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Abstract

Many automated reasoning systems and techniques have been developed for theo-
rem proving for speci�c mathematical domains. Automated theorem provers and
interactive systems for various calculi as well as proof planners have all had some
success in limited areas. However, in many challenging interesting domains there is
no single system available that has achieved a degree of reliability such that one can
be certain this system can solve all problems for such a domain. Therefore, there
have been many attempts at combining systems and reasoning techniques over the
last decade. In particular, there have been attempts at integrating homogeneous
and heterogeneous theorem provers, incorporating decision procedures and symbolic
computation, and parallelization of theorem proving.

This thesis presents both novel way of combining reasoning techniques and also
the application of these combined techniques to proof planning for group theory
and �nite algebra. In particular, we combine interactive and automated reasoning,
proof planning and symbolic computation. Our means to achieve this combination
is a hierarchical blackboard architecture called 
-Ants. This architecture was orig-
inally developed to support the user in interactive theorem proving by searching for
possible next proof steps in-between user interactions. It consists of two layers of
blackboards with individual concurrent knowledge sources. The lower layer searches
for instantiations of inference rule parameters within the actual proof state; the up-
per layer exploits this information to assemble a set of applicable inference rules
and presents them to the user. The architecture also has mechanisms to adapt its
behavior with respect to the current proof context and the availability of system re-
sources. It furthermore allows for the integration of various automated components
such as automated theorem provers, model generators or computer algebra sys-
tems. Moreover, the inference rule application can be automated itself, converting

-Ants into an automatic resource-adaptive reasoning system.

We also describe the integration of the 
-Ants mechanism into the multi-
strategy proof planner Multi to support traditional proof planning. In particular,
we present how 
-Ants can be employed to support interactive proof planning
and to allow a search for applicable theorems from a mathematical knowledge base
in parallel to the automatic proof planning process. Additionally, we present a
means for soundly integrating certain symbolic computations into proof planning.
The 
-Ants architecture as well as all discussed combinations of reasoning tech-
niques are implemented in the 
mega theorem proving environment and for each
combination we have carried out extensive case studies in group theory and �nite
algebra.



Kurzzusammenfassung

Die vorliegende Arbeit pr�asentiert einen neuen Ansatz zur Kombination verschiede-
ner Beweistechniken, insbesondere von interaktivem und automatischem Theorem-
beweisen, sowie Beweisplanung und Computeralgebra, und deren Anwendung zur
Beweisplanung in endlicher Algebra und Gruppentheorie. Die zentrale Struktur,
mit deren Hilfe die Kombination durchgef�uhrt wird, ist die hierarchische Black-
boardarchitektur 
-Ants. Die Architektur verf�ugt �uber Mechanismen, sich sowohl
bez�uglich dem aktuellen Beweiskontext als auch der Ressourcenlage im System an-
zupassen. Dar�uberhinaus erm�oglicht es eine Integration verschiedener automati-
scher Komponenten wie zum Beispiel automatischer Beweiser, Modellgenerierern
oder Computeralgebrasystemen. Au�erdem kann 
-Ants selbst als automatisches,
ressourcenadaptives Beweissystem eingesetzt werden.

Weiterhin beschreibt die Arbeit die Integration des 
-Ants Mechanismus in
den Multistrategiebeweisplaner Multi zur Unterst�utzung von traditionellem Be-
weisplanen. Insbesondere kann 
-Ants zur interaktiven Beweisplanung benutzt
werden und auch als Mechanismus, um w�ahrend des automatischen Beweisplanens
m�oglicherweise anwendbare mathematische S�atze in einer Wissensbasis zu suchen.
Zus�atzlich wird eine Methodik beschrieben, mit deren Hilfe symbolisches Rech-
nen auf korrekte, wenn auch eingeschr�ankte Weise in die Beweisplanung integriert
werden kann. Sowohl die 
-Ants Architektur als auch die weiteren diskutierten
Kombinationen von Beweistechniken wurden in der Beweisentwicklungsumgebung

mega implementiert und f�ur jede der vorgestellten Kombinationen wurde eine
ausf�uhrliche Fallstudie in der Gruppentheorie und endlichen Algebra durchgef�uhrt.
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Summary

Motivation In the �eld of automated theorem proving and its applications in
certain domains of mathematics many systems and techniques have been developed
over the last decades. Automated theorem provers, interactive proof development
environments, and proof planners have all had some success at least in restricted
domains. However, up to now there has not existed a single system or approach
that has reached such a degree of power and reliability that it can be seen as the
ultima ratio for mechanized reasoning in mathematics. Therefore, there have been
many attempts in the last decade to combine homogeneous and heterogeneous the-
orem provers, to integrate decision procedures and computer algebra into theorem
proving and to parallelize theorem proving procedures. This thesis presents a novel
approach to combining di�erent reasoning techniques, in particular interactive and
automated theorem proving, proof planning, and computer algebra systems and
their application to proof planning in �nite algebra and group theory.

Architecture The central structure to achieve the combination of di�erent rea-
soning techniques is the hierarchical blackboard architecture 
-Ants. This archi-
tecture was originally developed to support a user in interactive theorem proving
by computing and suggesting the possible next proof steps in-between two user in-
teractions. 
-Ants consists a two layers of blackboards, each consisting of several
individual, concurrent knowledge sources called agents. The task of the knowledge
sources on the lower layer is to look for possible instantiations of parameters of proof
rules. The knowledge sources on the upper layer use this gathered information in
order to assemble a set of proof rules that may be applicable in the next proof step.
The computed set of proof rules is then presented to the user who can choose one
of the rules for application. The 
-Ants architecture can adapt itself with respect
to the given proof context as well as to the resources available in the overall sys-
tem. This resource-adaptive behavior enables the integration of various automatic
components such as automated theorem provers, model generators, or computer
algebra systems. Furthermore, the application of the suggested proof rules itself
can be automated, which turns 
-Ants into an automatic, resource-adaptive proof
planner.

Besides the application of 
-Ants as an independent automated theorem prover
and as a support tool for interactive theorem proving, the 
-Ants mechanism
can be an aid for traditional proof planning as well. This allows some aspects of
the usual sequential approach of a proof planner to be enhanced using parallelism
and concurrency. In this thesis we investigate two such aspects in the integration
of 
-Ants with 
mega's multi-strategy proof planner Multi: (1) The use of
the suggestion mechanism for interactive proof planning, and (2) the application
of 
-Ants as a mechanism to retrieve applicable mathematical theorems during
automatic proof planning.

When supporting interactive proof planning, 
-Ants is de�ned as a search
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algorithm for Multi and can then be parameterized with appropriate planning
strategies. The applicability of single methods is then checked by 
-Ants-agents
and applicable methods are suggested to the user in a similar way as the regular
proof rules are suggested during traditional interactive theorem proving.

By using 
-Ants to retrieve applicable mathematical assertions during auto-
matic proof planning we make particular use of the possibilities o�ered by the
concurrency of the mechanism. This frees the actual, sequential proof planning
algorithm from computationally expensive test of applicability for single theorems.
The theorems of the knowledge base are automatically divided into di�erent classes
of theorems where each is assigned to a blackboard. The single theorems of the
respective classes are checked for applicability in parallel, possibly using di�erent
criteria to decide applicability in a given proof context. Applicable theorems are
gathered on the blackboards and suggested to the proof planner, which in turn
exploits this information during the proof planning process.

In addition to the combination of proof planning with 
-Ants we also present
a method for a correct, albeit limited, integration of symbolic computation into
proof planning. It is based on the idea of separating computation and veri�cation
and can thereby exploit the fact that many elaborate symbolic computations are
trivial to verify. In proof planning the separation is realized by using a powerful
computer algebra system during the planning process to do non-trivial symbolic
computations. Results of these computations are checked during the re�nement of
a proof plan to a calculus level proof using a small, self-tailored system that gives
us detailed interim information on its calculation. This information can be easily
expanded into a checkable low-level calculus proof ensuring the correctness of the
computation.

Case Studies For the evaluation of the architectural aspects and system integra-
tions we we present four extensive case studies in the domain of �nite algebra and
group theory:

1. We demonstrate the use of 
-Ants as an independent automatic proof plan-
ner with the proofs of several \equivalence" and \uniqueness" theorems from
group theory. Thereby 
-Ants uses a goal-directed search strategy for the
higher order natural deduction calculus to decompose complex conjectures
into smaller chunks, that can easily be solved by one of the integrated auto-
mated theorem provers.

2. The interactive proof planning combination of Multi and 
-Ants is demon-
strated with proofs of homomorphism theorems from group theory. The nec-
essary planning methods are implemented in such a way that user interaction
is limited to only the mathematically interesting steps.

3. A case study concerned with the automatic classi�cation of residue class sets
with respect to their algebraic properties demonstrates the integration of com-
puter algebra into proof planning as well as the application of 
-Ants to re-
trieve applicable theorems. The single combination aspects are demonstrated
with several planning strategies, which implement di�erent proof techniques.
In detail we present three di�erent strategies, namely exhaustive case analysis,
equational reasoning and the application of given theorems.

4. Another case study illustrates the full strength of multi-strategy proof plan-
ning using both computer algebra systems and 
-Ants, namely the inter-
leaving of di�erent planning strategies. This case study is concerned with
isomorphism proofs and uses the results of the preceding case study. The
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residue class sets already classi�ed with respect to their algebraic properties
are automatically classi�ed into sets of isomorphic structures. The theorems
that have to be proved during this classi�cation process are of the form that
two given residue class sets are either isomorphic or non-isomorphic to each
other.

All the case studies are implemented in the 
mega system and show the e�ec-
tiveness of the 
-Ants architecture and the combination of reasoning techniques.



Zusammenfassung

Motivation Im automatischen Beweisens und insbesondere zu seiner Anwendung
in Teilgebieten der Mathematik wurden in den letzten Jahrzehnten viele verschiede-
ne Systeme und Techniken entwickelt. Automatische Beweiser, interaktive Beweis-
entwicklungsumgebungen sowie Beweisplaner hatten durchaus einen gewissen Erfolg
zumindest in eingeschr�ankten Teilgebieten. Allerdings existiert f�ur kaum ein mathe-
matisch interessantes Gebiet ein einzelnes System, das dieses Gebiet vollst�andig ab-
deckt, indem es alle m�oglichen Probleme dieses Gebiets l�osen kann. Daher gab es im
Laufe des letzten Jahrzehnts eine Vielzahl verschiedener Ans�atze zur Kombination
verschiedener homogener oder heterogener Theorembeweiser, zur Integration von
Entscheidungsprozeduren und Computeralgebra und zum Parallelisieren von Theo-
rembeweisern. Die vorliegende Arbeit pr�asentiert einen neuen Ansatz zur Kombi-
nation verschiedener Beweistechniken, insbesondere von interaktivem und automa-
tischem Theorembeweisen, sowie Beweisplanung und Computeralgebra, und deren
Anwendung zur Beweisplanung in endlicher Algebra und Gruppentheorie.

Architektur Die zentrale Struktur mit deren Hilfe die Kombination durchgef�uhrt
wird ist die hierarchische Blackboardarchitektur 
-Ants. Diese Architektur wur-
de urspr�unglich zur Benutzerunterst�utzung im interaktiven Beweisen entwickelt,
um w�ahrend zweier Benutzerinteraktionen den n�achsten m�oglichen Beweisschritt zu
berechnen und vorzuschlagen. 
-Ants selbst besteht aus zwei Ebenen von Black-
boards, die jeweils mit einzelnen, nebenl�au�gen Wissensquellen { genannt Agenten
{ arbeiten. Dabei ist die Aufgabe der Wissensquellen der unteren Ebene in einem
partiellen Beweis nach m�oglichen Instantiierungen von Parametern der einzelnen
Beweisregeln zu suchen. Die Wissensquellen der obereren Ebene benutzen die so
zusammengetragene Information, um die Menge der, im n�achsten Beweisschritt an-
wendbaren Beweisregeln zusammenzustellen und diese dem Benutzer des Systems
vorzuschlagen. Die 
-Ants Architektur verf�ugt �uber Mechanismen, um sich sowohl
bez�uglich des aktuellen Beweiskontexts als auch der Ressourcenlage im System anzu-
passen. Dieses ressourcenadaptive Verhalten des Mechanismus erm�oglicht auch eine
kontrollierte Integration verschiedener automatischer Komponenten wie zum Bei-
spiel automatischer Beweiser, Modellgenerierern oder Computeralgebrasystemen.
Dar�uberhinaus kann die Anwendung der einzelnen, vorgeschlagenen Beweisregeln
selbst automatisiert werden, was aus 
-Ants ein automatisches, ressourcenadapti-
ves Beweissystem macht.

Neben der Anwendung von 
-Ants als eigenst�andigen automatischen Beweiser
und zur Unterst�utzung des interaktiven Beweisens, kann der 
-Ants Mechanismus
auch als Hilfskomponente f�ur die traditionelle Beweisplanung innerhalb von 
megas
Multistrategiebeweisplaner Multi verwendet werden. Dabei kann 
-Ants dazu
benutzt werden, die herk�ommliche, sequentielle Vorgehensweise eines Beweisplaners
durch parallele Aspekte anzureichern. In der vorliegenden Arbeit wurden zwei dieser
Aspekte n�aher betrachtet: zum einen die Benutzung von 
-Ants zur interaktiven
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Beweisplanung und zum anderen der Einsatz des Mechanismus zum Vorschlagen
anwendbarer Theoreme im Rahmen der automatischen Beweisplanung.

Bei der Unterst�utzung der interaktiven Beweisplanung wird 
-Ants als ein
Suchalgorithmus von Multi de�niert, der mit entsprechenden Planungsstrategi-
en parametrisiert werden kann. Die Anwendbarkeit einzelner Methoden wird dann
durch 
-Ants-Agenten gepr�uft und anwendbare Methoden werden dem Benutzer
�ahnlich wie die Beweisregeln beim herk�ommlichen interaktiven Beweisen zur Aus-
wahl vorgeschlagen.

Beim Einsatz von 
-Ants zur Suche in einem Beweiskontext anwendbarer ma-
thematischer S�atze w�ahrend der automatischen Beweisplanung wird besonders die
Nebenl�au�gkeit des Mechanismus ausgenutzt, um den eigentlichen Planungsalgo-
rithmus von den berechnungsintensiven Anwendbarkeitstests f�ur die S�atze freizuhal-
ten. Die Theoreme einer Wissensbasis werden automatisch in verschiedene Klassen
eingeteilt, die jeweils einem Blackboard und seinen Wissensquellen zugeordnet wer-
den. Die einzelnen Theoreme der verschiedenen Klassen werden dann nebenl�au�g
mit m�oglicherweise verschiedenen Kriterien auf ihre Anwendbarkeit im aktuellen
Beweiskontext hin �uberpr�uft. Anwendbare Theoreme werden auf den Blackboards
gesammelt und dem Planer vorgeschlagen, der diese dann w�ahrend der Beweispla-
nung ber�ucksichtigen kann.

Zus�atzlich zu den Kombinationen der Beweisplanung mit 
-Ants wird in der Ar-
beit eine Methodik beschrieben, mit deren Hilfe symbolisches Rechnen auf korrekte,
wenn auch eingeschr�ankte Weise in die Beweisplanung integriert werden kann. Die
Methodik basiert auf der Idee, da� bestimmte, komplexe symbolische Berechnungen
relativ einfach �uberpr�uft werden k�onnen. Diese Idee kann man sich in der Beweis-
planung zunutze machen, indem man die Methoden so konstruiert, da� w�ahrend der
Planungsphase komplexe algebraische Manipulationen mithilfe eines leistungsf�ahi-
gen Computeralgebrasystems durchgef�uhrt werden. Die Veri�kation einer komple-
xen Berechnung geschieht dann innerhalb der Expansionsphase des Beweisplanes.
Dabei wird der konkrete Berechnungsschritt in der einfacheren Gegenrichtung da-
durch �uberpr�uft, da� er mittels des speziellen prototypischen Computeralgebrasy-
stems �CAS nochmals berechnet wird. �CAS hat als Eigenschaft, da� es zu den
Berechnungen zus�atzliche Protokollinformationen ausgibt, die in 
mega zur auto-
matischen Veri�kation der Berechnung benutzt werden k�onnen.

Fallstudien Zur Evakuierung der in der Arbeit vorgestellten Architekturaspekte
werden vier ausf�uhrliche Fallstudien im Bereiche der endlichen Algebra und Grup-
pentheorie durchgef�uhrt:

1. Die Benutzung von 
-Ants als eigenst�andiger automatischer Beweiser wird
anhand der Beweise einiger �Aquivalenz- und Eindeutigkeitstheoreme aus der
Gruppentheorie demonstriert. Dabei werden mit einer zielgerichtete Suchstra-
tegie f�ur den Kalk�ul des nat�urlichen Schlie�ens einer Logik h�oherer Stufe kom-
plexe Theoreme zerlegt und die entstandenen einfacheren Teilprobleme von
integrierten externen automatischen Beweisern gezeigt.

2. Die interaktive Beweisplanung mittels Multi und 
-Ants wird mit dem Be-
weisen von Homomorphietheoremen aus der Gruppentheorie gezeigt. Dabei
sind die verwendeten Planungsmethoden so implementiert, da� die Benut-
zerinteraktion m�oglichst nur f�ur die mathematisch tats�achlich interessanten
Schritte vonn�oten ist.

3. Anhand einer Fallstudie zur automatischen algebraischen Klassi�kation von
Restklassenmengen mittels Multi werden die Integration von Computeralge-
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bra in die Beweisplanung und die Benutzung von 
-Ants zur Theoremanwen-
dung demonstriert. Die einzelnen Techniken werden innerhalb verschiedener
Planungsstrategien implementiert, die jeweils unterschiedliche mathematische
Beweistechniken realisieren. Dabei werden im einzelnen drei Strategien ent-
worfen: vollst�andige Fallunterscheidung, Gleichheitsbeweisen und die Anwen-
dung gegebener Theoreme.

4. In einer weiteren Fallstudie wird die volle M�achtigkeit der Multistrategie-
Beweisplanung unter Verwendung von Computeralgebra und 
-Ants gezeigt,
indem Isomorphiebeweise mithilfe verschachtelter Anwendung der Strategien
aus der vorangegangenen Fallstudie gef�uhrt werden. In der Fallstudie werden
die Ergebnisse der Klassi�kation der Restklassenmengen benutzt und Rest-
klassen von gleicher algebraischer Struktur automatisch in Isomorphieklassen
eingeteilt. Die dabei anfallenden Theoreme sind von der Art, da� zwei gege-
bene Restklassenmengen entweder zueinander isomorph oder nicht-isomorph
sind.

Alle Fallstudien sind im 
mega-System implementiert und zeigen die E�ekti-
vit�at von 
-Ants und der Kombination verschiedener Beweistechniken.
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Chapter 1

Introduction

The history of science is characterized by an increasing degree of specialization into
particular �elds. Leibniz is acknowledged as one of the last universal scholars, in
the sense that he was aware and knowledgeable of all developments in all scienti�c
�elds of his time, whereas todays scientists became more and more specialized in
their particular �elds as the amount of knowledge grew. Specialization was the
only way out also in the �eld of mathematics over the last two centuries: At the
beginning of the nineteenth century mathematics was still a compact �eld, but since
then it developed into the diverse �eld of the many sub-disciplines it is now. The
same can be observed in the �eld of mechanized reasoning, which was inuenced
both by the diversity of modern mathematics and developments in the �eld as such.

Mechanized reasoning can be seen as an attempt to realize Leibniz's dream of
a `calculus ratiocinator' , a universal language with the purpose to formalize and
solve arbitrary reasoning processes. The evolution of modern logic starting in the
nineteenth century with the work of Boole [40] and Frege [89] and continued in
the early twentieth century (cf. [212, 98, 109, 95]). The advent of the early comput-
ers at the time of the second world war and the logical developments particularly
in proof theory marked the birth of the �rst inference machines, which were among
the earliest existing arti�cial intelligence systems [159] to be presented at the Dart-
mouth Conference in 1956. One natural application domain of these systems was
proving mathematical theorems.

Theorem proving systems for mathematics have since then been developed in a
large variety. On the one hand this was inuenced by the diversity of mathematics
itself, which led to many special purpose systems that implemented di�erent proof
techniques suitable for particular mathematical domains. On the other hand the
automated reasoning research itself has spawned various di�erent branches leading
to a strong diversi�cation of the �eld. At the risk of oversimplifying we can, how-
ever, identify two major, albeit generally divergent, goals of research in mechanized
reasoning. The �rst is the development of machine-oriented calculi that enable the
construction of completely autonomous theorem provers. The second goal is the
modeling of human problem-solving behavior and its cognitive aspects on a ma-
chine in order to build interactive proof checkers or plan-based automatic theorem
provers. However, none of these approaches alone has so far reached a degree of
power and reliability that it can be seen as the ultima ratio for mechanized reason-
ing in mathematics. There have been serious attempts to integrate human-oriented
and machine-oriented reasoning by combining multiple proof techniques, and by
enriching theorem provers with decision procedures and symbolic computation.

This thesis presents an approach to exibly combine multiple reasoning tech-
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niques, such as automated and interactive theorem proving, proof planning, and
symbolic computation, whose essence is a hierarchical blackboard architecture. The
practicability of the approach is demonstrated by several case studies in the domain
of �nite algebra and group theory.

1.1 Machine-oriented Reasoning

Machine-oriented theorem provers are essentially automatic provers based upon
some computer-oriented inference system such as the resolution principle [181]. The
most important aspect of the resolution calculus is that it replaces nondeterministic
instantiation of variables by goal directed, algorithmic uni�cation. Other machine-
oriented calculi are, for instance, tableaux [192] or connection methods [130, 188].
Modern systems derive their strength from their ability to maintain and manipulate
very large search spaces based on sophisticated indexing techniques [103, 176]. Their
strength can be truly remarkable, but their performance in real mathematics is still,
after more than forty years of research and steady improvements, rather weak.

Today there are many general purpose theorem provers for di�erent logics,
for example for propositional logic there are the SAT-based provers that use the
Davis-Putnam procedure [69] to compute satis�ability of a given propositional for-
mula. Two prominent representatives of this class are, for instance, sato [217] and
Mace [140]. For �rst order logic a myriad of systems have been developed such
as MKRP [171], Otter [143], Bliksem [70], or Spass [209] based on the reso-
lution calculus, which was enhanced by paramodulation [180], superposition [16],
and connection graphs [130, 188]. Systems based on other calculi are, for example,
SeTheo [184], which uses a tableau calculus, or leanCoP [164], which uses the
connection method. Similarly for higher order logics there are systems based on the
appropriately adapted resolution principle [3, 25] such as the Leo system [26] or on
the connection method [8] such as tps [9].

Besides general purpose theorem provers there were also systems built for special
proof techniques and application domains. For example, there is a whole sub�eld
of automated theorem proving concerned with equational theorem proving. Here
term rewriting systems have been developed with the purpose to transform a set
of equations with procedures such as Knuth-Bendix completion [128] into a system
that guarantees the existence of unique normal forms. This way any term can be
rewritten into a unique normal form and thus shown whether an equality holds or
not. Prominent representatives for term rewriting systems are, for instance,Wald-
Meister [110], elan [41], and eqp [143]. Other typical domains for special purpose
provers are, for instance, purely inductive theorem proving and geometry theorem
proving. Examples for inductive theorem provers are NqThm [44], acl2 [121], or
inka [13], which are particularly useful for software veri�cation. Instances of geom-
etry theorem proving systems are Geometry EXpert [61] and Goether [208],
which use algebraic methods such as Wu's method [216] or Gr�obner bases [133] {
Goether is for instance just a package for the computer algebra system Maple {
to prove theorems in elementary geometries.

Although automated theorem provers based on machine-oriented calculi have
reached a respectable strength and had success in proving previously open problems
(e.g., the Robbins conjecture was proved to be valid by eqp [143]), none of the
existing systems shows the strength and reliability such that it can solve all problems
in a certain domain.
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1.2 Human-oriented Reasoning

The limits and unpredictability of automated proof search has led to the devel-
opment of interactive theorem proving environments, which provide means for a
user to interactively construct and check proofs in a logically sound calculus. One
of the earliest interactive provers was the Automath system [206] developed by
de Bruijn in the 1970s. More recent systems like Nuprl [65], Isabelle [166],
hol [102], pvs [165], Imps [81], and coq [66], provide expressive, generally higher
order, languages and more human-oriented calculi such as natural deduction [172]
or sequent calculi [95]. The disadvantage of these systems is, however, that proofs
have to be painstakingly derived on a very �ne-grained level which can lead to many,
often tedious interactions. Therefore, many interactive systems o�er facilities to de-
�ne so-called tactics , �rst used in lcf [101], which are programs that manipulate
the current state of the proof by the application of a whole series of calculus rules.
In this way a single user interaction, namely the call of a tactic, results in a sequence
of proof steps. Tactics can be used to encode logically recurring proof patterns but
also to a limited extend to incorporate human-oriented proof techniques. However,
the proof in interactive proof development systems is essentially provided by the
user with relatively little help from the machine.

In order to remedy this situation Bundy developed the notion of proof plan-
ning [52]. His idea is essentially to have methods , which are tactics enriched with
pre- and postconditions that specify the applicability of the tactic as well as its
e�ects on the proof state. Theorems are then proved by automatically constructing
appropriate combinations of methods, so-called proof plans, using arti�cial intelli-
gence planning techniques. There are basically two directions in proof planning, one
is to simply automate traditional tactical theorem proving by deriving methods as
general and as broadly applicable as possible. The other is to model human tech-
niques with methods by incorporating domain-speci�c mathematical knowledge.
The former approach is implemented in CLaM [54] and �CLaM [179] whereas the
latter is the paradigm of the 
mega system [22]. The abstract calculus imple-
mented by methods is generally not complete and, moreover, since methods can
be under-speci�ed, constructed proof plans are not necessarily correct. Therefore,
proof plans have to be executed in order to construct machine-checkable proofs in
an underlying sound calculus.

1.3 Integration of Reasoning Techniques

As it turns out neither pure machine-oriented automated theorem proving nor
human-oriented interactive and plan-based reasoning are powerful enough to be
seen as the ultima ratio for mechanized reasoning. In fact, a combination of al-
ready developed theorem proving techniques as well as their enrichment with other
reasoning techniques such as symbolic computation or constraint solving is more
desirable. Consequently, over the last decade there have been many attempts at
implementing such combinations either in newly developed systems or by integrat-
ing already existing systems and by providing environments that facilitate their
integration.

1.3.1 Integration of Deduction Systems

One method to enhance the power and acceptance of interactive theorem provers is
to integrate automated theorem proving in order to discharge appropriate subgoals
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during large proofs. This can be achieved essentially in two ways: One is to design
powerful tactics that implement automated proof procedures. Tactics such as blast
in the hol [102] system or grind in pvs [165] incorporate nearly full scale �rst order
automated theorem proving into the respective system. The calculus of tps [9]
contains an inference rule named RuleP that o�ers a way to automatically discharge
predicate logic subgoals.

Another way to partially automate the interactive theorem proving process is
to integrate already existing systems into the interactive environments. This has
the advantage that one can reuse existing state of the art technology as well as to
integrate several di�erent means of automation. For instance, the Ilf system [67,
68] integrates several di�erent �rst order theorem provers, the 
mega system [22]
integrates a variety of provers for �rst and higher order logic as well as model
generators, and the Prosper environment [72] o�ers provers for �rst order logic
and inductive reasoning as well as model generators.

Besides the integration of automated theorem proving into interactive environ-
ments there are also approaches to integrate environments for their mutual bene�ts.
Examples of such integrations are the interface between hol and Nuprl [82] that
enables the exchange of proofs in classical and constructive logic, the integration of
hol and CLaM [191] that allows CLaM proof plans to be translated into hol tactics,
or the interface between 
mega and tps [21] that enables the exchange of concepts
in the respective knowledge bases.

1.3.2 Integration of Deduction and Computer Algebra

There is research and development with the aim to integrate other reasoning tech-
niques such as decision procedures or constraint solving into theorem proving. Com-
pare, for instance, the integration of Pre�burger arithmetic into the NqThm induc-
tive theorem prover [46]. During the last ten years there has been also an interest
in the integration of deduction systems (DS) and computer algebra systems (CAS).

There are two intentions for the integration of deduction and computer algebra:
One is to provide some guarantee for correct computations by enriching CAS with
deduction (i.e., DS�CAS) or to enhance the computational power of DS (i.e.,
CAS�DS), which are notoriously weak in that respect. Although experiments
for both have been carried out, we are mainly interested in the latter scenario
(for some examples of the former see [2, 170, 204, 10]). For the integration of
symbolic computation into DS there exist basically three approaches: (1) To fully
trust the CAS, (2) to use the CAS as an oracle and to try to reconstruct the proof
in the DS with purely logical inferences, and (3) to extend the DS with a symbolic
computation component that either can be fully trusted or that produces output
that can be checked for its correctness.

In the �rst category (c.f. [196, 63, 17, 18, 48]) one essentially trusts that the
CAS works properly, hence their results are directly incorporated into the proof.
All experiments in this category are at least partly motivated by achieving a broader
applicability range of automated reasoning and this objective has been de�nitively
achieved, since the range of mathematical theorems that can be formally proved by
the combined systems is much greater than by the DS alone. However, CAS are very
complex programs and therefore trustworthy only to a limited extent, so that the
correctness of proofs in such a hybrid system can be questioned, particularly as it is
often diÆcult to check all the side conditions and constraints, such as not dividing
by zero, etc. This is not only a minor technical problem, but will remain unsolved
for the foreseeable future since the complexity (not only the code complexity, but
also the mathematical complexity) does not permit a veri�cation of the program
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itself with currently available program veri�cation methods.

The second category [105, 107] is more conscious with respect to the role of
proofs, and uses the CAS only as an oracle, with the result, that the correctness can
then be checked deductively. While this certainly solves the correctness problem,
this approach has only a limited coverage, since even checking the correctness of
a calculation may be out of scope for most DS without additional information.
Indeed from the point of applicability, the results of the CAS help only in cases,
where the veri�cation of a result has a lower complexity than its discovery, such
as prime factorizations, solving equations, or inde�nite symbolic integration. In
an alternative approach that formally respects correctness, but essentially trusts
CAS, an additional assumption standing for the respective CAS is introduced, so
that essentially formulae are derived that are shown modulo the correctness of the
computer algebra system at hand (e.g., see [106]).

A third approach of integrating CAS into DS, consists in the meta-theoretic
extension of the reasoning system as proposed, for instance, in [45, 114] and re-
alized in Nuprl. In this approach a constructive mechanized reasoning system is
basically used as its own meta-system and the constructive features are exploited to
construct a correct computer algebra system. Bridge rules between the ground and
the meta-system are employed to integrate the CAS thus constructed. The theoret-
ical properties of the meta-theoretic extension guarantee that if the original system
was correct then the extended system is correct too. Similar is some work done in
the coq system where algebraic algorithms are formally speci�ed and certi�ed in a
constructive logic and the speci�cations are compiled into executable, correct code.
Experiments include a certi�ed version of Buchberger's algorithm [202] as well as
the formal development of basic polynomial algorithms [42, 43]. In the same cate-
gory we can also see the approach presented in [123, 124] where a self-tailored CAS
is implemented that generates intermediate output during its computation. This
output can then be translated into tactics of the DS and expanded to a calculus
level proof, which in turn can be machine-checked. A disadvantage compared to the
other two approaches is that it is not possible to employ any of the existing CAS,
but it is necessary to (re)implement it either in the formal system of the basic DS
or with an appropriate enriched output for the interim information.

In this thesis we present a pragmatic approach at integrating CAS into DS, more
precisely into proof planning, that combines aspects of the approaches (2) and (3).
It is based on the assumption that computation and veri�cation can be separated
and this approach can thus exploit the fact that many elaborate symbolic compu-
tations are trivially checked. In proof planning the separation is realized by using
a powerful, existing CAS during the planning process to do non-trivial symbolic
computations. Results of these computations are checked during the re�nement of
a proof plan into a calculus level proof using a small, especially implemented system
that gives us interim information on its calculation. This information can be easily
expanded into a checkable low-level calculus proof ensuring the correctness of the
computation.

1.3.3 Frameworks for Integration

The need to combine di�erent DS in a single environment that is exible enough to
handle both replacement and addition of systems has led to the concept of Open
Mechanized Reasoning Systems [97]. In OMRS, theorem provers can be viewed as
replaceable plug and play components. It turned out that theorem proving systems
for a plug and play environment have to be separated into distinct components for
control and logic or computation. Thus, it is practically impossible to integrate any
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monolithic system without redesigning major parts. Moreover, commercial systems
where the sources are not available cannot be re-engineered and are therefore lost
for an integration.

A framework for establishing the semantics of intimately integrated deduction
and computation systems was presented by Homann and Calmet in [111, 113] and
a classi�cation of logical and symbolic computation systems as well as the aspects
of their communication and cooperation has been developed in [56]. Homann

and Calmet also generalized the concept of OMRS �rst to an open environment
for doing mathematics [112] and together with Bertoli and Giunchiglia to the
concept of OpenMechanized Symbolic Computation Systems [32, 33]. In OMSCS
computer algebra systems, theorem provers, and their integration can be soundly
expressed, which has been demonstrated with a case study integrating the deduction
system Isabelle and the general purpose computer algebra system Maple.

While this work develops a semantics to support the integration of di�erent
systems, there are also frameworks that solely provide the infrastructure to inte-
grate existing systems. For instance, in the MathWeb architecture [88] systems
can be integrated as so called mathematical services by encapsulating them into
agent shells. MathWeb then manages the communication between the systems by
providing a uniform KQML-like language [85] but has no speci�c requirements for
the actual content of the communication. Thus, virtually anything can be commu-
nicated between the systems. Although MathWeb takes care of the distribution
of the services over the Internet it does not automatically enable the cooperation
between systems, instead coordination has to be provided by a requesting system.
For instance, a system such as 
mega can send requests to selected mathemati-
cal services via MathWeb thereby treating these services as slaves. MathWeb

also exhibits limited abilities for resource management of services, however, this is
restricted to a static time out for requests. Similar to MathWeb are the Mathe-
matical Softwarebus [57] from Homann and Calmet and the Logic Broker
architecture [11] from Armando and Zini. The advantage of the latter is that it
uses the more established Corba [187] protocol for distribution.

The approach we shall present in this thesis di�ers from the above in two points:
Firstly both the cooperation and competition of reasoning techniques and of inte-
grated reasoners is automatic; that is, computation by the integrated components
are implicitly triggered by the state of the problem at hand and not explicitly by
a user. Secondly, our approach incorporates already existing systems without the
need for re-engineering. However, in order to derive a machine-checkable proof ob-
ject we have to rely on mechanisms in order to translate any reasoning step provided
by some external reasoner into the uniform representation of 
mega's natural de-
duction calculus. For the integration and distribution of external systems we exploit
the facilities provided by 
mega's MathWeb architecture and therefore have the
integrated components run in parallel.

1.4 Parallel Theorem Proving

The �eld of parallel theorem proving has drawn a growing attention over the last
decade. Several calculi have been extended to support parallelism and tested in
practice. For instance, a parallel version of the Davis-Putnam procedure has been
developed for the PSato system [218] or a parallel Knuth-Bendix algorithm has
been implemented in PaReDuX [50, 51]. In other approaches the same theorem
provers have been run in parallel with di�erent settings simulating di�erent theorem
proving strategies. For example P-SeTheo is a prover that parallelizes the tableau-
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based theorem prover SeTheo [213]. For a more profound overview on parallel,
mainly �rst order theorem proving systems as well as a taxonomy of parallelism in
theorem proving we refer the reader to [36, 37]. Here we shall only discuss some of
the heterogeneous approaches that are relevant for our work.

The Techs approach [74] realizes cooperation between a set of heterogeneous
�rst order theorem provers. Partial results are exchanged between the di�erent the-
orem provers in the form of clauses, and di�erent referees �lter the communication
at the sender and receiver side. This system clearly demonstrated that the joint
system is much stronger than the individual systems. Techs notion of heteroge-
neous systems, however, is restricted to a �rst order context only and neither higher
order provers, computer algebra systems, nor model generators can be integrated.
Predecessors of Techs are Teamwork [75] and Discount [14, 76], which are more
machine-oriented and thus do not allow for interaction. Interaction and automation
is addressed by the combination of Ilf and Techs as described in [73].

In [87], Fisher and Ireland propose an agent-based approach to proof planning
that is motivated by a �ne-grained parallelization of the proof planning process more
than the distribution aspect. They propose a society of agents that are organized by
a contract net architecture, building on earlier studies of Fisher [86] on agent-based
theorem proving.

In most of these approaches the construction of a single proof object is given up
and replaced by the more simple goal of solving the problem without reconstructing
a proof. This is, however, not desirable for us, since we do not only want explicit
user interaction but also to construct proofs that are both machine-checkable and
presentable to a user. Moreover, the systems integrated into our architecture are
very heterogeneous in the sense that we allow for theorem provers with various
calculi and logics, computer algebra systems and model generators. Therefore, the
information that is exchanged is on the level of subproblems that are maintained in
a central proof object, and not at the very low level such as clauses.

Since our approach is geared towards proof construction and user interaction,
we opted for a proof centered approach since this supports in particular user in-
teraction and the construction of a uniform proof object. Therefore, we chose a
blackboard architecture that allows a exible distribution without loss of the de-
sired centralization.

1.5 Blackboard Systems

Blackboard architectures have been developed in the nineteen-eighties as a simple
yet powerful means to deal with uncertain data and to apply a non-deterministic
solution strategy. In the blackboard model solutions are assembled by a variety
of knowledge sources , which do not have to be of a uniform composure. Solutions
are assembled on the blackboard by cooperation of the di�erent knowledge sources,
whose computations are scheduled on the board. Nearly all blackboard models
have a hierarchical structure for both the solution space and the knowledge sources.
This enables a propagation of better solutions in the hierarchy and also an anytime
character in the sense that the more computations are performed by the knowledge
sources the better the eventual solution becomes. (Compare [79] for an extensive
introduction to blackboards.)

The �rst blackboard architectures were the HearsayII [80] or the Hasp [161]
architectures, where the former was used for speech recognition and the latter for
ocean surveillance with sonar sensors. Both consisted of a single blackboard and
a set of hierarchical structured knowledge sources. Later blackboard architectures
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were then composed of several blackboards for di�erent tasks. For instance, the
BB1 architecture is composed of two blackboards, one for the scheduling tasks and
one to assemble the solution.

The early blackboard systems had no concurrency for the computation in the
knowledge sources. These ideas were �rst picked up for systems such as cage [160]
and poligon [178], which were enriched by both cooperation and concurrency be-
tween the knowledge sources. In particular, the poligon architecture enables a
very exible integration of various blackboards and their knowledge sources and
resembles more a modern multi-agent architecture than a classical blackboard ap-
proach.

The architecture we shall present in this thesis is inuenced both by the hierar-
chical approach of the earlier blackboard architectures as well as by parallelism as in
the poligon and cage architectures. It is composed of two layers of independent
blackboards and parallel knowledge sources. Solutions are therefore assembled in a
two stage process and propagated from the lower to the upper layer, where on the
upper layer we always have the heuristically best solution that has been computed
so far. Moreover, the use of several independent blackboards and parallel knowledge
sources allows us to model both competition and cooperation of knowledge sources.

1.6 Theorem Proving in Group Theory and Finite

Algebra

In the history of automated theorem proving many specialized provers have been
built for di�erent mathematical domains including group theory and �nite algebra.
Moreover, many non-specialized theorem proving systems have been successfully
applied to prove theorems in group theory. A full overview of automated reasoning
concerned with group theory is beyond the scope of this introduction, we rather
give a short historical overview and a short, incomplete account of recent work in
that area.

The �rst theorem proving systems specialized in group theory were developed in
the 1960s. In [215] Robinson, Wos, and Carson present an automated theorem
prover that proved some theorems in group theory in a specialized abstract calcu-
lus. In the following year Norton | a PhD student of Minsky | developed the
Adept-system [162], a �rst order logic theorem prover specialized on group theory.
The specialized heuristics were essentially simple term rewriting steps correspond-
ing to the application of equations like the group axioms. Other early attempts
at theorem proving in group theory is, for instance, the work by Zherlov and
Mart�yanov [219].

Especially the proper treatment of equality within proofs is still a diÆcult prob-
lem for many automated systems [136]. This is one of the reasons why problems
from group theory, albeit mathematically trivial , are still considered to be hard
problems for automated theorem provers (cf. [138, 167]) and are often used as chal-
lenge problems for term rewriting systems (i.e., theorem provers that are special-
ized on equational reasoning). Compare, for instance, some of the problems in the
TPTP [197, 198], a library of benchmark problems for �rst order theorem provers.

One important means to construct term rewriting systems is the already men-
tioned Knuth-Bendix algorithm [128] whose method is to direct and complete sets
of equational axioms into a conuent and terminating term rewriting system. Spe-
cial orderings on terms are used for termination, which vary depending, for instance,
on particular mathematical domains. Work in this area takes equations from group
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theory as starting point. For instance, in [49] Buendgen describes an applica-
tion of the Knuth-Bendix algorithm to �nite group theory. In [90] Fuchs presents
a method using Knuth-Bendix completion together with additional goal directed
heuristics to prove theorems on lattice ordered groups. All this work is concerned
with proofs of general theorems about groups. However, if one is concerned with
theorems about particular instances of groups it is possible to construct special term
rewriting systems depending on the particular group. Such a method is, for exam-
ple, presented by Martin in [137], where a uniquely determined and convergent
term rewriting system can be constructed for a group, given its generators.

Besides inference techniques for equational problems based on term rewriting
there exist also special calculi that integrate equations directly into their rules. One
such calculus is the superposition calculus by Bachmair, Ganzinger, Lynch,
and Snyder [16], where equality treatment is integrated into a resolution calculus
similar to paramodulation. Additionally there exists a strict order on terms that
directs equations in a way such that all term rewriting steps terminate. Extensions
of this calculus have been developed to cater for particular mathematical domains:
For instance Waldmann has developed a superposition calculus for monoids [93]
and Stuber for groups [195].

There is also work in interactive theorem proving in the context of algebra and
group theory. Jackson has developed computational abstract algebra in theNuprl
proof development system [65], in particular the necessary concepts to develop the
basics of polynomial algebra. Schwarzweller [185] presents work on the formal-
ization of basic abstract ring theory in theMizar library [205, 182], a mathematical
knowledge base with an interactive proof checker, in order to verify generic algebraic
algorithms, such as the generic Euclidean algorithm. The formal proof of Sylow's
�rst theorem in the interactive theorem prover Isabelle [166] is described in [119],
which is based on Kamm�uller's formalization of group theory and prime number
theory in Isabelle. A formal derivation of the Fundamental Theorem of Algebra
has been carried out by Geuvers, Wiedijk, and Zwanenburg [96] in the coq
system.

The work discussed so far is mainly concerned with formalizing existing algebraic
theory and constructing proofs for already known theorems. However, there is
also more explorative work in the context of group theory and �nite algebra. For
instance, in the quest for minimal axiomatizations for algebraic entities, in particular
groups, automated theorem provers have been employed to �nd single axioms, from
which all necessary properties of a group can be derived [158, 132]. Especially a
�rst order theorem prover was successfully applied by McCune to �nd several of
such axioms [139].

There is also work on exploration and automated discovery in �nite algebra
that is concerned with the discovery of particular algebraic structures that satisfy
given properties. For instance, in [91, 141, 190, 218] model generation techniques
are used to tackle quasi-group existence problems. In particular, systems such as
finder [189] and sato [217] were successfully employed to solve some open prob-
lems in quasi-group theory. McCune and Padmanabhan [144] give an account
of the use of the �rst order automated theorem prover Otter to assist the con-
struction of non-associative algebras in every day mathematical practice. There is
also work by Gomes, Selman, Crato, and Kautz [99] where constraint solving
techniques are used to complete quasi-group multiplication tables. The motivation
for all this work is roughly to specify certain properties of an algebra and then try
to automatically construct a structure that satis�es the required properties. Thus,
the constructed algebra might actually be a new discovery.
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1.7 Summary and Outline of the Thesis

This thesis is concerned with the combination of several reasoning techniques to be
applied in group theory and �nite algebra. In particular, we combine interactive
and automated reasoning, proof planning and symbolic computation. Our means to
achieve this combination is a hierarchical blackboard architecture called 
-Ants.
This architecture has been developed originally to support a user in interactive the-
orem proving to search for the next possible proof step. It consists of two layers of
blackboards with individual concurrent knowledge sources. The lower layer searches
for instantiations of command parameters within the actual proof state. The upper
layer exploits this information to assemble a set of possibly applicable proof steps
and presents them to the user. The architecture has also mechanisms to adapt
its behavior with respect to the current proof context and the availability of sys-
tem resources. It especially allows for the integration of various components such as
automated theorem provers, model generators, or computer algebra systems. More-
over, the command application can be automated itself converting 
-Ants into an
automatic, resource-adaptive reasoning system.

We also describe the integration of the 
-Ants mechanism into the multi-
strategy proof plannerMulti [155] to support traditional proof planning. In partic-
ular, we present how 
-Ants can be employed �rstly for interactive proof planning
and secondly to seek applicable theorems from a mathematical knowledge base in
parallel to the automatic proof planning process. Additionally, we present how cer-
tain symbolic computations can be soundly integrated into proof planning. The

-Ants architecture as well as all discussed combinations of reasoning techniques
are implemented in the 
mega theorem proving environment and for each combi-
nation we have carried out extensive case studies in group theory and �nite algebra.

The thesis consists of three parts. The �rst part presents an introduction to the

mega system, the logic of the 
mega system and the notions of proof planning
to which we shall refer to throughout the rest of the thesis.

The second part of the thesis is concerned with architectures for the combina-
tion of reasoning techniques. It consists of two chapters: Chapter 3 introduces the

-Ants blackboard architecture, our means to combine interactive and automated
reasoning. Chapter 4 presents how 
-Ants can be used within the multi-strategy
proof planner Multi to determine method applicability for interactive proof plan-
ning and to check for applicable theorems from the mathematical knowledge base in
parallel to the automatic proof planning process. Furthermore, this chapter presents
how non-trivial computations of regular computer algebra systems can be soundly
integrated into proof planning.

In the last part of the thesis we present several case studies in the domain of
group theory and �nite algebra to illustrate di�erent aspects of the combination. In
detail, the third part contains four chapters, each describing a di�erent case study:
Chapter 5 is concerned with equivalence and uniqueness proofs of algebra that
illustrate the use of 
-Ants as an automated theorem prover. Chapter 6 elaborates
how interactive proof planning can be performed with 
-Ants using homomorphism
theorems from group theory as a case study. Finally, the chapters 7 and 8 present
a case study for the application of 
-Ants for knowledge base queries during proof
planning as well as the integration of symbolic computation into proof planning.
Chapter 7 contains proofs for simple algebraic properties of residue classes using
straightforward proof planning techniques, whereas chapter 8 presents isomorphism
proofs between residue classes that employ the full power of multi-strategy proof
planning.



Chapter 2

An Introduction to 
mega


mega [22] is a theorem proving environment for interactive as well as automated
proof development. Its distributed architecture allows for the cooperation and in-
tegration of external systems such as a classical deduction system or a computer
algebra system. The main purpose of 
mega is to construct proof objects, which
are machine-checkable for correctness. This is done in a Gentzen-style natural
deduction calculus [95] based on a variant of Church's simply typed higher order
lambda calculus [62]. Proof construction itself is performed at an abstract level
where the user can employ a variety of tools, such as interactive tactical theorem
proving, automatic proof planning or the application of external systems.

In this chapter we show 
mega's logic, introducing its syntax, semantics, and
a natural deduction calculus. We then describe 
mega's proof objects and how
they can be constructed. Also we give a brief overview of the concepts in 
mega's
knowledge base that are relevant for proof construction. Moreover, we explain the
tactical theorem proving facilities and give a brief introduction to proof planning
and 
mega's particularities of knowledge based and multi-strategy proof planning.
Finally, we explain how external reasoners can be employed during proof construc-
tion.

2.1 
mega's Logic


mega's basic logic is a higher order logic based on a simply typed lambda calculus.
Proofs are constructed in a Gentzen-style natural deduction. We �rst de�ne the
syntax and semantics for the logic and then give the inference rules of the natural
deduction calculus.

2.1.1 Syntax

Definition 2.1 (Types): Let TB be a nonempty, �nite set of symbols. We de�ne
the set T of types inductively as the smallest set containing TB and all types of the
form �! �, where �; � 2 T .
We call the elements of TB base-types and types of the form �! � functional types .

In the sequel we will always assume a �xed set of base-types TB and types T
with fo; �g � TB . Here o denotes the type of truth-values and � denotes the type of
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individuals . However, TB can be extended by other special types, for instance, in

mega there exists a special type � denoting the type of numbers. We shall write
small Greek letters for the syntactical variables denoting elements of T .

Notation 2.2: A type of the form �1 ! �2 ! : : : ! �n ! � is bracketed to
the right and thus corresponds to (�1 ! (�2 ! : : : ! (�n ! �) : : :). We may
omit brackets and arrows altogether and write �1�2 : : : �n�, when no ambiguity is
thereby introduced.

Definition 2.3 (Typed sets): A set of sets of symbols � = �T := f��j� 2 T g is
called a typed collection of sets over T . We call � disjoint if we have �� \ �� = ;,
for � 6= � and �; � 2 T .
The mapping � : �! T is called a type function if for each � 2 T and each f 2 ��
holds: �(f) = �. Conversely, a type function � :M! T induces a disjoint typed
collectionMT = fM�g forM� = �(�).
Given two typed collections of sets D; E over the same set of types T , we call a
collection of functions I := fI� : E� ! D�j� 2 T g a typed function I : E ! D.

We shall write an element c 2 D� of a typed set D� as c� in order to indicate
that it is of type �. We will, however, convey the type information of a typed
element only once or even omit it if its type is obvious from the context.

Definition 2.4 (Signature): Let � be a disjoint typed collection of countably
in�nite sets over T then � is called a signature over T and the elements of the ��
are called constants .
� contains in particular the logical constants f:oo;_oo;��oo; {o�o�g � �.

The symbols :, _, and � are called negation, disjunction and quanti�er, respec-
tively. {ois the description operator as introduced in [5]. Its purpose is to pick the
unique element out of a singleton set. We shall axiomatize and explain this more
detailed in section 2.1.3.

Note that the quanti�er ��oo and the description operator {o�o� in de�nition 2.4
depend on the type of their argument. Therefore, there exists for every type � 2 T
exactly one quanti�er �� and one description operator {o�. We call such a de�nition
where � is not �xed a polymorphic de�nition.

The preceding de�nitions allow us to regard the signature as a union of typed sets
of constant symbols. Since they are disjoint we can uniquely determine the exact
type of each constant with the type function � . Moreover, the use of polymorphic
de�nitions enables us in most cases to state the elements of � in a �nite way although
it is collection of countably in�nite sets.

Definition 2.5 (Well-formed formulas): Let � be a signature over T and V
a collection of typed sets over T with countable in�nitely many elements. We call
V the set of typed variables . For each type � 2 T we inductively de�ne the set
w��(�) of well-formed formulas as

(i) �� � w��(�),

(ii) V� � w��(�),

(iii) with A�!� 2 w��!�(�) and B� 2 w��(�) is (AB) 2 w��(�),

(iv) if A� 2 w��(�) and X 2 V� then (�X A) 2 w��!�(�).
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The set of all well-formed formulas over the signature � can be de�ned as w�(�) =S
�2T w��(�).

We call formulas of the form (AB) applications and formulas of the form (�X A)
�-abstractions or simply abstractions . The elements of w�o(�) will be called propo-
sitions .

Notation 2.6: The square dot ` ' in (�X A) divides the �-bound variable X from
its scope A. It corresponds to a left bracket whose mate is as far to the right as
possible until a right bracket is reached whose mate is left of the �-binder.

Notation 2.7: Until the end of this thesis we will use in�x notation instead
of pre�x notation when it does not lead to ambiguities. For instance, we write
(A _ B) instead of (_AB). Likewise, to ease readability we will omit brackets
whenever possible and write function application in the more mathematical style of
f(c) instead of (fc).

Definition 2.8 (Free variables): Let A;B 2 w�(�) and let Z 2 VT . The
occurrence of a variable Z is called bound in A i� it is in a sub-formula of the form
�Z B in A. In case an occurrence of Z in A is not bound we call it free in A. We
de�ne the set of all variables with free occurrences in A as the set of free variables
of von A, FV(A).

Definition 2.9 (�-conversions): Let A 2 w��(�), B 2 w��(�) and let X;Y 2
V� . For the formula A we de�ne three rules of �-conversion:

(i) �X A!� �Y [Y=X ]A, provided Y 62 A (�-conversion)

(ii) (�X A)B!� [B=X ]A (�-reduction)

(iii) (�X AX)!� A, if X 62 FV(A) (�-reduction)

Here the notation [B=X ]A means that all free occurrences of the variable X in A
are substituted with the term B. Thus, the rule of �-conversion corresponds to a
renaming of the �-bound variable Y in A.

One notion that is used frequently within 
mega is that of a term position.
Term positions help to identify and single out sub-terms in given terms.

Definition 2.10 (Term position): Let IN� be the set of words over the set of
non-negative integers IN and let � be the empty word in IN�. For a term t 2 w�(�)
the term position of a distinct sub-term s of t, pt(s) 2 IN

�, is inductively de�ned as
follows:

� If s = t then pt(s) = �,

� if t = (t0 t1 : : : tn) and the distinct s occurs in ti, 0 � i � n, then pt(s) =
i:pti(s),

� if t = �x t0 and the distinct s is a sub-term of t0 then pt(s) = 0:pt0(s).

We write term positions in brackets as h�:�i, where �; � 2 IN� and `.' denotes the
concatenation of words in IN�.
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2.1.2 Semantics

The semantics for 
mega's logic is based on the type system T that contains as
base-type the type of truth values o and the type of individuals �.

Definition 2.11 (Frame): A frame is a collection of nonempty sets D�, one
for each type symbol � such that Do = f>;?g and D�!� � F(D�;D�), where
F(D�;D�) is the set of all total functions from D� to D� .

We call the members of Do truth values, where > corresponds to truth and ?
corresponds to falsehood . The elements of D� are called individuals.

Definition 2.12 (Interpretation of constants): Given a frame D� and a sig-
nature � with respect to T . We call the typed function I : �! D an interpretation
of constants (or simply interpretation) with support D.

With the help of the interpretation function I it is now possible to give meaning
to the logical constants we have introduced in de�nition 2.4.

Definition 2.13 (Interpretation of logical constants): Given the logical con-
stants f:;_;��; {o�g � � from de�nition 2.4, we restrict the interpretation I in the
following way:

(i) I(:)(d) = > if an only if d = ?, d 2 Do

(ii) I(_)(d; e) = > i� d = > or e = >, d; e 2 Do

(iii) I(��)(d) = > i� d(a) = > for all a 2 D� with d 2 D�!o

(iv) I({o�)(d) = c i� d = fcg for d 2 D�o and c 2 D�

In point (iii) of the preceding de�nition the notation d(a) stands for the appli-
cation of the function d 2 D�!o to the object a 2 D� as mentioned in 2.7.

Although the logical constants from de�nition 2.13 are suÆcient to de�ne a
proper logic, for notational convenience we enrich our signature by addition of the
following abbreviations1:

� the universal quanti�er 8�oo such that 8X� Ao := ��(�X� A)

� the existential quanti�er 9�oo such that 9X� Ao := :(8X :A)

� the conjunction ^ooo such that Ao ^Bo := :(:A _ :B)

� the implication )ooo such that Ao)Bo := :A _B

� the equivalence ,ooo such that Ao , Bo := (A)B) ^ (B)A)

� the equality
:
=��o such that M�

:
=N� := 8P�o P (M))P (N)

The given de�nition of equality corresponds to the de�nition of Leibniz equality.
In order to avoid confusion we shall write equality in formulas as

:
= throughout this

chapter, however, in the remaining chapters of this thesis equality is again written
with the more conventional = symbol. Observe that similar to the de�nition of ��

in de�nition 2.4 the de�nition of
:
=
�
is polymorphic.

1In fact, we could de�ne a logic with an even smaller number of logical constants. For instance,
Andrews de�nes a higher order logic in [7] using equality and description, only.
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So far we are only able to interpret single constants in our semantical domains.
Now we will de�ne extensions that cater also for variables and complex formulas.

Definition 2.14 (Variable assignment): Given a frame D� and a set of typed
variables V over T we call a typed function ' : V ! D a variable assignment (or
simply assignment) with support D.

Definition 2.15 (Denotation): Let �, V be a signature and a set of variables
over T . Let w�(�) be the set of well-formed formulas of � and let I : �! D and
' : V ! D be the corresponding interpretation and assignment, respectively, then
we de�ne the denotation I' : w�(�)! D inductively as:

(i) I'(X) = '(X), if X 2 V

(ii) I'(c) = I(c), if c 2 �

(iii) I'(AB) = I'(A)(I'(B))

(iv) I'(�X� A�) as the function in D�� such that for all z 2 D� holds:
(I'(�X� A))z := I';[z=X](A).

Given our de�nition of a frame so far, we cannot be sure that the function
required in de�nition 2.15 (iv) exists. The domain D�� might be too sparse [4].
Because of the inductive nature of the de�nition this problem also a�ects 2.15 (iii).
However, in the semantical domains of interest | the Henkin models [108] | this
possibility is explicitely excluded; that is, every formula in w�(�) can be denoted.

Definition 2.16 (Henkin models): Let I' : w�(�)! D be a denotation such
that I' is de�ned for each formula A 2 w�(�), then we call the pair M = hD; Ii
a Henkin model for w�(�).

Being certain that every formula in w�(�) can actually be denoted it is now
possible to exactly evaluate propositions.

Definition 2.17: Let M = hD; Ii be a Henkin model and P 2 w�o(�) be a
proposition then we have:

(i) P is valid in the model M when for each assignment ' holds that I'(P) = >.

(ii) P is called valid or a tautology if P is true in each Henkin model hD; Ii.

(iii) Given a set of propositions � we say that � is satis�able inM, provided there
is some assignment ' such that I'(P) = > for all P 2 �.

(iv) A proposition P follows semantically from a set of propositions � if P is valid
in each Henkin model hD; Ii in which the elements � are valid.

Notation 2.18: To simplify the notation given in de�nition 2.17 we shall write
� j= P to indicate that P follows semantically from the set of propositions � and
j= P if P is a tautology.

The Henkin models given in de�nition 2.16 are also called generalized models
since they still allow for incomplete domains (even with the restriction we discussed
with respect to de�nition 2.15):

D�!� � F(D�D�): (2.1)
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This means that all formulas valid in a Henkin model are only a subset of all possibly
valid formulas. Based on the notion of Henkin models we can de�ne the standard
models by requiring

D�!� = F(D�;D�): (2.2)

The standard models are thus a subset of the Henkin models. But the set of
valid formulas contained in an arbitrary Henkin model is generally smaller then
the set of valid formulas in the standard models. However, G�odel could show
in his incompleteness theorem that there do not exist calculi that are both sound
and complete for standard models, whereas it was proved by Henkin in 1950 that
complete and sound calculi can be constructed for Henkin models.

In this thesis we will be concerned neither with the theoretical consequences of
this fact nor with completeness considerations of calculi. Instead we refer to [7, 20]
for a more detailed introduction and examination of this subject.

2.1.3 Calculus

The original natural deduction (ND) calculus was introduced by Gentzen [95] in
1935. The idea is to model mathematical problem solving behavior in small logical
steps for a basic �rst order logic. Thereby a theorem is derived from a given set
of hypotheses by successively applying inference rules . In this section we introduce

mega's variant of Gentzen's classical ND calculus, which also caters for the
higher order particularities.

For the de�nition of 
mega's ND calculus we assume the higher order language
de�ned in the previous sections. In particular, we presuppose the semantics of our
logical constants to be as given in de�nition 2.13 and to have the subsequently de-
�ned abbreviations available. Although con�ning ourselves to the original logical
constants from de�nition 2.4 would give a leaner calculus, we prefer a more expres-
sive and intuitive basic calculus by also having inference rules for the abbreviations
available. However, the larger the basic calculus is, the less eÆcient it is to check
complete proofs automatically. Therefore, we will not allow for equality and equiv-
alence as primitive concepts and rather de�ne them as derived concepts as given in
section 2.2.1.1.

Before de�ning the single calculus rules we introduce a tree notation to denote
the rules of inference.

Definition 2.19 (Proof trees): Let A1; : : : ; An; A;B2w�o(�) be propositions,
we call a proof tree one of the following:

(i) [A] where A is a hypothesis

(ii)
B
R for the inference rule R. We call B conclusion and R an initial rule

(iii)
A1 : : : An

B
R if B follows from A1; : : : ; An by application of the inference rule

R. We call A1; : : : ; An premises .

(iv)

[A]
....
B

if B can be derived from A in a �nite number of inference steps (i.e.,

applications of inference rules).
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We now de�ne the inference rules of 
mega's ND-calculus. Basically we have
one introduction and elimination rule for each logical connective and each quanti�er.
For the elimination of conjunctions and for the introduction of disjunctions we have
two symmetrical rules, respectively. Additionally, there is one rule for eliminating
of falsehood (ex falso quod libet). While all these rules are basically �rst order we
have also one proper higher order rule that performs � conversions.

Definition 2.20 (Inference rules): Given propositions P;Q;R2w�o(�) we can
de�ne the inference rules of the natural deduction calculus as follows:

?
P
?E

P :P
?

:E

[P ]
....
?
:P
:I

P ^Q

P
^El

P ^Q

Q
^Er

P Q

P ^Q
^I

P _Q

[P ]
....
R

[Q]
....
R

R
_E

P
P _Q

_Ir
Q

P _Q
_Il

P P)Q

Q
)E

[P ]
....
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8x P
[t=x]P

8E(t)
[t=x]P

8x P
8I(t) with t new in P

9x P

[t=x]P
....
Q

Q
9E(t) with t new

[t=x]P

9x P
9I(t)

A
B

�$

In the rules for the quanti�ers [t=x]P means that the term t is substituted for all
occurrences of the variable x in P . The substituted term t is given in parentheses
behind the rule name and is called a parameter of the rule. The 8I and 9E rules
have eigenvariable conditions that require that the term t does not already occur in
the proposition P in case of the 8I rule. In the 9E rule the term t must not occur
anywhere else in the proof.

The �$ rule is the higher order rule that allows to close a goal with a support
that is equal with respect of the �-conversions given in de�nition 2.9; that is, A
denotes the same term as B up to ��-reduction and renaming.
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In addition to the inference rules 
mega's ND-calculus also has some axioms
in order to be complete. We have one axiom to ensure that there exist exactly two
truth values (i.e., that we have a classical logic), two axioms for extensionality and
one axiom for the description operator.

Definition 2.21 (Axioms): We de�ne the following four axioms for our calculus:

� 8Ao A _ :A (Tertium non datur)

� 8M�� 8N�� [8X� MX
:
=NX ])[M

:
=N ] (Functional extensionality)

� 8Ao 8Bo (A, B))(A
:
=B) (Boolean extensionality)

� 8P�o 9X� [PX ^ 8Y� PY)[X = Y ]])P{o�o�P (Description)

The axiom of description in the preceding de�nition gives us a more precise
understanding of the description operator as a partial function that acts only on
singleton sets. It expresses that for every set P�o that contains exactly one unique
element, the description operator applied to the set P returns an element of P , which
is, of course, its only element. It can be shown that a description operator needs
to be de�ned and axiomatized only for the base type � and subsequent description
operators for higher types can then be derived. However, in 
mega we adopted a
uniform view on all description operators by axiomatizing them for all types � 2 T .
For a introduction to the description operator and its properties see [5].

The two axioms of extensionality could also be formulated as equivalences. How-
ever, since equality is de�ned via Leibniz equality in 
mega the respective reverse
directions can be infered within the calculus and were thus omitted. Naturally,
the given axioms could have been integrated into the calculus by de�ning appro-
priate rules. However, in order to keep the calculus lean we have rather chosen the
axiomatic approach in 
mega. Moreover, it did not seem desirable to have basic
calculus rules containing concepts such as equality or equivalence, which in turn can
be replaced by their respective de�nitions (see also the discussion in section 2.2.1.1).

Definition 2.22 (Natural deduction proof): Given a set of propositions H �
w�o(�) and a proposition F 2 w�o(�), a natural deduction proof for F under
the assumption of H is a �nite sequence of inference rule applications that derives
F from H. We write H `ND F or simply H ` F . We call H the hypotheses or
assumptions of the proof and F the theorem or conclusion.

At this point we observe that our calculus de�ned so far does not contain any
means to introduce cuts into a derivation. Although it has been shown by Taka-
hashi [200, 201] that cut-elimination holds for higher order calculi with extension-
ality, it is still an open problem whether appropriate cut-elimination algorithms
terminate. (See also [168] for a discussion on cut-elimination in type theory.) A
possible cut rule for our natural deduction calculus is of the form

A)B B)C
A)C ;

which is essentially modus barbara. Indeed 
mega o�ers a way to introduce cuts
by having modus barbara as a tactic available (see section 2.2.3 for an introduction
of tactics), which can be modeled by a double application of the )E rule and one
application of )I on the basic calculus level.

Although the tree notation for the ND calculus inference rules is a convenient
technique to display the inference rules it is not very practical to denote large proofs.
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Thus, in the remainder of this thesis we will present natural deduction proofs in a
linearized style as introduced by Andrews in [6].

Definition 2.23 (Linearized ND proofs): A linearized ND proof is a �nite
set of proof lines, where each proof line is of the form L: � ` F (R), where L is a
unique label , �`F is a sequent denoting that the formula F can be derived from the
set of hypotheses �, and (R) is a justi�cation expressing how the line was derived
in a proof.

In case there exist lines in the set of proof lines that have not yet been derived
from the hypotheses we indicate them with an open justi�cation. We call lines with
an open justi�cation open lines or open goals and a set of proof lines containing
still open lines a partial proof . We call a line that is not open a closed line.

We conclude the introduction of 
mega's logic by giving an example of a simple
ND proof both in tree and in linearized representation.

Example 2.24:

The linearized natural deduction proof for the assertion:

(8X� (P�o(X))Q�o(X)))(8X� P (X))8X� Q(X)))

L3. L3 `8X� P�o(X) (Hyp)

L6. L3 `P (A�) (8E L3)

L1. L1 `8X� [P (X))Q�o(X)] (Hyp)

L7. L1 ` [P (X1))Q(X1)] (8E L1)

L5. L1, L3 `Q(X1) ()E L6,L7)

L4. L1, L3 `8X� Q(X) (8I L5)

L2. L1 ` [8X� P (X))8X� Q(X)] ()I L4)

Thm. ` [8X� [P (X))Q(X)])[8X� P (X))8X� Q(X)]] ()I L2)

The same proof in tree representation:

[8X� P (X)]2

P (X1)
8E

[8X� (P (X))Q(X))]1

(P (X1))Q(X1))
8E

Q(A�)
)E

8X� Q(X)
8I

(8X� P (X))8X� Q(X))
)I2

(8X� (P�o(X))Q�o(X)))(8X� P (X))8X� Q(X)))
)I1

Note that the superscript numbers indicate which hypotheses was introduced during
which rule application.

2.2 Constructing Proofs in 
mega

Although 
mega's purpose is to help proving theorems in the natural deduction
calculus introduced in the preceding section, the proof construction itself is not
necessarily carried out in the basic calculus. Instead, proofs are generally con-
structed on a more abstract level. In particular, a user can employ interactive
tactical theorem proving, automatic proof planning or the application of external
systems. Furthermore, proofs in 
mega are always constructed within the context
of a mathematical theory . Di�erent mathematical theories are stored in 
mega's
knowledge base and provide | among other things | de�ned concepts, their ax-
iomatization, and already proved theorems, that can be incorporated into proofs.
Thus, proofs in 
mega are actually constructed with respect to given background
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check proof

Calculus-Level

Proof Rules (ND) Proof (ND)

composition
via different layers

Tactics, Methods Proof Plan (high-level)
controlled plan formation 

expansion
via different layers

Calculus-Level

Figure 2.1: Proof Plan Data Structure.

theory in a generalized natural deduction calculus where justi�cations can be ND
rules and also abstract tactics or proof methods as well as applications of external
systems.

However, for a proof to be valid in 
mega it needs to be re�ned into a calculus
level natural deduction proof. Therefore, abstract justi�cations have to be expand-
able into calculus level subproofs. This expansion can be hierarchical, meaning that
the expanded subproof may again contain abstract justi�cations, that have to be
expanded. All abstract levels of a proof as well as its calculus level are stored in a
single proof plan data structure (PDS) [60], which constitutes 
mega's actual proof
object. We call abstract inference steps planned since they may contain inference
steps that can sometimes be faulty. Hence, the expansion of such a step can fail,
leaving a part of the proof still open. This feature permits us to employ uncertain
heuristics and external reasoners that are not necessarily always correct. But of
course we pay for this extra freedom with the price to proof check every �nal proof.

Figure 2.1 depicts schematically the composition of the PDS , which is repre-
sented as an acyclic graph comprising proof nodes at di�erent levels of abstraction.
The abstractions are realized via the justi�cations of the single nodes; that is, a
node can have an abstract justi�cation at an upper layer in the PDS which corre-
sponds to a partial proof at a lower layer. Note that the formulas of the particular
nodes involved stay the same on all levels of abstraction. Thus, the PDS allows for
derivational abstraction but not for abstraction of the objects of our logic.

Once a proof is constructed all abstract justi�cations have to be expanded in
order to gain an ND calculus level proof. This proof is then machine-checkable with

mega's proof checker and its correctness relies solely on the correctness of the
veri�er and the underlying calculus. A concrete example of an abstract proof step
and its expansion is given in section 2.2.3.

For a given theorem and its hypotheses a proof is constructed by successively
applying inference rules , which are either abstract proving steps or ND calculus
rules and the reasoning may be either backwards or forwards. In the former case,
rules are applied to the theorem, resulting in the introduction of the premises of
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the rule as new open goals. If an applied rule has more then one premises the
problem is split into several subproblems, which have to be shown. In the latter,
rules are applied to the hypotheses and the conclusions of the rule are introduced
as new nodes into the proof. These nodes become new supports of those goals
that depended on the hypotheses the rule was applied to. For many applications it
is interesting to mix forward and backward reasoning and this kind of middle-out
reasoning is therefore supported as well.

In the sequel we introduce the di�erent types of inference rules that can be
applied to construct proofs in 
mega. We also give examples for the di�erent
possible application directions and explain how possible expansions are performed
and what they look like.

2.2.1 Knowledge Base

Proofs in 
mega are constructed with respect to a knowledge base of mathematical
facts. These facts are organized into a hierarchy of theories, which are connected
by a simple inheritance mechanism. Single theories contain de�ned concepts that
enable a compact problem formulation and axioms and theorems that can be directly
incorporated and applied in a proof. Furthermore the knowledge base permits the
introduction of a sort concept for proofs. This, however, is not a full grown sort
concept as given in the literature (for instance by Schmidt-Schau� in [183] in
the context of �rst order logic and by Kohlhase for higher order logic in [129]),
instead it is a conservative extension to the logic given in the preceding section by
simply allowing for sorted quanti�cations.

2.2.1.1 De�nitions

De�nitions in 
mega have the same role as de�nitions in a mathematical text-
book: They help to shorten formulas and proofs by introducing abbreviations for
complex concepts. A de�nition is generally given as a �-term and can be expanded
if necessary.

We have already seen two de�ned concepts, namely equality and equivalence in
this chapter. Their respective de�nitions in the knowledge base are of the form

:
=��o � �x� �y� 8P�o P (x))P (y) and

,ooo � �ao �bo (a)b) ^ (b)a):

Here � is the de�nition symbol , meaning that the symbol on the lefthand side
(the de�ned symbol) is an abbreviation for the �-term on the righthand side. Other
concepts in 
mega's knowledge base are, for instance, a basic notion of set theory,
such as the element property or the union of two sets, which are de�ned as

2��o � �x� �P�o P (x) and

[(�o)(�o)o � �U�o �V�o �x� U(x) _ V (x):

To illustrate the concept of de�nition expansion consider the term y� 2 A�o[B�o,
which states that y is a member of the union of the sets A and B. Writing this in
pre�x notation we get (2y([AB)). Replacing both the element and the union sym-
bol by their respective de�nitions we get ((�x� �P�o P (x))y((�U�o �V�o �x� U(x)_
V (x))AB)). Applying �-reduction to this term yields A(y) _ B(y), which corre-
sponds to the simple proposition that y is either in A or in B.
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L1. L1 `8Ao A _ :A (Axiom)
L2. L1 `P _ :P (8E L1 P )
L3. L3 `P)Q (Hyp)
L4. L4 `P (Hyp)
L5. L3; L4 `Q ()E L4 L3)
L6. L3; L4 `:P _Q (_Ir L5)
L7. L7 `:P (Hyp)
L8. L7 `:P _Q (_Il L4)
L9. L3 `:P _Q (_E L2 L6 L8)
L10. ` (P)Q))(:P)Q) ()I L9)

Table 2.1: Proof involving the axiom of the excluded middle.

2.2.1.2 Axioms and Theorems

Axioms in 
mega's knowledge base are facts stated without proof. Examples are
the three axioms given in de�nition 2.21 that cannot be derived in 
mega's calculus.
Apart from these, certain de�ned concepts need to be axiomatized.

Theorems on the other hand are facts in the knowledge base for which a valid
proof has already been derived in 
mega. A trivial theorem contained in the
knowledge base is, for instance, 8ao (? ^ a) , ?. Every problem in 
mega for
which a valid proof (i.e., a fully expanded ND proof that has been successfully
machine-checked) has been derived can be stored as a theorem in the knowledge
base.

During proof construction in 
mega both theorems and axioms can be di-
rectly imported into the proof as so-called theory assertions or simply assertions .
Assertions are applied like any hypotheses of the proof, however, in case the im-
ported assertion depends itself on additional assumptions, these assumptions have
to be shown to hold. In other words if the imported assertion is of the form
P1 ^ : : :^Pn)T the assumptions P1; : : : ;Pn become new subgoals that need to be
shown.

An example of a proof involving the application of the tertium non datur axiom is
given in table 2.1. The proposition to prove is (P)Q))(:P)Q) given in line L10.
The axiom is imported into the proof in line L1 | as indicated by the justi�cation
Axiom | and is treated similarly to the other hypotheses that originate from the
application of the )I and _E rules.

2.2.1.3 Light Sorts

Sorted logics incorporate knowledge about the terms into the logic; that is, terms are
annotated with semantical information and certain operations, such as uni�cation,
term substitution, etc. can be performed only between terms of the same sort.
Moreover, sort systems can be enhanced by having hierarchies of sub-sorts as well.
Sorted logics with a at sort structure are called many sorted logics , whereas a logic
that supports a hierarchy on the sort structure is called an order sorted logic. This
is a powerful mechanism, which enhances the expressiveness of a logic and has often
drastic consequences (e.g., on the uni�cation type of that logic).

In the context of a typed higher order logic sorts are a re�nement of the type
system. For instance, terms denoting non-negative integers can be labeled with a
sort natural, which in turn can be a sub-sort of the integers. Functions between
integers can then be tagged with an appropriate sort, as well.
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The use of sorts can enhance the readability of formulas of a logic. Moreover, for
automation purposes, sorts can drastically reduce the search space. E�ective sorts
for �rst order and higher order logics are discussed in [183] and [129], respectively.


mega's sort concept is, however, less elaborate. Instead of having a full edged
sort system, 
mega only permits the use of so-called light sorts ; that is, quanti�ed
variables are de�ned with respect to a set, which gives the range of the possible
instantiations of the variable. This set is treated as the sort of the variable. Once
the variable is instantiated the sort information is explicitly introduced into the
proof and, if necessary, has to be explicitly justi�ed.

Thus, the actual sorts are introduced as attachments of the two quanti�ers 8
and 9, which we shall write in this thesis as 8x�:M�o and 9y�:M�o, indicating that
x and y are in the set M . Each sorted quanti�er is, of course, only an abbreviation
for a more complex expression as we can observe with the following two expressions:

(i) 8x�:M�o P�o(x) abbreviates 8x� [x 2M�o])P�o(x)

(ii) 9y�:M�o Q�o(y) abbreviates 9y� [y 2M�o] ^Q�o(y)

Using light sorts in 
mega has two advantages: On the one hand the term
construction is kept decidable; note that this is no longer guaranteed in a logic with
both polymorphic types and subsorts. On the other hand, light sorts add to the
readability of the logic since they allow to state formulas of theorems and problems
more concisely. As an example of the latter consider the following statement for
integers

8x:ZZ 9y:ZZ (x+ y)
:
= 0;

which is relatively concise using sorted quanti�ers. It becomes much less readable
if we abolish abbreviations:

8x [x 2 ZZ]) [9y [y 2 ZZ] ^ [(x+ y)
:
= 0]]:

During proof construction sorted quanti�ers have to be treated slightly di�erently
than their unsorted counterparts. This treatment is given in more detail in sec-
tion 2.2.3.

2.2.2 Calculus Rules

The rules in 
mega are essentially the natural deduction rules given in de�ni-
tion 2.20. Additionally we have an initial rule to introduce facts from the knowl-
edge base as for instance in the proof in table 2.1. The respective justi�cation then
depends on the type of imported assertion, whether it is an axiom, a theorem, or a
lemma. Furthermore, there exist the following three rules:

A
A

Weaken
A

[t0=t]B
�E(t � t0; �)

[t0=t]A

B
�I(t � t0; �)

Weaken is a special case of the �$ rule since it allows to justify a goal with a
support node containing the same formula meaning they are trivially equal with
respect to �-conversion. The latter two rules, �E and �I , deal with the elimination
and introduction of de�nitions from the knowledge base. The notation [t0=t]B means
that the occurrence of the de�ned concept t at sub-term position � in B is replaced
by its de�nition t0. Both the actual de�nition and the term position are given
as parameters of the rules. However, we usually give only the de�niens (i.e., the
lefthand side of a de�nition) as a parameter in the justi�cation.
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Most rules can be applied in a forward and backward direction. Certain rules
can also be applied sideways and for closing subproofs. For example the modus

ponens rule )E given as
P P)Q

Q
can be applied in �ve di�erent directions: (i)

Forwards, where P and P)Q are given and Q is introduced as a new closed line.
Three sideways directions (ii) only P)Q is given, then Q is introduced as a new
closed line and P as a new open line, (iii) P)Q and Q are given and P is introduced
and (iv) P and Q are given and the implication is introduced as new open goal.
Finally, closing the subproof, if (v) all three terms are given, then the open goal
Q is closed. )E cannot be applied in a backward direction. However, an instance
of a rule that can be applied backwards only is )I as given in de�nition 2.20.
Applied to an open goal containing an implication the succedent of the implication
is introduced as a new open goal, whereas the antecedent is introduced as a new
hypothesis. However, this hypotheses is a local hypothesis since it becomes only an
additional support of the newly introduced goal and will not become a hypotheses
for all other, already existing goals.

Since rules form the lowest level of the PDS they have no expansion; that is,
once a line is justi�ed by an ND rule, it cannot be mapped to a more �ne grained
level.

2.2.3 Tactics

Many interactive systems use tactical theorem proving for complex and more human
oriented proofs (cf. Nuprl [65], Isabelle [166]). Tactical theorem proving is
based on the notion of a tactic, which encapsulates repeatedly occurring sequences
of inference steps into macro-steps. Tactics are built in a bottom-up fashion by
combining sequences of calculus rule applications using so-called tacticals (see [101]).
Tacticals can also be used to combine already de�ned tactics to even more complex
tactics. The application of a tactic results in a sequence of calculus rules. And
since every tactic is only a combination of calculus rules and immediately expands
to that level after application, it is a priori correct, given the correctness of the
underlying calculus.

In 
mega, however, we favor a top-down approach for constructing tactics and
thereby deliberately give up the guaranteed correctness.2 A tactic in 
mega is a
procedure that performs a derivation and whose application in a proof corresponds
to a single inference step. It can thus be seen as a generalized form of a calculus rule
and we state tactics in the same proof tree form containing premises, conclusions,
and possibly hypotheses and parameters. But unlike ND-calculus rules tactics can
have multiple conclusions.

As the application of a tactic in 
mega is not immediately decomposed into
a sequence of single calculus rule steps, correctness has to be ensured a posteriori.
This is done by expanding a proof step whose justi�cation contains a tactic appli-
cation. This expansion process subsequently introduces a more �ne-grained proof
plan justifying the derivation of the tactic at a conceptually more detailed layer.
The expansion can be recursive in the sense that the introduced proof plan can
again contain abstract inference steps, which have to be expanded in turn. If the
expansion is successful, the original tactic application has been transformed into
a calculus level proof, which can be machine-checked. This way of dealing with
tactics permits us to employ uncertain heuristics within tactics whose expansions
might fail occasionally.

2Therefore, 
mega's tactics are also sometimes called failing tactics. We shall, however, use
the term tactic throughout the thesis for simplicity.



2.2. Constructing Proofs in 
mega 27

[S(t)]
....

[t=x]P

8x:S P
8ISort(t)

[S(t)]
....

[t=x]P

S(t))[t=x]P
)I

8x S(x))P
8I(t)

8x:S P
�I(D; h0i)

Figure 2.2: Expansion of the 8ISort tactic.

As an example of a tactic and its expansion consider the 8ISort tactic as given
on the lefthand side in �gure 2.2. 8ISort is one of four tactics for the treatment of
the sorted quanti�ers introduced in section 2.2.1.3. Its purpose is similar to that of
the 8I rule and likewise it has an eigenvariable condition on its parameter, the term
t, it introduces. But additionally 8ISort treats the sort of the quanti�ed variable
by adding an appropriate hypotheses, stating that the newly introduced term t is
in the set S.

When 8ISort is expanded, the calculus level proof given on the righthand side of
�gure 2.2 is introduced. The proof now consists of three steps instead of one: First,
the de�nition of the sorted universal quanti�er is rewritten with a �I rule. Here
the �rst parameter standing for the actual de�nition is only a substitute to preserve
space. Hence D corresponds to the de�nition of the sorted universal quanti�er
given in section 2.2.1.3. The second parameter is the position at which the de�ned
concept occurs, in our case this is the position h0i. In the second step the actual
8I application takes place leaving us with an implication that is subsequently split
with an )I rule.

In addition to the 8ISort tactic there exist three more tactics to deal with sorted
quanti�ers, namely 8ESort, 9ISort, and 9ESort. Their expansions work all similar
to the one given here; that is, after introducing the de�nition of the respective
sorted quanti�er, the resulting formula is appropriately split.

2.2.4 Proof Planning

Proof planning was originally conceived as an extension of tactical theorem proving
to automate theorem proving at the more abstract level of tactics. The key idea
of Bundy [52] is to augment individual tactics with pre- and postconditions. This
results in planning operators or so called methods . A mathematical theorem is
then considered as a planning problem. A planning problem in arti�cial intelligence
consists of an initial world state describing some initial situation, a goal world state
that describes a desired situation, and a set of operators which describe actions
that can change the world state. The planning problem is then to compute a
sequence of operator applications that transform the initial state into a goal state.
In proof planning the initial state consists of the proof assumptions and the goal
state consists of the theorem. We apply arti�cial intelligence planning techniques
to search for a sequence of methods that derives the theorem from the assumptions.

2.2.4.1 Knowledge Based Proof Planning

In the 
mega system the traditional proof planning approach is enriched by in-
corporating mathematical knowledge into the planning process (see [156] for de-
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Method: 9IResclass
Premises �L3;�L1

Appl. Cond. ResclassSet(RSn; n;Nset)
Conclusions 	L5

Declarative

Content

(L1) � `mv 2 Nset (Open)
(L2) � ` c 2 RSn (ConResclSet L1)
(L3) � `P [cln(mv)] (Open)
(L4) � `P [c] (ConRescl L3)
(L5) � `9x:RSn P [x] (9ISort L2 L4)

Figure 2.3: An example of a method.

tails). This is motivated by the fact that mathematicians rely on domain-speci�c
knowledge and are typically experts in a highly specialized �eld rather than univer-
sal experts. In 
mega there are three possibilities to incorporate domain-speci�c
knowledge: Within methods , within control rules , and within domain-speci�c exter-
nal reasoners such as computer algebra systems, constraint solvers, or automated
theorem provers. Methods in 
mega cannot only encode general proving steps but
also steps particular to a mathematical domain. Control rules enable meta-level
reasoning about the current proof planning state as well as about the entire history
of the proof planning process to guide the search.

We demonstrate the notion of a method and a control rule later on with ex-
amples. But �rst let us sketch briey 
mega's main planning algorithm, which
follows the precondition achievement planning paradigm (see, e.g., [78]); that is,
the planner tries continuously to reduce open goals by applying a method that has
an appropriate postcondition. The method application might then again result in
one or more new open goals. Initially, the only open goal is the theorem. During
this planning process there are several choice points such as which goal should be
tackled or which method should be applied in the next step. These choice points
can be inuenced by control rules. The planning process ends successfully if there
are no more open goals.

Methods A method in 
mega is a data structure that consists of four slots:
Premises , conclusions , application condition, and declarative content . The declar-
ative content contains a declarative speci�cation of the tactic, which is employed
by the method given as a sequence of proof steps. The premise and conclusion
slots contain two kinds of information: First, they provide logical information in
the sense that the conclusions are supposed to follow logically from the premises by
the application of the tactic given in the declarative content. Second, they specify
the pre- and postconditions of the method, which are necessary to use the method
in planning. In 
mega we denote these pre- and postconditions in a STRIPS-like-
notation [84] as add and delete list. When a method is applied then a 	-conclusion
is deleted as an open goal and a �-premise is added as a new open goal. Conversely,
a 	-premise is deleted as an assumption and a �-conclusion is added as an as-
sumption. Furthermore, the application condition of a method contains additional
information on when the method can be legally applied.

Certain methods can be designated as normalization or restriction methods.
The former are methods that perform generic simpli�cation tasks whereas the latter
trivially close open subgoals. An example of a normalization method is for instance
the ^E method that splits conjunctions in support lines. An instance of a restriction
method is the Weaken method. The planner can try to apply both normalization
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(control-rule TryAndErrorStdSelect

(kind methods)

(IF (disjunction-supports S))

(THEN (select (8IResclass ConCongCl
_��E 9IResclass ))))

Figure 2.4: An example of a control rule.

and restriction methods automatically after each regular method application.

An example for a method is 9IResclass given in �gure 2.3, which is a method
domain-speci�c for residue classes. We will see examples of its use in chapter 7. Its
purpose is to instantiate an existentially quanti�ed variable over a residue class set
with a witness term for which a certain property P holds and to reduce the initial
statement on residue classes to a statement on integers. The witness term has to be
a concrete element of the residue class set. However, if the method is applied at an
early stage of the proof, the planner generally has no knowledge of the true nature
of the witness term. Therefore, the method invokes a middle-out reasoning [131]
process to postpone the actual instantiation; that is, a meta-variable is used as
temporary substitute for the actual witness term, which will be determined at a
later point in the planning process and subsequently instantiated.

9IResclass is given in terms of the original goal (the conclusion L5), the two
new open goals it produces (the premises L1 and L3), and the inference steps deriv-
ing L5 from L1 and L3 (given in the declarative content). The method is applicable
during the planning process if a current planning goal can be matched against the
formula of L5 and if additionally the application conditions (Appl. Cond.) are sat-
is�ed. The condition ResclassSet(RSn; n;Nset) is ful�lled if RSn, the sort of the
quanti�ed variable x, quali�es as a residue class set of the form given in chapter 7.1.
Its successful evaluation binds the method variables n and Nset to the modulo fac-
tor of RSn and the set of integers corresponding to the congruence classes of RSn,
respectively. For instance, the evaluation of ResclassSet(ZZ2; n;Nset) yields n 2
and Nset  f0; 1g. The necessary inference steps are indicated by the justi�cations
ConResclSet and ConRescl in lines L2 and L4, which denote tactics that convert
statements containing residue class expressions into statements containing the cor-
responding integer expressions. mv in L1 and L3 is a meta-variable that substitutes
for the actual witness term.

Control Rules Control rules can be used to inuence the proof planner at choice
points such as which goal to tackle next or which method to apply to a goal. This
is done by restricting given alternative lists (e.g., a list of methods) or by prefer-
ring certain elements of an alternative list. This way, alternatives are dynamically
restricted or reordered which in turn helps to prune the search space or to promote
certain promising search paths. Control rules consist technically of an if- and a
then-part. In the if-part predicates about the current proof planning status or the
entire planning history are evaluated. In the then-part actions on alternative lists
can be executed.

Figure 2.4 gives an example of the control rule TryAndErrorStdSelect, which
is evaluated at the method selection choice point. It states that if the current
goal is supported by a disjunctive support line S the application of the methods
8IResclass, ConCongCl, _��E , and 9IResclass is attempted in this order. The
`select' in the then-part states that all other methods except those speci�ed in the
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Strategy: TryAndError

Condition ResidueClassProperty

Action

Algorithm PP lanner

Parameters

Methods
8IResclass, ConCongCl,
_��E , 9IResclass, : : :

C-Rules TryAndErrorStdSelect, : : :

Termination No-Subgoal

Figure 2.5: An example of a strategy.

control rule are eliminated from the list of alternative methods. Other actions are
`reject' and `prefer'. The former removes all alternatives speci�ed in the control rule
from a given alternative list, whereas the latter reorders the alternative list.

2.2.4.2 Multi-Strategy Proof Planning

Multi-strategy proof planning [155] is an extension of knowledge based proof plan-
ning. 
mega's multi-strategy proof planner Multi enables the speci�cation and
combination of a number of planning strategies and to switch exibly between them
during the proof planning process. A strategy can be roughly described as the
parametrization of a planning algorithm. Therefore, the basic concepts in Multi
are algorithms and strategies .

As algorithm inMulti we accept every algorithm that re�nes or modi�es partial
proof plans. In particular, the traditional planning facilities are decoupled into three
di�erent algorithms: PP lanner that introduces method applications, BackTrack
that backtracks steps, and InstMeta that instantiates meta-variables. Each of
these algorithms has a set of parameters to inuence its behavior. For instance,
PP lanner has the parameters methods and control rules to specify the methods
and control rules it can employ.

Strategies allow to produce di�erent behaviors of the algorithms by di�erent
speci�cations of their parameters. Technically, a strategy is a condition-action pair.
The condition part states for which tasks the strategy is applicable and the action
part states which algorithm is employed by the strategy and it also gives the instan-
tiation of its parameters. An example of a parameterization of PP lanner is given
in �gure 2.5. According to its application conditions the TryAndError strategy can
be applied to goals stating a property of a residue class. For more details on this
see chapter 7.

Other parameterizations of PP lanner can employ di�erent sets of methods and
control rules and can thereby, for instance, lead to proofs conducted with a dif-
ferent proof technique. Di�erent BackTrack strategies allow Multi to perform
di�erent types of backtracking, while di�erent parameterization of InstMeta can
force di�erent behavior during the middle-out reasoning processes.

Multi enables a exible combination of di�erent strategies and allows to switch
exibly between strategies during a proof planning process. The selection of di�er-
ent strategies can be inuenced by strategic control rules similar to the control rules
for methods or goals. In particular,Multi allows for interleaving of strategies; that
is, one strategy can produce some subgoals that it cannot solve itself. Then this
strategy can be interrupted and other strategies can be invoked on the subgoals.
Afterwards, when the subgoals are closed the interrupted strategy can be reinvoked
and it continues with its computations.

One major advantage of the multi-strategy proof planning approach is its ro-
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bustness. Since there can be di�erent strategies to solve the same problem, Multi
might not necessarily fail to prove a problem even if one proof attempt fails. It is also
more exible because reasoning about switching and combining several strategies
is possible. Moreover, strategies provide a means for structuring the large amount
of method and control rule knowledge as well as to force the planner to apply only
certain proof techniques.

2.2.5 External Reasoners

Another method to construct proofs at least partially automatic in 
mega is to
delegate certain subproblems to external reasoners . An external reasoner does not
belong to 
mega's core system, but its functionality can be useful for the task at
hand. Examples of external reasoners are for instance automated theorem provers
(ATP) and computer algebra systems (CAS).

Some of the external reasoners available in 
mega are

� the �rst order ATPs Otter [141], Spass [209], and ProTeIn [19],

� the higher order ATPs tps [9] and Leo [26],

� WaldMeister [110] and eqp [143] two ATPs based on term rewriting,

� the model generators Mace [140] and SatchMo [47],

� the constraint solver CoSIE [222], and

� the computer algebra systems Maple [177], Gap [94], and Magma [59].

Besides these systems, which can be directly used during the proof construction,
there are external systems that are only used for post-processing proofs or for the
translation inbetween various proof formats. Most notably of these are the Tramp
system [148] for translating machine-found proofs into the natural deduction proof
format and P.Rex [83], a system for translating logic calculus proofs into textbook
style natural language proofs. Section 4.2 gives a detailed account of the sound
integration of computer algebra into 
mega and especially into proof planning.

Automated theorem provers are generally applied to complete subproofs; that
is, a subgoal together with its supports is passed on to an ATP. If the prover is
successful, the subgoal can be closed, otherwise it remains open. The proof for this
subgoal is then given as a proof of the particular external reasoner, which means it is
generally in a calculus di�erent to 
mega's calculus. Their integration is achieved
using the Tramp system, which translates the machine-found refutation proofs for
instance a proof in the resolution calculus, into 
mega proof plans [117]. These
proof plans can, in turn, be expanded to the calculus level. Thus, single proof steps
denoting the proof by an automated theorem prover as justi�cation are expanded
by translating them into subproofs in natural deduction format.

There is an exception for the two higher order theorem provers tps and Leo,
which can also return partial proofs (i.e., proofs that still contain open subgoals).
These can also be incorporated into 
mega and further processed. In particular
the tps integration is relatively straightforward since tps represents proofs in its
own natural deduction style calculus. These rules are simulated as tactics in a
special theory in 
mega together with expansion into 
mega's basic calculus.
This enables a simple mapping of tps proofs onto 
mega proof plans [21].
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2.3 Summary of Chapter 2

In this chapter we have introduced the basic concepts of the 
mega system. We
have de�ned the natural deduction calculus together with its underlying higher order
logic in which proofs are constructed. Moreover, we have seen the main concepts of

mega's knowledge base that can be used in order to construct proofs.

An important feature of 
mega is the possibility to construct proofs at various
levels of abstraction using di�erent interactive and automatic tools. Abstract proofs
are considered planned and have to be re�ned to lower level proofs. All di�erent
levels of abstraction of a proof are stored in a single datastructure, the PDS, that
also maintains the dependencies between abstract steps and their respective re�ne-
ments. A proof in 
mega is only valid if it can be fully expanded into a basic
calculus level proof that can then be machine-checked using a simple veri�er.
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Chapter 3


-Ants

In this chapter we introduce the hierarchical blackboard architecture 
-Ants that is
our main means to combine reasoning techniques both for automated and interactive
theorem proving. The main idea of the architecture is to distribute search for
applicable proof steps into small separate processes that gather as much information
as possible about the current proof state. The separation leads to a robust system
that, however, can easily absorb an amount of system resources that makes its
use more cumbersome than useful. Therefore, we also introduce a resource concept
that helps controlling the 
-Ants's behavior. This makes it possible also to include
uncertain and undecidable reasoning techniques and a certain extend of automation.
The architecture has been �rst reported in [27], its resource and knowledge adaptive
components have been described in [29, 28] and its automation and parts of its
formalization in [31].

The structure of the chapter is as follows: We �rst motivate the architecture,
explain some important preliminary concepts, and introduce its single components.
Then we present possible adaptations of the mechanism that depend on both ad-
ditional knowledge and resource considerations. We shall also introduce possible
ways to automate proof search in the mechanism. Furthermore, we give a partial
formalization and conduct some theoretical considerations in the penultimate sec-
tion. Before summarizing the chapter we shall discuss our 
-Ants architecture with
respect to the notions of parallelism in deduction systems, blackboard architectures,
and agents as given in the literature.

3.1 Motivation

The original motivation for the architecture presented here was to support users
in interactive theorem proving. Interactive theorem provers have been developed
in the past to overcome the shortcomings of purely automatic systems by enabling
the user to guide the proof search and by directly importing expert knowledge
into the system. For large proofs, however, this task might become diÆcult when
the system does not support the user's orientation within the proof and does not
provide a sophisticated suggestion mechanism in order to minimize the necessary
interactions.

Some interactive veri�cation and theorem proving systems such as vse [12],
tps [9], pvs [165], or hol [102] already provide mechanisms for suggesting com-
mands or arguments for commands that apply inference rules. But these mecha-
nisms are usually rather limited in their functionality. Command suggestions for the
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user are either done by compiling a list of possibly applicable commands directly af-
ter a command has been executed or there is an explicit command allowing the user
to query the system for a hint. The former approach has been realized, for instance,
in the vse [12] system, where a list of commands is compiled that excludes from
the set of available commands all those that are de�nitely not applicable. Thus, the
commands in the resulting list are not necessarily applicable. An example for the
latter approach is the tutorial feature of tps [9] where, on user request, a limited
number of commands is tested for applicability and one of them is suggested to the
user. Both systems employ very simple test properties in order to be both quick
and eÆcient. This is necessary as these systems are usually mono-threaded; that
is, the system can either carry out a computation (such as executing a command
or computing suggestions) or accept input from the user but not both at the same
time. However while waiting for user input, the system is basically idle.

Once the user chooses a command to execute, a system usually provides certain
default values for the single arguments of the command. Here most systems follow
a sequential suggestion strategy; that is, they suggest the �rst argument and after
the user input for the �rst argument, they compute an appropriate suggestion for
the second argument and so on. The dependencies for computations to suggest
command arguments depend on the implementation, which predetermines the order
of the command's argument. This sequential approach is a relict from the times
when interactive theorem proving systems were used with text-based interfaces. But
when working with graphical user interfaces it is common that all arguments for a
single command can be entered in the same widget. Thus, the user can now freely
chose the order in which to enter the arguments, and relative to this order default
suggestions should be computed for the remaining arguments. Furthermore, there
should also be default suggestions provided for all arguments of the command,
as soon as the command is selected. This has the e�ect, that on the one hand
suggestions have to be computed for all arguments a priori without any initial user
interaction. On the other hand the computations for argument suggestions have
to become more exible since the dependencies may vary. This, however, leads
to an explosion of predicates needed to compute argument defaults. While in a
sequential way of suggesting arguments we only need n predicates for n arguments
of the command, in such a exible setting we need in the worst case

O

 
n �

n�1X
i=0

�
n�1
i

�!
= O

�
n � 2(n�1)

�
di�erent predicates to cover all potential dependencies between arguments.

Generally there is a single suggestion computed for each argument of a command,
although the command might be actually applicable to several sets of di�erent
combination of arguments, from which the user could choose. Moreover, usually only
simple computations are performed to determine the argument suggestions, because
of two reasons: Firstly, the user should not be kept waiting for too long before a
suggestion is made and therefore a quick response is required. And secondly, in a
mono-threaded system no further interactions can be made while the suggestions
are computed.

In summary, we can say that traditional suggestion mechanisms are limited in
their functionality to suggest commands or command parameters since they

(i) assemble a list of possibly applicable commands by excluding those that are
de�nitely not applicable or provide hints only for a very small number of
commands.

(ii) use a sequential strategy allowing only for argument suggestions in a particular
order.
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(iii) only work in interaction with the user and therefore have to be restricted to
inexpensive computations as a quick response to the user.

(iv) give exactly one instantiation for each argument of a command, only.

(v) waste computational resources as they do not generate suggestions while there
is no user interaction.

The 
-Ants mechanism we shall present in this chapter tries to overcome these
shortcomings by providing the following features:

(i) Suggestions both for applicable commands and their possible arguments are
constantly computed in the background of the system and presented to the
user. This allows to incorporate also computationally expensive criteria to
check applicability.

(ii) The quality of the suggestions increases with time: Cheap and eÆcient com-
putations terminate �rst and more expressive suggestions follow subsequently.

(iii) At any given time the user can execute one of the suggested commands leading
to new computations of suggestions for the modi�ed proof context.

(iv) The user can chose from a set of possible arguments suggested for each com-
mand.

(v) The user can enter arguments for a command in arbitrary order and appro-
priate suggestions for the remaining arguments are computed.

This is realized by separating the default suggestion mechanism in most parts
from the interactive theorem proving process. For that we use a distributed system
based on a two-layered blackboard architecture. On the lower layer we have a
society of blackboards, one for each of our commands, whose knowledge sources
seek for possible instantiations of arguments of the command in the given proof
state. The blackboard itself is a means to both exchange results of the knowledge
sources as well as to accumulate sets of possible argument instantiations. Any
command for which argument instantiations can be found is possibly applicable in
the current proof state and is propagated to the upper layer of the architecture on
a single blackboard on which all applicable commands are accumulated and can be
presented to the user. On each of the blackboards involved we have sorting criteria
that heuristically prefer certain argument instantiations and commands.

The whole distributed mechanism is implemented by providing separate threads
for each knowledge source of a blackboard. It runs always in the background of the
interactive theorem proving environment thereby constantly producing command
suggestions that are dynamically adjusted to the current proof state. The actual
suggestions are always presented to the user, for instance via the graphical user
interface, and a command can be chosen at any time. The user can then choose the
arguments for the command from all suggestions computed so far and the user can
also request suggestions for a particular customized argument instantiation. As soon
as the user executes a command the partial proof is updated and simultaneously
the mechanism, the blackboards and the computation of their knowledge sources,
are reinitialized.

Since the knowledge sources involved can be well separated into distinct societies
a blackboard architecture simpli�es communication. Therefore, we do not employ a
di�erent distribution model such as, for instance, a full-edged multi-agent system.
Although in the following we shall call the knowledge sources of our blackboards
agents and speak thus of two layers of agent societies that communicate via black-
boards the system we present should not be confused with a multi-agent system in
a strong sense.
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3.2 Preliminaries

The presentation in the remainder of this chapter depends mainly on a uni�ed
view of inference rules that can be applied to change a proof state and how these
rules are applied by invoking an associated command. We shall therefore introduce
such a uni�ed view now and furthermore de�ne the notion of partial argument
instantiations of a command, which plays an important role within our architecture.

3.2.1 Inference Rules

There are several means to construct a proof in 
mega both interactively and
automatically. Essentially there are four major instruments for proof construction:

Rules are the implementation of the basic set of natural deduction rules as given
in 2.1.3. They are the atomic components of every 
mega proof; that is, in
order for 
mega to fully accept a proof as valid it has to be expanded fully
into ND rules and successfully proof checked.

Tactics are procedures that perform abstract proof steps. They have to be ex-
pandable into subproofs containing ND rules, only. The expansion of a tactic
can again contain tactics, which have to be expanded in turn.

Methods are the main component of proof planning. As described in section 2.2.4
they can be viewed as tactics plus speci�cation. In the context of this chapter
they can be treated similar to tactics.

External Reasoners are systems outside of the 
mega core system. In this cat-
egory are calls to automated theorem provers, computer algebra systems, or
constraint solvers. Any input from an external reasoner has to be likewise
expandable into natural deduction proof steps.

We will adopt a uni�ed view on these four categories and refer to them generally
as inference rules . Some examples of inference rules are given in �gure 3.1. ^I is a
natural deduction rule describing the introduction of a conjunction or, equivalently,
the split of a conjunctive goal. 8�E is a simple tactic, specifying the elimination
of multiple universal quanti�ers. It is therefore the abbreviation for a sequence
of eliminations of a universal quanti�er; that is, a sequence of applications of the
natural deduction rule 8E given in 2.1.3. These two inference rules will serve as
examples throughout the remainder of this chapter.

The other inference rules are :I , ,E , and Otter. :I is a natural deduction
rule formalizing the reasoning step that if we can derive the falsehood from A,
then we know that :A must hold. For the rule to be applicable, A must be given
somewhere in the derivation of ?, which is indicated by [A]. This also means
when :I is applied backwards A will be introduced as new hypothesis. ,E is
another tactic specifying the split of an equivalence statement into two implications.
Noticeable about this tactic is that it has more than a single conclusion. The latter
inference rule denotes the application of an external reasoner, namely the �rst order
automated theorem proverOtter. It is applicable when Otter can �nd a proof to
justify the derivation of the conclusion C from the premises P1; : : : ; Pn. In this case
neither the conclusion nor any of the premises structural properties of the formulas
are explicitly given. But instead the Otter tactic can be applied to essentially
arbitrary �rst order formulas and, moreover, the number of premises involved in
this inference rule can vary.
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A B
A ^ B

^I
8x1; : : : ; xn A

[t1=x1; : : : ; tn=xn]A
8�E(t1; : : : ; tn)

[A]
....
?
:A
:I A, B

A)B B)A
,E

P1 : : : Pn
C

Otter

Figure 3.1: Examples for inference rules.

When comparing the examples in �gure 3.1 we can identify �ve di�erent ele-
ments any inference rule consists of: A unique name, one respective set of premises,
conclusions and hypotheses, and a list of parameters. We can thus de�ne an infer-
ence rule to be of the following general form:

P1

[H1] � � � [Hk]....
� � � Pn

C0 : : : Cm
R(T1 : : : Tl)

This general form de�nes an inference rule R with conclusions C0; : : : ; Cm,
premises P1; : : : ; Pn, hypotheses H1; : : : ; Hk, and parameters T1; : : : ; Tl. We call
this the argument pattern of the inference rule R and the indexed letters its for-
mal arguments . Note that the premises do not necessarily have to have all the
H1; : : : ; Hk as hypotheses instead they can have any subset thereof as hypotheses.
And, as the indices indicate, an inference rule has to have at least one conclusion,
only, whereas all other elements are optional.

In order to apply an inference rule, at least some of its formal arguments have
to be instantiated with actual arguments . These are either proof nodes | for the
conclusions, premises and hypotheses | or arbitrary parameters, for instance, terms
or lists of terms. Typically inference rules with hypotheses are applied backwards or
sideways and the hypotheses do not have to be provided. A particular instantiation
with actual arguments determines the e�ect of the application of the inference rule;
that is, whether something is derived from the premises, whether new open subgoals
are constructed, or whether a subproof can be successfully closed. We will refer
to di�erent e�ects of the application of one inference rule as di�erent application
directions of this inference rule. For instance, we say an inference rule is applied
forwards, if new conclusions are derived from given premises and backwards, if new
open subgoals are constructed in order to justify a given goal.

Let us, for instance, consider the possible application of the 8�E and ^I infer-
ence rules: 8�E can be applied forwards, when the premise and the list of terms is
given, and to close a goal, when additionally the conclusion is given. While 8�E has
therefore two di�erent possible application directions, only, ^I has �ve: Forwards
(A and B are given), backwards (A ^ B is given), two sideways (A ^ B and either
A or B are given), and to close the subproof (all arguments are given).

3.2.2 Commands

In an interactive theorem proving environment such as 
mega each inference rule
has an associated command , which applies the tactic in a given proof state. These
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8x1; : : : ; xn A

[t1=x1; : : : ; tn=xn]A
8�E(t1; : : : ; tn)
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LConj RConj

Conj
AndI

Figure 3.2: Two inference rules and their commands

generally accept some of the actual arguments of the inference rule as input, usually
in some user friendly syntax (e.g., instead of providing a proof node the user would
only have to provide a unique label pointing to the proof node) and apply the
associated inference rule accordingly.

Analogous to an inference rule a command has an argument pattern, which
roughly corresponds to the argument pattern of the associated inference rule. Gen-
erally, the formal arguments of a command are a subset of the formal arguments of
the inference rule. A command can be executed when some of its formal arguments
are instantiated with actual arguments , which are then appropriately used to apply
the associated inference rule. Taking into account that a command does not have
to cater for hypotheses, we can specify a formal connection between the argument
patterns of command and its associated inference rule.

P1

[H1] � � � [Hk]....
� � � Pn

C0 : : : Cm
R(T1 : : : Tl)

pi1 � � � pin0
cj0 � � � cjm0

R(tk1 � � � tkl0 )

Here the argument pattern on the right corresponds to the command R that
invokes R. The command's pattern contains formal arguments for premises, con-
clusions and parameters that correspond to the formal arguments of the poof rule.
Note that the correspondence is not necessarily one-to-one. On the one hand not all
formal arguments of the inference rule must have a counterpart in the command's
argument pattern, and on the other hand single arguments of the command can
correspond to more than one formal argument of the inference rule. Furthermore,
there are no formal arguments in the command that correspond to the hypotheses
of the inference rule. Note also that all formal arguments of a command have to be
uniquely named in order to be distinguishable.

As examples we examine the commands associated with the inference rules 8�E
and ^I as displayed in �gure 3.2. The command AndI is straightforward since all its
formal arguments correspond directly to the formal arguments of its inference rule.
In the case of ForallE� only the arguments for premise and conclusion correspond
directly to their counterpart in 8�E . However, the number of parameters of 8

�
E can

vary. This is modeled in the command as a single argument, TList, which is a term
list whose length can vary.

Allowing for lists of arguments with varying length enables us to de�ne com-
mands with argument patterns containing a �xed number of formal arguments even
when the corresponding inference rule has a non-speci�ed number of formal ar-
guments. This cannot only be used in the case of an undetermined number of
parameters but also if the number of conclusions or premises can vary. For exam-
ple, the Otter tactic from the last section can be associated with a command that
has exactly two arguments, namely a conclusion and a list of premises.

In the remainder of this thesis when we talk about commands we always mean
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commands that invoke inference rules (as opposed to commands that de�ne general
functionality of the interactive system such as loading and saving of proofs etc.).
We will also not always explicitly distinguish between an inference rule and its
associated command unless their argument patterns vary such that a distinction is
crucial for comprehension and cannot be infered from the context.

3.2.3 Partial Argument Instantiations

As we have seen earlier, in order to apply an inference rule some (not necessarily
all) of its formal arguments have to be instantiated with an actual argument. This
applies in turn to the command associated with the inference rule. We can formally
de�ne how formal arguments can be instantiated. For this we consider a partial
proof P given and de�ne the set of its proof nodes as NP . Furthermore we assume
a given signature � and a set of variables V for the proof such that the formulas
in the proof are elements of (� [ V)�, the alphabet of all terms over � and V . For
the following de�nitions we shall assume that a triple (P ;NP ; (� [ V)�) is given,
consisting of a partial proof with its proof nodes, and an alphabet over a signature
and a set of variables.

Definition 3.1 (Possible actual arguments): A possible actual argument is
inductively de�ned to be either one of the following:

� an element of NP ,

� a term from (� [ V)�,

� a term position (i.e., an element of IN�), or

� a homogeneous list of possible actual arguments.

Additionally, we de�ne the empty actual argument to be �. We de�ne the set of all
possible actual arguments INST as the union of all possible actual arguments and
�.

The set of possible actual arguments is restricted as we have only proof nodes,
terms, and positions as basic entities. This suÆces for the current inference rules in

mega. However, when adding inference rules that need to be supplied with other
parameters, for instance annotations for annotated reasoning , the set of possible
actual arguments would have to be extended accordingly.

We now de�ne the notion of a partial argument instantiation (PAI).

Definition 3.2 (Partial Argument Instantiation): Let C be a command for
an inference rule R. Let A1; : : : ; An be the formal arguments of C. A partial
argument instantiation PAIC for C is a mapping from the set of formal arguments
of C to the set of possible actual arguments: PAIC : fA1; : : : ; Ang ! INST [ f�g

Informally, a PAI is an instantiation of formal arguments of a command with actual
arguments and can thus be seen as a vector of ordered pairs consisting of formal ar-
guments and actual arguments. Recall, that the formal arguments of a command al-
ways have distinct names and the mapping is therefore a uniquely determined assign-
ment. We will denote PAIs as C(A1:A

0
1; : : : ; An:A

0
n) with A

0
1; : : : ; A

0
n 2 INST [f�g.

Generally, pairs of the form Ai : � can be omitted. Furthermore the command C
can be omitted if it is clear from the context to which command the PAI belongs
to.
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Definition 3.3 (empty PAI): Let C be a command for an inference rule R. Let
A1; : : : ; An be the formal arguments of C. We call C(A1:�; : : : ; An:�) (or in short
C()) the empty PAI for C.

Note that our de�nition of partial argument instantiations does not specify the
actual applicability of the inference rule underlying a command with respect to the
given actual arguments. The degree of instantiation of a PAI also determines the
direction the corresponding inference rule is invoked in.

As examples we consider the following PAIs for the commands ForallE� and
AndI . The context is taken from a little example proof problem stated on page 47.

ForallE�(P :L1:�1`8x 8y Q(x; y); TList:(a b); C:�)

AndI(Conj:L2:�2`Q(a; b) ^R;LConj:�; RConj:L3:�3`R)

The �rst PAI speci�es that 8�E is applied to the node L1 (here given in linearized
notation) containing 8x 8y Q(x; y) as formula and terms a and b to eliminate the
universal quanti�ers. This application will eventually result in a new proof node
containing Q(a; b). While the PAI for ForallE� speci�es a forward application of
the underlying inference rule, the PAI for AndI speci�es the application of ^I to an
open node L2 containing Q(a; b)^R. Since the right conjunct is already provided in
the PAI, namely node L3, the application of ^I will result in one new open subgoal,
the one containing Q(a; b).

Although PAIs contain generally proof nodes given in their linearized form we
shall usually enhance readability by either only denoting the label of the proof nodes
or the contained formulas. Naturally, the latter can be ambiguous because there
can be several proof nodes containing the same formula. Whenever this is the case,
however, we shall indicate it explicitly.

3.3 Components of the Architecture

In this section we describe the single components of the 
-Ants-blackboard archi-
tecture. The description follows the schematic picture of the architecture given in
�gure 3.3. As depicted there the architecture is essentially a bridge between the
central proof data structure and the user of the interactive system.

The overview of the architecture is rather informal. A formal de�nition of some
of the components is given in section 3.6 in order to prove certain properties about
the architecture.

3.3.1 Argument Agents

The bottom layer of 
-Ants consists of societies of argument agents . Each society
and each of its individual agents is associated with exactly one command. The goal
of a single argument agent is to complete given PAIs of a command by computing
additional instantiations for formal arguments not yet substituted. For this it can
use some of the actual arguments already given in the PAI. The goal of a society of
argument agents is to collaborate in order to compute most complete PAIs. Thereby
single agents are realized as independent threads and can thus work in parallel.

Argument agents are de�ned with respect to three sets of formal arguments of
a command:

Goal Set The formal arguments for which the argument agent tries to compute
instantiations. We will also call them goal arguments .
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S
fPg
fg;fC;TListg= fP : P is a universal quanti�cationg

S
fP;TListg
fCg;fg = fP : One scope of P matches C, TList: Matching terms in the right orderg

S
fPg
fC;TListg;fg= fP : After instantiating the quanti�ers of P wrt. TList the resulting term

is identical to Cg

G
fC;TListg
fPg;fg = fC: C matches one scope of P , TList: The matching termsg

G
fCg
fP;TListg;fg= fC: C matches one scope of P wrt. the terms of TListg

F
fTListg
fP;Cg;fg = fTList: The matching terms of C and one scope of Pg

Table 3.1: Argument agents of the ForallE� command.

Dependency Set Formal arguments that have to be instantiated with actual ar-
guments in a given PAI for the computations of the argument agent to be
successful. We will refer to the arguments of the dependency set also as nec-
essary arguments .

Exclusion Set Formal arguments that must not already be instantiated in a PAI
for the computations of the argument agent to be meaningful. These will also
be referred to as disturbing arguments .

Argument agents are speci�ed via argument predicates and functions , which
model the dependencies between di�erent formal arguments of a command. The
di�erence between argument predicates and functions is that the former contain
conditions the formula of a proof node has to ful�ll and which can be used for
search, whereas the latter contain algorithms to compute additional arguments with
respect to some already given arguments. Consequently, argument agents can be
divided into predicate and function agents where the former search in the proof
tree and the latter conduct computations. In fact, predicate agents can be further
subdivided into goal and support agents depending on whether they search in the
open nodes or the support nodes of a proof. This distinction will be elaborated in
section 3.3.6.

Since the distinction between the di�erent types of agents is with respect to
their goal we have to clarify the case of an agent that has more than one goal
argument. In this case the order of the goal arguments is important. The �rst
of these, called the primary goal argument , is the argument the agent primarily
computes for. All subsequent elements of the goal set are arguments, which can be
instantiated additionally if the agent is successful. Thus, unlike dependency and
exclusion set, the goal set should rather be seen as an ordered tuple where the �rst
element determines the type of the argument agent.

We will denote goal, support, and function agents with G, S, and F, respectively.
The goal set will be attached as superscript and dependency and exclude set as

indices in this order. For instance, G
fConjg
fLConjg;fRConjg denotes a goal agent for the

AndI command whose aim is to compute an instantiation for the formal argument
Conj in a PAI where LConj is already instantiated and RConj must not yet be
present. The full set of argument agents for the ForallE� and AndI commands
are given in tables 3.1 and 3.2, respectively. The predicates and functions are given
very informally in plain text, for a formal de�nition we refer to section 3.6.
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G
fConjg
fg;fLConj;RConjg = fConj: Conj is a conjunctiong

G
fConjg
fLConjg;fRConjg = fConj: Left conjunct of Conj is equal to LConjg

G
fConjg
fRConjg;fLConjg = fConj: Right conjunct of Conj is equal to RConjg

G
fConjg
fLConj;RConjg;fg = fConj: Left conjunct of Conj is equal to LConj and the

right conjunct of Conj is equal to RConjg

S
fLConjg
fConjg;fg = fLConj: LConj is equal to the left conjunct of Conjg

S
fRConjg
fConjg;fg = fRConj: RConj is equal to the right conjunct of Conjg

Table 3.2: Argument agents of the AndI command.

We examine some of the agents in more detail. S
fPg
fg;fC;TListg in table 3.1 speci�es

that the required argument has to be a proof node that contains a universally
quanti�ed formula. The agent's computation does not depend on any necessary
arguments in the PAI it can be applied to. Moreover, the respective PAI must
not yet have instantiations for the C and TList arguments. This exclusion set is
necessary since otherwise the agent might wrongly complete an already partially
instantiated PAI (e.g., where an instantiation for C is already given). This could
lead to non-applicable PAIs, because the predicate of the agent was under-speci�ed
with respect to the available information in this case. Note that the two occurrences
of P in the agent's predicate have two di�erent denotations: The �rst denotes the
name of the formal argument of the command an actual argument is assigned to,
whereas the second denotes an actual proof node that is tested as possible actual
argument.

The next agentS
fP;TListg
fCg;fg has more than one element in its goal set. Its primary

goal argument determines it as a goal agent. Its goal is to �nd an instantiation for
P , which is a universally quanti�ed formula whose scope matches the formula of
the instantiation for C. Since 8�E can eliminate several quanti�ers the predicate of

S
fP;TListg
fCg;fg checks whether any of the scopes of a possible instantiation for P can be

matched. In case the match is successful we automatically get the proper matcher
whose domain is used to determine subsequently the TList argument.

The S
fPg
fC;TListg;fg agent performs the same matching process, however, with

TList already instantiated. Thus, C does not only have to match one scope of P
but also the domain of the matcher has to be equivalent to TList. Here the idea is,
that the more information is available the more this information should be taken
into account by a more specialized agent. The following two agents G

fC;TListg
fPg;fg and

G
fCg
fP;TListg;fg are analogous to the previous two with the exception that since they

are support agents they look for a possible instantiation for C with respect to P .

Finally, F
fTListg
fP;Cg;fg is the only function agent in this society of argument agents. Its

goal is to compute the proper value of the TList when given instantiations for the
P and C arguments.

The agents for the AndI command are rather simple and we will not explain

them in detail. The only slightly exceptional agents are the last two: S
fLConjg
fConjg;fg

and S
fRConjg
fConjg;fg. So far, all discussed agents contained each of the formal arguments

of the respective command either in the goal, dependency, or exclusion set. Here,
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however, is a slight di�erence: The former agent does not contain RConj and the
latter not LConj. This is due to the fact that both formal arguments RConj
and LConj are independent from each other and each only depends on the Conj

argument. For instance, can S
fLConjg
fConjg;fg agent complete a PAI in which both Conj

and RConj are already instantiated without computing a non-applicable PAI.

The following are two examples for computations of argument agents. The
context is again taken from the example proof problem on page 47.

ForallE�(P :8x 8y Q(x; y)) ForallE�(P :8x 8y Q(x; y); TList:(a b); C:Q(a; b))

AndI(Conj:Q(a; b) ^ R) AndI(Conj:Q(a; b) ^R;RConj:R)

G
fC;TListg

fPg;fg

S
fRConjg

fConjg;fg

The upper is an example for the computation of the G
fC;TListg
fPg;fg agent belonging to

the ForallE�, which applied to a PAI in which P is already instantiated, returns

instantiations for C and TList. The lower gives the computation of the S
fRConjg
fConjg;fg

agent of the AndI command, which returns an instantiation for the RConj argu-
ment when applied to a PAI in which at least Conj is instantiated.

The single agents of each society of argument agents are not necessarily �xed;
that is, we can both vary the number of agents as well as the agent de�nition itself.
In fact, it is possible to add, delete or change argument agents in 
-Ants even at
runtime.

3.3.2 Command Blackboards

So far we have only examined how single argument agents can complete already
given PAIs. But as already mentioned the goal of a whole society of argument
agents is to collaborate in order to compute the most complete PAIs possible. To
collaborate the single agents need a means to exchange results. This is achieved with
the help of a blackboard called the command blackboard . Command blackboards
form the second layer in our architecture as presented in �gure 3.3.

Each society of argument agents has one associated command blackboard, which
in turn is associated with the same command the argument agents belong to. Entries
on the blackboard consist of single PAIs together with the information whether an
agent has already read it. The communication via the blackboard works as follows:
An agent examines all PAIs it has not previously visited in order to determine those
it can apply its argument predicate or function to; that is, the agent checks for each
new PAI whether all its necessary arguments and none of its goal and disturbing
arguments are contained. All the checked blackboard entries are marked as read by
the agent ensuring that they will not again be considered by the same agent.

Once the agent has found all triggering PAIs out of the set of new entries, it
executes its computations for each: It either performs a search in the current partial
proof with respect to its predicate or executes its function to compute an actual
argument. In case a computation was successful its result is used to create a new
PAI, which consists of the old PAI augmented by the newly computed instantiations.
The agent's computation can also return multiple results for one formal argument,
for example, several lines satisfying the predicate, which will result in several new
PAIs to be written on the blackboard simultaneously.

Since argument agents only read entries and write new enlarged copies on the
blackboard leaving the original entry unchanged there is no need for conict res-
olution between agents. Conict resolution can become necessary in blackboard
architectures where knowledge sources working in parallel try to work with the
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Figure 3.4: Communication on command blackboards.

same entry and thereby changing it. Then changes of one knowledge source can
render changes of another knowledge source obsolete or even make them impossi-
ble. This case, however, cannot arise in our context, because even if two agents start
working with the same entry at the same time, any results will be added as new
extended entries. These new entries can then be inspected by the respective other
agents. Likewise can the original entry still be read and used by other agents. The
concept also permits di�erent possible argument instantiations since a less complete
PAI may nevertheless be a valid instantiation for the argument of a command.

In order for any agent to be triggered the blackboard needs to be initialized. This
is normally done by writing the empty PAI on the blackboard, which triggers agents
with an empty dependency set to perform their computations. If those agents return
any useful results, they write these on the blackboard, thereby possibly triggering
other agents. Once the proof state changes, for instance, when the user executes a
suggested command, each command blackboard is reinitialized starting a new cycle
of agent computations.

Blackboards can also be initialized with any other possible PAI. This is done
for instance when the user performs a speci�c query by already supplying some
instantiations for actual arguments and asking for a completion with respect to
these arguments. Then the argument agents commence their computations with
respect to this PAI instead of the empty one.

We demonstrate the collaboration and communication within the two argument
agent societies from the preceding section with the example of the following trivial
proof.

A1: A1 ` 8x 8y Q(x; y) (Hyp)

A2: A2 ` R (Hyp)

...
Thm: A1;A2 ` Q(a; b) ^ R (Open)

Note that the proof is presented in the linearized ND calculus, as introduced in
chapter 2.1.3; that is, the proof nodes have been denoted as uniquely labeled lines.

The communication between the single agents evolves as shown in �gure 3.4.
The topmost row represents the two blackboards involved after initialization. We
assume that the two command blackboards are initialized with the empty PAI
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each. This triggers the G
fPg
fg;fC;TListg and G

fConjg
fg;fLConj;RConjg of the ForallE� and

AndI commands, respectively, since these are the only two agents not depending on
necessary arguments. The respective agents triggered by entries on the blackboard
are given as captions of the downward arrows. The computation of each of the two
agents eventually gives rise to a new entry on each blackboard, namely (P :A1) and
(Conj:Thm), which in turn trigger the next agents to run. Since after the �rst step
nothing more is going to happen on the ForallE� blackboard we concentrate on the
AndI blackboard, instead. We can observe that the (Conj:Thm) entry triggers two

agents to run, namely S
fLConjg
fConjg;fg and S

fRConjg
fConjg;fg. The two agents simultaneously

start their search but only the latter produces a result, line A1, which contains the
right conjunct of the formula in line Thm. This leads to the third blackboard entry
(Conj:Thm;RConj:A2).

Figure 3.4 can give the impression that the communication on the blackboard
obeys a certain cycle when entries are added to all command blackboards, this is
however wrong in practice. Agents starting their computations in parallel at the
same time will not always produce a result at the same time as well. Instead, this
depends on how long the agents' computation take and how the agents' threads are
scheduled by the programming language and/or operating system.

The search space spanned by the agents' computation is essentially a tree struc-
ture, where the vertices are the di�erent PAIs and the edges are labeled with the
agents. The root vertex of the tree is the empty PAI. In each proof state the
tree structure contains all possible PAIs with most complete PAIs contained in the
leafs. The branching points then correspond either to concurrent computations
if two edges are labeled with di�erent agents or, for edges labeled with the same
agent, di�erent possible instantiations, which are subject to the order of the agent's
search. However, the search behavior is not a simple breadth �rst search, instead
the traversal of the tree depends on how fast the single agents' computations are
and how their threads are scheduled. This also determines the order of the PAIs
added to the blackboard. Moreover, not all vertices of the tree correspond to entries
of the blackboard since we do not allow for double entries, but there can be repeated
vertices. This gives the computation in 
-Ants an anytime behavior ; that is, the
more time the agents have for their computation the farther they can traverse the
search space and the better the suggestions on the blackboard become.

3.3.3 Command Agents

So far we have seen how argument agents can communicate via the command black-
board by reading existing entries and writing new augmented copies to the black-
board. This is done in no particular order although it is desirable to have the
entries sorted according to certain criteria, for instance, with respect to the number
of actual arguments instantiated in the single PAIs. Unfortunately, this order is not
automatically achieved since due to the indeterminism mentioned in the preceding
section some agents might still add PAIs while other agents have already completed
entries added earlier by the same agent.

The sorting of entries on a blackboard is done by a command agent . Command
agents form the next layer of our architecture depicted in �gure 3.3. Each command
agent is associated with one command that surveys the associated command black-
board. Its task is to constantly monitor the blackboard, and as soon as a new entry
is added it sorts the prolonged list of PAIs according to given heuristic criteria. The
command agent also reinitializes the blackboard either when 
-Ants is reset when
a command has been executed, or if the user executes a particular query.
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Command agents can be equipped with di�erent sorting criteria depending on
the way 
-Ants is employed. However, these criteria can be changed, even at
runtime and any changes take e�ect with the next reset of 
-Ants. Generally, the
heuristics are common to all command agents but can, if desired, also be changed
in individual agents. There exists a set of standard heuristics 
-Ants is usually
initialized with and whose main criterion is to prefer the most complete PAI on the
blackboard. Among those with the same degree of instantiation the system can use
further criteria such as which PAI contains the most recently derived proof nodes.
This criterion is presented in more detail in section 3.3.6.3.

Additionally, each command agent can be equipped with an applicability test
for PAIs. A PAI is then considered as applicable only if certain sets of formal
arguments are actually instantiated. For instance, for the AndI command PAIs
containing actual arguments for at least the Conj or both RConj and LConj
argument are considered applicable, whereas PAIs containing only instantiations of
RConj or LConj are not.

Command agents are denoted by C and a single index indicating the command it
is associated with. Thus, in our previous example the command agents monitoring
the ForallE� and AndI blackboards are CForallE� and CAndI . Given below is the
AndI command blackboard sorted by the latter agent, assuming that it uses the
standard heuristics, where the most complete PAI is sorted to the top. Hence, in
this simple example the last computed PAI is always sorted on top.

AndI
()

AndI
(Conj:Thm)
()

AndI
(Con:Thm;RConj:A2)
(Conj:Thm)
()

CAndI CAndI

3.3.4 The Suggestion Blackboard

As seen in the last section each command agent constantly monitors its respec-
tive command blackboard and if necessary sorts its entries. Therefore, it also has
knowledge about which of the given PAIs on the blackboard is the heuristically
preferred entry. This information is passed to the next level of our architecture,
to the suggestion blackboard (see �gure 3.3). The suggestion blackboard gathers
entries consisting of commands applicable in a particular proof state together with
their respective preferred PAIs.

In detail, the suggestion blackboard is �lled as follows: As soon as a command
agent has an applicable PAI as best suggestion on its command blackboard it con-
structs a suggestion blackboard entry consisting of the command's name and the
respective PAI and writes this entry on the blackboard. Whenever the same com-
mand agent detects a new best PAI on its command blackboard it then updates its
entry on the suggestion blackboard by replacing the old with the new PAI. Here
the applicability of the PAI is decided using the command agent's applicability test
described in the preceding section. In case a command agent is not equipped with
an explicit applicability test, each non-empty PAI is considered to be applicable
and hence is propagated.

The structure of the blackboard entries does not mean that only the heuristically
best entries of each command blackboard can be further processed. In fact, when
the user chooses interactively one of the suggested commands, it is possible to choose
again from the PAIs computed for this command so far.

The suggestion blackboard is initially empty. It is reinitialized whenever 
-Ants
is reset, for instance if a command has been executed.
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We observe how the suggestion blackboard is updated in the case of our exam-
ple below. At the beginning the suggestion blackboard is empty since all command
blackboards contain only the empty PAI. The blackboard in the middle then shows
the situation after the �rst suggestions have been produced by the argument agents
and propagated by the command agents. Here we already have two possible appli-
cable commands. Then a more complete PAI is computed for the AndI command
leading to an update of the entry on the suggestion blackboard as shown on the
right.

Commands Commands
ForallE� : (P :A1)
AndI : (Conj:Thm)

Commands
ForallE� : (P :A1)
AndI : (Con:Thm;RConj:A2)

3.3.5 The Suggestion Agent

Similar to the command blackboards the entries on the suggestion blackboard are
a priori not sorted. Thus, we introduce an equivalent to the command agents for
the suggestion blackboard, the suggestion agent . Its role is to constantly monitor
the suggestion blackboard and as soon as a new entry is added or an old one is
updated, this agent sorts the entries on the board. The sorting is again performed
with respect to heuristics that can also be subject to change (see 3.4 for details).

One of the standard heuristics used is, for instance, to prefer suggestions that
have on average the most complete PAI; that is, we use the ratio of the number of
formal arguments of a command and the number of actual arguments the PAI con-
tains. This, for example, always prefers commands that have all formal arguments
instantiated which is motivated by the hope that a command that can be supplied
with all possible actual arguments might invoke its inference rule to close an open
subproblem.

Another task of the suggestion agent is to suitably process the entries of the
suggestion blackboard. For instance the entries are displayed to the user on a board
of applicable commands in a graphical user interface. The entries can be also passed
to other algorithms for further use. An example for this is the automation of the
command application as elaborated in section 3.5. In practice the suggestion agent
contains a function specifying what to do with the entries on the blackboard. This
function is executed whenever a new entry is added to the suggestion blackboard
or the old entries are resorted.

As an example consider again the update sequence of the suggestion blackboard
from the preceding section. Considering that we use the standard heuristic to
prefer the entries with respect to the ratio of instantiation of their PAIs the entries
on the very right blackboard are actually reordered. This is because both AndI and
ForallE� have the same number of formal arguments, however the attached PAI
of AndI has more actual arguments given those of ForallE�.

Commands Commands
ForallE� : (P :A1)
AndI : (Conj:Thm)

Commands
AndI : (Con:Thm;RConj:A2)
ForallE� : (P :A1)

Both the processing function and the sorting heuristics of the suggestion agent
can be changed depending on the intended use of the suggestions. For instance,
other heuristical criteria for sorting the command suggestions can include:

� Inference rules performing backward reasoning are preferred to those for for-
ward reasoning in order to achieve a more goal directed reasoning process.
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� Tactics are preferred to rules since they might make larger steps in the proof.

� Suggestions are sorted such that suggestions introducing the least new open
subgoals are preferred to those introducing the most in order to reduce branch-
ing in the proof.

� Inference rules that are applicable in every proof step, as for instance proof by
contradiction, are always sorted to the end of the list of suggestions to avoid
their redundant application.

3.3.6 Foci

So far the argument agents search blindly either among all open nodes or among
all support nodes of the proof. The fact that the logical structure of the proof
in question is not taken into account can lead to major errors in the suggested
arguments, as a set of arguments might be proposed that is logically incompatible.
This can lead not only to non-applicable entries on the blackboard but also to
an unnecessary amount of search. Therefore, we elaborate in this section a focus
technique that suitably guides the search for default suggestions by restricting it to
certain subproblems. Thereby we exploit the property of natural deduction proofs
that have a strong, intrinsic logical dependencies between the single proof nodes.
In other calculi, for instance in resolution calculus, these dependencies are generally
much weaker. The focus mechanism keeps explicitly track of this implicitly given
structural information and also of the chronological information given in a partial
proof and enables the reuse of this information in case some already justi�ed proof
nodes are deleted and the system backtracks to a previous proof state.

3.3.6.1 De�nitions

We shall �rst give the de�nitions of the main concepts involved and then consider
an example. For the following de�nitions let P be a partial proof with its set of
proof nodes NP .

Definition 3.4 (Chronological node order): We de�ne a total order <n :
NP �NP on the proof nodes of P such that for all n1; n2 2 NP holds: n1<nn2, i�
proof node n1 was inserted in P before n2. We call <n the chronological node order
of P .

In practice, each proof node gets assigned a non-negative integer when it is
introduced into the proof. This is done by having a node counter that is incremented
whenever a new node has been introduced into the proof. The theorem has an initial
value of 0, its original assumptions are then successively numbered in no particular
order. In case an application of an inference rule introduces more than one new node
at a time, these are likewise incrementally numbered although they are essentially
introduced simultaneously. This way we can ensure that <n remains a total order.

Definition 3.5 (Focus): Let n 2 NP and SN ;DN � NP . We call the triple
f = (SN ; n;DN ) a focus , if SN is a set of support nodes of n (i.e., nodes that can
be used to derive n) and DN a set of descendant nodes of n (i.e., nodes that have
been derived from n). n is called the focused node of f . If n is an open node, we
call f open, otherwise closed . The set of all foci of P is denoted by FP .

Note that both SN and DN can contain open nodes.
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Definition 3.6 (Focus context): Using foci as base constructions we inductively
de�ne the set FCP of focus contexts of P as the smallest set containing:

(i) FP � FCP

(ii) Let fc1; : : : ; fck 2 FCP be a set of focus contexts with respective sets of
derived nodes DN 1 : : :DN k. Let n 2 NP with premises n1; : : : ; nk, where
ni 2 DN i for 1 � i � k, and let DN be the set of descendant nodes of n.
Then the triple fc = ((fc1; : : : ; fck); n;DN ) is called a focus context of P
with fc 2 FCP .

Definition 3.7 (Foci priority order): Given a set S � FCP of focus contexts
of P . A total ordering �: S � S is called a foci priority order on S.

In practice, we proceed for the foci priority order analogously to the chronological
node order. Foci are assigned a non-negative integer value, according to a foci
counter . This counter is incremented whenever a new focus is introduced.

Definition 3.8 (Proof context): Let S � FCP be a set of focus contexts of P ,
<n a chronological node order for P and � a foci priority order on S. We then call
the triple pc = (S;<n;�) a proof context for P . Note that for each focus context
fc in S the restriction of <n on the set of support nodes of fc is unique.

Definition 3.9 (Active focus): Given a proof context pc = (S;<n;�). Then we
call the uniquely de�ned open focus context fc 2 S that is maximal with respect
to � the active focus context of pc.

The active focus essentially constitutes the subproblem currently under consider-
ation. For interaction a user can naturally explicitly change the focused subproblem
to any other open node. Then the open focus context for this node is promoted to
become the new active focus by assigning it the next value of the foci counter.

Initially a partial proof consists of a proof context containing exactly one focus
context. Application and retraction of di�erent inference rules give rise to various
changes of focus contexts and transitions of the proof context while constructing a
proof. The following de�nition lists in more detail the di�erent types of transitions
of proof contexts with respect to di�erent possible inference rules.

Definition 3.10 (Transition of proof contexts): Let P be a partial proof
with proof context pc = (S;<n;�) with S = ffc1; : : : ; fclg, where the fci are
focus contexts of P . Let R be an inference rule. We de�ne a transition of the poof
context pc as the proof context pc0 = (S0; <n

0;�0), where the set S0 = ffc01; : : : ; fc
0
l0g

consists of the focus contexts of pc after the application of R to elements of NP
and <n

0;�0 are the respective extended orderings. Thus, the transformation of the
single focus contexts determines the transition of pc. Depending on the form of R
and its application direction we can identify the following transformations for all
fc 2 S, where fc = (SN ; n;DN ):

1. Suppose the rule R is of the form
P
C
R

(a) Let P 2 NP (forward application):

fc0 =

8<: (SN [ fCg; n;DN ) if P 2 SN
(SN ; n;DN [ fCg) if P 2 DN or n = P
fc otherwise
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(b) Let C 2 NP (backward application):

fc0 =

8<: (SN ; P;DN [ fCg) if n = C
(SN [ fPg; n;DN ) if C 2 SN
fc otherwise

Note that the case C 2 DN is not possible since C is an open node and
thus not derived from any element of NP .

(c) Let P;C 2 NP (closing application) and let cfc = (dSN ; C;dDN ):

fc0 =

8<: fc and closed if fc =cfc
(SN ; n;DN [dDN [ fCg) if P 2 DN or n = P
fc otherwise

2. Suppose R is of the form

[H ]
....
P
C
R

(a) Let P;H 2 NP (forwards): Similar to case 1a.

(b) Let C 2 NP (backwards):

fc0 =

8<: (SN [ fHg; P;DN [ fCg) if n = C
(SN [ fP;Hg; n;DN ) if C 2 SN
fc otherwise

(c) Let P;H;C 2 NP (closing): Similar to case 1c.

3. Suppose R is of the form
P1 P2

C
R

(a) Let P1; P2 2 NP (forwards):

fc0 =

8>><>>:
(SN [ fCg; n;DN ) if P1; P2 2 SN
(SN ; n;DN [ fCg) if P1 2 DN or P2 2 DN or

n = P1 or n = P2
fc otherwise

(b) Let C 2 NP (backwards):

fc0 =

8>><>>:
�

fc01 = (SN ; P1;DN [ fCg)
fc02 = (SN ; P2;DN [ fCg)

if n = C

(SN [ fP1; P2g; n;DN ) if C 2 SN
fc otherwise

Note that in case n = C we have a split of focus contexts. This is
equivalent to two new foci being added to S.

(c) Let P1; C 2 NP (sideways right) and let cfc = (dSN ; C;dDN ):

fc0 =

8>><>>:
(SN ; P2;DN [ fCg) if P1 2 SN and n = C
(SN [ fP2g; n;DN ) if C;P1 2 SN

(SN ; n;DN [dDN [ fCg) if P1 2 DN or n = P1
fc otherwise

Observe, that in the case n = C we have dDN � DN , necessarily.

(d) Let P2; C 2 NP (sideways left): Symmetrical to case 3c.
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(e) Let P1; P2; C 2 NP (closing) and let cfc = (dSN ; C;dDN ):

fc0 =

8>><>>:
fc and closed if fc =cfc
(SN ; n;DN [dDN [ fCg) if P1 2 DN or P2 2 DN

or n = P1 or n = P2
fc otherwise

4. Suppose R is of the form P1

[H ]
....
P2

C
R

(a) Let H;P1; P2 2 NP (forwards): Similar to case 3a.

(b) Let C 2 NP (backwards):

fc0 =

8>><>>:
�

fc01 = (SN ; P1;DN [ fCg)
fc02 = (SN [ fHg; P2;DN [ fCg)

if n = C

(SN [ fP1; P2; Hg; n;DN ) if C 2 SN
fc otherwise

Note that in case n = C we have again a split of focus contexts.

(c) Let P1; C 2 NP (sideways right) and let cfc = (dSN ; C;dDN ):

fc0 =

8>><>>:
(SN [ fHg; P2;DN [ fCg) if P1 2 SN and n = C
(SN [ fP2; Hg; n;DN ) if C;P1 2 SN

(SN ; n;DN [dDN [ fCg) if P1 2 DN or n = P1
fc otherwise

(d) Let H;P2; C 2 NP (sideways left): Similar to case 3d.

(e) Let H;P1; P2; C 2 NP (closing): Similar to case 3e.

5. Suppose R is of the form
P

C1 C2
R

(a) Let P 2 NP (forwards):

fc0 =

8<:
(SN [ fC1; C2g; n;DN ) if P 2 SN
(SN ; n;DN [ fC1; C2g) if P 2 DN or n = P
fc otherwise

(b) Let C1; C2 2 NP (backwards) and let dfc1 = ([SN 1; C1;[DN 1), dfc2 =

([SN 2; C2;[DN 2):

fc0 =

8>>>><>>>>:
([SN 1 [[SN 2; P;[DN 1 [[DN 2 [ fC1; C2g)

if fc1=dfc1 and fc2=dfc2
(SN [ fPg; n;DN ) if C1 2 SN or C2 2 SN

or C1; C2 2 SN
fc otherwise

Note that in the �rst case we have a uni�cation of the two open foci
containing C1 and C2 as focused nodes, respectively. Thus, the number
of open foci in S decreases.
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(c) Let P;C1 2 NP (sideways right) and let dfc1 = ([SN 1; C1;[DN 1):

fc0 =

8>><>>:
fc and closed if fc =dfc1
(SN [ fC2g; n;DN ) if C1; P 2 SN

(SN ; n;DN [dDN [ fC1; C2g) if P 2 DN or n = P
fc otherwise

(d) Let P;C2 2 NP (sideways left): Symmetrical to case 5c.

(e) Let P;C1; C2 2 NP (closing) and let dfc1 = ([SN 1; C1;[DN 1), dfc2 =

([SN 2; C2;[DN 2):

fc0 =

8>><>>:
fc and closed if fc =dfc1 or fc =dfc2
(SN ; n;DN [[DN 1 [[DN 2 [ fC1; C2g)

if P 2 DN or n = P2
fc otherwise

Proof context transitions involving inference rules with di�erent argument patterns
are generalizations or combinations of the above cases.

In the case proof steps are backtracked | by removing rule applications and, when
necessary, proof nodes | the transitions of proof contexts are diametric to the
above transition rules and we omit the details here.

3.3.6.2 Example

Figure 3.5 displays some steps for the proof of the example problem given in sec-
tion 3.3.2. For the sake of the example the proof is not conducted in the shortest
possible way but instead with some detours. In the topmost box we have the initial
proof problem on the left and the associated proof context pc1 on the right. The
chronological node order is set to be Thm<nA1<nA2 and the only focus context is
fc. Applying the inference rule ^I to line Thm gives the partial proof given in the
next box. The change of proof context corresponds to case 3b) in de�nition 3.10 and
thus the new context pc2 consists of two focus contexts fc1 and fc2 both contain-
ing the original assumptions as support nodes and the original theorem as derived
nodes. Since we have L1<nL2 we automatically get fc1 � fc2 as order on the foci
and therefore fc2 as new active focus.

Naturally, we could have applied ^I in a sideways direction to immediately close
the subgoal R. However, for the sake of the example we avoided this. Likewise we
now introduce a step into the proof plan that is not necessary as such but serves
to further illustrate the change of proof contexts. We apply the indirect rule to
the focused goal L2, thus we try to show R by deriving falsehood from :R. The
transition of pc2 to pc3 is then according to case 2b): fc2 gets the new hypothesis
as additional support node and the old focused goal becomes an additional derived
line.

In the next change :E is applied to the lines A2 and L4 to close L3 which
according to transition case 3e) closes fc2 but leaves it unchanged. With fc2 closed
fc1 remains as the only open focus context and thus becomes the active focus. The
last change of the proof displayed in �gure 3.5 is the application 8�E to line A1 (again
without immediately closing the subgoal L1) which leads to the changes given in
case 1a) of de�nition 3.10: The support nodes of both fc1 and fc2 are extended
with L5. We could �nally close L1 with a weaken step corresponding to a proof
context transition of case 1c). However, this last step is not displayed in �gure 3.5.
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A1: A1 ` 8x 8y Q(x; y) (Hyp)

A2: A2 ` R (Hyp)

...
Thm: A1;A2 ` Q(a; b) ^ R (Open)

pc1 = (ffcg; <n;�)
Thm<nA1<nA2

fc = (fA1; A2g; Thm; fg)
fc open

A1: A1 ` 8x 8y Q(x; y) (Hyp)

A2: A2 ` R (Hyp)

...
L2: A1;A2 ` R (Open)

...
L1: A1;A2 ` Q(a; b) (Open)

Thm: A1;A2 ` Q(a; b) ^ R (^IL1L2)

pc2 = (ffc1; fc2g; <n;�)
: : : <nA2<nL1<nL2

fc1 = (fA1; A2g; L1; fThmg)
fc2 = (fA1; A2g; L2; fThmg)
fc1 � fc2
fc1; fc2 open

A1: A1 ` 8x 8y Q(x; y) (Hyp)

A2: A2 ` R (Hyp)

L4: A2 ` :R (Hyp)

...
L3: A1;A2;L4 ` ? (Open)

L2: A1;A2 ` R (Indirect L3)

...
L1: A1;A2 ` Q(a; b) (Open)

Thm: A1;A2 ` Q(a; b) ^ R (^IL1L2)

pc3 = (ffc1; fc2g; <n;�)
: : : <nL2<nL3<nL4

fc1 = (fA1; A2g; L1; fThmg)
fc2 = (fA1; A2; L4g; L3;

fThm;L2g)
fc1 � fc2
fc1; fc2 open

A1: A1 ` 8x 8y Q(x; y) (Hyp)

A2: A2 ` R (Hyp)

L4: A2 ` :R (Hyp)

L3: A1;A2;L4 ` ? (:EA2L4)

L2: A1;A2 ` R (Indirect L3)

...
L1: A1;A2 ` Q(a; b) (Open)

Thm: A1;A2 ` Q(a; b) ^ R (^IL1L2)

pc4 = (ffc1; fc2g; <n;�)
: : : <nL2<nL3<nL4

fc1 = (fA1; A2g; L1; fThmg)
fc2 = (fA1; A2; L4g; L3;

fThm;L2g)
fc1 � fc2
fc1 open
fc2 closed

A1: A1 ` 8x 8y Q(x; y) (Hyp)

L5: A1 ` Q(a; b) (8�EA1)

A2: A2 ` R (Hyp)

L4: A2 ` :R (Hyp)

L3: A1;A2;L4 ` ? (:EA2L4)

L2: A1;A2 ` R (Indirect L3)

...
L1: A1;A2 ` Q(a; b) (Open)

Thm: A1;A2 ` Q(a; b) ^ R (^IL1L2)

pc5 = (ffc1; fc2g; <n;�)
: : : <nL2<nL3<nL4<nL5

fc1 = (fA1; A2; L5g; L1;

fThmg)
fc2 = (fA1; A2; L4; L5g; L3;

fThm;L2g)
fc1 � fc2
fc1 open
fc2 closed

Figure 3.5: Changes in proof contexts.
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3.3.6.3 Guiding 
-Ants

The purpose of foci is to separate subproblems that can be tackled independently
from other parts of the proof. In this way they are used to both guide the search
of argument agents as well as the user during the proof construction. In practice,
argument agents restrict their search to the respective active focus; that is, support
agents search among the support nodes of the active focus and consider nodes with
higher chronological node order �rst. Goal agents have essentially just the focused
node to consider. In case an inference rule has multiple conclusions, the associated
goal agents also search among all focused nodes of all open focus contexts. This,
however, has the e�ect that the support nodes in a PAI are from the active focus
whereas the open nodes are from arbitrary foci and are not necessarily supported
by the support nodes in the PAI. This can lead to unsound PAIs that have to be
discarded. Therefore, only those PAIs are eligible that contain support nodes that
are in the intersection of the support nodes of each of the open nodes.

The chronological node order is also used as an additional sorting criteria for the
command agents. Suggestions with the same ratio of instantiated arguments are
additionally sorted with respect to a multi-set extension of <n guaranteeing that
entries with containing nodes with higher node order are preferred.

This guidance of the default mechanism serves for certain goal directed and, as
we believe, more cognitively adequate guidance of the user: Firstly, keeping the
suggestions restricted to the active focus until it is closed and then changing to the
next open focus with respect to the order of the focus priority allows the user to
focus on the solution of one subproblem before considering the next. Moreover,
the order of the subproblems is chronological in the sense that the latest open
subgoal is always considered �rst. Secondly, using a chronological order on nodes
for sorting command suggestions means that facts are more likely derived when they
are necessary to contribute to the solution; that is, newer nodes are more likely to
be used for the task at hand than nodes derived earlier. Both restrictions are,
of course, not always desirable and therefore the user can switch the active focus
interactively during proof construction and select for a chosen command from all
computed PAIs.

3.4 Adaptation

In this section we give an account of all possible automatic and interactive runtime
adaptations of 
-Ants. In particular, we describe how additional knowledge about
the proof can be collected and used in the 
-Ants architecture, how the suggestion
mechanism can optimize itself at runtime with respect to a resource concept, and
�nally how the user can inuence the behavior of the mechanism. These adaptations
help to both narrow the search space for single agents as well as to speed up the
performance of the overall mechanism.

3.4.1 Knowledge-based Adaptation

In particular proof situations it is obvious that some inference rules will never be
applicable. For instance, if some subproblem is propositional it is obvious that
inference rules encoding higher order rules are not necessary. Therefore, we should
restrict the possible set of commands in such a proof situation by suppressing those
that can de�nitely not be applied. This is achieved by barring the corresponding
argument agents from running.
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3.4.1.1 Classifying Agents

To decide whether certain commands are not worth considering for a particular
subproblem at hand some knowledge has to be acquired on the subproblem and fed
into the 
-Ants mechanism. This is done by so called classifying agents , which
are somewhat outside the hierarchical architecture given in �gure 3.3. The task of
a classifying agent is to gather knowledge on a particular subgoal or subproblem,
or generally about the current context of the proof.

In practice, classifying agents are realized as predicates that can be applied
to single nodes or set of nodes. The agent applies the predicate to the focused
subproblem whenever it has changed, that is, whenever 
-Ants is reset. Once the
predicate succeeds the classifying agent makes its information available to other
agents as elaborated in section 3.4.1.2.

Consider for instance a classifying agent whose task is to judge whether a sub-
problem is only propositional. It consists of a predicate that, when applied to a set
of nodes comprising a subproblem, would yield true if all formulas are propositional.
The agent would communicate a message indicating that the subproblem currently
under consideration is just propositional to the other agents in 
-Ants.

3.4.1.2 Knowledge Propagation

This process of communicating knowledge to other agents is not done directly from
a classifying agent to other agents but instead it is achieved via the blackboard
architecture in a top-down manner. This has the advantage that a classifying agent
does not need to know which other agents are currently active in the system, as this
may vary dynamically.

The propagation of information is achieved as follows: A classifying agent can
write information on the suggestion blackboard, there it is picked up by the com-
mand agents and written on the respective command blackboards where it is in turn
read by the argument agents. Once the classifying agent cannot con�rm its infor-
mation, that is, when the proof state has changed such that the classifying agent's
predicate does not hold anymore, it retracts its information from the suggestion
blackboard. This consequently propagates throughout the mechanism similar to
the adding of information.

Command and argument agents can be implemented to have information about
themselves. This inherent knowledge is then compared with any information given
on the blackboard the agent works for. In case the information on the blackboard
indicates that the agent is useless in a particular proof situation it stops working,
otherwise it further pursues its task. If an agent has suspended its task it still
checks the information on the blackboard and possibly resumes its computation
once the information has changed. Suspension of agents can happen on both layers
in 
-Ants. Command agents can suspend the whole associated society of argument
agents or single argument agents of a society can retire if the given information
indicates that they are no longer useful.

Let us assume, for example, that our classi�cation agent for propositional logic
has just successfully diagnosed the focused subproblem as being of propositional
logic. It then writes the appropriate message on the suggestion blackboard. When
this message is propagated the command agent of the ForallE� command will
suspend its own and all its argument agents' computation since 8�E | as inference
rule dealing with quanti�er elimination | will never be applicable in the current
proof situation. However, the agents working for AndI will still pursue their tasks
since ^I is a propositional logic inference rule.
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3.4.2 Resource Adaptation

Even with the automatic adaptation of 
-Ants, the number of running agents can
become quite large. Moreover, some of these agents might be computationally ex-
pensive. Although the agents run concurrently, the overall computation of all agents
is slowed down and thus maybe only a few useful suggestions can be computed until
the user executes another command. Moreover, some agents might be so expensive
that on average they do not �nish their computation before a user normally exe-
cutes a command. They therefore never contribute to the suggestions in the �rst
place.

These considerations lead to a notion of resource adaptation in 
-Ants that
we shall present in the following. Here we adopt the notion of resource adaptation
according to Zilberstein [220] meaning that agents have an explicit notion of re-
sources themselves, enabling them to actively participate in the dynamic allocation
of resources. This is opposed to the weaker notion of resource-adapted systems
where agents only behave with respect to some initially set resource distribution.
For a detailed account of the implementation of the resource mechanism in 
-Ants
see also [118].

3.4.2.1 Resource Concept

The main motivation for the resource concept of 
-Ants is to eliminate agents that
either perform fruitless computations or that use too many system resources without
obvious success. In particular we want to model the following system behavior:

1. Turn o� agents that in the majority of cases do not �nish their computations
before the user applies a command.

2. Disable agents that use too many resources, without making good suggestions
in a given proof state.

3. If the user has not issued a command for a long time and most agents have
already �nished their computation, the system should reactivate some agents
that have been turned o�.

4. Agents that were turned o� some time ago should be given a new chance to
compute suggestions every once in a while.

5. There should always be at least a minimal number of agents running.

The idea of 1 is that, if we have an agent (e.g., a bulky external system) that always
commences its computations but the user always executes a command before the
agent has a chance to �nish these computations, it does not have a chance to
contribute to the suggestions in the �rst place and resources are rather wasted on
this agent. Thus, it is better to stop this agent completely and free its resources for
other, more e�ective agents.

The intention of 2 is to evaluate agents e�ectivity with respect to their com-
plexity and their e�ectivity in a given proof state. If an agent's computation uses
a lot of resources but the agent never contributes to the suggestions although it
generally �nishes its computation before user interaction it might be better to turn
it o� and free the resources for other agents. However, agents of this type should be
turned o� more carefully since an agent might be crucial for the success of a proof
in a certain situation even though it has never computed a suggestion so far in the
proof.



60 Chapter 3. 
-Ants

While 1 and 2 help to turn o� possibly useless agents, 3 and 4 are a certain
fairness condition for agents that have been turned o�. The former is used to
activate agents on a short term basis to use available system resources whenever
the agents of the suggestion mechanism have completed their computations and the
user still has not issued a command. The idea of the latter is to reactivate agents
after some period of time since agents that might be more e�ective and less complex
when the proof context has changed.

Lastly, 5 ensures that a certain number of agents is always running and com-
puting suggestions. It can also be used to ensure that agents working for inference
rules that are crucial to ensure completeness requirements should never retire.

We shall now de�ne a resource concept for 
-Ants that reects three major
criteria:

(i) The relative complexity of an agent in a given proof situation.

(ii) The success of an agent with respect to new suggestions made.

(iii) The success of an agent with respect to the user's speed of interaction.

Criterion (i) is used to inuence the complexity rating of an agent. The complexity
rating is a value that is initially assigned to an agent and dynamically adjusted dur-
ing the course of one or several proofs. Initially, all agents have the same complexity
rating. However in some situation, for instance in certain mathematical domains,
the complexity ratings can also be already predetermined to varying values. An
argument agent inuences its own complexity rating by measuring the actual CPU
time it spends for each successful computation, no matter whether the computation
leads to a new suggestion or not. The complexity rating can then be computed
anew as average over the runs of the agent multiplied with a given weight function.

In addition to the complexity rating each agent has a success rating , a value that
reects the agents success in its overall computations. Initially an agents success
rating is zero and it dynamically changes it by giving itself bonuses and penalties.
A bonus is awarded whenever the agent successfully completes its computations
by returning one or several new extended PAIs. A penalty is given if the agent's
computation is not successful. Thereby we distinguish two di�erent types of un-
successful computation: If the agent ends its computation, but does not produce
a new blackboard entry it is given a minor penalty. However, if the agent fails to
�nish its computation before the next proof step has been applied and 
-Ants's
blackboards have been reset, the agent receives a major penalty. The bonus and
penalty values depend on given heuristics that can vary. The success rating reects
both criteria (ii) and (iii) of our resource concept.

From the complexity and success rating each argument agent can compute its
own performance rating by relating the two values with respect to a given heuristic
function. The command agent of a society of argument agents can in turn compute
the overall performance of the society by taking the average of the performance
ratings of the single argument agents.

The performance rating is a measure to rate agents with respect to the activa-
tion/deactivation threshold of the 
-Ants mechanism (we shall call it activation
threshold for short). The threshold is a value that determines whether an agent
runs or not. In case the performance rating of an agent is below the threshold the
agent can perform its computations, in case it is above the agent retires by stop-
ping its computations. The value of the activation threshold is preset. It can be
interactively changed by the user, however, and is also dynamically adapted by the
running system.
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3.4.2.2 Resource Adjustment

The dynamic adjustment of resources in 
-Ants is a process of gathering resource
information, reasoning on this information, and readjusting the threshold and re-
distributing the resources accordingly. This propagation of resource information in

-Ants is similar to the propagation of knowledge we described in section 3.4.1.2.

Resource information is gathered in a bottom-up direction: The single argu-
ment agents write their performance measures onto their respective command black-
boards. Here the command agents can pick up the information, compute the overall
performance rating of its argument agent society and propagate the information to
the suggestion blackboard. Thus, the suggestion blackboard maintains information
about the performance rating of all command agents and of all argument agents.

The collected information can now be used by the resource agent . This is an
additional agent in 
-Ants, whose task is to reason about the collected resource
information and to perform readjustments if necessary. These readjustments are
done in the form of penalties or bonuses for single agents, which are written to
the suggestion blackboard and from there propagated throughout the system via
the command agents and command blackboards. The resource agent has two ways
of assigning penalties and bonuses: A penalty or bonus is either given to a single
argument agent or one is assigned to a command agent, which in turn distributes
it evenly amongst its argument agents. These additional penalties are a means to
increase the performance of the overall system by disposing of ine�ective agents
more quickly to free runtime for more e�ective agents.

Agents that have gone below the activation threshold should have a chance of
running again after a certain time. To ensure this the resource agent assigns small
bonuses to them such that they again go above the threshold and can recommence
their computations. Likewise the resource agent can assign larger boni to get more of
the retired agents running again in a situation where for instance the proof context
has changed considerably.

The resource agent can also take care that certain commands are always consid-
ered during the suggestion process. For instance, in order to ensure the completeness
of a calculus some commands should never be excluded. It then has to ensure that
no agent associated with one of these commands ever retires by keeping their perfor-
mance rating above the activation threshold. This is done by assigning additional
boni if necessary.

Another task of the resource agent is to ensure that always a certain number of
agents is actually running in the system. This is achieved by regulating the activa-
tion threshold; that is, the threshold is gradually lowered, such that the minimum
number of agents is running again.

All these measures of changing the resource distribution and the activation
threshold of the system are more or less long term adjustments; that is, they take
e�ect after one or several resets of the system, only. However there is also a means
for short term adjustment of resources: If all active agents are �nished with their
computation and there is still no command being executed (i.e., the user is not
interacting) the resource agent temporarily lowers the activation threshold enabling
retired agents to run. However, after the next reset of the system the resource
values are set to their regular values. This way the computational resources can be
optimally exploited if the user's interaction interval is exceptionally long.

Finally, one important task of the resource agent is to keep track of agents
that have not completed their computation after several resets of the system. They
can be detected because they have not submitted any resource information over this
period of time. These agents are likely candidates for either containing an erroneous
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predicate or for performing an expensive and maybe undecidable computation. The
resource agent can reset and reinitialize such an agent, possibly giving it a penalty, in
order to free those resources. This property is particularly important when external
systems such as automated theorem provers are integrated into agents.

All decisions of the resource agent are subject to heuristics, which can be changed
if necessary. Moreover, 
-Ants's resource mechanism can be �ne-tuned by �ddling
with the variety of heuristics. We shall enumerate all possible points of interference
in the next section.

Also the resource mechanism was mainly constructed to increase the systems
performance in interactive reasoning, it can also be used in automation mode. Here
the e�ects of the resource mechanism that depending on the di�erent settings of
the activation threshold as well as the resource agent, the resulting proofs can vary.
We shall come back to this point in our case study in chapter 5.

3.4.3 Interactive Adaptation

This section is an overview on the di�erent user interaction facilities, which can be
used, to adapt 
-Ants behavior at runtime.

Command selection 
-Ants allows us to select the set of commands that is in-
cluded in the suggestion process. The excluded commands are never suggested
and their command agent and associated argument agents suspend their work.
The user can include or exclude commands at any time and changes take e�ect
when the mechanism is reset.

Adding new commands We can also add new commands that could not be con-
sidered by the suggestion mechanism so far, simply by specifying and loading
an appropriate set of argument agents. The corresponding command agent
is then automatically compiled. And, once added to the list of considered
commands, suggestions for the new command are computed after the next
reset. Adding completely new commands can be particularly helpful when
integrating computations of a new external systems or variations of calling an
already integrated external system at runtime.

Modi�cation of societies of argument agent For already working societies of
argument agents the user can specify and load new argument agents at run-
time, modify the de�nition of already existing agents, or simply delete agents
from the society. Changes to argument agent societies take again e�ect when

-Ants is reset.

Sorting heuristics The suggestion agent as well as the command agents employ
heuristics to sort the entries on the respective blackboards they survey. The
user can change these heuristics at runtime. For the command agents the user
can either change the sorting heuristics for the whole set of command agents
or for single command agents separately. Changes take e�ect as soon as an
agent has to re-sort the entries on the blackboard it monitors, when a new
entry is added.

Modi�cation of classifying agents Similar to the modi�cation of the argument
agents the user can also add, change or remove classifying agents in order to
inuence 
-Ants behavior.

Adjustment of resource adaptation The user can directly modify the resource
bounds, the activation threshold and the values for penalties and boni, in
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order to adapt the system to particular needs. For instance, the penalty and
bonus value for computations that terminate in time regardless of whether
they produce a new PAI or not can be set to zero. Then a penalty is only
given to agents that do not complete their computation before a reset.

Additionally, all heuristics for resource computations can be changed. Partic-
ularly interesting is here the heuristic for the resource agent. However, also
the heuristics to compute the performance rating of argument agents and com-
mand agents, the weight function to compute an agent's complexity rating as
well as the function to distribute boni and penalties for a command agent to
its argument agent society can be �ne-tuned.

3.5 Automation

Although 
-Ants is originally conceived as a mechanism to support a user in in-
teractive theorem proving, there are several ways to partially or fully automate the
proving process. Automation can be achieved basically in two ways:

1. Automated reasoning is performed during the suggestion process.

2. The command application itself is automated.

(1) is achieved by having commands that use automated reasoning procedures |
either in the form of an internal procedure or as a call to an external automated
theorem prover | available and compute their applicability. Then the automated
procedure is basically called in some argument agent. For (2) we enrich the 
-Ants
architecture with a backtracking wrapper and allow the suggestion agent to auto-
matically execute computed command suggestion and backtrack whenever no more
commands are suggested.

While (1) retains the interactive nature of the mechanism since the user can still
decide which command, and therefore also which automatically derived proof should
be applied, (2) actually corresponds to an automated deduction. However there is
still an interaction possible since we allow for the user to execute commands even
during the automated proof search. Finally, there is also a way to tightly integrate
automated and interactive proof search by concentrating the user on the proof
search in the actual focus, while delegating the proof of one or several background
foci to the automation procedure.

3.5.1 Integrating Automated Reasoning

We �rst shall consider how automated reasoning procedures can be integrated into

-Ants. Although we shall concentrate on the integration of external systems to
achieve automation in this section everything presented here can also be extended
to incorporate automated reasoning procedures internal to the 
mega system into
the computation. This is of course possible since we can encapsulate such an in-
ternal procedure into its own thread and if necessary terminate it via the resource
mechanism.

Figure 3.6 displays two inference rules that incorporate external reasoners into

mega together with their corresponding commands on the righthand side. We
have seen the Otter rule already earlier in this chapter. Its purpose is the application
of the �rst order automated theorem proverOtter to justify the conclusion C from
the premises P1; : : : ; Pn. The associated command has thus two arguments, the
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P1 : : : Pn
C

Otter
Premlist
Conc

Otter

A B ) C
C

MP-mod-ATP(A) B)
Left Impl

Conc
MpModAtp

Figure 3.6: Inference rules to apply external reasoners and their commands.

S
fPremlistg
fg;fConcg = fPremlist: All support nodes containing �rst order formulasg

G
fConcg
fPremlistg;fg = fConc: Conc can be justi�ed with Otter from Premlistg

Table 3.3: Argument agents of the Otter command.

conclusion and a list of premises. The second inference rule MpModAtp describes
a situation where an external reasoner | in this case an automated theorem prover
| is used within an inference modulo, in our particular case modus ponens modulo
the validity of an implication (to be checked by an automated theorem prover). The
modulo implication is given as a parameter of the inference rule. The corresponding
command, however, has only three arguments for the proof nodes involved, since
the parameter can be computed from the given arguments Left and Impl. Possible
instantiations for the arguments are for instance the following:

Left  8x P (x) ^Q(x)

Impl  P (a)) R(a)

Conc  R(a)

Then the modulo implication the theorem prover has to test for validity in order for
the MP-mod-ATP rule to be applicable is (8x P (x) ^ Q(x)) ) P (a). This kind of
modulo reasoning can also be done with di�erent external reasoners, for instance,
with respect to the simpli�cation of a computer algebra system.

Right now, we are not concerned with correctness issues for the integration of
the external systems. However, since we are working in the 
mega environment we
can make use of the work already done in this area that ensures the correctness by
translating proofs or computations from external reasoners into primitive inference
steps of 
mega [146].

The agents determining the applicability of the Otter and MpModAtp com-
mands are given in the �gures 3.3 and 3.4, respectively. The agents for the Otter
command are straightforward. We have one support agent that searches among
all the support nodes of the active focus those that contain �rst order formulas;
that is, the agent actually �lters out those lines containing higher order formulas.

The second agent G
fConcg
fPremlistg;fg actually encapsulates the application of theOtter

theorem prover. Its task is to check whether the open node of the active focus can
be derived from the given premises.

The MpModAtp command has seven agents where some of them cater for the
possibility that some of the arguments are supplied by the user. The computations
of the automated theorem prover is embedded into the last three of these agents.

The agents S
fImplg
fLeftg;fConcg and S

fImplg
fLeft;Concg;fg search for an appropriate implica-



3.5. Automation 65

G
fConcg
fg;fImplg = fConc: The focused node of the active focusg

G
fConcg
fImplg;fg = fConc: Conc is equal to the succedent of Implg

S
fImplg
fg;fLeft;Concg= fImpl: Impl is implicationg

S
fImplg
fConcg;fLeftg = fImpl: Impl is implication with succedent equal to Concg

S
fImplg
fLeftg;fConcg = fImpl: Impl is implication and its antecedent can be

derived from Left using an ATPg

S
fImplg
fLeft;Concg;fg= fImpl: Impl is an implication, the succedent is equal to Conc

and the antecedent can be derived from Left using an ATPg

S
fLeftg
fImplg;fg = fLeft: Antecedent of Impl is derivable from Left with an ATPg

Table 3.4: Argument agents of the MpModAtp command.

tion by checking with the theorem prover that the antecedent follows from the

already given instantiation of Left. Agent S
fLeftg
fImplg;fg on the other hand searches

for the instantiation of Left given the implication by checking the derivability of
the antecedent.

3.5.2 Automating the Command Application

The 
-Ants suggestion mechanism can be automated into a full-edged proof
search procedure by embedding the execution of suggested commands into a back-
tracking wrapper. The algorithm itself is given in table 3.5 and its owchart is given
in �gure 3.7.

The basic automation performing a depth �rst search is straightforward: The
suggestion mechanism waits until all agents have performed all possible computa-
tions and no further suggestions will be produced and then executes the heuristically
preferred suggestion (1a&2). When a proof step is executed and the proof is not yet
�nished, the remaining suggestions on each suggestion blackboard are pushed on the
backtracking stack (3&4). In case no best suggestion could be computed 
-Ants
backtracks by popping the �rst element of the backtrack stack and re-instantiating
its values on the blackboards (7a&7d).

The restriction to a depth �rst search strategy is forced by the nature of 
mega's
proof plan data structure PDS, which does not yet allow for storing parallel proof
attempts. Therefore, search strategies like breadth �rst or best �rst are not yet
supported.

The simple automation loop is complicated by the distinct features of 
-Ants:

(i) Certain agents can perform in�nite or very costly computations.

(ii) Commands can be executed by the user in parallel to the automation.

(iii) The components of 
-Ants can be changed at runtime.

Furthermore, the automation can also be suspended and revoked especially in order
to perform the latter two interaction possibilities in a coordinated way.
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1. Wait for suggestions to be made until:

(a) no further suggestions can be found,

(b) a time bound is exceeded,

(c) or the user has executed a command. Then goto step 3.

2. If there are suggestions on the command blackboard execute the heuris-
tically preferred suggestion, otherwise goto step 7.

3. If a proof has been found, quit with success .

4. Push the history on the blackboards onto the backtrack stack.

5. Execute changes of agents and heuristics if there were any.

6. Re-initialize all blackboards and goto step 1.

7. If there have been changes of agents or heuristics goto step 5, otherwise
do a backtracking step by popping the backtrack stack:

(a) if stack is empty, stop with failure ,

(b) if the popped step has been executed due to expired time but has
not been re-instantiated before, goto step 1,

(c) if the step has been introduced after command execution by the
user, goto step 1,

(d) in all other cases goto step 2.

Table 3.5: Algorithm for the automation wrapper of 
-Ants.

We avoid that 
-Ants is paralyzed by agents that get stuck in in�nite compu-
tations by giving a time limit after which the best command, suggested so far, is
executed (see step 1b). However, such a proof step is treated special when back-
tracking, since then the blackboards will be re-instantiated with all the values of the
proof step, containing the executed command as well. This way there is a second
chance for agents that could not contribute the �rst time to add information. But
should the step be executed in the same form once more, it will then be backtracked
in a regular manner (7b). The question how the 
-Ants theorem prover can avoid
to get lost on an in�nite branch in the search space without ever backtracking will
be addressed in the completeness discussion in section 3.6.

If a command has been executed by the user the loop proceeds immediately
with saving the blackboards' history without executing another command (1c).
When backtracking the whole history on the last step is re-instantiated onto the
blackboards, possibly containing also the command executed by the user, in order
not to loose possible proofs (1c&7c).

One main feature of 
-Ants is its runtime adaptability by adding or deleting
agents or changing the heuristics for sorting command and suggestion blackboards.
These changes also take e�ect when running the automation wrapper, precisely
in the steps 5&7. The automation wrapper can be suspended by the user at any
time, for instance, in order to analyze the current proof state and to add, change
or remove certain agents from the suggestion mechanism. It can then be resumed
using all the information computed so far.

For the automation to make sense it is necessary to carefully choose the set of
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YES

NO

YES

NO

Suggestions
on blackboard?

Wait until:
  a) all suggestions computed
  b) time bound is exceeded
  c) user executed command

Execute the heuristically
preferred suggestion

Push history information
on the blackboards onto

the backtrack stack

Execute changes of
agents and heuristics

if there are any
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Re-initialise all

SUCCESS FAILURE
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I.e. re-initalise blackboards

Proof found?
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NO

Backtrack stack
empty?

Backtracking (if no agents
or heuristics are changed)

25

6 7

1START

4

Figure 3.7: The main loop of the automation wrapper.

inference rules that are considered in order to achieve a benevolent search behavior.
In chapter 5 we shall see a case study, in which the normal form natural deduction
calculus Nic [55] is modeled in 
-Ants and the automation wrapper is applied to
perform goal directed search.

3.5.3 Automation as a Background Process

The decomposition of the whole proof into explicitly maintained subproblems by
the focus contexts introduced in section 3.3.6 enables the system to perform certain
automated tasks in the background while the user works on a di�erent sub-problem
interactively. More concretely, the user concentrates on the currently focused sub-
problem (i.e., the active focus) where the interaction is supported by the suggestions
of 
-Ants. In the meantime the subproblems of one or more di�erent open foci
can be tackled automatically in the background.

A straightforward way of achieving this is to delegate a subproblem to one or
several external reasoning systems. Once an external system has found a proof for
the subproblem, this subproof is inserted either immediately or after querying the
user �rst. This way of distributing the reasoning process is essentially independent
from the 
-Ants architecture.

However, apart from the straightforward distribution, we can also use 
-Ants
to directly automate search in the background. This scenario works in the following
way: While the user works on the subproblem in the active focus, 
-Ants computes
suggestions for the interaction. In parallel 
-Ants also computes suggestions for
other focus contexts, which can then be automatically applied. For both reasoning
processes | the interactive user session and the automated background reasoning
| agents can also be used that in turn use external reasoners during their search
as discussed in previous section. However, to achieve this kind of distribution we
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need to expand 
-Ants in a suitable way.

The na��ve approach for this distribution were to simply duplicate the 
-Ants
mechanism for each focus, which is considered for background automation. But
this would simply overwhelm the overall system with too many concurrent pro-
cesses rendering all the improvements introduced in section 3.4 pointless. Therefore,
the distribution is accomplished by duplicating only the top level of the 
-Ants
architecture.

In practice, this works as follows: Besides the active focus certain other foci are
chosen for background automation. We call these foci the background foci . Their
number as well as their selection can be adjusted interactively. For each of the
background foci a di�erent suggestion blackboard together with a suggestion agent
is created.

Argument agents then always search for both the active focus and the back-
ground foci. This is essentially only an extension of the general search function for
agents. In order not to compute incorrect results, PAIs on the command black-
boards are supplied with the information on the particular focus it was computed
for. Thus, when an predicate agent picks up a PAI that has been computed for a
focus fc the agent will only search in the respective nodes of fc for completions of
the PAI.

The command agents then sort the entries of their command blackboards ac-
cording to the respective foci they belong to and pass the best entries for each
focus | active focus and background foci | to the respective blackboards. This
is achieved by supplying an appropriate search function for the command agents.
The separate suggestion agents can then sort their suggestions with respect to their
own heuristics and pass them, in case of the active focus, to the user or, in case of
the background foci, to the automation wrapper. In the latter case the automation
wrapper has to keep a separate record for each background focus. Since the au-
tomation loop of 
-Ants runs in its own process separate bookkeeping for separate
background foci is done by having a di�erent automation wrapper for each single
background process.

The knowledge and resource adaptation in the extended system proceeds as
follows: The classifying agents are enabled to perform their classi�cation task in all
considered foci and write there information enriched with the focus information to
the suggestion blackboard. This way command and argument agents can decide in
which of the foci they can search and in which not.

On the contrary for the resource adjustment the resource agent only takes data
into account, which has been collected for the active focus. This is due to the
fact that one main factor in the resource concept is the interaction interval of the
user, which should not be obscured with data won in parallel automated processes.
However, in order to have both an eÆcient suggestion mechanism for the interaction
part and e�ective automation of proofs in background foci the resource concept will
have to be expanded accordingly.

3.6 Theoretical Considerations

In this section we introduce and discuss some notions that are necessary to char-
acterize and guarantee completeness and soundness of a theorem prover based on

-Ants with respect to the underlying calculus. We �rst present how the predi-
cate of our agents can be formalized within Church's simply typed lambda calculus.
Thereby we are interested in modeling the search and communication properties
of single agents and the resulting behavior of the whole agent society. We are,
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however, not interested in formally modeling the computational aspects within an
agent society since this would require the formalization of temporal properties and
therefore the use of temporal logics. Neither do we model the resource management
or the self-evaluation of an agent's performance. But the presented theoretical con-
siderations can provide feedback for designing adequate heuristics for 
-Ants in
particular with respect to the question which agents should never be turned of by
the resource agent in order to guarantee the e�ectiveness of an agent society or the
completeness of a particular calculus.

When modeling the search properties of an agent we have generally to deal
with complex predicates and functions that serve as interfaces to the environment
(e.g., by serving as search criteria for proof lines). We shall model only some
simple predicates, but generally we abstract from the layer of actual computation.
For instance, we do not want to model exactly Otter's computations in lambda
calculus, although surely possible because of Church's thesis, since this is beyond the
scope of this thesis. (For a more thorough introduction to computations in lambda
calculus see [203]). The discussion in the remainder of this section is thus rather
example driven to give an intuition for the properties that need to be considered.

Given a theoretically complete calculus, how can it be modeled in 
-Ants such
that completeness is still assured in the mechanism? Note that we do not address
the theoretical completeness of the underlying calculus itself, in fact we do not even
need to specify here what particular logic and calculus we are interested in. We
rather aim to ensure that each calculus rule application that is theoretically possible
in a given proof state can indeed be determined and suggested by the 
-Ants
mechanism. In particular we will discuss two di�erent notions of completeness in
this sense, namely interaction completeness and automation completeness . This is
due to the twofold bias of the 
-Ants system as a suggestion mechanism and as
an automated theorem prover. Naming these properties also `completeness' might
be slightly misleading, however, automation (interaction) completeness of the agent
societies involved taken together with the `theoretical (logical) completeness' of a
calculus implies that a complete proof search is actually supported by 
-Ants.

Theoretical completeness investigations typically assume non-limited resources
like computation time and space. In our case the resources available to the 
-Ants-
system in-between the command executions are crucial with respect to completeness
as well. However, for the time being we neglect points possibly interfering with this
assumption, in particular cases 1(b) or 1(c) of the prover's main loop in �gure 3.7
and the existence of agents with calls to undecidable procedures such as the Otter
agent in section 3.5.1.

3.6.1 Formalization

In order to formalize the predicates of our agents we �rst need to de�ne the notion
of conditional branching in lambda calculus. Therefore, we de�ne an if-then-else
predicate by using the description operator introduced in de�nition 2.4 as follows:

if-then-else � �Po �x� �y� {oz� [P ^ z = x] _ [:P ^ z = y] (3.1)

According to de�nition (3.1) if-then-else is a predicate with three arguments of the
form (if-then-else Po x� y�) meaning that if P holds the predicate returns x and if
:P holds it returns y. As syntactical sugar we write generally if P then x else y.
The semantics of if-then-else can be derived from the semantics of the description
operator and of lambda abstraction given in de�nition 2.15 in chapter 2.1.2.

Before we can formalize the predicates for agents we have to develop a formal
notion for the PAIs. Since a PAI is basically a set of mappings from formal argu-
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ments to their instantiation, we can model it as a list of pairs. And, to begin with,
we de�ne a polymorphic constant �� standing for the empty argument. Then we
formally de�ne our mapping operator `:'.

: � �x� �y� �g��o g(x; y) (3.2)

We shall write the mappings of the PAI in in�x notation as x:y instead of :(x; y).

To formalize lists we need to de�ne a construction operator `#' as being

# � �a� �b� �h��o h(a; b) (3.3)

Note that the constructor is very similar to the pairing operator `:', albeit more
general since we do not require the elements a and b to be of the same type. Since
lists are recursive structures and therefore also need to be accessed recursively we
need to de�ne the empty list as the polymorphic constant [](o)o. Examples of
lists are then #(a; []), #(b;#(a; [])), etc. which we shall generally write as (a#[]),
(b#a#[]), . . .When it is obvious from the context that we are dealing with lists we
will sometimes even omit the empty list symbol. Notice, that we explicitly allow
for the elements of a list to be of di�erent types.

We can now formally de�ne PAIs: Given a command C with formal arguments
A1; : : : ; An, we de�ne constants a

1
�1 ; : : : ; a

n
�n , where the types �i correspond to the

types of the required arguments for the Ai. We then denote the abstract PAI of C
as the lambda expression

�l1�1 �l
2
�2 : : : �ln�n [a1:l1]#[a2:l2]# : : :#[an:ln]#[]:

A concrete PAI can then be constructed by applying the abstract PAI to a set of
actual arguments.

We shall now de�ne a function with which we can access the single mappings
in the PAI by name of the formal argument. In order to do that we need functions
both to extract the elements of the list representing the PAI and to project the �rst
and second elements of the mappings. We �rst de�ne the projection function for
the mappings:

Proj1 � �p(��o)o {ox� 9y� p = x:y (3.4)

Proj2 � �p(��o)o {oy� 9x� p = x:y (3.5)

When applied to a mapping of the form x:y, Proj1 and Proj2 return the elements
x and y, respectively.

To recursively extract the single elements of a given list we de�ne two functions,
First and Rest. Both are similar to the two projection function of `:', albeit more
general with respect to the types of the elements.

First � �c(��o)o {oa� 9b� c = a#b (3.6)

Rest � �c(��o)o {ob� 9a� c = a#b (3.7)

Since we can now access the elements of a PAI we can de�ne a function that can
pick the single elements with respect to the name of the formal argument. Note
that this is possible since we require the formal arguments of a command to have
unique names.

Pick � �PAI(��o)o �B if [PAI 6= []] then (3.8)

if Proj1(First(PAI)) = B then

Proj2(First(PAI))

else P ick(Rest(PAI); B)

else �
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The Pick function takes two arguments, a list representing the partial argument
instantiation PAI and a formal argument B, and returns the instantiation of the
formal argument. Its de�nition is recursive; that is, it calls itself on the tail of the
given list if the head element does not contain the formal argument in question. We
ensure termination with the outermost if statement since in case we reach the empty
list representing the end of the PAI Pick returns the empty argument �. This is
due to two reasons: Firstly, it ensures that the de�nition of Pick is well typed, and
secondly, we do not have to be concerned whether all not yet instantiated formal
arguments are actually given in the PAI. Termination can easily be proven by an
induction on the length of a given list, however, we omit this here. To abbreviate
the Pick function we shall generally write PickB(PAI).

We have now the formal apparatus available to actually formalize our argument
agents. However, as already mentioned, we are interested in a formalization down
to a certain level, only. Further formalization goes beyond the scope of this thesis
and will be subject of future work. The following are the formalization of both
predicate and function agents.

G
fG1;G2;:::g
fD1;D2;:::g;fE1;E2;:::g

� � PAI(��o)o �Lo

if [[PickG1
(PAI) = �] ^ [PickG2

(PAI) = �] ^ : : :
[PickD1

(PAI) 6= �] ^ [PickD2
(PAI) 6= �] ^ : : :

[PickE1
(PAI) = �] ^ [PickE2

(PAI) = �] ^ : : :] then

if [P1(L; P ickD1
(PAI); P ickD2

(PAI); : : :)] then

[G1:L]#[G2:P2(L; P ickD1
(PAI); : : :)]# : : :

[D1:PickD1
(PAI)]#[D2:PickD2

(PAI)]# : : :
[E1:�]#[E2:�]# : : :
[R1:PickR1

(PAI)]#[R2:PickR2
(PAI)]# : : :#[]

else PAI

else PAI

Although the above agent is a goal agent the formalization for support agents
is exactly the same. The agent's goal set is fG1; G2; : : :g, its dependency set is
fD1; D2; : : :g and its exclusion set is fE1; E2; : : :g. The agent takes a partial argu-
ment instantiation PAI(��o)o and a formula Lo which corresponds to the formula
the agent seeks. The agent's formalization itself essentially consists of two nested
if-then-else expressions: The �rst is to check for the applicability of the agent to a
PAI given on the blackboard and the second is to model the actual search predicate
of the agent. Thus, the semaphore of the �rst if-then-else ensures that the given
PAI is suitable for the condition of the argument agent by checking that all formal
arguments of the goal and exclusion set are not yet instantiated in the given PAI
and, conversely, that actual arguments for all elements of the dependency set are
already given. The former corresponds to the �rst and third line and the latter to
the second line of the conjunction.

The second if-then-else then checks whether the formula in question corresponds
to one the agent actually seeks. This is indicated by the predicate P1, which is the
actual interface to the computational part of the agents. The predicate takes the
considered formula L as well as all the instantiations of the necessary arguments
D1; D2; : : : in the given PAI as arguments. For simple cases, for instance, when
dealing with rules of the ND calculus, we can explicitly give the predicate by stating
the required pattern of the sought formula. But in the general case we give here
only an abstract characterization of the predicate, such as `L is higher order'. In
case the conditions of both if-then-else predicates hold a new PAI is constructed
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in which the abstract argument G1 is bound to the formula L and instantiations
for the remaining goal arguments are computed. These computations are again
given in terms of a predicate Pi, whose arguments are the formula L and the actual
arguments of the dependency set. The rest of the PAI is then constructed by adding
the original instantiations of the formal arguments of both the dependency set and
the exclusion set. Additionally, in the �nal line of the newly constructed PAI we
carry over the rest elements of the original PAI; that is, all elements that occur
in neither the goal, the dependency, nor the exclusion set of the agent are simply
copied.

In the case either of the if-then-else tests fails | if the PAI is not of the right
form or the considered formula does not ful�ll the requirements | the original PAI
is returned.

Note that we do not express that the agent is a goal agent within the lambda
expression and that Lo should be a formula of an open node. For our current
considerations this is not necessary. However, in a further development of the
formalization one should consider the use of sorts or annotations in order to express
these properties. Note also that we again encounter the problem of separating nodes
and their formulas as discussed earlier. The expression talks about a given formula
only and constructs thus a PAI that could be ambiguous with respect to which proof
node is actually meant since we can have the same formula in several nodes. Despite
this ambiguity, the formalization is precise enough for the further considerations in
this section.

Next we examine the general form of function agents, which are of slightly
simpler built than argument agents.

F
fG1;G2;:::g
fD1;D2;:::g;fE1;E2;:::g

� � PAI (��o)o

if [[PickG1
(PAI) = �] ^ [PickG2

(PAI) = �] ^ : : :
[PickD1

(PAI) 6= �] ^ [PickD2
(PAI) 6= �] ^ : : :

[PickE1
(PAI) = �] ^ [PickE2

(PAI) = �] ^ : : :] then

[G1:P1(PickD1
(PAI); P ickD2

(PAI); : : :)]# : : :
[D1:PickD1

(PAI)]#[D2:PickD2
(PAI)]# : : :

[E1:�]#[E2:�]# : : :
[R1:PickR1

(PAI)]#[R2:PickR2
(PAI)]# : : :#[]

else PAI

The lambda expression of a function agent is simpler since it always performs
the desired computation if the PAI is of the right form. Therefore, only the validity
of the PAI has to be checked. Since the PAI is the only lambda bound variable we
can also omit the second if-then-else statement completely. The computation for all
goal arguments, even G1, is performed when assembling the new PAI. Analogously
to the predicate agents the computations are hidden in the abstract predicates Pi.
However, in the case of function agents the predicates range over the elements of
the dependency set, only.

Since the general formalization of argument agents is not necessarily intuitive
we give the formalization of the agent society of the AndI command as an example.
This example has also the advantage that we can easily formalize the occurring
test predicates of our agents. As constants representing the formal arguments of
the AndI command we use Conjo; LConjo; and RConjo and have thus an abstract
PAI of the form

�Ao �Bo �Co [Conj:A]#[LConj:B]#[RConj:C]#[]
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The single argument agents are then formally de�ned as:

G
fConjg
fg;fLConj;RConjg � � PAI(��o)o �Lo

if [[PickConj(PAI) = �] ^ [PickLConj(PAI) = �]
^[PickRConj(PAI) = �]] then

if [9Ao 9Bo L = [A ^ B]] then
[Conj:L]#[LConj:�]#[RConj:�]#[]

else PAI
else PAI

G
fConjg
fg;fLConj;RConjg takes a partial argument instantiation PAI(��o)o and a formula

Lo. The semaphore of the �rst if-then-else ensures that the given PAI is suitable for

the condition of the argument agent. Since the G
fConjg
fg;fLConj;RConjg agent searches

an instantiation for the Conj argument if neither the LConj nor the RConj argu-
ment are already instantiated, the condition checks that all formal arguments are
instantiated with the empty actual argument, only. The second if-then-else then
checks whether the formula in question is actually a conjunction with the condition
9Ao 9Bo L = [A ^ B]. Compared to the general form of predicate agents given
above, the predicate P1 corresponds to the term �Xo 9Ao 9Bo X = [A^B], which
is applied to L as its only argument. In case the conditions of both if-then-else
predicates hold a new PAI is constructed, in which the abstract argument Conj is
bound to the formula L and all other abstract arguments are again bound to �. In
all other cases the original PAI is returned.

The second goal agents for the AndI command is formalized as follows:

G
fConjg
fLConjg;fRConjg � � PAI(��o)o �Lo

if [[PickConj(PAI) = �] ^ [PickLConj(PAI) 6= �]
^[PickRConj(PAI) = �]] then

if [9Bo L = [PickLConj(PAI) ^ B]] then
[Conj:L]#[LConj:PickLConj(PAI)]#[RConj:�]#[]

else PAI
else PAI

The G
fConjg
fLConjg;fRConjg is an agent that depends on an already instantiated actual

argument LConj. Therefore, one of the conditions ensuring the suitability of the
PAI is PickLConj(PAI) 6= �. The actual instantiation for LConj is also used in the
search predicate 9Bo L = [PickLConj(PAI)^B] and it is also carried into the new
PAI that is constructed.

The rest of the goal agents for AndI are:

G
fConjg
fRConjg;fLConjg � � PAI(��o)o �Lo

if [[PickConj(PAI) = �] ^ [PickLConj(PAI) = �]
^[PickRConj(PAI) 6= �]] then

if [9Ao L = [A ^ PickRConj(PAI)]] then
[Conj:L]#[LConj:�]#[RConj:PickRConj(PAI)]#[]

else PAI
else PAI

G
fConjg
fLConj;RConjg;fg �

� PAI(��o)o �Lo
if [[PickConj(PAI) = �] ^ [PickLConj(PAI) 6= �]

^[PickRConj(PAI) 6= �]] then
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if [L = [PickLConj(PAI) ^ PickRConj(PAI)]] then
[Conj:L]#[LConj:PickLConj(PAI)]#[RConj:PickRConj(PAI)]#[]

else PAI
else PAI

The following two formalizations are for the support agents of the AndI command.
Their particularity is that their applicability does not depend on the constellation
of all abstract arguments but only on a subset. For instance S

fLConjg
fConjg;fg does not

include the RConj in the goal, dependency, or exclude set. This is expressed
in the simpler condition of the �rst if-then-else statement, which expresses only
a constraint with respect to the instantiations of the Conj and LConj abstract
arguments. It is, however, ensured that whatever instantiation for RConj the PAI
already contains is carried into the newly constructed PAI.

S
fLConjg
fConjg;fg �

� PAI(��o)o �Lo
if [[PickConj(PAI) 6= �] ^ [PickLConj(PAI) = �]] then

if [9Bo [L ^ B] = PickConj(PAI)] then
[Conj:PickConj(PAI)]#[LConj:L]#[RConj:PickRConj(PAI)]#[]

else PAI
else PAI

The search predicate of the agent is 9Bo [L ^ B] = PickConj(PAI). It expresses
that L is the left conjunct of a conjunction given as instantiation of Conj.

S
fRConjg
fConjg;fg �

� PAI(��o)o �Lo
if [[PickConj(PAI) 6= �] ^ [PickRConj(PAI) = �]] then

if [9Ao [A ^ L] = PickConj(PAI)] then
[Conj:PickConj(PAI)]#[LConj:PickLConj(PAI)]#[RConj:L]#[]

else PAI
else PAI

In the sequel we shall use the formalization we have given here to discuss and illus-
trate two notions of completeness, namely automation and interaction completeness.

3.6.2 Automation Completeness

The idea of automation completness is that given a theoretically complete calculus
how can it be modeled in 
-Ants such that completeness is still assured in the
mechanism when using the automatic proof search? As a calculus we consider
the �rst order fragment of 
mega's calculus together with the tertium non datur
axiom. This fragment is complete for �rst order logic as is for instance shown be
Byrnes in [55]. Byrnes also gives a special purely backward search procedure for
this calculus called Nic, which preserves completeness. We shall outline Nic and
its modeling in 
-Ants in chapter 5.

In this section we introduce the basic concepts necessary to de�ne automation
completeness. We shall, however, not give detailed proofs for all calculus rules
and agents involved, but only use the society of agents for the AndI command to
exemplify the notions.

Automation completeness depends in the �rst place on the suggestion complete-
ness of the argument agent societies associated with each rule.
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Definition 3.11 (Suggestion completeness): A society of suggestion agents
working for a single command C is called suggestion complete with respect to a
given calculus, if in any possible proof state all PAIs of a command necessary to
ensure completeness of the calculus can be computed by the mechanism.

Assuming, as already mentioned, that our agents always have suÆcient time to
perform their computations, suggestion completeness requires that each particular
agent society consists of suÆciently many individual suggestion agents and that
their particular de�nitions are adequate for computing arguments that comply with
the form and combination of the respective calculus rule's arguments. Adequacy
basically excludes wrong agent speci�cations, while suÆciency refers to the ability
of an agent society to cooperatively compute each applicable PAI in a given proof
state.

In order to ensure that computed PAIs are actually propagated in the mechanism
we de�ne the notion of non-excluding agent.

Definition 3.12 (Non-excluding): A command agent is non-excluding if it in-
deed always reports at least one selected entry from the associated command black-
board to the suggestion blackboard as soon as the former contains some applicable
PAIs.

The suggestion agent is non-excluding if it always reports the complete set of entries
on the command blackboard to the automation wrapper.

Additionally, we have to guarantee that the proof search is organised in a fair
way by ensuring that the execution of an applicable PAI suggested within a partic-
ular proof step cannot be in�nitely long delayed. The fairness problem of 
-Ants
is exactly the same as in other theorem proving approaches performing depth �rst
search. For the propositional logic fragment of our calculus for instance it is suf-
�cient to use the automation algorithm as given in section 3.5.2 since we have to
model a decision procedure. However, in the case of the �rst order fragment and
even with higher order inference rules, we enrich the automation wrapper with an
iterative deepening search in order to ensure fairness.

We can now de�ne the notion of automation completeness.

Definition 3.13 (Automation completeness): The 
-Ants mechanism can
be called automation complete with respect to a given calculus C if

(i) the agent societies speci�ed are suggestion complete with respect to C.

(ii) the command agents for C and the suggestion agent are non-excluding.

(iii) the search procedure is fair; that is, the application of none of the suggestions
is delayed in�nitely long.

(iv) the resource bounds and deactivation threshold are chosen suÆciently high,
such that each agent's computation terminates within these bounds.

Assuming that we work under the resource-abstraction assumption, our au-
tomation wrapper uses iterative deepening search and the heuristics of command
and suggestion agents are non-excluding, the crucial point to show is that the single
agent societies are both adequate and suÆcient. We illustrate the notions of ade-
quacy and suÆcency with the example of the AndI agents given in table 3.2 and
formalized in the preceding section.
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Assertion 3.14: The agents G
fConjg
fg;fLConj;RConjg; : : :S

fRConjg
fConjg;fg are both (a) ade-

quate and (b) suÆcient to apply AndI whenever possible in automated proof search.

Proof:

(a) To show that all computable suggestions are indeed applicable we check that
each agent's lambda expression really evaluates to the desired result applied to a PAI
and, in case of predicate agents, to a formula. For predicate agents the veri�cation
is performed in two steps: First we check whether the PAIs are �ltered according
to the agents goal, dependency, and exclude set. Then we show that given the
appropriate PAI the agent actually detects formulas with the desired content and
construes the correct, extended PAI.

If we examine the agent G
fConjg
fg;fLConj;RConjg, the semaphore of its �rst if-then-else

statement reads

[PickConj(PAI) = �] ^ [PickLConj(PAI) = �] ^ [PickRConj(PAI) = �]

which can only be satis�ed by the empty PAI. We now have to check the validity
of the predicate 9Ao 9Bo L = [A^B] with respect to the di�erent possible instan-

tiations of L. For the G
fConjg
fg;fLConj;RConjg agent we have only two cases to consider,

namely L = po or L = qo^ro, where p; q; r are arbitrary predicates and in particular
p is not a conjunction. Clearly the predicate holds only for the latter with respect
to which the lambda expression evaluates to the new PAI

[Conj:qo ^ ro]#[LConj:�]#[RConj:�]#[]

which is both well constructed and of the desired form.

While the reasoning for this agent was trivial, it is slightly more complicated for

agent G
fConjg
fLConjg;fRConjg. Here the analysis of the �rst semaphore yields that only

PAIs of the form
[Conj:�]#[LConj:so]#[RConj:�]#[]

are accepted, where so is an arbitrary proposition. This entails that the second
semaphore evaluates to the form 9Bo L = [so ^ B]. If we now conduct a case split
on L we have three cases to consider, namely L = po, L = qo ^ ro, or L = so ^ ro.
Again the predicate holds only for the third formula yielding as new PAI

[Conj:so ^ ro]#[LConj:so]#[RConj:�]#[]

Showing the adequacy of the remaining two goal agents G
fConjg
fRConjg;fLConjg and

G
fConjg
fLConj;RConjg;fg works analogously. All the agent considered so far have a com-

plete speci�cation with respect to the formal arguments of the AndI command; that
is, the goal, dependency, and exclude sets comprise all the formal arguments of the
command. Therefore, the agent is always only applicable to one type of PAI, which
had to be considered when showing whether a newly constructed PAI is adequate.

For the two support agents of AndI , however, we have to consider several possible
PAIs since they both have a degree of freedom by not explicitly specifying all formal
arguments in the �rst if-then-else. Hence, we have to show for all cases of PAIs that

the extended PAI is still adequate. We exemplify this for the S
fLConjg
fConjg;fg agent. Its

�rst semaphore requires a PAI to have the Conj argument instantiated and the
LConj instantiated, while there are no requirements for the RConj argument. If
we assume that any PAI the agent is applied to is correct, we have thus two possible
PAIs to consider:

1. [Conj:qo ^ ro]#[LConj:�]#[RConj:�]#[]

2. [Conj:qo ^ ro]#[LConj:�]#[RConj:ro]#[]
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In both cases the second semaphore evaluates to 9Bo [L ^ B] = qo ^ ro. Since the
existential variable Bo has to be eliminated with ro the only possible instantiation
for L is qo in order for the predicate to evaluate to true. This leads to two possible
extended PAIs:

1. [Conj:qo ^ ro]#[LConj:qo]#[RConj:�]#[]

2. [Conj:qo ^ ro]#[LConj:qo]#[RConj:ro]#[]

Both PAIs are obviously correct and hence we conclude that assuming the agent

G
fConjg
fRConjg;fLConjg is applied to correct PAIs, only, it also yields correct, extended

PAIs and is therefore adequate.

Since the reasoning for the second support agent G
fConjg
fLConjg;fRConjg is analogous we

can conclude that our agent society for the AndI command is indeed adequate.

(b) To ensure suÆciency we have to show that each PAI of AndI necessary for
automation can be computed by cooperation of the single argument agents. Since
for the �rst order fragment of the calculus to be complete1 it is suÆcient that all
rules are applied backwards only, the possible PAIs are of the form:

(i) [Conj:po ^ qo]#[LConj:�]#[RConj:�]#[]

(ii) [Conj:po ^ qo]#[LConj:po]#[RConj:�]#[]

(iii) [Conj:po ^ qo]#[LConj:�]#[RConj:qo]#[]

(iv) [Conj:po ^ qo]#[LConj:po]#[RConj:qo]#[]

Here p and q are arbitrary but �xed formulas occurring in a partial proof P . We omit
to painstakingly show for all of the cases that they can be computed and instead
discuss representatively case (ii). Hence we have to show that each PAI of the form
S = [Conj:po ^ qo]#[LConj:po]#[RConj:�]#[] that is applicable in P will actually
be computed. As S is applicable, P must contain an open node containing p ^ q
together with a support node containing p. We also assume that p^q is the formula
of the focused node of the active focus. Initially the command blackboard contains

the empty PAI [Conj:�]#[LConj:�]#[RConj:�]#[], to which onlyG
fConjg
fg;fLConj;RConjg

can be applied. Since we have already showed the adequacy of our agents we can
safely reason that the agent computes [Conj:po ^ qo]#[LConj:�]#[RConj:�]#[] as

the new PAI. This in turn triggers the computations of S
fLConjg
fConjg;fg and S

fRConjg
fConjg;fg.

In our case we can ignore the results of the latter. Knowing that our agents are
adequate and under the assumption that one support node actually contains p as

formula, S
fLConjg
fConjg;fg returns exactly the PAI in question.

When checking all other cases we can observe that for the automation mode,

where pure backward reasoning is performed, the three agents G
fConjg
fg;fLConj;RConjg,

S
fLConjg
fConjg;fg, and S

fRConjg
fConjg;fg are already suÆcient.

The last observation suggests that the other three agents are indeed needed to
support user interaction, only. For instance, the user can apply 
-Ants to complete
a particular PAI like [Conj:�]#[LConj:po]#[RConj:�]#[], which will trigger the

computations of agent G
fConjg
fLConjg;fRConjg. Thus, the proof of assertion 3.14 provides

us with valuable information for the design of the heuristics of the resource agent:

1Byrnes shows in [55] that the �rst order fragment of our ND calculus is complete, when
performing only backward search with the introduction rules. He introduces a corresponding
search procedure for his Nic calculus, which we discuss in more detail in chapter 5.4.1.
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In order for the calculus to remain complete it is only necessary to keep the agents

G
fConjg
fg;fLConj;RConjg, S

fLConjg
fConjg;fg, and S

fRConjg
fConjg;fg always active.

3.6.3 Interaction Completeness

Interaction completeness of a calculus implies that one never has to rely on another
interaction mechanism besides 
-Ants in order to perform possible proof steps
within a given calculus. Therefore, we have to show that all possible PAIs to apply
a rule interactively can be computed. This is generally a stronger requirement than
for automation completeness as can be easily observed with our AndI example.

When automated, for instance, in the context of the Nic calculus as described in
chapter 5.4.1, we want to strictly perform backward search and only the PAIs (i)|
(iv) given above are thus legitimate. However, when using our calculus interactively
forward reasoning is a perfectly legal option. This means that PAIs of the form
[Conj:�]#[LConj:po]#[RConj:qo]#[] are also legitimate. But it can be easily shown
that this PAI cannot be computed with the given agent society since neither of the
agents can compute an instantiation for RConj or LConj when applied to the
empty PAI. Thus, we can conclude that our given society of argument agents for
the AndI command is not interaction complete.

A second point we have to take into account for interaction completeness are
PAIs preset by the user. While in automation mode the blackboards are always
initialized with the empty PAI, the user can ask 
-Ants interactively to complete
a particular PAI, such as [Conj:�]#[LConj:po]#[RConj:�]#[], which is then used
as initial value on the blackboard. When showing interaction completeness it is
necessary to show suÆciency and adequacy of the agent society for all possible
initializations of the command blackboard.

3.6.4 Soundness

Soundness is not really a problem. As we presuppose that the underlying theo-
rem proving environment takes care of a sound application of its own inference
rules. Furthermore, in systems such as 
mega soundness is only guaranteed at
the level of primitive inferences and not necessarily for all inference rules involved.
Thus, soundness requirements when computing suggestions for methods that do not
necessarily lead to a correct proof would not make sense. Thus, instead of logical
soundness we are rather interested in the notion of applicability . This notion relates
the PAIs computed by 
-Ants to the particular side-conditions of the underlying
inference rules (whether they are logically sound or not).

The e�ect of non-applicable PAIs suggested to the user or the automation wrap-
per might lead to failure when applying the respective command. In the current
implementation such a failure will simply be ignored and the responsible PAI is dis-
carded. However, too many non-executable suggestions might negatively inuence
the mechanisms user-acceptance and especially the performance of the automation
wrapper.

3.7 Discussion

Since we have already motivated the choice of our particular architecture in sec-
tion 3.1 we shall discuss in this section how the architecture and its distributed
search compares to those already existing in the literature. In particular we shall
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discuss in detail how the particular design decisions of 
-Ants help to overcome
the restrictions of traditional sequential suggestion mechanisms. We shall also be
interested in what exactly the form of the parallelism is that 
-Ants implements
with respect to a classi�cation of di�erent forms of parallelism in deduction sys-
tems. Moreover, we examine how our blackboard architecture relates to standard
architectures from the literature and how our notion of an agent compares to some
of the standard concepts of agent.

3.7.1 Parallel vs. Sequential

In the 
-Ants approach to suggest commands the system steadily conducts useful
computations in the background and constantly utilizes the available computational
resources. 
-Ants suggests only commands that are really applicable and o�ers the
user the choice between several suggestions that are computed in parallel and sorted
according to goal directed heuristics. This is an improvement of traditional sequen-
tial mechanisms for computing command defaults in interactive theorem provers
whose shortcomings we have already discussed in section 3.1.

The decision to have the mechanism running in the background is clearly mo-
tivated by the consideration to enable user interaction even while suggestions are
computed. Since the display of suggestions is constantly updated the user can also
observe this process and choose one of the commands at any point of time. How-
ever, the user is not purely dependent on the suggestions alone since he can use still
the full set of commands available in the theorem proving environment.

We prefer the distributed search for several reasons. The foremost is to avoid the
explosion of predicates, in the worst case up to O(n � 2(n�1)) di�erent predicates, to
compute the suggestions without the sequential restriction. The cooperation of the
knowledge sources, however, limits in most cases the actual number of predicates
we need for computing argument suggestions.

Moreover, the distributed search leads to an anytime behavior of the mechanism
in a sense that the longer it is running the better the suggestions become, at least
with respect to the heuristics involved. For instance, if we would follow a na��ve
approach to computing suggestions in the background with a single background
process, in which the suggestions are computed for one command after the other,
the user would still need to wait until all possible suggestions are computed in order
to get an overview of the commands, which are applicable at all. And if the user
is too impatient for that it can happen that certain commands are never suggested
since their applicability is never tested. On the contrary, in the distributed approach
all commands have the same chance of being chosen, depending only on whether
they are actually applicable in the proof state and how much time the computations
for their suggestion takes. Finally, the distribution also increases the robustness of
the suggestions since any error in a single thread might lead to missing suggestions
but does not lead to a failure of the overall mechanism. Moreover, we can embed
uncertain components, such as undecidable procedures, without putting the overall
mechanism at risk.

The reason for choosing a two layered architecture is the nature of the knowledge
gathering process, which proceeds in two steps: First we compute knowledge about
which arguments can be instantiated for each command and from that we can
compile knowledge about which of the commands can be actually applied. The
process is also reected in the centralized structure of blackboard architecture.
The knowledge about the proof and which commands are applicable is compiled
to help the user during interactive theorem proving. We also want to be able to use
heuristics in order to decide which of the suggested commands is the best in a given
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proof state by considering all suggestion computed up to a certain point, which is
easier when all necessary information is available on a blackboard.

3.7.2 Parallelism of Deduction

In [36, 37] Bonacina identi�es three di�erent notions of parallelism in the context
of deduction. Although her considerations are based on refutation based �rst or-
der theorem proving we adapt her notions for our context. In detail the types of
parallelism are the following:

Parallelism on the term level: This means subexpressions can be accessed and
subtasks of inferences can be performed in parallel.

Parallelism on the clause level: This is basically parallelism at the inference
level; that is, several inferences are done in one step.

Parallelism on the search level: Thereby multiple deductive processes search
in parallel.

If we classify the parallelism realized in 
-Ants with respect to this taxonomy we
have basically modeled all three forms of parallelism. Parallelism on the term level
is clearly realized since our argument agents can access sub-terms in parallel during
their search. Moreover, they can also compute things like term instantiations and
matchers etc. and thereby perform subtasks of inferences in parallel.

Since Bonacina gives her taxonomy for �rst order refutation procedures she is
mainly concerned about how inferences on clauses are performed in parallel. In this
context she considers things such as hyper-resolution rules or parallel term rewriting
steps. Thus, parallelism at the inference level corresponds in a loose sense to tactics
in our context that perform a series of inference steps. (E.g., consider the tactic ��E
we shall introduce in chapter 5.4.3, which performs several expansions of a de�ned
concept in one step.) Hence, this type of parallelism is not really directly connected
to 
-Ants but already realized in 
mega's overall concept.

The last point, the parallelism on the search level, is given by the possibilities
of integrating automated reasoning procedures into argument agents as explained
in section 3.5.1 as well as the close interlink between automated and interactive
search procedures given in section 3.5.3, where subproblems in non-active foci can
be solved in the background.

Apart from the above taxonomy there are also other possible classi�cation cri-
teria, for instance, to identify and-or parallelism (see [38]) or cooperation and com-
petition of parallel components (see [199]).

And parallelism means that several subgoals can be treated in parallel. In

-Ants this type of parallelism is realized in the distribution as background pro-
cesses as presented in section 3.5.3. In contrast, or parallelism means that several
alternative proofs for one subgoal are constructed in parallel. So far, or paral-
lelism can only be realized partially in 
-Ants since automated theorem provers
can search for a proof of the same subgoal in parallel and if several have been found
one of the proofs can then be selected. However, the PDS itself does not allow for
constructing and storing several alternative proofs. An appropriate expansion of
the PDS will be subject of future work.

The division into cooperating and competing parallel components is essentially
an aspect of the parallelism on the search level. We have deductive processes that try
to solve a common goal either jointly or concurrently. In the 
-Ants mechanism
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both approaches can be modeled. On the one hand, we have several automated
theorem provers attached to di�erent commands that try to solve a given goal
concurrently. On the other hand, some automated theorem provers can return
partial results that can then in turn be tackled by other provers. This latter type
of cooperation in 
-Ants has been successfully used to automatically solve a class
of examples in set theory, where the higher order resolution prover Leo has been
used to simplify given higher order problems to a level where either the �rst order
resolution prover Otter could take over to �nish the proof or the model generator
SatchMo was able to conclude that the given problem was not a theorem. For a
detailed account of these experiments see [23, 24].

3.7.3 Blackboard Architecture

The 
-Ants architecture has similarities to several of the classical blackboard ar-
chitectures as for instance discussed in [79]. Since most blackboard architectures
are descendants from either the HearsayII [80] or the Hasp [161] architecture we
mainly consider those two in our discussion. Both classic architectures consist of
a single blackboard, which is, however, hierarchically structured in itself. Their
knowledge sources can then either work one of the hierarchies or propagate from a
lower to an upper level thereby possibly omitting intermediate levels. Both knowl-
edge sources and entries on the blackboard can be very heterogeneous.

In 
-Ants we have modeled hierarchies by using a two layered architecture
of blackboards. This leads on the one hand to less exibility for the knowledge
sources since our agents can all only work exactly for one level in the hierarchy.
On the other hand, the setup enables us not only to separate horizontally into
several hierarchies, but also vertically by clustering the agents on the lower level into
societies working for separate command blackboards. Moreover, our blackboards
are rather homogeneous with respect to both, their entries and their knowledge
sources.

The composition of our argument agents is similar to the knowledge sources of
the HearsayII blackboard, which are condition-action pairs. We can also view an
argument agent as consisting of a condition, given by the necessary composure of a
blackboard entry, and an action, the search or computation it performs. In contrast,
both command and suggestion agents work with respect to a set of heuristics and
are thus comparable with the knowledge sources of the Hasp blackboard, which are
sets of rules.

Our classifying agents and the resource agent do not really �t into this picture of
knowledge sources since their information is propagated downward in the architec-
tures. This is in contrast to the direction of data-ow on the HearsayII and Hasp
blackboards, which is upward in the hierarchies, which is also the main direction
of data-ow in 
-Ants. However, if we look at how the computation of knowledge
sources is triggered we can detect similarities for classifying and resource agents as
well.

On the HearsayII blackboard the knowledge sources are data-driven; that is,
they start their action as soon as an appropriate blackboard entry meets their con-
dition. This is also the way our suggestion, command, and argument agents in

-Ants act. In the Hasp architecture, however, knowledge sources are control-
driven; that is, knowledge sources on a lower level are triggered directly and exclu-
sively by knowledge sources on a higher level. This is comparable to the inuence
of the resource and classifying agents, which trigger from the top level changes of
computational behavior of the agent societies on the lower levels. This control is,
however, dynamic in contrast to the Hasp blackboard, where the control is directly



82 Chapter 3. 
-Ants

implemented into the knowledge sources.

Since both HearsayII and Hasp are single blackboard architectures without
parallelism we have to compare the distribution and concurrency aspects of 
-Ants
to another blackboard architecture. Here the poligon [178] blackboard architecture
is the one that matches most closely our approach. However, in this architecture the
single blackboards are more loosely connected than in the strict hierarchical struc-
ture of 
-Ants. poligon resembles thus more a modern multi-agent architecture
than a classical blackboard approach. One of the major problems the poligon
architecture deals with is the scheduling problem; that is, when knowledge sources
work in parallel how can we avoid that one knowledge source destroys a blackboard
entry that is the working bases of another knowledge source. This is solved by
knowledge sources putting locks on the entry they are currently working on. This
phenomenon does of course not occur with the parallel 
-Ants agents since they
always only write new extended entries on the blackboard without modifying old
entries.

The discussed blackboard architectures permit to measure the performance of
the knowledge sources. This data is measured and collected centrally by the black-
board and exploited in subsequent scheduling processes. The knowledge sources
themselves have no means of measuring their performance and validating their ef-
fectivity. While the central approach to evaluate performance data and inuence
the scheduling is comparable to the reasoning of our resource agent and use of the
activation/deactivation threshold. Di�ering is however that our argument agents
can measure and evaluate their own performance and possibly change their state of
activity by rewarding or penalizing themselves.

3.7.4 Knowledge Sources vs. Agents


-Ants is a blackboard architecture as opposed to a real multi-agent system. How-
ever, we call the knowledge sources of our blackboards agents as they have certain
properties that distinguish our agents from common knowledge sources in the tra-
ditional blackboard architectures. So, to what extend do our knowledge sources
qualify as agents?

For the de�nition of the notion of an agent we best start with a remark by
Nwana and Ndumu given in [163]:

We have as much chance on agreeing on a consensus de�nition for
the word `agent' as arti�cial intelligence researchers have of arriving at
one for `arti�cial intelligence'.

Similarly other authors also concede that there is no universally accepted de�nition
for the term agent (cf. [210]). However, there is a certain concensus on at least
some of the attributes a computational entity has to exhibit in order to be called
an agent.

In the prologue of [210] Weiss gives some criteria for \interacting, intelligent
agents" while admitting that these are only explanations for \. . . what is generally
considered to be essential for an entity to be an intelligent agent" and not part
of a universally accepted de�nition [211]. Weiss considers agents as autonomous,
computational entities that perceive their environment and act upon it. They are
intelligent in a sense that they perform their task in a certain goal-directed manner
in order to optimize their own performance. To pursue their goal they have to
operate exibly and rationally in given situations. This is achieved by deliberative
abilities, such as reasoning on internal states or some representation of the envi-
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ronment, but also with interaction capabilities to either cooperate or compete with
other agents.

In the introduction of [210] Wooldridge speci�es similar properties for intel-
ligent agents [214]. For Wooldridge the essential property is the capability of
exible autonomous actions, which he characterizes with three abilities: reactivity ,
pro-activeness and social ability . Reactivity means that agents are robust in the
sense that they can adapt to the changes in their environment, while pro-active
agents exhibit not only goal-directed behavior but also take the initiative to pur-
sue their goals. Finally the social abilities enable agents to negotiate with other
agents to share goals and cooperate. Like Weiss, Wooldridge emphasizes that
his de�nition of an intelligent agent is by no means a universally accepted one.

If we compare our agents and their abilities to these notions of autonomous
intelligent agents we can see our agents are only autonomous from a software engi-
neering point of view since they are implemented in concurrent threads. From an
architectural point of view they are only meaningful in the context of the black-
board or blackboards they work for. Although the agents cooperate to compute
suggestions they do not exhibit any real social abilities, in the sense that they can
dynamically decide with whom to cooperate or which society to join. Instead the
societies are predetermined by the agents' speci�cation. The agents are, however,
proactive in a sense that they are not explicitly triggered or scheduled by the re-
spective blackboard. In fact, the blackboards do not even have an overview which
agents they have as knowledge sources, since our agents commence their own tasks
by picking up suitable information from the blackboards. Our agents are also par-
tially adaptive. On the one hand they adapt their search with respect to given PAIs
and they react to the knowledge and resource information given on the blackboard.

Overall our agents show a reactive behavior and are also very robust. We can,
however, attribute them a few abilities from the de�nition of a deliberative agent.
The argument and command agents have some knowledge on their capabilities,
which is a priori implemented into them, and they gather dynamically information
on their performance. This gives them a certain internal state, which in turn is used
to react to changes on the blackboards in the from of given information or resource
criteria. However, command, argument, suggestion and classifying agents have no
explicit representation of their environment. Only the resource agent has a certain
representation of the status of the overall system and reasons accordingly. Our
agents also have no real planning capabilities, although some agents can integrate
complex inference procedures. But these procedures are merely their program and
not something they can use to reason about their own internal state and their e�ects
on the environment.

To conclude our discussion we can consider our agents as simple reactive agents
communicating via blackboards. The complete 
-Ants architecture can then be
seen as a distributed problem solving system instead of a multi-agent system follow-
ing [39]. But as pointed out by Weiss the modern concept of multi-agent systems
covers both types of systems and makes therefore such a distinction obsolete [211].

3.8 Summary of Chapter 3

In this chapter we have introduced 
-Ants, a distributed architecture to support
both interactive and automated theorem proving in 
mega. It is based on a two-
layered blackboard architecture, which reects the knowledge gathering process to
detect applicable commands for inference rules. On the lower layer possible instan-
tiations for formal arguments of the commands are searched, on the upper layer all
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in a proof situation applicable commands are collected. These can then either be
applied by the user interactively or automatically by an automation wrapper for

-Ants.

The 
-Ants mechanism has the ability to dynamically adapt itself to a given
problem or sub-problem by gathering additional information on the proof in order
to narrow its search. It also has a resource-adaptive behavior in order to search
more eÆciently. Moreover, their are various heuristics that can be changed to
interactively adapt 
-Ants behavior.


-Ants overcomes the limits of traditional mechanisms to suggest commands or
default parameters for possible argument instantiations. Its distributed architecture
with its concurrent computation as well as the resource-adaptivity allow for an easy
integration of external reasoners and gives thus a basis for cooperation of various
automated components. Together with the automation wrapper it can also be used
as a parameterizable automated theorem prover that still allows for user interaction.
And since most of its components can be formalized in a regular lambda calculus we
can also undertake theoretical considerations with respect to an adequate modeling
of an underlying calculus as well as to gain valuable knowledge for the design of
adequate heuristics.



Chapter 4

Integration of Reasoning

Techniques

In this chapter we shall investigate di�erent ways to combine reasoning techniques
within a proof planning system. In particular we shall examine how the top-down
reasoning approach of a proof planner can be combined with the bottom-up behavior
of 
-Ants and how symbolic computations can be soundly integrated into proof
planning.

In the �rst part of this chapter we investigate combinations of the 
-Ants
mechanism with 
mega's multi-strategy proof plannerMulti. Such a combination
enriches the traditional sequential-style proof planning with aspects of parallelism
and concurrency. Our investigations so far have concentrated on two aspects of
proof planning where parallelism is particular useful, namely in interactive proof
planning and to compute applicable assertions during automatic proof planning.

In the second part of this chapter we present a technique for the sound integra-
tion of computer algebra systems into proof planning. It is based on the idea to
separate computation and veri�cation and can thereby exploit the fact that many
elaborate symbolic computations are trivial to verify. In proof planning the sepa-
ration is realized by using a powerful computer algebra system during the planning
process to do non-trivial symbolic computations. Results of these computations
are checked during the re�nement of a proof plan to a calculus level proof using a
small, self-tailored system that gives us intermediate information on its calculation.
This information can be easily expanded into a checkable low-level calculus proof
ensuring the correctness of the computation.

4.1 Combining 
-Ants and Proof Planning

In this section we examine ways of combining the 
-Ants architecture with the
multi-strategy proof planner Multi [155]. The main motivation for such a combi-
nation is twofold. Firstly, both systems have contrary reasoning approaches. While
proof planning is essentially top-down reasoning (i.e., both methods and applicabil-
ity tests are on a high level), 
-Ants's search behavior is bottom-up in the sense
that small pieces of information on the proof are assembled to determine possi-
ble inference steps. The integration of these contrary reasoning approaches can
strengthen an overall reasoning system. For instance, gaps in a proof plan that
are not covered by one of the planning methods can be closed using a bottom-up
search of 
-Ants. A second motivation for the combination is that proof plan-
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ning, as implemented in Multi, is essentially a sequential approach to reasoning,
while 
-Ants tries to parallelize the reasoning process as much as possible. How-
ever, certain parallel features might improve performance and power of the proof
planner.

The bene�ts of a full integration of proof planning and 
-Ants are not only
that the proof planner can gain interesting and valuable parallel features but also
that 
-Ants gains access toMulti's strategies and methods to combine them with
its own distributed search technique. While the full-edged integration of Multi
and 
-Ants has still to be investigated in the future, in this thesis, we are already
dealing with two aspects of enrichingMulti with 
-Ants's parallel search behavior:

1. To enable interactive proof planning with Multi.

2. To compute applicable assertions during automatic proof planning.

(1) was motivated by the need to have an interactive planning mode available,
which can in particular be used when 
mega serves as the backend of a tutor
system such as [154]. 
-Ants is de�ned as a search algorithm for Multi and
can then be parameterized with appropriate planning strategies. The applicability
of single methods is then checked by 
-Ants-agents and applicable methods are
suggested to the user similar to the regular proof rules that are suggested during
traditional interactive theorem proving. And instead of using the control rules to
guide the search this is done by 
-Ants sorting heuristics.

(2) is an application in which the concurrency of the 
-Ants mechanism is
fruitfully exploited. Thereby 
-Ants is used to retrieve applicable mathematical
theorems during automatic proof planning. This frees the actual, sequential proof
planning algorithm from computationally expensive test of applicability for single
theorems. The theorems of the knowledge base are automatically divided into
di�erent classes of theorems where each is assigned to a blackboard. The single
theorems of the respective classes are checked for applicability in parallel, possibly
using di�erent criteria to decide applicability in a given proof context. Applicable
theorems are gathered on the blackboards and suggested to the proof planner, which
in turn exploits this information during the proof planning process.

4.1.1 Using 
-Ants as Algorithm in Multi

For interactive planning we want the user to be able to choose from all methods that
are applicable in one planning state. We also want to avoid the e�ect of control rules
suppressing methods in certain proof states since the user might have a planning
approach that is di�erent to the automatic one. Therefore, in each planning state
we want to compute all applicable methods and present them to the user possibly
ordered with respect to some sorting criteria.

This cannot be done with Multi's regular planning algorithm PP lanner with-
out making major modi�cations to the algorithm itself: Firstly, because PP lanner
follows a depth �rst search approach; that is, in each planning step the available
methods are sequentially checked for applicability and if an applicable method has
been found it is applied immediately. All remaining methods are checked for appli-
cability only in case the planner ever backtracks to this planning state. Secondly,
the available methods are sometimes structured or restricted by control rules that
are optimized for automatic proof construction.

Thus we use 
-Ants as an algorithm in Multi and de�ne agents to test for
the applicability of single methods. This has not only the advantages that the
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Strategy: homomorphisms-interactive

Condition HomomorphismProblem

Action

Algorithm 
-Ants

Parameters

Methods
HomOnDomain, Homomorphism,
ElemOfKernel, 8ISort, 9ISort, : : :

Agents CHomOnDomain=fS
fL1g

fg;fg;G
fL3g

fL1g;fg
g, : : :

Heuristics PropComplete, LeastSubGoals

Figure 4.1: The interactive strategy homomorphisms-interactive.

applicability of the methods can be checked in parallel but also that applicable
methods can be suggested to the user in a sorted way using 
-Ants's heuristics.

4.1.1.1 Interactive Strategies

In Multi an algorithm is a means to modify partial proof plans. It has a set of
parameters to inuence its behavior. A strategy is then the concrete parameter-
ization of the algorithm. When employing 
-Ants as an algorithm of Multi its
parameters are the available methods, the argument agents corresponding to these
methods and the heuristics for the command agents and the suggestion agent.

Figure 4.1 depicts the homomorphisms-interactive strategy that is used to
interactively plan homomorphism proofs as described in more detail in part III of
this thesis. We can observe that the structure of this strategy is very similar to the
structure of the TryAndError strategy given in chapter 2.2.4 �gure 2.5. The only
di�erence is that instead of slots for control rules and termination we have slots for
agents and heuristics. The elements of the agents slot of the strategy are here given
in the form of sets of argument agent societies associated with the corresponding
command agent. In order to preserve space in �gure 4.1 we have given only one
example of an agent society for the HomOnDomain method.

The �rst of the given heuristics in our example strategy ensures that only meth-
ods are suggested to the user that are actually applicable in the given planning state.
It is a sorting heuristic for the command agents that in particular allows them to
propagate only those PAIs to the suggestion blackboard that correspond to com-
plete matching of the associated method. The second heuristic is a sorting criteria
for the suggestion agent, which states that methods are preferred that generate the
least new open subgoals. This sorting criteria does of course not necessarily lead to
the best possible suggestions.

4.1.1.2 Determining Applicable Methods

Method applicability is determined by 
-Ants similar to regular commands by
computing PAIs containing the necessary arguments to apply a method in a given
proof state. But unlike to commands the argument pattern of a method cannot
only consists of formal arguments for (1) proof lines and (2) additional parameters,
but also contains formal arguments for (3) application conditions.

(1) are the proof lines that have to be given in the proof in order for the method
to be applicable. In particular, they are the elements of the premises and conclusions
slot of the method that either are unsigned or have a 	 sign. They are computed
by predicate agents, which use directly the speci�cation in the declarative content
in order to search for matching lines. The proof lines given as actual arguments in
the PAI are then the lines the method can actually be applied to.
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Method: HomOnDomain
Premises L1;�L2

Appl. Cond. [a1 2 A] & [a2 2 A]
Conclusions 	L5

Declarative

Content

(L1) � `Hom(f; (A; Æ); (B; �))
(L2) � `�[f(a1 Æ a2)] (Open)
(L3) � `�[f(a1) � f(a2)] (ApplyHomL1 L2)

Figure 4.2: The HomOnDomain method.

(2) The additional parameters are just like regular parameters of commands.
They are computed by function agents or, if possible, as side e�ect of the compu-
tations of predicate agents. The parameters given in a PAI are passed to a method
as additional parameters when it is applied.

(3) The additional application conditions of a method that have to hold for the
method to be applicable can be checked in two ways: Either they are implicitly
checked within the search predicate of some predicate agent. Or they are explicitly
checked with additional function agents. For the latter case we have to introduce
dummy abstract arguments into the respective PAIs; that is, the actual instantia-
tions of these abstract arguments are not actually required by the method when it
is applied. Nevertheless, these parameters are important, since their instantiation
determines the applicability of the method. If an application condition holds the
respective formal argument is assigned the result as actual argument. If it does not
hold the formal argument is assigned the empty actual argument �. The applica-
tion conditions of a method can be checked using either only one function agent or
several for di�erent conditions. In particular, we can check disjunctive application
conditions of a method with several parallel agents [30].

The sorting of the entries on the command blackboard and propagation of the ap-
plicable methods to the suggestion blackboard is controlled by heuristics. Normally
the heuristic of the command agents ensures that the most complete entries are
sorted to the top and that methods are only reported as applicable to the suggestion
blackboard when the topmost PAI on the command blackboard is complete. This
corresponds to the PropComplete heuristic of the homomorphisms-interactive

strategy and it has the e�ect that only methods are suggested that are for sure
applicable in the current proof state. Since still non-instantiated arguments in the
PAI can mean that some required proof lines or parameters could not be computed
or that some application conditions failed.

This condition can naturally be relaxed such that methods are suggested to
the user where either some arguments have to be provided manually before they
can be applied or that are not at all applicable in the given proof state. This has
practical use, for instance, when the system is used for tutoring purposes [154].
However, then the designer of the agents should make sure that the arguments that
are computed by the agents and that possibly need to be supplied by the user should
be meaningful and thus try to eliminate as far as possible dummy arguments.

Our concrete example is the HomOnDomain method given in �gure 4.2. Its
task is to apply backwards the homomorphism given in line L1. Here line L1 does
not have the required form of its justi�cation explicitly taken, instead it is left void.
This indicates that L1 can have an arbitrary justi�cation. The homomorphism in
line L1 is of the form f : (A; Æ)! (B; �) and is applied to a goal line containing an
application of the operation �. This is indicated in line L3 of the method by the
schematic formula �[f(a1) � f(a2)], where � is an arbitrary proposition containing
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a sub-term of the form f(a1) � f(a2). The additional application condition speci�es
that a1 and a2 are actual elements of the domain A of the homomorphism f . When
the method is applied the occurrence of f(a1) � f(a2) in � is replaced by f(a1 Æa2).

As indicated by the homomorphisms-interactive strategy there are two agents

to determine the applicability of the method. The �rst, S
fL1g
fg;fg, searches for lines

containing a de�nition of an homomorphism in the proof plan; that is, the agent
looks for a line matching the speci�cation of the formula of L1 in the method's
declarative content. Once it has found an appropriate line the second agent,

G
fL3g
fL1g;fg

looks if there is an open subgoal matching line L3 of the method. Thereby

it uses the matching for L1 to look for applications of the operation of the homomor-
phism's domain in open goals. In case it has found such a line it additionally checks
the application conditions of the method making sure that the elements in question
actually belong to the domain of the homomorphism. Since the instantiation of
the argument patterns of methods are more rigid than those of tactics the number
of agents that need to be speci�ed for methods are generally relatively small. For
instance, line L2 of the HomOnDomain method is always introduced during the
method's application and thus we do not have to specify an agent looking for an
appropriate instantiation in the partial proof.

4.1.1.3 Interactive Proof Planning

During interactive proof planning the user has essentially three di�erent means of
interaction: Applying methods, choosing meta-variable instantiations, and back-
tracking. There is also the possibility to automate the application of some methods
before regaining the interactive control.

Method Application Similar to choosing regular commands methods are ap-
plied when the user chooses them interactively from those given on the suggestion
blackboard. Thus, the combination of the methods is according to the users choices
since control rules that otherwise would inuence the planners behavior are not in
e�ect. The user can also choose which of the possible goals will be considered for
planning, which corresponds to the regular shifting of the active focus.

On the contrary, the application of normalization and restriction methods is
done automatically and exhaustively after each step. This is di�erent from the regu-
lar planning algorithm PP lanner where the normalization and restriction methods
are tested for applicability after each regular planning step, but their actual ap-
plication can be inuenced by control rules (see chapter 2.2.4). The applicability
of these methods is not checked with agents but with Multi's regular matching
algorithm for methods.

Meta-variable Instantiation Besides the applicable methods the user also gets
a display of the meta-variables that are not yet instantiated. The instantiation can
then be achieved in three di�erent ways: (1) A meta-variable is instantiated during
a method application, (2) the user provides interactively an instantiation, or (3) an
agent computes and suggests an instantiation. The latter case is especially useful if
a certain meta-variable is normally instantiated by a control rule in the PP lanner
algorithm. Since in the interactive mode this particular control rule is not available
it can be modeled with an agent that then suggests the computed instantiation. Its
application however is still subject to the users consent.

Backtracking The backtracking on the other hand is also done interactively.
Thereby the user is presented with a choice of possible backtracking points that
actually correspond to the available strategies of the BackTrack algorithm. For
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instance, the user can backtrack the last planning step, the last interactive meta-
variable instantiation, or also the whole interactive planning strategy and start anew
with a di�erent strategy.

Automation Naturally the application of methods with 
-Ants can be auto-
mated with the regular automation wrapper presented in chapter 3.5. But, since
the interactive strategies inMulti are rarely constructed on their own but are rather
a supplement to the corresponding PP lanner strategy, there is also the possibility
to switch from the interactive application of methods to the automatic application
with Multi and vice versa. This is particularly useful for tutoring purposes and
for debugging strategies. Another advantage of the 
-Ants algorithm is that we
can also use regular commands for rule, tactics or external reasoners to be inter-
mixed with application of planning methods. This can however mess up Multi's
backtrack algorithms.

4.1.2 Using 
-Ants for Assertion Applications

In the preceding section we have seen an application of 
-Ants within proof plan-
ning that mainly exploited its support for user interaction and its parallel features.
In this section we now discuss how we can use 
-Ants to determine the applicabil-
ity of assertions (i.e., axioms and theorems) during automatic proof planning. This
particularly exploits the concurrency of 
-Ants in order to not only parallelize the
search for applicable assertions but also to separate it from the sequential proof
planning algorithm.

4.1.2.1 Assertion Applications

Working directly with assertion applications gives a more abstract layer of reasoning
than the basic calculus level. In fact, Huang has identi�ed the assertion level as a
well de�ned abstraction level for natural deduction proofs [116, 117].

To clarify the notion of assertion application we pick one of Huang's examples
as given in [117]. An assertion application is for instance the application of the
theorem SubsetProperty of the form

8S1 8S2 S1 � S2 � 8x x 2 S1 ) x 2 S2

in the following way:

a 2 U U � F
a 2 F

Assertion(SubsetProperty)

The direct application of the assertion is thus an abbreviation for a more detailed
reasoning process involving the explicit derivation of the goal a 2 F from the two
premises by appropriately instantiating and splitting the SubsetProperty theorem.

In 
mega assertions are applied using a specialized Assertion tactic. Its pur-
pose is to derive a given goal from a set of premises with respect to a theorem or
axiom. It thus enables a more abstract reasoning with respect to given assumptions.
We can depict the assertion tactic as a general inference rule in the following way

Prems
Goal

Assertion(Thm)

where Prems is a list of premise nodes, Goal is the goal to be proved and parameter
Thm is the assertion that is applied.

Traditionally when proof planning with Multi assertions are applied using the
ApplyAss method and the select-theorems control rule. ApplyAss is a generic
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method for assertion application and select-theorems is a control rule that can
be parameterized with the single theorems that should be considered as applicable
or with the name of theories from which all assertions should be considered1. The
applicability of assertions is checked sequentially in the application conditions of
the ApplyAss method by matching each given assertion with the current goal.
The methods applicability in turn is checked as usual during the proof planning
process. The ApplyAss method is equipped with a �rst order matching algorithm
with �-equality on �-abstractions, which might not always be suÆcient for more
complicated theorems. However, full higher order matching has to be avoided in
order to keep method application decidable. Thus, for certain theorems or classes
of theorems whose applicability cannot be checked with �rst order matching but
maybe with other special decidable algorithms special methods can be implemented.

This way of applying assertions during proof planning has several drawbacks.
Firstly, the check for applicable theorems could be parallelized to gain eÆciency.
Moreover, the applicability of an assertion does only depend on the given goal to be
proved and not on additional information of the planner or the method. Therefore,
it can be easily decoupled from the regular process of checking method applicability.
A second defect is that theorems are explicitly referred to in the control rule either
by their own names or the names of the theory they belong to. This means that the
planner not only needs direct knowledge on the status of the knowledge base, but
also, since the reference to the theorems or theories is by name, that any renamings
in the knowledge base can destroy the planners behavior. Likewise, if new theorems
are added they either have to be explicitly added to the control rule or they are
added automatically via the theory they belong to, no matter if they are relevant
for a given strategy or not. And since the control rule only is executed once during
a planning process, when the respective strategy is selected, there is no possibility
to dynamically add theorems to be considered. A last drawback is that if we want
to incorporate more elaborate or more specialized algorithms to perform assertion
matching then the regular �rst order matching algorithm we have to implement
special methods instead of reusing the generic ApplyAss method.

4.1.2.2 Finding Applicable Assertions

In particular the dilemma of sequential testing suggests to employ the 
-Ants
mechanism to search for applicable theorems. Its use can also push the search
into the background and thereby decouple the computation of a possible assertion
application from the actual planning algorithm.

Its main idea is to form clusters of theorems by grouping them with respect
to an additional speci�cation, such that theorems are selected that comply to a
given predicate. For instance, we can form a cluster of theorems that are all con-
cerned with a particular property. Then we can preselect according to the given
goal whether the theorems of a given cluster could be successfully matched without
having to carry out all possible matchings. Selecting the theorems via speci�cations
has the advantage that the respective strategy only has to specify which type of
theorems should be considered and these are automatically �ltered from all those
available. This does not only enable a more re�ned selection of theorems but also
makes us independent of choosing particular theories or name references. Further-
more, new theorems can be dynamically added and �tted into the existing clusters.

All clusters are of a similar composition. In detail, each cluster is associated

1Naturally, in order to keep assertion application feasible it has to be restricted to a certain
number of theorems and axioms that are to be considered. These assertions are selected with
respect to the strategy and domain.
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with exactly one command blackboard. The PAIs communicated on the blackboard
correspond to the three parameters an assertion application needs, namely goal line,
assertion and a list of possible premises of the assertion. The society of argument
agents working for the blackboard is composed of one goal agent, one support agent
and one or several function agents, which have the following tasks:

� The goal agent checks whether the cluster can possibly suggest the application
of one of its theorems with respect to the given goal.

� The function agents are responsible for a certain set of theorems. They possess
a predicate with which they can check whether a theorem out of their set is
applicable to a given goal line using either regular matching or some special
algorithm. Furthermore, they have an additional acquisition predicate that
enables them to determine whether a theorem from the knowledge base �ts
into the cluster.

� The support agent in turn seeks lines in the proof that can be used as premises
of a successfully matched theorem.

Thus, all clusters are of uniform setup except for the number of function agents.
Here we allow for the cluster to have several function agents such that each can try
to match a di�erent set of theorems with a di�erent algorithm. However, we do
not require two sets of theorems of two di�erent function agents to be necessarily
disjoint.

Similar to their uniform composition, clusters also function similarly to deter-
mine applicability of theorems. First the goal agent determines whether the focused
node of the active focus contains a formula complying to the agent's predicate. If
the test is aÆrmative the agent writes the goal in a new PAI on the blackboard.
Then the single function agents start working in parallel and try to match their
theorems with the given goal. Thereby the theorems are chosen with respect to
the theory of the problem; that is, only those theorems are matched that either
belong to the problem's theory or one of the inherited theories. All other prob-
lems are not checked since they were not applicable anyway. For each theorem that
matches successfully they add a new PAI to the blackboard containing both the
goal and the theorem. These PAIs in turn trigger the support agent, which then
takes the matched theorem, extracts the necessary information on which premises
are required for its application and searches for suitable lines in the support nodes
of the active focus. In case it is successful it adds a list of support nodes to the
respective PAI. The support agent has a uniform implementation for all clusters.

Each command agent surveying the command blackboard of a theorem cluster
sorts the entries on its blackboard with respect to the completeness of the PAIs. It
passes all those entries to the suggestion blackboard containing a matched theorem
and updates them if necessary. The only task of the suggestion agent is to signal
the availability of theorem suggestions to the planner. If the planner requests these
suggestions, the suggestion agent passes all available theorem suggestions unsorted
to the planner. The idea of not sorting the suggested theorems is to leave the deci-
sion to the planner to choose from all applicable theorems using its meta-knowledge
on both the current problem and the state of the planning process.

The planner initializes the mechanism only once when it �rst wants to use it.
From then on the computations are triggered automatically whenever a change in
the proof occurs and a new open goal is created. In case the planner wants to
explicitly exclude the applications of assertions during the planning process it can
suspend the mechanism and later resume it without explicitly reinitializing it.

This procedure has the advantage that the original construction of clusters of
assertions has to be done exactly once during the actual initialization. In this
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phase the function agents construct the theorem clusters by using their acquisition
predicate on all theorems available so far in 
mega and either acquire them for
their set of theorems or reject them. Whenever new theorems become available
| for instance, by loading an additional theory from the knowledge base or by
adding a newly proved problem | this is detected by a classifying agent, which
subsequently passes these new theorems as information into the mechanism. The
function agents react to this information by checking whether the new theorems �t
into their cluster with respect to the acquisition predicate. In case a new cluster is
added, for instance by the planner, it is regularly initialized; that is, it goes through
the complete process of initial theorem acquisition.

4.1.2.3 Example

Our example is taken from the case study on the proofs of properties of residue
classes presented in chapter 7.3.3. Since we shall discuss this example in great detail
there we are not concerned with details of the formalization and the proof here.
Instead we concentrate on how 
-Ants determines the applicability of assertions
in the case of the example.

We consider the �rst step in the proof of the theorem

Conc: ` Closed(ZZ5; �x �y (x��y) �+�35):

It states that the given residue class set ZZ5 is closed with respect to the operation
�x �y (x��y) �+�35). Here �35 is the equivalence class of all integers that are congruent
to 3 modulo 5 and the dashed operations are the obvious operations on the equiv-
alence classes modulo 5. The complete proof of the theorem is given in table 7.4 in
chapter 7.3.3.

Among the theorems we have for the domain of residue classes there are some
that are concerned with statements on the closure property. In particular, we have
the following six theorems:

ClosedConst : 8n:ZZ 8c:ZZn Closed(ZZn; �x �y c)
ClosedFV : 8n:ZZ Closed(ZZn; �x �y x)
ClosedSV : 8n:ZZ Closed(ZZn; �x �y y)
ClComp�+ : 8n:ZZ 8op1 8op2 (Closed(ZZn; op1) ^ Closed(ZZn; op2)))

Closed(ZZn; �x �y (x op1 y) �+(x op2 y))
ClComp�� : 8n:ZZ 8op1 8op2 (Closed(ZZn; op1) ^ Closed(ZZn; op2)))

Closed(ZZn; �x �y (x op1 y) ��(x op2 y))
ClComp�� : 8n:ZZ 8op1 8op2 (Closed(ZZn; op1) ^ Closed(ZZn; op2)))

Closed(ZZn; �x �y (x op1 y)��(x op2 y))

The theorems ClosedConst, ClosedFV , and ClosedSV talk about residue class
sets with simple operations whereas ClComp�+, ClComp��, and ClComp�� are con-
cerned with combinations of complex operations. Therefore, the di�erence between
the groups of theorems is that the applicability of former can be checked with �rst
order matching whereas for the latter we need higher order matching. For exam-
ple, when applying the theorem ClComp�+ to our problem at hand the necessary
instantiations for the operations have to be op1 = �x �y x��y and op2 = �x �y �35,
which cannot be found by �rst order matching. However, since we are concerned
with only a distinct set of binary operations and their combinations, we can keep
things decidable by using a special eÆcient algorithm, which matches the statements
of the theorems ClComp�+, ClComp��, and ClComp�� with nested operations on
congruence classes.

In 
-Ants we have the agent society as depicted in �gure 4.3 for the cluster
comprising the theorems given above. The �rst agent is the goal agent that accepts



94 Chapter 4. Integration of Reasoning Techniques
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Figure 4.3: Argument agents for the Closed theorem cluster.

only those formulas as possible conclusions that contain an occurrence of the Closed
predicate. We then have two function agents that try to match the theorems. The
�rst tries to match the theorems ClosedConst, ClosedFV , and ClosedSV to the
formulas accepted by the goal agent using �rst order matching. The second func-
tion agent uses the special algorithm instead of matching the theorems ClComp�+,
ClComp��, and ClComp�� conventionally. Both function agents have an additional
acquisition predicate specifying that the agents can acquire theorems whose con-
clusions have Closed as the outermost predicate and are in case of the �rst agent
with respect to a simple operation and in case of the second agent with respect to
a complex operation. The last agent is the generic support agent, which has an
algorithm to extract the necessary premises from a matched theorem and, if there
are any, tries to �nd appropriate proof lines containing them.

For our concrete example theorem the information that accumulates on the
command blackboard for the Closed theorem cluster is as follows:

Closed Closed
(Goal:Conc)

Closed
(Goal:Conc)
(Goal:Conc;Thm:ClComp�+)

First the goal agent detects an occurrence of the Closed predicate in the given
goal Conc and adds a PAI suggesting it as instantiation for Goal to the blackboard.
With this PAI the function agents start matching their respective theorems to Conc,
which is successful for the ClComp�+ theorem. The matched theorem is added as
suggestion for the Thm slot of the PAI and the support agent starts its search.
For the example the premises are Closed(ZZ5; �x �y �35), Closed(ZZ5; �x �y x��y),
and also to show the correctness of the sort assertion by proving 5 2 ZZ. Since
we assumed that this is the �rst step in the proof the agent �nds nothing and the
second result PAI on the command blackboard is propagated to be suggested to the
planner. In case the planner chooses to apply the ClComp�+ theorem in the current
proof state the two premises of the theorem will become new open subgoals.

4.1.2.4 Discussion

The presented use of 
-Ants for suggesting assertion applications during proof
planning enhances the traditional way of computing assertion applications in a
method in several ways: It distributes the search for applicable assertions and
decouples it from the planning algorithm. It also enables the use of specialized
eÆcient algorithms for theorem matching. Furthermore, the mechanism does not
have to have intrinsic information on the actual status of the knowledge base since
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the selection of theorems is done via the acquisition predicates of the agents rather
than by reference to particular theorems. This also makes the approach dynamic in
the sense that the mechanism can extend itself at runtime. However, one obvious
disadvantage is that it requires the predicates for the goal and function agents to
be explicitly speci�ed and implemented, which requires some additional e�ort.

There are, of course, several alternative ways of enhancing the traditional asser-
tion application we have considered.

The �rst is to incorporate 
-Ants in a na��ve way by automatically creating a
goal agent for every available assertion, which can then match the assertion with
the respective goal in each planning cycle. Results are then written on the single
command blackboard for the ApplyAss method. An additional support agent could
try to complete these results by looking for appropriate support lines that corre-
spond to the premises of the suggested assertions. Once an applicable assertion has
been found it can be signaled to the planner, which can then decide if and when to
apply the ApplyAss method.

This approach has the advantage that all the goal agents can be automatically
created and are all of the same form, which saves the e�ort of specifying and imple-
menting both goal and function agents in our approach. We also need exactly one
command agent, only. Furthermore, the search mechanism can be easily expanded
since for every new theorem a new goal agent can be automatically added. In this
scenario all goal agents use the same algorithm to match their assertion with the
given goal. This could be a higher order matching algorithm since un-decidability
is no longer a factor as agents that might commence an in�nite computation are
eventually stopped by 
-Ants's resource mechanism. However, we could not in-
corporate specialized decidable algorithms for certain complex theorems. Another
disadvantage of this approach is that in order to control the number of considered
assertions they still have to be referred to explicitly | either via name or their
theory | in the strategy by a control rule. Furthermore, to have one goal agent
for each assertion has the e�ect that similar to the traditional method application,
possibly all assertions are actually matched, even though in parallel and not se-
quentially. Although there might be criteria that can indicate that some theorems
will not be applicable in the �rst place and could be excluded from the matching.

A second observation is that our presented use of 
-Ants has certain resem-
blances to hashing [169] and term indexing techniques [103]. Here the approach is to
have a hash-table that acts as a mapping from constants occurring in the knowledge
base to the theorems in which those constants occur. This way the knowledge base
can be quickly accessed by reference to constants occurring in the considered goal to
narrow the number of theorems to be matched. And, since our reference objects are
constant symbols and not the theorems themselves, the mechanism can be kept free
from any inside-information on the status of the knowledge base. Although we have
the appropriate higher order term indexing [127] available in 
mega we chose not
to implement this variant since one might want to impose stricter restrictions on the
theorems that are considered apart from whether they have certain constant sym-
bols in common with the current goal. Moreover, theorem matching has to be done
again by a single algorithm, which is either not suÆciently powerful or undecidable.
However, the function agents in our approach can naturally incorporate clever term
indexing algorithms in their acquisition predicate to search the knowledge base.

Another possible approach is to enhance the originalApplyAssmethod by giving
it a more powerful matching algorithm but not full higher order matching. Quali-
fying algorithms are, for instance, higher order pre-uni�cation [175] or higher order
pattern matching [174, 173]. The former is again undecidable and the latter has,
albeit it is decidable, the limitations that theorems are often of a more recursive
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structure in order to be �t into pattern schemes.

4.2 Symbolic Computation in Proof Planning

In recent years there have been many attempts at combining computer algebra
systems (CAS) and deduction systems (DS), either for the purpose of enhancing the
computational power of the DS [107, 124, 17] or in order to strengthen the reasoning
capabilities of a CAS [2, 18]. For the former integration there exist basically three
approaches: (1) To fully trust the CAS, (2) to use the CAS as an oracle and to
try to reconstruct the proof in the DS with purely logical inferences, and (3) to
generate intermediate information output during a CAS calculation and to use this
intermediary output to verify the computation. Following approach (1) one cannot
guarantee the correctness of the proof in the DS any longer. While the correctness
is no issue in approach (2) it foregoes the eÆciency of a CAS and replaying the
computation with purely logical reasoning might still impose a hard task on the
DS. (3) is a compromise, where one can employ the computational strength of a
CAS and additionally gain important hints to ease the reconstruction and checking
of the computation.

We have, indeed, successfully experimented with idea (3) by implementing a
prototype CAS (�CAS) that consists of a small library of simple polynomial algo-
rithms, which give us intermediate information on their computations [124, 193].
This intermediary information is used to derive abstract proof plans that can be
transformed into proofs of the 
mega system. Exploiting 
mega's ability for
step-by-step expansion of proof plans into natural deduction calculus proofs, the
computations can be machine-checked in a �ne-grained calculus level. While this
way of integrating a computer algebra system into 
mega solves the correctness
issue, it has the drawback that there does not exist a full CAS that provides us with
the necessary intermediary output on its calculations. As an alternative one could
enrich the simpli�cation mechanism of a regular CAS to output information on the
applied rewriting rules. However, this is not only a non-trivial task itself but also
falls short if analytical or numerical algorithms are involved in the simpli�cation
procedure, which are not based on rewriting rules.

In 
mega we use a pragmatic approach to work around this problem in proof
planning, which has originally been presented in [194]. It is based on the idea
of Harrison and Th�ery [107] that many hard symbolic computations are easy
to check. We exploit this fact within the proof planning component of 
mega:
Results of non-trivial symbolic computations are used during the proof planning
process. The veri�cation of these calculations is postponed until a complete proof
plan is re�ned to a low level calculus proof and it is arranged in a way, that we can
use the trivial direction of the veri�cation. This is achieved by using Maple [177]
for computations during the planning process and �CAS to aid the veri�cation.

Note that we do not use �CAS to verify the correctness of the algorithms in-
volved but only of single instances of their computations. Thus, the produced proofs
are proofs for the computation of existential witnesses, only, and not for the overall
algebraic procedure. Note also that we do not only verify algebraic solutions of
algorithms but also analytic or even numerical solutions.

4.2.1 Integration of Computer Algebra

In this section we �rst present the general architecture for the integration of com-
puter algebra into 
mega. For a more detailed introduction see also [124, 193].
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Figure 4.4: Interface between 
mega and computer algebra systems

Then we elaborate our new approach for integrating symbolic computations and
their veri�cation into proof planning in 
mega.

4.2.1.1 Architecture

The integration of computer algebra into 
mega is accomplished by the sapper
system [193], which can be seen as a generic interface for connecting one or several
computer algebra systems (see �gure 4.4). An incorporated CAS, likeMaple [177],
Gap [94], or �CAS [193], is treated as a slave to 
mega. This means only 
mega
can call the CAS but not vice versa. From the technical point of view, 
mega
and the CASs are independent processes while the interface is a process providing
a link for communication. Its role is to automate the broadcasting of messages by
transforming output of one system into data that can be processed by the other.2

The maintenance of processes and passing of messages is managed by the Math-
Web [88] environment into which 
mega is embedded.

The role of sapper in the integration has two distinct aspects: Firstly, arbitrary
CASs can be easily used as black box systems for term rewriting (similar to the
approaches of [18, 17]) and sapper works as a simple bridge between the planner
and the CASs. Secondly, sapper also o�ers means to use a CAS as a proof planner;
that is, if the CAS can provide additional information on its computations, this
information is recorded by sapper and translated into a sequence of tactics that
can eventually verify the computation. Since there does not exist a state-of-the-
art system that provides this information, we use our own �CAS system, that
is a collection of simple algorithms for arithmetic simpli�cation and polynomial
manipulations including a plan generating mode (see [124]).

The two tasks of a CAS, rewriting and plan generation, are mirrored in the
interface (see �gure 4.4) that basically can be divided into two major parts; the
translator and the plan generator. The former performs syntax translations between

mega and a CAS in both directions while the latter only transforms intermediate
output of �CAS to 
mega proof plans. Figure 4.4 also depicts the di�erent uses
of the two CAS involved: While Maple and Gap are connected as black box
systems, only, �CAS can be used both as black box and as plan generator. Although

2This is an adaptation of the general approach on combining systems in [64].
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�gure 4.4 only shows three computer algebra systems, the interface is not restricted
to them and can also connect to any other CAS. In fact, Magma is also currently
interfaced with 
mega.

While the translation part of the interface is commonplace, the plan generator
is the actual specialty of sapper. It provides the machinery for the proof plan
extraction from the specialized algorithms in �CAS . These are equipped with a
proof plan generating mode that returns information on single steps of the compu-
tation within the algorithms. The output produced by the execution of a particular
algorithm is recorded by the plan generator, which converts it, according to addi-
tional information in the proof, into a proof plan. In order to produce meaningful
information �CAS needs to have a certain knowledge about the proof methods and
tactics available to 
mega in its knowledge base. Thus, references to logical objects
(methods, tactics, theorems, or de�nitions) of the knowledge base are compiled a
priori into the algebraic algorithms for documenting their calculations. sapper's
plan generator uses produced intermediary output to look up tactics and theorems
of an 
mega theory (see �gure 4.4) in order to assemble a valid proof plan.

To implement a plan generating mode is a simple task for simple CAS algorithms.
An algorithm has to be enriched to produce output that indicates the computations
performed in crucial points. This output then has to refer to tactics in 
mega's
knowledge base that correspond to the computational steps. Thus, to extend an
algorithm with a plan generating mode generally also involves writing appropriate
tactics in 
mega.

4.2.1.2 Integration into Proof Planning

In proof planning we can use symbolic calculations in two ways: (1) In control rules
hints are computed to help guiding the planning process, and (2) within method-
applications complicated algebraic computations can be carried out by computer
algebra systems to simplify the proof. As a side-e�ect both cases can restrict possible
instantiations of meta-variables.

An example for case (1) are control rules that suggest meta-variable constraints
by computing possible instantiations using a computer algebra system. However,
the computed instance is regarded only as a hint; that is, in case the planning
attempt fails with this particular instantiation the planner can still backtrack and
proceed by using regular search. This way the veri�cation of the hint is done by
the subsequent proof planning. We will see examples for this in chapters 7 and 8
where, for instance, Gap is employed to suggest instantiations of meta-variables in
the context of proofs in the residue class domain.

Case (2) is a way to simplify proofs by incorporating a symbolic computation
directly as a single step in the proof. During the application of a method a computer
algebra system is called and its results are directly incorporated into the proof plan
or a proof line is justi�ed by the fact that the computation succeeds. Here the
computation is no longer treated as a hint but rather assumed to be correct for
the time being. Thus, the constructed proof plan is only correct provided the
computation is correct. But we have to keep in mind that in 
mega all plans
have to be expandable to ND calculus proofs. However, using a system whose
computations are checkable, like �CAS , restricts us to the use of its rather simple
algorithms, which might not always be suÆcient for the task at hand. What we
really would like, is to combine the computational power of a CAS like Maple to
perform non-trivial computations with the veri�cation strength of �CAS.

Therefore, we try to exploit as much as possible the fact that many diÆcult
symbolic computations are easy to verify. This is folklore in mathematics and has
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already been elaborated in [107]; the most prominent example for this is certainly
inde�nite symbolic integration, which is still a hard task for many CASs. Results
of inde�nite symbolic integration algorithms are, however, easily checked, since it
involves only di�erentiation of the result and comparison with the original function.
The comparison might be less trivial if the system involved does not have canonical
representations of its terms. Then the equivalence of the integrated function and
the result of the di�erentiation has to be shown separately. Other examples are the
computation of roots of functions or factorization of polynomials, which involve non-
trivial algorithms, but the veri�cation of the results only involves straight-forward
arithmetic.

The separation of computation and veri�cation can be easily achieved within
proof planning: During the planning process the applicability of a method is solely
determined by matching and checking the application conditions. As mentioned
earlier, the latter can be used to execute arbitrary functions, therefore we can
also implement conditions that call Maple and in case useful results are returned,
bind these to some method parameters. During the planning process we are not
concerned with the veri�cation of the computation, and postpone it until the method
is actually expanded. This is done by stating a rewriting step that is justi�ed by the
application of a CAS within the proof schema of the method, preferably in those
lines that are introduced during the expansion of the method.

Thus, we design our planning methods in a way that Maple is called in one of
the application conditions to perform the diÆcult computations during the planning
process. The proof schema then contains the appropriate proof steps that enable
the application of �CAS to verify Maple's computation during the re�nement of
a proof plan, in the easier direction.

4.2.1.3 Dealing with Di�erent Canonical Forms

When using a system such as Maple for a computation within some method and
�CAS to verify Maple's result we might have problems identifying the term re-
sulting from �CAS's computation with the original term Maple was applied to.
Thus, we have to take care of the problem of distinct canonical forms of the sys-
tems involved during the expansion of a computation. Note that alsoMaple works
with canonical representations of terms3 for the following investigations it is only
important that �CAS has unique canonical forms.

Let �0 be the original term in the proof, while �Maple denotes the term that
results from applying Maple to �0, and let ��CAS be the term returned by �CAS
applied to �Maple. Furthermore, let (T1; : : : ; Tn) be the sequence of tactics computed
by �CAS whose application to �Maple yields the proof plan (4.1).4

�Maple

T1�! �0
T2�! : : :

Tn�! ��CAS : (4.1)

We then have three cases to consider:

(a) �0 and ��CAS coincide,

(b) �0 and ��CAS are distinct, however �0 occurs at some point during the ex-
pansion, and

3The form of Maple's result may vary for equivalent arithmetic expressions (in two di�erent
runs of Maple), depending on the form of the input. For instance, Maple's simpli�cation of
x+2z+ y� z yields x+ z+ y, while the same computation with input x+ y+2z � z would yield
x+ y + z in a di�erent run. See also [1] on this point.

4For the sake of clarity, we omit any context the terms �j might be embedded in; that is, we
view the proof plan as rewriting steps of a sub-term of some arbitrary formula.
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(c) �0 and ��CAS are distinct, and �0 does not occur during the expansion.

Case (a) is trivial. Case (b) means that we have some 1 � i � n, such that

�Maple

T1�! �0
T2�! : : :

Ti�! �0
Ti+1

�! : : :
Tn�! ��CAS : (4.2)

This problem can be easily solved by successively applying the single tactics and
checking after each application whether the resulting term is already equivalent to
�0. In this case the proof can be concluded directly. The remainder of the tactic
sequence, (Ti+1; : : : ; Tn) in (4.2), is discarded.

Case (c) is less trivial since the produced tactics are not suÆcient to fully jus-
tify the computation and thus we are left with a new proof problem, namely to
derive the equality of ��CAS and �0. However, at this point we can make use
of the lexicographic term ordering of �CAS : If ��CAS and �0 really constitute
the same arithmetic expression, applying �CAS simpli�cation algorithm to �0 will
yield ��CAS . Note that this step might not only include trivial reordering of a sum
but can contain more sophisticated arithmetic. The execution of the simpli�cation
algorithm will then return a sequence of tactics (S1; : : : ;Sm) that results in:

�Maple

T1�! �0
T2�! : : :

Tn�! ��CAS

Sm � : : :
S1 � �0 (4.3)

In practice, we deal with this problem slightly di�erent, since in 
mega's tactic
expansion mechanism calls to �CAS have to be carried out explicitly by expanding
the according justi�cation, and not implicitly during an expansion itself. Thus, we
introduce a new subproof for the equality of ��CAS and �0:

��CAS = ��CAS (=Ref)
��CAS = �0 (CAS)

The �rst line is an instance of reexivity of equality, an axiom of 
mega's basic
calculus. The equation of the second line serves then to apply a rule of equality
substitution (=Subst) to �nish the original expansion, resulting in proof plan (4.4).

�Maple

T1�! �0
T2�! : : :

Tn�! ��CAS

=Subst
�! �0: (4.4)

In order to completely verify the computation the justi�cation (CAS) above must
be expanded as well. This results in the second call to �CAS , yielding a proof plan
equivalent to the right hand side of (4.3).

4.2.2 Example

We illustrate our approach with an example of a general proof planning method for
solving equations. This method is also used in the proofs of the case studies we
shall present in part III of this thesis.

Figure 4.5 depicts the planning method SolveEqu whose purpose is to solve an
equational subgoal if possible. The method has only one conclusion, which will be
removed from the planning state if the application of the method is successful.

Thus, SolveEqu is handled by the planner as follows: If an open line in the
planning state contains an equation and therefore matches L1, SolveEqu's pa-
rameters � and 	 are instantiated. Then the application condition is evaluated.
Solve-with-Maple callsMaple to compute a solution of the equation � = 	 using
Maple's function solve. The terms � and 	 are translated into the appropriate
Maple syntax: Arithmetic functions in 
mega are translated into the correspond-
ing arithmetic functions in Maple and digits are mapped to digits and all other
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Method: SolveEqu
Premises
Appl. Cond. Solve-with-Maple(� = 	)
Conclusions 	L1

Declarative

Content
(L0) � `� = � (=Ref �)
(L1) � `� = 	 (CAS L0 h2i)

Figure 4.5: The SolveEqu method.

occurring terms are translated into Maple variables. In particular non-arithmetic
functions in the 
mega expression become single variables in Maple representa-
tion.

In the case whereMaple returns a general solution for the equation the method
is applicable. Here, general solution means that all variables contained in the ex-
pression can be arbitrarily instantiated and, in particular, do not depend on each
other. However, if the original 
mega equation contains meta-variables we allow for
speci�c solutions to the equation as long as only the Maple variables correspond-
ing to the meta-variables have speci�c or dependent solutions, while the solution
is general for all other variables. The speci�c solutions for the meta-variables are
then used to instantiate or further constrain the meta-variables in question. In the
case where Maple does not return a general solution in the above sense or does
not return any solution at all, the application of SolveEqu fails.

If the application condition is successfully evaluated, the instantiated method is
introduced into the partial proof plan and the goal L1 is removed as a planning goal.
Since SolveEqu does not introduce any new subgoals the particular subproblem the
goal L1 constituted is fully justi�ed. When an application of the method is expanded
later on, the subproof given in the declarative content is introduced; that is, the
sequent L0 is newly added to the proof. This line serves to certify the correctness
of the solution computed by Maple by making this computation explicit. Here
the equality of � and 	 is derived from the reexivity of equality. The newly
introduced justi�cation of line L1 indicates both that the step has been introduced
by the application of a CAS and that its expansion can be realized by using �CAS
in plan generating mode. Furthermore the given term position 2 indicates that
for the veri�cation of Maple's computation it is necessary to certify that 	 can
successfully be transformed into �.

To perform the veri�cation, we must use basic arithmetic, only, instead of the
generally harder problem of solving an equation in arbitrarily many variables that
was performed by Maple. Thus, we can use �CAS 's simpli�cation component
for the veri�cation. For a concrete instance, �CAS would return a sequence of
tactics indicating single computational steps that have been performed inside the
computer algebra algorithm. This proof plan is then inserted into the proof and
further expanded to show the correctness of the computation.

But the veri�cation of the performed computation can fail since the application
of the SolveEqu method can be faulty. The method itself can be used in various
domains, for instance, in the following example it is applied to an equation of
integer. The computation in Maple, however, is not restricted to a particular
domain. Therefore, Maple tries to solve the equation over the complex numbers.
Consequently, a success of Maple does not necessarily entail that the equation in
question actually has a solution in the considered domain. The expansion of the
method can thus fail for two reasons: Either the proof plan returned by �CAS ,
whose algorithms also work over the complex numbers, contains a tactic that is not
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known in the actual problem domain. Or during the expansion of �CAS 's proof
plan a tactic or a theorem cannot be applied with terms computed by Maple.
For instance, Maple can return a meta-variable instantiation containing a rational
number, which cannot be instantiated in a theorem ranging over the integers.

As a concrete example we consider the application of SolveEqu in the proof of
associativity of the operation �x� �y� (x � y) � 2, where � is the multiplication on
integers. This is part of problems we shall examine in the case study in chapter 7
in the context of residue classes. However, at this point we are not concerned with
the actual problem and only concentrate on the part of the proof that we need to
demonstrate the veri�cation technique we present. Moreover, for the sake of the
example, the problem is slightly changed by introducing a meta-variable. Thus, the
task at hand is the solution of the equation line

L1: ` (a � ((b � c) � 2)) � 2=(((a �mv) � 2) � c) � 2 (Open)

Here, mv is a meta-variable and a; b; c are arbitrary constants. When SolveEqu is
applied the function call passed to Maple is:

solve((a*((b*c)*2))*2=(((a*mv)*2)*c)*2);

In case any of the constants would have been a non-arithmetical function, say f(x),
then it would have been transformed to f x and treated as a Maple variable. For
the equation Maple returns three possible solutions among which one is of the
form fa = a; c = c; b = b; mv = bg. This corresponds to a general solution in the
variables a, b and c and a speci�c solution for the meta-variable mv. Hence the
method is applicable which results in the proof line

L1: ` (a � ((b � c) � 2)) � 2= (((a � b) � 2) � c) � 2 (SolveEqu)

The application of SolveEqu binds the meta-variable mv to b. Here we have a
point to possibly introduce an error into the proof in case mv is bound to a term
representing a non-integer value. However, since b is a general variable the following
expansion of the method goes through smoothly.

Upon expansion of the justi�cation the declarative content of the SolveEqu
method is introduced giving us the two lines

L2: ` (a � ((b � c) � 2)) � 2=(a � ((b � c) � 2)) � 2 (=Ref)
L1: ` (a � ((b � c) � 2)) � 2=(((a � b) � 2) � c) � 2 (CAS L2 h2i)

Here the second line is justi�ed by the application of a CAS. In order to obtain
a pure ND-level proof this line needs to be further expanded. However, since during
the application of SolveEqu the equation was solved byMaple, we do not have any
additional information for an expansion. To justify the computation in more detail
we use an algorithm within our �CAS system in plan generation mode that produces
a trace output that gives more detailed information on single computational steps.
Instead of simulating the algorithm for solving the equation as a whole within
�CAS , we simply use an algorithm that simpli�es the term on the right-hand side
of the equation. Thus, �CAS veri�es the result of Maple's computation with the
help of a simpler algorithm. The yielded proof plan consists of a sequence of tactics
indicating single computational steps of the algorithm. Within the PDS, the single
step can be expanded to a plan with higher granularity. The newly introduced proof
steps are:
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L6: ` 4 � (a � (b � c))= 4 � (a � (b � c)) (=Ref)
L5: ` 4 � (a � (b � c))= (a � ((b � c) � 2)) � 2 (CAS h2i)

L2: ` (a � ((b � c) � 2)) � 2= (a � ((b � c) � 2)) � 2 (=Ref)
L4: ` (a � ((b � c) � 2)) � 2=4 � (a � (b � c)) (=Subst L2 L5 h2i)
L3: ` (a � ((b � c) � 2)) � 2= (2 � (a � (b � c))) � 2 (PullDigit L4 h2i)
L1: ` (a � ((b � c) � 2)) � 2= (((a � b) � 2) � c) � 2 (PullDigit L3 h2:1i)

The lower three lines correspond to the step-by-step computations of the �CAS al-
gorithm, which descends recursively into the term, pulls all numbers to the front of
the term to compute the coeÆcient and sorts all remaining sub-terms lexicograph-
ically. In our example the sub-terms are already in a lexicographic order, however,
the algorithm normalizes the coeÆcient in two steps as indicated by the two appli-
cations of the PullDigit tactic. First, PullDigit is applied at position h2:1i of the
equation which rewrites the sub-term (((a � b) � 2) � c) to (2 � (a � (b � c))) on the
righthand side of the equation. The second application of PullDigit sorts the sec-
ond occurrence of 2 to the front and multiplies it to compute the actual coeÆcient
4.

Since �CAS 's simpli�cation algorithm yields only 4� (a� ((b� c))) as a result we
have a conict of canonical forms, as described in the preceding section. Therefore,
the upper two lines have to be introduced in the proof in order to justi�y the
equality substitution (=Subst). The new CAS justi�cation can be expanded with
another call to �CAS. However, we want to focus on the expansion of the original
proof plan contained in lines L1, L3, L4. So far the expansion of the original CAS
justi�cation has been exclusively done by �CAS proof plan generation mode. At
this stage �CAS cannot provide any more details about the computation and the
subsequent expansion of the next hierarchic level can be achieved without further
use of a CAS. Let us for instance take a look at the expansion of the �rst application
of the PullDigit tactic, which basically describes the reordering within a product:

L3: ` (a � ((b � c) � 2)) � 2= (2 � (a � (b � c))) � 2 (PullDigit L4 h2i)
L8: ` (a � ((b � c) � 2)) � 2= (2 � ((a � b) � c)) � 2 (Assoc� L3 h2:1:2i)
L7: ` (a � ((b � c) � 2)) � 2= ((2 � (a � b)) � c) � 2 (Assoc� L8 h2:1i)
L1: ` (a � ((b � c) � 2)) � 2= (((a � b) � 2) � c) � 2 (Commu� L7 h2:1:1i)

Here the tactics named Assoc� and Commu� correspond to the application of the
theorems of associativity and commutativity of times as a rewrite rule. Now the
subproof introduced when expanding PullDigit is already on the level of applica-
tions of basic laws of arithmetic. These tactics can, however, be expanded even
further. Expanding, for example, the Commu� justi�cation yields:

L9: ` 8x:ZZ 8y:ZZ x � y= y � x (Theorem)
L10: ` 8y:ZZ (a � b) � y= y � (a � b) (8E L9 (a � b))
L11: ` (a � b) � 2=2 � (a � b) (8E L10 2)

L7: ` (a � ((b � c) � 2)) � 2= ((2 � (a � b)) � c) � 2 (Assoc� L8 h2:1i)
L1: ` (a � ((b � c) � 2)) � 2= (((a � b) � 2) � c) � 2 (=SubstL7L11 h2:1:1i)

This last expansion step details the application of commutativity of addition as
rewrite step by deriving the right instance from the theorem of commutativity.

At this point we have already expanded to very �ne-grained level of the proof.
But we have seen in chapter 2 that equality is a de�ned concept in 
mega. There-
fore, tactics such as =Subst and =Ref can also be expanded in order to justify
equational reasoning by Leibniz-equality and to be able to fully proof check the
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computation. However we omit the tedious details of these expansions here. Pro-
vided we have carried out those expansions as well, the proof checker approves,
and we have correct proofs for all the applied theorems in our database, we have
successfully veri�ed the particular computation which guarantees the correctness of
the overall proof.

4.2.3 Discussion

From our current experience (see [194] and part III), the presented approach is
well suited for symbolic computations whose veri�cation is relatively trivial, for
instance, where only simple arithmetic needs to be employed. However, the method
is not feasible for computations where the veri�cation is as expensive or even more
complicated than the computation itself. At least in the latter case it might be
more practicable to immediately specify the computation as a �CAS algorithm.
Computations where the veri�cation will be de�nitely non-trivial are those involving
certain uniqueness properties of the result. For instance, when employing Maple
to compute all roots of a function, it will be a hard task to verify that there exist
no more roots than those actually computed. For further discussion of this point
we refer to [107].

Although we presented our ideas in this paper in the context of proof planning,
we strongly believe that the approach could also work in tactical (interactive) the-
orem proving. One necessary prerequisite will be the existence of an explicit proof
object for storing proof steps that contain calculations. These steps can then be ver-
i�ed with the help of the simple �CAS algorithm. Even if the proof object does not
have the advanced facilities for step-wise expansion of proof steps the veri�cation
could be done by transforming �CAS output into tactics, and thereby primitive
inferences, of the respective system. Those primitive inferences would not neces-
sarily have to be incorporated into the proof object. For systems not maintaining
explicit proof objects, such as HOL [102] or PVS [165], the approach of [107] would
suit best. Here the symbolic computations are veri�ed immediately by tactics build
on primitive inferences of HOL. However, this approach directly implements the
veri�cation algorithms as tactics in the HOL system as correspondences toMaple's
computation.

4.3 Summary of Chapter 4

This chapter was concerned with the integration of di�erent reasoning techniques
within a proof planning framework. In particular we presented how the 
-Ants
mechanism can be fruitfully employed in Multi for interactive proof planning and
for eÆciently determining the applicability of assertions in a proof. For the former

-Ants can be used as an algorithm within Multi and then parameterized with
a regular strategy. Thereby we generally implement the interactive strategy using

-Ants as a complement to the corresponding automatic strategy using the regular
planning algorithm PP lanner. This enables to switch freely between interactive
and automatic proof planning.

A second application of 
-Ants in Multi is to determine and suggest possible
assertion applications. Here the mechanism is used to automatically create mean-
ingful clusters of theorems available in 
mega's knowledge base. Applicability of
assertions is then determined constantly in the background and signalled to the
planner indepedent from regular method matching. Theorems can also be dynam-
ically added and are automatically integrated into the mechanism. This use of
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-Ants has the advantage that the search for applicable assertions can be decou-
pled from the actual proof planning process. Moreover, the available theorems are
organized in clusters which enables to �lter theorem clusters with respect to their
relevance for a given goal and thus to avoid blind search for applicable theorems.
The clusters are automatically formed with respect to given criteria independent
from the actual status of the knowledge base and can be dynamically extended.

We have also seen how computer algebra systems are integrated into 
mega in
order to prune the search space during proof planning. Thereby symbolic computa-
tions can be used in two ways: In control rules to compute hints for meta-variable
instantiations and in methods to perform rewriting and thereby shorten the proofs.
While the correctness of the hints is automatically checked by the proof planner,
the correctness of computations inside methods has to be explicitly veri�ed during
the re�nement of a proof plan.

Thereby we make use of the following technique: During the planning process we
employ a regular full-grown CAS that allows us to perform non-trivial computations.
When re�ning a constructed proof plan to an actual calculus level proof the rewrite
step introduced by the CAS has to be expanded into low level logic derivations.
This is done with the help of a small self-tailored CAS called �CAS that provides
detailed information on its computations in order to construct the expansion of the
rewrite step. Since �CAS is specialized currently only on arithmetic we can so far
incorporate only those computations whose veri�cation involves arithmetic.
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Case Studies





Chapter 5

Equivalence and Uniqueness

Proofs

In this chapter we demonstrate the use of 
-Ants to automatically construct proofs
as sketched in chapter 3.5. We shall model an eÆcient and goal directed search pro-
cedure for the �rst order fragment of our ND calculus in 
-Ants. This fragment is
enriched by inference rules that incorporate automated theorem provers and that
deal with de�nitions and the description operator. Using the automation wrapper
proofs can then be automatically constructed. The time bound of the automation
wrapper is particularly inuential as to whether and at what point a prover can �nd
a proof and variations of the time bound can change the shape of the constructed
proof. The examples we shall consider are proofs of equivalence of di�erent de�ni-
tions of a group, uniqueness proofs and some simple theorems from group theory.

The chapter is organized as follows: We �rst give some de�nitions of algebraic
structures and in particular several alternative de�nitions of a group. We shall
then formulate the example theorems before painstakingly formalizing all necessary
concepts. In order to prove the theorems we introduce an eÆcient and goal directed
search procedure for natural deduction calculus we have modeled in 
-Ants and
enrich it by some special rules to deal with both de�nitions and description and
to apply external automated theorem provers. Then we demonstrate the working
scheme of the proofs for the given theorems with a simple example. We conclude
the chapter by giving a challenging example theorem about the equivalence of two
alternative de�nitions of a group, for which, to the knowledge of the author, current
state of the art automated theorem proving techniques fail.

5.1 Some De�nitions

In this section we introduce some de�nitions of algebraic structures. In particular
we give several equivalent de�nition of the notion of a group. We start by giving a
classical group de�nition.

Definition 5.1 (Group): Let G be a nonempty set and let � be a binary mapping
on G. G is a group if the following holds:

G1) For all a; b 2 G holds a � b 2 G. (Closure)

G2) For all a; b; c 2 G holds (a � b) � c = a � (b � c). (Associativity)
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Figure 5.1: Constructing groups via more general algebras

G3) There exists e 2 G such that for all a 2 G holds e � a = a � e = a.
(Existence of a unit element)

G4) For all a 2 G exists x 2 G such that a � x = x � a = e.
(Existence of inverses)

We call the element e 2 G in axiom G3 the unit element or the identity of the
group. An element x 2 G that satis�es property G4 is called the inverse of a 2 G.

The de�nition given in 5.1, however, is not minimal, since we can de�ne a group
also if we replace properties G3 and G4 with their weaker, more general forms that
postulate the existence of only a left identity and left inverse elements:

G3�) There exists e 2 G such that for all a 2 G holds e � a = a.
(Existence of a left unit element)

G4�) For all a 2 G exists x 2 G such that x � a = e. (Existence of left inverses)

Naturally, the choice of using the left identity and left inverse is arbitrary since
we can analogously de�ne a group using right identity and right inverses or even
alternate the sides of identity and inverses.

We can also substitute both G3 and G4 with a single property we refer to as the
existence of divisors and gain an even shorter de�nition of the notion of a group.

G30) For all a; b 2 G exist x; y 2 G such that a � x = b and y � a = b.
(Existence of Divisors)

One can show the equivalence of the di�erent kind of de�nitions without much e�ort.
Formalizing these proofs or even automating them is, however, far less trivial.

We can also de�ne the notion of a group via larger, less concrete algebraic
structures. Hereby we have several possible ways to arrive at a de�nition as is
outlined in �gure 5.1. We shall �rst give the de�nitions of the di�erent algebraic
structures involved, especially since they are also relevant for the case study we
present in chapter 7, before we give several equivalent de�nitions of a group based
on these structures.

Starting on the left side of the outline given in �gure 5.1 we start by de�ning
the most general of our algebraic structures, a magma. Magmas are also sometimes
called groupoids or multiplicative sets.

Definition 5.2 (Magma): Let M be a nonempty set together with a mapping
� :M �M !M that uniquely appoints to every two elements in M a third element
in M . The structure (M; �) is called a magma.
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A magma corresponds thus to an algebra having the closure property G1 from
de�nition 5.1. We �rst follow the lower branch in our hierarchy of algebraic struc-
tures of �gure 5.1.

Definition 5.3 (Semi-Group): Let (S; �) be a magma. S is a semi-group if for
all a; b; c 2 S holds (a � b) � c = a � (b � c).

The properties of a semi-group are equivalent to the group properties G1 and G2.
If we add also property G3 we arrive at the notion of a monoid.

Definition 5.4 (Monoid): A semi-group (M; �) is a monoid if there exists an
element e 2M such that for all a 2M holds a � e = e � a = a.

Naturally, if we have a monoid with the �nal group property G4 we arrive at the
de�nition of a group. This concludes the lower branch in �gure 5.1.

If we now start anew with a magma but follow the upper branch we �rst de�ne
the notion of a quasi-group.

Definition 5.5 (Quasi-Group): A magma (Q; �) is called a quasi-group if for all
a; b 2 Q exist x; y 2 Q such that a � x = b and y � a = b hold.

A quasi-group is thus an algebraic structure with the two group properties G1
and G30. The multiplication table of a �nite quasi-group is also called a Latin square
and has the property that in each row and each column each element of the quasi-
group occurs exactly once. If we now require a quasi-group also to have a unit
element (i.e., property G3) we arrive at the de�nition of a loop.

Definition 5.6 (Loop): Let (L; �) be a quasi-group. L is a loop if there exists an
element e 2 L such that for all a 2 L holds a � e = e � a = a.

To conclude the upper branch we can de�ne a group as an associative loop.
Apart from following the lower or the upper branch of our outline we can also take
the middle course by de�ning a group as being both a semi-group and a quasi-group.
This corresponds to the group properties G1, G2, and G30.

We summarize the di�erent possible ways to de�ne a group in the following
assertion:

Assertion 5.7: Group Let G be a nonempty set and let � be a binary operation on
G. The following assertions are equivalent:

(i) (G; �) is a group.

(ii) (G; �) is a monoid and every element of a 2 G has an inverse.

(iii) (G; �) is a loop and � is associative.

(iv) (G; �) is both a quasi-group and a semi-group.

5.2 Some Theorems

In this section we shall present two classes of theorems. The �rst are essentially the
equivalent statements from the preceding section. The second are several uniqueness
theorems involving some of the algebraic structures introduced above and addition-
ally two rather simple theorems from group theory.
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1. [9 Æ Group(G; Æ)], [9 ? NonEmpty(G) ^ Closed(G; ?) ^ Assoc(G; ?)
^[9e:G LeftUnit(G; ?; e)]

^LeftInverse(G; ?; LeftStructUnit(G; ?))]

2. [9 Æ Group(G; Æ)], [9 ? NonEmpty(G) ^ Closed(G; ?)
^Assoc(G; ?) ^Divisors(G; op)]

3. [9 Æ Group(G; Æ)], [9 ? Monoid(G; ?) ^ Inverse(G; ?; StructUnit(G; ?))]

4. [9 Æ Group(G; Æ)], [9 ? Loop(G; ?) ^ Assoc(G; ?)]

5. [9 Æ Group(G; Æ)], [9 ? Quasigroup(G; ?) ^ Semigroup(G; ?)]

Table 5.1: Some theorems on the equivalence of group de�nitions.

5.2.1 Equivalence Theorems

The �rst set of theorems we consider is given in table 5.1 and is concerned with
equivalences of di�erent de�nitions of a group. The formal concept Group(G; Æ) is
our reference de�nition of a group, which is similar to the one given in de�nition 5.1
in the preceding section. Note that the theorems are concerned with the equivalence
of two di�erent structures given in the form of the same set G and two di�erent
operations given as separately quanti�ed variables Æ and ?.

The �rst theorem states the equivalence between the reference de�nition and a
de�nition postulating the existence of a left unit element and left inverses. Thereby
the expression

LeftInverse(G; ?; LeftStructUnit(G; ?))

means that for each element of G there exists an inverse with respect to the left unit
element of the structure (G; ?). The term LeftStructUnit(G; ?) references thus to
the actual unit element. This element has to be uniquely determinable since the
de�nition LeftStructUnit uses the description operator as we shall see later on.
Formulating it this way, enables us to refer to the unit element in G from arbitrary
sub-formulas without having to state it explicitly. In the case of theorem 1 we could
have also directly used the explicitly given unit element by stating the left inverse
property in the scope of the existential quanti�cation:

9e:G [LeftUnit(G; ?; e)^ LeftInverse(G; ?; e)]

However, this is not always possible as we can easily observe in theorem 3, which
states claim (ii) from assertion 5.7. Here we have to refer to the unit element of the
monoid (G; ?), which can only be done using the reference term StructUnit(G; ?),
since the actual requirement of the unit element is buried inside the abstract concept
Monoid.

The remaining theorems of table 5.1 state that the standard de�nition is equiv-
alent to the de�nition consisting of group properties G1, G2, and G30 (theorem 2)
and theorems 3 to 5 correspond to the single equivalences claimed in assertion 5.7.

5.2.2 Uniqueness and Other Theorems

Table 5.2 depicts six theorems, where the �rst four state uniqueness properties and
the latter two are simple statements in group theory. In detail theorems 1 to 3
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1. Quasigroup(Q; Æ)) 8a:Q 8b:Q [9!x:Q ax = b] ^ [9!y:Q ya = b]

2. Monoid(M; Æ)) 9!e:M Unit(M; Æ; e)

3. Group(G; Æ)) 8a:G 9!x:G [a Æ x = eG] ^ [x Æ a = eG]

4. Group(G; Æ)) 8a:G 8b:G 9!c:G [a Æ b = c]

5. [SubGroup((U; Æ); (G; Æ)) ^ SubGroup((V; Æ); (G; Æ))]) [eG 2 (U \ V )]

6. [Group(G; Æ) ^ 8x:G (x Æ x) = eG]) Commu(G; op)

Table 5.2: Some simple theorems in group theory.

state that the unit element, the inverse of each element, and the divisors for two
given elements are uniquely determined whenever an algebra has these properties.
Theorem 4 expresses that for every two elements of a group the result of their
multiplication is uniquely determined. The formulation of the theorems involve
the quanti�er of unique existence 9!. For example, 9!e:G Unit(G; Æ; e) means there
exists a unique element e 2 G such that e is the unit element of G. This is an
abbreviation for the expression

9e:G Unit(G; Æ; e)) [8f :G Unit(G; Æ; f)) (e = f)]

The remaining two theorems are concerned with some simple consequences fol-
lowing from the de�nition of a group. Theorem 5 states that the unit element of
a group is in the intersection of all of its subgroups and thus forms the smallest
possible subgroup. The claim of theorem 6 is that all groups in which holds that
x � x = eG are commutative.

5.3 Formalization

In this section we formally de�ne all the concepts necessary to formalize the the-
orems from the preceding section. In particular we shall be concerned with the
formalization of properties of operations and, based on this, with the formal de�ni-
tion of algebraic structures.

5.3.1 Properties of Operations

We �rst give the formalizations for the group properties from de�nition 5.1. The
�rst is the concept of a set being nonempty. The following de�nitions (5.2) to (5.5)
are the straightforward formalizations of the properties G1 to G4 as given in def-
inition 5.1. Thereby Closed and Assoc are binary predicates with a set G�o and
an operation Æ��� as arguments, whereas Unit and Inverse are ternary predicates,
which in addition require an element of type � representing the actual unit element.

NonEmpty � �G�o 9a G(a) (5.1)

Closed � �G�o � Æ��� 8a�:G 8b�:G G(a Æ b) (5.2)

Assoc � �G�o � Æ��� 8a�:G 8b�:G 8c�:G (a Æ (b Æ c)) = ((a Æ b) Æ c) (5.3)
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Unit � �G�o � Æ��� �e� 8a�:G [(a Æ e) = a] ^ [(e Æ a) = a] (5.4)

Inverse � �G�o � Æ��� �e� 8a�:G 9x� :G [(a Æ x) = e] ^ [(x Æ a) = e] (5.5)

Analogous to their more complex counterparts in equations (5.4) and (5.5) we de�ne
the properties of the existence of a left unit element (property G3�) and of left
inverses (property G4�) as two ternary predicates.

LeftUnit � �G�o � Æ��� �e� 8a�:G (e Æ a) = a (5.6)

LeftInverse � �G�o � Æ��� �e� 8a�:G 9x� :G (x Æ a) = e (5.7)

We also formalize property G30, the existence of divisors, as the binary predicate
Divisors.

Divisors � �G�o �Æ��� 8a�:G 8b�:G [9x� :G (aÆx) = b]^ [9y� :G (yÆa) = b] (5.8)

In addition to the properties we shall need to formalize the de�nitions of the various
algebraic structures in section 5.3.2, we also de�ne the property of commutativity
of an operation in equation (5.9) as a binary predicate.

Commu � �G�o � Æ��� 8a�:G 8b�:G [(a Æ b) = (b Æ a)] (5.9)

Finally, we give the de�nition of distributivity of two operations. Although we do
not use it in this chapter we shall refer to it, albeit indirectly, in chapter 7. And
thematically it �ts well among the de�nitions presented in this section.

Distrib � �G�o � Æ��� � ?��� 8a�:G 8b�:G 8c�:G

[(a ? (b Æ c)) = ((a ? b) Æ (a ? c))]

^[((a Æ b) ? c) = ((a Æ c) ? (b Æ c))] (5.10)

Distributivity is formalized with the ternary predicate Distrib that takes one set
and two operations on this set as arguments. Furthermore, we de�ne distributivity
as both left and right distributivity.

5.3.2 Algebraic Structures

We shall de�ne algebraic structures in terms of the properties of their set and their
operation. For instance we de�ne magma and semi-group as follows:

Magma � �M�o � Æ��� NonEmpty(M) ^ Closed(M; Æ) (5.11)

Semigroup � �S�o � Æ��� NonEmpty(S) ^ Closed(S; Æ) ^Assoc(S; Æ) (5.12)

The formalization of semi-group in equation (5.12) di�ers from de�nition 5.3 in
section 5.1 since we decided not to de�ne our algebras in a hierarchical fashion.
Thus, instead of de�ning a semi-group as an associative magma we rather give all
of its properties immediately. This has the advantage that when using the de�nition
while proving we do not have to recursively expand all the de�nitions of algebras
before we arrive at the level of algebraic properties.

We next de�ne the notion of a monoid as a composition of two elements, namely
a set and an operation.

Monoid � �M�o � Æ��� NonEmpty(M) ^ Closed(M; Æ) ^

Assoc(M; Æ) ^ [9e�:M Unit(M; Æ; e)] (5.13)

Of course, we could have also de�ned a monoid with LeftUnit instead of Unit.
However, we chose not to since in practical use it is more convenient to have both
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directions for the identity relation available instead of having to introduce an the
appropriate theorem or even having to derive it anew every time.

The formalization of a monoid in equation (5.13) sticks as close as possible to
the intuitive mathematical de�nition. But there is also the possibility to de�ne a
monoid as a triple consisting of a set, an operation, and the unit element. This
would enable us to quantify over the unit element and refer to the this element
in subsequent sub-formulas to the unit element by pulling these sub-formula in
the scope of the quanti�er, as we have already discussed in section 5.2. Thereby
we could avoid the explicit reference, which leads to the use of the description
operator as we shall see in the sequel. Although this might seem appealing on
the �rst glance, this solution only postpones the general problem of coercion (i.e.,
how to lift elements from an underlying algebra into the newly de�ned algebra).
Moreover, this treatment also decouples the occurrences of the unit element from
its properties, which is not desirable in the context of proof planning as we shall
discuss in chapter 6. For instance, we can consider a reformulation of the right
hand side of theorem 3 in table 5.1 to [9 ? 9e Monoid(G; ?; e) ^ Inverse(G; ?; e)].
Once the existential quanti�cation of e is eliminated and the conjunction is split
in a proof, it will be necessary to re-derive the unit property of the appropriate
instantiation for e in any subproof the inverse property is involved.

Thus, before we formally de�ne a group, we have to introduce the two reference
expressions StructUnit and LeftStructUnit we have seen already in the theorems
introduced in section 5.2.1.

StructUnit � �G�o � Æ��� {oe� Unit(G; Æ; e) (5.14)

LeftStructUnit � �G�o � Æ��� {oe� LeftUnit(G; Æ; e) (5.15)

Both predicates are used to refer to one particular element of the set G, namely the
identity or the left identity, respectively. For instance, StructUnit(G; Æ) refers to
that unique element of G for which the unit property of equation (5.4) holds. We
can now give the our formal de�nition of a Group:

Group � �G�o � Æ��� NonEmpty(G) ^ Closed(G; Æ)

^ Assoc(G; Æ) ^ [9e� :G Unit(G; Æ; e)]

^ Inverse(G; Æ; StructUnit(G; Æ)) (5.16)

Equation (5.16) demonstrates the advantage of using our formalization of the unit
element with StructUnit. Although there are two explicit references to the unit ele-
ment of the group structure, they can appear independent from each other, without
being inside a common quanti�cation.

Finally, we formalize the rest of the concepts needed for the theorems of sec-
tion 5.2. We begin with the notions of a quasi-group and a loop.

Quasigroup � �Q�o � Æ��� NonEmpty(Q)

^ Closed(Q; Æ) ^Divisors(Q; Æ) (5.17)

Loop � �L�o � Æ��� NonEmpty(L) ^ Closed(L; Æ)

^ Divisors(L; Æ) ^ 9e� :G Unit(G; Æ; e) (5.18)

Another concept that occurs in the theorems of section 5.2 is that of a subgroup.
Before we can de�ne this, however, we need the formal notion of a subset:

� � �T�o �S�o 8x� T (x)) S(x) (5.19)

Equation (5.19) gives the traditional de�nition of a subset, stating that T � S holds
if all elements x of T are also elements of S. Having the subset de�nition available
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we can formalize that U is a subgroup of G as follows:

SubGroup � �U�o � ?��� �G�o � Æb���

[? = Æ] ^ [U � G] ^ [Group(U; ?)] ^ [Group(G; Æ)] (5.20)

Thus, the SubGroup predicate takes four arguments: U , G, and their respective
operations. We shall write this generally as SubGroup((U; ?); (G; Æ)) indicating
that (U; ?) is a subgroup of (G; Æ). The predicate expresses that both structures
have to have the same operation, U has to be a subset of G and both U and G have
to be groups.

5.4 Generating Proofs Automatically

In this section we shall describe how we generate proofs with 
-Ants automatically
using the automation wrapper introduced in chapter 3.5. However, it is not feasible
to use 
-Ants automation with respect to all of 
mega's inference rules or even
with respect to the full calculus, as this leads to an intractable search problem.
Therefore, we shall �rst introduce a goal directed search strategy for the �rst order
fragment of our natural deduction calculus and then enhance this by inference rules
for the treatment of both de�nitions and the description operator.

5.4.1 A Natural Deduction Search Procedure

In this section we shall introduce the natural deduction intercalation calculus Nic
that allows one to search directly for normal proofs in the �rst order fragment of
our natural deduction calculus. However, we shall give only a rough overview on
the calculus and its search restrictions and refer to [55, 186] for more details.

The idea of Nic is to have an eÆcient, goal directed search procedure to derive
�rst order normal proofs (i.e., cut-free proofs) in natural deduction. Therefore,
the set of rules is strictly divided into introduction and elimination rules whose
application is not only ordered but also restricted with respect to sub-formulas
given in the premises. Thereby the search procedure relies on the notion of a
strictly positive sub-formula, which we shall de�ne following Byrnes in [55].

Definition 5.8 (Strictly Positive Sub-formula): Given any C 2 fA ^ B;B ^
A;A _ B;B _ A;B ) Ag with A;B;C2w�o(�) we write A C C. We also write
A(t) C 8x A(x) and A(t) C 9x A(x) for every term t. Let � be the transitive and
reexive closure of C. Whenever A � C we say that A is a strictly positive sub-
formula of C.

Note that according to this de�nition A 6� A ) B but :A � A ) B. Note
also that the only strictly positive sub-formula of :A is ? since it is equivalent to
A) ?.

5.4.1.1 Search Strategy

For the de�nition of an eÆcient search strategy we divide the rules of the �rst order
fragment of 
mega's calculus into two sets of elimination and introduction rules:

Elimination rules: :E , ^El, ^Er, _E , )E , 8E , 9E , ?E

Introduction rules: :I , ^I , _Il, _Ir, )I , 8I , 9I
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In order to keep the search in the calculus goal directed we have certain restrictions
on the applications of the above rules: Introduction rules can only be applied back-
ward to an open goal. Elimination rules can only be applied when the current goal
is a strictly positive sub-formula of one of its hypotheses. Then this sub-formula
can be extracted using solely elimination rules. But on the contrary to Byrnes we
do not yet fully support indirect proofs.

In addition to the restrictions on rule applications we also have restrictions
on the order of their application: The application of an elimination rule is always
preferred to the application of an introduction rule. This leads to the proof behavior
that �rst a goal is decomposed with introduction rules until one of the emerging
subgoals contains a formula that is a strictly positive sub-formula of one of the
premises (introduction phase). From that point on elimination rules are applicable
and are used to extract the necessary sub-formula to close the subgoal (elimination
phase). Then again the introduction rules are used to decompose the next of the
remaining subgoals.

Special restrictions apply for the application of elimination rules _E and 9E
since they can be applied at any point during the elimination phase provided the
appropriate premises are given. However, their application can be restricted by
using distinct search strategies.

A _ B

[A]
....
C

[B]
....
C

C
_E

9x P (x)

P (t)
....
Q

Q
9E

The application of the 9E rule is straightforward. It is applied exactly once to each
occurring premise containing an existentially quanti�ed formula. And it is applied
immediately when the premise turns up for the �rst time in the proof, independent
of whether we are in an elimination phase or not. Although this has the e�ect that
some hypotheses might be derived during the proof that are actually not necessary,
it has the advantage that the proof cannot fail because of the order of quanti�er
eliminations; that is, no witness term, which might have to depend on the term
t, can be introduced before the 9E rule is applied. The eigenvariable condition of
the rule (i.e., the term t has to be new in the proof) also ensures that exactly one
application of 9E to a given premise is suÆcient. Since t is always new in the proof
the formula P (t) cannot yet occur in any of the other premises and hence cannot
be necessary for derivations within those premises. Thus, we do not need to derive
multiple copies of the formula.

Note that we do not have to take similar precautions for the 8I rule, because
if we are in an introduction phase the universally quanti�ed variable of the goal
is substituted immediately, anyway. And in case we are in an elimination phase,
the goal with the universal quanti�cation is a strictly positive sub-formula of some
premise and should therefore be derivable without eliminating the quanti�er �rst.

Unfortunately, the application of the _E cannot be that easily restricted. Its
application can be restricted neither to the case that the goal being a strictly positive
sub-formula of a disjunctive premise nor to the case that the single disjuncts of a
disjunctive premise are strictly positive sub-formulas in some of of the other given
premises. This fact can be observed with a simple example: Suppose we want
to proof S from a given set of premises � = fP _ Q;P ) R;Q ) R;R ) Sg.
Neither is S a strictly positive sub-formula of P _Q nor are P or Q strictly positive
sub-formulas of the remaining premises. Thus, we need a di�erent criterion to
restrict our search from branching with respect to all possible disjunctions at all
new subgoals.
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The criterion to restrict the application of _E is with respect to the overall
search. For each disjunction in the premises we monitor whether a strictly positive
sub-formula of one of the disjuncts occurs as subgoal during the proof search. If
yes and if this proof branch is backtracked to a point beyond the occurrence of the
subgoal, we monitor for the new proof attempt whether a subgoal occurs, which is
a strictly positive sub-formula of the second disjunct. If this is also the case and if
we have to backtrack again, the _E rule is applicable at the common origin of both
backtracked proof attempts.

5.4.1.2 Quanti�cations and Uni�cation

One of the main problems during automated proof search is how to determine the
correct witness terms to instantiate variables. In automatic proof search this diÆ-
culty is usually avoided by using some kind of placeholder for a term and replace it
with the actual term later, once we know what the correct term is. In proof plan-
ning, for example, this is done by introducing meta-variables, whose �nal value is
constrained and eventually determined by a middle-out reasoning process. In more
machine oriented calculi, such as resolution [181] or tableaux [192], the instantia-
tion is postponed by introducing free variables and Skolem functions . Uni�cation
is then used to compute the appropriate instantiations.

Similarly, we can employ Skolemization and uni�cation for automating the proof
search in the �rst order variant of the Nic calculus. The respective free variables
and Skolem functions are introduced with the quanti�er rules.

In more detail, the application of the 8E and 9I rules replace the respective
variables by new free variables1, which does not yet occur elsewhere in the proof. As
the dual operations in the application of the rules 8I and 9E the quanti�ed variables
are replaced with Skolem functions . Thereby a Skolem function is created from a
new function symbol taking as its arguments all the free variables introduced into the
proof so far. This ensures that the proper dependencies of the introduced term are
respected, meaning that no free variable can be instantiated with a Skolem function
that has been introduced into the proof after the variable, because this can violate
eigenvariable conditions. In order to compute the correct instantiations for the
variables uni�cation is used to possibly make terms equal during rule application.

Since we work in a higher order setting, our implementation of the calculus
di�ers from the original de�nition of Byrnes. In particular, we use higher order
Skolem functions. (For an account on higher order Skolemization see [157].) We
use also higher order uni�cation to determine the instantiation of the variables.
However, since higher order uni�cation has some delicate properties such as being
in�nitary and undecidable (i.e., we never know how many higher order uni�ers there
are and whether the procedure to compute them will ever successfully terminate),
we do not employ it in every rule application. Instead we introduce an adapted
Weaken rule that tries to close a subgoal if it can �nd a uni�able counterpart in
the premises. This concentrates the risk of employing higher order uni�cation to
a single inference rule, Moreover, the Weaken applicability always takes the �rst
uni�er, only, even if there exist several.

This way of treating higher order variables, Skolemization, and uni�cation is
rather ad hoc and does not correspond to a properly designed adaptation of Nic for
higher order logic. How this extension can be achieved in a more re�ned way and
also what properties an extended calculus would have has to be more thoroughly
examined in the future. However, this is not subject of this thesis.

1In [55] Byrnes calls free variables \parameters". However, this naming would clash with our
terminology introduced so far.
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5.4.1.3 Modeling the Search in 
-Ants

When modeling the proof search in 
-Ants we have to essentially reect the re-
striction criteria for the proof search and the ordering of the rule application. This
can be done primarily with both the agents and their sorting heuristics.

Naturally, the restriction of the application directions in particular of the in-
troduction rules is modeled by only allowing for those agents that guarantee the
construction of the appropriate PAIs. Here we also include the search for the higher
order uni�er for the Weaken rule, such that in case the procedure does not termi-
nate the agent can be reset by the resource agent.

The restriction on the applicability of elimination rules is achieved with a clas-
si�cation agent that provides the necessary information on the blackboards. If
the classi�cation agent detects that the subgoal currently considered is actually a
strictly positive sub-formula of one of the premises it passes on appropriate infor-
mation, thereby enabling agents for the elimination rules to run. In case the current
open focus is closed the classi�cation agent retracts the information.

The preference of rules is achieved with the sorting criterion of the suggestion
agent, which prefers the Weaken rule before elimination and introduction rules.
We do not have a criterion to sort suggestions for introduction rules since it cannot
happen that two introduction rules are suggested at the same time. In case there
is more than one applicable elimination rule we always prefer the one involving
the `youngest' nodes with respect to the chronological focus. This ensures that
we concentrate on the decomposition of one formula and do not switch do another
formula during this process.

The only restrictions we cannot model yet with the current components of the

-Ants architecture are those for the _E rule. They are implemented with the help
of a hash-table that keeps track of all disjunctions in the premises, the occurrences
of the subgoals that are strictly positive sub-formulas of the respective disjuncts,
as well as of the appropriate backtracking points. The information can be accessed
by the agents of _E , which suggest the application of the rule accordingly.

5.4.2 Dealing with Description

The Nic calculus caters for the �rst order fragment of our calculus, only, with the
exception of the higher order uni�cation algorithm in the Weaken rule. However,
some of our formalizations contain additionally the description operator, which
cannot be dealt with by any of the Nic inference rules. Therefore, we extend the
basic set of rules by two inference rules to handle description, which build on the
rules to introduce or eliminate occurrences of {o:

9!x P (x) 8z P (z)) Q(z)

Q{oP
{oI

Q{oP

[P (c)]
....

8y P (y)) (c = y)

8z P (z)) Q(z)
{oE with c new

The {oI tactic is based on the theorem that essentially states that if we know that
there exists a unique element x for which P (x) holds and P always implies Q for
all possible z, we can infer that Q{oP holds.

8Q�o 8P�o [[9!x� P (x)] ^ [8z� P (z)) Q(z)]]) [Q{oP ]

Since the reverse direction of the above theorem does not necessarily hold, as with
Q{oP we cannot assume that P actually uniquely describes an element, we have to
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base the {oE tactic is based on a di�erent theorem.

8Q�o 8P�o [Q{oP ])

[[9x� P (x)) 8y� P (y)) (x = y)]) [8z� P (z)) Q(z)]]

The theorem states that from both Q{oP and the existence of a unique element in
P we can deduce that 8z� P (z) ) Q(z) holds. Since the term c essentially stems
from an elimination of an existentially quanti�ed variable it has to be new. During
automatic proof search it is instantiated with a new Skolem function.

The {oI and {oE tactics deal with single occurrences of the description operator in
formulas. But during the actual proof search we use the more complex tactics {o�I
and {o�E , which can eliminate all occurrences of the description operator in a formula
within a single step. Both tactics are essentially iterative applications of the simpler
{oI and {oE tactics given above. Since both tactics are rather procedural we omit
their declarative presentation. For instance, the {o�I tactic applied to an open goal
containing n occurrences of the description operator leads to an elimination of the
n occurrences starting with the innermost. This results in n + 1 new open goals,
where the �rst n are the appropriate unique existence statements and the last new
open goal is a nested implication corresponding to applying the {oI tactics n times.

The tactics dealing with description are applied only if no other rule is applicable
anymore and in the order of always applying {o�E before {o�I . This has the advantage
that their application can be postponed until the last possible moment, which keeps
the proof search leaner and the formulas more compact. Moreover, it ensures that
all necessary hypotheses, for instance created by the application of the)I rule, that
are vital for successfully proving the subgoals produced by the {o�I and {o

�
E tactics are

already available.

5.4.3 Dealing with De�nitions

In the Nic calculus all occurring constants are treated as primitive symbols. How-
ever, our problem formulations contain de�ned concepts such as Group etc. In order
to deal with them we use variations of the 
mega rules �I and �E for introducing
and eliminating de�nitions we have discussed in chapter 2.2.2.

A
[t0=t]B

��E(t � t0)
[t0=t]A

B
��I(t � t0)

The di�erence to the rules from chapter 2.2.2 is that ��E and ��I expand all oc-
currences of a de�nition t � t0 in a given formula in one step. It therefore does
not need the position of the de�nition as a parameter. The expansion of these two
tactics is then the iterative application of either the �I rule or the �E rule.

Possible de�nition expansions are always preferred to the application of the Nic
calculus rules except for those rules dealing with quanti�ers and the Weaken rule,
which is always promoted over all other possibly applicable inference rules. The
expansion of de�nitions can be further restricted by specifying a list of concepts
that are never to be expanded. For our examples we shall not allow the expansion
of equality = and the sorted quanti�ers. Despite this restriction our treatment of
de�nition expansion is rather ad hoc.

If the problem formulations are always given as single theorems (i.e., there is an
initial conclusion and no explicit hypotheses), only the ��I rule is actually necessary.
But in the case where formulas of hypotheses are explicitly given we also need the
��E rule.
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5.4.4 Adding Automated Theorem Provers

In addition to the rules of the Nic calculus and the inference rules for dealing with
de�nitions and description we also enrich our automatic proof search by compu-
tations of automated theorem provers. In particular we use the �rst order prover
Otter and the higher order provers tps and Leo. In the examples we are deal-
ing with in this chapter the single provers are applied to completely solve given
subproblems alone. However, our architecture also allows for the cooperation of
di�erent theorem provers, for instance in a way that Leo only partially solves a
problem, but returns a set of �rst order clauses, which can then be successfully
refuted by Otter. For examples of fruitful cooperations between the �rst order
and the higher order theorem provers see [23, 24]. The use of tps and Leo ensures
that search specialized for a higher order context is performed. Albeit, this is not
always fruitful as we shall further discuss in section 5.6.

The ATPs are incorporated into 
-Ants by testing whether their corresponding
commands are applicable; that is, we have agents that check the possible applicabil-
ity of a certain prover to a given subproblem and agents that run it in a background
process. When the prover has produced a proof for a given subgoal, its application
is always preferred to any of the other inference rules, apart from Weaken. In case
an ATP does not produce a result within the given time bound of the automation
wrapper it is stopped by the resource agent. Compare the algorithm in chapter 3.5.2
table 3.5.

Depending on the given time bound the behavior of the ATPs involved can
change; that is, the larger the time bound the earlier the ATPs can sometimes solve
the problem. Therefore, depending on the time bound the appearance of the �nal
proofs can also change.

5.5 Example

As an example consider the automatically generated proof for theorem 1 in table 5.1
that is given in table 5.3. To keep things concise we have only given those parts of
the proof we actually focus on during the explanation and also abbreviated some of
the formulas and hypotheses lists.

The �rst step in the proof is the application of 8I to the actual theorem given
in line L1. This introduces the �rst Skolem constant sk0 (i.e., a Skolem function
with zero arity) as no free variable has been introduced so far. Since no further Nic
rules can be applied to the resulting line L2 
-Ants starts with a series of de�nition
expansions, until even the equivalence connective has been expanded in line L13.
Observe, the particularity of the ��I rule for instance in line L3 that eliminates two
occurrences of NonEmpty in a single step.

In line L13 are for the �rst time Nic rules applicable again. This leads to the
split of the conjunction and two new open subgoals, namely L14 and L15. Both
subproofs are basically analogous and we shall concentrate on the latter. The �rst
step here is the )I application, which also leads to the �rst premise in our proof.
Since the premise contains an existentially quanti�ed formula the 9E rule is im-
mediately applied to line L16 introducing sk1 as another Skolem constant2. After
that, however, no more elimination steps are carried out since our goal L19 is not a
strictly positive sub-formula of the premises. Instead 
-Ants further decomposes
the given goal by applying 9I and ^I . The former introduces a new free variable

2For better readability we write the resulting function in pre�x instead of in�x notation (i.e.,
sk1(a; b) instead of a sk0 b).
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L16. L16 `9 ? [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(a ? b)] ^ : : : (Hyp)
L18. L18 ` [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(sk1(a; b))]

^[8a:sk0 8b:sk0 8c:sk0 sk1(a; sk1(b; c)) = sk1(sk1(a; b); c)]
^[9e:sk0 8a:sk0 sk1(x; a) = a]

^[8a:sk0 9x:sk0 sk1(x; a) = {ox 8a:sk0 sk1(x; a) = a]

(Hyp)

L29. L29 `8a:sk0 sk1(c1; a) = a (Hyp)
L30. H2 `8x 8a:sk0 [sk1(x; a) = a]) [x = c1] (Otter L29)
L31. L18 `8y [8a:sk0 sk1(y; a) = a])

[9a sk0(a) ^ 8a:sk0 8b:sk0 sk0(sk1(a; b))
^[8a:sk0 8b:sk0 8c:sk0 sk1(a; sk1(b; c)) = sk1(sk1(a; b); c)]
^[9e:sk0 8a:G sk1(e; a) = a]^ [8a:sk0 9x:sk0 sk1(x; a) = y]]]

({o�E L18 L30)

L36. H1 `9y [8a:sk0 [var0(a; y) = a] ^ [var0(y; a) = a]]^
[8z [8a:sk0 [var0(a; z) = a] ^ [var0(z; a) = a]]) [z = y]]

(Otter
L18 L31)

L34. H1 `9!z 8a:sk0 [var0(a; z) = a] ^ [var0(z; a) = a] (��I L36 9!)
L35. H1 `9y [8a:sk0 [var0(a; y) = a] ^ [var0(y; a) = a]]^

[8z [8a:sk0 [var0(a; z) = a] ^ [var0(z; a) = a]]) [z = y]]
(Otter

L18 L31)
L33. H1 `9!y 8a:sk0 [var0(a; y) = a] ^ [var0(y; a) = a] (��I L35 9!)
L32. H1 `8y [8a:sk0 [var0(a; y) = a] ^ [var0(y; a) = a]])

[8z [8a:sk0 [var0(a; z) = a] ^ [var0(z; a) = a]])
[8a:sk0 9x:sk0 var0(a; x) = y ^ var0(x; a) = z]]

(Otter
L18 L31)

L28. H1 ` [8a:sk0 9x:sk0
[var0(a; x) = {ox 8b:sk0 [var0(b; x) = b] ^ [var0(x; b) = b]]

^[var0(x; a) = {ox 8b:sk0 [var0(b; x) = b] ^ [var0(x; b) = b]]]

({o�I L32

L33 L34)

..

.
L23. H1 ` [8a:sk0 8b:sk0 sk0(var0(a; b))]fvar0 sk1g (Leo L18)
L22. H1 ` [8a:sk0 8b:sk0 sk0(var0(a; b))] ^ : : :^

[8a:sk0 9x:sk0
[var0(a; x) = {ox 8b:sk0 [var0(b; x) = b] ^ [var0(x; b) = b]]

^[var0(x; a) = {ox 8b:sk0 [var0(b; x) = b] ^ [var0(x; b) = b]]]

(^I L23 L24)

L21. H1 ` [9a sk0(a)] (Otter L18)
L20. H1 ` [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(var0(a; b))] ^ : : : (^I L19 L20)
L19. H1 `9 Æ [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(a Æ b)] ^ : : : (9I L20 var0)
L17. L16 `9 Æ [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(a Æ b)] ^ : : : (9E L16 L19)
L15. ` [9 ? [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(a ? b)] ^ : : :])

[9 Æ [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(a Æ b)] ^ : : :]
()I L16)

.

..
L14. ` [9 Æ [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(a Æ b)] ^ : : :])

[9 ? [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(a ? b)] ^ : : :]
()I : : :)

L13. ` [[9 Æ [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(a Æ b)] ^ : : :])
[9 ? [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(a ? b)] ^ : : :]]

^[[9 ? [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(a ? b)] ^ : : :])
[9 Æ [9a sk0(a)] ^ [8a:sk0 8b:sk0 sk0(a Æ b)] ^ : : :]]

(^I L14 L15)

...
L4. ` [9 Æ [9a sk0(a)] ^ Closed(sk0; Æ) ^Assoc(sk0; Æ)^

[9e�:sk0 Unit(sk0; Æ)] ^ Inverse(sk0; Æ; StructUnit(sk0; Æ))]
, [9 ? [9a sk0(a)] ^ Closed(sk0; ?)

^Assoc(sk0; ?) ^ [9e:sk0 LeftUnit(sk0; ?; e)]
^LeftInverse(sk0; ?; LeftStructUnit(sk0; ?))]

(��I L5

Closed)

L3. ` [9 Æ NonEmpty(sk0) ^ Closed(sk0; Æ) ^ Assoc(sk0; Æ)^
[9e�:sk0 Unit(sk0; Æ; e)] ^ Inverse(sk0; Æ; StructUnit(sk0; Æ))]
, [9 ? NonEmpty(sk0) ^Closed(sk0; ?)

^Assoc(sk0; ?) ^ [9e:sk0 LeftUnit(sk0; ?; e)]
^LeftInverse(sk0; ?; LeftStructUnit(sk0; ?))]

(��I L4

NonEmpty)

L2. ` [9 Æ Group(sk0; Æ)], [9 ? NonEmpty(sk0) ^Closed(sk0; ?)
^Assoc(sk0; ?) ^ [9e:sk0 LeftUnit(sk0; ?)]

^LeftInverse(sk0; ?; LeftStructUnit(sk0; ?))]

(��I L3

Group)

L1. `8G [9 Æ Group(G; Æ)], [9 ? NonEmpty(G) ^ Closed(G; ?)
^Assoc(G; ?) ^ [9e:G LeftUnit(G; ?; e)]

^LeftInverse(G; ?;LeftStructUnit(G; ?))]

(8I L2 sk0)

H1 = fL16; L18g H2 = fL18; L29g H3 = fL18; L31g

Table 5.3: An automatically generated equivalence proof.
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var0. We can also observe that due to the order of applying 9E and 9I sk1 does
not depend on the variable var0. This is crucial since var0 has to be uni�ed with
sk1 later on.

At this point we have for the �rst time a goal (L21) that is a strictly positive
sub-formula of the premise L18. Therefore, 
-Ants can now start decomposing the
premise with Nic elimination rules. However, we have also an automated theorem
prover, namely Otter that can immediately derive the goal. This is possible since
in this case no higher order variable occurs, which Otter can of course not deal
with.

This is di�erent for the next subgoal L23, which we get after further decompo-
sition. Here the higher order variable var0, which Otter cannot unify with the
appropriate term in the premise. But the problem can be easily solved by Leo,
which also returns the appropriate uni�er fvar0  sk1g which is indicated as the
subscript of line L23. The substitutions are not carried out immediately in the
overall proof but merely added as a constraint for the particular free variable. The
substitution is taken into account, however, for the next uni�cation or when occur-
rences of the variable are passed to an automated theorem prover. This treatment
of substitutions eases backtracking and is similar to the treatment of meta-variables,
which we shall discuss in more detail in the subsequent chapters. Therefore, the
next properties, associativity and unit element, can be shown using Otter again
since var0 is replaced with sk1 before the prover is called. To preserve some space
we have omitted these parts of the proof.

This leaves only the property of inverses to show, which is more diÆcult because
it can neither be immediately inferred from the premises nor successfully shown by
one of the automated theorems provers since the formula involves the description
operator. Their are also no more de�nitions that can be expanded since neither the
sorted quanti�ers nor the equality are considered by ��I , and there is no applicable
Nic rule, since there is none for the treatment of the sorted exists quanti�er. Thus,
at this point in the subproof the description operators occurring in lines L18 and
L28 are eliminated. Note that the order in which the tactics are applied, namely
{o�E before {o�I , is important. Because if {o

�
I would have been applied �rst, other intro-

duction rules would have been applicable delaying the application of {o�E by a long
fruitless search.

The elimination of the description operator in line L18 leads to a new premise
for the subproof, line L31 and one new open goal, line L30, which is supported by
the newly introduced hypothesis L29. This new subgoal is immediately derived by
Otter from the new hypothesis. The application of {o�I to line L28 yields three
new open subgoals, namely L32, L33, and L34. L32 contains the nested implication,
which can be directly shown by Otter. Lines L33 and L34 contain the uniqueness
property of the unit element stated with the 9! quanti�er. Since this is a de�ned
concept it has to be expanded before Otter can successfully prove the statements.

In our example it is obvious that certain expansions of de�nitions are superu-
ous or at least were carried out too soon in the proof. For instance the concepts
NonEmpty, Closed, and Assoc, which appear on both sides of the equivalence could
be immediately shown without expanding them �rst. Nevertheless the expansion
of Assoc is still necessary later on in the proof since associativity is important for
showing the existence of inverses from the existence of left inverses. Thus, the proof
could be both shortened and simpli�ed by using a clever strategy for expanding
de�nitions.

An ad hoc strategy would be, for instance, to check whether a certain de�ned
concept appears on both sides of an equivalence or an implication. A more elaborate
solution is, for instance, to implement a dual instantiation strategy as introduced
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by Bishop into the mating search of tps [35]. Thereby the proof search is split into
two branches for each occurring de�ned concept where in one branch the concept's
de�nition is left unexpanded and in the other branch the concept is replaced by its
de�nition. However, this would call for introducing or parallelism for more than
a single proof step into the search, which the central proof object, the PDS , does
not yet permit. The investigation of these types of enhancements will be subject of
future work.

All our example theorems are essentially proved in the same fashion: The

-Ants mechanism divides the problem into chunks that can be solved by an
automatic theorem prover. Thereby only the theorems from table 5.2 can be solved
using Otter alone, while all others involve higher order uni�cation, which either
has to be done within the Weaken rule or by either Leo or tps. If the higher order
variables are suÆciently constrained we can then apply Otter again. However, all
this might not be enough as we shall examine in the next section.

5.6 A Challenging Problem

In this section we discuss an example of an equivalence proof that is trivial from
a mathematical point of view, however, very challenging from an automated rea-
soning viewpoint. It is constructed using an alternative de�nition of a group taken
from [104]. The peculiarity of this de�nition is that it introduces inverses with a
distinct unary operation.

Definition 5.9 (Group | alternative): Let G be a nonempty set. G is a group
if the following holds:

H1) For each two a; b 2 G is a binary product � de�ned such that a � b = c with
c 2 G uniquely de�ned.

H2) We have unary operation inverse 1 such that for each a 2 G the inverse
a 1 2 G is uniquely determined.

H3) For all a; b; c 2 G holds (a � b) � c = a � (b � c).

H4) For all a; b 2 G holds a 1 � (a � b) = b = (b � a) � a 1.

Informally it is trivial to show that de�nitions 5.1 and 5.9 are indeed equiva-
lent. The properties H1, H2, and H3 can be easily identi�ed with G1, G4, and G2

respectively. The required uniqueness properties in H1 and H3 can be inferred, for
instance, with the help of the theorems 4 and 3. Identifying H2 and G4 is also
facilitated by the simple insight that the inverse function of de�nition 5.9 is nothing
but a di�erent notation for the inverse elements. The only slightly tricky part is to
derive the existence of a unit element (G3) since we have to identify the identity e
with a � a 1 for any given a 2 G. Having this equality available to show that H4

holds in the opposite direction is straightforward.

If we now painstakingly formalize the problem the proof becomes far more dif-
�cult. We start by giving the formal de�nitions for the properties H1, H2, and H4

in the equations (5.21), (5.22), and (5.23), respectively.

ClosedUnique � �G�o � Æ��� 8a�:G 8b�:G 9!c� :G (a Æ b) = c (5.21)

UniqueInv � �G�o �
1
�� 8a�:G 9!b�:G b = a 1 (5.22)

InvLaw � �G�o � Æ��� � 1
��

8a�:G 8b�:G [(a 1 Æ (a Æ b)) = b] ^ [((b Æ a) Æ a 1) = b] (5.23)
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The above predicates are concerned with two di�erent operations on the given set:
The binary group operation and the unary inverse operation. Therefore, the group
de�nition involving these predicates also has to speak about two operations instead
of just one as the Group predicate de�ned in (5.16).

Hence, when actually formulating the equivalence theorem we have to introduce
a variable for the inverse operation as well.

[9 Æ Group(G; Æ)], [9 ? NonEmpty(G) ^ ClosedUnique(G; ?) ^ Assoc(G; ?)
^[9 1 UniqueInv(G; 1 ) ^ InvLaw(G; ?; 1 )]]

Here the choice of the position for the existential quanti�cation involving 1 is only
to ease interactive proof construction. We could have also quanti�ed the variable
over the whole conjunction.

Although parts of the proof can be easily solved by Leo, proving the whole
theorem automatically with 
-Ants fails: At some point in the proof the existential
quanti�cation for the inverse operation has to be eliminated. Depending on the
direction of the equivalence that has to be shown 
-Ants either inserts a Skolem
function or a variable. However, neither 
-Ants itself nor tps nor Leo are able to
compute an appropriate uni�er to replace the variable. The actual instantiation is
of the form:

�a {ox [a Æ x = StructUnit(G; Æ)] ^ [x Æ a = StructUnit(G; Æ)] (5.24)

This lambda term denotes a unary function that returns for each element a the
unique x that satis�es the inverse property as given in de�nition 5.1. This corre-
sponds to a precise formalization of the step in the informal proof where we simply
equate the inverse function with the inverse elements. Naturally, it is also suÆcient
to only have the right or the left inverse equation in the lambda expression.

But even then the computation of this term is beyond the scope of any con-
temporary automated theorem provers and their respective uni�cation algorithms.
The construction of the term requires primitive substitution [3] involving descrip-
tion during the uni�cation. However neither tps nor Leo can currently successfully
solve this problem. Therefore, both these two agents and the Otter agent fail in
their proof attempts and hence we cannot automate the search for the proof of
our equivalence statement with 
-Ants. However, we can conduct the complete
proof interactively in 
mega with support from 
-Ants when instantiating the
appropriate term by hand.

So why do we fail to automate the proof although it is actually trivial from a
mathematical point of view? One point of critique could be to blame our formal-
ization. So far we have always chosen a formalization that is as close to the math-
ematical formulation (of the properties, the algebraic structures, or the proofs) as
possible. But maybe in this case a reformulation of both the properties and the
problem might turn out to be useful.

Let us �rst take into account how problems in group theory are formalized for
�rst order theorem provers, for instance, in the TPTP [197, 198] library: There
all formalization of the group axioms introduce an explicit identity and an inverse
function, which has de�ned properties similar to property G4. This means the
knowledge on how to handle the connection between inverse elements and the inverse
operation is a priori compiled into the axiomatization. Naturally, we cannot explore
the full implications of our theorem in this encoding anyway since there is no way of
equating functions and thus the actual plot is lost in the �rst place. Of course, one
could encode in Zermelo-Fr�ankel set theory but this would certainly not contribute
to a better automation.
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Thus, if we look at the problem again from a higher order perspective, then
there are two easy ways to �x our formalization to make the problem go through
smoothly: Either we enrich the �rst group de�nition by introducing an explicit
inverse operation connected to property G4. Or we de�ne the inverse operation in
the theorem similar for the unit element by introducing a predicate of type � ! �
that, when expanded, spells out the property G4 for the resulting inverse element.
The predicate itself is essentially of the same form as the lambda expression in (5.24).
Although with either recti�cation the theorem can easily be solved automatically, we
completely obscured the inventive part of the proof since we encoded basically the
solution already in the problem description. Thus, the only challenging intellectual
part of the proof cannot be done yet with an automaton.

In contrast, as humans we easily solve the problem mainly for two reasons:
Firstly, we can relate the properties to each other on an abstract level, �gure out
which of the properties are nearly the same, and see therefore easily how the inverse
operation and the unit element have to be instantiated. Secondly, the high level
reasoning frees us from worrying how exactly we have to identify the inverse function
in one de�nition with the existence of inverse elements in the other.

In summary we can conclude that if we want to solve the problem in the given
form, we have to use higher order logic, since �rst order logic does not allow us to
state the problem properly. In higher order logic the only mechanism that could
derive a solution for our instantiation problem is primitive substitution [3], for which
it remains to be seen whether it will ever become tractable for term constructs
involving connectives and quanti�cation, let alone description. For capturing the
human intuition behind the proof it might not even be useful to adhere strictly to the
logic level. This, however, raises the question: What actually is an adequate way of
capturing both mathematical precision and intuition without forgoing correctness?

5.7 Summary of Chapter 5

In this chapter we have presented goal directed automatic proof search with the

-Ants mechanism by modeling the Nic calculus and its restrictions on search
and order of rule application. With the slight extensions necessary to handle the
restrictions for the _E rule, the Nic's search heuristics can be modeled without
changing 
-Ants. The calculus can be adapted to our needs by enriching it with
higher order Skolemization and uni�cation as well as by adding inference rules that
can deal with de�nitions and description. Furthermore, we have added automated
theorem provers that can tackle whole subproblems autonomously. However, their
success depends on the time bound given in the automation wrapper of 
-Ants.

We have successfully applied this prover to a small number of simple example
theorems. Here the approach of the system is essentially to decompose a given
problem into chunks that can be easily solved by one of the connected automated
theorem provers. The resulting proofs can vary with respect to the given time bound
and the speed of an automated theorem prover to �nd a proof. The theorems
involved where mainly equivalence statements and uniqueness statements, which
are, from a mathematical point of view, relatively trivial. However, this does not
necessarily mean that they are trivial from a logical and theorem proving point
of view as we have seen with the concluding challenging problem. Here we had
again a mathematically trivial equivalence theorem, which cannot yet be solved
automatically with current theorem proving techniques.



Chapter 6

Homomorphism Theorems

In this chapter we present a case study for the interactive proof planning approach
we have presented in section 4.1.1. We shall illustrate this approach with the help
of proofs for a class of theorems for homomorphism statements in group theory.
We use 
-Ants as an algorithm for Multi and parameterize the algorithm using
planning strategies. Since the proofs we are dealing with are all of a similar scheme
we implement a single strategy using both domain speci�c and domain independent
methods. Proof planning is then done either interactively or automatically using
the 
-Ants mechanism.

We shall �rst introduce the problems and give the formalization for concepts
we require in addition to those already de�ned in the preceding chapter. We then
present how the proofs for homomorphism theorems are interactively planned in
general before elaborating the scheme with a concrete example.

6.1 Homomorphism Problems

The problems we are concerned with in this case study, are essentially derived from
six major theorems involving the homomorphism property. The actual problems
are either the theorems themselves, weaker version of the theorems, or the di�erent
lemmas needed to prove them. Table 6.1 introduces the six theorems.

The theorems 1 to 4 and 6 state some properties of a homomorphism f between
two given groups G and H , whereas theorem 5 is concerned with homomorphism
properties between three groups involved. In detail, theorems 1 and 3 state that the
image and the kernel of f are subgroups inH . In caseG is commutative the image of
f is also commutative with the operation ofH (theorem 2); if the kernel of f consists
only of the neutral element of G, f itself is injective (theorem 4). Theorem 5 reads
that given three groups G;H;K and two homomorphisms of the form f1 : G ! H
and f2 : H ! K, then the composition f2 � f1 is again a homomorphism from G
to K. Here � denotes the composition of mappings, such that for a g 2 G holds
f2(f1(g)) 2 K.

Theorem 6 is the most diÆcult of our homomorphism problems and is taken
from [77]. It states that if we have two groups G;H and a surjective homomorphism
f1 : G ! H and if we have an additional homomorphism f2 from G into some
arbitrary structure (K; �) and a mapping ' : H ! K, such that f2(x) = '(f1(x))
for all x 2 G, then ' is also a homomorphism.

For the latter theorem we can also prove two weaker versions if we do not assume
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1. [Group(G; Æ) ^Group(H; ?) ^Hom(f; (G; Æ); (H; ?))]
)[SubGroup(Im(f;G); (H; ?))]

2. [Group(G; Æ) ^Group(H; ?)^
Hom(f; (G; Æ); (H; ?)) ^ Commu(G; Æ)])[Commu(Im(f;G); ?)]

3. [Group(G; Æ) ^Group(H; ?) ^Hom(f; (G; Æ); (H; ?))]
)[SubGroup((Kern(f;G; eH); Æ); (H; ?))]

4. [Group(G; Æ) ^Group(H; ?)^
Hom(f; (G; Æ); (H; ?)) ^ [Kern(f;G; eH) = eG]])[Inj(f;G)]

5. [Group(G; Æ) ^Group(H; ?) ^Group(K; �)^
Hom(f1; (G; Æ); (H; ?)) ^Hom(f2; (H; ?); (K; �))

)Hom(f2 � f1; (G; Æ); (K; �))

6. [Group(G; Æ) ^Group(H; ?) ^Hom(f1; (G; Æ); (H; ?)) ^ Surj(f1; G;H)
^Hom(f2; (G; Æ); (K; �)) ^ [8x:G f2(x) = '(f1(x))]]

)[Hom('; (H; Æ); (K; �))]

Table 6.1: The homomorphism theorems.

that f1 is a surjection. We can then show that ' is a homomorphism from the image
of f1 into K as well as from the image of f1 into the image of f2.

In theorems 1 and 3 we have to show that the image and the kernel of the
homomorphism f are subgroups of the group H in the codomain of f . Thus, we
not only have to show that the image and kernel are subsets of H but also that the
group properties hold. We have realized this by splitting the proof of the actual
theorem into a set of lemmas; one for each group property. For instance, one lemma
for theorem 1 is

[Group(G; Æ) ^Group(H; ?) ^Hom(f; (G; Æ); (H; ?))])[Assoc(Im(f;G); ?)]

Depending on the axiomatization of a group we can derive di�erent sets of lemmas
and therefore gain a variety of di�erent homomorphism theorems.

6.2 Formalization

In order to formalize and prove the theorems from the preceding section we have to
introduce some more concepts in addition to those already de�ned in chapter 5. We
start with the most important notion for the theorems in this chapter, the concept
of a homomorphism.

Hom � �h�� �A�o � Æ��� �B�o � ?���

8x�:A 8y�:A h(x Æ y) = h(x) ? h(y) (6.1)

The de�nition states that a function h, which maps elements of type � to elements
of type � is a homomorphism between the two structures (A; Æ) and (B; ?) if for all
elements x; y 2 A h(x Æ y) = h(x) ? h(y) holds.

Two other functional properties we need for the theorems given above are the
concepts injective and surjective. These are again de�ned straightforwardly:

Inj � �f�� �A�o 8x�:A 8y�:A f(x) = f(y)) x = y (6.2)
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Surj � �f�� �A�o �B�o 8x�:B 9y�:A f(y) = x (6.3)

Note that in the de�nition of surjective we have to explicitly talk about elements
of the codomain | and thus about the set they belong to | of the mapping f .
On the contrary injective can be de�ned without specifying the actual set of the
codomain.

Finally, we de�ne the concepts of image and kernel of a mapping f , where the
former is a subset of the codomain of f and the latter is a subset of the domain of
f .

Im � �f�� �A�o �y� 9x�:A y = f(x) (6.4)

Kern � �f�� �A�o �y� �x� [x 2 A] ^ [f(x) = y] (6.5)

We verify that Im is indeed a subset of the codomain of f since Im(f;A)�o is a set
of elements of type �. Likewise, Kern is a set of elements of type � (i.e., a subset
of the domain of f) if we have Kern(f;A; y), where y is the trivial element of the
codomain. For instance, if f is mapping between groups, y is the unit element of
the target group.

6.3 Constructing Proofs

All homomorphism proofs are constructed with the homomorphisms strategy whose
interactive variant we have already discussed in section 4.1.1. The strategy can
employ 22 methods of which 9 are domain-speci�c. As an interactive strategy
for 
-Ants it also contains 29 agents that test for the applicability of the single
methods. To see this �gure in the right perspective we have to take into account
that from the 22 methods �ve are normalization or restriction methods and thus
do not require any agents. As an automatic strategy for the PP lanner algorithm
homomorphisms additionally contains 6 domain-speci�c control rules, which, for in-
stance, ensure that if the homomorphism property has been applied in one direction
it is not immediately applied in the opposite direction again, or that goals contain-
ing homomorphism statements involving meta-variables are preferred in order to
constrain their instantiations as soon as possible.

The basic approach of the strategy to prove homomorphism problems is to �rst
expand all de�nitions up to a point where the homomorphism property can be
applied as often as possible; that is, if we have a homomorphism f : A! B we try
to rewrite all occurrences of the operation on B into the homomorphic application of
the operation on f . This transforms problems stated for B into equivalent problems
on A, which are generally simpler to show. The proofs are then concluded by
deriving the necessary properties from the de�nition of A.

The central method for homomorphism proofs is the Homomorphism method
given in �gure 6.1, which is basically a more complex version of theHomOnDomain
method we have already discussed in chapter 4.1.1. Its task is to apply the homo-
morphism given in line L1 backwards (here again the void justi�cation indicates
that L1 can have an arbitrary justi�cation). However, it is applied to a goal line
containing an application of the operation � to elements actually belonging to the
codomain of the homomorphism. This is given in line L7 of the method by the
schematic formula �[b1 � b2], where � is an arbitrary proposition containing a sub-
term of the form b1 � b2. When the method is applied the occurrence of b1 � b2
in � is replaced by f(mv1 Æmv2) in line L6, with f(mvi) = bi for i = 1; 2 where
the mvi are meta-variables substituting for the actual elements of A. Additionally,
we need to ensure that mv1 and mv2 are really elements of the domain A. Those
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Method: Homomorphism
Premises L1;�L2;�L3;�L4;�L5;�L6

Appl. Cond.

Conclusions 	L5

Declarative

Content

(L1) � `Hom(f; (A; Æ); (B; �))
(L2) � `mv1 2 A (Open)
(L3) � `mv2 2 A (Open)
(L4) � ` f(mv1) = b1 (Open)
(L5) � ` f(mv2) = b2 (Open)
(L6) � `�[f(mv1 Æmv2)] (Open)
(L7) � `�[b1 � b2] (ApplyHomComplex

L1 L6L2 L3L4 L5)

Figure 6.1: The Homomorphism method.

Method: ElemOfDomain
Premises 	L2;�L4

Appl. Cond.

Conclusions 	L5

Declarative

Content

(L1) � ` [c 2 G] ^ [f(c) = d] (Hyp)
(L2) � ` d 2 Im(f;G)
(L3) � `9x:G [f(x) = d] (�E L2 Im)
(L4) � [ fL1g `� (Open)
(L5) � `� (9ESort L3 L4 c)

Figure 6.2: The ElemOfDomain method.

supplementary conditions are given in the extra four new open subgoals L2 through
L5. The method does not have any additional application conditions. Similarly to

the HomOnDomain method we have two agents S
fL1g
fg;fg and G

fL7g
fL1g;fg

to search for

matching lines in a given partial proof.

Another important method to construct homomorphism proofs is the normal-
ization method ElemOfDomain displayed in �gure 6.2. It is applied as soon as a
support line of the form given in L2 of the method's declarative content occurs in
the proof. It basically states if we have an element d in the image of a function f on
a set G given, then there exists a c 2 G such that f(c) = d. The method introduces
this fact as the new hypothesis L1. This corresponds to a sorted elimination of
the existential quanti�er of the actual de�nition of image as given in the preceding
section. This step is stated in L3 of the declarative content but is only introduced
into the proof when the method is expanded.

The e�ects of the method on the partial proof are that line L1 is added as a new
hypothesis for the considered subgoal. Thereby the old subgoal L5 is deleted from
the planning state and L4, the line with the expanded hypotheses list, is added as
new open subgoal. The support line L2 is also deleted from the planning state. Al-
though not explicitly speci�ed, line L1 is automatically added to the planning state
as a new support line since it is a new hypothesis for the introduced subgoal. Since
ElemOfDomain is a normalization method it is automatically and exhaustively
applied if possible after each interaction step. Like all normalization methods it
does not have any agents on its own to test its applicability.

The second domain-speci�c normalization method of the homomorphisms strat-
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L2. L2 `Group(G; Æ) (Hyp)
L3. L3 `Group(H; ?) (Hyp)
L4. L4 `Hom(f; (G; Æ); (H; ?)) (Hyp)
L23. H1 ` f(mv4) = f(GroupUnit(G; Æ)) (=Reflexivity)
L22. H1 `mv4 2 Gfmv4 GroupUnit(G;Æ)g (UnitInGroup L2)
L21. H1 `9y:G f(GroupUnit(G; Æ)) = f(y) (9ISort L22 L23)
L5. H1 `mv1 2 Im(f;G) (�I L21 Im)
L8. L8 ` c 2 Im(f;G) (Hyp)
L10. L10 ` [d 2 G] ^ [f(d) = c] (Hyp)
L12. L10 ` d 2 G (^E L10)
L13. L10 ` f(d) = c (^E L10)
L14. H3 `mv2 2 G (UnitInGroup L2)
L20. H3 ` d 2 G (Weaken L12)
L19. H3 `mv2 Æ d = dfmv2 GroupUnit(G;Æ)g (GroupUnit L2 L20)
L18. H3 ` f(mv2 Æmv3) = f(mv3) (EqualFunc L19)
L17. H3 ` f(mv3) = c (Weaken L13)
L16. H3 ` f(mv2) = mv1fmv1 f(mv2)g (=Reflexivity)
L15. H3 `mv3 2 Gfmv3 dg (Weaken L12)
L11. H3 `mv1 ? c = c (Homomorphism

L4 L18 L14 L15 L16 L17)
L9. H2 `mv1 ? c = c (ElemOfDomainL8L11)
L7. H1 `8x:Im(f;G) [mv1 ? x = x] (8ISort L9)
L6. H1 `LeftUnit(Im(f;G); ?;mv1) (�I L7 LeftUnit)
L1. H1 `9e:Im(f;G) LeftUnit(Im(f;G); ?; e) (9ISort L5 L6)

H1 = fL2; L3; L4g; H2 = fL2; L3; L4; L8g; H3 = fL2; L3; L4; L8; L10g

Table 6.2: Proof of a homomorphism theorem.

egy is the ElemOfKernel method. It performs essentially the same task as the
ElemOfDomain method, albeit for elements of the kernel of a homomorphism.

6.4 Example

As an example for the proofs of homomorphism theorems consider the problem

[Group(G; Æ) ^Group(H; ?) ^Hom(f; (G; Æ); (H; ?))]
)[9e:Im(f;G) LeftUnit(Im(f;G); ?; e)];

which is a lemma for the proof of theorem 1 in table 6.1 when we use the de�nition
of a group as given in 5.1 with the re�nement of axiom G3�, the existence of a left
unit element.

The proof of this lemma is given in table 6.2. Here we assume that the impli-
cation has already been split and we derive the succedent given in line L1 from the
three assumptions given as hypotheses in lines L2 to L4. To ameliorate readability
some of the hypotheses lists have been abbreviated.

The �rst step in the proof is an interactive application of the 9ISort method,
which leads to the two new subgoals L5 and L6. The latter subgoal states that mv1
is actually a left unit in the image of f on G, whereas the former subgoal requires
us to show that the term that will eventually be substituted for mv1 is actually an
element of that image. We concentrate �rst on the proof of the subgoal in line L6.
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The next two proof steps are again interactive: First the expansion of the de�nition
of LeftUnit and subsequently the elimination of the universal quanti�er in line
L7. Eliminating the sorted quanti�er leads also to the introduction of the new
hypothesis L8 into the proof. This, in turn, triggers the �rst automatic application
of a normalization method, namely ElemOfDomain. It decomposes the statement
that c is an element of the image of f in line L8 into the conjunction of line L10

and introduces also the new subgoal L11. Line L10 is even further decomposed by
another normalization method, ^E , which is again applied automatically.

At this point of the proof all possible quanti�ers are eliminated and the de�-
nitions are expanded. Hence, 
-Ants's next suggestion is the application of the
Homomorphism method to line L11. This leads to the introduction of �ve new
open subgoals L14 to L18. The three most tedious of those subgoals, L15 through
L17, are closed immediately and automatically by restriction methods. Thereby
two of the meta-variables, mv2 and mv3, are matched and substituted.

However, this substitution is not carried out directly during the proof planning
process but merely added as a constraint on the meta-variable. Nevertheless, from
there on the proof planner treats any occurrence of the meta-variables as if they were
substituted. Once a complete proof plan is constructed all computed substitutions
for meta-variables are applied. This treatment of meta-variable substitutions sim-
pli�es the backtracking procedure of the proof planner. In our examples we examine
the proof planning process in progress. Hence, we introduce �rst the meta-variables
themselves (i.e., to demonstrate when meta-variables arise). Once the meta-variable
is constrained we indicate this with a subscript to a formula and will use the sub-
stituted term from there on in the proof. For example, in table 6.2 the substitution
for the meta-variable mv3 is introduced by the application of the Weaken method
matching the term mv3 2 G against d 2 G in line L12. Thus, in all lines that are
introduced after the application of Weaken to L15 we write d instead of mv3. On
the contrary line L18 still contains mv3 since it was introduced into the proof before
the meta-variable was bound.

L18 is also the subgoal we have to consider next. We �rst decompose it by
discarding the topmost function symbols on both sides of the equality since they
are both f . This leaves us to show the equation mv2 Æ d = d holds. Because Æ is
the operation of G, which is a group according to line L2, the GroupUnit method
is applicable. It then remains to show that d is actually an element of G which
is automatically closed by a Weaken application. Additionally, the GroupUnit
method binds the meta-variable mv2 to the unit element of the group G indicated
by fmv2  GroupUnit(G; Æ)g. The expression GroupUnit(G; Æ) is a way to actu-
ally refer to the unit element of G in the proof similar to the StructUnit predicate
given in chapter 5.3.2. While in the pen and paper proof in mathematics we would
simply use a meaningful name such as eG for the constant denoting the unit ele-
ment of G this is not possible in the ND proof, since constants cannot have any
intrinsic semantical meaning. Thus, introducing GroupUnit(G; Æ) instead of a sim-
ple constant enables us to actually denote the distinct element of G, which is the
unit element with respect to Æ. The knowledge how and when to introduce such a
distinct element into a proof planning is given in certain domain-speci�c methods.
In our example the GroupUnit identi�es the given equation as part of the axiom
for the unit element and hence equates mv2 with GroupUnit(G; Æ).

With mv2 representing the unit element of G we can now also close line L14,
the last subgoal produced by the application of the Homomorphism method. It
essentially states that the unit element is actually an element of the group, which
can be justi�ed with the UnitInGroup method.

Having closed this branch of the proof the planner turns back to line L5, the
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second of the subgoals produced by the very �rst method application. Considering
the constraints for the meta-variable mv1 computed so far the formula actually
reads: f(GroupUnit(G; Æ)) 2 Im(f;G). After expanding the de�nition of image
and subsequently eliminating the existential quanti�er in line L21 there are two
subgoals left to show, the lines L22 and L23. The latter is closed automatically
by an application of the restriction method =Reflexivity, which also binds the
meta-variable mv4 to GroupUnit(G; Æ). This constraint is given as subscript of the
formula of line L22 in order to preserve the readability of line L23. With mv4 being
the unit element of G the �nal subgoal can be justi�ed interactively with another
application of the UnitInGroup method.

Although the example proof is relatively long it has been achieved with exactly
ten interaction steps. In particular the user does not have to be concerned with exe-
cuting the intermediate normalization steps since both normalization and restriction
methods are always performed automatically and exhaustively without interaction.
As the example demonstrates this helps to focus the user on the actually interesting
steps in the proof. While this aids to fruitfully employ interactive proof planning
in the context of tutor systems, the interaction steps are by no means necessary. In
fact, all proofs presented in this chapter can be planned fully automatic.

6.5 Summary of Chapter 6

This chapter showed the use of 
-Ants as an algorithm in Multi to support inter-
active proof planning. We applied this mechanism to 28 homomorphism theorems,
which can be either solved interactively with the 
-Ants algorithm or planned
automatically. We have a choice of regular planning methods with agents that
have to be applied interactively together with a set of normalization and restriction
methods, which are applied automatically after each proof step. This enables us
to construct proofs with a relatively small number of interaction steps and thus
focusing the user on the important and interesting steps in the proof.





Chapter 7

Exploring Properties of

Residue Classes

This chapter presents a case study on the combination of multi-strategy proof plan-
ning both with computer algebra as given in chapter 4.2 and with 
-Ants as
described in chapter 4.1.2. The domain of the case study is the exploration of sim-
ple algebraic properties of sets of residue classes over the integers. The proofs in
this domain can be carried out with di�erent proof techniques, which are modeled
as strategies of Multi. In particular we have three di�erent strategies, each one
exemplifying one of the following points:

1. The use of computer algebra systems in control rules to guide the proof plan-
ning process.

2. The application of symbolic computation within the method applications.

3. The exploitation of 
-Ants search mechanism to �nd applicable theorems
during method matching.

To gain and prove a fair number of examples we have conceived a way to automat-
ically classify large numbers of residue class sets together with binary operations in
terms of the algebraic structure they form. This enables to conduct large numbers
of experiments in order to test the robustness and the usefulness of the implemented
strategies. Moreover, the classi�cation process demonstrates another way of fruit-
fully employing computer algebra within an environment such as 
mega. The case
study has been �rst reported in [153].

We shall �rst introduce the problem domain and the necessary formalizations.
Then we present the three di�erent proof techniques, their respective implementa-
tion in strategies of Multi and an example for the constructed proofs. We shall
then describe the automatic classi�cation process that enabled us to perform a large
number of experiments with the presented techniques. An account and a discussion
of these experiments wrap up this chapter.

7.1 Problem Domain

The aim of the case study is to explore simple algebraic properties of residue class
sets over the integers together with given binary operations. In our terminology a
residue class set over the integers is either the set of all congruence classes modulo
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1. (a) Closed(RSn; Æ) (b) :Closed(RSn; Æ)

2. (a) Assoc(RSn; Æ) (b) :Assoc(RSn; Æ)

3. (a) 9e:RSn Unit(RSn; Æ; e) (b) :9e:RSn Unit(RSn; Æ; e)

4. (a) Inverse(RSn; Æ; e) (b) :Inverse(RSn; Æ; e)

5. (a) Divisors(RSn; Æ) (b) :Divisors(RSn; Æ)

6. (a) Commu(RSn; Æ) (b) :Commu(RSn; Æ)

7. (a) Distrib(RSn; Æ; ?) (b) :Distrib(RSn; Æ; ?)

Table 7.1: Theorems for properties of residue class structures.

an integer n (i.e., ZZn) or an arbitrary subset of ZZn. Concretely, we are dealing
with sets of the form ZZ3;ZZ5;ZZ3nf�13g;ZZ5nf�05g, f�16; �36; �56g; : : : where �13 denotes
the congruence class 1 modulo 3. If c is an integer we write also cln(c) for the
congruence class c modulo n. Additionally we allow for direct products of residue
class sets of arbitrary yet �nite length; thus, we can have sets of the form ZZ3
ZZ5,
ZZ3nf�13g 
 ZZ5nf�05g 
 f�16; �36; �56g, etc.

A binary operation Æ on a residue class set is given in �-function notation. Æ
can be of the form �x �y x, �x �y y, �x �y c where c is a constant congruence
class (e.g., �13), �x �y x�+y, �x �y x��y, �x �y x��y, where �+, ��, �� denote addition,
multiplication, and subtraction on congruence classes over the integers, respectively.
Furthermore, Æ can be any combination of the basic operations with respect to a
common modulo factor, for example, �x �y (x�+�13) ��(y �+�23). For direct products
of residue class sets the operation is a combination of the single binary operations
for the emerging element tuples, for example, �x �y x�+y � �x �y x��y, etc.

We shall consider residue class sets RSn modulo n with either one binary opera-
tion Æ or two binary operations Æ and ?. Both Æ and ? are required to be operations
with respect to the modulo factor n of the residue class. We call such combina-
tions residue class structures (or simply structures) and denote them by (RSn; Æ)
or (RSn; Æ; ?), respectively.

The theorems we prove for properties of residue class structures are given in
table 7.1. The theorems on the lefthand side of the table all contain the assertion
that a certain property holds for a residue class structure. In contrast the theorems
on the righthand side contain the respective negated assertions, that some property
does not hold. For example, theorem 1a states that the residue class set RSn is
closed under the operation Æ, whereas its negation, theorem 1b, states that RSn is
not closed with respect to Æ.

For structures with one operation, (RSn; Æ), we are essentially interested in the
group properties given in the equations (5.2) to (5.5) and (5.8) in chapter 5.3.1,
which corresponds to the theorems under 1 to 5. In addition we also consider
whether a residue class structure is commutative, given in line 6. And, given a struc-
ture (RSn; Æ; ?) consisting of a residue class set together with two binary operations,
we are interested in the distributivity of the two operations, which corresponds to
the theorems 7a and 7b.

7.2 Formalization

Since the algebraic properties of the theorems in table 7.1 were already introduced
in chapter 5, we have to formalize only the notion of a residue class set and some
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related concepts. Thus, it suÆces to de�ne the notion of residue class structures by
giving here the relevant notions and theorems for residue class sets and operations
on them. Furthermore, we introduce the necessary de�nitions for direct products
of residue classes. The proofs of the theorems given in this section are interactively
constructed in 
mega but are not explicitly discussed here.

7.2.1 Residue Class Sets

We start with the notion of a congruence class to gain the basic elements we need
to construct residue class sets

cl � �n� �m� �x� [ZZ(x)] ^ [(x mod n) = m] (7.1)

Provided cl is applied to two arguments n and m, we have the set containing all
integers x such (x mod n) = m. One crucial point of the de�nition is that the value
for n can range over all numbers. However, the application of mod ensures that
the above expression is only meaningful if n is an integer, which is in particular not
zero. In the following we generally write a congruence class m modulo n as cln(m).

Having congruence classes as building blocks available we can de�ne residue
class sets as

RS � �n� �r�o 9m� :IN [r = cln(m)] ^ [NonEmpty(cln(m))] (7.2)

Here NonEmpty corresponds to predicate de�ned in chapter 5.3 equation (5.1). We
write a residue class set over an integer n as RSn. We can now show three theorems
for residue class sets.

8n:ZZ NonEmpty(RSn) , [n 6= 0] (7.3)

8n:ZZ 8m:IN [cln(m) 2 RSn] , [m < jnj] (7.4)

8n:ZZ 8m:IN NonEmpty(cln(m)) ) [m 2 cln(m)] (7.5)

Theorem (7.3) means that residue class sets are nonempty i� the modulo factor is
distinct from 0. The theorems (7.4) and (7.5) state respectively that a congruence
class is included in a residue class set i� its representative is smaller than the absolute
value of the modulo factor and that each nonempty congruence class contains at
least its representative.

We then need a means to access the representative of a congruence class, there-
fore we de�ne a predicate Res that gives us the residue m of all elements of a
congruence class cln(m).

Res � �c�o �n� {om� 8x� [x 2 c]) [x mod n = m] (7.6)

Res takes two arguments; the �rst is the congruence class and the second is the
corresponding modulo factor. Here {ois the description operator de�ned in chap-
ter 2.1.1, de�nition 2.4, which acts like an additional quanti�er. Its meaning here
is intuitively that m represents that uniquely determined positive integer m that is
the residue modulo n of all elements of the congruence class c.

We can again prove that the predicate Res is well de�ned and additionally that
it has indeed the desired properties.

8n� :ZZ 8c�o:RSn 9x� :IN [Res(c; n) = x] ^ [x 2 c] (7.7)

8n� :ZZ 9m� :IN [[n 6= 0] ^ [m < jnj]] ) [Res(cln(m); n) = m] (7.8)

8n� :ZZ 8c�o:RSn 8x� [Res(c; n) = x] ) [x 2 c] ^ [x 2 IN] (7.9)

8n� :ZZ 8c�o:RSn 8d�o:RSn [c = d] , [Res(c; n) = Res(d; n)] (7.10)

The last theorem gives us a means to transform statements on congruence classes
into corresponding statements on integers modulo a factor n. This theorem is used
in the proofs of theorems over operations on residue classes, which we shall see in
the sequel.
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7.2.2 Operations on Congruence Classes

We �rst de�ne the basic operations on congruence classes we shall consider, namely
addition, multiplication, and subtraction.

�+ � �r�o �s�o �z� 9x� :r 9y� :s z = x+ y (7.11)

�� � �r�o �s�o �z� 9x� :r 9y� :s z = x � y (7.12)

�� � �r�o �s�o �z� 9x� :r 9y� :s z = x� y (7.13)

We can observe that the de�nitions (7.11) to (7.13) make no restriction on the
congruence classes involved; that is, they do not have to be necessarily congruence
classes with respect to the same modulo factor. However, in practice operations
between congruence classes with di�ering modulo factor are of little use and for
the following theorems it is therefore ensured that the arguments of the respective
operations are from the same residue class set.

8n:ZZ 8c:RSn 8d:RSn (c �+ d) 2 RSn (7.14)

8n:ZZ 8c:RSn 8d:RSn (c �� d) 2 RSn (7.15)

8n:ZZ 8c:RSn 8d:RSn (c �� d) 2 RSn (7.16)

8n:ZZ 8c:RSn 8d:RSn 8p� 8q�

[[Res(c; n) = p] ^ [Res(d; n) = q]]) [Res((c �+ d); n) = (p+ q) mod n] (7.17)

8n:ZZ 8c:RSn 8d:RSn 8p� 8q�

[[Res(c; n) = p] ^ [Res(d; n) = q]]) [Res((c �� d); n) = (p � q) mod n] (7.18)

8n:ZZ 8c:RSn 8d:RSn 8p� 8q�

[[Res(c; n) = p] ^ [Res(d; n) = q]]) [Res((c �� d); n) = (p� q) mod n] (7.19)

The �rst three theorems simply state that a residue class set is a closed set with
respect to our three operations on congruence classes. The theorems (7.17) to (7.19)
provide a way to shift from an operation on congruence classes to the corresponding
operation on integers. To prove these theorems we need to apply the theorem (7.10).

7.2.3 Direct Products

We de�ne direct products of residue classes via iterated pairing of arbitrary sets. For
this we �rst need to de�ne the notion of pairs of single elements with the following
pairing function:

Pair � �x� �y� �g��o g(x; y) (7.20)

In order to access the single elements of a pair we need to de�ne two projections
for the left and the right element of the pair, respectively. The de�nitions of the
projections and the pairing functions are identical with those given in Andrew's
book [7] on page 185.

LProj � �p(��o)o {ox� 9y� p = Pair(x; y) (7.21)

RProj � �p(��o)o {oy� 9x� p = Pair(x; y) (7.22)

Note that the de�nitions of pair and the two projection functions are basically
the same as the de�nitions of the construction operator for lists # and its access
functions in chapter 3.6.1. However, we forgo reusing these functions in order to
distinguish pairs from lists, although Cartesian products of more than two sets are
recursively composed pairs and thus essentially similar to lists.



7.3. Planning Proofs of Simple Properties 139

The predicate Pair and its projection functions enable us to prove a series of
simple, nevertheless useful theorems.

8x� 8y� LProj(Pair(x; y)) = x (7.23)

8x� 8y� RProj(Pair(x; y)) = y (7.24)

8x� 8y� 8a� 8b� [Pair(x; y) = Pair(a; b)], [x = a ^ y = b] (7.25)

Theorem (7.23) and (7.24) state that the projections indeed return the left and
right element of the pair, respectively, and theorem (7.25) is an aid to deal with
equalities between pairs.

We can now de�ne the direct product of two sets as the set of all pairs of elements
of the respective sets; that is,


 � �U�o �V�o �p(��)((��o)o) [LProj(p) 2 U ] ^ [RProj(p) 2 V ] (7.26)

Finally, we de�ne operations on direct products as pairs of the operations of the
single sets of the direct product.

� � �U�o �V�o � Æ
1
��� � Æ2��� �p(��)((��o)o) �q(��)((��o)o)

Pair(LProj(p) Æ1 LProj(q); RProj(p) Æ2 RProj(q)) (7.27)

In this thesis we write pairs of operations as (Æ1�Æ2). Moreover, we write direct
products of more than two sets as U1
U2
 : : :
Un, thus omitting the brackets.
Likewise, we omit the brackets for the operations on such sets.

7.3 Planning Proofs of Simple Properties

In order to automatically analyze the properties of residue class sets we use the
multi-strategy proof planner Multi. Multi can use di�erent strategies to con-
struct an appropriate proof plan where each strategy implements a di�erent proof
technique. However, not all proof techniques can be applied to all possibly occur-
ring problems. Thus, the advantage of using Multi is that fast but not always
successful strategies can be tested �rst, and if they fail slower but more reliable
strategies can be employed. Moreover, strategies can be intermixed in the sense
that certain subgoals arising during the application of one strategy can be proved
with a di�erent technique.

In particular we have three strategies implemented for proving single properties
of residue class structures, namely

1. exhaustive case analysis,

2. equational reasoning, and

3. application of already known theorems.

The proof planner tries to apply the strategies in the order 3 to 1 since strategy 3
is generally the fastest to solve a problem and strategy 1 is the most reliable of the
three strategies.

In the sequel we elaborate each strategy using examples for the type of proofs
they produce. We shall point out the major di�erences while trying to avoid the
tedious details and mention advantages and weaknesses of each strategy as we go
along. Furthermore, we emphasize where the combinations of proof planning with
computer algebra and 
-Ants come into play and how they are realized in the
di�erent strategies.
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L1. L1 ` cl2(c) 2 ZZ2 (Hyp)
L2. L1 ` c 2 f0; 1g (ConResclSet L1)
L3. L3 ` c = 0 (Hyp)

.

..
L12. L1; L3 `9y:ZZ2 [cl2(c) �+y=�02] ^ [y �+cl2(c)=�02] (9IResclass L11 L10)
L13. L13 ` c = 1 (Hyp)
L14. L1; L13 ` 0 = 0 (=Reflexivity)
L15. L1; L13 `mv 2 f0; 1g (_Ir L14)
L16. L1; L13 ` 0 = 0 (=Reflexivity)
L17. L1; L13 ` 0 = 0 (=Reflexivity)
L18. L1; L13 ` (1 + c) mod 2 = 0 mod 2 (SimplNumL13 L16)
L19. L1; L13 ` (c+ 1) mod 2 = 0 mod 2 (SimplNumL13 L17)
L20. L1; L13 ` [(c+1) mod 2 = 0 mod 2]^ [(1+c) mod 2 = 0 mod 2] (^I L18 L19)
L21. L1; L13 ` [cl2(c) �+cl2(mv) = �02]^[cl2(mv) �+cl2(c) = �02]fmv 1g (ConCongCl L20)
L22. L1; L13 `9y:ZZ2 [cl2(c) �+y = �02] ^ [y �+cl2(c) = �02] (9IResclass L21 L15)
L23. L1 `9y:ZZ2 [cl2(c) �+y = �02] ^ [y �+cl2(c) = �02] (_��E L2 L12 L22)
L24. `8x:ZZ2 9y:ZZ2 [x�+y = �02] ^ [y �+x = �02] (8IResclass L23)
L25. ` Inverse(ZZ2; �x �y x�+y; �02) (�I L24 Inverse)

Table 7.2: Proof with the TryAndError strategy.

7.3.1 Exhaustive Case Analysis

The motivation for the �rst strategy, called TryAndError, is to implement a reliable
approach of proving a property of a residue class set. It proceeds by rewriting
statements on residue classes into corresponding statements on integers, especially
by transforming the residue class set into a set of corresponding integers. It then
exhaustively checks all possible combinations of these integers with respect to the
property we have to prove or to refute. This approach is possible since in our
problems the quanti�ed variables range always over �nite domains. TryAndError

proceeds in two di�erent ways, depending on whether (1) a universally or (2) an
existentially quanti�ed formula has to be proved. Both cases can be observed in the
example proof of the theorem that ZZ2 has inverses with respect to the operation
�x �y x�+y and the unit element �02, given in table 7.2.

In case (1) a split over all the elements in the set involved is performed and the
property is proved for every single element separately. We observe this in the proof
of the universally quanti�ed formula in line L24. An application of the method
8IResclass to L24 yields the lines L23, L1, and L2. 8IResclass is a method dual to
9IResclass that has been explained in section 2.2.4.1. The disjunction contained
in L2 (c 2 f0; 1g can be viewed as c = 0_ c = 1) triggers the �rst case split with the
application of _��E . SubsequentlyMulti tries to prove the goal in line L23 twice (in
the lines L12 and L22), once assuming c = 0 (in line L3) and once assuming c = 1
(in line L13).

In case (2) the single elements of the set involved are examined until one is found
for which the property in question holds. In our example this is, for instance, done
after the application of the method 9IResclass to L22 yielding the lines L15 and
L21. The case analysis is then performed by successively choosing di�erent possible
values for mv with the _Ir and _Il methods that split disjunctive goals into the
left or right disjunct, respectively. In our example mv is either 0 or 1 as given in
line L15. For a selected instantiation Multi can then either �nish the proof or
| if the proving attempt fails | it backtracks to test the next instantiation. To
minimize this search for a suitable instantiation of a meta-variable the TryAndError
strategy enables Multi to invoke the select-instance control rule on occurring
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meta-variables.

select-instance is a control rule of the type described in chapter 4.2. It
is called directly after the introduction of a meta-variable mv and provides the
information how to instantiate this meta-variable as a substitution fmv  tg. But,
as already explained in chapter 6.4 this substitution is not carried out directly
during the proof planning process but merely added as a constraint on the meta-
variable. So, for example, in table 7.2 we introduce the suitable instantiation 1 for
the meta-variable mv in line L20 and indicate this by the substitution fmv  1g
in line L21. To compute hints that simplify the proof select-instance employs
computer algebra systems. Depending on what type of hint is required, it either
uses 
mega internal routines, Gap, or Maple. In detail, we have a function that
constructs multiplication table for a given structure. This is used to check for closure
and the existence of divisors and compute appropriate hints. If the multiplication
table is closed, it can also be passed to Gap in order to check whether the given
structure is associative, contains a unit element and inverses. According to Gap's
results there are then hints constructed by the control rule.

For instance, if Gap can compute a unit element for a given semi-group this
element is returned. In case Gap fails to �nd a unit element the multiplication
table that has been constructed in 
mega is used to determine the set of elements
that suÆce to refute the existence of a unit element. A special case is the failure
of the query for associativity and commutativity, since then we try to use Maple
to compute a particular solution for the respective equation. If such a non-general
solution exists it is exploited to determine a tuple of elements for which the property
in question (i.e., associativity or commutativity) does not hold.

In our example select-instance is called to compute the inverse of �12 in ZZ2,
which is again �12. The corresponding integer 1 of this result is used as instantiation
of the meta-variable mv throughout the rest of the proof (i.e., from line L20 on
backwards).

After eliminating all quanti�ers and performing all possible case splits the strat-
egy reduces all remaining statements on residue and congruence classes to state-
ments on integers using the ConCongCl method. This method employs essentially
the theorems (7.17), (7.18), and (7.19) to convert expressions involving congruence
classes to the corresponding expressions involving integers. The resulting statements
are then solved by numerical simpli�cation and basic equational reasoning.

The TryAndError strategy is designed to be applicable to every type of problem
in our problem domain and ideally should also be always able to solve them1.
However, the strategy has the major disadvantage that it has to wade painstakingly
through all possible cases. This leads especially for large residue class sets to lengthy
proofs, which can take quite long for the planner to construct.

7.3.2 Equational Reasoning

The aim of the second strategy, called EquSolve, is to use as much as possible equa-
tional reasoning to prove properties of residue classes. Similarly to the TryAndError
strategy it converts statements on residue classes into corresponding statements on
integers. But instead of then checking the validity of the statements for all possible
cases, it tries to solve occurring equations in a general way. We observe this approach

1Since we cannot yet formally prove completeness for a strategy we have to rely on experiments
to justify this statement. In our conducted experiments it turned out that the strategy can indeed
solve all smaller problems, but that an exhaustive case analysis is no longer feasible for large
problems (see section 7.5).
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L1. L1 ` c01 2 ZZ2 (Hyp)
L2. L1 ` c 2 f0; 1g (ConResclSet L1)
L15. L1 `mv 2 f0; 1g (Weaken L2)
L18. L1 ` (mv + c) mod 2 = 0 mod 2fmv cg (SolveEqu)
L19. L1 ` (c+mv) mod 2 = 0 mod 2 (SolveEqu)
L20. L1 ` [(c+mv) mod 2 = 0 mod 2] ^ [(mv + c) mod 2=0 mod 2] (^I L19 L18)
L21. L1 ` [cl2(c) �+cl2(mv)=�02] ^ [cl2(mv) �+cl2(c)=�02] (ConCongCl L20)
L22. L1 `9y:ZZ2 [cl2(c) �+y = �02] ^ [y �+cl2(c) = �02] (9IResclassL21L15)
L24. `8x:ZZ2 9y:ZZ2 [x�+y = �02] ^ [y �+x = �02] (8IResclass L23)
L25. ` Inverse(ZZ2; �x �y x�+y; �02) (�I L4 Inverse)

Table 7.3: Proof with the EquSolve strategy.

with a proof of the example theorem from section 7.3.1 Inverse(ZZ2; �x �y x�+y; �02),
displayed in table 7.3.

The construction of the proof is in the beginning (lines L25 through L20) nearly
analogous to the one in the preceding section. The only exception is that no case
splits are carried out after the applications of 8IResclass and 9IResclass. Instead
we get two equations in the lines L18 and L19, which can be generally solved us-
ing the SolveEqu method. This method is applicable if Maple can compute a
general solution to the given equation. In case the equation in question contains
meta-variables the solution Maple computes is also used to constrain these meta-
variables. In our example the meta-variable mv is substituted by c during the �rst
application of SolveEqu. This is indicated by fmv  cg in the justi�cation of line
L18. As already described in the last section this substitution is not carried out
directly but added as a constraint on the meta-variable. Thus, the constraint on
mv changes the formula implicitly in the remaining open goal L15 to c 2 f0; 1g,
which can then be immediately closed with line L2.

As opposed to the TryAndError strategy, the proofs EquSolve constructs are
independent of the size of the residue class set involved. But the strategy can be
applied successfully to only some of the possible occurring problems. In particular,
neither problems involving the closure property nor refutations of a property can
be tackled with EquSolve.

7.3.3 Applying Known Theorems

The motivation for our third strategy ReduceToSpecial is to incorporate the appli-
cation of already proved theorems. The implementation of this strategy also serves
as a case study for the application of 
-Ants to compute and suggest applicable
assertions in parallel to the proof planning process as presented in chapter 4.1.2.

The very �rst call to the ReduceToSpecial strategy initializes 
-Ants with
clusters for theorems from the theory of residue classes. Apart from the cluster
for Closed theorems given in the example in chapter 4.1.2, we have clusters for
theorems dealing with associativity, unit element, inverses, and divisors problems.

We observe the behavior of the ReduceToSpecial strategy with the proof for
the theorem Closed(ZZ5; �x �y (x��y) �+�35) given in table 7.4. Among the theo-
rems involved are those six theorems dealing with the closure property given in
chapter 4.1.2. The overall approach of the ReduceToSpecial strategy is to al-
ways apply possible theorems with the ApplyAss method before considering any of
its other methods. In case there is more than one applicable theorem at a time,
ReduceToSpecial applies the �rst of these theorems and keeps the others for pos-
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L1. ` �35 2 ZZ5 (InResclSet)

L2. ` 5 2 ZZ (InInt)

L3. `Closed(ZZ5; �x �y x) (ApplyAss ClosdFV L2)

L4. `Closed(ZZ5; �x �y y) (ApplyAss ClosedSV L2)

L5. `Closed(ZZ5; �x �y �35) (ApplyAss ClosedConst L2 L1)

L6. `Closed(ZZ5; �x �y x��y) (ApplyAss ClComp�� L2 L3 L4)

L7. `Closed(ZZ5; �x �y (x��y) �+�35) (ApplyAss ClComp�+ L2 L5 L6)

Table 7.4: Proof with the ReduceToSpecial strategy.

sible later backtracking.

The �rst step is the application of the ClComp�+ theorem as illustrated in chap-
ter 4.1.2. This results in the three new subgoals L6, L5, and L2. The former can
be reduced applying the ClComp�� theorem. For this the support agent of 
-Ants
searching for premises of the assertion that already exists in the proof, �nds line L2

containing the sort information necessary to apply the theorem. Thus, the applica-
tion of the ClComp�� theorem introduces only two new subgoals, lines L4 and L3.
These two lines can be closed by the application of two theorems involving a simple
operation, namely ClosedFV and ClosedSV , again using line L2 as the necessary
premise. Both assertion applications are computed with the function agent respon-
sible for matching theorems involving simple operations, only. Similarly, line L5 is
closed, applying theorem ClosedConst. However, this theorem has as additional
premise that the constant congruence class occurring in the operation is in fact an
element of the given residue class set. This premise is introduced as a new subgoal
in line L1.

After all possible applications of ApplyAss those remaining premises of the
applied theorems that cannot be closed by theorem application have to be tackled.
This can be done by some other methods associated with the strategy like InInt and
InResclSet, which close goals of the form n 2 ZZ, if n is an integer, and c 2 RSn,
if c is an element of the residue class set RSn, respectively.

We have also experimented with bookkeeping of already solved problems and
dynamically feeding them to 
-Ants and thereby extending the set of available the-
orems. However, this approach has the disadvantage that with many new theorems
the parallel matching degenerates to a few parallel agents sequentially matching a
lot of theorems. Furthermore, the application of theorems like the one from our ex-
ample are not necessarily meaningful from a mathematical point of view and, more
importantly, are rarely applicable in general and thus only cloak up our otherwise
eÆcient mechanism to match theorems. Finally, it might also lead to proofs that
are hard to replay in the same form. For instance, a theorem has just been proved
in one run of 
mega and is fed into 
-Ants as available theorems but not other-
wise saved in the knowledge base. If it is then applied during the proof of another
theorems within the same run of 
mega, the proof of the latter theorem can then
no longer be replayed in the same form in a di�erent run of 
mega if the former
theorem is not available.

Like the EquSolve strategy ReduceToSpecial is independent of the size of the
residue class set involved. Theoretically it is applicable to all types of problems.
However, this depends on what kind of theorems are available in the knowledge
base; that is, if for some problem no matching theorems are supplied these problems
cannot be tackled. Likewise, if some intermediate theorems are missing some proofs
with the ReduceToSpecial strategy cannot be concluded and the strategy will be
backtracked.
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7.3.4 Treating Direct Products

So far we have explained the strategies with residue class structures involving simple
sets, only. In case the set involved consists of a direct product of single residue
class sets, the proofs constructed by the EquSolve and the TryAndError strategy
are slightly di�erent. In fact, the only di�erences are the treatment of quanti�ed
variables that range over direct products and equations between tuples in proofs.
They are transformed into a form that is suitable for the methods for simple residue
class sets.

As an example we consider the set ZZ2 
 ZZ2 with the addition �+ and multipli-
cation �� as operations on the components. The proof works similar to the proofs
given for the simple case of ZZ2 in sections 7.3.1 and 7.3.2. We omit to repeat all
the details of these proofs and just describe the actual di�erences. The existential
quanti�cation

9z:ZZ2
ZZ2 (cl2(c1); cl2(c2)) [ �+���] z = (�02; �02)

is rewritten to

9x:ZZ2 9y:ZZ2 (cl2(c1); cl2(c2)) [ �+���] (x; y) = (�02; �02);

for which the 9IResclass is applicable. The resulting equation on tuples

(cl2(c1); cl2(c2)) [ �+���] (cl2(mv1); cl2(mv2)) = (�02; �02)

is split into equations on the single components

cl2(c1) �+cl2(mv1) = �02 ^ cl2(c2)��cl2(mv2) = �02:

Universal quanti�cation is treated analogously to existential quanti�cation, in-
equalities on tuples result in the disjunction of inequalities on the elements of the
tuples. These transformations are achieved by special methods, which are included
in the strategies EquSolve and TryAndError.

7.4 Automatically Classifying Residue Class Sets

In order to obtain a large number of examples to test the strategies presented in the
preceding section it seems appropriate to systematically construct theorems with
respect to given residue class structures. The idea is to classify a given residue class
structure in terms of the algebraic structure it forms by proving stepwise single
properties; that is, we classify structures with one operation in terms of

1. magma, semi-group, quasi-group, monoid, loop, or group, and

2. whether a given structure is Abelian or not.

Structures with two operations are classi�ed in terms of ring, ring-with-identity,
division ring, or �eld. This section presents how the two classi�cation processes
work.

7.4.1 Classifying Structures with One Operation

The main idea of the classi�cation of residue class structures is to check stepwise
properties of the structure. This is done in three parts: First the likely answer to
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Figure 7.1: Classi�cation schema for sets with one operation.

whether a certain property holds or not is computed using a computer algebra sys-
tem. Depending on the result of this computation a proof obligation is constructed
stating either that the property in question holds or that it does not hold. This
proof obligation is then passed to the proof planner, which tries to discharge it im-
mediately. If the proof fails the negated proof obligation is constructed and passed
to the planner to prove the obligation. If both proving attempts fail the classi�-
cation process stops and signals an error, otherwise the classi�cation proceeds by
checking the next property.

Properties are checked in a schematic order that eventually gives an answer to
the question what kind of algebraic entity the input structure forms. We shall dis-
cuss here the classi�cation schema for a given residue class set together with a single
binary operation, which is displayed in �gure 7.1. The classi�cation process itself
only produces proof obligations, which are subsequently discharged by constructing
proof plans with Multi as described in section 7.3.

The �rst property we have to check is whether the given structure is actually
closed under the operation. This is done with a multiplication table that is con-
structed in 
mega. In case it can be proved that the structure is not closed the
classi�cation stops at this point. Otherwise we know that the structure in question
forms a magma and the constructed multiplication table is passed to Gap. The
classi�cation proceeds then along the right branch of the schema in �gure 7.1. The
single tests given as labels on the edges (i.e., the test for associativity, whether there
exists a unit element, and if all elements have an inverse with respect to the unit
element) are performed using Gap. This way we show whether the given structure
is a semi-group, a monoid or a group.

In case it turns out that the given structure is not associative the classi�cation
follows the left branch of the schema. Here the �rst test is to check whether the
property of divisors holds. Since there is no appropriate algorithm in Gap we
perform this test within 
mega using the originally constructed multiplication
table. If the divisors property can be successfully proved the structure forms at
least a quasi-group. If the quasi-group contains additionally a unit element, which
is again tested with Gap, it is a loop. If the structure forms a loop we do not
have to check any further since we know that the structure is de�nitely not a group
because we already proved it is non-associative.

To perform the test we can use the same functionality that we employ within the
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select-instance control rule during the proof planning process. For this the single
functions are implemented to return two distinct values, namely a boolean value
and a hint for the proof. For example, when checking whether in a given structure
exist inverses for all elements, the appropriate function either returns true and a
set of pairs of elements and inverses or it returns false and an element for which no
inverse exists.

Once the classi�cation with respect to the schema in �gure 7.1 is �nished and
the structure in question is at least a magma, it is always checked whether it is
Abelian. This test (i.e., whether or not the multiplication table is commutative) is
again performed by Gap.

7.4.2 Classifying Structures with two Operations

So far we were only concerned with the classi�cation of residue class sets together
with one binary operation. But we can also automatically classify residue class sets
together with two operations without much additional machinery.

A given structure of the form (RSn; Æ; ?) is �rst classi�ed with respect to the
�rst operation as described in section 7.4.1. If (RSn; Æ) is an Abelian group, we
try to establish distributivity of ? over Æ corresponding to proving either of the
theorems 7 in section 7.1. The proofs for distributivity are also planned by Multi
using exactly the same three strategies presented in section 7.3.

If distributivity can be successfully proved the residue class set is �rst reduced
by the unit element of the �rst operation and the resulting set is then classi�ed with
respect to the second operation. More precisely, if e is the unit element in RSn with
respect to Æ, (RSnnfeg; ?) is classi�ed as described in the preceding sections. The
result of this latter classi�cation determines the exact nature of (RSn; Æ; ?), whether
it is a ring, ring-with-identity, division ring, or �eld.

7.5 Experiments

The strategies presented in section 7.3 were designed on the basis of a relatively
small number of examples. In detail, we used 21 examples to design the basic ver-
sions of the ReduceToSpecial, TryAndError, and EquSolve strategies (as described
in section 7.3). For the extensions to handle direct products (section 7.3.4) we used
3 additional examples, and for the extensions to classify structures with two oper-
ations (section 7.4.2) we needed 2 examples, which were combinations of already
used examples.

To guarantee that the presented approach is appropriate we tested the strategies
against a large number of examples that di�ered from those used during the design
process. In particular, we provide some evidence with our tests that

� our techniques realized in the strategies provide a machinery suitable to prove
a large variety of problems about residue classes,

� the elaborate strategies we have developed are applicable to a suÆciently large
number of examples, and

� the integration of computer algebra enhances indeed the proof planning pro-
cess.

By gathering evidence for the latter two points we want to ensure that not a vast
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majority of problems is proved with an exhaustive case analysis using crude force
search.

We created a testbed of roughly 13 million automatically generated examples and
started to classify these examples. The examples are composed from the possible
subsets of the residue classes modulo n, where n ranges between 2 and 10, together
with operations that are systematically constructed from the basic operations. We
tried to exclude repeating and trivial cases (e.g., sets with only one element or
operations like x� x) as far as possible.

Although we tested the classi�cation of structures with two operations on some
examples, we focused on the classi�cation of structures with one operation, because
the results of the exploration of structures with one operation can ease the explo-
ration of structures with two operations. Hence, we do not provide results about
large experiments on structures with two operations.

We classi�ed 14337 structures with one operation so far; the sets of these struc-
tures mainly involve ZZ2 to ZZ6 and some of their subsets. We found 5810 magmas,
109 Abelian magmas, 2064 semi-groups, 1670 Abelian semi-groups, 1018 quasi-
groups, 461 Abelian quasi-groups, 93 Abelian monoids, and 780 Abelian groups
(the other structures we tested are not closed). Among the classi�ed structures are
45 structures with direct products. Note that these �gures do not mean that we
have so many distinct algebraic entities, since our sets contain many isomorphic
structures. For the proofs of the single properties that were tested during the clas-
si�cation, Multi employed successfully ReduceToSpecial to a sample of 19% and
EquSolve to a di�erent set accounting for 21% of the examples. The remaining
60% of the examples could be solved only by the TryAndError strategy. All input
structures were successfully classi�ed and the classi�cation algorithm did not signal
a single error.

The experiments demonstrate that our strategies are general enough to cope
with a large number of problems. Although the percentage of problems during
the classi�cation of structures with one operation that could only be solved with
TryAndError seems high at a �rst glance, it is actually not so disappointing. We
have to take into account that nearly all proofs involving the closure property of
non-complete residue class sets (i.e., sets such as ZZ3nf�13g) and the refutation of
properties could only be solved with the TryAndError strategy. Thus, our tests
show that the more elaborate strategies are indeed applicable on a considerable
number of examples.

7.6 Summary of Chapter 7

The case study presented in this chapter was an experiment in exploring simple
properties of residue classes over integers. Single properties are step-wise checked by
an exploration module that generates the appropriate proof obligations. These proof
obligations are passed to the multi-strategy proof plannerMulti to be proved. The
proof planner can draw on three di�erent planning strategies in order to solve the
problems, where each strategy is an implementation of one aspect of the combination
of proof planning with both computer algebra and 
-Ants. We employ Gap to
guide the search process via control rules, Maple is applied directly with methods
in order to justify equational goals, and assertion applications are computed with

-Ants when reusing existing theorems.

We gave some empirical evidence that the currently implemented methods form
a robust set of planning operators that suÆces to explore the domain of residue
classes. Moreover, the case study shows how a combination of various systems can
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be fruitfully employed to large classes of examples. Although one major ingredient
in our setup is the multi-strategy proof plannerMulti, the presented work does not
reect the full power of proof planning in general and its multi-strategy variant in
particular, for two reasons: Firstly, the problem solutions are still quite algorithmic
and the necessary search is rather limited. And secondly, problems can be solved
with a single strategy each, and therefore the case study does not show the additional
power one gains from interleaving strategies, which is the subject of the following
chapter.



Chapter 8

Isomorphism Proofs

The last chapter provided a case study proving simple properties of residue classes
and a classi�cation of residue class structures in terms of the algebraic entity they
form. The case study was designed for the demonstration of the combination of
Multi and 
-Ants and the use of computer algebra in proof planning both in
method application and control rules. However, from a proof planning perspec-
tive the proofs were relatively straightforward; in particular, single strategies were
generally able to prove a whole problem.

In this chapter we shall now examine a class of problems whose solution require
the full power of multi-strategy proof planning. In detail, we shall reuse the same,
albeit slightly extended, strategies developed for the preceding case study in order to
prove that two given residue class structures are either isomorphic or not isomorphic
to each other. For the construction of the proofs we rely on the combination and
interleaving of di�erent strategies. Thus, the case study presents full-scale multi-
strategy proof planning together with the di�erent combinations of proof planning
with computer algebra and 
-Ants.

Moreover, we shall further exploit our results from the preceding chapter and
extend our automatic exploration of the residue class domain. The exploration
presented in chapter 7.4 returns sets of magmas, abelian magmas, semi-groups, etc.
This, however, does not indicate how many of these structures are actually di�erent
(i.e., not isomorphic to each other) or are just di�erent representations of the same
structure. The proof techniques we present in this chapter enable us to further
classify residue class structures by dividing them into isomorphism classes. The
classi�cation into isomorphism classes has been reported in [151]; a complete report
on the exploration of the residue class domain can be found in [150].

This chapter is structured as follows: We �rst introduce the problems and their
formalizations. We then describe how both isomorphism and non-isomorphism
proofs are planned and point out the peculiarities when residue class structures
with direct products are involved. Finally, we present the algorithm to automati-
cally classify residue class structures into isomorphism classes before detailing the
experiments we have carried out.

8.1 Problems and Formalization

Since we are interested in distinguishing classes of isomorphic residue class struc-
tures the problems we consider state that two residue class structures (RS1n1 ; Æ1) and
(RS2n2 ; Æ2) are isomorphic or not isomorphic to each other. Thus, the two relevant
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(a) Iso(RS1n1 ; Æ1; RS
2
n2 ; Æ2) (b) :Iso(RS1n1 ; Æ1; RS

2
n2 ; Æ2)

Table 8.1: Isomorphism theorems for residue class structures.

theorems are those given in table 8.1.

To state the isomorphism theorems we have to de�ne the Iso predicate, which
is formalized in a straightforward way:

Iso � �A�o � Æ��� �B�o � ?���

9h:F (A;B) Inj(h;A) ^ Surj(h;A;B) ^Hom(h;A; Æ; B; ?) (8.1)

De�nition (8.1) simply states the fact that two structures (A; Æ) and (B; ?) are
isomorphic if and only if there exists a function h : A ! B, such that h is an
injective and surjective homomorphism. The sort F (A;B) of h is the set of all total
functions from A into B. The concepts of injective, surjective and homomorphism
were already de�ned in chapter 6.2.

8.2 Isomorphism Proofs

In this section we present how Multi plans isomorphism proofs. It employs the
same strategies already described in chapter 7.3, which require only few supple-
mental methods in addition to those needed to prove single properties of residue
class sets. We just had to add two methods for the introduction of isomorphism
mappings to the TryAndError and EquSolve strategies and one additional theorem
for the ReduceToSpecial strategy. Contrary to the proofs in chapter 7.3 that could
be solved in most cases within one strategy, for isomorphism proofs di�erent sub-
proofs can be solved by di�erent strategies. In detail this means, that the strategy
EquSolve switches to TryAndError, while ReduceToSpecial uses EquSolve and
TryAndError to prove some of the occurring subgoals.

8.2.1 TryAndError

For the proof that two given structures are isomorphic we have to �nd a mapping
that is a bijective homomorphism. In the context of �nite sets each possible mapping
can be represented as a pointwise de�ned function, where the image of each element
of the domain is explicitely speci�ed as an element of the codomain. Following the
idea of the strategy TryAndError, a case analysis for the di�erent possibilities for
de�ning the mapping is performed. If it cannot be shown that the mapping is a
homomorphism or a bijection, the next mapping is constructed and veri�ed.

Table 8.2 shows the �rst steps of the proof for the claim that (ZZ2; �+) is isomor-
phic to (ZZ3nf�0g; ��). To preserve space we have omitted some of the less interesting
details and abbreviated some of the hypotheses lists.

The topmost case split (i.e., the case split over the possible instantiations of
the isomorphism mapping) is introduced with the application of the 9IResclFunc
method in line L98. 9IResclFunc introduces a constant h0 for the existentially
quanti�ed variable h, which represents a function from ZZ2 to ZZ3nf0g. This function
is also explicitly introduced in line L1 as the formalization of a pointwise function

h0 : ZZ2 �! ZZ3 n f�03g with h0(x) =

�
cl3(mv1); if x = �02
cl3(mv2); if x = �12

;
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L1. L1 `h0 = �x {oy [x = �02 ) y = cl3(mv1)]^
[x = �12 ) y = cl3(mv2)]

(Hyp)

.

..
L5. L5 ` cl2(c1) 2 ZZ2 (Hyp)
L6. L6 ` cl2(c2) 2 ZZ2 (Hyp)

...
L10. L10 ` c1 = 0 (Hyp)
L11. L11 ` c2 = 1 (Hyp)

...
L70. H3 ` 1 6= 2 (6=Reflexivity)
L71. H3 ` 1 6= 2 _ 0 = 1 (_Il L70)
L72. H3 ` cl3(mv1) 6= cl3(mv2) _ 0 = 1fmv1 1;mv2 2g (ConCongCl L71)

L73. H3 `h0(�02) 6= h0(�12) _ 0 = 1 (AppFct L1 L72)
L74. H3 `h0(cl2(c1)) 6= h0(cl2(c2)) _ c1 = c2 (SimplNumL10 L11 L73)
L75. H2 `h0(cl2(c1)) 6= h0(cl2(c2)) _ c1 = c2 (_E��L5 L6L74 : : :)
L76. H2 `h0(cl2(c1)) 6= h0(cl2(c2)) _ cl2(c1) = cl2(c2) (ConCongCl L75)
L77. H2 `h0(cl2(c1)) = h0(cl2(c2))) cl2(c1) = cl2(c2) (_2) L76)
L78. H1 `8y:ZZ2 h0(cl2(c1)) = h0(y)) cl2(c1) = y (8IResclass L77)
L79. L1 `8x:ZZ2; y:ZZ2 h0(x) = h0(y)) x = y (8IResclass L78)
L80. L1 ` Inj(h0;ZZ2) (�I L79 Inj)

...
L96. L1 `mv1 2 f1; 2g ^mv2 2 f1; 2g (^I : : :)
L97. L1 ` Inj(h0;ZZ2) ^ Surj(h0;ZZ2;ZZ3nf�03g)

^Hom(h0;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)
(^I : : :)

L98. `9h:F (ZZ2;ZZ3nf�03g) Inj(h;ZZ2) ^ Surj(h;ZZ2;ZZ3nf�03g)
^Hom(h;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)

(9IResclFunc L96 L97)

L99. ` Iso(ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y) (�I L98 Iso)

H1 = fL1; L5g; H2 = fL1; L5; L6g; H3 = fL1; L5; L6; L10; L11g

Table 8.2: Introduction of the pointwise de�ned function.

where the mvi are meta-variables that can be instantiated by elements of the range,
in our example by 1 or 2. These possible instantiations are also introduced by
9IResclFunc in line L96. We can now search for an appropriate combination of
mv1 andmv2, or in other words over all possible functions h

0 for which the properties
given in line L97 hold.

Multi abbreviates the search for the right function h0 by computing a hint. For
an isomorphism h:(RS1n; Æ1)! (RS2m; Æ2),Maple is asked to give a solution for the
system of equations xk = xiÆ2xj with respect to the modulo factorm usingMaple's
function msolve. The system is generated by instantiating the homomorphism
equation h(cln(k)) = h(cln(i)) Æ2 h(cln(j)), where cln(k) = cln(i) Æ1 cln(j) for all
values cln(i); cln(j) 2 RS1n. Thus, h(cln(l)) becomes the variable xl in our equation
system. When Maple returns a solution for the variables containing only elements
from the integer set corresponding to RS2m we have found a homomorphism between
the structures. When there is a disjoint solution with xi 6= xj , for all i 6= j, we have
a candidate for the isomorphism.

In the example in �gure 8.2 Maple is asked to give a solution for the equations
x0 = x0 � x0, x1 = x0 � x1, x1 = x1 � x0, x0 = x1 � x1 with modulo factor 3 and
returns fx1 = 0; x0 = 0g, fx1 = 2; x0 = 1g, fx0 = 1; x1 = 1g. The solutions
are analyzed by the hint system, and the second is suggested because it is both
a disjoint solution and all elements are in the codomain. Therefore, h0(�02) = �13,
h0(�12) = �23 is inserted as the pointwise de�ned isomorphic function (by adding the
instantiations fmv1  1;mv2  2g as displayed in line L72).
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We observe how the function h0 is applied in the subproof for injectivity in
�gure 8.2 beginning with line L80 backwards. The proof until L73 is the fairly
standard procedure of the TryAndError strategy: De�ned concepts are expanded,
quanti�ers are eliminated by introducing case splits and statements about residue
classes are rewritten into statements about integers. The interesting part is then the
application of the AppFct method in line L73. This corresponds to the substitution
of the functional expressions given on the righthand side of the disjunction in line
L73 with the functional values given in the de�nition of h0 in line L1. The result is
given in line L72. The rest of the subproof can then be easily concluded.

For a given function h0 Multi has to construct subproofs of n2 cases for each
of the three properties that h0 is surjective, injective, and a homomorphism. Here
n is the cardinality of the structures involved. However, if no suitable hint can
be computed there are nn pointwise de�ned functions to check, which becomes
infeasible already for relatively small n.

8.2.2 EquSolve

During the isomorphism proof we have to show that the introduced mapping is a
bijective homomorphism. Doing so by a complete case analysis can become quite
lengthy and therefore it is desirable to represent the isomorphism function in a more
compact form. Often this can be realized by computing a polynomial that inter-
polates the pointwise de�ned function. If we can compute such an interpolation
polynomial the EquSolve strategy has a chance of �nding the subproofs for surjec-
tivity and the homomorphism property. Note that in the subproof for injectivity
we still have to show for any two distinct elements that their images di�er, which
cannot be done with the EquSolve strategy.

For the construction of the interpolation polynomial we again employ Maple.
However, we do not use any of the standard algorithms for interpolating sparse poly-
nomials from the literature (see for example [223, 224, 221]) as they do not necessar-
ily give us an interpolation polynomial, which is optimal for our purposes. Moreover,
some of the implemented interpolation algorithms, for instance in Maple, do not
always suÆce for our purposes.1 This is especially true for the case of multivariate
polynomial interpolation that is necessary for dealing with residue class sets that are
composed of direct products, which we shall describe in more detail in section 8.4.
We have thus decided to implement a simple search algorithm to �nd a suitable
interpolation polynomial of minimal degree. This is feasible as we have to handle
only relatively small mappings.

In detail, the interpolation proceeds as follows: Given a pointwise de�ned iso-
morphism function h:cln(xi)2RS1n ! clm(yi)2RS2m the algorithm iteratively con-
structs systems of equations (adx

d
i + � � � + a1xi + a0) mod m = yi mod m for all

xi; yi for d = 0; 1; : : :. These equations are sent to Maple to solve them with the
regular msolve function. In case Maple returns a solution for ad; : : : ; a0 we have
found an interpolating polynomial. Otherwise a system of polynomials with degree
d + 1 is sent to Maple. This procedure terminates at the latest when d = m� 1.
Thus, instead of usingMaple's interpolation algorithm directly we only useMaple
to solve the given systems of equations and assemble the interpolation polynomial
separately.

We illustrate this for the proof that (ZZ2; �xy x�+y �+�12) is isomorphic to (ZZ2; �+)
shown in �gure 8.3. The corresponding pointwise isomorphism mapping is h(�02) =
�12; h(�12) = �02 for which the interpolation polynomial x ! x + 1 mod 2 can be

1Maple's algorithms interp and Interp cannot always handle the interpolation of functions
where a non-prime modulo factor is involved.
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L5. L5 ` cl2(c) 2 ZZ2 (Hyp)
...

L91. L5 ` (mvy + 1) mod 2 = c mod 2fmvy c�1g (SolveEqu)

L92. L5 ` cl2(mvy) �+�12 = cl2(c) (ConResclSet L91)
L93. L5 `mvy 2 f0; 1g (Open)
L94. L5 `9y:ZZ2 y �+�12 = c (9IResclass L92 L93)
L95. `8x:ZZ2 9y:ZZ2 y �+�12 = x (8IResclass L94)
L96. `Surj(�x x�+�12;ZZ2;ZZ2) (�I L95 Surj)
L97. ` Inj(�x x�+�12;ZZ2) (Open)
L98. `Hom(�x x�+�12;ZZ2; �xy x�+y;ZZ2; �xy x�+y �+�12) (Open)
L99. ` Iso(ZZ2; �xy x�+y;ZZ2; �xy x�+y �+�12) (IsoPolyI L96 L97 L98)

Table 8.3: Introduction of the interpolated function.

computed. The strategy EquSolve applies the method IsoPolyI on the isomor-
phism statement in line L99. One of the application conditions of IsoPolyI is that
a suitable interpolation polynomial can be computed. If successful, the application
of the method introduces the polynomial as isomorphism mapping into the proof.
The single properties Surj, Inj, and hom given in lines L96, L97, and L98 respec-
tively, have then to be shown for the interpolation polynomial. In �gure 8.3 we have
only carried out the details for the subproof of surjectivity, in which the problem is
reduced to an equality over integers that can be generally solved byMaple employ-
ing the Solve�Equ method similar to the proof in section 7.3.2. The proof of the
homomorphism property proceeds analogously. The proof for injectivity, however,
cannot be constructed with the EquSolve strategy for the reasons already explained.
Therefore, to close the subgoal in line L97 Multi switches either to the strategy
ReduceToSpecial or TryAndError. How the former is applied in this context is
described in the next section. In case the latter strategy is applied the case analysis
is conducted with the interpolation polynomial instead of the pointwise function as
in section 8.2.1.

The success of EquSolve depends on the capabilities ofMaple. Often equations
in isomorphism proofs contain terms with di�erent modulo factors nested inside,
resulting from the mapping between residue class sets RSn and RSm with n 6= m,
which are not solvable byMaple. So EquSolve is limited to proofs for residue class
sets with the same modulo factor.

8.2.3 Using ReduceToSpecial

The strategic control rules in Multi specify that on residue class problems the
strategies ReduceToSpecial, EquSolve, and TryAndError are always tested in this
order. This holds for isomorphism or non-isomorphism problems as well as for pos-
sible arising subproblems such as to show injectivity, surjectivity, or homomorphy.
For instance, if EquSolve can introduce a suitable polynomial function but fails to
prove the arising injectivity, surjectivity, or homomorphy subgoals, Multi has to
deal with those subproblems again on the strategic level. Since we do not have theo-
rems to handle isomorphism problems in general (we only have one, in case the struc-
tures contain direct products, which is explained in section 8.4), ReduceToSpecial
is not applicable to the original theorem, but it comes into play when a subgoal, in
particular the injectivity subgoal, has to be proved. Here we can exploit the simple
mathematical fact that in �nite domains surjectivity implies injectivity and vice
versa with the following theorem:
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A surjective mapping between two �nite sets with the same cardinality
is injective.

Thus, the proof of injectivity can be completely avoided, if we can prove that
our mapping is surjective and that the structures are of the same cardinality. We
have chosen this theorem rather than its dual, where we can infer that a mapping
on �nite structures is surjective if we already know that it is injective, since for
the injectivity proof Multi always has to perform a case analysis. Hence, the idea
for the most eÆcient isomorphism proofs is to start with EquSolve on the whole
isomorphism problem, prove the surjectivity and homomorphy subproblem if pos-
sible with equational reasoning and, since EquSolve always fails on the injectivity
subgoal, to let ReduceToSpecial �nish the proof. Note that Multi's interleaving
of strategies also allows for ReduceToSpecial to close the surjectivity subgoal while
injectivity is not yet proved.

8.3 Non-Isomorphism Proofs

In this section we present how Multi can prove that two given structures are not
isomorphic to each other, which corresponds to problem (b) from table 8.1. These
proofs are essential since in case the isomorphism proof fails it is not necessarily the
case that two structures are not isomorphic. If the two structures involved are of
di�erent cardinality they are trivially not isomorphic. This case is easily planned
with the ReduceToSpecial strategy and an appropriate theorem. We shall not
give the implementation of this case in detail and instead concentrate on the more
interesting case where the two structures are of the same cardinality. For the proofs
of this latter case we have implemented the following three proof techniques:

1. We show that each possible mapping between the two structures involved is
not isomorphic. This is again an exhaustive case analysis for which we employ
the slightly extended TryAndError strategy.

2. We argue that one of the structures contains an argument of an order or a
substructure of a certain cardinality that is not reected in the other structure.
(We shall de�ne the necessary notions later in this chapter.) This technique is
achieved by interleaving the ReduceToSpecial and TryAndError strategies.

3. We construct a contradiction by assuming �rst there exists an isomorphism be-
tween the two residue class structures and deriving then that it is not injective.
For this technique we have implemented a new strategy, called NotInjNotIso.

We shall explain this new strategy as well as the extensions to the already introduced
strategies using the example that the two abelian semi-groups (ZZ4; �xy x��y���24) and
(ZZ4; �xy �24) are not isomorphic.

8.3.1 Employing TryAndError Directly

As already stated in section 7.3.1 the two basic principles of the TryAndError strat-
egy are to resolve quanti�ed statements over �nite domains by checking all possible
cases or alternatives and to rewrite statements on residue classes into corresponding
statements on integers. When solving non-isomorphism problems the top-most case
split is to check for each possible function from the one residue class set into the
other that it is either not injective, not surjective, or not a homomorphism.
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L1. L1 `h0 = �x {oy [x = �04 ) y = cl4(c1)]^[x = �14 ) y = cl4(c2)]^
[x = �24 ) y = cl4(c3)] ^ [x = �34 ) y = cl4(c4)]

(Hyp)

L2. L2 ` c1 2 f0; 1; 2; 4g (Hyp)
L3. L3 ` c2 2 f0; 1; 2; 4g (Hyp)
L4. L4 ` c3 2 f0; 1; 2; 4g (Hyp)
L5. L5 ` c4 2 f0; 1; 2; 4g (Hyp)
L6. L6 ` c1 = 0 (Hyp)
L7. L7 ` c2 = 0 (Hyp)
L8. L8 ` c3 = 0 (Hyp)
L9. L9 ` c4 = 0 (Hyp)
L10. L10 ` c1 = 1 (Hyp)

.

..
L75. H3 `:Inj(h0;ZZ4) _ :Surj(h0;ZZ4;ZZ4)_

:Hom(h0;ZZ4; �xy x��y���24;ZZ4; �xy �24))
(_Ir L74)

.

..
L95. H2 `:Inj(h0;ZZ4) _ :Surj(h0;ZZ4;ZZ4)_

:Hom(h0;ZZ4; �xy x��y���24;ZZ4; �xy �24)
(_Il L94)

L96. H1 `:Inj(h0;ZZ4) _ :Surj(h0;ZZ4;ZZ4)_
:Hom(h0;ZZ4; �xy x��y���24;ZZ4; �xy �24)

(_��E L2 L3 L4 L5

L95 L75 : : :)
L97. `8h:F (ZZ4;ZZ4) :Inj(h;ZZ4) _ :Surj(h;ZZ4;ZZ4)_

:Hom(h;ZZ4; �xy x��y���24;ZZ4; �xy �24)
(8IResclFunc L96)

L98. `:9h:F (ZZ4;ZZ4) Inj(h;ZZ4) ^ Surj(h;ZZ4;ZZ4)^
Hom(h;ZZ4; �xy x��y���24;ZZ4; �xy �24)

(PullNeg L97)

L99. `:Iso(ZZ4; �xy x��y���24;ZZ4; �xy �24) (�I L98 Iso)

H1 = fL1; L2; L3; L4; L5g; H2 = H1 [ fL6; L7; L8; L9g; H3 = H1 [ fL7; L8; L9; L10g

Table 8.4: Proof with the TryAndError strategy.

Table 8.4 shows the abbreviated proof for our non-isomorphism problem as it
is constructed when applying TryAndError. In particular, we have renumbered
the lines in order to preserve space. The proof works in the following way: After
expanding the de�nition of isomorphism in line L99 the application of the method
PullNeg pushes the negation to the inner-most formulas. Next 8IResclFunc is
applied, a method for the elimination of universally quanti�ed goals that is the dual
of the 9IResclFunc method introduced in section 8.2. 8IResclFunc instantiates
the variable h, a mapping between the two given residue class sets, with a constant
h0 and also introduces the hypotheses L1 through L5. L1 explicitly states the
function h0 as a unary function mapping the elements of the domain to constants
cl4(c1) to cl4(c4) of the codomain. The lines L2 through L5 contain the possible
instantiations for the constants c1, c2, c3, and c4. The next step is then the case split
over all possible mappings between the residue class sets, respectively all possible
combinations of constants c1 to c4. It is introduced by the application of _E��
with respect to the lines L2 through L5 to line L96. The case split leads actually
to 256 new open subgoals (i.e., all possible instantiations of h0) where we have only
given two (i.e., lines L95 and L75 in �gure 8.4). Likewise we have given only a
subset of the newly introduced hypotheses containing the di�erent combinations of
the constants c1 to c4. Each of the new subgoals considers a di�erent combination
of these constants in its hypotheses. It now remains to show for each case that the
function represented by L1 and the actual hypotheses is either not surjective, not
injective, or not a homomorphism. For line L95, for example, it can be easily shown
that the mapping is not injective since all the images are �04.

The application of this naive technique su�ers from combinatorial explosion on
the possibilities for the function h. For two structures whose sets have cardinality n
we have to consider nn di�erent possible functions. Thus, in practice this strategy
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is not feasible if structures of cardinality larger than four are involved. Despite
this fact the strategy is our fall back if the other techniques presented in the sequel
should fail.

8.3.2 Combining ReduceToSpecial and TryAndError

If two structures are isomorphic, they share the same algebraic properties. Thus,
in order to show that two structures are not isomorphic it suÆces to show that
one particular property holds for one structure but not for the other. In this
subsection we discuss two such properties and explain how Multi combines the
strategies ReduceToSpecial and TryAndError to establish that two structures are
not isomorphic. Thereby ReduceToSpecial employs theorems that can reduce the
original goal to subgoals stating that a property does not hold for the one structure
whereas it holds for the other structure. These subgoals can then be proved with
TryAndError.

First we introduce the concepts order, trace, and order of the trace of elements
of a structure (S; Æ) where S is �nite:

� An element a 2 S has the order n if n 2 IN is the smallest positive integer
such that an = a Æ : : : Æ a| {z }

n-times

= e, where e 2 S is the unit element with respect

to Æ. In the following we write this as Order(a).

� The trace of an element a 2 S is the set fanjn 2 INg. The cardinality of this
set is referred to as the order of the trace of a. This is written as OrderTr(a)
in the following.

The latter concept is a generalization of the former so we can also deal with elements
that do not have an order or with structures who do not have a unit element. Note
also that both the order of an element a and the order of its trace always range
between 1 and the cardinality of S.

For two structures (S1; Æ1) and (S2; Æ2) we can show that if they are isomorphic
then for each element a1 2 S1 with order n there exists an element a2 2 S2 with
the same order. An analogous statement can be proved for the order of the traces.
Thus, to prove that two structures are not isomorphic it is suÆcient to prove that
one structure contains an element a1 such that the other structure contains no
element a2 whose order (order of the trace) is equal to the order (order of the trace)
of a1. This can be formalized in the following theorems:

Ord: (9n:[1;Card(S1)] (9x1:S1 Order(x1 ; S1; Æ1) = n) ^
(:9x2:S2 Order(x2 ; S2; Æ2) = n))) :Iso(S1; Æ1; S2; Æ)

OrdTr: (9n:[1;Card(S1)] (9x1:S1 OrderTr(x1 ; S1; Æ1) = n) ^
(:9x2:S2 OrderTr(x2; S2; Æ2) = n))) :Iso(S1; Æ1; S2; Æ)

Here [1; Card(S1)] is the integer interval from 1 to the cardinality of S1.

The ReduceToSpecial strategy can apply these two theorems to reduce non-
isomorphic goals and then TryAndError takes over to complete the proof. Figure 8.5
displays the proof for our example. Here the application of the OrdTr theorem on
the goal in line L66 results in the new line L65. The sort of the existentially quan-
ti�ed variable n in line L65 is an integer interval ranging from 1 to the cardinality
of ZZ4. This variable is eliminated with an application of the 9ISort method. This
method is a domain independent method that can generally deal with sorted ex-
istentially quanti�ed goals. Similar to 9IResclass it splits the goal into two new
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L1. L1 ` cl4(c) 2 ZZ4 (Hyp)
L2. L1 ` c 2 f0; 1; 2; 3g (ConResclSet L1)

.

..
L43. L1 `:OrderTr(cl4(c);ZZ4; �xy �24) = 3 (_��E : : :)
L44. `8x2:ZZ4 :OrderTr(x2;ZZ4; �xy �24) = 3 (8IResclass L43)
L45. `:9x2:ZZ4 OrderTr(x2;ZZ4; �xy �24) = 3 (PullNeg L44)

.

..
L46. ` 1 = 1 (=Reflexivity)
L47. ` 1 2 f1; 2; 3g (_Ir L46)
L48. `mv2 2 f0; 1; 2; 3g (_Ir L47)

..

.
L53. `Card(f�14 ; �24; �04g) = 3 (Open)
L54. `OrderTr(cl4(mv2);ZZ4; �xy x��y���24)=3fmv2 1g (RewrTrace L53)
L55. `9x1:ZZ4 OrderTr(x1;ZZ4; �xy x��y���24)=3 (9IResclass L54 L48)
L56. ` [9x1:ZZ4 OrderTr(x1;ZZ4; �xy x��y���24)=mv1]

^[:9x2:ZZ4 OrderTr(x2;ZZ4; �xy �24)=mv1]fmv1 3g

(^I L55 L45)

.

..
L64. `mv1 2 [1; Card(ZZ4)] (Open)
L65. `9n:[1;Card(ZZ4)] [9x1:ZZ4 OrderTr(x1;ZZ4; �xy x��y���24) = n]

^ [:9x2:ZZ4 OrderTr(x2;ZZ4; �xy �24) = n]
(9ISort L56 L64)

L66. `:Iso(ZZ4; �xy x��y���24;ZZ4; �xy �24) (ApplyAssOrdTr L65)

Table 8.5: Proof with the TryAndError and ReduceToSpecial strategies.

subgoals: The original goal formula where the variable is now instantiated and a
subgoal containing the sort information. These correspond to lines L56 and L64 in
our example. 9ISort also introduces a meta-variable, mv1, for the witness term,
but does not carry out any domain speci�c reformulations of the new goals or the
sort information. In fact, its application is postponed by control rules if there is a
more domain speci�c method applicable to deal with the quanti�er. For instance is
the application of 9IResclass always preferred to 9ISort.

The essential subgoals of our proof are the lines L55 and L44. Next the element
of (Int4; �xy x��y���24) is introduced whose trace has an order that is not reected
in the second structure. This is done in the usual way by applying 9IResclass and
substituting the existentially quanti�ed variable with the meta-variable mv2. To
restrict the searchMulti gets hints for suitable instantiations formv1 andmv2. The
hints are computed by constructing the trace with Gap. In our example a suitable
instantiation for mv2 is 1 whose trace is f�14; �24; �04g. Thus, the corresponding
suitable instantiation for mv1 is 3 as the order of the trace. The trace itself is
introduced by the application of the method RewrTrace to line L54. The purpose
of the method is to rewrite an OrderTr-statement into a corresponding statement
on the cardinality of the set that constitutes the trace. RewrTrace is one of the
domain speci�c methods the TryAndError strategy had to be extended with in
order to deal with concepts of order, traces, cardinality, etc.

It is now left to show that the order of the traces of all elements in (ZZ4; �xy �24)
is di�erent from 3, which is indeed the case as all traces are either of order 1 or 2.
The proof is conducted with a regular case analysis on all elements of ZZ4 starting
in line L44. Here the search is again reduced by computing both traces and their
order with Gap.

As opposed to the direct use of TryAndError the described combination of
ReduceToSpecial and TryAndError has only polynomial complexity in the cardi-
nality of the involved sets. Moreover, the search is reduced signi�cantly by providing
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L1. L1 ` Iso(ZZ4; �xy x��y���24;ZZ4; �xy �24) (Hyp)
...

L6. L1 ` Inj(h;ZZ4) (^�E : : :)
L7. L1 `Hom(h;ZZ4; �xy x��y���24;ZZ4; �xy �24) (^�E : : :)
L8. L1 `h(�04) = �24 (InstHomEq L7)

...
L13. L1 `h(�24) = �24 (InstHomEq L7)

...
L91. L1 ` �24 = �24 (=Reflexivity)
L92. L1 `h(�04) = �24 (=Subst L91 L8)
L93. L1 `h(�04) = h(�24) (=Subst L92 L13)

...
L97. L1 `:Inj(h;ZZ4) (: : :)
L98. L1 `? (:E L97 L6)
L99. `:Iso(ZZ4; �xy x��y���24;ZZ4; �xy �24) (Contra L98)

Table 8.6: Proof with the NotInjNotIso strategy.

hints. But this technique is only applicable when structures involved contain ele-
ments suitable for our purpose in the sense that either their order or the order of
their trace is not reected in the respective other structure.

8.3.3 Proof by Contradiction

In this section we introduce a new strategy, NotInjNotIso, which is based on the
idea to construct an indirect proof to show that two structures (RS1n1 ; Æ1) and
(RS2n2 ; Æ2) are not isomorphic. We �rst assume that there exists a bijective function
h:RS1n1 ! RS2n2 . If h is an isomorphism, then it is in particular an injective
homomorphism. The strategy NotInjNotIso tries to �nd two elements c1; c2 2
RS1n1 with c1 6= c2 such that we can derive the equation h(c1) = h(c2). This
contradicts the assumption of injectivity of h where h(c1) 6= h(c2) has to hold if
c1 6= c2. Note that the proof works with respect to all possible homomorphism h
and we do not have to give a particular mapping.

Table 8.6 shows an extract of the proof with the NotInjNotIso strategy for our
example problem :Iso(ZZ4; �xy x��y���24;ZZ4; �xy �24). The idea is to derive the con-
tradiction in line L98 by assuming that there actually exists an isomorphism in line
L1. In particular, we use the properties that all possible isomorphisms h have to be
injective homomorphisms given in lines L6 and L7. To line L7 the domain speci�c
method InstHomEq is applied which introduces the completely instantiated homo-
morphism equation system into the proof. In our example this system comprises 16
single equations. In �gure 8.6 we give only two of these equations in lines L8 and L13

to preserve space. The application of InstHomEq already introduces the simpli�ed
versions of equations, which are of the general form h(x Æ1 y) = h(x) Æ2 h(y). When
instantiating the proper operations and applying those to the arguments x = �04
and y = �04 we obtain the equation of line L8 (similarly we receive line L13 from
x = �14 and y = �14).

From the introduced system of equations the NotInjNotIso strategy tries to
derive that h is not injective. To prove this we have to �nd two witnesses c1 and
c2 such that c1 6= c2 and h(c1) = h(c2). In the proof in �gure 8.6 we choose �04 and
�24 for c1 and c2, respectively. We omit the part of the proof that derives �04 6= �24
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and rather concentrate on the more diÆcult part to show h(�04) = h(�24) in line
L93. This goal is transformed into an equation that can be solved in a general
way, by successively applying equations from the equation system. In our example
h(�04) = h(�24) is reduced in two steps to �24 = �24, which can be justi�ed with the
reexivity of equality. Since line L97 contradicts the assumption of injectivity of h,
Multi can conclude the proof.

In order to restrict the search for appropriate c1 and c2 NotInjNotIso employs
a control rule to obtain a hint. The control rule callsMaple to compute all possible
solutions for the system of instantiated homomorphism equations with respect to the
corresponding modulo factor using Maple's function msolve. Then the solutions
are checked whether there is a pair c1 and c2 with c1 6= c2, such that in every solution
h(c1) = h(c2) holds. If there is such a pair it is provided as hint. Although the
control rule cannot always come up with a hint, our experiments have shown that
the NotInjNotIso strategy is also often successful when no hint can be computed.

In our example the equational reasoning involved is still relative trivial and could
be done by a more specialized system such as a term rewriting system. However, this
is not possible in the general case. Then the equations contain more complex terms
involving addition, multiplication, and subtraction of constant congruence classes
of the form h(cln(i)) and thus additionally have to be performed with respect to the
correct modulo factor. The solution of the equations is therefore beyond the scope
of any term rewriting system but requires symbolic computation. Whereas in our
example the equation in line L91 is justi�ed by the reexivity of the equality, in the
general case more complicated equations are closed by applying the more general
SolveEqu method, in which Maple is employed to solve the equation in question.

As in our example, NotInjNotIso can produce very short proofs even for struc-
tures with large sets. However, to construct an appropriate sequence of equality
substitutions is generally the hard part of proofs with NotInjNotIso. In fact, for
problems with the same complexity (i.e., problems involving structures of the same
cardinality) the lengths of the proofs can vary drastically. Moreover, the equa-
tional reasoning process does not have to terminate. Therefore, we have an upper
bound on the maximum number of equations to be tested before the strategy fails.
This bound is currently 50. For these reasons, we are currently experimenting with
randomization and restart techniques [100] to improve the strategies behavior.

NotInjNotIso is the �rst strategy that is tried when automatically discharging
non-isomorphism proof obligations. If it fails our standard order of strategies take
over; that is, since the EquSolve strategy is not applicable to non-isomorphism
problems, ReduceToSpecial is tried before TryAndError.

8.4 Direct Products

With minor extensions to our strategies the proof techniques described in this
section are also applicable to proofs where the structures involved contain direct
products of residue class sets. Apart from those methods already illustrated in
section 7.3.4 that decompose quanti�cations and equations on tuples into the com-
ponents, a few additions had to be made for both isomorphism proofs and non-
isomorphism proofs.

In the case of direct products in the domain or codomain of the mapping the
pointwise de�ned function introduced by the TryAndError strategy in isomorphism
proofs maps tuples of residue classes to tuples of meta variables. For example, in
an isomorphism proof the pointwise function for the mapping h from RS1n1 
RS

2
n2
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to RS3n3 
RS4n4 , has the form

h(x; y) =

8><>:
(mv1;mv2), if (x; y) = (c1; c1) 2 RS1n1 
RS2n2
(mv3;mv4), if (x; y) = (c1; c2) 2 RS1n1 
RS2n2

...

;

with mv1;mv3; : : : 2 RS3n3 and mv2;mv4; : : : 2 RS4n4 . In non-isomorphism proofs
the codomain of the mapping contains constants instead of meta-variables.

Similarly, the interpolating mapping for the pointwise isomorphism function
between direct products is a tuple of multivariate polynomials. We have one poly-
nomial for each component of the direct product in the codomain. The number of
variables of each of these polynomials corresponds to the number of components
of the direct product in the domain. For the example above, an interpolation for
the function h is the pair (P1(x; y); P2(x; y)) consisting of two polynomials in two
variables P1 and P2.

For the NotInjNotIso strategy we have one separate equation system for each
component of the direct product in the codomain. Each equation system is of the
form hi(xÆ1 y) = hi(x)Æ2 hi(y), with 1 � i � n and n is the number of components.
Then we have to show for each equation system separately that hi(c1) = hi(c2) with
c1 6= c2. Here x; y; c1; c2 are elements of the residue class structure in the domain
of the mapping and can also be tuples.

In isomorphism proofs involving direct products the ReduceToSpecial strat-
egy can apply a theorem stating that in order to prove that two direct prod-
ucts with the same number of components are isomorphic it is suÆcient to estab-
lish isomorphisms between appropriately chosen single components. For instance,
(ZZ2
ZZ3; �xy x�+y
�xy x�+y �+�13) and (ZZ3
ZZ2; �xy x�+y
�xy x�+y �+�12) are iso-
morphic since the �rst component of the one structure is isomorphic to the second
component of the second structure and vice versa.

8.5 Classifying Isomorphic Structures

We shall now present how we classify sets of residue class structures into equiva-
lence classes of isomorphic structures. Currently we determine the isomorphism
classes only for residue class structures with one binary operation. The idea of the
classi�cation algorithm is to partition a set of residue class structures into disjunct
classes of isomorphic structures. We assume that the given structures are all of the
same algebraic category and have the same cardinality (i.e., we use the results of
the classi�cation process described in chapter 7.4).

The input of the classi�cation algorithm is such a set of structures. In case we
do not have a set of isomorphism classes yet, we construct an isomorphism class
initially containing the �rst of the input structures. Otherwise we start the following
classi�cation cycle, which is repeated for each structure S in the input set:

1. Check whether there exists already an isomorphism class C such that S is
isomorphic to the structures in C. This is tested by checking successively for
all present isomorphism classes whether one of its structures is isomorphic to
S or not. Since the relation isomorphic is transitive it is suÆcient to perform
this check with only one structure S0 in C, respectively.

2. If we can prove that S is isomorphic to a structure S0 of an isomorphism class
C then S is added to C.
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3. If we can prove for each currently existing isomorphism class that S is not
isomorphic to one of its structures, then we create a new isomorphism class
initially containing S.

The test in step 1 is in turn performed in three steps: We �rst perform a com-
putation whose result gives us the likely answer to the question whether the two
structures S and S0 are isomorphic or not. This computation consist of construct-
ing a pointwise isomorphic mapping between the two structures, which is computed
with the aid of solutions for the equation system that corresponds to the homo-
morphism mapping between S and S0. The solutions are computed using Maple;
the actual computation is described in more detail in section 8.2.1. But, opposed
to the classi�cation described in chapter 7.4, we do not construct and discharge a
proof obligation of each check. Instead we �rst conduct all possible checks and then
construct proof obligations.

If we have found an S0 to which S is supposedly isomorphic we construct this
proof obligation. Otherwise we construct for each isomorphism class C a proof
obligations that S is not isomorphic to a S0 2 C. This way we postpone and
even avoid superuous non-isomorphism proofs. The proof obligations are then
discharged by constructing a proof plan with Multi. In case Multi cannot prove
the proof obligation suggested by Maple's result (e.g., if Maple's solutions are
not suÆcient to produce an isomorphic mapping even if one exists) the algorithm
proceeds by constructing the negated proof obligation and passes it again toMulti
to discharge it. In case this attempt fails too, the algorithm signals an error.

8.6 Experiments

The proof techniques presented in this chapter mainly build on the strategies al-
ready constructed for the proofs of simple properties of the residue class struc-
tures as presented in chapter 7. To develop the additions to the ReduceToSpecial,
TryAndError, and EquSolve to handle isomorphism proofs we used 15 examples
and another 4 examples to build the NotInjNotIso strategy.

We applied the techniques of this chapter to the results of the classi�cation pro-
cess presented in the previous chapter. To accelerate the classi�cation we excluded
structures that were trivially not isomorphic to each other. Hence, we only exam-
ined structures, which are of the same algebraic category (e.g., monoids are only
compared with other monoids and not with groups) and of the same cardinality.
This avoided the construction of the tedious proofs for the trivial cases, which are
easily constructed by the planner with the ReduceToSpecial strategy.

Among the structures classi�ed were 8128 structures with the set ZZ6. Here,
we found 4152 magmas, 73 abelian magmas, 1114 semi-groups, 1025 abelian semi-
groups, 738 quasi-groups, 257 abelian quasi-groups, 50 abelian monoids, and 419
abelian groups. On these classes we started our isomorphism classi�cation and
discovered that the quasi-groups and the abelian quasi-groups each belong to two
di�erent classes, whereas all abelian monoids and all abelian groups are isomorphic.
Furthermore, we had three non-isomorphic classes of abelian semi-groups, seven
classes of semi-groups, and �ve classes of abelian magmas. We did not perform the
classi�cation for the non-abelian magmas. All the necessary isomorphism proofs
were done with the EquSolve strategy, where ReduceToSpecial was applied to the
injectivity subproblem. During the automatic classi�cation 46 non-isomorphism
proofs were constructed; in addition to the automatic classi�cation process we did
separate experiments with 200 non-isomorphism proofs on residue class structures
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of the same cardinality regardless of their previous classi�cation. Here 80% of the
proofs were done with the NotInjNotIso strategy and the remaining 20% with the
combination of TryAndError and ReduceToSpecial.

Overall a considerable part of the problems have been proved with various usage
of computer algebra. On the one hand the strategies EquSolve and NotInjNotIso

ultimately rely directly on the usage of Maple. On the other hand even in the
TryAndError strategy the hints computed by Maple and Gap used to provide
suitable instantiations for witness terms reduce the search drastically. In particular,
for larger residue class sets proofs by exhaustive case analysis and crude force search
are hardly feasible.

8.7 Summary of Chapter 8

This chapter presented a case study on proving isomorphisms and non-isomorphism
between residue class structures. For the proofs we could reuse the strategies im-
plemented for the case study of chapter 7 with only minor extensions. However,
we had to add sophisticated algorithms to compute useful hints with the computer
algebra systems. We conducted a signi�cant number of experiments that especially
demonstrated that the more elaborate strategies are necessary for successfully solv-
ing the given problems. In particular, planning non-isomorphism proofs turned
out to be challenging, since here exhaustive case analysis even with appropriate
hints is not feasible for residue class structures with cardinality larger than 4. Here
the NotInjNotIso strategy is a very promising approach, however the proofs can
vary signi�cantly in length even for problems of the same complexity. Ideas to solve
this variance problem with randomization and restart techniques [100] are currently
under investigation [147, 149].



Chapter 9

Conclusion and Outlook


-Ants, the topic of this thesis, is a novel approach to a exible and adaptive
suggestion mechanism in interactive theorem proving and proof planning. We have
employed it for the combination of reasoning techniques in theorem proving and
their application to group theory and �nite algebra.


-Ants is a hierarchical blackboard architecture that consists of two layers of
blackboards with individual concurrent knowledge sources. The lower layer searches
for instantiations of command parameters within the actual proof state; the upper
layer exploits this information to assemble a set of applicable commands character-
izing the possible proof steps and presents them to the user. The architecture has
also mechanisms to adapt its behavior with respect to the current proof context
and the availability of system resources.

This architecture can be employed for several purposes:

1. To support the user in interactive theorem proving and proof planning to
search for the next possible proof step in-between user interactions.

2. To further the cooperation or competition between various integrated au-
tomatic components such as automated theorem provers, computer algebra
systems, and model generators.

3. As a tool for automated theorem proving by automating the command appli-
cations.

4. To perform knowledge base queries during proof search.

The case studies we presented are based on known theorems and probably all
of the presented theorems have been shown by some automaton in one way or the
other. However, this is the �rst attempt to build the heuristically guided search
into one theorem prover based on proof planning. The automatic classi�cation of
residue classes is the �rst systematic exploration of this domain.

The 
-Ants mechanism in its current state is solely centered around the black-
board architecture as well as the single proof object PDS. The latter also provides
the communication platform for the cooperation of various integrated automatic
components. This centralized approach could be given up for a more distributed
approach in which the single components behave more like real agents. This way it
may be possible to form clusters of agents to encourage either local cooperation (e.g.,
one could think of a cooperation between a higher and a �rst order theorem prover
which could o�set their respective weaknesses) or local competition between single
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reasoning agents (e.g., several �rst order provers could concurrently solve problems).
Then a prerequisite is the solution of the communication problem, which has al-
ready been the bottleneck in the current version of 
-Ants where sometimes more
time is spend on the translation and communication of proofs than on actual proof
search. This problem has, for instance, also been pointed out by Denzinger and
Fuchs [74]. Since a uniform communication format produces too much overhead
specialized communication languages for clusters could be constructed which the
participating agents would have to negotiate and agree upon. Cooperation between
systems would also be enhanced if more available systems could produce and return
explicit partial proofs. Moreover, heuristical functions to decide for several partial
proofs, which one is the most promising would have to be developed.
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Appendix A

Overview on De�ned

Concepts

This chapter contains an overview on all the de�ned concepts in alphabetical order,
which occur in this thesis, and which are necessary for the formalization of the
problems in the case studies of part III. The concepts necessary for the formalization
of the agents in chapter 3.6 are therefore omitted.

� � �T�o �S�o 8x T (x)) S(x) (5.19)
�� � �r�o �s�o �z� 9x�:r 9y� :s z = x� y (7.13)
�+ � �r�o �s�o �z� 9x�:r 9y� :s z = x+ y (7.11)
�� � �r�o �s�o �z� 9x�:r 9y� :s z = x � y (7.12)

 � �U�o �V�o �p(��)((��o)o) (7.26)

[LProj(p) 2 U ] ^ [RProj(p) 2 V ]
� � �U�o �V�o � Æ

1
��� � Æ2��� �p(��)((��o)o) �q(��)((��o)o) (7.27)

Pair(LProj(p) Æ1 LProj(q); RProj(p) Æ2 RProj(q))
Assoc � �G�o � Æ��� 8a�:G 8b�:G 8c�:G (5.3)

(a Æ (b Æ c)) = ((a Æ b) Æ c)
Closed � �G�o � Æ��� 8a�:G 8b�:G G(a Æ b) (5.2)
Commu � �G�o � Æ��� 8a�:G 8b�:G [(a Æ b) = (b Æ a)] (5.9)
cl � �n� �m� �x� [ZZ(x)] ^ [(x mod n) = m] (7.1)
Distrib � �G�o � Æ��� � ?��� 8a�:G 8b�:G 8c� :G (5.10)

[(a ? (b Æ c)) = ((a ? b) Æ (a ? c))]^
[((a Æ b) ? c) = ((a Æ c) ? (b Æ c))]

Divisors � �G�o � Æ��� 8a�:G 8b�:G (5.8)
[9x�:G (a Æ x) = b] ^ [9y� :G (y Æ a) = b]

Group � �G�o � Æ��� NonEmpty(G) ^ Closed(G; Æ) (5.16)
^Assoc(G; Æ) ^ [9e�:G Unit(G; Æ; e)]

^Inverse(G; Æ; StructUnit(G; Æ))
Hom � �h�� �A�o � Æ��� �B�o � ?��� (6.1)

8x�:A 8y�:A h(x Æ y) = h(x) ? h(y)
Im � �f�� �A�o �y� 9x�:A y = f(x) (6.4)
Inj � �f�� �A�o 8x�:A 8y�:A f(x) = f(y)) x = y (6.2)
Inverse � �G�o � Æ��� �e� (5.5)

8a�:G 9x�:G [(a Æ x) = e] ^ [(x Æ a) = e]
Iso � �A�o � Æ��� �B�o � ?��� 9h:F (A;B) (8.1)

Inj(h;A) ^ Surj(h;A;B) ^Hom(h;A; Æ; B; ?)
Kern � �f�� �A�o �y� �x� [x 2 A] ^ [f(x) = y] (6.5)
LeftInverse � �G�o � Æ��� �e� 8a�:G 9x�:G (x Æ a) = e (5.7)
LeftStructUnit � �G�o � Æ��� {oe� LeftUnit(G; Æ; e) (5.15)
LeftUnit � �G�o � Æ��� �e� 8a�:G (e Æ a) = a (5.6)
Loop � �L�o � Æ��� NonEmpty(L) ^ Closed(L; Æ)^ (5.18)
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Divisors(L; Æ) ^ 9e�:G Unit(G; Æ; e)
LProj � �p(��o)o {ox� 9y� p = Pair(x; y) (7.21)
Magma � �M�o � Æ��� NonEmpty(M) ^ Closed(M; Æ) (5.11)
Monoid � �M�o � Æ��� NonEmpty(M) ^ Closed(M; Æ)^ (5.13)

Assoc(M; Æ) ^ [9e�:M Unit(M; Æ; e)]
NonEmpty � �G�o 9a G(a) (5.1)
Pair � �x� �y� �g��o g(x; y) (7.20)
Quasigroup � �Q�o � Æ��� (5.17)

NonEmpty(Q)^ Closed(Q; Æ) ^Divisors(Q; Æ)
Res � �c�o �n� {om� 8x� [x 2 c]) [x mod n = m] (7.6)
RightInverse � �G�o � Æ��� �e� 8a�:G 9x�:G (a Æ x) = e

RightStructUnit� �G�o � Æ��� {oe� RightUnit(G; Æ; e)
RightUnit � �G�o � Æ��� �e� 8a�:G (a Æ e) = a

RProj � �p(��o)o {oy� 9x� p = Pair(x; y) (7.22)
RS � �n� �r�o 9m� :IN [r = cln(m)] ^ [NonEmpty(cln(m))] (7.2)
Semigroup � �S�o � Æ��� (5.12)

NonEmpty(S) ^ Closed(S; Æ) ^Assoc(S; Æ)
StructUnit � �G�o � Æ��� {oe� Unit(G; Æ; e) (5.14)
SubGroup � �U�o � ?��� �G�o � Æb��� (5.20)

[? = Æ] ^ [U � G] ^ [Group(U; ?)] ^ [Group(G; Æ)]
Surj � �f�� �A�o �B�o 8x�:B 9y�:A f(y) = x (6.3)
Unit � �G�o � Æ��� �e� 8a�:G [(a Æ e) = a] ^ [(e Æ a) = a] (5.4)



Appendix B

Overview of the Proved

Theorems

This chapter contains a detailed summary of all theorems proved during the experiments
in the case studies presented in chapters 7 and 8. Due to its size it is issued as a separate
technical report [152].
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