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Computing the Number of Types of Infinite Length

Will Boney

Abstract We show that the number of types of sequences of tuples of a fixed
length can be calculated from the number of 1-types and the length of the
sequences. Specifically, if � � �, then

sup
kMkD�

ˇ̌
S�.M/

ˇ̌
D

�
sup

kMkD�

ˇ̌
S1.M/

ˇ̌��
:

We show that this holds for any abstract elementary class with �-amalgamation.
No such calculation is possible for nonalgebraic types. However, we introduce a
subclass of nonalgebraic types for which the same upper bound holds.

1 Introduction

A well-known result in stability theory is that stability for 1-types implies stability
for n-types for all n < ! (see Shelah [S3, Section 2.2, Corollary I] or Pillay [P,
Lemma 0.9]). In this paper, we generalize this result to types of infinite length.

Theorem 1.1 Given a complete theory T , if the supremum of the number of
1-types over models of size � � jT j is �, then for any (possibly finite) cardinal
� � �, the supremum of the number of �-types over models of size � is exactly �� .

We do this by using the semantic, rather than syntactic, properties of types. This
allows our arguments to work in many nonelementary classes. Thus, we work in the
framework of abstract elementary classes (AECs), which was introduced by Shelah
[S1]. As we discuss in Section 2, AECs include elementary classes and various
nonelementary classes, such as those axiomatized in L�C;!.Q/. We use our results
to answer a question of Shelah [S3].

While the number of types of sequences of infinite lengths has not been calculated
before, these types have already seen extensive use under the name tp� in [S3] and
TP� in [S5, Chapter V.D, Section 3]. While [S3] uses them most extensively, it is
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the use in [S5, Chapter V.D, Section 3] as types of models that might be most useful.
This means that stability in � can control the number of extensions of a model of size
� (see Section 3.11).

After seeing preliminary versions of this work, Rami Grossberg suggested that
we investigate nonalgebraic versions of these results. Although they do not trans-
late directly (see Remark 4.1), we introduce a subclass of nonalgebraic types of
tuples called strongly separative types for which we can prove the same upper bound.
In AECs with disjoint amalgamation, such as elementary classes, nonalgebraic and
strongly separative types coincide for types of length 1. For longer types, we require
that realizations are, in a sense, nonalgebraic over each other. For instance, in ACF0,
the type of .e; �/ can be considered “more nonalgebraic” over the set of algebraic
numbers than the type of .e; 2e/. This is made precise in Definition 4.2.

Finally, in Section 5, we investigate the saturation of types of various lengths.
The “saturation equals model homogeneity” lemma (recall Lemma 2.6) shows that
saturation is equivalent for all lengths. We also use bounds on the number of types
and various structural properties to construct saturated models.

2 Preliminaries

We use the framework of AECs to prove our results. Thus, we offer the following
primer on AECs and Galois types.

The definition for an AEC was first given by Shelah [S1]. The definitions and
concepts in the section are all part of the literature (in particular, see Baldwin [B2],
Shelah [S5], Grossberg [G1], or the forthcoming Grossberg [G2] for more informa-
tion). The definition of an AEC can be found in any of those references (in particular,
see [B2, Definition 4.1]).

We will briefly summarize some of the basic notations, definitions, and results for
AECs.

Definition 2.1 Let K be an AEC.
1. A K-embedding is an injection f W M ! N that respects L.K/ such that
f .M/ � N .

2. K has the �-amalgamation property (�-AP) if and only if, for any M � N0,
N1 2 K�, there are some N � 2 K and fi W M ! Ni such that

N1
f1 // N �

M

OO

// N0

f0

OO

commutes.
3. K has the �-disjoint amalgamation property (�-DAP) if and only if, for any
M � N0; N1 2 K�, there are some N � 2 K and fi W M ! Ni such that

N1
f1 // N �

M

OO

// N0

f0

OO

commutes and f0.N0/ \ f1.N1/ D f0.M/.
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4. K has the �-joint mapping property (�-JMP) if and only if, for any
M0;M1 2 K�, there are some N 2 K and f` W M` ! N for ` D 0; 1.

Disjoint amalgamation is stronger than the normal amalgamation and is used to prove
the equivalence between separativity and strong separativity in Section 4. It is an
exercise in the use of compactness that every complete first-order theory satisfies
disjoint amalgamation over models (see Hodges [H, Theorem 6.4.3]). For a general
AEC, this is not the case. Baldwin, Kolesnikov, and Shelah [BKS] constructed exam-
ples of AECs without disjoint amalgamation. On the other hand, Shelah [S4] showed
that disjoint amalgamation follows from certain amounts of structure (see, in particu-
lar, [S4, Conclusion 2.17 and Claim 5.11]). Additionally, Grossberg, VanDieren, and
Villaveces [GVV] pointed out that many AECs with a well-developed independence
notion, such as homogeneous model theory or finitary AECs, also satisfy disjoint
amalgamation.

Galois types are central to this paper, so we review their definition. In first-order
logic, types are consistent sets of formulas, and the power of these types comes
from the unique features of first-order logic such as compactness. However, gen-
eral AECs lack these properties, and so this definition of type is not useful. To
compensate for this, Shelah [S2] isolated a semantic notion of type that Gross-
berg [G1] named Galois type, which replaces sets of formulas as the definition for
types.

Definition 2.2 Let K be an AEC, � � LS.K/, and let .I; <I / be an ordered set.

1. Set K3;I
�

D ¹.hai W i 2 I i;M;N / W M 2 K�;M � N 2 K�CjI j, and
¹ai W i 2 I º � jN jº. The elements of this set are referred to as pretypes.

2. Given two pretypes .hai W i 2 I i;M;N / and .hbi W i 2 I i;M 0; N 0/ from
K
3;I
�

, we say that .hai W i 2 I i;M;N / �AT .hbi W i 2 I i;M 0; N 0/ if and
only if M D M 0 and there are N � 2 K, f W N ! N �, and g W N 0 ! N �

so that f .ai / D g.bi / for all i 2 I and the following diagram commutes:

N 0
g // N �

M

OO

// N

f

OO

3. Let � be the transitive closure of �AT .
4. For M 2 K, set gtp.hai W i 2 I i=M;N/ D Œ.hai W i 2 I i;M;N /�� and
gSI .M/ D ¹gtp.hai W i 2 I i=M;N/ W .hai W i 2 I i=M;N/ 2 K

3;I
kMk

º.
5. For M 2 K, define gSIna.M/ D ¹tp.hai W i 2 I i=M;N/ 2 SI .M/ W ai 2

N �M for all i 2 I º.
6. Let M 2 K and p D gtp.hai W i 2 I i=M;N/ 2 gSI .M/.

� If M 0 � M , then p � M 0 is gtp.hai W i 2 I i=M 0; N 0/ for some (any)
N 0 2 KkM 0kCjI j with M 0 � N 0 � N and hai W i 2 I i � jN 0j.

� If I0 � I , then pI0 is gtp.hai W i 2 I0i=M;N
0/ for some (any)

N 0 2 KkMkCjI0j with M � N 0 � N and hai W i 2 I0i � jN 0j.

Remark 2.3 If K has the �C jI j-amalgamation property, then �AT is transitive
and, thus, an equivalence relation on K3;I

�
.
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Since we will make extensive use of Galois types, we will assume that all AECs
have the amalgamation property. We will also use the joint mapping property as
a “connectedness” property. For first-order theories, these properties follow from
compactness and interpolation.

In the first-order case, amalgamation over models follows directly from com-
pactness and interpolation. For complete theories, amalgamation holds over sets
as well. Furthermore, Galois types and syntactic types correspond: the syntac-
tic types of a and b over M are equal if and only if their Galois types are equal.
This means that Theorem 1.1 from Section 1 follows from Theorem 3.5 below, and
we can translate the other results similarly. However, there is no AEC version of
tp� for � ¨ Fml.L/; we summarize what we do know at the end of the next sec-
tion.

For AECs axiomatized in other logics, this correspondence breaks down. Baldwin
and Kolesnikov [BK] analyzed the Hart–Shelah examples from [SH] to show that
two elements can have the same syntactic type but different Galois types, even in an
L!1;!-axiomatized class.

There is a relation in the other direction. If the syntactic types of two elements
are different in a logic that the AEC can “see,” then the Galois types must be dif-
ferent as well. For instance suppose that  is a sentence in some fragment LA of
L�C;! . If tpLA

.a=M;N1/ ¤ tpLA
.b=M;N2/, then their Galois types must differ in

the AEC .Mod ;�LA
/. This means that classical many-type theorems for nonfirst-

order logic, such as those forL!1;! in [K2] and forL.Q/ in [K1], imply the existence
of many Galois types.

We investigate the supremum of the number of types of a fixed length over all
models of a fixed size. To simplify this discussion, we introduce the following nota-
tion.

Definition 2.4 The type bound for �-sized domains and �-lengths is denoted
tb�� D supM2K�

jgS�.M/j.

Shelah has introduced the notation of tp� in [S3, Chapter III, Definition 1.1] and TP�

in [S5, Chapter V.D, Definition 3.5] to denote the types of infinite tuples, with tp�

having a syntactic definition (sets of formulas) and TP� having a semantic definition
(Galois types). Thus, tb�� counts the maximum number of types of a fixed length
� over models of a fixed size �, allowing for the possibility that this maximum is
not achieved. These long types are also used fruitfully in Makkai and Shelah [SM],
Grossberg and VanDieren [GV2], and Boney and Grossberg [BG].

Clearly, �-stability is the same as the statement that tb1� D �. Also, we always
have tb1� � � because each element in a model has a distinct type. Other notations
have been used to count the supremum of the number of types, although the lengths
have been finite. Keisler [K3] uses

fT .�/ D sup
®ˇ̌
S1.M;N /

ˇ̌
W M;N ˆ T;M � N; and kMk D �

¯
:

Shelah [S3, Chapter II, Definition 4.4] uses, for � � L.T / and m < !,

Km� .�; T / WD min
®
� W jAj � � implies

ˇ̌
Sm� .A/

ˇ̌
< �

¯
D sup

jAjD�

�ˇ̌
Sm� .A/

ˇ̌C�
:
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The relationships between these follow easily from the definitions

fT .�/ D tb1�;

KmL.T /.�; T / D sup
kMkD�

�ˇ̌
Sm.M/

ˇ̌C�
D

´
tbm� if Km

L.T /
.�; T / is limit,

.tbm� /
C if Km

L.T /
.�; T / is successor,

D

´
tbm� if tbm� is a strict supremum,
.tbm� /

C if the supremum in tbm� is achieved.

From this last equality, a basic question concerning tb�� is if the supremum is strict
or if there is a model that achieves the value. Below we describe two cases when the
supremum in tb�� is achieved.

Proposition 2.5 Suppose that K is an AEC with �-AP and �-JMP and � � �. If
cf tb�� � � or if I.K; �/ � �, then there is M 2 K� such that jgS�.M/j D tb��.

Proof The idea of this proof is to put at the most �-many �-sized models
together into a single �-sized model that will witness the conclusion. Pick
hM �

i 2 K� W i < �i with � � � such that ¹jgS�.M �
i /j W i < �º has supre-

mum tb��; in the first case, this can be done by the definition of supremum, and
in the second case, this can be done because there are only I.K; �/-many possible
values for jgS�.M/j when M 2 K�. Using amalgamation and joint mapping, we
construct increasing and continuous hNi 2 K� W i < �i such that M �

i is embed-
dable in NiC1. Set M D

S
i<�Ni . Since � � �, we have M 2 K�; this fact is

also crucial in our construction. Since M �
i can be embedded in M , we have that

jgS�.M �
i /j � jgS�.M/j � tb��. Taking the supremum over all i < �, we get

tb�� D jgS�.M/j, as desired.

The use of joint embedding here seems necessary, at least from a naive point of view.
It seems possible to have distinct AECs Kn in a common language that have models
M n 2 Kn

�
such that jgS�.M n/j D tb�� D �Cn, each computed in Kn. Then, we

could form K! as the disjoint union of these classes; this would be an AEC with
tb�� D �C! , and the supremum would not be achieved. However, examples of such
Kn, even with � D 1, are not known, and the specified values of jgS�.�/j might not
be possible.

We now state the “model homogeneity equals saturation” lemma for AECs. This
has long been known for first-order theories and first appeared for AECs in [S2] (see
Shelah [S4, Lemma 0.26(1)] for a detailed proof).

Lemma 2.6 (Shelah) Let K be an AEC with amalgamation and � > LS.K/.
Then the following are equivalent for M 2 K:

� M is �-model homogeneous: for everyN1 � N2 2 K<� withN1 � M , there
is a K embedding f W N2 !N1

M ; and
� M is �-Galois saturated: for every N � M with kN k < � and every
p 2 S1.N /, p is realized in M .

3 Results on S ˛.M/

This section aims to prove Theorem 1.1 for AECs. In our notation, this can be stated
as follows.
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Theorem 3.1 IfK is an AEC with �-amalgamation and �-joint mapping, then for
any � � �, allowing � to be finite or infinite, we have tb�� D .tb1�/

� .

We prove this by proving a lower bound (Theorem 3.2) and an upper bound (The-
orem 3.5) for tb��. Note that, when � D �, this value is always the set-theoretic
maximum 2�. However, for 1 < � < min¹� W .tb1�/

� D 2�º, this provides new
information.

For readers interested in AECs beyond elementary classes, we note the use of
amalgamation for the rest of this section and for the rest of this paper. It remains
open whether these or other bounds can be found on the number of types without
amalgamation. One possible obstacle is that different types cannot be put together:
if we assume amalgamation, then given two types p; q 2 gS1.M/, there is some
type r 2 gS2.M/ such that its first coordinate extends p and its second coordinate
extends q. This will be a crucial tool in the proof of the lower bound. However, if
we cannot amalgamate a model that realizes p and a model that realizes q over M ,
then such an extension type does not necessarily exist. An example of this occurs in
the example of an AEC without amalgamation from [BKS, Example 0.2]: the types
of elements in all the Pn’s from each equivalence relation cannot be combined into
one type.

For the lower bound, we essentially “put together” all of the different types in
gS1.M/ as discussed above.

Theorem 3.2 LetK be an AEC with �-AP and �-JMP. We have tb�� � .tb1�/
� . In

particular, given M 2 K�, jgS�.M/j � jgS1.M/j� .

Proof We first prove the “in particular” clause and use that to prove the statement.
Fix M 2 K�, and set � D jgS1.M/j. Fix some enumeration hpi W i < �i of
gS1.M/. Then we claim that there is some MC � M that realizes all of the types
in gS1.M/.

To see this, let Ni � M of size � contain a realization of pi . Then set M0 D M

and M1 D N0. For ˛ D ˇ C 1, amalgamate Mˇ and Nˇ over M to get M˛ � Mˇ

and f W Nˇ !M M˛; since Nˇ realizes pˇ 2 S.M/, f .Nˇ / realizes f .pˇ / D pˇ .
So M˛ does as well. Take unions at limits. Then MC WD

S
ˇ<˛Mˇ realizes each

type in gS1.M/.
Having proved the claim, we show that jgS�.M/j � �� . For each i < �, pick

ai 2 jMCj that realizes pi . For each f 2 ��, set af D haf .i/ W i < �i. We claim
that the map .f 2 ��/ ! gtp.af =M;MC/ is injective, which completes the proof.

To prove injectivity, note that gtp.aj =M;MC/ D gtp.ak=M;MC/ if and only
if j D k. Suppose gtp.af =M;MC/ D gtp.ag=M;MC/. Then, we see that
gtp.af .i/=M;MC/ D gtp.ag.i/=M;MC/ for each i < �. By our above note, that
means that f .i/ D g.i/ for every i 2 � D dom f D dom g. So f D g. Thus,
jgS�.M/j � j��j D �� , as desired.

Now we prove that tb�� � .tb1�/
� . This is done by separating into cases based on

cf.tb1�/. If cf.tb1�/ > �, then it is known that exponentiating to � is continuous at
tb1�. Stated more plainly, if X is a set of cardinals such that cf.sup�2X �/ > �, then�

sup
�2X

�
��

D sup
�2X

.��/:
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Then, we compute that

.tb1�/
�

D
�

sup
M2K�

ˇ̌
gS1.M/

ˇ̌��
D sup
M2K�

�ˇ̌
gS1.M/

ˇ̌��
� sup
M2K�

ˇ̌
gS�.M/

ˇ̌
D tb��:

If cf.tb1�/ � �, then we also have cf.tb1�/ � �. By Proposition 2.5, we know that
the supremum of tb1� is achieved, say, by M � 2 K�. Then

.tb1�/
�

D
ˇ̌
gS1.M �/

ˇ̌�
�

ˇ̌
gS�.M �/

ˇ̌
� sup
M2K�

ˇ̌
gS�.M/

ˇ̌
D tb��:

Now we show the upper bound. We do this in two steps. First, we present the
“successor step” in Theorem 3.3 to give the reader the flavor of the argument. Then
Theorem 3.5 gives the full argument by using direct limits.

Theorem 3.3 For any AEC K with �-AP and any n < !, tbn� � tb1�.

Note that, since it includes the kMk-many algebraic types, gS1.M/ is always infi-
nite, so this result could be written tbn� � .tb1�/

n.

Proof We prove this by induction on n < !. The base case is tb1� � tb1�. Suppose
tbn� � tb1�, and set � D tb1�. For contradiction, suppose there is some M 2 K�
such that jgSnC1.M/j > �. Then we can find distinct ¹pi 2 SnC1.M/ j i < �Cº

and find haij j j < n C 1i ˆ pi and Ni � M that contains each aij for
j < nC 1.

Consider ¹gtp.haij j j < ni=M;Ni / W i < �Cº � gSn.M/. By assumption,
this set has size �. So there is some I � �C of size �C such that, for all i 2 I ,
gtp.haij j j < ni=M;Ni / is constant.

Fix i0 2 I . For any i 2 I , the Galois types of haij W j < ni and ha
i0
j W j < ni

over M are equal. Thus, there are N �
i � Ni0 and fi W Ni !M N �

i such that
fi .a

i
j / D a

i0
j for all j < n and

Ni0
// N �
i

M

OO

// Ni

fi

OO

commutes. Now consider the set ¹gtp.fi .ain/=Ni0 ; N �
i / j i 2 I º. We have that

jI j D �C and jS1.Ni0/j � tb1� D �, so there is I � � I of size �C so, for all
i 2 I �, gtp.fi .ain/=Ni0 ; N �

i / is constant. Let i ¤ k 2 I �.
Then gtp.fi .ain/=Ni0 ; N �

i / D gtp.fk.akn/=Ni0 ; N �
k
/. By the definition of Galois

types, we can find N ��, gk W N �
k

! N ��, and gi W N �
i ! N �� such that

gk.fk.a
k
n// D gi .fi .a

i
n// and the following commutes

N �
k

gk // N ��

Ni0

OO

// N �
i

gi

OO
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We put these diagrams together and get the following:

N ��

N �
k

gk

<<

N �
i

gi

bb

Ni0

==aa

Nk

fk

OO

Ni

fi

OO

M

<<bb

OO

Thus, we have amalgamated N �
i and N �

k
over M . Furthermore, for each

j < nC1, we have gk.fk.akj // D gi .fi .a
i
j //. This witnesses gtp.haij j j < nC1i=

M;Ni / D gtp.hajj j j < n C 1i=M;Nj /, which is a contradiction. Thus,
jgSnC1.M/j � � D tb1� for all M 2 K� as desired.

This proof can be seen as a semantic generalization of the proof that stability for
1-types implies stability. Now we wish to prove this upper bound for types of any
length less than or equal to �.

The proof works by induction to construct a tree of objects that is indexed by
.tb1�/—called � in the proof—that codes all �-length types as its branches. Succes-
sor stages of the construction are similar to the above proof but with added book-
keeping. At limit stages, we wish to continue the construction in a continuous way.
However, we will have a family of embeddings rather than an increasing �K-chain.
This is fine since the following closure under direct limits follows from the AEC
axioms.

Fact 3.4 If we have hMi 2 K W i < �i and, for i < j < �, a coherent set
of embeddings fi;j W Mj ! Mi—that is, one so that, for i < j < k < �,
fi;k D fj;k ı fi;j—then there are an L.K/-structure M D lim

�!i<j<�
.Mi ; fi;j /

and embeddings fi;1 W Mi ! M so that, for all i < j < �, fi;1 D fj;1 ıfi;j and,
for each x 2 M , there is some i < � and m 2 Mi so fi;1.m/ D x. Furthermore,
the model M 2 K, and each fi;1 is a K-embedding.

This first appeared for AECs in VanDieren’s thesis [V] based on work of Cohn in
1965 on the direct limits of algebras. A proof of this fact can also be found in [G2].

We now prove the main theorem.

Theorem 3.5 If K is an AEC with �-AP and � � �, then tb�� � .tb1�/
� .

Proof Set � D tb1�. Let M 2 K�, and enumerate gS�.M/ as hpi 2 gS�.M/ W

i < �i, where � D jgS�.M/j. We will show that � � �� , which gives
the result. For each i < �, find N i

0 2 K� such that M � N i
0 and there is

ha˛i 2 jN i
0 j W ˛ < �i ˆ pi .
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The formal construction is laid out below, but we give the idea first. Our con-
struction will essentially create three objects: a tree of models hM� W � 2 <��i; for
each i < �, a function �i W � ! �; and, for each i < �, a coherent, continuous
system ¹N i

˛;
bf i
ˇ;˛

W ˇ < ˛ < �º. The tree of models will be domains of types such
that the relation of M� to M�_j is like that of M to Ni0 in Theorem 3.3. We would
like the value of the function �i at some ˛ < � to determine the type of a˛i over
M�i �˛ . This cannot work because a˛i is not in a model also containing M� ; instead,
we use its image bf i0;˛C1.a

˛
i / under the coherent system. At successor stages of our

construction, we will put together elements of equal type over a fixed witness (i� here
standing in for i0 in Theorem 3.3). At limit stages, we take direct limits.

Once we finish our construction, we show that the map i 2 � 7! �i 2 �� is
injective. This is done by putting the type-realizing sequence together along the
chain hM�i �˛ W ˛ < �i to show that �i characterizes pi .

More formally, we construct the following:
1. a continuous tree of models hM� 2 K� W � 2 <��i with an enumeration of

the types over each model gS1.M�/ D ¹p
�
j W j < jgS1.M�/jº;

2. for each i < �, a function �i 2 ��;
3. for each � 2 <��, an ordinal i� < �;
4. for each i < �, a coherent, continuous system ¹N i

˛;
bf i
ˇ;˛

W N i
ˇ

!M�i �ˇ
N i
˛ W

ˇ < ˛ < �º; that is, one such that 
 < ˇ < ˛ < � implies bf i
;˛ D bf i
ˇ;˛

ıbf i

;ˇ

and such that ı < � implies .N i
ı
;bf i

˛;ı
/˛<ı D lim

�!
<ˇ<ı
.N i

˛;
bf i

;ˇ
/

for ı a limit ordinal.
Our construction will have the following properties for all � 2 ˇ� when ˇ < �.
(A) i� D min¹i < � W � < �iº if that set is nonempty.
(B) M�_hj i WD N

i�_hj i

ˇ
and M�i �ˇ � N i

ˇ
.

(C) If �_hj i < �i , then p�j D gtp.bf i
0;ˇ
.a
ˇ
i /=M�; N

i
ˇ
/. In particular, this is

witnessed by the following diagram:

N
i�
ˇ

// N i
ˇC1

M�

OO

// N i
ˇ

bf i
ˇ;ˇC1

OO

with bf i
0;ˇC1

.a
ˇ
i / D bf i�_hj i

0;ˇ
.a
ˇ
i�_hj i

/.
Construction. At stage ˛ < � of the construction, we will construct hM� W � 2 ˛�i,
�i � ˛, and ¹N i

˛;
bf i
ˇ;˛

W ˇ < ˛º for all i < �.
Stage ˛ D ;. We set M; D M and note that N i

0 is already defined. Then bf i0;0 is
the identity.

Stage ˛ is limit. For each � 2 ˛�, set M� D
S
ˇ<˛M��ˇ and .N i

˛;
bf i
ˇ;˛
/˛<ı D

lim
�!
<ˇ<ı

.N i
˛;

bf i

;ˇ
/ as required. The values of �i � ˛ are already determined by

the earlier phases of the construction.
Stage ˛ D ˇ C 1. We have constructed our system for each � 2 ˇ�. This means

that there are enumerations ¹p�
k

W k < jgS1.M�/jº of the 1-types with domain M� .
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Then, if i < � such that � D �i � ˇ, we set

�i .ˇ/ D k; where k < � is unique such that gtp
�bf i0;ˇ .aˇi /=M� ; N

i
ˇ

�
D p�k :

Then, for each � 2 ˛�, set i� D min¹i < � W �i � ˛ D �º if this set is nonempty;
pick it arbitrarily otherwise. Then, for all i < �, we have that

gtp
�bf i0;ˇ .aˇi /=M� ; N

i
ˇ

�
D gtp

�bf i�i �˛

0;ˇ
.a
ˇ
i�i �˛

/=M� ; N
i�i �˛

ˇ

�
:

This Galois-type equality means that there is a modelN i
ˇC1

� N
i�i �˛

ˇ
and a functionbf i

ˇ;ˇC1
W N i

ˇ
!M�

N i
ˇC1

such that

bf iˇ;ˇC1

�bf i0;ˇ .aˇi /� D bf i�i �˛

0;ˇ
.a
ˇ
i�i �˛

/:

Set M� D N
�i �˛

ˇ
(note that this does not depend on the choice of i ), and for 
 � ˇ,

set bf i

;ˇC1

D bf i
ˇ;ˇC1

ı bf i

;ˇ

. This completes the construction.
This is enough. As indicated above, we will show that the map that takes i 2 � to
�i 2 �� is injective. We do this by showing that �i D �j implies pi D pj , and
recalling that the enumeration of gS�.M/ is also injective, we must have i D j .

Let i; j < � such that � WD �i D �j . We want to show pi D pj . We have the
following commuting diagram of models for each ˇ < ˛ < �:

N
j
0bf j

0;ˇ

��

M��0

��

oo // N i
0bf i

0;ˇ

��
N
j

ˇbf j

ˇ;˛

��

M��ˇ

��

oo // N i
ˇbf i

ˇ;˛

��
N
j
˛ M��˛

oo // N i
˛

with the property that, for each ˛ < �,

bf i0;˛C1.a
˛
i / D bf i��˛C1

0;˛ .a˛i��˛C1
/

D bf j0;˛C1.a
˛
j /:

Note that this element is in M��˛C1. Now set cM D
S
˛<�M��˛ .

Let k stand in for either i or j . Set .bN k ;bf k˛;1/˛<� D lim
�!
<ˇ<�

.N k
ˇ
;bf k


;ˇ
/.

This gives us the following diagram:

N i
0bf i

0;1 ��

Moo

��

// N j
0bf j

0;1 ��bN i cM //oo bN j
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Then we can amalgamate bN j and bN i over cM withbN j g // N �

cM //

OO

bN i

f

OO

Then, for all ˛ < � and k D i; j , bf k0;1.a˛k / D bf k˛C1;1.
bf k0;˛C1.a

˛
k
//. We know

that bf k0;˛C1.a
˛
k
/ 2 jM��˛C1j, so it is fixed by f k

ˇ
for ˇ > ˛ C 1. This means it is

also fixed by bf k˛C1;1. Thenbf k0;1.a˛k / D bf k˛C1;1

�bf k0;˛C1.a
˛
k /

�
D bf k0;˛C1.a

˛
k / D bf i��˛C1

0;˛ .a˛i��˛C1
/:

Since this last term is independent of whether k is i or j , we have bf i0;1.a˛i / Dbf j0;1.a˛j / 2 cM for all ˛ < �. Since our amalgamating diagram commutes over cM ,
f .bf i0.a˛i // D g.bf j0.a˛j //. Combining the above, we have

N
j
0

gıbf j
0;1// N �

M

OO

// N i
0

f ıbf i
0;1

OO

with f ı bf i0;1.ha˛i j ˛ < �i/ D g ı bf j0;1.ha˛j j ˛ < �i/.
Thus,

pi D gtp
�
ha˛i j ˛ < �i=M;N i

0

�
D gtp

�
ha˛j j ˛ < �i=M;N

j
0

�
D pj :

Since each pk was distinct, this implies that i D j . The map i 7! �i is injective and
� � �� as desired.

We now explore some results for first-order model theory.
As mentioned in Section 1, the above result gives us the proof of Theorem 1.1.

Proof of Theorem 1.1 As discussed in the last section, .Mod T;�L.T // is an AEC
with amalgamation over sets. Given a set A, passing to a model containing A can
only increase the number of types. Thus, even in this case, it is enough to only
consider models when computing tb. Thus,

sup
A�MˆT;kAkD�

ˇ̌
S�.A/

ˇ̌
D tb

�

�
D .tb1�/

�
D

�
sup

A�MˆT;kAkD�

ˇ̌
S1.A/

ˇ̌��
as desired.

After seeing this work, Alexei Kolesnikov pointed out a much simpler proof of The-
orem 3.5 for first-order theories or, more generally, for AECs that are < !-type short
over �-sized domains (see [Bo, Definition 3.4] for a definition or ignore this case at
no real loss); in either case, a type of infinite length is determined by its restrictions
to finite sets of variables. Fix a type p 2 SI .M/ with I infinite. The previous
comment means that the map

p 7!

Y
x2ŒI �<!

px
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from SI .M/ to
Q

x2ŒI �<! Sx.M/ is injective. Thenˇ̌
SI .M/

ˇ̌
�

Y
x2ŒI �<!

ˇ̌
Sx.M/

ˇ̌
D

Y
x2ŒI �<!

ˇ̌
S1.M/

ˇ̌
D

ˇ̌
S1.M/

ˇ̌jŒI �<! j
D

ˇ̌
S1.M/

ˇ̌jI j
:

This is in fact a strengthening of Theorem 3.5 as in Theorem 3.2; that is, there is
a model-by-model bound, rather than just a global bound. These relationships also
help to shed light on a question of Shelah.

Question 3.6 ([S3, III.7.6]) Is Km
L.T /

.�; T / D K1
L.T /

.�; T / for m < !?

The answer is yes, even for a more general question, under some cardinal arithmetic
assumptions. Below, �.C�C/ denotes the �Cth successor of �C.

Theorem 3.7 Suppose that 2� < �.C�
C/. If � � Fml.L.T // is such that

�.x; x; y/ 2 � implies 9z�.x; z; y/ 2 � and n < !, then

Kn�.�; T / D K1�.�; T /:

Proof There are two cases to consider: whether the supremum in tbm� is strict or
is achieved. If the supremum is strict, then we claim the supremum in tb1� is strict
as well. If not, there is some M 2 K� such that jS1.M/j D tb1�. But then, by
Theorem 3.2,

tbm� >
ˇ̌
Sm.M/

ˇ̌
�

ˇ̌
S1.M/

ˇ̌m
D .tb1�/

m
D tbm� ;

which is a contradiction. So tbm� is a strict supremum and

KmL.T /.�; T / D tbm� D tb1� D K1L.T /.�; T /:

Note that this continues to hold if m is infinite or if we consider the corresponding
relationship for Galois types in an AEC with amalgamation. Furthermore, this does
not use the cardinal arithmetic assumption.

Now we consider the case in which the supremum in tbm� is achieved and suppose
for contradiction that the supremum in tb1� is strict. Then m > 1, and we assume it
is the minimal such m. If tbm� D tb1� is regular, then the pigeonhole argument used
in Theorem 3.2 can find a model achieving tb1�. In fact, this argument just requires
that

sup
®ˇ̌
Sm�1.Ma/

ˇ̌
W a � p; p 2 S1.M/

¯
< �:

By the remarks above the question, we know that cf tb1� > � since the supremum is
strict. This gives us that

� < cf tb1� < tb1� � 2�:

However, this contradicts our cardinal arithmetic assumption because the minimal
singular cardinal with cofinality above � is �.C�C/ > 2�. Thus,

KmL.T /.�; T / D .tbm� /
C

D .tb1�/
C

D K1L.T /.�; T /:

We now examine local types in first-order theories. For � � Fml.L.T //, set

�tb�� D sup
MˆT;kMkD�

ˇ̌
S��.M/

ˇ̌
:
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If � D ¹�º, we simply write �tb��. Unfortunately, there is no semantic equivalent
of �-types, so the methods and proofs above do not transfer. For a lower bound, we
can prove the following in the same way as Theorem 3.2.

Proposition 3.8 If T is a first-order theory and � � Fml.L.T //, then for any �
we have that jS1�.A/j D � implies that jS��.A/j � �� .

If � is closed under existential quantification, the syntactic proofs of Theorem 3.3
(see, e.g., [S3, Chapter I, Corollary 2.2]) can be used to get an upper bound for�tbn�
when n is finite.

Proposition 3.9 If, for all �.x; x; y/ 2 �, we have 9z�.x; z; y/ 2 �, then
�tbn� � �tb1� for n < !.

With this result for finite lengths, we can apply the syntactic argument above to con-
clude the following.

Proposition 3.10 If T is a first-order theory and� � Fml.L.T //, then for � � �,

�tb�� �
�
sup
n<!

�tbn�
��
:

In particular, if � is closed under existentials as in Proposition 3.9, then �tb�� �

.�tb1�/
� .

We now turn to the values of �tb for a particular �. Recall that [S3, Theorem II.2.2]
says that T is stable if and only if T is �-stable for � D �jT j if and only if it is �-stable
for �-types for all � 2 L.T /. This means that if T is unstable in � D �jT j, then there
is some � such that �tb1� > �. Further, suppose that sup¹ tb1� W  2 L.T /º D �Cn

for some 1 � n < !. Then, since �Cn is a successor, this supremum is achieved by
some formula ��. Then, since �jT j D �, we can calculate

��tb1� D sup
 2L.T /

¹ tb1�º � tb1� �

Y
 2L.T /

. tb1�/ � .��tb1�/
jT j

D .�Cn/jT j
D �jT j

� �Cn
D �Cn

D ��tb1�:

So ��tb1� D tb1�. Thus, for all � � �, we can use Theorems 3.8 and 3.5 to calculate

.��tb1�/
�

� ��tb�� � tb�� D .tb1�/
�

D .��tb1�/
� :

This gives us the following result.

Theorem 3.11 Given a first-order theory T , if � is a cardinal such that �jT j D �

and sup¹jS1 .A/j W  2 L.T /; jAj � �º < �C! , then there is some �� 2 L.T / such
that, for all � � �, tb�� D ��tb��.

Returning to general AECs, Shelah [S5, Chapter V.D, Section 3] considered long
types of tuples enumerating a model extending the domain. In this case, any real-
ization of the type is another model extending the domain that is isomorphic to the
original tuple over the domain. Thus, an upper bound on types of a certain length
� also bounds the number of isomorphism classes extending the domain by �-many
elements. More formally, we get the following.

Remark 3.12 Given M 2 K�,ˇ̌®
N= ŠM W N 2 K;M – N; jN �M j D �

¯ˇ̌
� tb��:
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If we have an AEC with amalgamation where any extension can be broken into
smaller extensions, this could lead to a useful analysis. Unfortunately, this provides
us with no new information when � D �, since 2� D tb�� is already the well-known
upper bound for �-sized extensions of M , and there are even first-order theories
whereM – N implies jN �M j � kMk. Algebraically closed fields of characteris-
tic 0 are such an example.

4 Strongly Separative Types

One might hope that similar bounds could be developed for nonalgebraic types. This
would probably give us a finer picture of what is going on because a model M nec-
essarily has at least kMk-many algebraic types over M , so in the stable case, the
number of nonalgebraic types could, a priori, be anywhere between 0 and kMk; the
case gS1na.M/ D ; only occurs in the uninteresting case in which M has no exten-
sions.

However, as the following result shows, no such result is possible even in basic,
well-understood first-order cases.

Remark 4.1

1. Let T1 be the empty theory, and let M � T1. Then jS1na.M/j D 1, and
jSnna.M/j D Bn for all n < !, where Bn is the nth Bell number. In particular,
this is finite.

2. Let T2 D ACF0, and let M � T . Then jS1na.M/j D 1 but jS2na.M/j D kMk.

Note that these examples represent the minimal and maximal, respectively, number
of long, nonalgebraic types given that there is only one nonalgebraic type.

Proof

1. Let tp.a=M;N1/; tp.b=M;N2/ 2 S1na.M/, and, without loss of general-
ity, assume kN1k � kN2k. Then let f fix M , send a to b, and injec-
tively map N1 � M � ¹aº to N2 � M � ¹bº arbitrarily. This witnesses
tp.a=M;N1/ D tp.b=M;N2/. Given the type of han W n < ki, the
only restriction on finding a function to witness type equality is given by
which elements of the sequence are repeated; for instance, if a ¤ b, then
tp.a; b=M;N/ ¤ tp.a; a=M;N/. Thus, each type can be represented by
those elements of the sequence which are repeated. To count this, we need to
know the number of partitions of n. This is given by Bell’s numbers, defined
by B1 D 1 and BnC1 D

Pn
kD0

�
n
k

�
Bk . See [W, Section 1.6 or (1.6.13)] for a

reference. Then, the number of n-types is just Bn.
2. This is an easy consequence of Steinitz’s theorem that there is only one

nonalgebraic 1-type, that of an element transcendental over the domain.
Given M 2 K and e 2 N � M transcendental over M , each polynomial
f 2 MŒX� gives rise to a distinct nonalgebraic 2-type: tp.e; f .e/=M;N/.
Thus, there are at least kMk-many nonalgebraic 2-types. By stability, there
are exactly this many.

This shows that a result like Theorem 3.5 is impossible for nonalgebraic types. As
is evident in the proof of Remark 4.1 above, especially part two, the variance in the
number of types comes from the fact that, while the realizations of the nonalgebraic
type are not algebraic over the model, they might be algebraic over each other. This
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means that even 2-types, like tp.e; 2e=A;C/, that are not realized in the base model
cannot be separated: any algebraically closed field realizing the type of e must also
realize the type of 2e.

To get a bound on the number of these types, we want to be able to separate the
different elements of the tuples that realize the long types. This motivates our def-
inition and naming of separative types below. We also introduce a slightly stronger
notion, strongly separative types, that allows us to not only separate realizations of
the type, but also gives us the ability to extend types, as made evident in Proposi-
tion 4.6. Luckily, in the first-order case and others, these two notions coincide (see
Proposition 4.5).

Definition 4.2

1. We say that a triple .hai W i < ˛i;M;N / 2 K
3;˛
�

is separative if and only
if there are increasing sequences of intermediate models hNi 2 K W i < ˛i

such that, for all i < ˛, M � Ni � N and ai 2 NiC1 � Ni . The sequence
hNi W i < ˛i is said to witness the triple’s separativity.

2. For M 2 K, set gS˛sep.M/ D ¹gtp.hai W i < ˛i=M;N/ W .hai W i < ˛i;

M;N / 2 K
3;˛
�

is separativeº.
3. We say that a triple .hai W i < ˛i;M;N / 2 K

3;˛
�

is strongly separative if
and only if there is a sequence witnessing its separativity hNi W i < ˛i that
further has the property that, for any i < ˛ and NC

1 � Ni of size �, there are
some NC

2 � NC
1 and g W NiC1 !Nˇ

NC
2 such that g.ai / … NC

1 .
4. For M 2 K�, set gS˛strsep.M/ D ¹gtp.hai W i < ˛i=M;N/ W .hai W i < ˛i;

M;N / 2 K
3;˛
�

is strongly separativeº.

The condition “ai 2 NiC1 � Ni” in (1) could be equivalently stated as either of the
following.

� For all j < ˛, aj 2 Ni if and only if i < j .
� gtp.ai=Ni ; NiC1/ is nonalgebraic.

Note that the examples in Proposition 4.1 only have one separative or strongly
separative type of any length: for the empty theory, this is any sequence of distinct
elements, and for ACF0, this is any sequence of mutually transcendental elements.
Theorem 4.8 below shows this generally by proving that the upper bound from the
last section (Theorem 3.5) holds for strongly separative types. Before this proof, a
few comments about these definitions are in order.

First, the key part of the definition is about triples, but we will prove things about
types. This is not an issue because any triple realizing a (strongly) separative type
can be made into a (strongly) separative type by extending the ambient model.

Proposition 4.3

1. If gtp.haˇ W ˇ < ˛i=M;N/ 2 gS˛sep.M/, then there is some NC � N such
that .haˇ W ˇ < ˛i;M;NC/ is separative.

2. The same is true for strongly separative types.

Proof We will prove the first assertion, and the second one follows similarly. By
the definition of gS˛sep, there is some separative .hbˇ W ˇ < ˛i;M;N1/ 2 K

3;˛
�

such that gtp.haˇ W ˇ < ˛i=M;N/ D gtp.hbˇ W ˇ < ˛i=M;N/. Thus, there exist
some NC � N and f W N1 !M NC such that f .bˇ / D aˇ for all ˇ < ˛. Let
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hNˇ W ˇ < ˛i be a witness sequence to .hbˇ W ˇ < ˛i;M;N1/’s separativity. Then
hf .Nˇ / � NC W ˇ < ˛i is a witness sequence for .haˇ W ˇ < ˛i;M;NC/.

Second, although we continue to use the semantic notion of types (Galois types) for
full generality, these notions are new in the context of first-order theories. In this
context, the elements of the witnessing sequence hNi W i < ˛i are still required to
be models, even though types are meaningful over sets. An attempt to characterize
these definitions in a purely syntactical nature (i.e., by only mentioning formulas)
was unsuccessful, but we do know (see Proposition 4.5 below) that all separative
types over models are strongly separative for complete first-order theories. Third, we
can easily characterize these properties for 1-types.

Proposition 4.4 Let K be an AEC and p 2 gS1.M/.
� p is separative if and only if p is nonalgebraic.
� p is strongly separative if and only if, for any N � M with kN k D kMk,

there is an extension of p to a nonalgebraic type over N . Such types are
called big.

Finally, strongly separative types and separative types are the same in the presence
of the disjoint amalgamation property.

Proposition 4.5 Let ˛ be an ordinal andM 2 K. IfK satisfies the disjoint amal-
gamation property when all models involved have sizes between kMk and j˛jCkMk,
inclusive, then gS˛strsep.M/ D gS˛sep.M/.

Proof By definition, gS˛strsep.M/ � gS˛sep.M/, so we wish to show the other con-
tainment. Let gtp.haˇ W ˇ < ˛i=M;N/ 2 gS˛sep.M/. Let hNˇ W ˇ < ˛i be
a witnessing sequence, and let NC

1 � Nˇ0
of size kNˇ0

k for some ˇ0 < ˛. By
renaming elements, we can find some copy ofNC

1 that is disjoint fromNˇ0C1 except
for Nˇ0

. So there are bN and f W NC
1 ŠNˇ0

bN such that bN \ Nˇ0C1 D Nˇ0
.

Then, we can use disjoint amalgamation on bN and Nˇ0C1 over Nˇ0
to get N � and

g W Nˇ0C1 ! N � so that

NC
1

f // bN // N �

Nˇ0

aa OO

// Nˇ0C1

g

OO

commutes and bN \ g.Nˇ0C1/ D Nˇ0
. Thus, since aˇ0

is in Nˇ0C1 and not in Nˇ0
,

we have that g.aˇ0
/ is in g.Nˇ0C1/ and not in bN . Let bf be an L.K/-isomorphism

that extends f and has N � in its range. Then we havebf �1
�
g.aˇ0

/
�

… bf �1.bN/ D f �1.bN/ D NC
1 :

Then we can collapse the above diagram to

NC
1

// bf �1.N �/

Nˇ0

OO

// Nˇ0C1

bf �1ıg

OO
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This diagram commutes and witnesses the property for strong separativity with
NC
2 D bf �1.N �/.

To prove the main theorem of this section, Theorem 4.8, we will need to make use of
certain closure properties of strongly separative types. These also hold for separative
types as well.

Proposition 4.6 (Closure of gSstrsep)

1. If p 2 gS˛strsep.M/ and I � ˛, then pI 2 gS
otp.I /
strsep .M/.

2. If p 2 gS˛strsep.M/ and M0 � M , then p � M0 2 gS˛strsep.M0/.

We now prove the main theorem.

Definition 4.7 The strongly separative type bound for �-sized domains and
�-lengths is denoted strsep tb�� D supM2K�

jgS�strsep.M/j.

Theorem 4.8 Suppose that � � �C with � possibly finite andK has .�C�/-amalga-
mation. If strsep tb1� D �, then strsep tb�� � �� .

Proof The proof is very similar to that of Theorem 3.5, so we only highlight the
differences. As before, let M 2 K�, enumerate gS�strsep.M/ D hpi W i < �i,
and find N i

0 � M of size � C � and a˛i 2 jN i
0 j for i < � and ˛ < � such that

ha˛i W ˛ < �i � pi .
Then, we use strong separativity to find a witnessing sequence. That is, for each

i < �, we have increasing and continuous h˛N i
0 2 K� W ˛ < �i so, for each ˛ < �,

M � ˛N i
0 � N i

0 and a˛i 2 ˛C1N i
0 � ˛N i

0 .
As before, we will construct hM� 2 K� W � 2 <��i, hp

�
j 2 gS1strsep.M�/ W

j < jgS1strsep.M�/ji, hi� 2 � W � 2 <��i, and h�i 2 �� W i < �i as in (1)–(3) of the
proof of Theorem 3.5 and

(4*) for i < �, a coherent, continuous ¹˛N i
˛;

bf i
ˇ;˛

W ˇN i
ˇ

!M�i �ˇ

˛N i
˛ j ˇ <

˛ < �º, models h˛C1N i
˛ W ˛ < �i, and for each ˇ < ˛ < �, functions

� hi˛ W ˛N i
0 ! ˛N i

˛ ,
� gi

ˇC1
W ˇC1N i

0 ! ˇC1N i
ˇ

, and
� f i

ˇC1
W ˇC1N i

ˇ
!M�i �ˇ

ˇN i
ˇ

.
These will satisfy (A), (B), and (C) from Theorem 3.5 and

(D) if ˛ D ˇC 1, then hi˛ D f i˛ ı gi˛ , and if ˛ is the limit, then ˛N i
˛ is the direct

limit and, for each ı < ˛, the following diagram commutes:

ıN i
ı

bf i
ı;˛ // ˛N i

˛

ıN i
0

hi
ı

OO

// ˛N i
0

hi
˛

OO

(E) if ˛ < �, then
� hi˛ � ˛N i

0 D gi˛C1 � ˛N i
0 ,

� gi˛C1.a
˛
i / … ˛N i

˛ ,
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� hi˛C1.a
˛
i / D g

i�i �˛

˛C1 .a
˛
i�i �˛

/,

� bf i˛;˛C1 D f i˛C1.
Construction. The base case and limit case are the same as in Theorem 3.5. In the

limit, we additionally set hi˛ D
S
ˇ<˛ h

i
ˇ

.
For `.�/ D ˛ D ˇ C 1 we will apply our previous construction to the separat-

ing models. Fix some � 2 ˇ�. For each i < � such that �i � ˇ D �, we have
hi
ˇ

W ˇN i
0 ! ˇN i

ˇ
. We know that gtp.aˇi =

ˇN i
0 ;
ˇC1N i

0/ is big by Propositions 4.6
and 4.4. Thus, we can find a big extension with domain .hi

ˇ
/�1.ˇN i

ˇ
/. Then, apply-

ing hi
ˇ

to this type, we get some gi
ˇC1

W ˇC1N i
0 ! ˇC1N i

ˇ
so that

ˇN i
ˇ

// ˇC1N i
ˇ

ˇN i
0

hi
ˇ

OO

// ˇC1N i
0

gi
ˇC1

OO

commutes, and gtp.gi
ˇC1

.a
ˇ
i /=M� ;

ˇC1N i
ˇ
/ is big and, therefore, strongly separa-

tive. Note, this extension uses that these types are strongly separative and not just
separative. Then we can extend �i by �i .ˇ/ D k, where k < � is the unique index
such that gtp.gi

ˇC1
.a
ˇ
i /=M� ;

ˇC1N i
ˇ
/ D p�

k
.

Then set i�_hii D min¹i < � W �i � ˛ D �_hiiº. This means that, for all i < �,
we have

gtp
�
giˇC1.a

ˇ
i /=M� ;

ˇC1N i
ˇ

�
D gtp

�
g
i�i �˛

ˇC1
.a
ˇ
i�i �˛

/=M� ;
ˇC1N

i�i �˛

ˇ

�
:

Thus, we can find ˇC1N i
ˇC1

� ˇC1N
i�i �˛

ˇ
from K� and f i

ˇC1
W ˇC1N i

ˇ
!M�

ˇC1N i
ˇC1

such that f i
ˇC1

.gi
ˇC1

.a
ˇ
i // D g

i�i �˛

ˇC1
.a
ˇ
i�i �˛

/. Finally, set Mi�i �˛
D

ˇC1N
i�i �˛

ˇ
and hi

ˇC1
D f i

ˇC1
ı gi

ˇC1
.

This is enough. For each i < � and every ˛ < ˇ < �, we have that

M��0
//

��

0N i
0

//

bf i
0;ˇ

��

ˇN i
0

//

hi
ˇ}}

˛N i
0

//

hi
˛

}}

N i
0

M��ˇ

��

// ˇN i
ˇbf i

ˇ;˛

��
M��˛

// ˛N i
˛

commutes. Note that this is almost the same diagram as before, except we have added
the separating sequences. Then we can proceed as before, setting

1. cM D
S
˛<�M��˛;

2. .bN i ;bf ˛;1/ D lim
�!ˇ<
<�

.ˇN i
ˇ
;bf i

˛;ˇ
/;

3. N i
1 D

S
˛<�

˛N i
0 � N i

0 ;
4. fi W N i

1 ! bN i by fi D
S
˛<�.

bf ˛;1 ı hi˛/; and
5. �i 2 �� such that i 2 I��˛ for all ˛ < �.
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Then, if � > �� , there are i ¤ j such that �i D �j . As before, this would imply
pi D pj , but they are all distinct. So � � �� as desired.

In the previous theorem, we allowed the case � D �C. Most of the time, this is only
the set-theoretic bound strsep tb�

C

� � 2�
C . However, if we had strsep tb1� D 1, then

we get the surprising result that strsep tb�
C

� � 1. This will be explored along with
further investigation of classifying AECs based on separative types in future work.

5 Saturation

We now turn from the number of infinite types to their realizations. The saturation
version of Theorem 3.1 is much simpler to prove.

Proposition 5.1 Suppose that K has �-amalgamation. If M 2 K� is Galois
saturated for 1-types, then M is Galois saturated for �-types.

Proof Let M0 � M of size less than �, and let p 2 gS�.M0/. By the definition
of Galois types, there is some N � M0 of size � that realizes p. Find a resolution of
N hNi 2 K<� j i < cf �i with N0 D M0. Then use Lemma 2.6 to get increasing,
continuous fi W Ni ! M that fix M0. Then f WD

S
i<� fi W N !M0

M . This
implies that f .N / ˆ f .p/ D p, and since f .N / � M , M ˆ p.

We can get a parameterized version with the same proof.

Proposition 5.2 Suppose that K has �-amalgamation. If M 2 K� is �-Galois
saturated for 1-types, then M is �-Galois saturated for �-types.

The seeming simplicity of the proof of Proposition 5.1, especially compared with
earlier uses of direct limits, hides the difficulty and complexity of the proof of
Lemma 2.6.

Remark 5.3 Building on work of Shelah, Grossberg, and Kolesnikov, Baldwin
[B2, Theorem 16.5] proves a version of Lemma 2.6 which does not require amalga-
mation. Thus, one could prove a version of Proposition 5.1 in AECs that does not
assume amalgamation.

There is also a strong relationship between the value of tb1� and the existence of
�C-saturated extensions of models of size �. The following generalizes first-order
theorems like [S3, Theorem VIII.4.7].

In the following theorems, we make use of a monster model, as in first-order
model theory, to reduce the complexity of constructions. Full details can be found in
the references given at the start of Section 2, but the key facts are:

� the existence of a monster model C follows from the amalgamation prop-
erty, the joint embedding property, and every model having a proper
�K-extension; and

� for M � C and a; b 2 jCj,
gtp.a=M/ D gtp.b=M/ ” 9f 2 AutMC; so that f .a/ D b:

The first relationship is clear from counting types.

Theorem 5.4 Let K be an AEC with amalgamation, joint embedding, and no
maximal models. If every M 2 K� has an extension N 2 K� that is �C-saturated,
then tb1� � �.
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Proof Assume that every model in K� has a �C-saturated extension of size �. Let
M 2 K� , and let N 2 K� be that extension. Since every type over M is realized in
N , we have jgS.M/j � kN k D �. Taking the supremum over all M 2 K� , we get
tb1� � �, as desired.

Going the other way, we have both a set-theoretic hypothesis and model-theoretic
hypothesis that imply instances of a �C-saturated extension. The set-theoretic ver-
sion is well known.

Theorem 5.5 Let K be an AEC with amalgamation, joint embedding, and no
maximal models. If �� D �, then every M 2 K� has an extension N 2 K� that is
�C-saturated.

Note that the hypothesis implies tb1� � �. Without this set-theoretic hypothesis,
reaching our desired conclusion is much harder. The condition �� D � means that
we can consider all �-sized submodels of a �-sized model without going up in size.
Without this assumption, things become much more difficult, and we must rely on
model-theoretic hypotheses. The following has a stability-like hypothesis, sometimes
called “weak stability” (see, e.g., [JS]).

Theorem 5.6 Let K be an AEC with amalgamation, joint embedding, and no
maximal models. If tb1� � �C, then every M 2 K� has an extension N 2 K�C that
is saturated.

Proof We proceed by a series of increasingly strong constructions.
Construction 1. For all M 2 K� , there is M � 2 K�C such that all of S1.M/ is

realized in M �. This is easy with jS1.M/j � �C.
Construction 2. For all M � N from K� and M � M 0 2 K�C , there is some

N 0 D �.M;N;M 0/ 2 K�C such that N;M 0 � N 0 and all of S1.N / are realized
in N 0. For each p 2 S1.N /, find some ap 2 jCj that realizes it. Then find some
N 0 � C that contains ¹ap W p 2 S1.N /º [ jM 0j [ jN j of size �C. This is possible
since jS1.N /j � �C.

Construction 3. For allM 2 K�C , there is someMC 2 K�C such thatM � MC

and if M0 � M of size �, then all of S1.M0/ are realized in MC. Find a resolution
hMi W i < �Ci of M . Set N0 = .M0/

�, NiC1 D �.Mi ;MiC1; Ni /, and take unions
at limits. Then MC D

S
i<�C Ni works.

Construction 4. For all M 2 K�C , there is some M # 2 K�C such that M � M #

and M # is saturated. Let M 2 K� . Set M0 D M , MiC1 D .Mi /
C, and take unions

at limits. Then M # D M�C is saturated.
Then, to prove the proposition, let M 2 K� . Since K has no maximal model, it

has an extension M 0 in K�C . Then .M 0/# is the desired saturated extension of M .
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