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Deutsche Zusammenfassung

In dieser Arbeit habe ich das Verzweigunsverhältnis von B0 → D∗±D∓ auf dem vollen
Datensatz der Belle-Kollaboration bestimmt. Verzweigungsverhältnisse können mit Hil-
fe des Standardmodells der Teilchenphysik ausgerechnet werden, weshalb sich ihre Mes-
sung als Test des Standardmodells eignet. Erste Messungen des Verzweigungsverhält-
nisses des Zerfalls B0 → D∗±D∓ wurde bereits am BABAR [1] und am Belle Ex-
periment [2] durchgeführt. Zwischen diesen beiden Messungen besteht eine leichte
Diskrepanz, die den Fehler auf den Weltmittelwert, der von der PDG ermittelt wird,
vergrößert. Der größte Beitrag zur Unsicherheit stammt von der Belle Messung aus
dem Jahre 2001, die lediglich 4.3% des heutigen endgültigen Datensatzes nutzte. Der
inzwischen verfügbare Gesamtdatensatz ermöglicht eine genauere Beschreibung von
Signal und Untergrund, was auch zur Reduktion von systematischen Unsicherheiten
führt.
Im Rahmen des Standardmodells erwartet man im Zerfall B0 → D∗±D∓ mischungs-
induzierte CP-Verletzung. Die vorherigen Messungen von BABAR [3],[4] und Belle [5]
konnten mischungsinduzierte CP-Verletzung auch mit einer Konfidenz von weniger als
drei Standardabweichungen bestätigen. Darum ist es wichtig, die CP-verletzenden Pa-
rameter mit dem vollen Datensatz von Belle zu messen.

Das Belle-Experiment befindet sich am KEK, einem Forschungszentrum im japanischen
Ort Tsukuba nördlich von Tokio. Es besteht aus dem KEKb-Teilchenbeschleuniger und
dem Belle-Detektor. Der KEKb-Beschleuniger [6] ist ein Elektron-Positron Beschleu-
niger mit einer Schwerpunktsenergie von 10.58 GeV, was gerade der Energie zur Erzeu-
gung des Y(4S) entspricht. Dabei hat der Elektronstrahl eine Energie von 8.0 GeV
und der Positronenstrahl eine Energie von 3.5 GeV. Diese Asymmetrie führt zu einem
Lorentzboost des produzierten Y(4S) im Laborsystem. Beim Zerfall des Y(4S) entsteht
entweder ein B0B̄0- oder ein B+B−-Paar. Durch den Boost im Laborsystem ist eine
Messung der Zerfallszeitdifferenz der beiden B-Mesonen möglich, was essentiell für die
Messung von zeitabhängiger CP-Verletzung ist.
Der Belle Detektor [7] ist ein für Hochenergieexperimente typischer Vielzweckdetek-
tor. Zur Spurrekonstruktion wird ein Silizium-Vertex-Detektor und eine gasgefüllte
Driftkammer verwendet. Die Teilchenidentifikation wird zusätzlich mit dem Time of
Flight System und dem Aerogel Cherenkov Counter unterstützt. Zur Energiemessung
besitzt der Detektor ein Kalorimetersystem. Ein supraleitender Magnet sorgt für das
zur Impulsmessung nötige Magnetfeld. Zur Identifikation von Myonen und Detektion
von K0

L Mesonen befindet sich das KLM als äußerste Lage auf dem Detektor.
Die Datennahme bei Belle erfolgte bis Juni 2010. Dabei wurden 771 fb−1 auf der Y(4S)
Resonanz aufgezeichnet. Um Signal und Untergrund besser untersuchen zu können,
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werden simulierte Daten, sogenanntes Monte Carlo, verwendet. Auf Monte Carlo ist
der Ursprung und die Identität jedes Teilchens bekannt. Von der Belle-Kollaboration
wird ein generisches Monte Carlo zur Verfügung gestellt, welches alle bekannten B-
Meson Zerfälle mit den entsprechenden Verzweigungsverhältnissen enthält. Diese Art
von Monte Carlo ermöglichte es, die vorliegende Analyse blind, also ohne Betrachtung
der Daten, zu entwickeln. Der Vorteil einer blinden Analyse ist die Reduktion der un-
beabsichtigten Beeinflussung des Messergebnisses durch den Beobachter.

Zur Messung des Verzweigungsverhältnisses von B0 → D∗±D∓ werden nur bestimmte1

hadronische Zerfälle rekonstruiert. Das D-Meson, welches direkt beim B-Meson-Zerfall
entsteht, wird für die beiden Zerfälle D∓ → K±π∓π∓ und D∓ → K0

Sπ
∓ rekonstruiert.

Das D∗± wird in den hadronischen Zerfällen D∗± → D0π± und D∗± → D±π0 rekon-
struiert. Folgende D-Mesonen aus D∗ werden rekonstruiert:

� D0 → K−π+

� D0 → K−π+π−π+

� D0 → K−π+π0

� D0 → K0
Sπ

+π−

� D0 → K−K+

� D+ → K−π+π+

Insgesamt werden 12 Zerfallskanäle rekonstruiert, die 2.46% der Zerfälle von B0 →
D∗±D∓ ausmachen.
Zur Selektion des besten Kandidaten eines Ereignisses wird der Chi-Quadrat-Wert aus
den D-Mesonmassen und der D∗D- Massendifferenz gebildet. Im Fall multipler B-Meson
Kandidaten in einem Ereignis wird der Kandidat ausgewählt, der den kleinsten Chi-
Quadrat-Wert2 hat.
Zur Signalselektion wurde ein schnittbasierter Ansatz gewählt. Wichtige Variablen sind
dabei die Massen der D-Mesonen, die Massendifferenz zwischen D∗ und D-Meson und,
sofern neutrale Pionen im Zerfall vorkommen, zusätzlich noch die Pionmasse und die
Energie des niederenergetischeren Photons, aus dem das Pion rekonstruiert wurde. Um
die bestmögliche Ereignisselektion zu erzielen, wurden die Schnittwerte aller Variablen
gleichzeitig optimiert. Als Kennwert der optimiert wurde, diente die Signifikanz, die
die Zahl der Signalereignisse dividiert durch die Wurzel der Gesamtereignisse in der
Signalregion3 ist.

Σsigni =
Nsig√

Nsig +Nbkg

Die Schnitte wurden für die unterschiedlichen D-Meson-Kanäle einzeln optimiert, da die
Massenauflösung der D-Mesonen verschiedener Kanäle im allgemeinen unterschiedlich
ist. Durch die Optimierung konnte die Reinheit4 in der Signalregion von 2.4% nach der

1Eine Übersicht über alle untersuchten Zerfallskanäle bietet Abbildung 3.1.
2Für die genaue Berechnung des Chi-Quadrat-Wertes siehe Kapitel 3.2.2.
3Die Signalregion dieser Analyse wird definiert als: |∆E| < 30MeV und Mbc > 5.27GeV/c2. Die

Definitionen von ∆E and Mbc sind im nächsten Abschnitt zu finden.
4Mit Reinheit wird der Anteil an Signalereignissen von einem Datensatz bezeichnet.
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Rekonstruktion auf 60.3% erhöht werden.

Das Verzweigungsverhältnis BR(B0 → D∗±D∓) errechnet sich als Quotient aus der An-
zahl der gemessenen Signalerreignisse durch das Produkt aus der Zahl der produzierten
B-Mesonpaaren und den Rekonstruktionseffizienzen,5 sowie den Verzweigungsverhält-
nissen6 der D und D∗ Mesonen.
Während die Zahl der Signalereignisse sowie die Effizienz bestimmt werden, werden
die Zahl der B-Mesonpaare, sowie die D und D∗ Verzweigungsverhältnisse von der
Belle-Kollaboration beziehungsweise der Particle Data Group übernommen. Das Sig-
nal wird durch zweidimensionale Parameteranpassung der beiden Variablen Mbc und
∆E aus den Daten extrahiert. Mbc wird aus den Impulsen der Tochterteilchen und der
Strahlenergie errechnet und ist das Äquivalent zur B-Mesonmasse:

Mbc =

√
(
Ebeam

2
)2 − p2

B0

∆E ist die Differenz zwischen gemessener Energie des B-Mesons und der halben Strahlen-
ergie:

∆E =
Ebeam

2
− EB0

Ereignisse mit echten B-Mesonen treten gehäuft bei ∆E = 0 und Mbc = MB0 =
5.28GeV/c2 auf. Zur Parameterschätzung wird die Maximum-Likelihood -Methode ver-
wendet. Die Parametrisierung des funktionalen Verlaufs von ∆E und Mbc muss nicht
nur die Signalregion, sondern auch das Seitenband korrekt beschreiben. Kontinuumunter-
grund wird in ∆E mit einer Geraden und inMbc mit einer ARGUS-Funktion parametrisiert.
Zudem sind noch weitere nicht kontinuierlich verteilte Untergrundquellen vorhanden.
Durch irrtümliche Identifikation von Kaonen als Pionen aus den ZerfällenB0 → D∗±D∓S (KKπ)
entsteht eine Anhäufung von Ereignissen im negativen ∆E Seitenband. Der umgekehrte
Fall, bei dem Pionen fälschlicherweise als Kaonen identifiziert werden, ist auf B0 →
D∗±D∓(πππ) Zerfälle zurückzuführen. Da die Ereignisse in beiden Fällen auch aus
einem B-Meson-Zerfall kommen, verhalten sie sich in Mbc wie Signalereignisse. Darum
wird die korrekte Beschreibung des Seitenbandes in ∆E benötigt, um die richtige Zahl
von Signalereignissen zu erhalten.
Auf Monte Carlo, das ausschließlich aus simulierten Signalereignissen besteht, wurde
ein nicht kontinuierlicher Untergrund entdeckt, der im Folgenden als Crossfeed beze-
ichnet wird. Dieser Untergrund kommt von teilweise falsch rekonstruierten Ereignissen,
wobei neutrale Pionen mit einem falsch rekonstruierten Photon den Haupteil des Cross-
feed ausmachen. Bei der Parameteranpassung können Signal- und Crossfeedanteil nicht
getrennt werden, und werden daher gemeinsam behandelt. Um die korrekte Zahl an
Signalereignissen auf Daten ermitteln zu können, wird der Crossfeedanteil auf Monte
Carlo bestimmt.
Eine weitere Untergrundquelle sind die nichtresonaten Zerfälle B0 → D∗±K0

Sπ
∓. Diese

5Die Effizienz ist definiert als die Zahl der rekonstruierten Signalereignisse dividiert durch die Zahl
der produzierten Signalereignisse. ε = Nrek

Nall
6Für die D und D∗ Verzweigungsverhältnisse wurden die Weltmittelwerte der PDG verewendet. [8]
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sind in ∆E und Mbc nicht von Signal zu unterscheiden. Ihr Beitrag wird im D-Massen-
Seitenband durch Parameteranpassung bestimmt.
Sowohl die Signal- als auch die Untergrundbeschreibung des oben skizzierten Anpas-
sungsmodells konnten auf Monte Carlo bestätigt werden. Zur Messung der Effizienzen,
die für das Verzweigungsverhältnis notwendig sind, wurde auf Monte Carlo zurückge-
griffen. Eine zur Konsistenzkontrolle durgeführte Messung des Verzweigungsverhält-
nisses auf Monte Carlo konnte das Verfahren bestätigen.

Die Messung wurde mit dem vollen Datensatz der Belle-Kollaboration von 772 Millio-
nen B-Meson-Paaren durchgeführt. Dabei wurde die oben skizzierte auf Monte Carlo
entwickelte Signalextraktion verwendet. Die Daten werden dabei sehr gut durch das
Modell beschrieben. Es wurden 818±39 Signalereignisse gemessen. Zwischen Daten und
Monte Carlo besteht ein Unterschied in der Rekonstruktionseffizienz von Kaonen und
Pionen bezüglich der Teilchenidentifikation. Die auf Monte Carlo bestimmten Effizien-
zen wurden dementsprechend korrigiert. Die Messung des Verzweigungsverhältnisse
ergibt:

BR
(
B0 → D∗±D∓

)
= (5.90± 0.28± 0.63) · 10−4

Wie üblich entspricht der zweite Term dabei dem statistischen und der dritte Term
dem systematischen Fehler des Verzweigungsverhältnisses. Der systematische Fehler
errechnet sich aus der Unsicherheit der Zahl der B-Mesonpaare, den Unterschieden der
Rekonstruktionseffizienz zwischen Daten und Monte Carlo für neutrale beziehungsweise
geladene Pionen oder Kaonen, den Unsicherheiten der D und D∗ Verzweigungsverhält-
nisse und den Grenzen des Anpassungsmodells.
Die Messung von BR (B0 → D∗±D∓) in dieser Arbeit ist die bis heute präziseste
Einzelmessung dieses Verzweigungsverhältnisses. Sie ist sehr gut mit dem bisherigen
Weltmittelwert [8] von (6.1± 1.5) · 10−4 und der letzten Messung von BABAR [1] von
(5.7± 0.7± 0.7) · 10−4 verträglich. Die Fehler auf das Verzweigungsverhältnis konnten
gegenüber der letzten Messung von Belle [2] von

(
11.7± 2.6+2.2

−2.5

)
·10−4 deutlich gesenkt

werden.
Die in dieser Arbeit entwickelte Ereignisselektion des Zerfalls B0 → D∗±D∓ kann in
Zukunft als Ausgangspunkt für eine CP-Verletzungsmessung in diesem Kanal dienen.
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Introduction

”Each piece, or part, of the whole nature is always an approximation to
the complete truth, or the complete truth so far as we know it. In fact,
everything we know is only some kind of approximation, because we know
that we do not know all the laws as yet. Therefore, things must be learned
only to be unlearned again or, more likely, to be corrected.......The test
of all knowledge is experiment. Experiment is the sole judge of scientific
truth.” Richard P. Feynman

In particle physics, the state of the art approximation, to say it with Feynman’s words,
is the Standard Model of Particle Physics. It is a very powerful theoretical model,
which resolves many but not all mysteries of particle physics. The task of an experi-
mentalist is finding appropriate ways to measure the parameters of the standard model.
Precise measurements are necessary to qualify oneself in confirming or rejecting theory
predictions. Thereby, it is important not to bias the results by expectations of any
kind.
The Belle experiment is a high precision experiment dedicated to the investigation of
flavor physics in B-meson decays, especially CP-violation studies. The well-understood
production mechanism of the B-mesons at the Y(4S) resonance allows for unique ex-
perimental techniques.
The branching ratio is the ratio of a specific decay chain compared to all possible decays
of the initial state. Though the standard model predicts branching fractions they are
observables suitable in comparing theory and experiment. In this thesis, the measure-
ment of the branching fraction of B0 → D∗±D∓, based on the full data set of the Belle
collaboration, will be presented. This branching fraction has been measured before by
the BABAR Collaboration [1] and the Belle Collaboration [2]. There is a small ten-
sion between those two measurements, which increases the error on the world average
of this branching fraction [8]. The biggest contribution to the uncertainty about the
world average comes from the previous Belle measurement from 2001, which only used
4.3% of the data set that is available now. The full data set allows for a better under-
standing of background sources, which should decrease systematic uncertainties about
the branching fraction. This thesis is the first work which includes non-combinatorial
background in the fit model for the signal extraction in B0 → D∗±D∓ decays in order
to achieve a better separation between signal and background. To minimize biasing
from the experimenters expectations, the whole analysis was performed ”blindly” on
Monte Carlo. This means that all selection criteria and fit parameters were determined
and optimized on Monte Carlo, without looking at data. In this way the optimization
of statistical fluctuations was excluded.
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In the channel B0 → D∗±D∓ , CP-violation was observed with less than 3σ confidence
by previous measurements ([5],[4]), which makes it important for further studies. For a
measurement of the parameters describing direct and mixing induced CP-violation, a
reliable signal selection is necessary. The signal selection, which was developed for the
branching fraction measurement in this analysis, can easily be used for a CP-violation
measurement in the future.



1. Theoretical Basics

1.1. Standard Model of Particle Physics

Nowadays four fundamental interactions are known in nature. They are gravity, elec-
tromagnetism, weak and strong force. They are important at different length scales, as
they differ in relative strength and range. Gravity, which describes the mass attraction,
responsible for apples to fall, orbiting moons and the formation of galaxies, has long
range. Its potential is proportional to the inverse distance of two interacting objects.
Electromagnetism has in principle the same range as gravity, as the potential for two
oppositely charged objects is also proportional to the inverse distance between them.
But due to the fact that in universe oppositely charged objects are bound together to a
neutral composite, like protons and electrons form atoms, the electromagnetic force is
not important on a galactic scale. All atomic physics and chemistry can be explained
only with electromagnetic interaction. The strong force is responsible for the formation
of protons and neutrons, the components of the atomic nucleus. It is restricted to a
short range of about one femto meter, the size of a proton. The weak interaction knows
no bound states and is restricted to a range of about a few atto meters. Details of the
fusion in the sun or radioactive β-decays can only be explained by the weak interaction.
The Standard Model of particle physics (SM), which describes objects on a tiny length
scale, includes three of the four interactions in quantum field theories. Electromag-
netism is described with quantum electrodynamics (QED). Quantum chromo dynam-
ics (QCD) describes the strong interaction and quantum flavor dynamics the weak
interaction.

1.1.1. Quantum Numbers and Symmetries

In quantum physics, a quantum system, if not degenerated, is defined by its quantum
numbers. Because a particle is a quantum system its characteristics are described
by quantum numbers. But in contrast to atomic physics, where a different angular
momentum ~L just means another quantum state of the same atom, in particle physics
these different states themselves are all distinct particles. Due to the high number
of possibilities this leads to a very rich zoo of particles. The Standard Model can
explain all these particles as composites of a few elementary particles. The fundamental
particles, known as the particle family of the SM, are shown in table 1.1 and 1.2. All
particles shown there have been observed, except for the Higgs-boson. The fundamental
particles can be ordered further. Classified by spin, we can distinguish fermions with
half-integral and bosons with integral spin. Fermions are the building blocks of matter
in the SM. They are divided into leptons and quarks, each occurring in three generations
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of pairs. Of a lepton pair one has electric charge equal one and a finite mass; the other
one, called neutrino, is a neutral particle, which was long believed to be massless. In
the last years neutrino experiments established mixing from neutrinos of one generation
to neutrinos of another generation. This mixing is explained with a non-zero mass of
neutrinos (see [8] chapter 11). But until today only upper limits of the neutrino masses
could be established. Leptons only interact by weak interactions, and when electrically
charged, also by electromagnetic interactions. Quarks occur in six flavors ordered in
doublets of an up-type quark with charge +2

3
and a down-type quark with charge −1

3
.

They take part in all three interactions. The bosons act as mediators of the three
elementary interactions. They couple to particles carrying the charge corresponding to
the interaction they are mediating.
It is common to visualize physical processes in particle physics by drawing Feynman
diagrams. A schematic picture is shown in figure 1.1. I use a time axis from left to
right in all diagrams for convenience. A Feynman graph is characterized by internal and
external lines, which each represent a particle1, and vertices where those lines meet and
the interaction takes place. External lines, connected to only one vertex, represent the
real particles we can observe in our detector if technically possible. Internal lines are
called virtual particles. They are intermediate quantum states, which are not directly
observable. They can have an off shell mass, which means that the mass of virtual
particles is not restricted by the energy-momentum equation2:

E2 − ~p2 = m2

Although virtual particles with off shell mass are allowed by the Heisenberg uncertainty
principle, the amplitude of these transitions are highly suppressed by ∼ 1

q2−m2 . At
every vertex conservation laws hold, which means that the sum of ingoing lines must
have the same quantum numbers as the sum of the outgoing lines. The strength of
the interaction is described by the coupling constant3 α, which is different for the
three interaction types. To calculate the transition probability from a known initial
state to a certain final state, one has to take into account all processes, expressed
through Feynman diagrams. Every vertex adds factor of α, the coupling constant of
the interaction, to the transition probability.

1.1.2. Quantum Electrodynamics

The photon is the mediator of the electromagnetic interaction. It couples to all charged
particles, namely quarks, charged leptons and charged W-bosons. The coupling con-
stant in QED is known from atomic physics as fine structure constant α ≈ 1

137
. One

example of a QED process is Bhabba-scattering as shown in figure 1.2. Initial and final
state are the same in both figures: an electron positron pair. The right figure shows

1Convention states that particles move along and anti-particles against time in Feynman diagrams.
2In this theses natural units are used, where c = 1 and ~ = 1.
3Although it is not a constant as it varies slowly with the energy scale of the interaction.
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Table 1.1.: Fermions

Quarks

Generation Name Charge Mass couples with

I
up (u) +2

3
1.7-3.3 MeV γ , g , W± , Z0

down (d) −1
3

4.1-5.8 MeV γ , g , W± , Z0

II
charm (c) +2

3
1.27+0.07

−0.09 GeV γ , g , W± , Z0

strange (s) −1
3

101+29
−21 MeV γ , g , W± , Z0

III
top (t) +2

3
172.0+0.9

−1.3 GeV γ , g , W± , Z0

bottom (b) −1
3

4.19+0.18
−0.06 MeV γ , g , W± , Z0

Leptons

Generation Name Charge Mass couples with

I
e −1 0.511 MeV γ ,W± , Z0

νe 0 < 2 eV W± , Z0

II
µ −1 105.7 MeV γ , W± , Z0

νµ 0 < 2 eV W± , Z0

III
τ −1 1.78± 0.0016 GeV γ , W± , Z0

ντ 0 < 2 eV W± , Z0

Table 1.2.: Bosons

Interaction Name Charge Colour weak Isospin Mass

electromagnetic γ −1 - - 0

strong g 0 r,g,b - 0

weak
Z0 0 - 0 91.18± 0.002 GeV

W+ +1 - +1 80.40± 0.02 GeV

W− −1 - −1 80.40± 0.02 GeV
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Figure 1.1.: An exemplary Feynman diagram with ingoing and outgoing fermion lines
a boson propagator and two vertices

elastic scattering of electron and positron with a photon exchange. In the left figure
electron and positron annihilate into a photon, which then creates an electron positron
pair out of the vacuum. Both diagrams contribute to the e+e− → e+e− transition.
As both diagrams have the same final state, they interfere and the total transition
amplitude |Atot|2 includes also an interference term.

|Atot|2 = |Ainel|2 + AinelA
∗
el + A∗inelAel + |Ael|2

Although the two diagrams are the main contribution of the process, other processes
with more vertices are also possible. In Figure 1.3 some other possible transitions
are shown. They have more vertices for which an additional factor α comes into
the amplitude of the transition probability. Since α � 1 it is reasonable to take
the additional terms as perturbation in order of α of the first diagrams. Therefore,
perturbative calculations are possible in the QED. They have achieved high precision;
for example, the anomalous magnetic moment of the electron is theoretically calculated
very precisely [9].

Figure 1.2.: Bhabba Scattering - The left diagram shows inelastic scattering with annhi-
lation and the right diagram shows elastic scattering
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Figure 1.3.: Radiation Corrections - Some higher order diagrams for e+e− → e+e−

1.1.3. The Strong Interaction

The strong interaction is restricted to the quark and gluon sector. The quantum chromo
dynamics (QCD) describes the strong interaction, which occurs between quarks via the
exchange of gluons. Strong interaction is sensitive to a quantum number, called color,
which only quarks and gluons possess. There are three types of color, called red,
green and blue and their anti-colors (anti-red, anti-green and anti-blue). In nature
only colorless objects are observed, which comes from quark confinement. It can be
explained on the basis of a qq̄-pair, also illustrated in figure 1.4. If quark and anti-
quark, which form a q̄-pair, are in close vicinity to each other, they interchange only a
few gluons. As gluons carry color themselves, they can interact with each other. With
increasing separation of the qq̄-pair, the gluon-gluon-interaction increases, which draws
more energy into the color-field, until it is enough to create a new qq̄-pair out of the
vacuum. That is why quarks cannot be isolated. Therefore, quarks4, which all have
a certain color themselves, add up to color-less objects called hadrons. Two types of
hadrons, mesons and baryons, are known. A meson is a composed state of a quark
and an anti-quark with opposite color. A B0-meson, for example, is a composite of a
d-quark and b̄-quark. Baryons consist out of three quarks, who all have different color,
so that their combination is colorless. The principle of the color addition can be easily
visualized by the color wheel shown in figure 1.5. It can be seen, that not only color
and anti-color cancel each other out, but if added vectorial also the combination of the
three colors red, green and blue (or the three anti-colors).
With three different colors there are eight linear independent gluons, all carrying color
and anti-color, possible. Using a specific convention [9], this gluon-octet can be written
in the following way:

rḡ rb̄ gb̄ gr̄ br̄ bḡ
rr̄ − gḡ√

2

rr̄ + gḡ − 2bb̄√
6

Theoretically there is also a ninth combination possible, but this gluon would be a
completely symmetric color singlet that would not interact.
The gluon-gluon-coupling is responsible for the curious behavior of the potential of
strong interactions. The Yukawa potential VS(r) of the strong force between a quark

4The top-quark is one exception, as its lifetime is so short that it decays before it can form hadrons.
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and an anti-quark pair with distance r to each other can be written as:

VS(r) = −4

3

αS(r)

r
+ kr

For large r the last term, which describes the confinement, is dominating. The param-
eter k describes the length scale of strong interactions. For short distances, which is
equal to high energies in quantum field theory, the first term which is similar to the
Coulomb potential is dominating. This means that for very short distances the quarks
are quasi-free, which is called asymptotic freedom. The coupling constant αS(r) itself
is dependent on the length (or energy) scale. The coupling constant decreases with
increasing energy. This comes from an anti-screening [9] effect of the color-field in
close vicinity of a color charge.

Figure 1.4.: Confinement - In the left figure a qq̄-pair exchanging a few gluons is shown.
As soon as they are separated, shown in middle figure, more and more
gluons occur drawing energy into the color-field. If they are separated
further, a qq̄-pair is created, which is why quarks cannot be isolated.

Figure 1.5.: The colors of quarks can be illustrated by the color wheel. In nature only
”white” or ”colorless” objects occur as free particles. The color of an object
is the vectorial sum of the colors of its constituent particles.
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1.1.4. The Weak Interaction

The weak interaction is mediated by the charged W-bosons and the neutral Z0-boson.
In contrast to the gluon or the photon, they have a mass of almost hundred GeV.
The W- and Z-bosons interact with every elementary fermion, as can be seen in the
fermion summary table 1.1. Weak transitions are highly suppressed due to the non-
zero mass of the mediating bosons. They are therefore only important, if no strong or
electromagnetic interaction is possible or the interaction energy is above the W (or Z)
mass. But there are still many processes which are only possible through the exchange
of a virtual W or Z-boson. The decay of B0-mesons for example is only possible through
weak interactions. A B0 is the lightest meson combination with a b-quark in it. If the
b-flavor would be conserved, this meson could not decay and would be stable. But W-
bosons mediate flavor changing transitions, from up-type to down-type quarks and vice
versa. Thereby transitions within one generation are most likely, but also transitions
from one generation to another are allowed. The Cabibbo-Kobayashi-Maskawa matrix
(CKM) describes the strength of the flavor changing transitions. It is a unitary 3 × 3
matrix, shown below (numerical values obtained from [8]). The absolute square of a
matrix element Vij is proportional to the transition probability5 from qi to qj.

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ≈
 0.974± 0.0002 0.225± 0.0009 0.004± 0.0004

0.230± 0.011 1.023± 0.036 0.040± 0.001
0.008± 0.0006 0.039± 0.002 0.88± 0.07


 |u〉|c〉
|s〉

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 |d〉|s〉
|b〉


VCKMV

−1
CKM = VCKMV

†
CKM = 1

As an down-type quark the b-quark of the B0 meson can only decay into up-type
quarks. The top quark is not possible, since it is heavier than the bottom, so only
up-quark and charm-quark remain. Looking at the CKM-matrix, one sees that the
b → c transition is favored by CKM over b → u. The tree level contribution of the
decay of B0 to D∗∓D± investigated in this thesis is shown in figure 1.6. The b̄-quark
with charge +1

3
is transformed into a c̄ with charge −2

3
by emitting a W+-boson. The

W+ decays into cd̄, which is CKM-suppressed with |Vcd|2.
W-bosons can also mediate transitions from leptons to neutrinos (and vice versa)

within a lepton generation6. The neutral Z0-boson couples to fermion anti-fermion
pairs of the same type, like qq̄, l+l− or νν̄. Weinberg, Glashow and Salam proposed

5In general the squared matrix element is multiplied with a phase space factor. The phase space
includes all possible states of a certain system and is obtained by integrating over all possible
momenta of the final state. Therefore, if the four-momentum difference between initial and final
state in one process is larger than in another process, the phase space factor in this process is also
larger.

6The results of neutrino appearance and disappearance experiments suggest also mixing in the lepton
sector.
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Figure 1.6.: Tree level diagram B0 → D∗−D+

a unification of electromagnetic and weak interaction, which is known as electroweak
interaction. The electroweak interaction is explained e.g. in reference [10].
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1.2. CP-Violation

1.2.1. Discrete Symmetries

CP is the product of charge conjugation C and parity P. Therefore, I will first explain
parity and charge conjugation.

Parity

A parity transformation flips the sign of all space coordinates. Therefore, if done twice
the system is in the same state as before.

P |~x〉 = | − ~x〉 P 2|x〉 = |x〉

Naively one would think that physical laws are independent of parity transformation,
since the coordinate system is arbitrary. An observable sensitive to parity transfor-
mation is the helicity7, which is standardized product of momentum and spin of a
particle.

h =
~p~s

|~p||~s|
For fermions, with spin 1

2
there are two possible orientations of the spin to a certain

axis. With a parity transformation, the momentum flips its sign, but the spin stays
as it is, which is why the helicity of these particles also changes its sign under parity
transformation. Particles with negative helicity are called left-handed and particles
with positive helicity are called right-handed. Wu showed in 1957 [10] that parity is
violated in weak decays. In fact, W-bosons only couple to left-handed fermions and
right-handed anti-fermions. For neutrinos, which only interact weakly, this means that
there are only left-handed neutrinos and right-handed anti-neutrinos observable.

Charge Conjugation

Charge conjugation is another discrete symmetry. A charge conjugation transforms all
particles into their anti-particles. Therefore, only neutral8 particles or neutral compos-
ites, like the φ = (ss̄), can be an eigenstate of charge conjugation.

C|f〉 = |f̄〉 C2|f〉 = |f〉

CP and CP-Violation

CP is the combined transformation of C and P. It transforms a left-handed neutrino νL
in a right-handed anti-neutrino νR for example. After discovery of P violation many
physicists hoped that in nature at least CP is not violated. They were proved wrong

7The helicity itself is not Lorentz-invariant. In quantum field theory, the chirality, which is Lorentz
invariant, is used. For β → 1 the helicity becomes equal to the chirality. The helicity is used here
for simplicity.

8Neutral means here: neutral in charge and flavor.
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in 1964, when Cronin and Fitch discovered CP-violation in the kaon system.
Today there are three types of CP-violation known.

1.2.2. Neutral Meson Mixing and Indirect CP-Violation

Flavored neutral mesons with one light and one heavier quark can mix via exchange
of two W-bosons, which is described through a so-called box diagram. An example for
a box diagram is shown in figure 1.7. Another box diagram of the same order can be
obtained just by rotating all internal lines clockwise by 90 degrees. The b̄-quark emits9

a W− changing its flavor to an up-type anti-quark, while the d-quark absorbs the W−

and is turned into an up-type quark. With a second W-boson exchange, a b-quark
and a d̄-quark, which form a B̄0, are obtained. The transition from B̄0 to B0 works
the same way. Due to mixing, the mass eigenstates are superpositions of the flavor
eigenstates |B0〉 and |B̄0〉. The two mass eigenstates are called |BL〉 (light) and |BH〉
(heavy):

|BL〉 =
1√
2

(
p|B0〉+ q|B̄0〉

)
|BH〉 =

1√
2

(
p|B0〉 − q|B̄0〉

)
With the phase convention that CP |B0〉 = |B̄0〉, theBL andBH become CP-eigenstates
if | q

p
| = 1. In contrast, if | q

p
| 6= 1 there exists indirect CP-violation. Indirect CP-

violation occurs if the amplitude for mixing from the first flavor-state to the second is
different from the amplitude of mixing from the second to the first. To explain this
difference one first has learn a bit more about the CKM-matrix. The CKM-matrix has
in fact complex components in its matrix elements, as it can be seen in the Wolfenstein-
parametrization10. The parameters λ, A, ρ and η are real, thus ρ plus iη is a complex
number. At third order of λ two elements, Vtd and Vub, have an imaginary part and
thus also a phase. Looking again at the box diagrams 1.7 one can see that the rel-
evant CKM-elements are different for two mixing-processes. One can show [11] that
q
p

=
VtdV

∗
tb

V ∗
tdVtb

. This leads to indirect CP-violation, since Vtd is complex.

Indirect CP-violation is still [8], almost 50 years later, only measured in the kaon sys-
tem, where CP-violation was first observed. The great difference in lifetime, about two
orders of magnitude, of the two neutral kaon mass eigenstates makes the kaon system
an exception. It allows to create a pure sample of the long-living mass eigenstate, which
is necessary for an indirect CP-violation measurement. In the B0, no pure samples of
BL and BH can be made.

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ≈
 1− λ2

2
λ Aλ3(ρ− iη)

λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4)

9This is equivalent to the b-quark absorbing a W+

10Shown in reference [11] for example



1.2. CP-Violation 21

with:11

λ ≈ 0.225 A ≈ 0.808 ρ ≈ 0.132 η ≈ 0.341

Figure 1.7.: Two box diagrams responsible for B0B̄0-mixing are shown. Because Vtd is
a complex number, there is a difference in the amplitude of both diagrams.

1.2.3. Direct CP-Violation

Another possibility for CP-violation is direct CP-violation. Direct CP-violation occurs
when the amplitudes from an initial CP eigenstate |i〉 to a final CP eigenstate |f〉 are
different for CP conjugated states.

|〈i|H|f〉|2 6= |〈̄i|H|f̄〉|2

Direct CP-violation is independent of mixing and also occurs in the decays of charged
mesons which do not mix. Different amplitudes for CP-conjugated decays can only arise
when there are underlying processes with a complex phase difference which interfere.
Figure 1.8 shows the two diagrams, which are in theory responsible for direct CP-
violation in B0 → D∗±D∓. The tree diagram on the left has no complex CKM matrix
elements in the transition. In the so called penguin diagram on the right, the complex
matrix element V ∗td comes in. If only the penguin diagram would contribute to the
transition, there would be no direct CP-violation expected, since the imaginary part,
the phase, would be nullified by calculating the amplitude. But if combined with the
amplitude of the tree diagram (At) the weak phase can survive the absolute quadrature.

|Ap|2 = |Cpeiφ|2 = real

|Ap + At|2 = C2
p + CtCpe

iφ︸ ︷︷ ︸
imaginary

+C2
t

with the penguin amplitude Ap = Cpe
iφ and the tree amplitude At = Ct, whereby Ct,

Cp and φ are real.

11Values obtained from [8]
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Figure 1.8.: On the left side the tree level process for B0 → D∗±D∓ and on the right
side the first order penguin diagram

1.2.4. Mixing Induced CP-Violation

The third possibility and the one expected to have the largest contribution for the
studied decay, is the mixing induced CP-violation. It can occur, if two initial CP-
eigenstates (|i〉 and |̄i〉) can both decay in the same CP-eigenstate (|f〉) and the initial
states can mix into each other. There is CP-violation if:

Af = |〈i|T |f〉|2 6= |〈̄i|T |f〉|2 = Āf

I will explain mixing induced CP-violation on the system B0 → D∗±D∓. As we have
seen in the previous chapter about mixing, there is a weak phase difference eiφ ∼ VtdV

∗
tb

V ∗
tdVtb

due to the mixing. The phase difference alone would yield to indirect CP-violation,
which is not measurable at present12. But due to the interference between decays,
which have mixed before they are decayed and those who don’t, there is a measurable
CP-violation expected.
In principle there are two ways, shown in figure 1.9, for an initial state |B0〉 to decay
into its final state |D∗D〉 with and without mixing into B̄0 before. The difference in
the decay amplitude of the initial |B0〉 and the initial |B̄0〉 is measured by counting the
events coming from a certain initial state. Since the B-mesons oscillate with a certain
frequency into each other, which is given by their mass-difference, and decay into the
same final state, one cannot decide what the initial state of this decay was. But the
two B-mesons were produced as a coherent quantum state. Therefore, when the first
B-meson decays, let us say as a B0, one can say that the other B-meson in this instance
is a B̄0. Later on, the B̄0 can oscillate, but in this instance its flavor is determined by
quantum physics. This is used to determine the flight length difference of the initial
produced B0’s and B̄0’s. The time-dependent asymmetry Af is then given in the usual
([8] page 160) notation13:

Af±(∆t) =
dΓ
dt

(|B̄0〉 → |D∗±D∓〉)− dΓ
dt

(|B0〉 → |D∗±D∓〉)
dΓ
dt

(|B̄0〉 → |D∗±D∓〉) + dΓ
dt

(|B0〉 → |D∗±D∓〉)
12”The small deviation (less than one percent) of | qp | from 1 implies that, at the present level of

experimental precision, CP violation in B mixing is a negligible effect.” ([8] page 160)
13Because the time difference ∆t is used, t is replaced by ∆t
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Af±(∆t) = Sf±sin(∆M∆t) + Cf±cos(∆M∆t)

with

Sf± =
2 · Im(λf )

1 + |λf |2
, Cf± =

1− |λf |2

1 + |λf |2
,

and

λf = eiφ
Af
Āf

.

The parameters Sf± and Cf± are called the CP-violating parameters for mixing induced
CP-violation. To determine these parameters a fit to the flight-length difference of the
B (which corresponds to the lifetime difference) has to be performed for initial B0 and
B̄0 events. As B0 → D∗+D− is distinguishable from B0 → D∗+D−, the measurement
of Af has to be split into two measurements, Af+ and Af−.

Figure 1.9.: Decay with and without mixing

1.2.5. Time Integrated Charge Asymmetry

Another quantity which can be measured in B0 → D∗±D∓ decays is the asymmetry
A± of D∗+D− and D∗−D+ decays. It is expected to be zero, according to the standard
model.

A± =
ND∗+D− −ND∗−D+

ND∗+D− +ND∗−D+
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If you want to observe natures inner fragments, you need tools which allow you to
observe them. As we know from optics, one can only resolve objects, if the wavelength
of the probing beam is in the order of the size of the examined object. The probing
beam can be light, or a beam of electrons or protons. Quantum Mechanics explains
the wave-particle dualism, which leads to the de-Broglie-relation. It states that the
wavelength of a given particle is the Planck constant divided through the particles
momentum.

λ =
h

|~p|

In particle physics, the goal is to observe the smallest fragments of nature, therefore a
probing beam with very tiny wavelength, which corresponds to high energetic beam-
particles, is needed.
Due to the high momentum of the particles, a relativistic description is necessary. In
special relativity, four-vectors in Minkowski-space with one time coordinate and three
space coordinates are used to describe physics laws.
At B-factories, a maximal production of B-mesons is requested, therefore B-factories
normally run at the Y(4S)-resonance, shown in figure 2.1, which is just above the
threshold of BB̄-production. Due to their short lifetime it is not easy to examine
mesons, especially the heavy B-mesons, in nature. We can create them artificially
in the lab. Therefore, we exploit Einstein’s famous energy-mass relation, which states
that matter can be formed out of energy and that the annihilation of a particle releases
free energy proportional to the particle’s mass.

E = m · c2.

In collider experiments, one uses the energy of the colliding particles to create new
particles. The energy of the collision is measured in the center-of-mass system (CMS).
The CMS energy of the collision can be easily expressed in four-vector notation with
the four-momentum:

pµ =

(
E/c
~p

)
.

√
S = (pµ + pν).

One can distinguish two designs of accelerator experiments fixed target experiments
and colliding beam experiments. In fixed target experiments, one beam of particles
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Figure 2.1.: The Y-resonances [12]

(electrons, for example) is accelerated and shot at a stationary target (a block of lead
atoms for example). The CMS-energy (referred here as

√
S) in fixed target experiments

is proportional to the square root of the energy of the colliding beam,
√
S ∝

√
Ebeam.

At colliding experiments in contrast to fixed target experiments, two particle beams
are accelerated in opposite directions and crossed at the interaction point, where they
scatter inelastically and generate new particles, which then can be measured. With the
assumption of symmetric beam energies and head on head collision, the center-of-mass
energy is proportional to the beam energy:

√
S ∝ Ebeam.

Topology of Accelerator Types

If one discriminates accelerators by their topologies, two main types: cyclic and linear
accelerators can be distinguished. Both types use electric fields for acceleration. While
in linear accelerators (LA) the distance of acceleration is passed only once, there are
multiple acceleration cycles in circular accelerators (CA). Therefore CA can be more
compact than LA and still have the same or higher distance of acceleration in total. To
hold the particles in CA on their path, magnetic fields are used. The higher the energy
of accelerated particle becomes, the higher the magnetic field has to be to hold it on
its course. Many CA in high energy physics increase the magnetic field synchronically
with the acceleration process to maintain a constant curvature of the particle beam,
and are therefore called synchrotrons. Thus, the acceleration limit of synchrotrons
is given by the maximal power of the magnetic field and the radius of the ring, and
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by the amount of dissipative synchrotron radiation. Synchrotron radiation is a form
of bremsstrahlung and occurs if charged particles are forced on a circular path. The
energy loss through synchrotron radiation is proportional to inverse mass of the fourth
power:

∆Eloss ∝
1

m4
.

Hadron and Lepton Colliders

Another way to distinguish collider experiments is by their accelerated particles. Until
today, all accelerators use only stable particles, namely protons and electrons and their
anti-particles. Cyclic hadron colliders with proton and (anti-)proton beams can reach
higher energies than lepton colliders, since light particles like electrons loose much
more energy through synchrotron radiation than heavier particles like protons. Also
the cross-section of B-meson production increases with the energy, which is why it is
easier for hadron machines to collect a huge number of B-mesons. One drawback of
hadron colliders is that the center-of-mass energy does not match the beam energy,
since not all parts of the hadron interact in a collision. This restricts especially the
missing energy resolution, as a crosscheck between measured energy in the calorimeters
and beam energy is not possible. At hadron colliders, interesting events are produced
with the two processes gluon-gluon-fusion and quark-anti-quark annihilation. The
remaining parts of the (anti-)proton still can produce particles which are not wanted
and therefore pollute the signal event. In comparision, an event with a lepton-lepton
maschine is much more clean, which can be seen in figure 2.2. The disadvantage of
cyclic lepton-maschines is the energy loss due to synchrotron radiation. Its advantage
is that the center-of-mass energy is known in an event and the event itself is normally
much cleaner than at hadron colliders.
There are also hadron-lepton-machines, like HERA at DESY in Hamburg, but they
are not explained in detail here, as they are sensitive to other field of particle physics,
which are not discussed in this thesis.

2.1. The Belle Experiment

The Belle experiment is situated at the national research center for nuclear physics
KEK in Tsukuba, Japan, about 60 kilometers northeast of Tokio. About 380 scientists
from 14 countries work in the Belle colaboration. The two main parts of the experiment
are the KEKB accelerator explained in detail in reference [6] and the Belle detector
described in detail in reference [7]. The important details of the experiment were
summarized in the following.

2.1.1. The KEKB Accelerator

The B-mesons for this analysis were produced with the KekB accelerator. Hence, the
KekB accelerator will be explained in more detail. The KekB accelerator is a electron-
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Figure 2.2.: A typical event at a hadron collider (CDF) and a lepton collider (Belle)
[13]

positron synchrotron machine. The accelerator consists of two rings the high energy
ring (HER) for electrons and the low energy ring (LER) for the postiron beam. Both
rings are installed side-by-side in the old TRISTAN1 tunnel. With 8 GeV for electrons
and 3.5 GeV for positrons, the CMS-energy is 10.58 GeV. This is just at the Y(4S)
resonance, which is shown in figure 2.1. The Y(4S) consists of a bb̄ quark anti-quark
pair and decays practically only in B-Mesons2.
A schematic picture of the accelerator is shown in figure 2.4. Electrons and positrons
are injected through the LINAC3 complex into the two rings, already at their full en-
ergy. The rings are filled with dense packages of electrons (or positrons), the so called
bunches. Though already at their intended energy when entering the ring, the bunches
have to be accelerated further to compensate the energy-loss through synchrotron ra-
diation. This is done with compressed radio frequency pulses, which require separate
bunches instead of a continuous beam. The interaction point is situated at the opposite
side of the injection point. At this point, where the Belle detector is located, the elec-
tron beam and the positron beam cross each other with a frequency of approximately
508,9 MHz at an angle of about 22mrad. To achieve a higher effective crossing area,
special magnets called crab cavities, are used flip the bunches just before the collision
so that they can collide head on head. A schematic picture of how crab cavities work
is shown in figure 2.3.

1TRISTAN was a former collider experiment that also used the tunnel.
2In the following it is assumed that the Y(4S) decays equally into B0B̄0- and B+B−-pairs.
3The LINAC complex consists out of different accelerators for pre-acceleration and positron produc-

tion. For more information have a look at [14].
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Figure 2.3.: The crab cavities [15] are special magnets, which rotate the bunches just
before the collision so that they collide head-on. After the collision, the
remains of the bunch are rotated back to reduce random beam scattering.

Figure 2.4.: A schematic view of the KEKb accelerator [6] is shown. The injection
with the LINAC takes place at FUJI hall, which is situated opposite of the
interaction point at TSUKUBA hall. Additional acceleration to maintain
the energy is done with radio frequency pulses (RF) at different locations.
Deflecting magnets are situated all along the curvatures.
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2.1.2. The Belle Detector

The actual measurement is done by the Belle detector, which is situated around the
interaction point. The word Belle is a coinage which should paraphrase the goal of
the experiment. The B stands for the B-mesons produced in the experiment,el stands
for the electron and the le for its anti-particle, the positron which expresses that a
electron-positron collider is used.
The Belle detector is constructed around the beam pipe, where the collisions take
place. In consists out of different components for various purposes, such as particle
identification, momentum determination and energy measurement. Due to the differ-
ence of electron and positron beam energy, the Y(4S) is produced with a boost in the
lab frame. Therefore, the lifetime of the B-mesons is prolonged significantly so that
it is possible to determine the vertex position, which is crucial for a time dependent
measurement, necessary in mixing induced CP-violation measurements, for example.
For the Belle detector, the coordinate system is chosen in a way that the z-axis points
along the boost of the Y(4S), the so-called forward direction. The y-axis is set to be
along the vertical and the x-axis along the horizontal. The Polar angle Θ is measured
from z-axis to the xy-plane. The angle Φ is measured in the xy-plane with respect to
the x-axis.
The Belle detector is shown in figure 2.5. It is a typical large-solid-angle magnetic
spectrometer which consists out of different components.

Figure 2.5.: The Belle Detector [7]
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Beam Pipe

The beam pipe is situated in the innermost part of the detector. It has a total diameter
of 48mm. The purpose of the beam pipe is simple: it has to provide a vacuum to
minimize undesired bunch scattering and present as little resistance as possible to the
produced particles traversing through it towards the actual detector. Another issue is
the heat dissipation due to coulomb scattering at the beam pipe wall. Therefore, a
double layer beryllium wall of 0.5mm thickness each is used. There is a 2.5mm gap
between the beryllium walls, which is filled with helium for cooling.

Silicon Vertex Detector

The first layer directly put on top of the beam pipe is the silicon vertex detector (SVD).
In order to measure the lifetime of short living particles, such as B-mesons, it is crucial
to know the vertices where they decayed. While fast decaying particles already decay
in the beam pipe, secondary vertex reconstruction (SVR) is the only way to determine
their decay vertex. In SVR, the tracks of the two particles are fitted to a common point,
which requires a good track resolution the SVD fortunately can provide. Actually, the
z-resolution of the SVD is so good that it is possible to measure B-meson lifetimes with
it.
In 2003, the Belle detector was upgraded and the old SVD (often called SVD1) had to
be replaced by a new one (SVD2), because of high radiation damage. While the SVD1
consisted out of 3 layers with a total polar angular coverage of 23◦ to 139◦, the SVD2
consists out of 4 layers with radii from 20mm to 88mm and a total angular coverage
from 17◦ to 150◦.

Central Drift Chamber

The Central Drift Chamber (CDC) with a diameter of 1.2 meters and a polar angle
coverage of 17◦ to 150◦ is responsible for the main track reconstruction. It is a clas-
sical gas filled drift chamber with 50 cylindrical ordered layers of wires around the
SVD. Charged particles passing through the CDC produce free electrons by ionizing
gas atoms, which are then accelerated in the electric field of the wires so that they
themselves can ionize electrons and create an avalanche which drifts to a wire where
it can be measured. The use of stereo wires with a small angle between them allows
to measure the z-position more precisely by comparing the signal yield in neighboring
wires. Because the whole CDC is also in the overall magnetic field of the solenoid,
one can determine the charge and the momentum out of the curvature of a track. A
mixture of 50% helium and 50% ethane is used to avoid spontaneous gas discharge
and reduce coulomb scattering. The specific energy deposition (dE

dx
) of tracks, which is

useful for particle identification, can also be measured.
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Aerogel Cherenkov Counter

The Aerogel Cherenkov Counter (ACC) is placed adjacent to the CDC in barrel4 and
in forward region. When a charged particle traverses through a material with a ve-
locity greater than the speed of light in the particular medium, Cherenkov light is
produced. Cherenkov light is emitted in a cone along the track of the traversing parti-
cle. In the CDC the momentum of charged particles is already measured. But knowing
the momentum is not enough. If one wants to decide if a certain particle will emit
Cherenkov radiation, knowing the rest mass is necessary. This can be exploited to
identify particles. For instance, a Pion starts radiating Cherenkov light with a momen-
tum of 1.2GeV/c, whereas a Kaon needs 3.5GeV/c5 momentum to reach the threshold
velocity. Therefore, in the momentum region between 1.2 and 3.5GeV/c, the ACC can
distinguish very well between Kaons and pions.

Time of Flight

To identify low momentum tracks, the Time of Flight detector was installed outside
of the ACC. The TOF uses plastic scintiliation counters to count traversing particles.
Because the TOF has a comparatively low dead time, it is used to trigger the CDC
or the calorimeter. It is also used to determine the flight time of particles reaching
it. This time together with the flight length and momentum, which can be calculated
out of the track, is a good criterion to identify particles. With a time resolution of
about 100ps, the TOF is only effective in the low momentum region (pt < 1.2GeV

c2
) and

therefore complementary to the ACC.

Electronic Calorimeters ECL and EFC

So far, all components of the detector are only sensitive to charged particles. Because
we need to measure also the neutral photons, the calorimeters which are sensitive to
photons are a crucial part of the detector. The calorimeter is based on the principle that
all particles6 passing through matter loose energy by interacting with it. Highly ener-
getic photons in the vicinity, of a nucleus can make e+e− pair production, while charged
particles, like electrons, emit photons as bremsstrahlung. The photons coming from
bremsstrahlung can themselves create e+e− pairs which then can emit bremsstrahlung.
This leads to cascades - the so-called electromagnetic showers. The size of the calorime-
ter has to be adapted, so that in principle particles loose all their energy within the
calorimeter. Since muons emit only a very small amount of bremsstrahlung due to their
high mass, they are not absorbed in the calorimeter and must therefore be identified
in the muon system.
Because photons can occur in every direction, two calorimeters are used at Belle to
measure them. The main Calorimeter (ECL) is built out of 8736 CsI(Tl) crystals and
covers a polar angular region of 12.4· to 155.1·. To distinguish two photons in close

4The barrel region is situated around the beam pipe at the interaction point.
5In this specific detector material.
6Except neutrinos, which interact so little that the calorimeter cannot measure them.
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vicinity a high spatial resolution is necessary. Therefore, a huge amount of 8736 crystal
cells is used. To cover a greater region, the Extreme Forward Calorimeter (EFC) is
built directly upon the beam pipe in forward and backward region in addition to the
ECL. Due to obvious (see figure 2.5) geometrical reasons, not the whole remaining area
can be covered with the EFC, but it gives an additional angular coverage in forward
and backward region. Because of its proximity to the beam pipe and hence higher
exposure of radiation, a Bismuth Germanite Calorimeter is used.

Superconducting Magnet

To make momentum determination in the CDC reliable, a magnetic field of high mag-
nitude is needed. At Belle, a superconducting solenoid of 4.4 meters length and 3.4
meters in diameter is used to create the needed magnetic field along the z-axis. A
superconductor is a conductor with zero resistance, if it is operating below a charac-
teristic temperature TC . It has to be cooled to operate properly, which is done with
liquid helium. It takes approximately 6 days to cool down the magnet to its operating
temperature. Furthermore it takes 30 minutes to charge the magnet so that it reaches
its working field strength of 1.5 Tesla. If fully charged, the magnet is cooled below
the critical temperature so that it becomes superconducting and the field is sustained
without further energy supply. The superconductor used in the Belle detector is made
out of NbTi/Cu composition.

KLM

To identify muons and K0
L, another detection system is needed. Muons, for instance,

interact very weakly with the detector and are not absorbed in the calorimeter. There-
fore, the calorimeter information for muons, if there is any available, cannot be used. It
is important to know if a particle was a muon or a K0

L, which can be decided with the
KLM. Because no other particles than muons and K0

L mesons (and maybe neutrons)
should be able to traverse through the calorimeter, they can be identified simply by
detecting them after they left the calorimeter. To fulfill this task, an alternating system
of iron absorbers and glass-resistive plate counters is used. The iron absorbers of 4.7cm
thickness are necessary to increase the interaction length7. They are also used as iron
yoke for the superconducting magnet. The glass-resistive plate counters can measure
the ionizing track of muons and the decay products of the K0

L.

2.1.3. Data and Monte Carlo at Belle

From 2000 to 2010, with a longer interruption during the SVD upgrade, data was taken
at the Belle experiment (figure 2.6). The integrated luminosity of data taken in the
interesting region for this analysis, the Y(4S)-resonance, is 711fb−1. This corresponds
to 771.6 million BB̄-pairs. The sample itself can be splitted into two parts: The first

7The interaction length is the mean path, for a particle traveling through matter, to loose 1
e th of its

energy in interaction with matter.
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Figure 2.6.: Integrated luminosity [16]

part recorded with the original silicon vertex detector (SVD1) and the one with the
new silicon vertex detector (SVD2). The track reconstruction is different for these two
data sets, which leads to different reconstruction efficiencies.
For a better understanding of background sources, simulated data, called Monte Carlo,
is useful. To create Monte Carlo, two steps are necessary. At first, a random generator,
which creates all particles event by event, from originating particles to stable end-
products, and their four-momenta, according to an input distribution, which is given
as a so called decay table. A decay table (an example is given in Appendix A.5) lists
the possible originating particles and their branching ratio as well as their possible
daughter-particles and the branching ratios of them, up to the final particles. At this
point, all simulated particles are only list entries with an exact four-momentum, which
is not like the measured ones. Therefore, in the second step a detector simulation
program is used to simulate detector responses, like tracks in CDC and hits in the
calorimeter, for the input particles.
Based on the input decay table, one can distinguish between generic Monte Carlo and
signal Monte Carlo. Generic Monte Carlo has all possible decays and known branching
ratios in the decay table, so it should provide a complete image of nature, if one
assumes that previous measurements that are used as input are correct. At the Belle
collaboration, generic Monte Carlo is produced centrally. The luminosity of the generic
Monte Carlo is scaled to data to make it comparable. The amount of generic Monte
Carlo that is equivalent to data is called a stream. Currently six complete streams of
generic Monte Carlo are available.
Signal Monte Carlo in contrast describes only certain decay chains, namely signal and
can be created with high statistics to study even rare decays. Not only measured but
also predicted decays, which are not included in generic MC, can be simulated.



3. Reconstruction and Selection
Optimization

3.1. Reconstruction

3.1.1. Decay Channels

The Belle experiment ran predominantly at the Y(4S) resonance, where two B-mesons
are produced as BB̄-pair. In this analysis, the decays B0 → D∗±D∓ and B̄0 → D∗±D∓

are reconstructed to study the branching ratio of them. Thereby, only hadronic decays
of the D-mesons are studied. In figure 3.1, all decay channels used in this analysis are
shown. The primary D-meson coming directly from the B-meson decay is reconstructed
in two final states. In this analysis, it will be referred to as D1. The D∗± can either
decay in a neutral or a charged D-meson and the corresponding pion. Five modes
of neutral and one of charged D-mesons coming from D∗ decays are reconstructed.
Other channels which were studied were dismissed for different reasons. Channels,
where a D-meson coming from a B-meson goes into a final state with a π0, like B0 →
D∗−D+(K−π+π+π0), are not used due to their high background level. Channels with
a π0 in them, could only be handled if the D was coming from a D∗, since then a
D∗D-mass-difference cut could be applied, which is powerful to discriminate between
signal and background.
The channel B0 → D∗−D+(→ K−K+π+) was promising on Signal Monte Carlo, since
it was quite clean. But on generic Monte Carlo, it was realized that the contribution
from non-resonant decays B0 → D∗−K−K+π+ is higher than the contribution of B0 →
D∗−D+(→ K−K+π+), which is why it was also dismissed.

3.1.2. General Principle of Reconstruction

B-mesons themselves cannot be seen in the detector, as they decay before they leave
the beam pipe. The particles which can be seen in the detector are the relatively long
living charged kaons, pions, protons, electrons, muons and photons. Although not all of
these particles are stable, they are called ”final state particles” (FSP). At Belle, short
living neutral kaons, called K0

S, are reconstructed from two charged pions. Neutral
pions are reconstructed from two photons. These two neutral mesons are also called
final state particles, although they are not in a narrower sense.1

Charged and neutral kaons and pions are combined to charged and neutral D-meson

1The π0 decays into to photons. The K0
S decays almost only into to pions.
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Figure 3.1.: The reconstructed decay channels of B0 and B̄0 into D∗+D− are shown
in the diagram. The charged conjugated decays D∗−D+ are also recon-
structed, but not shown here.
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Figure 3.2.: Schematic figure of the IP-t4ube

candidates. The energy of charged particles is calculated with a mass hypothesis and
the measured momentum using E2 = p2 + m2. Therefore, the energy resolution of a
particle can be improved with a more accurate track. To achieve this a Chi-square
vertex fit of the FSP to a common origin is performed for each D-meson candidate.
Only those D-meson candidates are taken, where no error in the fit occurs. The fit can
change the track parameters of the FSP, which results in slightly different momenta that
are usually more precise. The four-momentum of the D-mesons, which was originally
calculated out of the measured four-momenta of its assumed daughter particles before
the fit, is recalculated taken the momenta of the fitted particles into account. To form
D∗±-mesons, neutral (charged) D-mesons are combined with charged (neutral) pions.
These pions gain only low momentum in the lab frame since most of the momentum of
the D∗ is carried by the D-meson. These ”slow” pions, especially the neutral ones, are
hard to measure and therefore not used to determine the B-meson decay vertex. This
vertex is obtained by fitting both (non-star) D-mesons to the IP-tube. The IP-tube
is a cylinder from the interaction point (IP) along the boost direction (schematically
shown in figure 3.2). The use of the IP-tube in the vertex fit takes into account the
low momentum of the B-mesons in x and y direction and the boost in z-direction.
Due to the fact that the two D-mesons do not carry the whole B-momentum, the
obtained fit results cannot be used to recalculate the B-momentum. D∗-mesons decay
via strong interactions, thus they decay at the B-meson vertex where they are produced.
Therefore, the slow pions are fitted to the B-meson vertex, obtained by the fit to the
IP-tube. The D∗-momentum is recalculated using the information of the changed slow
pion information due to the fit before.

3.1.3. Reconstruction Criteria

Particle Identification

Data files (and also Monte Carlo files) contain different lists for different types of par-
ticles, which are filled during processing (or in case of MC by the detector simulation).
There is a list of all K0

S, a list of all photons, a list of π0 mesons and a list of all charged
particles. Charged pions and kaons can be found in the charged particle list, but also
other particles like protons, electrons and muons are in the charged particle list. It is
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easy to separate muons from charged pions and kaons, because only muons can pass
the calorimeter. To distinguish kaons and pions from electrons, a electron veto is ap-
plied. For the separation of kaons and pions the so-called ATC2 particle identification
is used. The ATC particle identification is recommended to be used in 10 bins from
zero to one:

LATCπ/K =
LATCπ

LATCπ + LATCK

It is the product of the three binned likelihood functions, which are calculated from
the information of the detector system:

LATC = LACC · LTOF · LCDC .

It can happen that not every likelihood function Li 3 is defined for every particle, since
not all particles are registered in every detector part. If this happens the combined
function LATC is set to certain values, depending on the other likelihood functions.
Therefore, the ATC pid is not a likelihood function in the sense that it returns a
probability, but its bins, in steps of 0.1 from zero to one, are ordered with increasing
probability. One exception is the value 0.5, which should not be used as cut value,
since particles with no proper ATC information are set to this value. It states that
LATCπ/K = 1−LATCK/π per bin. With increasing value of LATCπ/K , it becomes more likely that
a candidate is a pion.
In this analysis, loose standard ATC particle identification cuts for kaons LATCπ/K < 0.9

and pions LATCπ/K > 0.1 are used. This rejects a lot of background without sacrificing
too much signal.

Neutral Meson Identification

At Belle, neutral short-living kaons K0
S are reconstructed only via their decay into a

π+π−-pair, which occurs in about 69.2% of the decays according to PDG [8]. From
all opposite charged pion candidates coming from a common vertex K0

S-candidates are
formed and put in a K0

S-list. To identify K0
S mesons, the standard method used by

Belle is the so-called good-K0
S-selection. It is also used in this analysis. The good-K0

S-
selection is based on cuts applied on four K0

S variables [17]:

� The flight length fl of the K0
S in the x-y-plane

� The z-distance dz of the two daughter-pions at the interception point.

� The azimuthal angle dφ between the momentum and the decay vertex vector of
the K0

S

2The letters stand for different detector parts: A stands for Aerogel Cherenkov Counter, T for Time
of Flight and C for Central Drift Chamber

3with i = ACC or TOF or CDC
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� The minimal difference dr between interaction point and x-y plane of the two
daughter tracks.

The cuts are applied in three bins of the K0
S momentum, which are shown in table 3.1.

Neutral pions are reconstructed out of two photons. To suppress obvious π0 back-

Table 3.1.: good-K0
S-selction

Momentum K0
S GeV dr (cm) dφ (rad.) dz (cm) fl (cm) ε on MC ε on data

< 0.5 > 0.05 < 0.3 < 0.8 - 62.0± 2.7% 58.3± 3.8%
0.5–1.5 > 0.03 < 0.1 < 1.8 > 0.08 79.0± 1.0% 75.3± 1.2%
> 1.5 > 0.02 < 0.03 < 2.4 > 0.22 83.5± 1.2% 83.5± 1.4%

ground, some quality cuts were made during reconstruction . It is required that the
minimal energy of each photon is larger than 30 MeV. Furthermore, the momentum of
the π0 is required to be greater than 50 MeV and the invariant mass of the π0 has to
lie in a 50 MeV/c2 window around the nominal π0 mass.

Summary of Reconstruction Cuts

There are other cuts made during reconstruction to keep the sample at a hand-able size.
The impact parameter of a charged track is the minimal distance of the track with the
interaction point. It is required that the minimal perpendicular distance dr is less than
2 cm and the minimal distance in z-direction is less than 4 cm for all charged kaons and
pions. These cuts are made to ensure that the reconstructed charged tracks originate
from the interaction point. All cuts made during reconstruction are summarized in
table 3.2.

Table 3.2.: skim cuts

variable cut window
|dr| <2cm
|dz| <4cm

L(π±/K±) > 0.1
L(K±/π±) > 0.1

D-mass mPDG ± 70 MeV/c2

mD∗ −mD 130 – 160 MeV/c2

π0 mass 130 – 160 MeV/c2

Mbc 5.2-5.3 GeV/c2

∆E ±200 MeV
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3.1.4. Skimming

After termination of data taking in June 2010, Belle had recorded 711fb−1 of data
at the Y(4S) resonance. This corresponds to a data size of about 100TB. It is not
useful to run over the whole data sample every time one has changed something in
their reconstruction. Therefore, a subset of the whole dataset, the skim, is created.
The requirements of the skim are minimal data size without any efficiency loss. Many
computations that are done in the reconstruction program, like vertex fits for example,
are not necessary for a skim and are only slowing it down. Therefore, a slim program,
which does in principle only the combination of FSP, is satisfactory. Every event is
taken where at least one B-candidate, of the ones that are reconstructed, can be formed.
Only very loose mass-cuts several sigma away from the nominal value are performed.
The skim for this analysis reduces the data size to about 0.7% of the original size. The
cut windows used in the skim are listed in table 3.3.

Table 3.3.: skim cuts

variable cut window
π0 mass 130 – 160 MeV
D-mass mPDG ± 100 MeV

mD∗ −mD 130 – 160 MeV
Mbc 5.2-5.3 GeV
∆E ±200 MeV

3.2. Optimizaton of Selection

3.2.1. General Idea of Signal Extraction

The separation between signal and background is a typical classification problem. One
wants to decide to which class, signal or background, a certain event belongs. An event
is described by several parameters λi, the measured physical observables, which can be
expressed as vector of the n-dimensional parameter space.

~Λ =


λ1

λ2

...
λn


On real data one can only decide according to these parameters whether an event is
signal or background. Only on Monte Carlo the ”truth” is known for every event.
Therefore, it is important to learn more about the conditional probability P (S|~Λ) of

a signal event, with a given parameter set ~Λ on MC to apply this knowledge later on
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on data. A simple example with two arbitrary parameters x and y is shown in figure
3.3. The red dots symbolize signal events distributed in the x-y parameter space.
Background can be suppressed by cuts on the parameters x and y. Two quantities
which describe the performance of the selection are purity and efficiency. Efficiency
is defined as the number of selected signal events divided by the number of all signal
events in the sample:

ε =
Ssel
Sall

.

The marked cuts do not cut away any signal events, and therefore conserve the efficiency
at 100 percent. Purity is defined as the fraction of signal events in the selection:

P =
Ssel

Ssel +Bsel

.

With more narrow cuts on the parameters x and y, a higher purity could be achieved.
But it would also result in lower efficiency. A better result could be achieved, if the
correlation between the parameters x and y would be exploited. With a cut-based
approach this is not possible. Some multivariate analysis tools, like NeuroBayes® , an
analysis tool based on a neural network, can handle correlations and thereby improve
their abilities of classification. To decide which analysis method should be used, it is
essential to compare the gain in separation power with the difficulties the more sophis-
ticated technique introduces. A gain in efficiency by a few percent, with same level of
purity, could be nullified if the technique would increase systematic uncertainties, for
example. If the variables used for separation are not correlated, a cut based approach
may be completely sufficient. But the more complex the problems get, the more so-
phisticated methods and tools have to be used.
The next thing to do is to find a figure of merit, which can be used to optimize the
parameters in respect to the given problem.

3.2.2. Best Candidate Selection

During reconstruction, final state particles are combined to form D-mesons and onward
B-meson candidates. In an event, a certain set of final state particles is observed. This
set is used to combine the intermediate state D-mesons, whereby multiple combinations
are possible. Multiple candidates occur, for example, if particles are mixed up during
combination. This can be a problem with π0 mesons, because low energetic γ coming
from π0 are hard to distinguish from background photons. But also events where only
correctly reconstructed particles are combined can have multiple candidates. In figure
3.4 a schematic example is shown. Assuming that all final state particles are correctly
reconstructed, there are still two possible D-meson combinations possible. In the left
picture, kaons and pions are combined to form a D+ and a D−. With the additional
π0 and the D−, a D∗− is created. In the right picture, the same final state particles
are used to form a D+ and a D̄0, where the additional π− is used to form a D∗− with
the D̄0. Both combinations are possible, but only one is correct.
To not artificially increase the statistics with multiple combinations for a single event,
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Figure 3.3.: Schematic picture of cut based signal selection. The red dots symbolize
the signal which is distributed according to arbitrary parameters x and y.
The correlation between x and y can’t be exploited using only cuts.

Figure 3.4.: Schematic event selection
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one candidate has to be selected. Multiple candidates occur in 9.18% of the events on
generic Monte Carlo after all optimized4 cuts are applied. For each B-meson candidate,
a chi-square value is calculated from both D-meson masses, mD1 and mD2

5, and the
D∗D mass-difference ∆mD∗D. The absolute value of the D-meson masses minus the
nominal values obtained from PDG are divided by the width of the D-meson mass
resolution, which is obtained by fitting, as explained below. The same holds for the
mass-difference.

χ2 =

∣∣∣∣∣mD1 −mDnom

σfitD1

∣∣∣∣∣
2

+

∣∣∣∣∣mD2 −mDnom

σfitD2

∣∣∣∣∣
2

+

∣∣∣∣∣∆mD∗D −∆mnom
D∗D

σfit∆m

∣∣∣∣∣
2

The candidate with the smallest χ2 value is taken as best candidate of an event. In a
signal event with multiple candidates, this selection finds the right candidate in 61 %
of the cases on generic Monte Carlo.
The widths of the D-meson masses and the mass-difference are obtained by fitting
signal on Monte Carlo. For each D-meson decay mode, a separate unbinned maxi-
mum likelihood fit is performed. The sum of 2 Gaussian functions6 was used to fit
the invariant mass distributions of D-meson candidates. In the case of a D-meson
decaying to Kππ0, a bifurcated Gaussian plus a Gaussian was used instead, due to
the asymmetric shape which comes from the γ-resolution. The D∗D mass-difference
is fitted separately for D∗ → D+π0 and D∗ → D+π+ decays with the sum of three
Gaussian functions. Figure A.1 shows the fits for the D-masses of the four D-modes
K−π+π+, K0

Sπ
+, K−π+ and K−π+π0 and both mass-difference fits. The fits for the

other D-modes can be found in appendix A.2.

4The optimization of the cuts will be explained in the next section.
5Here mD1

is the mass of the D-meson from the B decay and mD2
is the mass of the D-meson from

the D∗ decay.
6For the description of a Gaussian function see appendix A.1.
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(a) D+ → K−π+π+
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(c) D0 → K−π+
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(d) D0 → K−π+π0
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(f) ∆m = D∗− −D−

Figure 3.5.: Fit of D-Meson masses and D∗D mass-difference on generic Monte Carlo
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3.2.3. Multidimensional Significance Optimization

In the decay B0 → D∗±D∓ , powerful variables to discriminate between signal and
background exist. Therefore, it makes sense to perform a cut based selection. The
question which discriminating variables can be used in the optimization is the first
that arises. Two powerful variables to distinguish between signal and background are
the beam constrained B-meson mass Mbc and the energy difference ∆E. The beam
constrained mass is the mass of the B calculated from energy-momentum relation with
the energy substituted by half of the beam energy:

=

√
(
Ebeam

2
)2 − p2

B0

The energy difference is calculated between half of the beam energy and the measured
energy of the B0:

∆E =
Ebeam

2
− EB0

For correctly reconstructed B-mesons, Mbc peaks at the invariant B-meson mass of
5.28 GeV/c2 and ∆E peaks at zero. The beam energy is used because it can be
measured much more precisely than the energy calculated from the measured energies
of the daughters of the B-meson. No selection cuts can be performed on them, because
they are used to extract the signal yield later on in the fit of the branching ratio
measurement. In figure 3.6, a scatter plot of the the two variables is shown. The signal
box in this analysis is defined as: |∆E| < 30MeV and Mbc > 5.27 GeV/c2

In the optimization, particle masses are used as separating variables. For a better
handling not the measured mass values, but the absolute of the difference between the
measured mass and the nominal mass, obtained from PDG [8], are taken. The variables
used for signal separation are:

� The mass of the D-meson coming from the B-meson decay

� The mass of the D-meson coming from the D∗-meson decay

� The difference between the D∗-mass and its D-meson daughter

� The mass of the neutral pion

� The minimal energy of the photons coming from π0 decays.

For a branching ratio measurement high efficiency and high purity are important. A
figure of merit with a reasonable ratio between efficiency and purity is the statistical
significance. The significance Σsigni is defined as the number of signal events divided by
the square root of all events in the signal box. The square root corresponds to the sta-
tistical error of the sample with the assumption of an underlying Poisson-distribution:

Σsigni =
Nsig√

Nsig +Nbkg
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Figure 3.6.: The scatter plot shows the distribution of signal events in ∆E and Mbc.
The blue square marks the signal area: |∆E| < 30MeV and Mbc > 5.27
GeV/c2

In principle, one can optimize each separating variable in respect to the significance
on its own. But finding the local maximum in every single variable does not auto-
matically yield the global maximum of significance. To find the global maximum of
the significance, one has to scan over each variable simultaneously. This adds an ex-
tra dimension for every variable, which is optimized, increasing the computing time
exponentially. I used a program, which was written by Markus Röhrken to perform
the multidimensional scan on the significance. Because it loads the whole data sample,
which is optimize,, into memory, it is quite effective. The user enters the variables for
which the cut range and the step size of the cuts is specified into the program. An
example could be a cut on the D-meson mass in a window from 5 to 20MeV/c2 around
the nominal value in 15 steps of 1MeV/c2. The program then calculates the significance
for every point in parameter space, and returns the cut values with which the highest
significance was achieved. In the optimization process, a big enough data sample is
crucial to avoid training on statistical fluctuations. To account for this, an enriched
sample was used for optimization. The enriched sample contains 22 times the amount
of signal and two times the amount of background compared to the expected yield on
data. The enrichment has to be taken into account during optimization by dividing the
number of signal events and background events respectively through the enrichment
factor (22 for signal and 2 for background). Thereby, it is important to make sure that
the enrichment is the same for every decay channel, because every channel is optimized
separately.
In the following, I will describe how the process of optimization was done. Since the
separation is most important in the signal region, only events within the Mbc ∆E signal-
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box defined above are used for optimization. Furthermore, the decay channels to be
optimized have to be specified. This allows to treat different decay channels sepa-
rately, which is often useful, since the resolution and signal to background ratio can
differ greatly between different channels. Since the width of the D-meson mass is dif-
ferent for different final states, the optimization process is divided into sub-processes
for every D-meson channel. It is physically plausible that the cuts on the masses of
D-mesons coming directly from the B decay, in the following called primary D-mesons,
should be the same, no matter how the D∗ decays.
To achieve this, all channels are optimized separately at first with all variables men-
tioned above. The cut values for all variables except the mass from primary D-mesons
are applied to the optimization sample to create a new sub-sample. The sub-sample
is used to optimize the mass of primary D-mesons only for all D∗-decays together. In
figure 3.7, the significance over the cut on the reconstructed D-mass minus the nomi-
nal D-mass is plotted. The plots are projections into the D-meson mass region, while
all other cuts are set to the values at the point of the highest global significance. In
both cases, D → Kππ and D → K0

Sπ, the D-meson mass cut which yields the highest
significance is a 9MeV/c2 cut window around the nominal value.
With the obtained cut values for primary D-mesons, a different sub-sample is cre-
ated from the original sample, which is used for further optimization of the remaining
variables. D-mesons coming from D∗ decays are called secondary D-mesons in this
thesis. The remaining variables, D∗D-mass-difference, mass of the second D-meson,
mass of the π0 and minimal photon-energy for π0 daughters, are optimized for differ-
ent secondary D-meson channels.7 Because of the very low statistics of the Cabbibo-
suppressed8 decay D0 → K−K+, this channel is optimized together with the kinematic
similar decay of D0 → K−π+. Other secondary D-meson channels are: D0 → K0

Sπ
+π−,

D0 → K−π+π0, D0 → K−π+π−π+ and D− → K+π−π−. Exemplarily the results of
the optimization of the channel D0 → K−π+π0 are shown in figure 3.8. In plot (a)
in the upper left, the significance is plotted over the cut on the D0-mass. The signif-
icance has a plateau for a cut between 20MeV/c2 and 28MeV/c2, which is due to the
fact that the D∗D-mass-difference cut already reduces much of the background. For
the D∗D-mass-difference, plot (b), the maximum of the significance is clearly visible
at 1.75MeV/c2. Also, in plot (c) of the π0-mass and plot (d) of the minimal photon
energy, the maximum of the significance is clearly visible. The results for all channels
are summarized in table 3.4. The figures for the optimization of remaining channels
can be found in appendix A.3. The optimization improved the purity in the signal box
from 2.4% after reconstruction to 60.3% after optimization.

7A good overview of the channels is shown in figure 3.1
8Transitions from quarks of the second to the first generation are suppressed by the sine of the

Cabbibo angle α. sin(α) ≈ 0.22
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Figure 3.7.: The plots show the significance plotted over the cut on the D-mass for the
channels: D → Kππ and D → K0

Sπ.
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Figure 3.8.: The plots of optimization are shown for channel D0 → K−π+π0. The plots
show the significance plotted over the cut of a certain variable, while all
other variables are cut a their point of highest significance.
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Channel |∆mD| < |∆ (mD∗ −mD) | < |∆mπ0| < Emin
γ >

D∗+

(K−π+/K−K+)π+ 22 MeV/c2 3.25 MeV/c2 - -

(K−π+π−π+)π+ 13 MeV/c2 1.75 MeV/c2 - -

(K−π+π0)π+ 22 MeV/c2 1.75 MeV/c2 11 MeV/c2 45 MeV

(K0
Sπ
−π+)π+ 11 MeV/c2 3.0 MeV/c2 - -

(K−π+π+)π0 10 MeV/c2 1.75 MeV/c2 13 MeV/c2 35 MeV

D−
(K+π−π−) 9 MeV/c2 - - -

(K0
Sπ
−) 9 MeV/c2 - - -

Table 3.4.: Results of optimization - The cut values on the two primary D-meson masses
apply for all D∗ combinations. Thereby, the expression |∆mX | stands for
the absolute value of the difference between the measured and the nominal
value of the mass of particle X



4. Fit Procedure and Test on Monte
Carlo

4.0.1. Branching Ratio

Experimentally, the branching ratio of a decay to a certain final state is determined
by measuring the fraction of events into this specific final state (Nx1) compared to all
events (NX).

BR(X → x1) =
Nx1

NX

At Belle, the number of produced BB̄-pairs is well measured. To measure the absolute
branching ratio of B0 or B̄0 going to D∗±D∓, one needs to count all decays into this
decay mode. Since not all sub-channels of D∗− or D+ decays are reconstructed the
branching fractions of these decays have to be taken into account as well.
Because not all produced events can finally be reconstructed, the reconstruction ef-
ficiency, which is defined as number of correctly reconstructed decays divided by the
number of produced ones, is also an important factor.
In summary, the branching ratio is calculated as follows:

BR(B0 → D∗±D∓) =
Nsig

1
2
· 2 ·NBB̄ · BR(D∗− → Dπ) · BR(D → X) · ε

The factor 1
2

in the denominator comes from the fact that only 50 percent of the BB̄-
pairs are B0B̄0 pairs, while the other 50 percent are B+B−-pairs. Because a BB̄-pair
consists of B0 and B̄0 and both decay in D∗±D∓, there is an additional factor 2 in the
denominator. The branching ratio of BR (B0 → D∗±D∓) is the sum of the branching
ratios BR (B0 → D∗+D−) and BR (B0 → D∗−D+)1

4.1. Determination of Efficiencies

To determine the branching ratio of the reconstructed decay, the reconstruction effi-
ciency is crucial. Efficiency is defined as number of reconstructed signal events, divided
by all signal events in the data sample.

ε =
Nrec

Nall

1In principle the branching ratios BR
(
B0 → D∗+D−) and BR

(
B0 → D∗−D+

)
could be calculated

seperately.
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Due to that, the number of signal events in the data sample has to be determined. Of
course this cannot be done on data, as I want to measure the branching ratio, which
would be needed as input to estimate the number of signal events in the sample. On
Monte Carlo, the number of all signal events can be counted exactly, in principle. It is
more practical to use signal Monte Carlo instead of generic Monte Carlo, where one is
only statistically limited by computing power. To determine the number of produced
signal events I wrote a program called Monte Carlo counter.

4.1.1. Monte Carlo Counter

The purpose of the Monte Carlo counter is to run over simulated data files and count
the decay channel dependent number of signal events. The Monte Carlo files contain
a table, the GenHep-table, which lists all particles that were created, and all their
children. For example, if one wants to find the following schematic decay, where A→
B1B2 and B1 → CB1DB1 and B2 → CB2DB2 , the program first searches in the GenHep-
table for all occuring A particles. If an A is found, the Monte Carlo counter checks if
the A has exactly two children and if they are B1 and B2. As soon as both daughters
are found, it is checked for their children in the same manner. This is repeated up to
the final state particles. To also take events with final state radiation into account, an
additional photon is also allowed in each decay.

4.1.2. Efficiencies

In this analysis a signal Monte Carlo sample (for decay table see A.5) with approxi-
mately 500,000 signal events was used. The same reconstruction code as in the anal-
ysis with all the cuts and best candidate selection is used to reconstruct the signal
MC sample. The number of signal events after reconstruction is determined using the
information of the MC matching function. During reconstruction the MC matching
function checks if a particle and all its children are reconstructed correctly. The use of
MC matching information is necessary, since signal has to be distinguished from the
crossfeed contribution2. The efficiencies are calculated for each decay channel sepa-
rately, to be independent of the D- and D∗-meson branching fractions. To determine
the number of produced signal events per decay, the MC counter has been used. This
yields to the efficiencies listed in table 4.1. As applying cuts can be seen as binomial
process, the variance of the efficiency is given as:

V (ε) =
ε(1− ε)
Ngen

2Crossfeed events are partly mis-reconstructed events with signal-like behaviour. They will be ex-
plained in section 4.2.1 in more detail.
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Channel Efficiency Error
(Kππ)(Kπ)π 18.30% 0.17%
(K0

Sπ)(Kπ)π 11.43% 0.36%
(Kππ)(Kπππ)π 9.08% 0.09%
(K0

Sπ)(Kπππ)π 5.87% 0.18%
(Kππ)(Kππ0)π 5.58% 0.05%
(K0

Sπ)(Kππ0)π 3.56% 0.11%
(Kππ)(K0

Sππ)π 6.16% 0.12%
(K0

Sπ)(K0
Sππ)π 3.73% 0.25%

(Kππ)(KK)π 17.28% 0.54%
(K0

Sπ)(KK)π 9.41% 1.02%
(Kππ)(Kππ)π0 5.37% 0.10%
(K0

Sπ)(Kππ)π0 3.20% 0.19%

Table 4.1.: Efficiencies per Channel

with ε = Nrec
Ngen

the standard deviation follows:

σ =

√
Nrec(Ngen −Nrec)

N3
gen

4.2. Unbinned Extended Maximum Likelihood Fit

To measure the branching ratio, one has to distinguish between signal and background
events. An event, no matter if signal (S) or background (B), is characterized by a

certain set of parameters ~Λ, obtained as observables. The probability of a signal event
S with a given parameter set ~Λ is described by the probability density function (pdf )

p(S, ~Λ) for signal. Analogically, the pdf for background p(B, ~Λ) is defined. In general,

a pdf is normalized to one for all parameters ~Λ.∫
dX · p(X, ~Λ) = 1 ∀~Λ

In this example the random variable X has the realizations signal X = S and back-
ground X = B. The likelihood function L is defined as the product of the associated
pdfs of X. ∆E and Mbc

3, which were introduced in chapter 3.2.3, are used as variables
in the fit, which distinguishes between signal and background. Therefore, the likelihood

3∆E = Ebeam

2 − EB0 Mbc =
√

(Ebeam

2 )2 − p2B0



52 Chapter 4. Fit Procedure and Test on Monte Carlo

function, which describes the data, is calculated from the pdfs, which describe signal
and background in ∆E and Mbc.

L = p(S,∆E) · p(S,Mbc) + p(B,∆E) · p(B,Mbc)

For the branching ratio measurement the total number of signal events is necessary.
Therefore, the likelihood function is extended by a term which takes the number of
events N into account. Thus, it is exploited that the number of events N follows a
Poisson distribution with mean η. The extended likelihood function Lext is given in
[18]:

Lext =
1

N !
ηNe−η · L

Thus, η can be calculated from the pdfs :

η =

∫
dXN · p(X, ~Λ)

The extended likelihood function is maximized using the RooFit package, which au-
tomatically takes care of the normalization. Internally, the negative log-likelihood
function is minimized, which yields the same results, but is numerically more stable.
The pdf of ∆E or Mbc is the sum from different pdfs each describing a part of the shape
of these variables, like the shape in the signal-region. To properly describe ∆E and
Mbc in the whole fit region background studies are necessary.
For further information about maximum likelihood fits in general, have a look at ref-
erence [19] or [20]. For specific material about RooFit see reference [18].
Two figures of ∆E and Mbc on generic Monte Carlo are shown in figure 4.1. They are
plotted in the signal-region4 . In Mbc, the signal peak as expected at the B-mass of
5.279GeV/c2 is well separated from the background. Also the signal peak in ∆E at zero
is clearly visible. If only continuum background would exist, the shape of ∆E should
be linearly distributed in the sidebands. But there are also bumps in the ∆E sideband
visible: Two peaks in the negative sideband, and one very broad peak in the positive
∆E sideband, which is hardly visible. To correctly fit the data, all background sources
have to be understood. Therefore, I will explain all important background sources in
the following.

4.2.1. Signal and Signal-like Crossfeed

On signal Monte Carlo, all background sources mentioned above are not present. The
only existing background should be of combinatorial nature: Thus, events where some
final state particles were mixed up and the best candidate selection chose the wrong one.
These events should be linearly distributed in ∆E and Mbc and therefore automatically

4Introduced in chapter 3.2.3 after all cuts and best candidate selection were applied. See figure 3.6
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Figure 4.1.: Mbc with |∆E| < 0.04GeV and ∆E with Mbc > 5.27Gev/c2

be included in the background part of the fit. Due to this, signal MC is appropriate to
determine the necessary parameters for the shape of the signal. But when investigated
on a sample of signal Monte Carlo, where all selection cuts were applied, a peaking
background contribution in ∆E and Mbc was found. This background source, which
I will call crossfeed, cannot be separated from signal in the fit on data. Crossfeed
events are partly wrongly reconstructed signal events: For example, both D-mesons
are correctly reconstructed, but the slow pion is wrong. Or one photon of the two
photons of a reconstructed π0 is wrong.
Only a combined fit of signal and crossfeed is possible. To account for this, the ratio of
signal to crossfeed has to be determined on signal MC and the crossfeed fraction has
to be subtracted later on. To describe the shape of the crossfeed events, seperate fits
of ∆E and Mbc on signal Monte Carlo have been performed. The main contribution
of crossfeed were found to be in events with π0 mesons. Because of these π0s mesons,
the crossfeed contribution has larger tails than the signal part. For the variable Mbc,
crossfeed events are fitted with a Crystal Ball function.5 The Crystal Ball parametrizes
the shape of the crossfeed excellently in Mbc, which is shown in figure 4.2 (a). The
signal in Mbc can described sufficiently with a Gaussian function. The two signal and
crossfeed pdfs are summed up to a total pdf, whereby the fraction of the pdfs is fixed
to the fraction of signal to crossfeed determined with MC-matching on signal MC.
The fit for the combined function is shown in figure 4.2(b) as red line. The crossfeed
contribution is indicated by the dashed blue line. The crossfeed events in ∆E also
have a broader shape than the signal events. They are described with two Gaussian
functions, with same mean but different widths, which is shown in 4.2 (c). The signal
events in ∆E can also be described with two Gaussian functions. A combined fit of
signal and crossfeed with fixed fraction is shown in 4.2 (d). The parameters of the
functions describing the crossfeed are fixed in the overall fit later on. The fraction of
signal to crossfeed is determined on signal Monte Carlo, and is found to be 95%:

Nsig

Nsig +Ncross

= 0.95

5The Crystal Ball function is written down in the appendix A.1



54 Chapter 4. Fit Procedure and Test on Monte Carlo

)2 (GeV/cbcM

5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3 5.31

E
v

e
n

ts
 (

1
/0

.0
0

2
 G

e
V

) 

0

50

100

150

200

250

300

(a) Crossfeed Mbc

)2 (GeV/cbcM

5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3 5.31

E
v

e
n

ts
 /

 (
 0

.0
0

1
 )

0

1000

2000

3000

4000

5000

6000

(b) Signal + Crossfeed Mbc

 E (GeV) ∆

0.1 0.05 0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

3
 )

0

20

40

60

80

100

(c) Crossfeed ∆E

 E (GeV) ∆

0.1 0.05 0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
0

3
 )

0

1000

2000

3000

4000

5000

(d) Signal + Crossfeed ∆E

Figure 4.2.: Plot (a) shows the Mbc crossfeed distribution fitted with a Crystal Ball
function. Plot (b) shows the signal (fitted with a Gaussian function) and
the crossfeed (in blue) in Mbc. Plot (c) shows the ∆E crossfeed distribution
fitted 2 Gaussian functions. Plot (d) shows the ∆E signal plus the crossfeed
(in blue) in ∆E. Thereby the signal is also fitted with 2 Gaussian functions.

4.2.2. Misidentification

As explained in the section about particle identification (see 3.1.3), kaons and pions
are both reconstructed from the charged particle list. As the separation of the parti-
cle identification is not perfect, a kaon can be identified as a pion or vice versa. The
difference of the mass of kaons, with approximately 494 MeV/c2 mass, and pions, with
about 140 MeV/c2 mass, leads to a difference in energy of these particles, because the
energy is calculated from the momentum and the mass of the particle. With the wrong
mass hypothesis, a wrong energy is assigned to the particle. This also effects the en-
ergy of the B-meson, which is calculated from its daughters’ four-momenta. Therefore,
these misidentified events are visible in ∆E. In contrast to ∆E, the mass hypothesis of
the daughter particles of the B plays no role in Mbc, since Mbc is calculated only from
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the momenta of the daughter particles and the beam energy. Therefore, misidentified
events can appear in the Mbc signal peak. If massive particles are misidentified as
lighter ones the energy difference is negative, if lighter ones are misidentified as heavier
ones the energy difference is positive. This explains the peaks in the lower and upper
∆E sideband.
For a good fit of ∆E, it is satisfactory to cut away the negative tail and fit only the
∆E region from minus 100 to plus 200 Mev/c2. This avoids the bump in negative
∆E around minus 175 MeV/c2, which is broad and hard to describe. The peak in
negative ∆E at 75 Mev/c2 has to be described due to its proximity to the signal peak
in order to get an accurate fit result. This peak comes from DS decays, where a B0

decays to D∗±D∓S and the D∓S decays to KKπ. One kaon of the DS decay is misiden-
tified as pion and therefore reconstructed as signal decay. According to PDG [8], the
branching ratio of B0 → D∗±D∓S is one order of magnitude higher than the signal decay
B0 → D∗±D∓. This is why these misidentified decays make such a large contribution
in ∆E sideband. Because the DS originate from real B0 mesons, the misidentified
events appear as signal in Mbc.
With the help of the Monte Carlo matching function, these misidentified DS events
have been isolated on generic Monte Carlo. They are fitted with a single Gaussian
function in ∆E, as shown in figure 4.3. For this fit, a sample three times the size of the
whole data set was used. The pdf for misidentified kaons from DS decays depends on
three parameters. For the complete fit, later on the mean and width are fixed to the
obtained values, which leaves only the number of misidentified kaons NK/π as a free
parameter. Because the misidentified events look like signal events in Mbc, a Gaussian
function with the mean and width of the signal function is taken as pdf.
While isolating misidentified events with MC-matching, some peaking events in posi-

tive ∆E were found, which are hardly visible by eye. These events come from B-decays
into D∗± and three pions, where one pion is falsely reconstructed as kaon and there-
fore interpreted as signal decay. As they also peak in Mbc, they cannot be neglected.
The branching ratio for B0 → D∗±π+π−π∓ is about ten times higher than the one of
B0 → D∗±D∓ according to previous measurements [8]. A Gaussian function was also
chosen as pdf for the misidentified events in positive ∆E. The fit, which was performed
on the same generic MC sample as above, is shown in 4.4. Width and mean are again
fixed in the total fit. For Mbc, also a Gaussian function with the same mean and width
as the signal function is used.

4.2.3. Continuum Background Description

Continuum background events come from various sources, like e+e− → qq̄ events,6

for example. The characteristics of continuum events are that they are continuously
distributed over the discriminating variables.
The continuum background in ∆E can be described by a linear function, which has
a negative slope as it is more likely that some energy is missing than that there is

6With: q = u, d, s, or c. Often only these events are referred to as continuum events in contrast to
e+e− → bb̄ events.
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Figure 4.3.: Events where a K from a DS decay is misidentified as a π in ∆E sideband.
They are fitted with a Gaussian function
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fitted with a Gaussian function



4.2. Unbinned Extended Maximum Likelihood Fit 57

)2 (GeV/cbcM

5.24 5.25 5.26 5.27 5.28 5.29

E
v

e
n

ts
 /

 (
 0

.0
0

0
5

5
 )

0

20

40

60

80

100

120

140

160

180

200

(a) Continuum Mbc
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Figure 4.5.: Plot (a) shows the continuum background of Mbc on generic MC fitted with
an ARGUS function. Plot (b) shows the continuum of ∆E on generic MC
modeled with a linear function.

additional energy in an event. For Mbc, the continuum background is well described
by the phenomenological ARGUS distribution7, which was named after the ARGUS
Collaboration. It describes the continuum background of a particle’s invariant mass.
In figure 4.5, two plots for the continuum of ∆E and Mbc are shown.

4.2.4. Background from Non-Resonant B0 → D∗±K0
Sπ
∓ Decays

The non-resonant decay of B0 → D∗±K0
Sπ
∓ yields the same final state as the resonant

decay B0 → D∗±D∓(K0
Sπ
∓) which is reconstructed in this analysis. The vertex fit to

the D-meson should also work for non-resonant decays, as K0
S and π± originate from

the same vertex, the B-meson decay vertex. This makes it hard to reject these non-
resonant decays. The non-resonant decays have a branching ratio of (3.0± 0.8) · 10−4

according to [8]. This means that the branching ratio of non-resonant decays is about
30 times larger than that of resonant decays. To separate non-resonant from resonant
decays, one has to look at the D-meson mass. Resonant decays only appear within
a certain range of the K0

Sπ
±-meson mass, because they decay via a D-meson. To

determine the number of non-resonant decays that pollute the signal region, one has
to look at the sideband region of the D-meson mass. Far enough from the D-mass
peak away there should be no contribution from resonant decays. The sideband region
covers the region from 24 MeV/c2 to 60 MeV/c2 away from the nominal D-mass, which
is shown in orange in figure 4.6. It is four times larger than the signal region (shown
in blue), which covers a 9 MeV/c2 window around the nominal value of the D-mass.
The number of non-resonant decays is distributed flatly over the D-mass sideband.
To obtain this number, the same fit model that describes the signal region is used to
perform a fit on the sideband region.

7The analytical form of the ARGUS function is given in appendix A.1
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Figure 4.6.: The D-mass sideband is defined as 24MeV/c2< |mD±−mnom
D± | < 60MeV/c2.

The signal region is defined as |mD± −mnom
D± | < 9MeV/c2

4.2.5. Summary of Fit Parameters

As illustrated in the preceding chapters, several pdfs are necessary to properly describe
the shape of ∆E and Mbc. The fit itself is two-dimensional, which means that each
contribution to the likelihood function is a product of pdfs from Mbc and ∆E. The
functions used in the fit are listed below. The parameters of the functions below are
listed in the same order as in the description of the functions, which can be found in
appendix A.1.

� Functions describing ∆E

– Narrow signal Gaussian: GS
n

(
∆E;µ∆E , σ

S
n

)
– Broad signal Gaussian: GS

b

(
∆E;µ∆E , σ

S
b := sSn/b · σ

S
n

)
– Narrow crossfeed Gaussian: GC

n

(
∆E;µ∆E , σ

C
n

)
– Broad crossfeed Gaussian: GC

b

(
∆E;µ∆E , σ

C
b := sCn/b · σ

C
n

)
– Gaussian for K misidentified as π: GK/π

(
∆E;µK/π, σK/π

)
– Gaussian for π misidentified as K: Gπ/K

(
∆E;µπ/K , σπ/K

)
– Linear function for continuum: f (∆E; a) = a ·∆E

� Functions describing Mbc
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– Signal Gaussian: G (Mbc;µMbc
, σMbc

)

– Crossfeed Crystal Ball function: C
(
Mbc;µMbc

, σCBMbc
, α
)

– Gaussian for π misidentified as K: G (Mbc;µMbc
, σMbc

)

– Gaussian for K misidentified as π: G (Mbc;µMbc
, σMbc

)

– ARGUS distribution for continuum: A (Mbc; c,m0)

� Functions describing the number of events

– Poisson distribution for signal and crossfeed events: P (NS/C)

– Poisson distribution for K misidentified as π: P (NK/π)

– Poisson distribution for π misidentified as K: P (Nπ/K)

– Poisson distribution for continuum events: P (NB)

The total liklihood function is calculated using the functions defined above as:

Ltot = P (NS/C) ·
[( (

GS
n(∆E) + λSn/b ·GS

n(∆E)
)
·G(Mbc)

)
+ λS/C ·

((
GC
n (∆E)

+λCn/b ·GC
n (∆E)

)
· C(Mbc)

) ]
+ P (NK/π) ·

(
GK/π

(∆E) ·G(Mbc)
)

+ P (Nπ/K) ·
(
G(∆E) ·Gπ/K

(Mbc)
)

+ P (NB) (f (∆E) · A(Mbc))

The extended liklihood function Ltot contains 13 fixed and 10 free parameters, which
are shown in table 4.2.

4.2.6. Fit Results on Generic Monte Carlo

The extended likelihood function defined above was fitted on a sample of generic Monte
Carlo. In figure 4.7 and 4.8, one can see the projections in ∆E and Mbc of the total
extended maximum likelihood fit performed on one stream of Monte Carlo. The solid
red line represents the total pdf. The dashed blue line stands for the background coming
from kaons misidentified as pions, whereby the main contribution is B0 → D∗±D∓S
decays. The fit yields to 301 ± 30 events of this type. This is in good agreement
with the 278 events found by the matching function. One can see the contribution
of these events in the Mbc signal region. Therefore, it is important to describe these
events in ∆E to obtain the right number of signal events in Mbc. As crosscheck that
the misidentified events are really peaking in Mbc, one can look at the projection in
the ∆E sideband below -40 MeV outside the signal region. Figure 4.11 shows clearly
a peak in Mbc coming from the misidentified events. Another peaking background in
Mbc comes from events where a pion was misidentified as a kaon. The fit to these
events is marked by the dashed red line. The number of events obtained by this fit
is 215 ± 39. This is in perfect agreement with the 216 events expected from Monte
Carlo matching. In figure 4.12, a Mbc projection of the ∆E sideband above 40 MeV
shows the peaking contribution of these misidentified events. The signal contribution
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Description Parameter Value in fit

mean of ∆E signal µ∆E free†

width of narrow ∆E signal Gaussian σSn free†

width scale factor broad signal Gaussian sSn/b 2.97

fraction of signal Gaussians λSn/b 0.88

width of narrow crossfeed Gaussian σCn 0.034 GeV

width scale factor broad crossfeed Gaussian sCn/b 2.18

fraction of crossfeed Gaussians λCn/b 0.91

fraction of signal to crossfeed λS/C 0.95

mean of signal Mbc µMbc
free†

width of signal Gaussian in Mbc σMbc
free†

asymmetry parameter of crossfeed crystal ball α 1.51

width of crossfeed crystal ball σCBMbc
0.0036 GeV

number of signal + crossfeed events NS/C free

mean negative ∆E sideband peak µK/π −0.075 GeV

width negative ∆E sideband peak σK/π 0.018 GeV

number of events in negative ∆E sideband peak Nπ/K free

mean positve ∆E sideband peak µπ/K 0.107 GeV

width positive ∆E sideband peak σπ/K 0.039 GeV

number of events in positive ∆E sideband peak NK/π free

number of continuum events NB free

shape parameter of ARGUS function c free

cut off parameter of ARGUS function m0 5.289 GeV/c2

gradient of linear function in ∆E a free

Table 4.2.: Fit parameters. The values of the free parameters that are marked with a
†, are compatible with the values obtained on signal MC.
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is plotted as a dashed green line the crossfeed as a dashed orange line. The number
of signal and crossfeed events combined is found to be 1778 ± 53 by the fit. The
signal is described very well by the fit. Including the fraction of signal to crossfeed
of 95%, which was obtained on signal Monte Carlo, the number of signal events is
1689 ±53.8. As mentioned above, the data sample still includes events from non-
resonant decays B0 → D∗±K0

Sπ
∓, which have to be subtracted from the number of

signal events. Therefore, the same extended maximum likelihood fit is performed
on a D-mass sideband sample with 24 MeV/c2< |mD − mPDG

D | < 60 MeV/c2. The
projections of ∆E and Mbc in the signal region are shown in figure 4.13 and 4.14. The
fit can also describe the D-mass sideband region quite well. The number of signal
events in the sideband is 213± 19. Since the sideband region is four times larger than
the signal region, about 53 events are expected in the signal region from this fit. This
is in good agreement with MC matching, which expects 58 events. If one subtracts
the 53 events obtained from the sideband fit from the 1689 events obtained in the fit
before, one gets 1636 ±53 signal events, which is in good agreement with the 1613 of
the MC matching. The results are summarized as ”stream 04” in table 4.3, where also
results of another Monte Carlo sample of same size are shown. The results of the fit
on the other MC sample are also in good agreement with MC matching expectations.
The branching ratio of B0 → D∗±D∓ is the sum of BR (B0 → D∗−D+) and
BR (B0 → D∗−D+). The current world average of BR (B0 → D∗±D∓) is (6.1± 1.5) ·
10−4 according to PDG [8]. To calculate the branching ratio on Monte Carlo one has
to know the D and D∗-meson branching fractions and the number of BB̄-pairs on
Monte Carlo. The integrated luminosity on MC is about 2.6% lower than on data.
The D and D∗-meson branching fractions were estimated with a tool comparable to
the Monte Carlo counter explained in section 4.1.1. They are listed in appendix A.1.
One has to take all this into account to calculate the branching fractions for the two
streams of generic Monte Carlo that were fitted above. The MC sample used in the fits
above yields a branching ratio of (11.8± 0.4) ·10−4; the other sample, called stream 01,
yields to a branching fraction of (11.9± 0.4) ·10−4. This is in good agreement with the
expected branching ratio of 12.2 · 10−4, which was used for Monte Carlo production9.

stream Nsig/cross NK/π Nπ/K NK0
Sπ

Nsig

01
1790± 53 297± 30 300± 39 204±20

4
= 51 1650 FIT

- 270 240 54 1649 MC-MATCHING

04
1778± 53 301± 30 215± 39 213±19

4
= 53 1636 FIT

- 278 216 58 1613 MC-MATCHING

Table 4.3.: Fit results on generic MC

8To be conservative, the error is not scaled down with the signal to crossfeed fraction.
9In the generic Monte Carlo decay table the branching ratio of B0 → D∗±D∓ is exactly twice as

large as the world average given by PDG.
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Figure 4.7.: Projection of ∆E on one stream of generic Monte Carlo

Figure 4.8.: Projection of Mbc on one stream of generic Monte Carlo
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Figure 4.9.: Projection of ∆E in Mbc signalbox on one stream of generic Monte Carlo

Figure 4.10.: Projection of Mbc in ∆E signalbox on one stream of generic Monte Carlo
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Figure 4.11.: Projection of Mbc in ∆E sideband below -40MeV on one stream of generic
Monte Carlo

Figure 4.12.: Projection of Mbc in ∆E sideband below -40MeV on one stream of generic
Monte Carlo
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Figure 4.13.: Projection of ∆E in D-mass sideband with Mbc > 5.27GeV/c2 on one
stream of generic Monte Carlo

Figure 4.14.: Projection of Mbc in D-mass sideband with |∆E| < 30MeV on one stream
of generic Monte Carlo



5. Branching Ratio Measurement

5.1. Corrections between Data and MC

Efficiency Corrections

The efficiencies were measured on signal Monte Carlo for every channel, taking all
selection criteria into account. To separate kaons from pions, a cut on LATCK/π , the ATC
particle identification described in detail in section 3.1.3, was performed. It is a known
problem that the efficiency for a certain cut on this variable is not the same in data and
MC. Therefore, it is necessary to determine the correction factors for the efficiencies
on data. This is done by using a standard Belle tool, which is described in detail in
reference [21]. The tool compares efficiencies for kaons and pions with certain cuts on
LATCK/π for data and Monte Carlo. The efficiencies of kaons and pions were calculated in

different momentum bins for the reference channel D∗− → D0π− → (K+π−) on data.
The efficiencies obtained there are compared with the values obtained on Monte Carlo
to calculate the correction factor. Due to the difference in reconstruction efficiency for
tracking with the original silicon vertex detector (SVD1) and the new silicon vertex
detector (SVD2), the correction factors are calculated for these two different data
samples to be weighted afterwards according to the amount of data. The total efficiency
correction factor is calculated for every channel separately according to the number of
kaons and pions it contains.

εcor =

(
N

(svd1)

BB̄

Nall
BB̄

· ε(svd1)
cor +

N
(svd2)

BB̄

Nall
BB̄

· ε(svd2)
cor

)NK

+

(
N

(svd1)

BB̄

Nall
BB̄

· ε(svd1)
cor +

N
(svd2)

BB̄

Nall
BB̄

· ε(svd2)
cor

)Nπ

SVD1 SVD2
Pion 0.9868 ± 0.0059 0.9864 ± 0.0110
Kaon 1.0008 ± 0.0092 1.0068 ± 0.0097

NBB̄ 152 620

Table 5.1.: Efficiency Correction Factors

Correction of Mean Values for ∆E Sideband Peaks

The mean of ∆E was found to be at around -0.5 MeV on generic Monte Carlo. The
negative value of the ∆E mean is due to the fact that the detector cannot measure
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the whole energy of a certain event. This shift in ∆E can be different between data
and Monte Carlo. That is no problem for the mean of the signal in ∆E, as it is a free
parameter in the fit. On data, the mean was estimated to be -1.6 MeV. The mean of
the two sideband peaks which are fixed are shifted by 1.1 MeV to accommodate for
this.

5.2. Results on Data

The whole Belle data set of 772 million BB̄-pairs recorded at the Y(4S)-resonance has
been reconstructed. All selection cuts and the best candidate selection as described in
chapter 3 have been applied. The resulting data sample is fitted with the unbinned
extended maximum likelihood fit, described in chapter 4. In doing that the mean values
of the ∆E sideband peaks are corrected according to the shift of ∆E between data and
Monte Carlo. Figures 5.1 to 5.6 show the results of the fit.
The projection of ∆E for Mbc > 5.27 can be seen in figure 5.3. The fit function,
drawn as a solid red line, describes the data well. Both sideband peaks, the dashed
blue and the dashed red line coming from misidentification, are clearly visible. The
projection of Mbc in the ∆E signal region, plotted in figure 5.4, makes the impact of
these misidentification events clearly visible. In figure 5.5, one can see the projection of
Mbc for ∆E < −40 MeV. The clearly visible peak comes from D+

S → K+K−π+ decays,
where a kaon is misidentified as a pion. The peak in the Mbc projection for ∆E > 40
MeV, where a pion is misidentified as kaon, is shown in figure 5.6. It is a rather small
bump but with 154 ± 32 events still significant.
The fit yields 869 ± 39 signal and crossfeed events. This corresponds to 825 ± 39
signal events with a signal fraction of 95%, as it was determined on Monte Carlo.
To be conservative, the 39 events are not scaled down with the signal fraction. The
number of direct decays B0 → D∗±K0

Sπ
∓ has to be substracted from the signal events.

As on Monte Carlo before, the number of direct decays is estimated by fitting the D-
meson mass sideband. Again, a sideband window of 24 MeV/c2 < |mD±| < 60 MeV/c2

is used. The results of the D-meson mass sideband fit are shown as projections of
∆E and Mbc in the signal region in figure 5.7 and 5.8. The sideband fit yields to
only 30 ± 11 events. This correspond to a 2.6σ evidence for these sideband events.
As the D-meson mass window in the sideband is four times larger than in the signal
region, the result of the sideband fit has to be divided by four. This yields to 818 ±
39 signal events in the end. With the corrected efficiencies, the branching ratios of the
D-meson decays1 obtained from PDG and the number of BB̄-pairs the branching ratio
is calculated.

BR
(
B0 → D∗±D∓

)
=

Nsig

NBB̄ · εcor · BR(D) · BR(D∗)
= (5.90± 0.28) · 10−4

The given error is of statistical nature.

1The table with the used branching ratios can be found in appendix A.2.
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Figure 5.1.: Projection of ∆E in the whole fit range on data

Figure 5.2.: Projection of Mbc in the whole fit range on data
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Figure 5.3.: Projection of ∆E with Mbc > 5.27 GeV/c2 on data

Figure 5.4.: Projection of Mbc with |∆E| < 30 MeV on data
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Figure 5.5.: Projection of Mbc in ∆E sideband below -40 MeV on data

Figure 5.6.: Projection of Mbc in ∆E sideband above 40 MeV on data
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Figure 5.7.: Projection of ∆E in D-mass sideband with Mbc > 5.27 GeV/c2 on data

Figure 5.8.: Projection of Mbc in D-mass sideband with |∆E| < 30 MeV on data
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5.3. Systematic Uncertainties

Different sources of systematic uncertainties have to be taken into account. The num-
ber of signal events, the number of BB̄ pairs, the selection efficiency and the branching
ratios of D and D∗ meson decays are used to calculate the branching ratio. All these
quantities are linearly correlated with the branching ratio. Therefore, they propagate
directly to the branching ratio.
The error on the 772 million BB̄ pairs was determined to be 1.37% by the Belle Col-
laboration [22].
Another source of uncertainty is the fit model. To determine the systematic error of
the fit model, the fit was repeated on data, varying each fixed parameter2 one standard
deviation up and down. As standard deviation of the parameters, the errors of the fits
on Monte Carlo, where the parameters were determined in the first place, are taken.
Because the mean values of the lower and upper ∆E peaks are shifted on data, three
times the shifting value is taken in addition to the error as variation. For each fit,
the deviation of the signal yield to the signal yield of the original fit is calculated. In
each fit the deviation is less than 0.5%. The parameter with the highest impact on the
number of signal events is the fraction λS/C of signal to crossfeed events. Therefore,
this parameter was also examined separately. A fit with free λS/C led to a deviation
of 4.3% in the number of signal events. The errors on the other fit parameters are
negligible compared to this effect, which one can see if adding up the square of each
error and taking the square root of the sum.
Another systematic uncertainty arises from the difference in reconstruction efficiency
between data and Monte Carlo. In this analysis, four different sources led to uncer-
tainties in reconstruction efficiency between data and Monte Carlo: Charged track
reconstruction efficiency, π0 reconstruction efficiency, K0

S reconstruction efficiency and
ATC particle identification3 efficiency.
The systematic error in charged track reconstruction was estimated by P. Koppenburg
et al in 2003 based on a sample of partially reconstructed D∗ mesons (see reference
[23]). An update of these studies, which has not been published yet, was done by B.
Bhuyan. It assigns a 0.4% error to each reconstructed charged track. For each chan-
nel, the systematic uncertainty on charge track reconstruction is calculated by linearly
adding the error of each charged track, since these uncertainties are 100% correlated.
Each error is weighted by branching ratio times efficiency of its specific channel. Then
the weighted errors of all channels are summed up. The combined error for charged
track reconstruction efficiency is 2.54%.
The systematic error of the π0 reconstruction was estimated using η → π+π−π0 decays
by H.C. Huang et al (see reference [24]). An update of these studies, which has not
been published yet, was made by Y.Liu and K.Trabelsi. It yields to a systematic error
of 2.5% per reconstructed π0. For each channel, the number of π0 is again added lin-
early and weighted with the branching ratio times efficiency of this channel. The sum
of all channels yields the total error to be 0.5%.

2All parameters are listed in table 4.2 in the chapter before.
3This is explained in detail in section 3.1.3
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The error of the reconstruction efficiency per K0
S was found to be 3.21% by E. White

[25]. Unfortunately, his result has also not been published yet. The combined error for
K0
S, calculated in the same way as for π0, is 0.94%.

The difference in efficiencies for the ATC particle information between data and Monte
Carlo was calculated in section 5.1 already. But the correction factors have uncertain-
ties themselves. They are shown in table 5.1. Per channel the systematic uncertainty is
calculated and weighted with the branching ratio times efficiency of the given channel.
The systematic error due to the difference of the efficiency of ATC particle information
between data and Monte Carlo sums up to 6.28%.
The branching ratios of D and D∗ mesons are taken from PDG. They can be found in
appendix A.2. The errors given there are taken as systematic error. The systematic
error on the sum of the branching ratios per channel is calculated from the errors of
each branching ratio via error propagation. It is 5.27% in total.
The total systematic error on the branching ratio is calculated as square root of the
sum of the squared individual errors.

σsys =

√∑
i

σ2
i = 10.7%

error

Number of BB̄-pairs 1.4%

Track reconstruction efficiency (K/π) 2.5%

K0
S reconstruction efficiency 0.9%

π0 reconstruction efficiency 0.5%

LATC reconstruction efficiency 6.3%

BR (D) BR (D∗) 5.3%

Fit model 4.3%

Result 10.7%

Table 5.2.: Systematic Uncertainties
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5.4. Conclusion

The goal of this thesis was the measurement of the exclusive branching fraction of the
decay B0 → D∗±D∓. Therefore, the decays of B0 and B̄0 into D∗±D∓ were studied
intensively. A reconstruction of 12 decay channels, six D∗± and two D∓ modes, was
established. This covers 2.46% of all B0 → D∗±D∓ decays. The selection was optimized
for all cut variables simultaneously. Thereby the purity in the signal box increased to
60.3%. It was shown that the signal can be clearly extracted and the background is
understood.
For the measurement of the branching ratio of B0 → D∗±D∓ decays extensive studies
on Monte Carlo were done. This analysis is the first that established a profound
∆E sideband description in B0 → D∗±D∓. It was shown that the fit model performs
well in all projections, and that all results are in good agreement with Monte Carlo
input values.
Furthermore, it was demonstrated on data the fit procedure works fine and that it can
describe the data in all projections. The branching ratio measured on the full Belle
data set of 772 million BB̄-pairs is:

BR
(
B0 → D∗±D∓

)
= (5.90± 0.28± 0.63) · 10−4

The second term is the statistical and the third term the systematic error. The result
agrees with the world average of this branching ratio given by PDG [8]: (6.1± 1.5)·10−4.
The world average was calculated from the two previous measurements by Belle and
BaBar. The previous Belle analysis [3] of this branching ratio used a data sample of
32 million BB̄-pairs and measured a branching ratio of

(
11.7± 2.6+2.2

−2.5

)
· 10−4.

The previous BABAR measurement [1] used a data sample of 232 million BB̄-pairs
and measured a branching ratio of (5.7± 0.7± 0.7) · 10−4.
The measurement performed in this analysis is the world’s single most precise mea-
surement of the branching ratio of B0 → D∗±D∓ and it is more precise than the
current world average. The measurement itself is systematically limited. More precise
measurements of the branching ratios of D and D∗ mesons may decrease this error in
the future. But a better understanding of the difference in ATC particle identification
efficiency between data and Monte Carlo is most important for a more precise mea-
surement of the branching ratio. With higher statistics, it may be possible to only use
the very clean decay modes such as B0 → (K+π−π−) (K−π+)π+, which would also
result in lower systematics.
In the future, this selection could be used for a time dependent CP-analysis. The pa-
rameters of time dependent CP-violation in B0 → D∗±D∓ decays have been measured
by Belle [5] in 2004 on a data set of 152 million BB̄-pairs. The BABAR collaboration
has published a measurement of the CP-violation parameters in 2008 [4] on their full
data set of 467 Million BB̄-pairs. Both analyses measure a non-zero mixing induced
CP-violation. The parameter corresponding to direct CP-violation is compatible with
zero for both analysis. The measurements of Belle and BABAR are in good agreement
with each other. An update on the full Belle dataset of 772 million BB̄-pairs can be
performed on the basis of the selection established in this thesis.
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A. Appendix

A.1. PDF
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A.2. D-meson mass fits
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(a) D+ → K−π+π+
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(b) D0 → K−π+π+π−

)2Dmass (GeV/c

1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9 1.91

E
v
e
n

ts
 /
 (

 0
.0

0
1
 )

0

200

400

600

800

1000

1200

π π 0
SK π π 0
SK

(c) D0 → K0
Sπ

+π−

)2Dmass (GeV/c

1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9 1.91

E
v
e
n

ts
 /
 (

 0
.0

0
1
 )

0

100

200

300

400

500

K KK K

(d) D0 → K−K+

Figure A.1.: Fit of D-Meson masses and D∗D mass-difference on generic Monte Carlo
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A.3. Optimization of channels
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Figure A.2.: Channels: D0 → K−π+ and D0 → K−K+. The plots show the signifi-
cance plotted over the cut of a certain variable, while all other variables
are cut at their point of highest significance.
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Figure A.3.: Channel: D0 → K−π+π−π+. The plots show the significance plotted over
the cut of a certain variable, while all other variables are cut at their point
of highest significance.



80 Appendix A. Appendix

0
D

m
0.006 0.008 0.01 0.012 0.014 0.016 0.018

S
 +

 B

S
s
ig

n
if

ic
a
n

c
e
 =

 

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

(a) Mass of D+

D
*

D
 m∆

0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

S
 +

 B

S
s
ig

n
if

ic
a
n

c
e
 =

 

7.8

7.85

7.9

7.95

8

8.05

8.1

8.15

8.2

8.25

8.3

(b) Mass difference ∆mD∗D

Figure A.4.: Channel: D0 → K0
Sπ
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A.4. Branching Fractions

Channel Branching Ratio Error
D+ → K−π+π+ 9.50% 0.03%
D+ → K0

Sπ
+ 1.48% 0.01%

D0 → K−π+ 3.8% 0.02%
D0 → K−π+π+π− 7.47% 0.03%
D0 → K−π+π0 13.39% 0.04%
D0 → K0

Sπ
+π− 3.13% 0.02%

D0 → K−K+ 0.39% 0.01%
D∗+ → D0π+ 67.7% 0.5%
D∗+ → D+π0 30.7% 0.5%

Table A.1.: Branching Fractions on MC

Channel Branching Ratio Error
D+ → K−π+π+ 9.4% 0.4%
D+ → K0

Sπ
+ 1.49% 0.04%

D0 → K−π+ 3.89% 0.05%
D0 → K−π+π+π− 8.09% 0.2%
D0 → K−π+π0 13.9% 0.5%
D0 → K0

Sπ
+π− 2.94% 0.16%

D0 → K−K+ 0.39% 0.01%
D∗+ → D0π+ 67.7% 0.5%
D∗+ → D+π0 30.7% 0.5%

Table A.2.: Branching Fractions of PDG [8]
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A.5. Signal Monte Carlo decay table

#Aliases

Alias myB0 B0

Alias myAntiB0 anti-B0

ChargeConj myB0 myAntiB0

Alias myD*- D*-

Alias myD*+ D*+

ChargeConj myD*- myD*+

Alias my1D- D-

Alias my1D+ D+

ChargeConj my1D- my1D+

Alias my2D+ D+

Alias my2D- D-

ChargeConj my2D+ my2D-

Alias myD0 D0

Alias myantiD0 anti-D0

ChargeConj myD0 myantiD0

Decay Upsilon(4S)

1.0 B0 anti-B0 myB0 myAntiB0 VSS_BMIX dm;

Enddecay

Decay myB0

1.0 myD*- my1D+ PHOTOS SVS_CP beta_cdcd dm -1 1.0 0.0 1.0 0.0;

Enddecay

CDecay myAntiB0

Decay myD*-

0.215381 myantiD0 pi- PHOTOS VSS;

0.031426 my2D- pi0 PHOTOS VSS;

Enddecay

CDecay myD*+

Decay myantiD0

0.0389 K+ pi- PHOTOS PHSP;

0.0809 K+ pi- pi- pi+ PHOTOS PHSP;
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0.1390 K+ pi- pi0 PHOTOS D_DALITZ;

0.0294 K_S0 pi+ pi- PHOTOS PHSP;

0.00394 K+ K- PHOTOS PHSP;

Enddecay

CDecay myD0

Decay my1D+

0.094 K- pi+ pi+ PHOTOS D_DALITZ;

0.0149 K_S0 pi+ PHOTOS PHSP;

Enddecay

CDecay my1D-

Decay my2D+

0.094 K- pi+ pi+ PHOTOS D_DALITZ;

Enddecay

CDecay my2D-

End
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