdbius transformations.
By normalizing f so that foT o f~! is a subgroup of G; in Example 5.2 for
some k (see [2, Proof of Theorem 2.13.5]) we see that R is I'-circularizable. O
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