

Hochschule Ruhr West

Institut Bauingenieurwesen

Schlankheitsabhängige Ersatzimperfektion

beim Plattenbeulen

Bachelorarbeit

zur Erlangung des Grades Bachelor of Science

Eingereicht von:	Inga Eschenberg Schlehenhag2 46537 Dinslaken inga.eschenberg@mailbox.org 01722115998
Studiengang:	Bauingenieurwesen 12. Fachsemester Matrikelnummer: 10010689
Erstgutachter:	Prof. DrIng. Christian Ludwig Hochschule Ruhr West
Zweitgutachter:	M. Sc. Larissa Schönfeld Hochschule Ruhr West
Bearbeitungszeitraum:	07.06.2022 – 30.08.2022

Aufgabenstellung für die Bachelorarbeit

für: Inga Eschenberg Matr.-Nr.: 10010689

Schlankheitsabhängige Ersatzimperfektionen beim Plattenbeulen

Das Tragverhalten von dünnwandigen plattenförmigen Bauteilen wird maßgeblich durch das Stabilitätsversagen Beulen bestimmt. Längs- und Schubspannungen haben einen unterschiedlichen Einfluss auf die Beanspruchbarkeit des Beulfeldes. Der Nachweis von unausgesteiften beulgefährdeten plattenförmigen Bauteilen ist in DIN EN 1993-1-5 geregelt. Dabei sind u. a. Imperfektionen und Effekte infolge überkritischen Tragreserven zu beachten.

Im Rahmen dieser Bachelorarbeit sind die geometrischen Ersatzimperfektionen angepasst an die Winter-Kurve in Abhängigkeit von bezogener Plattenschlankheit $\bar{\lambda}_p$ zu ermitteln. Dabei liegt der Schwerpunkt der Untersuchung auf dem Tragverhalten von unausgesteiften vierseitig gelagerten Platten im überkritischen Tragreservenbereich. Die Ergebnisse für den vorgegebenen Parameterbereich dieser Untersuchungen sind mittels numerischer Simulation mit der Software ANSYS zu bestimmen, darzustellen und zu bewerten.

Im Einzelnen sind folgende Punkte zu bearbeiten:

- Vorstellung und Erläuterung der überkritischen Traglastreserven
- Analytische (nach DIN EN 1993-1-5) und numerische Bestimmung der angepassten geometrischen Ersatzimperfektionen unter Berücksichtigung folgender Parameter:
 - Software: ANSYS
 - Einachsige Druckbelastung (ψ = 1)
 - \circ Schubbeanspruchung τ
 - Seitenverhältnis α = 0,15; 0,3; 0,45; 0,6; 0,75; √2; 2; √6; 3
- Darstellung von angepassten geometrischen Ersatzimperfektionen an die Winter-Kurve in Abhängigkeit von bezogener Plattenschlankheit (Übersichtliche Darstellung und Vergleiche in Form von Tabellen, Bildern und/oder Diagrammen)
- Gegenüberstellung und Bewertung (Abweichungen) von angepassten geometrischen Ersatzimperfektionen
- Erläuterung auftretender Effekte

Inhaltsverzeichnis

Abb	bildur	ngsve	erzeichnisII	I
Tab	eller	verz	eichnisIV	/
For	melz	eiche	ənV	1
Abk	ürzu	ngsv	verzeichnisV	I
1.	Einl	eitur	ng 1	
1	.1	Ziel	setzung 2	2
1	.2	Met	hodischer Ansatz 2	2
1	.3	Her	angehensweise	3
2.	Gru	ndla	gen und Definitionen 4	ł
2	.1	Plat	tenbeulen4	ł
2	.2	Übe	erkritische Traglastreserven5	5
2	.3	Geo	ometrische Ersatzimperfektionen 6	3
2	.4	Win	ter-Kurve	3
3.	Ana	lytis	che und nummerische Bestimmung)
3	.1	Nac	hweis des Stabilitätsversagen Plattenbeulen)
3	.2	Pro	gramm- und Rechnungsvorstellung10)
	3.2.	1	Newton-Raphson-Verfahren12	2
4.	Dar	stellu	ung der geometrischen Ersatzimperfektionen14	ł
4	.1	Vor	stellung des Berechnungsablaufs14	ł
	4.1.	1	Druckbelastung16	3
	4.1.	2	Schubbelastung	3
4	.2	Vor	stellung der Tabellen17	7
4	.3	Vor	stellung der Diagramme21	
	4.3.	1	Druckbelastung21	
	4.3.	2	Schubbelastung	3
5.	Bev	/ertu	ng und Gegenüberstellung25	5
5	.1	Erlä	uterung der auftretenden Effekte25	5
	5.1.	1	Druckbelastung	3
	5.1.	2	Schubbelastung)
6.	Zus	amm	nenfassung und Ausblick31	
Lite	ratur	verz	eichnis	2

Anhang34
Anhang 1 Druckbelastung Seitenverhältnis α = 0,15
Anhang 2 Druckbelastung Seitenverhältnis α = 0,30
Anhang 3 Druckbelastung Seitenverhältnis α = 0,45
Anhang 4 Druckbelastung Seitenverhältnis α = 0,6040
Anhang 5 Druckbelastung Seitenverhältnis α = 0,7542
Anhang 6 Druckbelastung Seitenverhältnis $\alpha = \sqrt{2}$
Anhang 7 Druckbelastung Seitenverhältnis α = 2,0046
Anhang 8 Druckbelastung Seitenverhältnis $\alpha = \sqrt{6}$ 48
Anhang 9 Druckbelastung Seitenverhältnis α = 3,0050
Anhang 10 Schubbelastung Seitenverhältnis $\alpha = 0,15$
Anhang 11 Schubbelastung Seitenverhältnis $\alpha = 0,30$
Anhang 12 Schubbelastung Seitenverhältnis $\alpha = 0,45$ 60
Anhang 13 Schubbelastung Seitenverhältnis $\alpha = 0,60$
Anhang 14 Schubbelastung Seitenverhältnis $\alpha = 0,75$ 68
Anhang 15 Schubbelastung Seitenverhältnis $\alpha = \sqrt{2}$
Anhang 16 Schubbelastung Seitenverhältnis α = 2,00
Anhang 17 Schubbelastung Seitenverhältnis $\alpha = \sqrt{6}$ 80
Anhang 18 Schubbelastung Seitenverhältnis α = 3,0084
Eidesstattliche Erklärung88

Abbildungsverzeichnis

Abbildung 1: Lokales Plattenbeulen [R1] 1
Abbildung 2: Beulen in Folge von Druck- und Schubspannungen [K1]
Abbildung 3: Vergleich der Lastverformungskurven für (i) Knickstäbe und (ii)
druckbeanspruchte beulgefährderte Platten [K2]6
Abbildung 4: Die Winter-Kurve8
Abbildung 5: Beulwert $k_{\sigma x}$ für rechteckige Platten mit konstanten Randspannungen σ_x [K1] 11
Abbildung 6: Verschiedene Randbedingungen für die Berechnung von Schubspannung $ au$ 12
Abbildung 7: Das Newton-Raphson-Verfahren [A3]13
Abbildung 8: Der Strukturbaum des FEM Programms ANSYS14
Abbildung 9: Eine, durch das FEM Programm ANSYS generierte, Lösung 15
Abbildung 10: Das Kopfteil der Druckspannungstabelle 17
Abbildung 11: Der Anfang der Druckspannungstabelle, $\alpha = 1,00$
Abbildung 12: Der Anfang der Schubspannungstabelle, $\alpha = 1,00$
Abbildung 13: Druckbelastung mit Seitenverhältnisses $\alpha = \sqrt{2}$
Abbildung 14: Schubbelastung mit Seitenverhältnis α = 0,75 und der zweiten Variante
Abbildung 15: links: Diagramm mit Seitenverhältnis α = 0,60 rechts: Diagramm
mit Seitenverhältnis $\alpha = \sqrt{6}$
Abbildung 16: Diagramm mit dem Seitenverhältnis α = 0,7528
Abbildung 17: Diagramm mit dem Seitenverhältnis $\alpha = 3,00$
Abbildung 18: erste Variante mit dem Seitenverhältnis $\alpha = \sqrt{2}$ und
dem Verzweigungslastfaktor α_{cr}

Tabellenverzeichnis

Tabelle 1: Unterscheidung verschiedener Beulfelder	. 4
Tabelle 2: Berechnung der geometrischen Ersatzimperfektion	. 7
Tabelle 3: Vergleich der errechneten Kräfte über die Schlankheit bei Druckbelastung	25
Tabelle 4: Vergleich der errechneten Kräfte über die Schlankheit bei Schubbelastung	25

Formelzeichen

a	Länge
b	Breite
e ₀	Ersatzimperfektion nach DIN EN 1993-1-5
e _{0,erf}	ermittelte Ersatzimperfektion
F	Kraft
Flr	Kraft links / Kraft rechts
Fou	Kraft oben / Kraft untern
k_{σ}	Beulwert Druckspannung
kτ	Beulwert Schubbelastung
m	Halbwellenzahl
Ν	Kraft
S	Stahlgüte
t	Dicke
u	Verschiebung
~	Saitanyarhältnia
α	Seitenverhaltnis
$\alpha_{cr,\tau}$	Verzweigungslastfaktor Schubbelastung
αcr,x	Verzweigungslastfaktor Druckspannung
λρ	bezogene Schlankheit
$\lambda_{ m w}$	Schlankheitsgrad Schubbelastung
ρ	Abminderungsfaktor
pansys	ρ-Wert nach der von ANSYS errechneten Kraft
ρWinter	ρ-Wert nach der Winter-Kurve
σ	Druckspannung
σ _{cr,x}	Ideale Beulspannung Druckspannung
σ _e	Bezugsspannung
$\sigma_{\rm x}$	Druckspannung in x-Richtung
τ	Schubspannung
$ au_{cr}$	Ideale Beulspannung Schubbelastung
χw	χ -Vergleichswert
Xw,ANSYS	χ -vvert nach der von ANSYS berechneten Kraft
alr	Spannungsverhältnis

Abkürzungsverzeichnis

1D	eindimensional
2D	zweidimensional
3D	dreidimensional
bzw.	beziehungsweise
bspw.	beispielsweise
DIN	Deutsches Institut für Normung
EN	Europäische Normen
etc.	et cetera
ext.	extern
FEM	Finite Elemente Methode
ggf.	gegebenenfalls
i. d. R.	In der Regel
insb.	insbesondere
max.	Maximum
min.	Minimum
o.g.	oben genannt
u.a.	unter anderem
u.g.	unten genannt
V 1, 2, 3, 4	Variante 1, 2, 3, 4

1. Einleitung

Stahlsorten mit hohen Festigkeiten und guten Schweißeigenschaften dienen als ideale Grundlage für dünnwandige plattenförmige Bauteile. Sie werden in einer Vielzahl von unterschiedlichen Bauwerken eingesetzt. Besonders im Brückenbau kommen diese Bauteile vermehrt zum Einsatz [P1]. Dort werden diese Verbindungen gerne vor Ort geschweißt, wobei Imperfektionen in den Bauteilen entstehen.

Daher muss für die richtige Dimensionierung dünnwandiger plattenförmiger Bauteile der Tragsicherheitsnachweise Plattenbeulen berücksichtigt werden, da bei Bauteilen die druck- und/oder schubbeansprucht werden die Versagensart Plattenbeulen auftreten kann [L1].

Bei der Rechenmethode der effektiven Querschnitte wird mit der Winter-Kurve gearbeitet. Auf dieses Thema wird in Kapitel 2.4 näher eingegangen. Die Winter-Kurve ist durch eine Vielzahl von Versuchen verifiziert und in der Fachwelt anerkannt. Jedoch zeigte die Untersuchung im Paper "Slenderness-dependent Equivalent Imperfections in Plate Buckling" [S2], dass größere bezogene Schlankheiten $\overline{\lambda p}$ zu Unsicherheiten führen können, da sie oberhalb der Winter-Kurve liegen. Auf diesem Paper aufbauend, werden in dieser Arbeit weitere dünnwandige, plattenförmige Bauteile mit unterschiedlichen Ausmaßen in Hinblick auf die Winter-Kurve untersucht.

Abbildung 1: Lokales Plattenbeulen [R1]

1.1 Zielsetzung

Ziel dieser Arbeit ist die Ausarbeitung von einem von vielen Schritten, zu einer wirtschaftlicheren und sichereren Berechnung des Stabilitätsversagen Plattenbeulen.

Durch die Untersuchungen im Paper "Slenderness-dependent Equivalent Imperfections in Plate Buckling" [S2] hat sich herausgestellt, dass noch einige Fragen zu den Randbedingungen der Berechnungen des Plattenbeulens offen sind.

So hat sich gezeigt, dass im Hinblick auf die geometrischen Ersatzimperfektionen mehr Potential vorhanden wäre, gerade was die überkritische Traglastreserve betrifft. Auch für die Wirtschaftlichkeit bei der Dimensionierung der Querschnitte ist eine Ausnutzung der überkritischen Traglastreserve von Vorteil.

Außerdem wurde festgestellt, dass bei größeren, bezogenen Schlankheiten die Traglasten infolge der geometrischen Ersatzimperfektionen unsicherer sind, da sie oberhalb der Winter-Kurve liegen.

Gerade diese Unsicherheiten im Bezug zur Winterkurve sind der Grund dieser Arbeit.

1.2 Methodischer Ansatz

In Anhang C der DIN EN 1993-1-5 [D1] wird der genaue Einfluss der strukturellen und geometrischen Imperfektionen nicht abschließend geklärt. Es werden keine konkreten Angaben zu dem Einfluss der einzelnen Imperfektionen oder ihrer Kombination gemacht. Auch ein Einspannmodel wird nicht empfohlen, wodurch automatisch Unterschiede in einzelnen Rechenmodellen entstehen. Dies war Ausgangspunkt den der Untersuchungen des Papers "Slenderness-dependent Equivalent Imperfections in Plate Buckling" [S2]. Bei einer Vielzahl der Traglasten bei größeren, bezogenen Schlankheiten $\overline{\lambda p}$ weist das Paper daraufhin, dass es zu Unsicherheiten führen könnte. Ausschlaggebend ist die Tatsache, dass einige Werte oberhalb der Winter-Kurve liegen. Im Hinblick auf die Winter-Kurve werden weitere dünnwandige, plattenförmige Bauteile mit unterschiedlichen Seitenverhältnissen untersucht. Im Zuge dieser Arbeit wird dafür das FEM Programm ANSYS genutzt. Die Druckspannungen σ_x oder σ_y (bzw. σ_z) und Schubspannungen τ werden getrennt voneinander untersucht. Dabei werden mit unausgesteiften, gelenkig gelagerten Platten gerechnet.

1.3 Herangehensweise

Diese Arbeit gliedert sich in sechs Kapitel. Sie beginnt mit einer Einleitung und der Erläuterung der Zielsetzung.

In *Kapitel zwei*, werden die Grundlagen und Grundbegriffe definiert, die den Ausgangspunkt dieser Arbeit festlegen.

Im *dritten Kapitel* wird genauer auf das Verfahren eingegangen, welches zum Lösen des Ausgangsproblems angewandt wird. Hier liegt der Schwerpunkt besonders auf dem FEM Programm ANSYS. Mithilfe des Software Programms ANSYS werden bei verschiedenen geometrischen Ersatzimperfektionen die Lasten ermittelt. Diese werden dann indirekt mit den Werten der Winter-Kurve verglichen. Dabei wird zwischen Drucklasten und Schublasten unterschieden.

Das *vierte Kapitel* beschreibt den Ablauf der Berechnungen. Es werden, durch das FEM Programm ANSYS geometrische Ersatzimperfektionen ermittelt. Durch den Eintrag in eine vorbereitete Tabelle können sie indirekt mit der Winter-Kurve verglichen werden. Auch hier gibt es einen Unterschied zwischen Druck- und Schublasten.

Im *fünften Kapitel* werden die erlangten Ergebnisse interpretiert. Dabei wird das Augenmerk auf die Diagramme gelegt, welche mit Hilfe der Ergebnisse des FEM Programms ANSYS und der Tabelle erstellt wurden. Diese Diagramme wurden jeweils für Druck- und Schublasten getrennt erstellt.

Die Arbeit schließt mit *Kapitel sechs*, in dem darauf aufmerksam gemacht wird, dass noch weitere Untersuchungen sinnvoll wären. Daran anschließend befindet sich der Anhang mit den Tabellen und das Literaturverzeichnis.

2. Grundlagen und Definitionen

2.1 Plattenbeulen

Um dünnwandige, plattenförmige Bauteile handelt es sich, wenn die Dicke t signifikant kleiner ist als die Länge und Breite. Bei diesen Bauteilen kann das Stabilitätsversagen Plattenbeulen auftreten, wenn sie druck- und/oder schubbeansprucht sind [L2]. Gerade im Brückenbau werden viele dünnwandige Querschnitte verbaut. Auch im Hoch- und Industriebau sind diese Bauteile sehr beliebt [K2]. Durch eine Beanspruchung in Scheibenrichtung entsteht eine Verformung senkrecht zur Platte. Wenn in den Beulflächen Verformungen auftreten, die den Durchbiegungen der Platten entsprechen, wird von Plattenbeulen gesprochen. Plattenbeulen kann auch bei versteiften Bauteilen auftreten. Bei diesen muss der Nachweis dann sowohl bei den Einzelfeldern, als auch bei Teil- und Gesamtfeldern geführt werden [K1]. Hierbei werden die Beulfelder wie in Tabelle 1 [D2] beschrieben:

Beulfeld	Beschreibung	Abbildung										
Einzelfelder	werden die unversteiften Beulfelder zwischen Steifen genannt	Läng:	sstei	2 b ₄₁	b _G Gesamtfeldbreite = Teilfeldbreite							
Teilfelder	steiren genannt sind unversteifte oder längsversteifte Beulfelder zwischen Querstreifen			Teilfeld	Einzel-	45 b44 b43 b4	b _G Gesamtfeldbre = Teilfeldbreit					
Gesamtfelder	sind versteifte oder unversteifte Beulfelder zwischen Längs- und Querrändern	 ⊽y			Querst a ₃	eifen a ₄						

Tabelle 1: Unterscheidung verschiedener Beulfelder

Diese Versagensart tritt nur bei Druckspannungen σ_x oder σ_y (bzw. σ_z) oder Schubspannungen τ auf. Es kann auch bei einer Kombination dieser Spannungen ausgelöst werden [K2]. Die unterschiedlichen typischen Verformungen einer Platte infolge a) Druckspannungen σ_x oder σ_y (bzw. σ_z) bzw. b) Schubspannungen τ sind in Abbildung 2 zu erkennen.

Abbildung 2: Beulen in Folge von Druck- und Schubspannungen [K1]

Diese Arbeit beschäftigt sich ausschließlich mit unausgesteiften, gelenkig gelagerten Platten. Dabei werden die Druckspannungen σ_x oder σ_y (bzw. σ_z) und Schubspannungen τ getrennt voneinander betrachtet.

2.2 Überkritische Traglastreserven

Schlanke Platten haben ein überkritisches Traglastverhalten. Das könnte dazu führen, dass die Grenzbeulspannungen größer sind als die idealen Beulspannungen. Spannungen, die weit über der Verzweigungslast liegen, können für Platten zugelassen sein. Dieses Verhalten ist, im Vergleich zum Knicken von Stäben, ungewöhnlich, aber aus Versuchen hinlänglich bekannt und mittlerweile auch rechnerisch nachgewiesen [K1]. Dabei hat sich gezeigt, dass die Platte im ausgebeulten Zustand die Spannungen an die wesentlich steiferen Randbereiche verlagert. Es bildet sich eine doppelte Krümmung aufgrund der Stützwirkung der Längsränder und im Randbereich eine versteifende Wirkung. Durch dieses Verhalten versagt die Platte erst bei Beanspruchung, die ein Vielfaches von der elastischen kritischen Beulspannung beträgt. Das Stabilitätsverhalten vom Plattenbeulen geht, mit abnehmender Stützwirkung, zum Stabknicken über. Die überkritische Traglastreserve geht verloren, die Platte hat ein knickstabähnliches Verhalten [K2].

In Abbildung 3 wird die Lastverformungskurve eines zentrisch gedrückten, schlanken Stabens und einer zentrisch gedrückten, schlanken Platte nebeneinandergestellt. Der schlanke Stab erreicht, im Gegensatz zur Platte, seine Grenze der Beanspruchbarkeit bei der elastischen Knicklast [K2].

Ein ähnliches Verhalten in Bezug auf die überkritische Traglast ist auch bei schubbeanspruchten Platten zu beobachten. Die Beulen bilden sich schräg aus und es entstehen gerichtete Zugkräfte. Die Abtragung der Schubspannungen erfolgt fachwerkartig [K1].

Abbildung 3: Vergleich der Lastverformungskurven für (i) Knickstäbe und (ii) druckbeanspruchte, beulgefährderte Platten [K2]

2.3 Geometrische Ersatzimperfektionen

Schon bei der Herstellung des Stahls, aber vor allem auch bei seiner Weiterverarbeitung, entstehen Imperfektionen. Diese Imperfektionen sind unerwünschte Abweichungen in den Bauteilen. Sie sind meist nicht von außen erkennbar. Es können unregelmäßige Verteilungen von Festigkeitseigenschaften sein, aber auch eingeprägte Spannungen. Die meisten Imperfektionen sind Eigenspannungen, welche entstehen können, wenn der Werkstoff unregelmäßig abkühlt. Dies tritt häufig beim Walzen oder Schweißen auf [S2].

Die Imperfektionen sind entscheidend, da sich der ideale Sollzustand nicht realisieren lässt. Daher machen die Imperfektionen einen erheblichen Unterschied bei den rechnerischen Traglasten aus [K2].

Das Tragverhalten des Stahls ist entscheidend beeinflusst von diesen Imperfektionen. Gerade im Hinblick auf die Versagensart Plattenbeulen.

In der DIN EN 1993-1-5 [D1] wird bei den Imperfektionen unterschieden zwischen:

- strukturellen Imperfektionen
- geometrischen Imperfektionen
- geometrischen Ersatzimperfektionen

Strukturelle Imperfektionen lassen sich im Herstellungsprozess nicht vermeiden. Dabei üben die Eigenspannungen in der Regel den größten Einfluss aus. Eigenspannungen stehen mit sich selbst im Gleichgewicht. Daher sind diese Imperfektionen von außen nicht zu erkennen [K2].

Geometrische Imperfektionen hingegen sind typischerweise Maßabweichungen infolge der Herstellung. Auch Vorbeulen zählt zu den geometrischen Imperfektionen [K2].

Geometrische Ersatzimperfektionen kommen zum Einsatz, wenn keine genauen getrennten Ansätze von strukturellen und geometrischen Imperfektionen möglich sind. In den geometrischen Ersatzimperfektionen kommen sowohl Anteile der strukturellen als auch der geometrischen Imperfektionen vor. Sie werden laut der DIN EN 1993-1-5 Tabelle C.2 [D1] einheitlich berechnet. Der für diese Arbeit relevante Teil der Tabelle C.2 ist als Tabelle 2 eingefügt. Vor allem für numerisch Untersuchungen werden diese geometrischen Ersatzimperfektionen genutzt.

Imperfektionsansatz	Bauteil	Form	Amplitude
lokal	Teilfeld oder Einzelfeld mit kurzer Länge a oder b	Beulform	$e_0 = min. \begin{cases} \frac{a}{200} \\ \frac{b}{200} \end{cases}$
lokal, Teilfeld oder Einzelfeld	b a a	b eou	

Tabelle 2: Berechnung der geometrischen Ersatzimperfektion

Diese Arbeit behandelt die geometrischen Ersatzimperfektionen. Die strukturellen und geometrischen Imperfektionen werden nicht weiter ausgearbeitet.

2.4 Winter-Kurve

Die Winter-Kurve ist auf Beobachtungen von Herrn George Winter zurückzuführen. Mittlerweile wurden diese Beobachtungen und die daraus erfolgte Gleichung

$$\rho_{Winter} = \frac{1}{\overline{\lambda_p}} - \frac{0.22}{\overline{\lambda_p^2}}$$

in einer Vielzahl von Versuchen verifiziert [S1]. Die Gleichung ist allgemein akzeptiert und wurde immer weiterentwickelt. So ist sie in der heutigen Form Teil des Rechenverfahrens der effektiven Querschnitte. Um die Gleichung auch für andere Randbedingungen nutzen zu können, wurde sie weiterentwickelt. In der DIN EN 1993-1-5 [D1] wird z.B. unterschieden zwischen beidseitig und einseitig gestützten Querschnittsteilen und den dafür passenden, modifizierten Gleichungen auf Grundlage der Winter-Kurve.

Da diese Arbeit mit beidseitig gestützten Querschnittsteilen und einer konstanten Spannungsverteilung ($\psi = 1$) rechnet, wird im Folgenden nur zu diesem Fall Weiteres erläutert. Ein wesentlicher Bestandteil der Berechnung der Winter-Kurve ist die bezogene Schlankheit $\overline{\lambda p}$. Mithilfe der bezogenen Schlankheit $\overline{\lambda p}$ lassen sich viele Versuche, die in der Geschichte des Stahlbaus zum Thema Plattenbeulen durchgeführt wurden, optimal vergleichen [S1]. Die bezogene Schlankheit wird mit der Formel

$$\overline{\lambda_{\rm p}} = \frac{b/t}{28.4 * \varepsilon * \sqrt{k_{\sigma}}}$$

berechnet. Dabei ist für die Winter-Kurve festgelegt, dass bei bezogenen Schlankheiten von $\overline{\lambda p}$ < 0,673 der Wert ρ_{Winter} = 1 wird. Mit der Berechnung der bezogenen Schlankheiten $\overline{\lambda p}$ lässt sich die Winter-Kurve darstellen (Abbildung 4).

Abbildung 4: Die Winter-Kurve

3. Analytische und nummerische Bestimmung

3.1 Nachweis des Stabilitätsversagen Plattenbeulen

Aktuell gibt es drei Verfahren, mit denen das Stabilitätsversagen Plattenbeulen nachgewiesen werden kann. Sie unterscheiden sich auf Grund von Berechnungsaufwand, aber auch hinsichtlich auf die Ausnutzung im Grenzzustand der Tragfähigkeit.

- 1. Methode der reduzierten Spannung
- 2. Methode der effektiven Querschnitte
- 3. Berechnung mit der Finiten Elemente Methode

Die Methode der reduzierten Spannung wird im Kapitel 10 der DIN EN 1993-1-5 [D1] genauer beschrieben. Sie kann bei ausgesteiften und nicht ausgesteiften Blechfeldern eines Querschnittes genutzt werden. Außerdem ist sie auch für die Berechnung von Bauteilen mit veränderlichen Lasten oder Trägern mit Stegausschnitt eine wirksame Methode. Sie ist ein Verfahren, welches für Handrechnungen geeignet ist. Jedoch liegt die Stärke dieser Methode in der Möglichkeit, auch numerisch gestützte Berechnungen zu benutzen. Dies eignet sich besonders bei der Berechnung von α_{cr} [K2]. Da bei dieser Methode keine Spannungsumlagerungen angenommen werden, bestimmt das schwächste Querschnittsteil die Tragfähigkeit [D1].

Die Methode der effektiven Querschnitte wird in den Kapiteln 4 bis 7 in der DIN EN 1993-1-5 [D1] definiert. Sie berücksichtigt sowohl das lokale Ausbeulen als auch das globale Beulverhalten. Es ist für I- und Kastenquerschnitte gut geeignet. Es müssen jedoch einige Bedingungen erfüllt sein, auf die hier nicht näher eingegangen wird [K3]. Bei dieser Methode wird versucht, mit Handrechnungen die Tragfähigkeit möglichst genau abzubilden. In Einzelnachweisen wird das jeweilige überkritische Tragverhalten systematisch und sehr genau berücksichtigt. Zum Schluss werden die Einzelnachweise zusammengeführt [K2].

Die Finite Elemente Methode ist im Anhang C der DIN EN 1993-1-5 [D1] zu finden. Es handelt sich hierbei um ein numerisches Verfahren. Die FEM ist, durch den hohen Berechnungsaufwand, bei Fällen zweckmäßig, in denen die Berechnung mit der Methode der reduzierten Spannungen und die Methode der effektiven Querschnitte nicht oder nur unzureichend möglich ist [K2]. Die computerbasierte Methode der Finiten Elemente erfordert einige Erfahrung. Dabei ist die Wahl des geeigneten Programms zu beachten. Auch die Modellierungen des Bauteils und seiner Randbedingungen, sowie die richtigen Lasten und Werkstoffeigenschaften, sind mit Sorgfalt zu erstellen. Ein weiterer Schwerpunkt, den die DIN EN 1993-1-5 [D1] macht, ist der Ansatz der Imperfektion. Diese Imperfektionen werden bei der Methode der reduzierten Spannungen und der Methode der effektiven Querschnitte als Abminderungsfaktoren berücksichtigt.

3.2 Programm- und Rechnungsvorstellung

Durch die Zunahme leistungsstarker Rechentechnik werden mehr Untersuchungen mithilfe FEM vorgenommen. Diese Programme und ihre Simulationen sind für verschiedene Bereiche u.a. im Rennsport oder bei den Erneuerbaren Energien mittlerweile nicht mehr wegzudenken. Sie bilden immer genauer die Realität ab und mit ihrer Hilfe werden die verschiedensten Probleme gelöst [H1].

Diese Arbeit nutzt das FEM Programm ANSYS. Diese Software hat John Swanson schon 1970 entwickelte. Aktuell wird die Software von der Firma ANSYS Inc. vertrieben und weiterentwickelt. Mit Hilfe dieser Software können die unterschiedlichsten Berechnungen vorgenommen werden. Dabei wirbt die Firma damit, dass ihre Software lineare und nichtlineare Probleme, zum Beispiel aus der Fluidmechanik, Akustik, Elektronik und Photonik, lösen kann. Auch eine Kombination der Problemstellungen ist möglich. Dabei können diese Rechnungen 1-, 2- oder 3-dimensional gelöst werden [A2].

Für diese Arbeit werden folgende Werte zur Modellierung in ANSYS verwendet:

- Stahlgüte S 355 bilineares Materialverhalten (linear elastisch plastisch mit E / 10 000)
- Schalenelement SHELL 181
- Geometrische Imperfektionen und Ersatzimperfektionen gemäß skalierter Eigenform
- Strukturelle Imperfektionen durch eingeprägten Spannungszustand
- Vierseitig gelenkig gelagert mit Seitenverhältnissen $\alpha = 0.15; 0.30; 0.45; 0.60; 0.75; \sqrt{2}; 2.00; \sqrt{6}; 3.00$
- Beanspruchung konstanter Druck σ (ψ = 1) oder Schub (τ)
- Berechnungsverfahren Newton-Raphson + Stabilisierungsenergie

Es wird bei dieser Arbeit ein Segment eines Trägers numerisch simuliert. Dafür wird das zu untersuchende Segment als senkrecht zur Ebene unverschieblich und gelenkig gelagert angenommen. An den Querrändern werden die Elemente in der Plattenebene gekoppelt.

Da auch unterschiedliche Seitenverhältnisse untersucht werden sollen, müssen diese vorher eingegrenzt werden. Auffällig sind die sogenannten Beulgirlanden (Abbildung 5) Diese stellen sich durch den Beulwert $k_{\sigma x}$ dar. Der Beulwert $k_{\sigma x}$ errechnet sich mit den Halbwellenzahlen m = 1 bis m = 5 und dem Seitenverhältnis α . Diese Beulgirlanden zeigen Auffälligkeiten an den Stellen $\alpha = 1,00, \sqrt{2}, 2,00, \sqrt{6}$ und 3,00. Der Bereich $\alpha < 1,00$ soll ebenfalls abgedeckt werden. Daher werden auch $\alpha = 0,15, 0,30, 0,45, 0,60$ und 0,75 mit untersucht.

Abbildung 5: Beulwert $k_{\sigma x}$ für rechteckige Platten mit konstanten Randspannungen σ_x [K1]

Für die erste Berechnungsreihe wird mit einer konstanten Druckbeanspruchung σ ($\psi = 1$) gearbeitet, damit eine gleichmäßige Verformung in Plattenebene sichergestellt werden kann. Es wird untersucht, welche Veränderungen sich bei veränderten Seitenverhältnissen einstellen. Für jedes Seitenverhältnis, beginnend bei $\alpha = 0,15$ bis $\alpha = 3,00$, wird die Berechnung für unterschiedliche Schlankheiten $\overline{\lambda p}$ durchgeführt. Die Ergebnisse aus der Berechnung des FEM Programms werden in eine vorbereitete Tabelle eingetragen. Mit Hilfe dieser Tabellen lassen sich die generierten Ergebnisse mit der Winter-Kurve abgleichen.

Bei der zweiten Berechnungsreihe wird das Bauteil schubbeansprucht τ . Um einen ähnlichen Umfang wie bei der ersten Berechnungsreihe zu generieren, werden bei der zweiten weniger Schlankheiten $\overline{\lambda p}$ untersucht, da es mehr Randbedingungen gibt. Die gekoppelten Ränder wurden für die Schubbeanspruchung noch nicht ausreichend erforscht. Daher wird bei dieser Arbeit sowohl die Kopplung der Ränder in y-Richtung als auch in z-Richtung genauer betrachtet. Neben den zwei verschiedenen Lagerungen werden noch zwei verschiedene numerische Kraftarten τ untersucht. Daraus ergeben sich vier Variationen, die berechnet werden. In Abbildung 6 werden die Varianten dargestellt.

Abbildung 6: Verschiedene Randbedingungen für die Berechnung von Schubspannung au

- V1) In y-Richtung gekoppelt mit einer externen Kraft die angreift
- V2) In y-Richtung gekoppelt mit einer Kraft die angreift
- V3) In z-Richtung gekoppelt mit einer externen Kraft die angreift
- V4) In z-Richtung gekoppelt mit einer Kraft die angreift.

3.2.1 Newton-Raphson-Verfahren

Namensgebend für das Newton-Raphson-Verfahren sind Isaac Newton und Joseph Raphson. Dieses Verfahren ist ein Iterationsverfahren für nichtlineare Gleichungen. Dadurch ist es ein sehr gebräuchliches Verfahren für das Lösen von Modellen, die mit FEM Software erstellt werden.

Gerade die Firma des FEM Programms ANSYS bietet eigene Hilfestellungen zum Nutzen des Newton-Raphson-Verfahrens. Aus einer dieser Hilfestellungen [A3] stammt das Beispiel, an welchem das Verfahren im Folgenden verkürzt erläutert wird.

Eine Verschiebung u soll mit aufgebrachter Kraft F_a berechnet werden. Dafür wird mit einer angelegten Kraft F_a und keiner Anfangsverschiebung begonnen. Das Programm beginnt die Verschiebung u₁ zu berechnen. Mithilfe dieser Verschiebung u₁ berechnet das Programm die Kraft F_1 . Wenn die berechnete Verschiebung nicht korrekt ist, also sich das System nicht im Gleichgewicht befindet, zeigt sich, dass $F_a \neq F_1$ ist. Daraufhin berechnet das Programm eine neue Verschiebung u₂. Mit der Kraft F_2 , welche mit u₂ berechnet wird, erfolgt erneut die Prüfung, ob das System im Gleichgewicht ist. Ist dies nicht der Fall, geht die Iteration weiter bis mit $F_n = F_a$, das System im Gleichgewicht ist.

Da es, trotz leistungsstarker Rechentechnik, unendlich viele Iterationen bräuchte, um den exakten Wert F_n zu bestimmen, wird eine Toleranz definiert. Sobald die Differenz zwischen der aufgebrachten Kraft F_a und der errechneten Kraft F_n kleiner als die Toleranz ist, wird die weitere Rechnung gestoppt und F_n als konvergente Lösung ausgegeben. Entscheidend ist auch welche Kraft vorgegeben wird. Sie sollte möglichst nahe an der Lösung liegen, da sonst zu große Abweichungen ausgegeben werden können. Dies ist eine stark vereinfachte Erklärung und soll nur den Kern der Rechenart darlegen. In Abbildung 7 ist das Verhältnis von F und u zu sehen.

Abbildung 7: Das Newton-Raphson-Verfahren [A3]

4. Darstellung der geometrischen Ersatzimperfektionen

4.1 Vorstellung des Berechnungsablaufs

Die Grundlage der Berechnungen sind Untersuchungen im Paper "Slendernessdependent Equivalent Imperfections in Plate Buckling" [S2]. In diesen Untersuchungen hat sich gezeigt, dass die geometrischen Ersatzimperfektionen auch für andere Seitenverhältnisse untersucht werden sollten. Ebenfalls interessant wirken auch die Untersuchungen auf Schubbelastung.

Auf Grund des hohen Rechenaufwandes, werden die Berechnungen mit zwei Workstations parallel durchgeführt. Der Arbeitsablauf für die Berechnungen stellt sich folgendermaßen dar:

Im ersten Schritt werden zwei Tabellen angelegt, um automatisch die errechneten Werte indirekt mit der Winter-Kurve zu vergleichen. Das Ziel ist die geometrische Ersatzimperfektion zu finden, welche sich zu 100,00% an die Winter-Kurve annähert. Die nähere Erläuterung dieser Tabellen erfolgt im Kapitel 4.2.

Im zweiten Schritt werden die unterschiedlichen Dateien angelegt. Dabei wird bei jedem Seitenverhältnis, $\alpha = 0.15$ bis $\alpha = 3.00$, für die unterschiedlichen Schlankheiten, $\overline{\lambda p} = 0.673$ bis $\overline{\lambda p} = 3.000$, eine eigene Datei generiert. Dazu werden die technischen Daten eingepflegt, die Geometrie eingestellt und die Platten modelliert.

Im dritten Schritt wird in dem Strukturbaum (Abbildung 8) des FEM Programms ANSYS die zu erwartende geometrische Ersatzimperfektion als Skalierungsfaktor eingegeben. Dies geschieht im Bereich der Eigenwert-Beulanalyse. Das System muss aktualisiert und die Modellansicht geöffnet werden.

Abbildung 8: Der Strukturbaum des FEM Programms ANSYS

Im vierten Schritt unterscheidet sich das Vorgehen zwischen der Druck- und der Schubbelastung. Auf die Unterschiede wird in den Kapiteln 4.1.1 und 4.1.2 näher eingegangen. Unabhängig von den Unterschieden wird am Ende des Schrittes die Berechnung gestartet. In Abbildung 9 ist eine durch das FEM Programm ANSYS berechnete Lösung abgebildet. Die für diese Arbeit relevante errechnete Kraft ist markiert. Das Seitenverhältnis α ist in diesem Beispiel $\sqrt{2}$ und die Schlankheit $\overline{\lambda p} = 1,300$. Die simulierte Platte mit Beule und die errechnete Kraft sind gut zu erkennen. Obwohl die modernen Workstations eine hohe Rechenleistung aufweisen, werden trotzdem einige Minuten für die Berechnung benötigt.

Abbildung 9: Eine durch das FEM Programm ANSYS generierte Lösung

Im fünften Schritt wird die errechnete Kraft in die Tabelle eingetragen. Daraufhin werden die prozentualen Abweichungen automatisch generiert. Sobald die Abweichung keine 100,00% beträgt, muss mit einem anderen Skalierungsfaktor die Berechnung erneut gestartet werden. Es wird mit Schritt drei wieder begonnen. Im Idealfall wird die 100,00% erreicht. In einigen Fällen ist es nicht möglich die 100,00% zu erreichen, da der Skalierungsfaktor nur bis zwei Stellen nach dem Komma eingegeben wird. Es wird nach Möglichkeit der Kipppunkt gesucht, bei dem die Prozentzahl von über 100,00 auf unter 100,00 abweicht. Ist es nicht möglich mit diesem die 100,00% zu generieren, wird das Ergebnis genommen, welches am nächsten an die 100,00% heranreicht. Die Größe der Abweichung von 100,00% ist ein guter Hinweisgeber, um den neuen Skalierungsfaktor zu wählen. Ebenfalls einen guten Hinweis, liefern die schon erreichten Skalierungsfaktoren der kleineren Schlankheiten $\overline{\lambda p}$ bei gleichem Seitenverhältnis α .

Im sechsten Schritt, bei Erreichung eines zufriedenstellenden Ergebnisses von Schritt fünf, wird die nächste Datei geöffnet. Mit dieser Datei wird wieder bei Schritt eins begonnen. Eine Ausnahme bildet da die Berechnung der Schubbeanspruchung. Dort wird erst eine neue Datei geöffnet, wenn alle vier Durchläufe zufriedenstellende Ergebnisse geliefert haben.

4.1.1 Druckbelastung

Bei der Druckbelastung wird in der Modellansicht die Rechnung gestartet. Neben dem Skalierungsfaktor werden bei diesen Rechnungen nur die Kräfte angepasst. Dabei ist zu beachten, dass beide Kräfte gleich groß, aber unterschiedlich gerichtet sind. Dies geschieht, damit die Kräfte möglichst nahe an der vom Programm errechneten maximalen Kraft liegen. Das Newton-Raphson-Verfahren würde sonst zu große Abweichungen ausgeben. Sobald der Skalierungsfaktor angepasst wurde, müssen auch die Kräfte überprüft werden. Bei zu großen Sprüngen im Skalierungsfaktor müssen die Kräfte gegebenenfalls verändert werden. Als nächstes sind die Abläufe in Schritt fünf (Kapitel 4.1) auszuführen.

4.1.2 Schubbelastung

Durch die vier Varianten, die bei der Schubbelastung untersucht werden, ändert sich das Vorgehen im Bezug zur Druckbelastung. Sobald die Modellansicht geöffnet ist, werden die gekoppelten Punkte überprüft.

Für den ersten Durchlauf sollten die Punkte in y-Richtung gekoppelt sein. Auch die angreifenden Kräfte werden überprüft. Es sollten die ext. Kräfte aktiviert und die Kräfte deaktiviert werden. Gegebenenfalls müssen die Kräfte angepasst werden. Dies geschieht, im Gegensatz zur Druckbeanspruchung, mit Hilfe einer Formel, damit die vier Kräfte im Gleichgewicht sind. Wobei die beiden Kräfte links und rechts gleich groß, aber unterschiedlich gerichtet sein sollen. Gleiches gilt für das Kräftepaar oben und unten. Die Formeln lauten wie folgt:

 $F_{lr} = b * t * \sigma$

 $F_{ou} = a * t * \sigma$

Dabei ist a die Länge [mm], b die Breite [mm] und t die Dicke [mm] der Platten. Der Wert σ [N/mm²] wird frei gewählt, um der vom Programm errechneten maximalen Kraft so nahe wie möglich zu kommen. Auch hier ist zu beachten, dass das Ändern des Skalierungsfaktors gegebenenfalls ein Ändern der Kräfte nach sich zieht. Dies gilt für alle vier Durchläufe. Mit dem Ergebnis des ersten Durchlaufs wird mit Schritt fünf (Kapitel 4.1) weiter verfahren.

Im zweiten Durchlauf bleiben die Punkte in y-Richtung gekoppelt. Die ext. Kräfte werden deaktiviert und die Kräfte aktiviert. Die Werte der ext. Kräfte werden auf die Kräfte übertragen und die Rechnung gestartet.

Im dritten Durchlauf werden die gekoppelten Punkte von der y-Richtung in die z-Richtung geändert. Die Kräfte bleiben aktiviert.

Im vierten Durchlauf bleiben die gekoppelten Punkte gleich, die Kräfte werden deaktiviert und die ext. Kräfte werden aktiviert.

4.2 Vorstellung der Tabellen

Der Aufbau der Tabellen wird exemplarisch an der Druckbeanspruchung dargelegt. Die Unterschiede zur Schubbelastung werden am Ende erläutert. Um die errechneten Werte indirekt mit der Winter-Kurve vergleichen zu können, sind die Tabellen wie folgt aufgebaut.

Im Kopfteil (Abbildung 10) sind die Stahlgüte S, die Druckspannung σ_x [N/mm²] der Beulwert k_{σ} und das Seitenverhältnis α definiert. Die Werte sind durch die Randbedingungen festgelegt und werden als feste Werte eingetragen. Nur das Seitenverhältnis wir berechnet, dabei werden die Länge a [mm] und Breite b [mm] der Platte zur Berechnung genutzt. Die Formel zur Berechnung ist

$$\alpha = \frac{a}{b}$$
.

Angepasste I	Ersatzimpf. EC	C3-1-5 C	
S	355		
σ _x	100		
kσ	4	α =	1

Abbildung 10: Das Kopfteil der Druckspannungstabelle

In Spalte E und F sind die Ausmaße der Platte eingetragen. Dabei ist in Spalte E die Länge a [mm] und in Spalte F die Breite b [mm] notiert. Die Breite b [mm] ändert sich in keiner Tabelle. Die Länge a [mm] wird zum gewählten Seitenverhältnis α angepasst, bleibt aber für die einzelnen Tabellen konstant.

In Spalte G ist die Dicke t [mm] hinterlegt. Diese wird infolge der Plattenschlankheit $\overline{\lambda p}$ rückwärts gerechnet, damit die passenden Schlankheiten $\overline{\lambda p}$ gegeben sind.

In Spalte D wird die Druckspannung σ_x [N/mm²] zu einer Kraft N [N] umgerechnet. Dafür wird die Druckspannung σ_x [N/mm²] mit der Breite b [mm] und der Dicke t [mm] multipliziert. Das stellt sich in der Formel

$$N = \sigma_x * b * t$$

dar.

In der Spalte C wird die Bezugsspannung σ_e [N/mm²] berechnet. Für die Berechnung wird die Breite b [mm] und die Dicke t [mm] in folgender Formel genutzt:

$$\sigma_e = 189800 * \left(\frac{t}{b}\right)^2$$

In Spalte A, aufbauend auf die Bezugsspannung σ_e [N/mm²] mit dem Beulwert k_σ , wird die ideale Beulspannung $\sigma_{cr,x}$ [N/mm²] durch die Formel

$$\sigma_{cr,x} = k_{\sigma} * \sigma_{e}$$

errechnet.

In Spalte B wird mit Hilfe der idealen Beulspannung $\sigma_{cr,x}$ [N/mm²] und der Druckspannung σ_x [N/mm²] der Verzweigungslastfaktor $\alpha_{cr,x}$ berechnet. Dazu wird die Formel

$$\alpha_{cr,x} = \frac{\sigma_{cr,x}}{\sigma_x}$$

genutzt.

In Spalte H ist die Plattenschlankheit $\overline{\lambda p}$ notiert. Sie setzt sich aus dem Verzweigungslastfaktor $\alpha_{cr,x}$, der Stahlgüte S und der Druckspannung σ_x [N/mm²] in der Formel

$$\overline{\lambda p} = \sqrt{\frac{S}{\sigma_x}} \sqrt{\frac{\sigma_x}{\alpha_{cr,x}}}$$

zusammen.

In Spalte I ist der ρ -Wert nach den Berechnungen der Winter-Kurve aufgeführt, im Folgenden $\rho_{Winter,t}$, genannt. Für die Berechnung wird die Plattenschlankheit $\overline{\lambda p}$ in der Formel,

$$\rho_{Winter,t} = \frac{1}{\overline{\lambda p}} * \left(1 - \frac{0.22}{\overline{\lambda p}}\right),$$

eingesetzt.

In den Spalten J und K werden die Ergebnisse der Berechnung des FEM Programms ANSYS eingetragen. Dabei wird in die Spalte K die Kraft F [kN], die durch ANSYS errechnet wird und in Spalte J die zur Kraft F [kN] gehörende Imperfektion e_{0,erf} eingetragen.

In Spalte L wird die von ANSYS errechnete Kraft F [kN] in eine Spannung σ [N/mm²] umgerechnet. Dafür wird die Breite b [mm] und die Dicke t [mm] für folgende Formel

$$\sigma = \frac{F}{t*b} * 1000$$

genutzt.

In Spalte M wird ein ρ -Wert generiert, im Folgenden ρ_{ANSYS} genannt, um die eingetragenen Werte mit den Werten $\rho_{Winter,t}$ vergleichen zu können. Dafür fließen in folgender Formel

$$\rho_{ANSYS} = \frac{S}{\sigma}$$

die Stahlgüte S und die Spannung σ [N/mm²] aus Spalte L ein.

In Spalte N errechnet sich die prozentuale Abweichung von ρ_{ANSYS} zu $\rho_{Winter,t}$. Dies geschieht mit der Formel

Abweichung = $\frac{\rho_{ANSYS}}{\rho_{Winter,t}}$.

Diese Abweichung [%] ist der entscheidende Anteil der Tabellen. Er sollte so nahe wie möglich an 100,00% liegen.

In Spalte O wird der Verzweigungslastfaktor α_{cr} mit der ideale Beulspannung $\sigma_{cr,x}$ [N/mm²] und der Spannung σ [N/mm²] aus Spalte L errechnet. Die Formel

$$\alpha_{cr} = \frac{\sigma_{cr,x}}{\sigma}$$

wird zur Errechnung genutzt.

In Spalte P wird der Verhältnisfaktor zur originalen Ersatzimperfektion bestimmt. Dieser vergleicht die Länge a [mm] oder die Breite b [mm] mit der eingetragenen Imperfektion $e_{0,erf.}$ Der kleinere Wert ist dabei ausschlaggebend. Dafür wird die Formel

$$Verh\ddot{a}ltnisfaktor = Min \begin{cases} \frac{a}{e_{0,erf}} \\ \frac{b}{e_{0,erf}} \end{cases}$$

genutzt. Mit diesem Verhältnisfaktor wird mit der Plattenschlankheit $\overline{\lambda p}$ zusammen ein Diagramm gebildet. Im Kapitel 4.3 wird näher auf die Diagramme eingegangen.

In Abbildung 11 und 12 sind die Anfänge der Tabellen für die Druck- und Schubbelastung zu sehen. Die vollständigen Tabellen befinden sich im Anhang.

				Angepasste E	irsatzimpf. E	C3-1-5 C											
				S	355				e0=	Angepasst							
				σ,	100												
				k _a	4	α =	1		benötigte	ext.Kraf	ft+ext.Pkt geko	ppelt					
σ _{cr,x}	α _{cr.x}	σ	N [N]	a [mm]	b [mm]	t [mm]	λρ	p nach Winte	Imper-	F [kN] ANSYS		p nach					
							0	1,00	fektion		σ [N/mm ²]	ANSYS	Abweichunge	$\alpha_{cr} = \sigma_{cr} / \sigma$	Verhältnisfak	tor zu original	Ersatzimp.
783,788	7,838	195,947	4626832	1200	1200	38,56	0,673	1,00	2,30 mm	16364,0	353,676	0,996	99,6%	2,2161	522		
704,225	7,042	176,056	4385712	1200	1200	36,55	0,710	0,97	3,40 mm	15159,0	345,645	0,974	100,2%	2,0374	353		
666 166	6 662	166 542	4265556	1200	1200	35.55	0.730	0.96	3 90 mm	14502.0	339 979	0.958	100.1%	1 9594	308		

Abbildung 11: Der Anfang der Druckspannungstabelle, $\alpha = 1,00$

Der wesentliche Unterschied der Tabellen zur Schubbeanspruchung, gegenüber den Tabellen zur Druckbeanspruchung, liegt an den vier Varianten, die mit der Schubbeanspruchung untersucht werden. Durch die Aufstellung mit den vier Varianten sind die Zeilen der Tabelle zur Schubbeanspruchung anders benannt. Im Kopfteil der Tabelle ist statt der Druckspannung σ_x [N/mm²] die Schubspannung τ eingetragen. Es ändern sich bei dem Beulwert k_{τ} , der idealen Beulspannung τ_{cr} und dem Verzweigungslastfaktor $\alpha_{cr,\tau}$ im Grunde nur ihre Bezeichnungen. Die Grundberechnungen sind identisch zu den Berechnungen mit der Druckspannung σ_x [N/mm²].

Der Schlankheitsgrad λ_w der Schubbelastung ändert sich in seiner Berechnung durch die Formel

$$\lambda_w = \sqrt{\frac{\frac{S}{\sqrt{3}}}{\frac{t}{\alpha_{cr,\tau}}}}.$$

Teile der Formel sind die Stahlgüte S, die Dicke t [mm] und der Verzweigungslastfaktor $\alpha_{cr,\tau.}$

Die Werte, die in den Tabellen der Schubbelastung verglichen werden sind χ_w und $\chi_{w,ANSYS}$. Die Berechnung von $\chi_{w,ANSYS}$ ist identisch mit der Berechnung von ρ_{ANSYS} . Bei der Berechnung von χ_w wird für folgende Formel der Schlankheitsgrad λ_w genutzt:

$$\lambda_w < 0.83 \rightarrow \chi_w = 1$$

 $\lambda_w > 0.83 \rightarrow \chi_w = \frac{0.83}{\lambda_w}$

Der Faktor η hat bei den Untersuchungen dieser Arbeit die Größe 1.

Die Diagramme von der Berechnung mit Schubbelastung werden mit dem Verhältnisfaktor, ähnlich wie bei der Druckbelastung und dem Schlankheitsgrad λ_w , gelbildet.

Angepasste Ersatzimpf. EC3-1-5 Anhang C an die Winter-Kurve																				
			S	355		e0=	Angepasst d	urch Regress	ion											
			τ	57,74																
			k _t	9,34	α =	1			nach EC3-1-	6	han States	ext.Kraft+ext.Pkt gekoppelt								
	τ _{cr}	α.,,,	σe	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _o mit η=1,0		Verformung	F [kN] ANSYS		χ _w nach						
								0	1,00		veriorinang		σ [N/mm²]	ANSYS	Abweichunge	$\alpha_{cr} = \sigma_{cr} / \sigma$	Verhältnisfa	ktor zu origin	al Ersatzimp.	
	320,249	5,547	34,288	1117440	1200	1200	16,13	0,800	1,00		1,00 mm	3756,0	194,062	0,947	94,68%	1,6502	1200			
	301,134	5,216	32,241	1083578	1200	1200	15,64	0,825	1,00		1,00 mm	3648,0	194,372	0,948	94,83%	1,5493	1200			
	283 681	4 913	30 373	1051708	1200	1200	15.18	0.850	0.98		1.00 mm	3469.0	190 436	0.929	95 15%	1 4896	1200			

Abbildung 12: Der Anfang der Schubspannungstabelle, $\alpha = 1,00$

4.3 Vorstellung der Diagramme

Die Diagramme von der Druck- und der Schubbelastung werden mit dem jeweiligen Verhältnisfaktor und der jeweiligen Schlankheit gebildet. Auf Grund der unterschiedlichen Berechnungen von Druck- und Schubbelastungen stellen sich die Diagramme unterschiedlich dar.

4.3.1 Druckbelastung

Bei der Druckbelastung werden 10 Diagramme erstellt. Auf der x-Achse der Diagramme ist die Schlankheit $\overline{\lambda p}$ und auf der y-Achse der Verhältnisfaktor verzeichnet. Die Schlankheit $\overline{\lambda p}$ ist bei allen Diagrammen festgelegt in den Grenzen $\overline{\lambda p} = 0,673$ bis $\overline{\lambda p} = 3,000$. Die Achse, mit der Schlankheit $\overline{\lambda p}$, beginnt bei dem Wert 0,0 und geht bis zum Wert 3,0. Der Verhältnisfaktor wird für jedes Diagramm eigens errechnet. Die Formel ist in Kapitel 4.2 zu finden. Auch diese Achse beginnt bei dem Wert 0,0. Bei den Seitenverhältnissen $\alpha > 1,00$ gehen die Achsen bis maximal 1.000, bei $\alpha < 1,00$ bis maximal 38.400. Die Abbildung 13 zeigt exemplarisch das Diagramm des Seitenverhältnisses $\alpha = \sqrt{2}$.

Vom Startwert ausgehend fallen alle Kurven der 10 Diagramme ab. Dabei ist auffällig, dass bei den Seitenverhältnissen $\alpha = 0,15$ bis $\alpha = 0,45$ die Kurve weniger fällt als bei den anderen Diagrammen. Am stärksten fallen sie bei den Seitenverhältnissen $\alpha = 2,45$ und $\alpha = 3,00$. Nachdem der Tiefpunkt erreicht wird, steigen alle Kurven an. Der Tiefpunkt liegt bei allen Diagrammen zwischen $\overline{\lambda p} = 0,80$ und $\overline{\lambda p} = 1,00$. Der Hochpunkt wird bei allen Diagrammen bei unterschiedlichen $\overline{\lambda p}$ Größen erreicht. Auffällig ist, dass bei den Seitenverhältnissen $\alpha = 0,15$ bis $\alpha = 0,45$, in dem gewählten Bereich, kein klarer Hochpunkt erreicht wird. Beim beobachteten Bereich hören die drei Kurven an ihren höchsten Stellen auf. Bei den anderen Diagrammen ist zu sehen, dass die Kurven abfallen.

Das Diagramm mit dem Seitenverhältnis α = 0,75, zeigt ungewöhnlich viele Sprünge. Der grobe Verlauf ist den Diagrammen mit dem Seitenverhältnis α > 1,00 sehr ähnlich.

Abbildung 13: Druckbelastung mit Seitenverhältnisses $\alpha = \sqrt{2}$.

4.3.2 Schubbelastung

Bei der Schubbelastung werden 37 Diagramme erstellt. Auf der x-Achse der Diagramme ist die Schlankheit $\overline{\lambda p}$ und auf der y-Achse der Verhältnisfaktor verzeichnet. Die Schlankheit $\overline{\lambda p}$ ist bei allen Diagrammen festgelegt in den Grenzen $\overline{\lambda p} = 0,800$ bis $\overline{\lambda p} = 3,000$. Die Achse, mit der Schlankheit $\overline{\lambda p}$, beginnt bei dem Wert 0,0 und geht bis zum Wert 3,0. Der Verhältnisfaktor wird für jedes Diagramme eigens errechnet.

Die Formel ist in Kapitel 4.2 zu finden. Auch die y-Achse beginnt bei dem Wert 0,0. Sie geht bis zum maximalen Wert von 1.300. Die Abbildung 14 zeigt exemplarisch das Diagramm des Seitenverhältnisses $\alpha = 0,75$ der zweiten Variante.

Bei den zehn Diagrammen der ersten Variante zeigt sich ein Unterschied zwischen den Diagrammen mit dem Seitenverhältnis $\alpha > \sqrt{2}$ und den Diagrammen mit dem Seitenverhältnis $\alpha < \sqrt{2}$. Die Diagramme mit dem Seitenverhältnis $\alpha = 2,00$ bis $\alpha = 3,00$ fallen direkt am Anfang ab, steigen aber schnell wieder an und bleiben dann als zur x-Achse parallele Linie bei 1.200 stehen. Das Diagramm mit dem Seitenverhältnis $\alpha = \sqrt{2}$ fällt ebenfalls am Anfang ab, steigt dann etwas an und fällt dann in einer Kurve ab. Die Diagramme mit dem Seitenverhältnis $\alpha = 0,75$ und $\alpha = 0,60$ fallen am Anfang stark ab und gehen dann in eine flachere Kurve über. Ähnlich sieht es auch mit den restlichen Diagrammen der ersten Variante aus, jedoch bleiben die Werte erst bei 1.200, bevor sie stark fallen und dann abflachen.

Bei den neun Diagrammen der zweiten Variante zeigt sich der Unterschied zwischen den Diagrammen bei dem Seitenverhältnis $\alpha = 2,00$. Bei den Seitenverhältnissen $\alpha = \sqrt{6}$ und $\alpha = 3,00$ stellt sich ein ähnliches Verhalten wie bei der ersten Variante ein. Der Unterschied besteht darin, dass das Abfallen stärker ausfällt, bis die Kurven wieder steigen und bei 1.200 verbleiben. Das Diagramm des Seitenverhältnisses $\alpha = 2,00$ fällt am Anfang ebenfalls stark ab, steigt dann etwas an und fällt zum Schluss wieder ab. Das Diagramm des Seitenverhältnisse wieder ab. Das Diagramm des Seitenverhältnisses $\alpha = 0,15$, verhält sich ähnlich wie das Diagramm der zweiten Variante mit dem Seitenverhältnis $\alpha = 0,15$. Die restlichen Diagramme der zweiten Variante fallen am Anfang stark und flachen dann ab.

Bei den neun Diagrammen der dritten Variante verlaufen die Linien als Parallelen zur x-Achse auf Höhe von 1.200.

Bei den neun Diagrammen der vierten Variante zeigt sich der Unterschied der Diagramme zwischen den Seitenverhältnissen $\alpha \ge 2,00$ und $\alpha < 2,00$. Die Diagramme mit den Seitenverhältnissen $\alpha \ge 2,00$ fallen, wie schon bei den Varianten eins und zwei, am Anfang ab und steigen dann zügig wieder an, bis sie bei 1.200 bleiben. Auch das Diagramm mit dem Seitenverhältnis $\alpha = 0,15$ verhält sich ähnlich zu seinen Varianten eins und zwei. Die restlichen Diagramme fallen, wie die Varianten eins und zwei auch, erst zügig und flachen dann ab.

Abbildung 14: Schubbelastung mit Seitenverhältnis α = 0,75 und der zweiten Variante

5. Bewertung und Gegenüberstellung

5.1 Erläuterung der auftretenden Effekte

Zu beobachten ist, dass mit größer werdender Ersatzimperfektion die errechnete Kraft abnimmt. Dies ist darauf zurückzuführen, dass ein Bauteil ohne Imperfektionen, also ein perfektes Bauteil, mit mehr Kraft belastet werden kann, als ein realistisches Bauteil mit Imperfektionen.

Auch eine größer werdende Schlankheit führt zu einer Abnahme der errechneten Kraft. Wenn die errechneten Kräfte der kleinsten bezogenen Schlankheit $\overline{\lambda p} = 0,673$ und der größten bezogenen Schlankheit $\overline{\lambda p} = 3,000$ verglichen werden, lässt sich die Abnahme der errechneten Kraft gut erkennen. Dies wird in Tabelle 3 für Druckbelastung und in Tabelle 4 für Schubbelastung verdeutlicht. Es ist zu erkennen, dass dickere Platten mit größeren Kräften beansprucht werden können, als dünnere Platten mit den gleichen Seitenverhältnissen.

α	F [kN] bei $\overline{\lambda p}$ = 0,673	F in [kN] bei $\overline{\lambda p}$ = 3,000		
0,15	4780,8	250,5		
0,30	9017,0	617,4		
0,45	12314,0	862,3		
0,60	14478,0	1002,1		
0,75	15674,0	1094,1		
1,00	16364,0	1137,6		
$\sqrt{2}$	15467,0	1072,6		
2,00	16441,0	1138,3		
$\sqrt{6}$	16094,0	1116,2		
3,00	16419,0	1138,3		

Tabelle 3: Vergleich der errechneten Kräfte über die Schlankheit bei Druckbelastung

	F [kN] bei λ _w = 0,800				F in [kN] bei λ _w = 3,000			
α	V1	V2	V3	V4	V1	V2	V3	V4
0,15	704,5	722,0	34,9	722,0	57,5	57,5	3,3	57,4
0,30	1386,7	1469,3	97,6	1444,4	111,6	111,6	11,6	111,5
0,45	2007,9	2104,1	140,8	2074,1	160,8	160,8	6,7	161,1
0,60	2628,9	2767,0	174,6	2726,4	205,4	205,4	10,8	205,5
0,75	3157,1	3279,5	135,5	3240,0	245,6	245,4	6,1	245,4
1,00	3756,0				291,7			
$\sqrt{2}$	4256,6	4486,2	185,2	4423,3	331,9	331,8	21,7	331,9
2,00	4558,7	4735,7	101,4	4597,1	340,7	349,6	27,1	334,4
$\sqrt{6}$	4706,1	4885,7	115,3	4801,9	343,7	356,5	30,8	340,2
3,00	4757,0	4996,6	227,4	4906,2	329,4	349,1	51,0	329,5

Tabelle 4: Vergleich der errechneten Kräfte über die Schlankheit bei Schubbelastung

Beim Betrachten der Tabelle 3 ist deutlich zu sehen, dass die Kräfte insgesamt zunehmen. Jedoch fallen zwei Einbrüche auf. Auch scheint die Zunahme der Kraft ab dem Seitenverhältnis $\alpha > 1,00$ langsam zu stagnieren. Aus diesem Grund sollten ab einer gewissen Größe der Platte Versteifungen genutzt werden.

Bei Tabelle 4 fällt auf, dass die Werte der dritten Variante von den Werten der anderen Varianten (V1, V2 und V4) stark abweichen. Dies scheint ein numerisches Problem zu sein. Um etwaige Fehler ausschließen zu können, sollte es erneut untersucht werden. Jedoch überteigt das den Umfang dieser Arbeit. Ebenfalls auffällig ist das Ergebnis der Zeile $\alpha = 1,00$. Für diese Berechnungsreihe wurden anhand von dem Seitenverhältnis $\alpha = 1,00$ mehrere Voruntersuchungen vorgenommen. Dabei wurde festgestellt, dass zwei verschiedene Kopplungsarten der Ränder, sowie zwei verschiedene numerische Kraftarten untersucht werden sollten.

5.1.1 Druckbelastung

Im Folgenden wird an zwei Verläufen exemplarisch beschrieben, wo die Unterschiede der geometrischen Ersatzimperfektionen e_0 nach DIN EN 1993-1-5 [D1] und der ermittelten geometrischen Ersatzimperfektion $e_{0,erf}$ liegen. Weiterhin wird versucht einen Ausgangspunkt für die bessere Nutzung der Ersatzimperfektion zu finden. Am Ende wird, an einem Seitenverhältnis, die ermittelte geometrische Ersatzimperfektion $e_{0,erf}$ mit der Schlankheit $\overline{\lambda p}$ ins Verhältnis gesetzt.

Bisher erfolgt die Berechnung der geometrischen Ersatzimperfektion e_0 nach DIN EN 1993-1-5 [D1], nach der Formel:

$$e_0 = \min \begin{cases} \frac{a}{200} \\ \frac{b}{200} \end{cases}$$

Die so berechnete geometrische Ersatzimperfektion ist unabhängig von der Schlankheit der Platte. Dieser konstante Wert wird im Folgenden indirekt mit den Diagrammen verglichen, was über den Verhältnisfaktor erfolgt. Es hat sich gezeigt, dass ein großer Teil der Kurven oberhalb von e_0 liegt. Das bedeutet, dass diese Bereiche sehr viele Möglichkeiten bieten, um wirtschaftlicher planen zu können. Bei den Bereichen, welche unterhalb von e_0 liegen, sollten die Werte angepasst werden, um die Unsicherheiten zu vermeiden.

In Abbildung 15 sind die Diagramme mit den Seitenverhältnissen $\alpha = 0,60$ links und $\alpha = \sqrt{6}$ rechts abgebildet. Ebenfalls verzeichnet ist, als orangene Linie, die errechnete geometrische Ersatzimperfektion e_0 nach DIN EN 1993-1-5 [D1]. Bei der Gegenüberstellung ist zu erkennen, dass die verschiedenen Seitenverhältnisse in unterschiedlicher Relation zu e_0 stehen.

Abbildung 15: links: Diagramm mit Seitenverhältnis α = 0,60 rechts: Diagramm mit Seitenverhältnis α = $\sqrt{6}$

Bei beiden Kurven ist ein Tiefpunkt zu erkennen. Danach steigt die Kurve wieder an. Die Tiefpunkte liegen zwischen $\overline{\lambda p} = 0,800$ und $\overline{\lambda p} = 0,900$. Beim Vergleich mit den übrigen Diagrammen zeigt sich, dass die Tiefpunkte bei allen in einem ähnlichen Bereich liegen. Bei dem Diagramm mit dem Seitenverhältnis $\alpha = \sqrt{6}$ wird das Ende der Steigung bei $\overline{\lambda p} = 1,450$ erreicht. Bei der Kurve mit dem Seitenverhältnis $\alpha = 0,60$ ist das Ende der Steigung nicht ersichtlich.

Auch bei den Diagrammen mit den Seitenverhältnissen $\alpha < 0,60$ ist aufgefallen, dass der Hochpunkt nicht erreicht, bzw. überschritten wird. Es ist wahrscheinlich, dass die Enden der Steigungen außerhalb des beobachteten Bereichs liegen. Die Verläufe der anderen Diagramme lassen diesen Schluss zu. Um dieses Verhalten zu verifizieren, müssten weitere Untersuchungen mit den Schlankheiten $\overline{\lambda p} > 3,000$ vorgenommen werden.

Der Anstieg der Kurven hängt mit dem überkritischen Traglastverhalten der Platten zusammen. Das überkritische Traglastverhalten ist gegeben, wenn der Verzweigungslastfaktor $\alpha_{cr} < 1$ ist. Daher ist die Stelle $\alpha_{cr} = 1$ interessant. Sie stellt sich bei allen Diagrammen etwa bei $\overline{\lambda p} = 1,200$ ein. Das überkritische Traglastverhalten sollte unbedingt genutzt werden, um wirtschaftlicher planen zu können. Dabei stellt der jeweilige Tiefpunkt eine Art Startwert dar. Dies führt zu der Annahme, dass auch bei anderen, nicht untersuchten Seitenverhältnissen, im Bereich zwischen $\overline{\lambda p} = 0,800$ und $\overline{\lambda p} = 0,950$ eine Art Steigung und ein globaler Startbereich liegt.

Wichtig ist zu erwähnen, dass die Werte bei den Seitenverhältnissen $\alpha < 0,60$ nicht ganz aussagekräftig sind, da in manchen Fällen nicht die gewünschten 100,00% erreicht werden konnten. Die benötigten Ersatzimperfektionen liegen dort im sehr kleinen Bereich, bis 0,01 mm. Die Differenz ergibt sich daraus, dass der Skalierungsfaktor nur bis zu zwei Stellen nach dem Komma eingegeben wurde. Ebenfalls erwähnenswert ist, dass bei der Erstellung der Daten mehrere Werte beim Seitenverhältnis $\alpha = 0.75$ auffielen. Es handelt sich um Werte, die zwischen $\overline{\lambda p} = 1.050$ und $\overline{\lambda p} = 1.450$ liegen. Die Auffälligkeiten bestehen in den Abweichungen der Ersatzimperfektionen. Diese sind als große Sprünge im Diagramm (Abbildung 16) zu erkennen. Auch nach mehrmaliger Überprüfung blieben sie bestehen. Dieses Seitenverhältnis sollte erneut untersucht werden, um etwaige Fehler ausschließen zu können. Für diese Arbeit werden die auffälligen Werte als Ausreißer betrachtet.

Abbildung 16: Diagramm mit dem Seitenverhältnis α = 0,75

Bei der Abbildung 17 ist das Diagramm mit dem Seitenverhältnis α = 3,00 zu sehen. Dort wird die ermittelte geometrische Ersatzimperfektion $e_{0,erf}$ im Verhältnis zu der Schlankheit $\overline{\lambda p}$ dargestellt.

Abbildung 17: Diagramm mit dem Seitenverhältnis α = 3,00
Auffällig ist, dass die ermittelte geometrische Ersatzimperfektion $e_{0,erf}$, nicht wie erwartet stetig mit der Schlankheit steigt. Am Anfang der Kurve befindet sich ein Hochpunkt. Anschließend fällt die Kurve bis zum Tiefpunkt ab, um danach wieder anzusteigen. Die ermittelte Ersatzimperfektion $e_{0,erf}$ wird, trotz Zunahme der Schlankheit, kleiner. Es wird davon ausgegangen, dass dieser Bereich der Bereich der überkritischen Traglastreserve ist.

5.1.2 Schubbelastung

Der größte Unterschied im Vorgehen zur Druckbelastung liegt bei der Schubbelastung in den vier verschiedenen Durchläufen. Diese unterscheiden sich in der Kopplung der Ränder und in den aufgebrachten Kraftarten. Beim Betrachten der Diagramme fällt auf, dass die Ergebnisse der dritten Variante eine unrealistische Abweichung aufweisen. Die Diagramme verlaufen alle parallel und die Werte erscheinen zu klein. Da es ein numerisches Problem zu sein scheint, fließt die gesamte dritte Variante nicht in die folgenden Untersuchungen mit ein.

Die Kurven der Seitenverhältnisse $\alpha > 1,00$ zeigen einen zusätzlichen Anstieg, im Gegensatz zu den anderen Kurven. Diese Steigung befindet sich im Bereich der kleineren Schlankheiten. Daher wird in diesem Bereich die überkritische Taglastreserve vermutet.

Am Beispiel der ersten Variante des Seitenverhältnisses $\alpha = \sqrt{2}$ (Abbildung18) ist zu erkennen, dass der eingezeichnete Verzweigungslastfaktor $\alpha_{cr} = 1$ etwa bei $\lambda_w = 1,250$, also in der Mitte der Steigung liegt. Der Bereich der überkritischen Traglastreserven liegt um den Verzweigungslastfaktor herum. Das Ziel ist es, diesen Bereich umfassend zu nutzen.

Die erste Variante mit dem Seitenverhältnis α = 2,00 fällt, wie alle anderen, am Anfang stark ab. Jedoch steigt die Kurve rasch wieder an. Der weitere Verlauf ist parallel. Die Abweichungen befinden sich im parallel verlaufenden Bereich bei unter 100,00%, da die ermittelten Ersatzimperfektionen nicht unter 1,00 mm untersucht wurden. Die Abweichungen von den 100,00% sind ein eindeutiger Hinweis darauf, dass der weitere Verlauf nicht parallel ist, sondern zunächst weiter ansteigt. Bei der Schlankheit $\lambda_w = 2,250$ steigen die Prozentzahlen wieder an. Dies lässt vermuten, dass die Kurve ab dieser Stelle wieder sinkt.

Die Diagramme mit den Seitenverhältnissen $\alpha < \sqrt{6}$ haben einen ähnlichen Verlauf. Auch die Abweichungen stellen sich ähnlich dar. Daher können die gleichen Überlegungen zum weiteren Verlauf vorausgesetzt werden.

Abschließend ist festzustellen, dass die Diagramme mit dem Seitenverhältnis $\alpha < 1,00$ einen ähnlichen Verlauf haben. Bei den Diagrammen mit dem Seitenverhältnis $\alpha > 1,00$ scheint eine Art Umbruch zu erfolgen. Die gleichmäßig abfallenden Kurven ändern sich und beginnen zu steigen. Bei Durchsicht aller Diagramme scheint die Variante zwei den Umbruch am besten darzustellen. Daher eignet sich diese Variante für weitere Untersuchungen.

Zwischen den Verläufen der Varianten eins und zwei zu den Verläufen der Varianten drei und vier wurde ein Unterschied vermutet. Die jeweilige Kopplung der Ränder führte zu diesen Annahmen. Beim Auswerten der Diagramme zeigte sich, dass sich die Erwartung zumindest für die Seitenverhältnisse $\alpha < 1,00$ erfüllt hat. Dagegen haben, bei den Seitenverhältnissen $\alpha > 1,00$ die Varianten zwei und vier, mehr Ähnlichkeiten aufgezeigt. Die Variante drei konnte für die Vergleiche nicht genutzt werden.

6. Zusammenfassung und Ausblick

Das Arbeitsziel umfasste eine Untersuchung der geometrischen Ersatzimperfektion im Verhältnis zu den sich ändernden bezogenen Schlankheiten. Dabei wurden auch verschiedene Seitenverhältnisse miteinbezogen. Für die Seitenverhältnisse von $\alpha = 0,15$ bis $\alpha = 3,00$ wurden, bei verschiedenen Schlankheiten $\overline{\lambda p} = 0,673$ bis $\overline{\lambda p} = 3,000$, die geometrischen Ersatzimperfektionen ermittelt. Die Ermittlung der Ersatzimperfektion und den dazugehörigen Kräften erfolgte mit Hilfe des FEM Programms ANSYS. Die so erstellten Ergebnisse wurden mit Hilfe einer Tabelle indirekt mit der Winter-Kurve verglichen und ausgewertet.

Die Erhebung erfolgte sowohl für Druckbelastung als auch für Schubbelastung. Die Abläufe ähnelten sich, der einzige wesentliche Unterschied bestand darin, dass bei der Schubbelastung vier Varianten untersucht wurden. Die Druckbelastung benötigte nur eine Variante. Auf Grund der ausreichenden Untersuchungen der Randbedingungen bei Druckbelastungen wurde dort der Fokus auf die verschiedenen Schlankheiten gelegt. Bei der Schubbelastung wurden mehr die Randbedingungen in den Mittelpunkt der Untersuchungen gesetzt.

Die Untersuchungen haben gezeigt, dass es bei Druck- und Schubbelastung noch viel Potential im Hinblick auf die Wirtschaftlichkeit gibt. Die Unsicherheiten in manchen Bereichen dürfen nicht vernachlässigt werden. Diese Untersuchungen stellen nur einen geringen Teil einer Möglichkeit dar, um die Berechnungen der geometrischen Ersatzimperfektion zu optimieren.

Zusammenfassend ist zu sagen, dass diese Untersuchung sich positiv auf die Wirtschaftlichkeit der Berechnungen auswirken könnte. Durch die Anpassung der geometrischen Ersatzimperfektionen, in Bezug auf die Schlankheiten, können einige Platten höhere Kräfte aufnehmen. Dadurch ist eine Materialeinsparung möglich. Dies ist besonders in der heutigen Zeit wichtig, um Ressourcen und Energie einzusparen. Dabei fast noch wichtiger sind die unsicheren Bereiche.

Es wäre vorstellbar, dass aufgrund der Untersuchungen, eine Anpassung der Rechenmethode der geometrischen Ersatzimperfektionen nach DIN EN 1993-1-5 [D1] erfolgt.

Literaturverzeichnis

- [A1] ANSYS (Version R1 2022) FEM Programm system, Mechanical & Space Claim 2020 R2, Copyright 2008-2022 ANSYS Inc.
- [A2] ANSYS Inc., Canonsburg, Pennsylvania,(Zugriff am: 15.08.2022, 18:47 Uhr). Verfügbar unter: https://www.ansys.com/de-de
- [A3] ANSYS courses Newton Raphson Method https://courses.ansys.com/wp-content/uploads/2019/05/3.3.3-Newton_Raphson_Method_New_Template_Master_without_Animation_Slide.pdf
- [D1] DIN EN 1993-1-5: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-5: Plattenförmige Bauteile, Beuth Verlag, Berlin 2019
- [D2] DIN 18800-3: Stahlbauten, Stabilitätsfälle, Plattenbeulen. Normenausschuss Bauwesen im DIN (NABau), November 2008
- [H1] Hermann, M.: Mathematik: Band 1, Algebraische Probleme. 4. Auflage, Walter de Gruyter Verlag, Berlin und Boston 2020
- [J1] Jungbluth, O.; Friemann, H.; Kubsch, G.: 14/1985 Berichte aus Forschung und Entwicklung – Experimentelle und theoretische Ermittlungen der Beullasten unversteifter Stahlbleche unter Berücksichtigung von Vorverformungen und Eigenspannungen, Deutscher Ausschuss für Stahlbau DASt, Köln, 1985
- [K1] Kindmann, R.: Stahlbau Teil 2: Stabilität und Theorie 2. Ordnung, Verlag Ernst & Sohn, 4. Auflage, 2008
- [K2] Kuhlmann U.: Stahlbau Kalender 2009, Verlag Ernst & Sohn, 2009 DIN EN
 1993-1-5 (10/2019), Eurocode 3: Bemessung und Konstruktion von Stahlbauten
 Teil 1-5: Plattenförmige Bauteile; nationaler Anhang NA (11/2018)
- [K3] Kuhlmann, U.; Schmidt-Rasche, C., Frickel, J., Pourostad, V.: Untersuchungen zum Beulnachweis nach DIN EN 1993-1-5. Bereichte der Bundesanstalt für Straßenwesen (bast), Heft B 140, Bergisch Gladbach 2017
- [L1] Lohse, W.; Laumann, J.; Wolf, C.: Stahlbau 1: Bemessung von Stahl bauten nach Eurocode mit zahlreichen Beispielen, 25., überarb. und akt. Auflage 2016.
 Wiesbaden: Springer Fachmedien Wiesbaden (2016)
- [L2] Lohse, W.; Laumann, J.; Wolf, C.: Stahlbau 2, 21. überarb. und akt. Auflage 2020. Wiesbaden: Springer Fachmedien Wiesbaden
- [P1] Petersen, C.: Stahlbau Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten, 4. vollständig überarbeitete und aktualisierte Auflage, Springer Verlag, Wiesbaden, 2013

- [P2] Petersen, C.: Statik und Stabilität der Baukonstruktionen, Verlag Vieweg & Sohn, Braunschweig/Wiesbaden 1982.
- [R1] Roik, K., Kindmann, R., Schaumann, P.: Plattenbeulen 8 Großversuche mit längs- und querausgesteiften Blechfeldern. Deutscher Ausschuss für Stahlbau, Köln 1982
- [S1] Scheer; Pfeil; Fuchs: Auswertung von internationalen Veröffentlichungen, Versuchsberichten, Kommisionspapieren u. ä. auf dem Gebiet des Beulens von Platten aus Stahl. Bericht 6095 des Institutes für Stahlbau, TU Braunschweig. 1987
- [S2] Schönfeld, L.; Naujoks, B.; Ludwig, C.: Slenderness-dependent Equivalent Imperfections in Plate Buckling, The International Collequium on Stability and Ductility of Steel Structures, SDSS 2022 Portugal, Ernst & Sohn, 2022 [prPaper]

Anhang

Anhang 1 Druckbelastung Seitenverhältnis $\alpha = 0,15$

<table-container> Interpart Interpart</table-container>																
intro <					Angepasste	Ersatzimpf. EC3-	1-5 C									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					S	355				e ₀ =	Angepasst					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					σ,	100.0 N/mm ²										
σ_{cx}					k _a	46.467	α =	0.15		henötigte	ext.Kraf	t+ext.Pkt geko	ppelt			Verhältnisf
Organ Organ <th< th=""><th>л</th><th>α</th><th>G</th><th>N [N]</th><th>a [mm]</th><th>h [mm]</th><th>t [mm]</th><th>2n</th><th>o nach Wint</th><th>Imper-</th><th></th><th></th><th></th><th></th><th></th><th>aktor zu</th></th<>	л	α	G	N [N]	a [mm]	h [mm]	t [mm]	2n	o nach Wint	Imper-						aktor zu
Tab. No. Total of the second of	O _{cr,x}	oc _{cr,x}	0 _e		a [iiiii]	D [IIIII]	t [iiiiii]	λμ	1.00	fektion		5 (21	ρ nach	Abweichung	a /_	original
78,87 7,838 16,868 157505 180 1200 11,31 0,073 1,00 0,18 mm 478,08 352,176 0.992 99,278 2,2256 1200 554,688 5,547 11,937 1142001 180 1200 9,52 0,800 0,91 0,28 mm 3669,2 321,296 0,905 99,9% 1,7264 6433 491,350 4,913 10,574 1074825 180 1200 8,96 0,872 0,28 mm 3313,2 308,255 0,868 99,6% 1,5940 6433 493,371 4,333 9,422 0,511 180 1200 8,46 0,900 0,840 0,23 mm 2754,0 286,372 0,807 99,7% 1,376 783 355,000 3,550 7,640 913601 180 1200 7,61 1,000 0,78 0,20 mm 220,7 275,908 0,777 99,6% 1,2867 0,075 10,334 1200 5,92 1,100 0,75 0,17 mm 233,42 268,17 0,755 10,334 1,200 5,62 1,150 </td <td>702 707</td> <td>7 020</td> <td>46.060</td> <td>4257505</td> <td>400</td> <td>4200</td> <td>44.04</td> <td>0</td> <td>1,00</td> <td>0.45</td> <td>4700.0</td> <td>σ [N/mm²]</td> <td>ANSYS</td> <td>Abweichung</td> <td>$\alpha_{cr} = \sigma_{cr} \sigma$</td> <td>Ersatzimp.</td>	702 707	7 020	46.060	4257505	400	4200	44.04	0	1,00	0.45	4700.0	σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} \sigma$	Ersatzimp.
631,111 6,311 13,582 1218134 180 1200 10,15 0,750 0,944 0,24 mm 4081,3 335,045 0,944 100,2% 1,8837 750 554,688 5,547 11,937 11,42001 180 1200 8,96 0,850 0,872 0,28 mm 331,22 308,255 0,868 99,6% 1,5940 643 438,271 4,383 9,432 1015112 180 1200 8,46 0,900 0,440 0,27 mm 302,52 298,115 0,400 100,0% 1,4701 667 393,352 3,354 8,465 961685 180 1200 7,61 1,000 0,78 0,20 mm 250,7 275,08 0,777 99,6% 1,2867 900 321,995 3,220 6,334 83046 180 1200 7,25 1,000 0,78 0,17 mm 233,4 268,177 0,755 100,3% 1,207 105 293,388 2,934 6,314 83046 180 1200 6,62 1,150 0,70 0,12 mm 188,8	/83,/8/	7,838	16,868	1357505	180	1200	11,31	0,673	1,00	0,15 mm	4/80,8	352,176	0,992	99,21%	2,2256	1200
554, 688 5,547 11,937 1142001 180 1200 9,52 0,800 0,917 0,28 mm 369,2 31,296 0,958 99,6% 1,7264 643 941,350 4,433 9,432 1015112 180 1200 8,46 0,900 0,810 0,22 mm 302,52 298,115 0,840 100,0% 1,4701 667 393,352 3,334 8,465 961685 180 1200 7,61 1,000 0,78 0,20 mm 250,07 27,608 0,777 99,6% 1,2267 900 321,995 3,220 6,930 870096 180 1200 7,25 1,050 0,75 0,17 mm 233,44 268,177 0,755 100,3% 1,2007 1055 233,388 2,934 6,314 830546 180 1200 6,62 1,150 0,70 0,12 mm 1888 20341 0,755 100,3% 1,0230 1000 220,22 246,528 2,465 5,305 761341 180 1200 6,62 1,500 0,72 0,07m	631,111	6,311	13,582	1218134	180	1200	10,15	0,750	0,94	0,24 mm	4081,3	335,045	0,944	100,2%	1,8837	750
491,300 4,913 10,754 1074825 180 1200 8,96 0,870 0,872 0,28 mm 3313,2 308,255 0,968 99,6% 1,5940 6637 438,271 4,383 9,432 1015112 180 1200 8,46 0,900 0,840 0,27 mm 302,25 298,115 0,840 100,0% 1,4701 667 393,352 3,934 8,465 961685 180 1200 7,61 1,000 0,78 0,20 mm 250,7 275,908 0,777 99,6% 1,267 900 321,995 3,220 6,930 87006 180 1200 7,61 1,000 0,75 0,17 mm 233,4 268,17 70,75 100,3% 1,267 900 293,388 2,944 6,514 830-546 180 1200 6,62 1,150 0,70 0,12 mm 198,8 250,341 0,677 99,5% 1,0260 2007 268,431 2,684 5,777 794435 180 1200 5,86 1,300 0,64 0,07 mm 1708,9	554,688	5,547	11,937	1142001	180	1200	9,52	0,800	0,91	0,28 mm	3669,2	321,296	0,905	99,9%	1,7264	643
438 9,432 1015112 180 1200 8,46 0,900 0,840 0,27 mm 3026,2 298,115 0,840 100,0% 1,4701 667 393,352 3,934 8,465 961685 180 1200 8,01 0,950 0,81 0,23 mm 275,00 286,372 0,807 99,7% 1,376 783 355,000 3,550 7,640 913601 180 1200 7,25 1,050 0,75 0,17 mm 233,34 268,177 0,755 100,3% 1,2007 1055 293,384 2,684 6,314 830546 180 1200 6,62 1,150 0,70 0,12 mm 1288,421 268,471 0,755 100,3% 1,0705 103,3% 1,0727 1505 268,431 2,684 5,305 76134 180 1200 6,62 1,50 0,66 0,07 mm 182,4 240,289 0,677 99,5% 1,0260 2000 220,020 2,272 4,889 73081 180 1200 5,64 1,350 0,62 0,04 mm	491,350	4,913	10,574	1074825	180	1200	8,96	0,850	0,872	0,28 mm	3313,2	308,255	0,868	99,6%	1,5940	643
3332 3,352 3,934 8,465 961685 180 1200 8,01 0,950 0,81 0,23 mm 2754,00 286,372 0,807 99,7% 1,3736 783 355,000 3,550 7,640 913601 180 1200 7,61 1,000 0,78 0,20 mm 2520,7 275,908 0,777 99,6% 1,2807 100,3% 1,2007 1055 231,955 6,314 830546 180 1200 6,62 1,150 0,77 0,15 mm 2145,1 258,276 0,728 100,3% 1,002 1050 246,528 2,684 5,777 794435 180 1200 6,62 1,150 0,70 0,12 mm 198,8 250,341 0,755 100,3% 1,002 2000 247,202 4,889 730881 180 1200 6,64 1,300 0,64 0,05 mm 1610,9 229,22 0,646 101,04% 0,9174 2571 210,059 2,101 4,521 702770 180 1200 5,64 1,350 0,62 0,04 mm	438,271	4,383	9,432	1015112	180	1200	8,46	0,900	0,840	0,27 mm	3026,2	298,115	0,840	100,0%	1,4701	667
355.000 3,550 7,640 913601 180 1200 7,61 1,000 0,78 0,20 mm 252,7 275,908 0,777 99,6% 1,2867 9000 321,995 3,220 6,930 870096 180 1200 7,61 1,050 0,75 0,17 mm 233,34 268,177 0,755 100,3% 1,007 105 283,388 2,934 6,514 830546 180 1200 6,62 1,150 0,70 0,15 mm 2145,1 258,276 0,728 100,3% 1,002 200 268,431 2,684 5,777 794435 180 1200 6,62 1,150 0,70 0,12 mm 1988,8 250,341 0,705 100,3% 1,020 200 227,200 2,272 4,889 730881 180 1200 5,64 1,300 0,64 0,07 mm 1788,9 233,814 0,659 99,7% 0,8872 4500 194,787 1,948 4,192 676741 180 1200 5,64 1,300 0,64 0,04 mm 1370,6 <	393,352	3,934	8,465	961685	180	1200	8,01	0,950	0,81	0,23 mm	2754,0	286,372	0,807	99,7%	1,3736	783
321,995 3,220 6,930 870096 180 1200 7,25 1,050 0,75 0,17 mm 233,4 268,177 0,755 100,3% 1,2007 1055 293,388 2,934 6,314 830546 180 1200 6,62 1,150 0,70 0,15 mm 2145,11 258,276 0,728 100,3% 1,0723 1500 268,431 2,684 5,707 794435 180 1200 6,64 1,150 0,70 0,12 mm 188,88 250,341 0,075 99,5% 1,020 2000 246,528 2,465 5,305 761334 180 1200 6,34 1,200 0,68 0,09 mm 1829,4 240,28 0,677 99,5% 1,020 2000 227,200 2,272 4,889 730881 180 1200 5,64 1,300 0,64 0,07 mm 1708,9 233,814 0,659 99,9% 0,874 4500 194,787 1,948 4,512 702770 180 1200 5,44 1,400 0,60 0,04 mm 137,6	355,000	3,550	7,640	913601	180	1200	7,61	1,000	0,78	0,20 mm	2520,7	275,908	0,777	99,6%	1,2867	900
293,388 2,934 6,314 830546 180 1200 6,92 1,100 0,73 0,15 mm 2145,1 258,276 0,728 100,0% 1,1359 1200 268,431 2,684 5,777 794435 180 1200 6,62 1,150 0,70 0,12 mm 1988,8 250,341 0,705 100,3% 1,772 1500 266,528 2,465 5,505 761334 180 1200 6,62 1,200 0,66 0,09 mm 1282,4 240,381 0,755 100,3% 1,0260 2000 272,00 2,212 4,889 73081 180 1200 5,86 1,300 0,64 0,05 mm 1610,9 22,222 0,646 101,04% 0,9164 4500 194,87 1,948 4,192 676741 180 1200 5,54 1,350 0,62 0,04 mm 1370,6 210,030 0,552 99,3% 0,8624 4500 181,122 1,811 3,888 652572 180 1200 5,55 0,02 mm 1371,1 1956 0,551	321,995	3,220	6,930	870096	180	1200	7,25	1,050	0,75	0,17 mm	2333,4	268,177	0,755	100,3%	1,2007	1059
268,431 2,684 5,777 794435 180 1200 6,62 1,150 0,70 0,12 mm 198,88 250,341 0,705 100,3% 1,0723 1500 246,528 2,465 5,305 761334 180 1200 6,34 1,200 0,68 0,09 mm 1829,4 240,289 0,677 99,5% 1,0260 2000 220,059 2,011 4,521 70270 180 1200 5,64 1,350 0,664 0,05 mm 1610,9 239,22 0,646 101,04% 0,9164 3600 194,787 1,948 4,192 676741 180 1200 5,64 1,350 0,62 0,04 mm 137,6 210,552 0,618 99,7% 0,8872 4500 184,122 1,811 3,898 652572 180 1200 5,44 1,400 0,60 0,04 mm 137,6 210,303 0,551 96,84 4500 156,847 1,688 3,634 63069 180 1200 5,58 1,500 0,57 0,03 mm 137,1 199,56	293,388	2,934	6,314	830546	180	1200	6,92	1,100	0,73	0,15 mm	2145,1	258,276	0,728	100,0%	1,1359	1200
246,5282,4655,30576133418012006,341,2000,680,09 mm1829,4240,2890,67799,5%1,02602000227,2002,2724,88973088118012006,091,2500,660,07 mm1708,9233,8140,65999,9%0,97172571210,0592,1014,52170277018012005,861,3000,640,05 mm1610,9229,2220,646101,04%0,91643600194,7871,9484,19267674118012005,641,3500,620,04 mm1370,620,3230,58599,9%0,88724500181,1221,8113,89865257218012005,441,4500,550,04 mm1370,6210,330,58599,9%0,88744500168,8471,6883,63463006918012005,441,4500,550,03 mm1307,620,330,58599,9%0,81366000157,7781,5783,39560906718012005,081,5500,550,02 mm1173,1199,0260,561101,3%0,74249000138,6721,3872,98457100018012004,761,6000,540,02 mm1084,9190,0000,53599,3%0,7299900015,9181,1592,49552205818012004,761,6000,440,02 mm863,	268,431	2,684	5,777	794435	180	1200	6,62	1,150	0,70	0,12 mm	1988,8	250,341	0,705	100,3%	1,0723	1500
227,2002,2724,88973088118012006,091,2500,660,07 mm1708,9233,8140,65999,9%0,97172571210,0592,1014,52170277018012005,861,3000,640,05 mm1610,9229,2220,646101,04%0,91643600194,7871,9484,19267674118012005,641,3500,620,04 mm180,8219,5520,61899,7%0,88724500181,1221,8113,89865257218012005,441,4000,600,04 mm137,6210,0300,59298,3%0,86244500168,8471,6883,63463006918012005,551,4500,590,03 mm1307,6207,5330,58599,9%0,81366000157,7781,5783,39560906718012005,081,5000,570,03 mm119,11195,5610,55196,8%0,08686000147,7631,4783,18058942018012004,761,5000,550,02 mm117,11199,0260,561101,3%0,7429000138,6721,3872,9845710018012004,761,7500,540,02 mm180,9190,0000,55593,3%0,72990,000159,181,1592,4955205818012004,761,7500,540,02 mm863,8	246,528	2,465	5,305	761334	180	1200	6,34	1,200	0,68	0,09 mm	1829,4	240,289	0,677	99,5%	1,0260	2000
210,0592,1014,52170277018012005,861,3000,640,05 mm1610,9229,220,646101,04%0,91643600194,7871,9484,19267674118012005,641,3500,620,04 mm1485,8219,5520,61899,7%0,88724500181,1221,8113,89865257218012005,441,4000,600,04 mm1370,6210,0300,59298,3%0,86244500168,8471,6883,63463006918012005,251,4500,590,03 mm1307,6207,5330,58599,9%0,81366000157,7781,5783,39560906718012005,081,5000,570,03 mm1191,1195,5610,51596,8%0,80686000147,7631,4783,18058942018012004,911,5000,570,02 mm1173,1199,0260,561101,3%0,7249000138,6721,3872,984571008180012004,551,5000,550,02 mm108,3155,650,7299,3%0,72999000115,9181,1592,495520058180012004,551,5000,6410,17%9,3780,4669,2%0,70999000188,7500,8871,9104568018012003,812,0000,440,01 mm728,65159,378	227,200	2,272	4,889	730881	180	1200	6,09	1,250	0,66	0,07 mm	1708,9	233,814	0,659	99,9%	0,9717	2571
194,7871,9484,19267674118012005,641,3500,620,04 mm1485,8219,5520,61899,7%0,88724500181,1221,8113,89865257218012005,441,4000,600,04 mm1370,6210,0300,59298,3%0,86244500168,8471,6883,63463006918012005,251,4500,590,03 mm1307,6207,5330,58599,9%0,81366000157,7781,5783,39560906718012005,081,5000,570,03 mm1191,1195,5610,55196,8%0,80686000147,7631,4783,18058942018012004,911,5500,550,02 mm1173,1199,0260,561101,3%0,74249000138,6721,3872,98457100018012004,761,6000,540,02 mm1084,9190,0000,53599,3%0,72999000115,9181,1592,49552205818012004,351,7500,500,02 mm1084,9190,0000,53599,3%0,7299900098,3380,9832,11648084318012004,351,7500,500,02 mm863,3165,3690,46693,2%0,7010900098,3380,9832,11648084318012003,812,0000,440,01 mm728,	210,059	2,101	4,521	702770	180	1200	5,86	1,300	0,64	0,05 mm	1610,9	229,222	0,646	101,04%	0,9164	3600
181,1221,8113,89865257218012005,441,4000,600,04 mm1370,6210,300,59298,3%0,86244500168,8471,6883,63463006918012005,251,4500,590,050,03 mm1307,6207,5330,58599,9%0,81366000157,7781,5783,39560906718012005,081,5000,570,0570,03 mm1191,1195,5610,55196,8%0,80686000147,7631,4783,18058942018012004,911,5500,550,02 mm1173,1199,0260,561101,3%0,74249000138,6721,3872,98457100018012004,761,6000,540,02 mm1084,9190,0000,55599,3%0,72999000115,9181,1592,49552205818012004,351,7500,500,02 mm863,3165,3690,46693,2%0,7010900098,3380,9832,11648084318012003,812,0000,440,01 mm829,8172,5660,486104,5%0,5699180088,7500,8571,732435048180012003,812,0000,440,01 mm728,0159,3780,449100,9%0,5569180080,4990,8561,732435048180012003,832,2500,40 </td <td>194,787</td> <td>1,948</td> <td>4,192</td> <td>676741</td> <td>180</td> <td>1200</td> <td>5,64</td> <td>1,350</td> <td>0,62</td> <td>0,04 mm</td> <td>1485,8</td> <td>219,552</td> <td>0,618</td> <td>99,7%</td> <td>0,8872</td> <td>4500</td>	194,787	1,948	4,192	676741	180	1200	5,64	1,350	0,62	0,04 mm	1485,8	219,552	0,618	99,7%	0,8872	4500
168,8471,6883,63463006918012005,251,4500,590,03 mm1307,6207,5330,58599,9%0,81366000157,7781,5783,39560906718012005,081,5000,570,03 mm1101,11195,5610,55196,8%0,80686000147,7631,4783,18058942018012004,911,5500,550,02 mm1173,1199,0260,561101,3%0,74249000138,6721,3872,98457100018012004,761,6000,540,02 mm1084,9190,0000,53599,3%0,72999000115,9181,1592,49552205818012004,351,7500,500,02 mm863,3165,3690,46693,2%0,7010900098,3380,9832,11648084318012004,311,9000,470,01 mm829,8172,5660,486104,5%0,5699180088,7500,8871,91045680018012003,812,0000,440,01 mm728,0159,3780,449100,9%0,5569180080,4990,8051,73243504818012003,382,2500,400,01 mm535,2131,8110,37192,6%0,5320180070,1230,7641,50940604518012003,352,5000,360,01 mm408,1<	181,122	1,811	3,898	652572	180	1200	5,44	1,400	0,60	0,04 mm	1370,6	210,030	0,592	98,3%	0,8624	4500
157,778 1,578 3,395 609067 180 1200 5,08 1,500 0,57 0,03 mm 1191,1 195,561 0,551 96,8% 0,8068 6000 147,763 1,478 3,180 589420 180 1200 4,91 1,550 0,55 0,02 mm 1173,1 199,026 0,561 101,3% 0,7424 9000 138,672 1,387 2,984 571000 180 1200 4,76 1,600 0,54 0,02 mm 108,99 190,000 0,535 99,3% 0,7299 9000 9000 9338 0,7299 9000 9338 0,7010 90,3% 0,7299 9000 93,38 0,7299 9000 93,38 0,983 155,918 104,90 0,02 mm 108,99 10,000 0,535 99,3% 0,7010 9000 93,38 0,983 165,369 0,466 93,2% 0,7010 9000 93,838 0,887 0,887 1,910 456800 1800 1200 3,81 2,000 0,444 0,01 mm 72,566 0,486 104,5% 0,5690 180	168,847	1,688	3,634	630069	180	1200	5,25	1,450	0,59	0,03 mm	1307,6	207,533	0,585	99,9%	0,8136	6000
147,763 1,478 3,180 589420 180 1200 4,91 1,550 0,55 0,02 mm 1173,1 199,026 0,561 101,3% 0,7424 90000 138,672 1,387 2,984 571000 180 1200 4,76 1,600 0,54 0,02 mm 1084,9 190,000 0,535 99,3% 0,7299 90000 115,918 1,159 2,495 522058 180 1200 4,35 1,750 0,500 0,02 mm 863,3 165,369 0,466 93,2% 0,7010 90000 93,3% 0,7010 99,3% 0,7010 90000 93,3% 0,7010 90,3% 0,7010 90,000 93,2% 0,7010 90,000 93,2% 0,7010 90,000 93,2% 0,7010 90,000 93,3% 0,7010 93,3% 0,7010 90,000 0,558 93,3% 0,7010 93,3% 0,7010 90,000 93,2% 0,7010 93,2% 0,7010 93,2% 0,7010 93,2% 0,7010 93,2% 0,7010 93,2% 0,7010 93,2% 0,7010 93,2% <td>157,778</td> <td>1,578</td> <td>3,395</td> <td>609067</td> <td>180</td> <td>1200</td> <td>5,08</td> <td>1,500</td> <td>0,57</td> <td>0,03 mm</td> <td>1191,1</td> <td>195,561</td> <td>0,551</td> <td>96,8%</td> <td>0,8068</td> <td>6000</td>	157,778	1,578	3,395	609067	180	1200	5,08	1,500	0,57	0,03 mm	1191,1	195,561	0,551	96,8%	0,8068	6000
138,672 1,387 2,984 571000 180 1200 4,76 1,600 0,54 0,02 mm 1084,9 190,000 0,535 99,3% 0,7299 9000 115,918 1,159 2,495 522058 180 1200 4,35 1,750 0,50 0,02 mm 863,3 165,369 0,466 93,2% 0,7010 9000 98,338 0,983 2,116 480843 180 1200 4,01 1,900 0,47 0,01 mm 863,3 165,369 0,466 93,2% 0,7010 9000 88,750 0,887 1,910 456800 180 1200 3,81 2,000 0,44 0,01 mm 728,0 159,378 0,449 100,9% 0,5569 1800 80,499 0,805 1,732 435048 180 1200 3,63 2,100 0,43 0,01 mm 728,0 159,378 0,415 97,4% 0,5660 1800 70,123 0,701 1,509 406045 180 1200 3,38 2,250 0,40 0,01 mm 535,2 1	147,763	1,478	3,180	589420	180	1200	4,91	1,550	0,55	0,02 mm	1173,1	199,026	0,561	101,3%	0,7424	9000
115,918 1,159 2,495 522058 180 1200 4,35 1,750 0,50 0,02 mm 863,3 165,369 0,466 93,2% 0,7010 900 98,338 0,983 2,116 480843 180 1200 4,01 1,900 0,47 0,01 mm 829,8 172,566 0,486 104,5% 0,5699 1800 88,750 0,887 1,910 456800 180 1200 3,81 2,000 0,44 0,01 mm 728,00 159,378 0,449 100,9% 0,5569 1800 80,499 0,805 1,732 435048 180 1200 3,63 2,100 0,43 0,01 mm 641,4 147,432 0,415 97,4% 0,5660 1800 70,123 0,701 1,509 406045 180 1200 3,38 2,500 0,46 0,01 mm 535,2 131,811 0,371 92,6% 0,5320 1800 70,123 0,701 1,222 365440 180 1200 3,05 2,500 0,36 0,01 mm 408,1 11	138,672	1,387	2,984	571000	180	1200	4,76	1,600	0,54	0,02 mm	1084,9	190,000	0,535	99,3%	0,7299	9000
98,338 0,983 2,116 480843 180 1200 4,01 1,900 0,47 0,01 mm 829,8 172,566 0,486 104,5% 0,5699 1800 88,750 0,887 1,910 456800 180 1200 3,81 2,000 0,44 0,01 mm 728,00 159,378 0,449 100,9% 0,5569 1800 80,499 0,805 1,732 435048 180 1200 3,63 2,100 0,43 0,01 mm 641,4 147,432 0,415 97,4% 0,5660 1800 70,123 0,701 1,509 406045 180 1200 3,38 2,250 0,40 0,01 mm 535,2 131,811 0,371 92,6% 0,5320 1800 56,800 0,568 1,222 365440 180 1200 3,05 2,500 0,36 0,01 mm 408,1 111,671 0,315 86,2% 0,5086 1800	115,918	1,159	2,495	522058	180	1200	4,35	1,750	0,50	0,02 mm	863,3	165,369	0,466	93,2%	0,7010	9000
88,750 0,887 1,910 456800 180 1200 3,81 2,000 0,44 0,01 mm 728,0 159,378 0,449 100,9% 0,5569 1800 80,499 0,805 1,732 435048 180 1200 3,63 2,100 0,43 0,01 mm 641,4 147,432 0,415 97,4% 0,5460 1800 70,123 0,701 1,509 406045 180 1200 3,38 2,250 0,40 0,01 mm 535,2 131,811 0,371 92,6% 0,5320 1800 56,800 0,568 1,222 365440 180 1200 3,05 2,500 0,36 0,01 mm 408,1 111,671 0,315 86,2% 0,5086 1800	98,338	0,983	2,116	480843	180	1200	4,01	1,900	0,47	0,01 mm	829,8	172,566	0,486	104,5%	0,5699	18000
80,499 0,805 1,732 435048 180 1200 3,63 2,100 0,43 0,01 mm 641,4 147,432 0,415 97,4% 0,5460 1800 70,123 0,701 1,509 406045 180 1200 3,38 2,250 0,40 0,01 mm 535,2 131,811 0,371 92,6% 0,5320 1800 56,800 0,568 1,222 365440 180 1200 3,05 2,500 0,36 0,01 mm 408,1 111,671 0,315 86,2% 0,5086 1800	88,750	0,887	1,910	456800	180	1200	3,81	2,000	0,44	0,01 mm	728,0	159,378	0,449	100,9%	0,5569	18000
70,123 0,701 1,509 406045 180 1200 3,38 2,250 0,40 0,01 mm 535,2 131,811 0,371 92,6% 0,5320 1800 56,800 0,568 1,222 365440 180 1200 3,05 2,500 0,36 0,01 mm 408,1 111,671 0,315 86,2% 0,5086 1800	80,499	0,805	1,732	435048	180	1200	3,63	2,100	0,43	0,01 mm	641,4	147,432	0,415	97,4%	0,5460	18000
56,800 0,568 1,222 365440 180 1200 3,05 2,500 0,36 0,01 mm 408,1 111,671 0,315 86,2% 0,5086 1800	70,123	0,701	1,509	406045	180	1200	3,38	2,250	0,40	0,01 mm	535,2	131,811	0,371	92,6%	0,5320	18000
	56,800	0,568	1,222	365440	180	1200	3,05	2,500	0,36	0,01 mm	408,1	111,671	0,315	86,2%	0,5086	18000
46,942 0,469 1,010 332218 180 1200 2,77 2,750 0,33 0,01 mm 314,8 94,742 0.267 79.8% 0.4955 1800	46,942	0,469	1,010	332218	180	1200	2,77	2,750	0,33	0,01 mm	314,8	94,742	0,267	79,8%	0,4955	18000
39,444 0,394 0,849 304534 180 1200 2,54 3,000 0,31 0,01 mm 250,5 82,260 0.232 75.0% 0.4795 1800	39,444	0,394	0,849	304534	180	1200	2,54	3,000	0,31	0,01 mm	250,5	82,260	0,232	75,0%	0,4795	18000

Das Diagramm mit dem Seitenverhältnis $\alpha = 0,15$

				Angepasste	Ersatzimpf. EC3	B-1-5 C									
				S	355				e ₀ =	Angepasst					
				σ,	100,0 N/mm²										
				k _a	13.201	α =	0.3		benötigte	ext.Kraf	t+ext.Pkt geko	ppelt			Verhaltnisf
σ	α	σ.	N [N]	a [mm]	h [mm]	t [mm]	λn	o nach Wint	Imper-						aktor zu
° cr,x	ovcr, x	°e	N [N]	afuuul	5 [iiiii]	t [iiiii]	7¢p	1.00	fektion		- [N] /	ρ nacn	Abweichung	a -a /a	original
702 707	7 020	50 272	25 46070	200	1200	24.22	0 (72)	1,00	0.20	0017.0	σ [N/mm ⁻]	ANSIS		$u_{cr} - 0_{cr} / 0$	Ersatzimp.
/83,/8/	7,838	59,373	2546878	360	1200	21,22	0,673	1,00	0,26 mm	9017,0	354,041	0,997	99,73%	2,2138	1385
631,111	6,311	47,807	2285399	360	1200	19,04	0,750	0,94	0,51 mm	7665,3	335,403	0,945	100,3%	1,8816	706
554,688	5,547	42,018	2142563	360	1200	17,85	0,800	0,91	0,60 mm	6886,4	321,409	0,905	99,9%	1,7258	600
491,349	4,913	37,220	2016528	360	1200	16,80	0,850	0,872	0,50 mm	6228,4	308,868	0,870	99,8%	1,5908	720
438,271	4,383	33,200	1904499	360	1200	15,87	0,900	0,840	0,55 mm	5672,1	297,826	0,839	99,9%	1,4/16	655
393,352	3,934	29,797	1804262	360	1200	15,04	0,950	0,81	0,48 mm	5177,1	286,937	0,808	99,9%	1,3709	750
355,000	3,550	26,892	1/14049	360	1200	14,28	1,000	0,78	0,42 mm	4/3/,5	276,392	0,779	99,8%	1,2844	857
321,996	3,220	24,392	1632429	360	1200	13,60	1,050	0,75	0,40 mm	4375,3	268,024	0,755	100,3%	1,2014	900
293,388	2,934	22,225	1558226	360	1200	12,99	1,100	0,73	0,30 mm	4017,8	257,844	0,726	99,9%	1,1379	1200
268,431	2,684	20,334	1490477	360	1200	12,42	1,150	0,70	0,23 mm	3728,8	250,175	0,705	100,2%	1,0730	1565
246,528	2,465	18,675	1428374	360	1200	11,90	1,200	0,68	0,17 mm	3460,8	242,289	0,683	100,3%	1,0175	2118
227,200	2,272	17,211	1371239	360	1200	11,43	1,250	0,66	0,14 mm	3196,0	233,074	0,657	99,6%	0,9748	2571
210,059	2,101	15,912	1318499	360	1200	10,99	1,300	0,64	0,10 mm	3013,4	228,548	0,644	100,7%	0,9191	3600
194,787	1,948	14,755	1269667	360	1200	10,58	1,350	0,62	0,08 mm	2792,0	219,900	0,619	99,9%	0,8858	4500
181,122	1,811	13,720	1224321	360	1200	10,20	1,400	0,60	0,07 mm	2609,2	213,114	0,600	99,7%	0,8499	5143
168,847	1,688	12,790	1182103	360	1200	9,85	1,450	0,59	0,06 mm	2446,6	206,970	0,583	99,7%	0,8158	6000
157,778	1,578	11,952	1142699	360	1200	9,52	1,500	0,57	0,05 mm	2295,3	200,866	0,566	99,5%	0,7855	7200
147,763	1,478	11,193	1105838	360	1200	9,22	1,550	0,55	0,05 mm	2142,3	193,726	0,546	98,6%	0,7627	7200
138,672	1,387	10,505	1071281	360	1200	8,93	1,600	0,54	0,04 mm	2063,3	192,601	0,543	100,6%	0,7200	9000
115,918	1,159	8,781	979457	360	1200	8,16	1,750	0,50	0,03 mm	1747,2	178,385	0,502	100,6%	0,6498	12000
98,338	0,983	7,449	902132	360	1200	7,52	1,900	0,47	0,02 mm	1558,1	172,713	0,487	104,5%	0,5694	18000
88,750	0,887	6,723	857025	360	1200	7,14	2,000	0,44	0,02 mm	1362,0	158,922	0,448	100,6%	0,5585	18000
80,499	0,805	6,098	816214	360	1200	6,80	2,100	0,43	0,02 mm	1218,9	149,336	0,421	98,7%	0,5390	18000
70,123	0,701	5,312	761800	360	1200	6,35	2,250	0,40	0,02 mm	1030,0	135,206	0,381	95,0%	0,5186	18000
56,800	0,568	4,303	685620	360	1200	5,71	2,500	0,36	0,01 mm	958,0	139,726	0,394	107,9%	0,4065	36000
46,942	0,469	3,556	623291	360	1200	5,19	2,750	0,33	0,01 mm	756,4	121,361	0,342	102,2%	0,3868	36000
39,444	0,394	2,988	571350	360	1200	4,76	3,000	0,31	0,01 mm	617,4	108,062	0,304	98,5%	0,3650	36000

Anhang 2 Druckbelastung Seitenverhältnis $\alpha = 0,30$

Das Diagramm mit dem Seitenverhältnis $\alpha = 0,30$

				Angepasste E	rsatzimpf. EC3	-1-5 C									
				S	355				e _o =	Angepasst					
				с С	$100.0 \text{N}/\text{mm}^2$				- 0	0-1					
				- O _x			0.45								Verhältnisf
				κ _σ	7,141	α =	0,45	•	benötigte	ext.Kraf	t+ext.Ркt geкo	ppelt			aktor zu
$\sigma_{cr,x}$	$\alpha_{cr,x}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λρ	ρ nach Wint	Imper-	F [kN] ANSYS		ρ nach			original
							0	1,00	fektion		σ [N/mm ²]	ANSYS	Abweichung	$\alpha_{\text{cr}}\!\!=\!\!\sigma_{\text{cr}}\!/\sigma$	Ersatzimp.
783,786	7,838	109,762	3462905	540	1200	28,86	0,673	1,00	0,60 mm	12314,0	355,597	1,002	100,2%	2,2041	900
631,110	6,311	88,381	3107380	540	1200	25,89	0,750	0,94	0,99 mm	10401,0	334,719	0,943	100,1%	1,8855	545
554,688	5,547	77,679	2913173	540	1200	24,28	0,800	0,91	1,00 mm	9387,3	322,236	0,908	100,2%	1,7214	540
491,349	4,913	68,809	2741807	540	1200	22,85	0,850	0,872	1,03 mm	8485,9	309,500	0,872	100,0%	1,5876	524
438,271	4,383	61,376	2589484	540	1200	21,58	0,900	0,840	0,98 mm	7716,5	297,994	0,839	100,0%	1,4707	551
393,352	3,934	55,085	2453197	540	1200	20,44	0,950	0,81	0,83 mm	7020,0	286,157	0,806	99,7%	1,3746	651
354,999	3,550	49,714	2330535	540	1200	19,42	1,000	0,78	0,86 mm	6480,0	278,048	0,783	100,4%	1,2768	628
321,996	3,220	45,093	2219560	540	1200	18,50	1,050	0,75	0,60 mm	5949,8	268,062	0,755	100,3%	1,2012	900
293,388	2,934	41,086	2118668	540	1200	17,66	1,100	0,73	0,54 mm	5492,3	259,234	0,730	100,4%	1,1318	1000
268,431	2,684	37,591	2026552	540	1200	16,89	1,150	0,70	0,39 mm	5059,3	249,651	0,703	100,0%	1,0752	1385
246,527	2,465	34,524	1942113	540	1200	16,18	1,200	0,68	0,30 mm	4695,1	241,752	0,681	100,1%	1,0198	1800
227,200	2,272	31,817	1864428	540	1200	15,54	1,250	0,66	0,22 mm	4359,1	233,804	0,659	99,9%	0,9718	2455
210,059	2,101	29,417	1792719	540	1200	14,94	1,300	0,64	0,17 mm	4061,1	226,533	0,638	99,9%	0,9273	3176
194,787	1,948	27,278	1726323	540	1200	14,39	1,350	0,62	0,13 mm	3802,3	220,254	0,620	100,1%	0,8844	4154
181,122	1,811	25,365	1664668	540	1200	13,87	1,400	0,60	0,11 mm	3563,5	214,067	0,603	100,2%	0,8461	4909
168,846	1,688	23,645	1607266	540	1200	13,39	1,450	0,59	0,09 mm	3358,3	208,945	0,589	100,6%	0,8081	6000
157,778	1,578	22,095	1553690	540	1200	12,95	1,500	0,57	0,08 mm	3144,8	202,408	0,570	100,2%	0,7795	6750
147,763	1,478	20,693	1503572	540	1200	12,53	1,550	0,55	0,07 mm	2962,6	197,037	0,555	100,3%	0,7499	7714
138,672	1,387	19,420	1456585	540	1200	12,14	1,600	0,54	0,07 mm	2768,0	190,034	0,535	99,3%	0,7297	7714
115,918	1,159	16,233	1331734	540	1200	11,10	1,750	0,50	0,05 mm	2367,0	177,738	0,501	100,2%	0,6522	10800
98,338	0,983	13,771	1226599	540	1200	10,22	1,900	0,47	0,04 mm	2045,9	166,795	0,470	100,96%	0,5896	13500
88,750	0,887	12,429	1165268	540	1200	9,71	2,000	0,44	0,04 mm	1852,6	158,985	0,448	100,6%	0,5582	13500
80,499	0,805	11,273	1109780	540	1200	9,25	2,100	0,43	0,04 mm	1667,4	150,246	0,423	99,3%	0,5358	13500
70,123	0,701	9,820	1035793	540	1200	8,63	2,250	0,40	0,03 mm	1488,7	143,726	0,405	100,97%	0,4879	18000
56,800	0,568	7,954	932214	540	1200	7,77	2,500	0,36	0,03 mm	1203,0	129,048	0,364	99,6%	0,4401	18000
46,942	0,469	6,574	847467	540	1200	7,06	2,750	0,33	0,03 mm	989,1	116,710	0,329	98,27%	0,4022	18000
39,444	0,394	5,524	776845	540	1200	6,47	3,000	0,31	0,02 mm	862,3	110,998	0,313	101,22%	0,3554	27000

Anhang 3 Druckbelastung Seitenverhältnis $\alpha = 0,45$

Das Diagramm mit dem Seitenverhältnis $\alpha = 0,45$

				Angonassto F	reatzimpf EC3	-1-50									
				Angepassie		-1-3C				A					
				5	355				e ₀ =	Angepasst					
				σ_x	100,0 N/mm²										Verhältnisf
				k _σ	5,138	α =	0,6		benötigte	ext.Kraf	t+ext.Pkt geko	ppelt			aktor zu
$\sigma_{cr,x}$	$\alpha_{\rm cr,x}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λρ	ρ nach Winte	Imper-	F [kN] ANSYS		o nach			original
·							0	1,00	fektion		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
783,789	7,838	152,554	4082500	720	1200	34,02	0,673	1,00	0,81 mm	14478,0	354,636	0,999	99,9%	2,2101	889
631,111	6,311	122,837	3663360	720	1200	30,53	0,750	0,94	1,50 mm	12223,0	333,655	0,940	99,8%	1,8915	480
554,688	5,547	107,963	3434402	720	1200	28,62	0,800	0,91	1,81 mm	11037,0	321,366	0,905	99,9%	1,7260	398
491,349	4,913	95,635	3232375	720	1200	26,94	0,850	0,872	1,80 mm	10038,0	310,546	0,875	100,3%	1,5822	400
438,272	4,383	85,304	3052803	720	1200	25,44	0,900	0,840	1,59 mm	9121,4	298,788	0,842	100,3%	1,4668	453
393,352	3,934	76,561	2892129	720	1200	24,10	0,950	0,81	1,55 mm	8289,0	286,605	0,807	99,8%	1,3725	465
355,001	3,550	69,096	2747522	720	1200	22,90	1,000	0,78	1,29 mm	7625,0	277,523	0,782	100,2%	1,2792	558
321,996	3,220	62,672	2616688	720	1200	21,81	1,050	0,75	1,10 mm	6983,1	266,868	0,752	99,9%	1,2066	655
293,389	2,934	57,104	2497748	720	1200	20,81	1,100	0,73	1,00 mm	6447,3	258,125	0,727	100,0%	1,1366	720
268,431	2,684	52,247	2389150	720	1200	19,91	1,150	0,70	0,70 mm	5963,4	249,603	0,703	100,0%	1,0754	1029
246,528	2,465	47,983	2289602	720	1200	19,08	1,200	0,68	0,54 mm	5527,9	241,435	0,680	99,9%	1,0211	1333
227,200	2,272	44,222	2198018	720	1200	18,32	1,250	0,66	0,41 mm	5140,8	233,883	0,659	99,9%	0,9714	1756
210,060	2,101	40,885	2113479	720	1200	17,61	1,300	0,64	0,32 mm	4796,6	226,953	0,639	100,0%	0,9256	2250
194,787	1,948	37,913	2035200	720	1200	16,96	1,350	0,62	0,24 mm	4483,3	220,288	0,621	100,1%	0,8842	3000
181,123	1,811	35,253	1962516	720	1200	16,35	1,400	0,60	0,20 mm	4191,5	213,578	0,602	99,9%	0,8480	3600
168,847	1,688	32,864	1894843	720	1200	15,79	1,450	0,59	0,18 mm	3930,7	207,442	0,584	99,9%	0,8139	4000
157,778	1,578	30,709	1831682	720	1200	15,26	1,500	0,57	0,15 mm	3711,9	202,650	0,571	100,3%	0,7786	4800
147,763	1,478	28,760	1772593	720	1200	14,77	1,550	0,55	0,14 mm	3489,7	196,870	0,555	100,2%	0,7506	5143
138,672	1,387	26,991	1717202	720	1200	14,31	1,600	0,54	0,13 mm	3291,6	191,684	0,540	100,2%	0,7234	5538
115,919	1,159	22,562	1570013	720	1200	13,08	1,750	0,50	0,11 mm	2800,6	178,381	0,502	100,6%	0,6498	6545
98,338	0,983	19,140	1446063	720	1200	12,05	1,900	0,47	0,11 mm	2391,4	165,373	0,466	100,1%	0,5946	6545
88,750	0,888	17,274	1373761	720	1200	11,45	2,000	0,45	0,10 mm	2176,0	158,397	0,446	100,3%	0,5603	7200
80,499	0,805	15,668	1308343	720	1200	10,90	2,100	0,43	0,10 mm	1979,0	151,260	0,426	99,9%	0,5322	7200
70,124	0,701	13,649	1221121	720	1200	10,18	2,250	0,40	0,10 mm	1733,8	141,984	0,400	99,7%	0,4939	7200
56,800	0,568	11,055	1099009	720	1200	9,16	2,500	0,36	0,10 mm	1425,8	129,735	0,365	100,2%	0,4378	7200
46,942	0,469	9,137	999099	720	1200	8,33	2,750	0,33	0,11 mm	1186,1	118,717	0,334	100,0%	0,3954	6545
39,445	0,394	7,677	915841	720	1200	7,63	3,000	0,31	0,11 mm	1002,1	109,419	0,308	99,8%	0,3605	6545

Anhang 4 Druckbelastung Seitenverhältnis $\alpha = 0,60$

Das Diagramm mit dem Seitenverhältnis $\alpha = 0,60$

				Angepasste E	rsatzimpf. EC	3-1-5 C									
				S	355				e _o =	Angepasst					
				G	100.0 N/mm²				- 0	0-1					
				U _x	100,0 N/IIIII		0.75			and Koof					Verhältnisf
				κσ	4,340	α =	0,75	-	benötigte	ext.Kraf	t+ext.Ркt geкo	ppeit			aktor zu
$\sigma_{cr,x}$	$\alpha_{cr,x}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λρ	ρ nach Winte	Imper-	F [kN] ANSYS		ρ nach			original
							0	1,00	fektion		σ [N/mm ²]	ANSYS	Abweichung	$\alpha_{\text{cr}} = \sigma_{\text{cr}} / \sigma$	Ersatzimp.
783,787	7,838	180,584	4441755	900	1200	37,01	0,673	1,00	1,30 mm	15674,0	352,879	0,994	99,4%	2,2211	692
631,111	6,311	145,408	3985735	900	1200	33,21	0,750	0,94	2,70 mm	13350,0	334,944	0,944	100,1%	1,8842	333
554,688	5,547	127,800	3736629	900	1200	31,14	0,800	0,91	2,85 mm	12011,0	321,439	0,905	99,9%	1,7256	316
491,350	4,914	113,207	3516829	900	1200	29,31	0,850	0,872	2,96 mm	10846,0	308,403	0,869	99,6%	1,5932	304
438,271	4,383	100,978	3321446	900	1200	27,68	0,900	0,840	2,95 mm	9880,1	297,464	0,838	99,8%	1,4734	305
393,352	3,934	90,628	3146633	900	1200	26,22	0,950	0,81	2,58 mm	9038,6	287,247	0,809	100,0%	1,3694	349
355,000	3,550	81,792	2989301	900	1200	24,91	1,000	0,78	2,64 mm	8251,3	276,028	0,778	99,7%	1,2861	341
321,995	3,220	74,188	2846954	900	1200	23,72	1,050	0,75	2,03 mm	7606,9	267,194	0,753	100,0%	1,2051	443
293,388	2,934	67,597	2717547	900	1200	22,65	1,100	0,73	4,60 mm	7002,9	257,692	0,726	99,8%	1,1385	196
268,431	2,684	61,846	2599392	900	1200	21,66	1,150	0,70	2,01 mm	6505,2	250,258	0,705	100,2%	1,0726	448
246,528	2,465	56,800	2491084	900	1200	20,76	1,200	0,68	1,51 mm	6043,8	242,617	0,683	100,4%	1,0161	596
227,200	2,272	52,347	2391441	900	1200	19,93	1,250	0,66	1,20 mm	5592,8	233,867	0,659	99,9%	0,9715	750
210,059	2,101	48,398	2299463	900	1200	19,16	1,300	0,64	1,57 mm	5195,6	225,948	0,636	99,6%	0,9297	573
194,787	1,948	44,879	2214297	900	1200	18,45	1,350	0,62	2,05 mm	4844,8	218,796	0,616	99,4%	0,8903	439
181,122	1,811	41,731	2135215	900	1200	17,79	1,400	0,60	3,50 mm	4572,7	214,156	0,603	100,2%	0,8457	257
168,847	1,688	38,902	2061587	900	1200	17,18	1,450	0,59	0,80 mm	4276,1	207,418	0,584	99,9%	0,8140	1125
157,778	1,578	36,352	1992868	900	1200	16,61	1,500	0,57	0,90 mm	3998,7	200,651	0,565	99,4%	0,7863	1000
147,763	1,478	34,045	1928582	900	1200	16,07	1,550	0,55	0,75 mm	3795,3	196,792	0,554	100,1%	0,7509	1200
138,672	1,387	31,950	1868315	900	1200	15,57	1,600	0,54	0,80 mm	3563,2	190,717	0,537	99,7%	0,7271	1125
115,918	1,159	26,708	1708173	900	1200	14,23	1,750	0,50	0,65 mm	3029,1	177,330	0,500	100,0%	0,6537	1385
98,338	0,983	22,657	1573318	900	1200	13,11	1,900	0,47	0,75 mm	2599,2	165,205	0,465	100,0%	0,5952	1200
88,750	0,887	20,448	1494651	900	1200	12,46	2,000	0,44	0,90 mm	2366,0	158,298	0,446	100,2%	0,5607	1000
80,499	0,805	18,547	1423477	900	1200	11,86	2,100	0,43	1,38 mm	2156,4	151,488	0,427	100,1%	0,5314	652
70,123	0,701	16,156	1328578	900	1200	11,07	2,250	0,40	2,00 mm	1891,8	142,393	0,401	100,0%	0,4925	450
56,800	0,568	13,087	1195721	900	1200	9,96	2,500	0,36	4,20 mm	1548,5	129,504	0,365	100,0%	0,4386	214
46,942	0,469	10,815	1087019	900	1200	9,06	2,750	0,33	6,77 mm	1291,3	118,793	0,335	100,0%	0,3952	133
39,444	0,394	9,088	996434	900	1200	8,30	3,000	0,31	9,50 mm	1094,1	109,802	0,309	100,1%	0,3592	95

Anhang 5 Druckbelastung Seitenverhältnis $\alpha = 0,75$

Das Diagramm mit dem Seitenverhältnis $\alpha = 0,75$

Anhang 6 Druckbelastung Seitenverhältnis $\alpha = \sqrt{2}$

				Angepasste E	rsatzimpf. EC3	-1-5 C									
				S	355				e ₀ =	Angepasst					
				σ	$100.0 \text{ N}/\text{mm}^2$										
				k k	4 500	a -	1 /1		honätisto	ovt Kraf	taavt Pkt geko	nnelt			Verhältnisf
-	~	-	NI [N1]	r 1	4,500		1,41 ^	1.140.1	Impor		ITEXI.F KI BEKO	ppen			aktor zu
σ _{cr,x}	$\alpha_{cr,x}$	σ _e	N [N]	a [mm]	b [mm]	t [mm]	λр	ρ nach Winte	foktion	F [KN] ANSYS		ρ nach			original
							0	1,00	Tektion		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
783,786	7,838	174,175	4362214	1692	1200	36,35	0,673	1,00	3,09 mm	15467,0	354,568	0,999	99,9%	2,2105	388
631,110	6,311	140,247	3914360	1692	1200	32,62	0,750	0,94	8,00 mm	13087,0	334,333	0,942	100,0%	1,8877	150
554,688	5,547	123,264	3669717	1692	1200	30,58	0,800	0,91	8,55 mm	11822,0	322,150	0,907	100,1%	1,7218	140
491,349	4,913	109,189	3453847	1692	1200	28,78	0,850	0,872	8,68 mm	10701,0	309,828	0,873	100,1%	1,5859	138
438,271	4,383	97,394	3261967	1692	1200	27,18	0,900	0,840	8,90 mm	9717,6	297,906	0,839	100,0%	1,4712	135
393,351	3,934	87,411	3090284	1692	1200	25,75	0,950	0,81	8,95 mm	8864,4	286,847	0,808	99,9%	1,3713	134
355,000	3,550	78,889	2935770	1692	1200	24,46	1,000	0,78	8,40 mm	8138,3	277,212	0,781	100,1%	1,2806	143
321,996	3,220	71,555	2795975	1692	1200	23,30	1,050	0,75	8,00 mm	7473,5	267,295	0,753	100,0%	1,2046	150
293,388	2,934	65,197	2668882	1692	1200	22,24	1,100	0,73	7,70 mm	6893,8	258,303	0,728	100,0%	1,1358	156
268,431	2,684	59,651	2552843	1692	1200	21,27	1,150	0,70	7,05 mm	6376,2	249,769	0,704	100,1%	1,0747	170
246,527	2,465	54,784	2446475	1692	1200	20,39	1,200	0,68	7,01 mm	5897,4	241,057	0,679	99,8%	1,0227	171
227,200	2,272	50,489	2348616	1692	1200	19,57	1,250	0,66	6,51 mm	5502,3	234,278	0,660	100,1%	0,9698	184
210,059	2,101	46,680	2258285	1692	1200	18,82	1,300	0,64	6,05 mm	5124,8	226,933	0,639	100,0%	0,9256	198
194,787	1,948	43,286	2174645	1692	1200	18,12	1,350	0,62	5,46 mm	4784,1	219,994	0,620	99,9%	0,8854	220
181,122	1,811	40,249	2096979	1692	1200	17,47	1,400	0,60	5,40 mm	4480,7	213,674	0,602	100,0%	0,8477	222
168,846	1,688	37,521	2024669	1692	1200	16,87	1,450	0,59	5,42 mm	4210,7	207,970	0,586	100,1%	0,8119	221
157,778	1,578	35,062	1957180	1692	1200	16,31	1,500	0,57	5,50 mm	3954,6	202,056	0,569	100,0%	0,7809	218
147,763	1,478	32,836	1894046	1692	1200	15,78	1,550	0,55	5,50 mm	3720,5	196,431	0,553	100,0%	0,7522	218
138,672	1,387	30,816	1834858	1692	1200	15,29	1,600	0,54	5,38 mm	3515,1	191,573	0,540	100,1%	0,7239	223
115,918	1,159	25,760	1677584	1692	1200	13,98	1,750	0,50	5,45 mm	2971,9	177,154	0,499	99,9%	0,6543	220
98,338	0,983	21,853	1545144	1692	1200	12,88	1,900	0,47	5,90 mm	2558,7	165,596	0,466	100,2%	0,5938	203
88,750	0,887	19,722	1467885	1692	1200	12,23	2,000	0,44	7,00 mm	2321,7	158,166	0,446	100,1%	0,5611	171
80,499	0,805	17,889	1397986	1692	1200	11,65	2,100	0,43	9,00 mm	2112,8	151,132	0,426	99,9%	0,5326	133
70,123	0,701	15,583	1304787	1692	1200	10,87	2,250	0,40	12,05 mm	1857,3	142,345	0,401	100,0%	0,4926	100
56,800	0,568	12,622	1174308	1692	1200	9,79	2,500	0,36	15,92 mm	1521,0	129,523	0,365	100,0%	0,4385	75
46,942	0,469	10,432	1067553	1692	1200	8,90	2,750	0,33	20,10 mm	1267,4	118,720	0,334	100,0%	0,3954	60
39,444	0,394	8,765	978590	1692	1200	8,15	3,000	0,31	20,00 mm	1072,6	109,607	0,309	100,0%	0,3599	60

Das Diagramm mit dem Seitenverhältnis α = $\sqrt{2}$

				Angenasste F	rsatzimnf FC3	L1-5C									
				c	355	,130			o -	Angenasst					
				5	555				C ₀ -	Angepasse					
				σ _x	100,0 N/mm²										Verhältnisf
				k _σ	4,000	α =	2		benötigte	ext.Kraf	t+ext.Pkt geko	ppelt			aktor zu
$\sigma_{cr,x}$	$\alpha_{\text{cr,x}}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λρ	ρ nach Wint	Imper-	F [kN] ANSYS		p nach			original
							0	1,00	fektion		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
783,788	7,838	195,947	4626832	2400	1200	38,56	0,673	1,00	1,75 mm	16441,0	355,340	1,001	100,1%	2,2057	686
631,112	6,311	157,778	4151811	2400	1200	34,60	0,750	0,94	4,91 mm	13877,0	334,240	0,942	99,9%	1,8882	244
554,688	5,547	138,672	3892323	2400	1200	32,44	0,800	0,91	5,20 mm	12517,0	321,582	0,906	100,0%	1,7249	231
491,349	4,913	122,837	3663358	2400	1200	30,53	0,850	0,872	5,20 mm	11336,0	309,443	0,872	100,0%	1,5879	231
438,271	4,383	109,568	3459839	2400	1200	28,83	0,900	0,840	5,13 mm	10332,0	298,627	0,841	100,2%	1,4676	234
393,352	3,934	98,338	3277743	2400	1200	27,31	0,950	0,81	5,05 mm	9406,6	286,984	0,808	99,9%	1,3706	238
355,000	3,550	88,750	3113858	2400	1200	25,95	1,000	0,78	4,80 mm	8625,2	276,994	0,780	100,0%	1,2816	250
321,995	3,220	80,499	2965576	2400	1200	24,71	1,050	0,75	4,80 mm	7941,8	267,800	0,754	100,2%	1,2024	250
293,389	2,934	73,347	2830781	2400	1200	23,59	1,100	0,73	4,20 mm	7312,3	258,314	0,728	100,1%	1,1358	286
268,431	2,684	67,108	2707700	2400	1200	22,56	1,150	0,70	4,27 mm	6750,6	249,311	0,702	99,9%	1,0767	281
246,528	2,465	61,632	2594882	2400	1200	21,62	1,200	0,68	3,90 mm	6271,2	241,676	0,681	100,0%	1,0201	308
227,200	2,272	56,800	2491086	2400	1200	20,76	1,250	0,66	3,74 mm	5835,9	234,271	0,660	100,1%	0,9698	321
210,059	2,101	52,515	2395273	2400	1200	19,96	1,300	0,64	3,50 mm	5432,1	226,784	0,639	100,0%	0,9263	343
194,788	1,948	48,697	2306562	2400	1200	19,22	1,350	0,62	3,33 mm	5082,0	220,328	0,621	100,1%	0,8841	360
181,123	1,811	45,281	2224183	2400	1200	18,53	1,400	0,60	3,31 mm	4746,5	213,404	0,601	99,9%	0,8487	363
168,847	1,688	42,212	2147487	2400	1200	17,90	1,450	0,59	3,25 mm	4461,9	207,773	0,585	100,0%	0,8126	369
157,778	1,578	39,444	2075905	2400	1200	17,30	1,500	0,57	3,10 mm	4186,2	201,657	0,568	99,9%	0,7824	387
147,763	1,478	36,941	2008939	2400	1200	16,74	1,550	0,55	3,60 mm	3947,6	196,502	0,554	100,0%	0,7520	333
138,672	1,387	34,668	1946162	2400	1200	16,22	1,600	0,54	3,51 mm	3729,2	191,618	0,540	100,1%	0,7237	342
115,918	1,159	28,980	1779347	2400	1200	14,83	1,750	0,50	5,00 mm	3155,9	177,363	0,500	100,0%	0,6536	240
98,338	0,983	24,585	1638872	2400	1200	13,66	1,900	0,47	7,00 mm	2707,0	165,175	0,465	100,0%	0,5954	171
88,750	0,888	22,188	1556929	2400	1200	12,97	2,000	0,45	8,30 mm	2459,5	157,971	0,445	100,0%	0,5618	145
80,499	0,805	20,125	1482789	2400	1200	12,36	2,100	0,43	10,00 mm	2244,6	151,377	0,426	100,0%	0,5318	120
70,124	0,701	17,531	1383937	2400	1200	11,53	2,250	0,40	13,05 mm	1969,1	142,282	0,401	100,0%	0,4928	92
56,800	0,568	14,200	1245543	2400	1200	10,38	2,500	0,36	18,34 mm	1613,5	129,542	0,365	100,0%	0,4385	65
46,942	0,469	11,736	1132312	2400	1200	9,44	2,750	0,33	24,00 mm	1345,1	118,792	0,335	100,0%	0,3952	50
39,444	0,394	9,861	1037953	2400	1200	8,65	3,000	0,31	29,10 mm	1138,3	109,668	0,309	100,0%	0,3597	41

Anhang 7 Druckbelastung Seitenverhältnis $\alpha = 2,00$

Das Diagramm mit dem Seitenverhältnis α = 2,00

Anhang 8 Druckbelastung Seitenverhältnis $\alpha = \sqrt{6}$

				Angepasste I	Ersatzimpf. EC3	-1-5 C									
				S	355				e _o =	- Angepasst					
				σ.,	100.0N/mm^2										
				k k	4 160	a -	2.45		h e n ätiste	evt Kraf	taavt Pkt geko	nnelt			Verhältnisf
_		_		ſ	4,100		2,43		benotigte	EXL.KIAI	ITEXI.F KI BEKU	ppen			aktor zu
σ _{cr,x}	α _{cr,x}	σ _e	N [N]	a [mm]	b [mm]	t [mm]	λр	ρ nach Winte	folution	F [KN] ANSYS	_	ρ nach			original
							0	1,00	Tektion		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
783,789	7,838	188,411	4536984	2934	1200	37,81	0,673	1,00	2,00 mm	16094,0	354,729	0,999	99,9%	2,2095	600
631,111	6,311	151,709	4071182	2934	1200	33,93	0,750	0,94	6,90 mm	13634,0	334,890	0,943	100,1%	1,8845	174
554,688	5,547	133,339	3816737	2934	1200	31,81	0,800	0,91	7,30 mm	12275,0	321,610	0,906	100,0%	1,7247	164
491,350	4,914	118,113	3592223	2934	1200	29,94	0,850	0,872	7,40 mm	11119,0	309,530	0,872	100,0%	1,5874	162
438,271	4,383	105,354	3392651	2934	1200	28,27	0,900	0,840	7,44 mm	10118,0	298,233	0,840	100,1%	1,4696	161
393,352	3,934	94,556	3214093	2934	1200	26,78	0,950	0,81	7,12 mm	9224,4	286,999	0,808	99,9%	1,3706	169
355,000	3,550	85,336	3053386	2934	1200	25,44	1,000	0,78	7,00 mm	8454,2	276,879	0,780	100,0%	1,2821	171
321,996	3,220	77,403	2907990	2934	1200	24,23	1,050	0,75	6,65 mm	i 7777,3	267,446	0,753	100,1%	1,2040	180
293,389	2,934	70,526	2775807	2934	1200	23,13	1,100	0,73	6,20 mm	7169,2	258,274	0,728	100,0%	1,1360	194
268,431	2,684	64,527	2655120	2934	1200	22,13	1,150	0,70	5,99 mm	6630,1	249,710	0,703	100,0%	1,0750	200
246,528	2,465	59,262	2544490	2934	1200	21,20	1,200	0,68	5,59 mm	6147,0	241,581	0,681	100,0%	1,0205	215
227,200	2,272	54,615	2442708	2934	1200	20,36	1,250	0,66	5,56 mm	5717,8	234,076	0,659	100,0%	0,9706	216
210,059	2,101	50,495	2348758	2934	1200	19,57	1,300	0,64	5,00 mm	5328,1	226,848	0,639	100,0%	0,9260	240
194,788	1,948	46,824	2261770	2934	1200	18,85	1,350	0,62	5,30 mm	4978,0	220,093	0,620	100,0%	0,8850	226
181,123	1,811	43,539	2180993	2934	1200	18,17	1,400	0,60	5,01 mm	4662,8	213,793	0,602	100,0%	0,8472	240
168,847	1,688	40,588	2105784	2934	1200	17,55	1,450	0,59	4,90 mm	4372,4	207,638	0,585	100,0%	0,8132	245
157,778	1,578	37,927	2035591	2934	1200	16,96	1,500	0,57	5,30 mm	4111,5	201,981	0,569	100,0%	0,7812	226
147,763	1,478	35,520	1969927	2934	1200	16,42	1,550	0,55	5,60 mm	3869,7	196,439	0,553	100,0%	0,7522	214
138,672	1,387	33,335	1908369	2934	1200	15,90	1,600	0,54	5,50 mm	3647,7	191,142	0,538	99,9%	0,7255	218
115,919	1,159	27,865	1744794	2934	1200	14,54	1,750	0,50	7,40 mm	3095,1	177,391	0,500	100,0%	0,6535	162
98,338	0,983	23,639	1607047	2934	1200	13,39	1,900	0,47	9,60 mm	2656,0	165,272	0,466	100,0%	0,5950	125
88,750	0,888	21,334	1526695	2934	1200	12,72	2,000	0,45	10,94 mm	2412,8	158,041	0,445	100,0%	0,5616	110
80,499	0,805	19,351	1453994	2934	1200	12,12	2,100	0,43	13,70 mm	2200,8	151,362	0,426	100,0%	0,5318	88
70,123	0,701	16,857	1357060	2934	1200	11,31	2,250	0,40	16,48 mm	1931,7	142,344	0,401	100,0%	0,4926	73
56,800	0,568	13,654	1221355	2934	1200	10,18	2,500	0,36	22,00 mm	1581,7	129,504	0,365	100,0%	0,4386	55
46,942	0,469	11,284	1110323	2934	1200	9,25	2,750	0,33	28,00 mm	1319,1	118,803	0,335	100,0%	0,3951	43
39,444	0,394	9,482	1017796	2934	1200	8,48	3,000	0,31	34,70 mm	1116,2	109,668	0,309	100,0%	0,3597	35

Das Diagramm mit dem Seitenverhältnis $\alpha = \sqrt{6}$

				Angenasste F	rsatzimnf FC3	L1-5C									
				c	255	-1-30			0 -	Angonasst					
				3	500				e ₀ -	Angepassi					
				σ _x	100,0 N/mm²										Verhältnisf
				k _σ	4,000	α =	3		benötigte	ext.Kraf	t+ext.Pkt geko	ppelt			aktor zu
$\sigma_{\text{cr,x}}$	$\alpha_{\text{cr,x}}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λр	ρ nach Wint	Imper-	F [kN] ANSYS		o nach			original
							0	1,00	fektion		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
783,788	7,838	195,947	4626832	3600	1200	38,56	0,673	1,00	1,34 mm	16419,0	354,865	1,000	100,0%	2,2087	896
631,112	6,311	157,778	4151811	3600	1200	34,60	0,750	0,94	4,59 mm	13881,0	334,336	0,942	100,0%	1,8877	261
554,688	5,547	138,672	3892323	3600	1200	32,44	0,800	0,91	5,35 mm	12532,0	321,967	0,907	100,1%	1,7228	224
491,349	4,913	122,837	3663358	3600	1200	30,53	0,850	0,872	5,10 mm	11348,0	309,770	0,873	100,1%	1,5862	235
438,271	4,383	109,568	3459839	3600	1200	28,83	0,900	0,840	5,00 mm	10314,0	298,106	0,840	100,0%	1,4702	240
393,352	3,934	98,338	3277743	3600	1200	27,31	0,950	0,81	5,00 mm	9413,5	287,195	0,809	100,0%	1,3696	240
355,000	3,550	88,750	3113858	3600	1200	25,95	1,000	0,78	4,85 mm	8616,0	276,699	0,779	99,9%	1,2830	247
321,995	3,220	80,499	2965576	3600	1200	24,71	1,050	0,75	4,68 mm	7932,2	267,476	0,753	100,1%	1,2038	256
293,389	2,934	73,347	2830781	3600	1200	23,59	1,100	0,73	4,20 mm	7322,6	258,678	0,729	100,2%	1,1342	286
268,431	2,684	67,108	2707700	3600	1200	22,56	1,150	0,70	3,80 mm	6769,4	250,005	0,704	100,1%	1,0737	316
246,528	2,465	61,632	2594882	3600	1200	21,62	1,200	0,68	3,60 mm	6266,2	241,483	0,680	100,0%	1,0209	333
227,200	2,272	56,800	2491086	3600	1200	20,76	1,250	0,66	3,57 mm	5836,3	234,287	0,660	100,1%	0,9698	336
210,059	2,101	52,515	2395273	3600	1200	19,96	1,300	0,64	3,29 mm	5441,2	227,164	0,640	100,1%	0,9247	365
194,788	1,948	48,697	2306562	3600	1200	19,22	1,350	0,62	3,00 mm	5076,4	220,085	0,620	100,0%	0,8851	400
181,123	1,811	45,281	2224183	3600	1200	18,53	1,400	0,60	3,30 mm	4751,9	213,647	0,602	100,0%	0,8478	364
168,847	1,688	42,212	2147487	3600	1200	17,90	1,450	0,59	2,91 mm	4463,2	207,834	0,585	100,1%	0,8124	412
157,778	1,578	39,444	2075905	3600	1200	17,30	1,500	0,57	3,00 mm	4187,1	201,700	0,568	99,9%	0,7822	400
147,763	1,478	36,941	2008939	3600	1200	16,74	1,550	0,55	3,00 mm	3947,4	196,492	0,553	100,0%	0,7520	400
138,672	1,387	34,668	1946162	3600	1200	16,22	1,600	0,54	3,20 mm	3724,9	191,397	0,539	100,0%	0,7245	375
115,918	1,159	28,980	1779347	3600	1200	14,83	1,750	0,50	4,10 mm	3154,7	177,295	0,499	100,0%	0,6538	293
98,338	0,983	24,585	1638872	3600	1200	13,66	1,900	0,47	6,70 mm	2707,8	165,223	0,465	100,0%	0,5952	179
88,750	0,888	22,188	1556929	3600	1200	12,97	2,000	0,45	7,61 mm	2458,5	157,907	0,445	100,0%	0,5620	158
80,499	0,805	20,125	1482789	3600	1200	12,36	2,100	0,43	9,72 mm	2242,0	151,202	0,426	99,9%	0,5324	123
70,124	0,701	17,531	1383937	3600	1200	11,53	2,250	0,40	12,39 mm	1972,1	142,499	0,401	100,1%	0,4921	97
56,800	0,568	14,200	1245543	3600	1200	10,38	2,500	0,36	18,00 mm	1612,6	129,470	0,365	100,0%	0,4387	67
46,942	0,469	11,736	1132312	3600	1200	9,44	2,750	0,33	23,41 mm	1345,2	118,801	0,335	100,0%	0,3951	51
39,444	0,394	9,861	1037953	3600	1200	8,65	3,000	0,31	28,50 mm	1138,3	109,668	0,309	100,0%	0,3597	42

Anhang 9 Druckbelastung Seitenverhältnis $\alpha = 3,00$

Das Diagramm mit dem Seitenverhältnis α = 3,00

							Querrände	r mit externe Punkte	e in b-Richtung (y-Ri)	gekoppelt		-> Belastung	g mit externer	Kraft	
							Längstränd	er mit externe Punk	te verformbar			-> Belastung	g mit externer	Kraft	
\/1															
VI	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die W	inter-Kurve										
				5	355		e ₀ =	Angepasst durch F	Regression						
				τ	57,74) (
				kτ	242,087	α =	0,15	nach EC3-1-6		ext.Kra	aft+ext.Pkt gel	koppelt			vernaltnist
τ _{cr}	acre	σ	N [N]	a [mm]	þ (mm)	t [mm]	λw	γ_{\odot} mit n=1.0	benötigte	F [kN] ANSY	S	γ nach			aktor zu
<u>u</u>	0,0	L.	. ,				0	1.00	Verformung		σ [N/mm ²]		Abweichung	a.=a./a	Ersatzimn
320 248	5 547	1 323	219488	180	1200	3 17	0.800	1.00	1.00 mm	704 5	185 320	0.904	90.42%	1 7281	1200
320,240	3,547	1,525	175501	100	1200	3,17	1,000	1,00	1,00 mm	70 4 ,5	105,520	0,007	07,22%	1,7201	1200
204,960	3,550	0,847	175591	180	1200	2,53	1,000	0,83	1,00 mm	503,0	165,398	0,807	97,23%	1,2392	1200
131,175	2,272	0,542	140473	180	1200	2,03	1,250	0,66	2,48 mm	331,8	136,388	0,665	100,22%	0,9618	484
91,093	1,578	0,376	117061	180	1200	1,69	1,500	0,55	4,45 mm	230,0	113,447	0,554	100,03%	0,8030	270
66,926	1,159	0,276	100338	180	1200	1,45	1,750	0,47	5,86 mm	168,9	97,198	0,474	99,99%	0,6886	205
51,240	0,888	0,212	87796	180	1200	1,27	2,000	0,42	7,00 mm	129,4	85,061	0,415	100,00%	0,6024	171
40,486	0,701	0,167	78041	180	1200	1,13	2,250	0,37	7,50 mm	102,1	75,542	0,369	99,91%	0,5359	160
32,794	0,568	0,135	70237	180	1200	1,01	2,500	0,33	7,81 mm	82,6	67,912	0,331	99,80%	0,4829	154
27,102	0,469	0,112	63851	180	1200	0,92	2,750	0,30	8,32 mm	68,5	61,981	0,302	100,19%	0,4373	144
22.773	0.394	0.094	58530	180	1200	0.84	3.000	0.28	8.90 mm	57.5	56.753	0.277	100.08%	0.4013	135

Anhang 10 Schubbelastung Seitenverhältnis $\alpha = 0,15$

							Querrände	r mit externe Punkte	in b-Richtur	ng (y-Ri) (gekoppelt		-> Belastung	gmit Kraft		
							Längstränd	er mit externe Punkt	te verformba	ar			-> Belastung	mit Kraft		
1/2																
VZ	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die W	inter-Kurve											
				S	355		e ₀ =	Angepasst durch R	egression							
				τ	57,74) (a sub il basi af
				k _τ	242,087	α =	0,15	nach EC3-1-6			ext.Kra	ft+ext.Pkt gek	oppelt			vernaltnisi
τ _{cr}	acre	σ	N [N]	a [mm]	þ (mm)	t [mm]	λw	γ_{∞} mit n=1.0	ber	nötigte	F [kN] ANSY	-	γ nach			
	0,0					-1 -	0	1.00	Verf	ormung		$\sigma [N/mm^2]$		Abweichung	$\alpha = \sigma / \sigma$	Freatzimn
220.249	F F 47	1 222	210499	100	1200	2.17	0.800	1,00	1	1 00 ma ma	722.0	180.007	0.027	02.00%	1 CPC2	1200
320,248	5,547	1,323	219488	180	1200	3,17	0,800	1,00		1,00 mm	722,0	189,907	0,927	92,00%	1,0803	1200
204,960	3,550	0,847	175591	180	1200	2,53	1,000	0,83	1	1,01 mm	518,0	170,310	0,831	100,11%	1,2035	1188
131,175	2,272	0,542	140473	180	1200	2,03	1,250	0,66	3	3,28 mm	331,1	136,071	0,664	99,98%	0,9640	366
91,093	1,578	0,376	117061	180	1200	1,69	1,500	0,55	5	5,23 mm	229,3	113,107	0,552	99,73%	0,8054	229
66,926	1,159	0,276	100338	180	1200	1,45	1,750	0,47	e	6,40 mm	169,3	97,416	0,475	100,21%	0,6870	188
51,240	0,888	0,212	87796	180	1200	1,27	2,000	0,42	7	7,85 mm	129,5	85,140	0,415	100,10%	0,6018	153
40,486	0,701	0,167	78041	180	1200	1,13	2,250	0,37	7	7,90 mm	102,1	75,520	0,368	99,88%	0,5361	152
32,794	0,568	0,135	70237	180	1200	1,01	2,500	0,33	8	8,10 mm	82,8	68,050	0,332	100,00%	0,4819	148
27,102	0,469	0,112	63851	180	1200	0,92	2,750	0,30	8	8,70 mm	68,4	61,865	0,302	100,01%	0,4381	138
22,773	0,394	0,094	58530	180	1200	0,84	3,000	0,28	9	9,40 mm	57,5	56,727	0,277	100,04%	0,4015	128

							Querränder	r mit externe Pur	nkte in b-Ri	chtung (z-Ri) (gekoppelt		-> Belastung	g mit externer	Kraft	
							Längstrände	er mit externe Pu	inkte verfo	rmbar			-> Belastung	g mit externer	Kraft	
V3	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst duro	h Regressi	on						
				τ	57,74											Vorhältnicf
				k _τ	242,087	α=	0,15	nach EC3-1-6			ext.Kra	ft+ext.Pkt gel	coppelt			aktor zu
τ_{cr}	α _{cr,τ}	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ_{ω} mit η=1,0		benotigte	F [kN] ANSY	5	χ_w nach			original
							0	1,00		venonnung		σ[N/mm²]	ANSYS	Abweichung	$\alpha_{\text{cr}}\!\!=\!\!\sigma_{\text{cr}}\!/\sigma$	Ersatzimp.
320,248	5,547	1,323	219488	180	1200	3,17	0,800	1,00		1,00 mm	34,9	9,191	0,045	4,48%	34,8427	1200
204,960	3,550	0,847	175591	180	1200	2,53	1,000	0,83		1,00 mm	25,0	8,223	0,040	4,83%	24,9241	1200
131,175	2,272	0,542	140473	180	1200	2,03	1,250	0,66		1,00 mm	18,2	7,500	0,037	5,51%	17,4890	1200
91,093	1,578	0,376	117061	180	1200	1,69	1,500	0,55		1,00 mm	14,3	7,076	0,035	6,24%	12,8745	1200
66,926	1,159	0,276	100338	180	1200	1,45	1,750	0,47		1,00 mm	7,2	4,130	0,020	4,25%	16,2040	1200
51,240	0,888	0,212	87796	180	1200	1,27	2,000	0,42		1,00 mm	6,1	3,985	0,019	4,69%	12,8579	1200
40,486	0,701	0,167	78041	180	1200	1,13	2,250	0,37		1,00 mm	5,2	3,866	0,019	5,11%	10,4717	1200
32,794	0,568	0,135	70237	180	1200	1,01	2,500	0,33		1,00 mm	4,5	3,720	0,018	5,47%	8,8147	1200
27,102	0,469	0,112	63851	180	1200	0,92	2,750	0,30		1,00 mm	3,9	3,555	0,017	5,75%	7,6245	1200
22,773	0,394	0,094	58530	180	1200	0,84	3,000	0,28		1,00 mm	3,3	3,241	0,016	5,72%	7,0259	1200

							Querrände	r mit externe Pu	nkte in b-Ri	chtung (z-Ri)	gekoppelt		-> Belastung	; mit Kraft		
							Längstränd	er mit externe P	unkte verfo	rmbar			-> Belastung	g mit Kraft		
V/A																
V4	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst dur	ch Regressi	on						
				τ	57,74											Vorbältnisf
				k _τ	242,087	α =	0,15	nach EC3-1-6			ext.Kra	ft+ext.Pkt gek	oppelt			vernaitnisi
τ _{cr}	acre	σ	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ω mit η=1,0		benötigte	F [kN] ANSY	5	γ…nach			original
							0	1,00		vertormung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,248	5,547	1,323	219488	180	1200	3,17	0,800	1,00		1,00 mm	722,0	189,904	0,927	92,65%	1,6864	1200
204,960	3,550	0,847	175591	180	1200	2,53	1,000	0,83		1,00 mm	515,5	169,488	0,827	99,63%	1,2093	1200
131,175	2,272	0,542	140473	180	1200	2,03	1,250	0,66		1,93 mm	331,0	136,038	0,664	99,96%	0,9642	622
91,093	1,578	0,376	117061	180	1200	1,69	1,500	0,55		2,39 mm	229,9	113,403	0,553	99,99%	0,8033	502
66,926	1,159	0,276	100338	180	1200	1,45	1,750	0,47		2,92 mm	168,9	97,163	0,474	99,95%	0,6888	411
51,240	0,888	0,212	87796	180	1200	1,27	2,000	0,42		3,21 mm	129,3	85,042	0,415	99,98%	0,6025	374
40,486	0,701	0,167	78041	180	1200	1,13	2,250	0,37		3,59 mm	102,3	75,675	0,369	100,09%	0,5350	334
32,794	0,568	0,135	70237	180	1200	1,01	2,500	0,33		3,10 mm	82,8	68,046	0,332	100,00%	0,4819	387
27,102	0,469	0,112	63851	180	1200	0,92	2,750	0,30		3,60 mm	68,4	61,879	0,302	100,03%	0,4380	333
22,773	0,394	0,094	58530	180	1200	0,84	3,000	0,28		3,42 mm	57,4	56,641	0,276	99,89%	0,4021	351

Die Diagramme mit dem Seitenverhältnis $\alpha = 0,15$

V 1

V 2

V 3

V 4

							Querrände	r mit externe Pur	nkte in b-Ricl	htung (y-Ri)	gekoppelt		-> Belastung	, mit externer	Kraft	
							Längstränd	er mit externe Pu	unkte verfori	mbar			-> Belastung	, mit externer	Kraft	
\/1																
VI	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst dure	ch Regressio	n						
				τ	57,74											Vorhältnicf
				k _τ	64,308	α =	0,3	nach EC3-1-6			ext.Kra	ft+ext.Pkt ge	oppelt			vernartnisi
τ_{cr}	$\alpha_{cr,\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ_{ω} mit η=1,0		benotigte orformung	F [kN] ANSY	5	χ_w nach			original
							0	1,00	V	remonnung		σ[N/mm²]	ANSYS	Abweichung	$\alpha_{\text{cr}}\!\!=\!\!\sigma_{\text{cr}}\!/\sigma$	Ersatzimp.
320,249	5,547	4,980	425858	360	1200	6,15	0,800	1,00		1,00 mm	1386,7	188,000	0,917	91,73%	1,7035	1200
204,959	3,550	3,187	340686	360	1200	4,92	1,000	0,83		1,00 mm	996,1	168,808	0,824	99,23%	1,2142	1200
131,174	2,272	2,040	272549	360	1200	3,93	1,250	0,66		2,50 mm	642,5	136,095	0,664	100,00%	0,9638	480
91,093	1,578	1,417	227124	360	1200	3,28	1,500	0,55		4,56 mm	446,6	113,513	0,554	100,09%	0,8025	263
66,925	1,159	1,041	194678	360	1200	2,81	1,750	0,47		6,15 mm	327,8	97,200	0,474	99,99%	0,6885	195
51,240	0,887	0,797	170343	360	1200	2,46	2,000	0,41		7,38 mm	250,8	84,994	0,415	99,93%	0,6029	163
40,486	0,701	0,630	151416	360	1200	2,19	2,250	0,37		8,34 mm	198,1	75,536	0,369	99,91%	0,5360	144
32,793	0,568	0,510	136275	360	1200	1,97	2,500	0,33		9,27 mm	160,2	67,876	0,331	99,75%	0,4831	129
27,102	0,469	0,421	123886	360	1200	1,79	2,750	0,30		9,88 mm	132,5	61,768	0,301	99,85%	0,4388	121
22.773	0.394	0.354	113562	360	1200	1.64	3.000	0.28		10.50 mm	111.6	56.712	0.277	100.01%	0.4016	114

Anhang 11 Schubbelastung Seitenverhältnis $\alpha = 0,30$

							Querrände	r mit externe Pu	unkte in b-Ri	chtung (y-Ri)	gekoppelt		-> Belastung	mit Kraft		
							Längstränd	er mit externe F	Punkte verfo	rmbar			-> Belastung	mit Kraft		
1/2																
VZ	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	inter-Kurve											
				S	355		e ₀ =	Angepasst du	rch Regressi	on						
				τ	57,74) (
				kτ	30,955	α =	0,3	nach EC3-1-6			ext.Kra	ft+ext.Pkt gel	oppelt			vernaltnist
τ _{cr}	acre	σ	N [N]	a [mm]	b [mm]	t [mm]	λw	γ_{o} mit n=1.0		benötigte	F [kN] ANSY	-	γ nach			
c.	ci, t	L.					0	1.00		Verformung		σ [N/mm ²]		Abweichung	α.=σ./σ	Freatzimn
320 249	5 547	4 980	425858	360	1200	6 15	0.800	1.00		1 00 mm	1469 3	199 198	0 972	97 19%	1 6077	1200
204 050	3,547	2 107	240696	360	1200	4.02	1,000	1,00		1,00 mm	1005 7	170 422	0,972	100 10%	1,0077	706
204,959	5,550	5,107	540060	500	1200	4,92	1,000	0,85		1,7011111	1005,7	170,455	0,652	100,19%	1,2020	700
131,174	2,272	2,040	272549	360	1200	3,93	1,250	0,66		4,05 mm	642,4	136,090	0,664	100,00%	0,9639	296
91,093	1,578	1,417	227124	360	1200	3,28	1,500	0,55		6,51 mm	447,5	113,747	0,555	100,30%	0,8008	184
66,925	1,159	1,041	194678	360	1200	2,81	1,750	0,47		8,20 mm	327,9	97,241	0,474	100,03%	0,6882	146
51,240	0,887	0,797	170343	360	1200	2,46	2,000	0,41		9,20 mm	251,0	85,069	0,415	100,01%	0,6023	130
40,486	0,701	0,630	151416	360	1200	2,19	2,250	0,37		10,05 mm	198,5	75,680	0,369	100,10%	0,5350	119
32,793	0,568	0,510	136275	360	1200	1,97	2,500	0,33		10,50 mm	160,5	68,011	0,332	99,95%	0,4822	114
27,102	0,469	0,421	123886	360	1200	1,79	2,750	0,30		10,98 mm	132,7	61,847	0,302	99,98%	0,4382	109
22,773	0,394	0,354	113562	360	1200	1,64	3,000	0,28		11,60 mm	111,6	56,722	0,277	100,03%	0,4015	103

							Querrände	r mit externe Punkte	in b-Richtung (z-Ri) g	gekoppelt		-> Belastung	, mit externer	Kraft	
							Längstränd	er mit externe Punkt	e verformbar			-> Belastung	, mit externer	Kraft	
\/2															
V S	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve										
				S	355		e ₀ =	Angepasst durch R	egression						
				τ	57,74										Vorhältnicf
				k _τ	30,955	α =	= 0,3	nach EC3-1-6		ext.Kra	aft+ext.Pkt gel	coppelt			verhaltnisi
τ _{cr}	$\alpha_{cr.\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _o mit η=1,0	benotigte	F [kN] ANSY	rs	γ nach			original
							0	1,00	Verformung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{\rm cr} = \sigma_{\rm cr} / \sigma$	Ersatzimp.
320,249	5,547	4,980	425858	360	1200	6,15	0,800	1,00	1,00 mm	97,6	13,226	0,065	6,45%	24,2134	1200
204,959	3,550	3,187	340686	360	1200	4,92	1,000	0,83	1,00 mm	65,4	11,087	0,054	6,52%	18,4867	1200
131,174	2,272	2,040	272549	360	1200	3,93	1,250	0,66	1,00 mm	46,9	9,928	0,048	7,29%	13,2131	1200
91,093	1,578	1,417	227124	360	1200	3,28	1,500	0,55	1,00 mm	34,6	8,804	0,043	7,76%	10,3465	1200
66,925	1,159	1,041	194678	360	1200	2,81	1,750	0,47	1,00 mm	29,5	8,734	0,043	8,98%	7,6625	1200
51,240	0,887	0,797	170343	360	1200	2,46	2,000	0,41	1,00 mm	18,2	6,157	0,030	7,24%	8,3217	1200
40,486	0,701	0,630	151416	360	1200	2,19	2,250	0,37	1,00 mm	21,5	8,188	0,040	10,83%	4,9445	1200
32,793	0,568	0,510	136275	360	1200	1,97	2,500	0,33	1,00 mm	18,3	7,772	0,038	11,42%	4,2196	1200
27,102	0,469	0,421	123886	360	1200	1,79	2,750	0,30	1,00 mm	14,6	6,794	0,033	10,98%	3,9892	1200
22,773	0,394	0,354	113562	360	1200	1,64	3,000	0,28	1,00 mm	11,6	5,878	0,029	10,37%	3,8742	1200

						Querränder mit externe Punkte in b-Rich					gekoppelt		-> Belastung	g mit Kraft		
							Längstränd	er mit externe F	Punkte verfo	ormbar			-> Belastung	g mit Kraft		
VA																
V4	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die W	inter-Kurve											
				S	355		e ₀ =	Angepasst du	rch Regressi	on						
				τ	57,74											Vorbältnisf
				k _τ	30,955	α =	0,3	nach EC3-1-6			ext.Kra	ft+ext.Pkt gel	koppelt			vernaltnisi
τ_{cr}	$\alpha_{cr,\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ա mit η=1,0		benotigte	F [kN] ANSY	S	χ., nach			original
							0	1,00		verrormung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	4,980	425858	360	1200	6,15	0,800	1,00		1,00 mm	1444,4	195,822	0,955	95,54%	1,6354	1200
204,959	3,550	3,187	340686	360	1200	4,92	1,000	0,83		3,08 mm	1003,6	170,077	0,830	99,98%	1,2051	390
131,174	2,272	2,040	272549	360	1200	3,93	1,250	0,66		5,92 mm	642,3	136,067	0,664	99,98%	0,9640	203
91,093	1,578	1,417	227124	360	1200	3,28	1,500	0,55		7,19 mm	446,3	113,437	0,553	100,02%	0,8030	167
66,925	1,159	1,041	194678	360	1200	2,81	1,750	0,47		7,45 mm	327,8	97,223	0,474	100,01%	0,6884	161
51,240	0,887	0,797	170343	360	1200	2,46	2,000	0,41		7,39 mm	251,0	85,072	0,415	100,02%	0,6023	162
40,486	0,701	0,630	151416	360	1200	2,19	2,250	0,37		7,10 mm	198,3	75,627	0,369	100,03%	0,5353	169
32,793	0,568	0,510	136275	360	1200	1,97	2,500	0,33		6,50 mm	160,6	68,058	0,332	100,02%	0,4818	185
27,102	0,469	0,421	123886	360	1200	1,79	2,750	0,30		5,73 mm	132,6	61,815	0,302	99,93%	0,4384	209
22,773	0,394	0,354	113562	360	1200	1,64	3,000	0,28		5,40 mm	111,5	56,702	0,277	99,99%	0,4016	222

Die Diagramme mit dem Seitenverhältnis α = 0,30

V 1

V 2

V 3

V 4

Anhang 12 Schubbelastung Seitenverhältnis $\alpha = 0,45$

							Querrände	r mit externe Punkt	e in b-Richtung (y-Ri)	gekoppelt		-> Belastung	mit externer	Kraft	
							Längstränd	er mit externe Punk	te verformbar			-> Belastung	mit externer	Kraft	
\/1															
VI	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve										
				S	355		e ₀ =	Angepasst durch	Regression						
				τ	57,74										Vorhältnicf
				k _τ	30,955	α =	0,45	nach EC3-1-6		ext.Kra	ft+ext.Pkt gel	koppelt			vernaitiisi
τ_{cr}	α _{cr,τ}	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _o mit η=1,0	benotigte	F [kN] ANSY	5	$\gamma_{\rm w}$ nach			original
							0	1,00	venormung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	10,346	613808	540	1200	8,86	0,800	1,00	1,00 mm	2007,9	188,864	0,921	92,15%	1,6957	1200
204,959	3,550	6,621	491046	540	1200	7,09	1,000	0,83	1,00 mm	1421,9	167,181	0,816	98,27%	1,2260	1200
131,174	2,272	4,238	392837	540	1200	5,67	1,250	0,66	2,03 mm	925,5	136,016	0,664	99,94%	0,9644	591
91,093	1,578	2,943	327364	540	1200	4,73	1,500	0,55	4,00 mm	645,8	113,887	0,556	100,42%	0,7999	300
66,926	1,159	2,162	280598	540	1200	4,05	1,750	0,47	5,30 mm	472,7	97,259	0,475	100,05%	0,6881	226
51,240	0,888	1,655	245523	540	1200	3,54	2,000	0,42	6,08 mm	361,8	85,080	0,415	100,03%	0,6023	197
40,486	0,701	1,308	218243	540	1200	3,15	2,250	0,37	7,10 mm	285,8	75,607	0,369	100,00%	0,5355	169
32,794	0,568	1,059	196418	540	1200	2,84	2,500	0,33	8,24 mm	231,5	68,050	0,332	100,00%	0,4819	146
27,102	0,469	0,876	178562	540	1200	2,58	2,750	0,30	8,90 mm	191,6	61,934	0,302	100,12%	0,4376	135
22,773	0,394	0,736	163682	540	1200	2,36	3,000	0,28	9,46 mm	160,8	56,729	0,277	100,04%	0,4014	127

						Querränder mit externe Punkte in b-Richt					gekoppelt		-> Belastung	g mit Kraft		
							Längstränd	er mit externe Pu	inkte verfo	rmbar			-> Belastung	g mit Kraft		
1/2																
VZ	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die W	inter-Kurve											
				5	355		e ₀ =	Angepasst durc	h Regressi	on						
				τ	57,74											Vorbältnisf
				k _τ	30,955	α =	0,45	nach EC3-1-6			ext.Kra	ft+ext.Pkt gek	oppelt			vernaitnisi
τ _{cr}	$\alpha_{cr,\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ_{ω} mit η=1,0		benötigte	[kN] ANSY	5	χ _w nach			original
							0	1,00		venonnung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	10,346	613808	540	1200	8,86	0,800	1,00		1,00 mm	2104,1	197,913	0,966	96,56%	1,6181	1200
204,959	3,550	6,621	491046	540	1200	7,09	1,000	0,83		1,48 mm	1446,8	170,108	0,830	100,00%	1,2049	811
131,174	2,272	4,238	392837	540	1200	5,67	1,250	0,66		3,77 mm	926,2	136,120	0,664	100,02%	0,9637	318
91,093	1,578	2,943	327364	540	1200	4,73	1,500	0,55		6,10 mm	642,4	113,299	0,553	99,90%	0,8040	197
66,926	1,159	2,162	280598	540	1200	4,05	1,750	0,47		7,49 mm	472,5	97,216	0,474	100,01%	0,6884	160
51,240	0,888	1,655	245523	540	1200	3,54	2,000	0,42		8,80 mm	361,8	85,087	0,415	100,03%	0,6022	136
40,486	0,701	1,308	218243	540	1200	3,15	2,250	0,37		9,90 mm	285,8	75,615	0,369	100,01%	0,5354	121
32,794	0,568	1,059	196418	540	1200	2,84	2,500	0,33		10,80 mm	231,8	68,132	0,332	100,13%	0,4813	111
27,102	0,469	0,876	178562	540	1200	2,58	2,750	0,30		11,40 mm	191,4	61,889	0,302	100,05%	0,4379	105
22,773	0,394	0,736	163682	540	1200	2,36	3,000	0,28		11,98 mm	160,8	56,733	0,277	100,05%	0,4014	100

							Querränder	r mit externe Pu	unkte in b-Ri	chtung (z-Ri)	gekoppelt		-> Belastung	, mit externer l	Kraft	
							Längstrände	er mit externe I	Punkte verfo	ormbar			-> Belastung	, mit externer l	Kraft	
\/2																
VJ	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst du	rch Regressi	on						
				τ	57,74											Vorhältnicf
				k _τ	30,955	α =	0,45	nach EC3-1-6			ext.Kra	aft+ext.Pkt gel	koppelt			aktor zu
τ _{cr}	α _{cr.τ}	σ	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _o mit η=1,0		benotigte	F [kN] ANSY	s	γ… nach			original
	.,,.						0	1,00		Verformung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	10,346	613808	540	1200	8,86	0,800	1,00		1,00 mm	140,8	13,246	0,065	6,46%	24,1778	1200
204,959	3,550	6,621	491046	540	1200	7,09	1,000	0,83		1,00 mm	91,7	10,785	0,053	6,34%	19,0048	1200
131,174	2,272	4,238	392837	540	1200	5,67	1,250	0,66		1,00 mm	61,2	8,999	0,044	6,61%	14,5759	1200
91,093	1,578	2,943	327364	540	1200	4,73	1,500	0,55		1,00 mm	41,5	7,326	0,036	6,46%	12,4334	1200
66,926	1,159	2,162	280598	540	1200	4,05	1,750	0,47		1,00 mm	28,7	5,905	0,029	6,07%	11,3333	1200
51,240	0,888	1,655	245523	540	1200	3,54	2,000	0,42		1,00 mm	22,2	5,210	0,025	6,12%	9,8353	1200
40,486	0,701	1,308	218243	540	1200	3,15	2,250	0,37		1,00 mm	18,8	4,972	0,024	6,58%	8,1430	1200
32,794	0,568	1,059	196418	540	1200	2,84	2,500	0,33		1,00 mm	12,9	3,786	0,018	5,56%	8,6626	1200
27,102	0,469	0,876	178562	540	1200	2,58	2,750	0,30		1,00 mm	9,3	3,005	0,015	4,86%	9,0179	1200
22,773	0,394	0,736	163682	540	1200	2,36	3,000	0,28		1,00 mm	6,7	2,357	0,011	4,16%	9,6624	1200

							Querränder	r mit externe P	unkte in b-Ri	chtung (z-Ri) g	gekoppelt		-> Belastung	mit Kraft		
							Längstrände	er mit externe	Punkte verfo	ormbar			-> Belastung	mit Kraft		
VA																
VH	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst du	urch Regressi	on						
				τ	57,74											Vorböltnisf
				k_{τ}	30,955	α =	0,45	nach EC3-1-6			ext.Kra	ft+ext.Pkt gek	oppelt			vernartnisi
τ_{cr}	α _{cr,τ}	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	່ χ _ω mit η=1,0		benötigte	F [kN] ANSY	S	γ., nach			original
							0	1,00		vertormung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{\text{cr}}\!\!=\!\!\sigma_{\text{cr}}\!/\sigma$	Ersatzimp.
320,249	5,547	10,346	613808	540	1200	8,86	0,800	1,00		1,00 mm	2074,1	195,091	0,952	95,19%	1,6415	1200
204,959	3,550	6,621	491046	540	1200	7,09	1,000	0,83		1,40 mm	1447,6	170,202	0,830	100,05%	1,2042	857
131,174	2,272	4,238	392837	540	1200	5,67	1,250	0,66		3,25 mm	925,5	136,014	0,664	99,94%	0,9644	369
91,093	1,578	2,943	327364	540	1200	4,73	1,500	0,55		4,65 mm	643,4	113,463	0,554	100,05%	0,8028	258
66,926	1,159	2,162	280598	540	1200	4,05	1,750	0,47		5,45 mm	472,2	97,161	0,474	99,95%	0,6888	220
51,240	0,888	1,655	245523	540	1200	3,54	2,000	0,42		5,75 mm	361,8	85,068	0,415	100,01%	0,6023	209
40,486	0,701	1,308	218243	540	1200	3,15	2,250	0,37		5,88 mm	285,6	75,559	0,369	99,94%	0,5358	204
32,794	0,568	1,059	196418	540	1200	2,84	2,500	0,33		6,05 mm	231,5	68,044	0,332	100,00%	0,4819	198
27,102	0,469	0,876	178562	540	1200	2,58	2,750	0,30		5,50 mm	191,4	61,879	0,302	100,03%	0,4380	218
22,773	0,394	0,736	163682	540	1200	2,36	3,000	0,28		4,80 mm	161,1	56,807	0,277	100,18%	0,4009	250

Die Diagramme mit dem Seitenverhältnis α = 0,45

V 1

V 2

benötigte Imperfektionen 1.300 1.200 0 1.100 1.000 900 Verhältnis b/w 800 700 600 500 400 300 200 100 0 0,0 0,3 0,5 0,8 1,0 1,3 1,5 1,8 2,0 2,3 2,5 2,8 3,0 λp

benötigte Imperfektionen 1.300 1.200 1.100 1.000 900 Verhältnis b/w 800 700 600 500 400 Ò. 300 200 100 0 0,0 0,3 0,5 0,8 1,0 1,3 1,5 1,8 2,0 2,3 2,5 2,8 3,0 λp

V 3

V 4

							Querränder	r mit externe P	unkte in b-Ri	chtung (y-Ri)	gekoppelt		-> Belastung	mit externer	Kraft	
							Längstrände	er mit externe	Punkte verfo	ormbar			-> Belastung	mit externer	Kraft	
\/1																
VI	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst di	urch Regressi	on						
				τ	57,74											Vorhältnicf
				k _τ	18,949	α =	0,6	nach EC3-1-6			ext.Kra	ft+ext.Pkt gel	koppelt			vernartnisi
τ _{cr}	$\alpha_{cr.\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	ັ _{χ_α} mit η=1,0		benotigte	F [kN] ANSY	5	γ… nach			original
	.,.						0	1,00		Verformung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	16,901	784521	720	1200	11,32	0,800	1,00		1,00 mm	2628,9	193,468	0,944	94,39%	1,6553	1200
204,959	3,550	10,816	627616	720	1200	9,06	1,000	0,83		1,50 mm	1848,0	169,999	0,829	99,93%	1,2056	800
131,174	2,272	6,922	502094	720	1200	7,25	1,250	0,66		4,01 mm	1180,4	135,733	0,662	99,74%	0,9664	299
91,093	1,578	4,807	418411	720	1200	6,04	1,500	0,55		6,08 mm	822,2	113,448	0,554	100,03%	0,8029	197
66,926	1,159	3,532	358638	720	1200	5,18	1,750	0,47		8,55 mm	603,7	97,189	0,474	99,98%	0,6886	140
51,240	0,888	2,704	313808	720	1200	4,53	2,000	0,42		10,61 mm	462,3	85,055	0,415	100,00%	0,6024	113
40,486	0,701	2,137	278941	720	1200	4,03	2,250	0,37		13,40 mm	365,3	75,616	0,369	100,01%	0,5354	90
32,794	0,568	1,731	251047	720	1200	3,62	2,500	0,33		14,70 mm	295,3	67,905	0,331	99,79%	0,4829	82
27,102	0,469	1,430	228224	720	1200	3,29	2,750	0,30		16,20 mm	244,3	61,797	0,302	99,90%	0,4386	74
22.773	0.394	1.202	209206	720	1200	3.02	3.000	0.28		17.82 mm	205.4	56.685	0.277	99.96%	0.4018	67

Anhang 13 Schubbelastung Seitenverhältnis $\alpha = 0,60$

							Querrände	r mit externe Pu	unkte in b-Ri	ichtung (y-Ri) g	gekoppelt		-> Belastung	g mit Kraft		
							Längstränd	er mit externe I	Punkte verfo	ormbar			-> Belastung	g mit Kraft		
1/2																
VZ	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst du	irch Regressi	on						
				τ	57,74											Vorbältnisf
				k _τ	18,949	α =	0,6	nach EC3-1-6			ext.Kra	ft+ext.Pkt gel	koppelt			vernaltnisi
τ _{cr}	$\alpha_{cr.\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ω mit η=1,0		benötigte	F [kN] ANSY	S	γ… nach			original
							0	1,00		vertormung		σ[N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	16,901	784521	720	1200	11,32	0,800	1,00		1,00 mm	2767,0	203,631	0,994	99,35%	1,5727	1200
204,959	3,550	10,816	627616	720	1200	9,06	1,000	0,83		3,10 mm	1843,7	169,604	0,827	99,70%	1,2085	387
131,174	2,272	6,922	502094	720	1200	7,25	1,250	0,66		6,45 mm	1185,0	136,261	0,665	100,12%	0,9627	186
91,093	1,578	4,807	418411	720	1200	6,04	1,500	0,55		9,70 mm	820,4	113,205	0,552	99,82%	0,8047	124
66,926	1,159	3,532	358638	720	1200	5,18	1,750	0,47		12,71 mm	603,5	97,157	0,474	99,95%	0,6888	94
51,240	0,888	2,704	313808	720	1200	4,53	2,000	0,42		15,30 mm	462,5	85,097	0,415	100,05%	0,6021	78
40,486	0,701	2,137	278941	720	1200	4,03	2,250	0,37		17,90 mm	365,3	75,599	0,369	99,99%	0,5355	67
32,794	0,568	1,731	251047	720	1200	3,62	2,500	0,33		19,35 mm	295,6	67,990	0,332	99,92%	0,4823	62
27,102	0,469	1,430	228224	720	1200	3,29	2,750	0,30		20,60 mm	244,4	61,837	0,302	99,96%	0,4383	58
22,773	0,394	1,202	209206	720	1200	3,02	3,000	0,28		22,00 mm	205,4	56,685	0,277	99,96%	0,4018	55
						Querränder mit externe Punkte in b-Richtun					gekoppelt		-> Belastung	mit externer	Kraft	
-----------------	-------------------	---------------	--------------	----------------	------------	--	------------------	----------------	---------------	------------	-------------	----------------	--------------	--------------	--------------------------------------	-------------
							Längstrände	er mit externe	Punkte verfo	ormbar			-> Belastung	mit externer	Kraft	
1/2																
VJ	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst du	urch Regressi	on						
				τ	57,74											Vorhältnicf
				k _τ	18,949	α =	0,6	nach EC3-1-6			ext.Kra	ft+ext.Pkt gel	coppelt			vernartnisi
τ _{cr}	α _{cr} τ	σ	N [N]	a [mm]	b [mm]	t [mm]	λw	γ_ mit η=1,0		benötigte	F [kN] ANSY	5	γ…nach			aktor zu
							0	1,00		Verformung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	16,901	784521	720	1200	11,32	0,800	1,00		1,00 mm	174,6	12,852	0,063	6,27%	24,9178	1200
204,959	3,550	10,816	627616	720	1200	9,06	1,000	0,83		1,00 mm	114,9	10,573	0,052	6,21%	19,3860	1200
131,174	2,272	6,922	502094	720	1200	7,25	1,250	0,66		1,00 mm	87,7	10,087	0,049	7,41%	13,0047	1200
91,093	1,578	4,807	418411	720	1200	6,04	1,500	0,55		1,00 mm	59,8	8,256	0,040	7,28%	11,0338	1200
66,926	1,159	3,532	358638	720	1200	5,18	1,750	0,47		1,00 mm	43,4	6,989	0,034	7,19%	9,5761	1200
51,240	0,888	2,704	313808	720	1200	4,53	2,000	0,42		1,00 mm	33,3	6,131	0,030	7,21%	8,3570	1200
40,486	0,701	2,137	278941	720	1200	4,03	2,250	0,37		1,00 mm	25,1	5,186	0,025	6,86%	7,8063	1200
32,794	0,568	1,731	251047	720	1200	3,62	2,500	0,33		1,00 mm	18,5	4,255	0,021	6,25%	7,7070	1200
27,102	0,469	1,430	228224	720	1200	3,29	2,750	0,30		1,00 mm	15,0	3,804	0,019	6,15%	7,1242	1200
22,773	0,394	1,202	209206	720	1200	3,02	3,000	0,28		1,00 mm	10,8	2,983	0,015	5,26%	7,6344	1200

							Querrände	r mit externe Pu	unkte in b-Ri	chtung (z-Ri)	gekoppelt		-> Belastung	g mit Kraft		
							Längstränd	er mit externe I	Punkte verfo	rmbar			-> Belastung	g mit Kraft		
1/4																
V4	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	inter-Kurve											
				S	355		e ₀ =	Angepasst du	rch Regressi	on						
				τ	57,74											المحتوية المحتر المحتر
				kτ	18,949	α =	0,6	nach EC3-1-6			ext.Kra	ft+ext.Pkt gel	koppelt			vernaltnist
τ_{cr}	$\alpha_{cr,\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ա mit η=1,0		benötigte Vorformung	F [kN] ANSY	S	χ _w nach			original
							0	1,00		venonnung		σ[N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	16,901	784521	720	1200	11,32	0,800	1,00		1,00 mm	2726,4	200,643	0,979	97,89%	1,5961	1200
204,959	3,550	10,816	627616	720	1200	9,06	1,000	0,83		5,61 mm	1849,2	170,110	0,830	100,00%	1,2049	214
131,174	2,272	6,922	502094	720	1200	7,25	1,250	0,66		12,30 mm	1183,5	136,089	0,664	100,00%	0,9639	98
91,093	1,578	4,807	418411	720	1200	6,04	1,500	0,55		16,40 mm	821,8	113,403	0,553	99,99%	0,8033	73
66,926	1,159	3,532	358638	720	1200	5,18	1,750	0,47		19,10 mm	603,7	97,181	0,474	99,97%	0,6887	63
51,240	0,888	2,704	313808	720	1200	4,53	2,000	0,42		20,90 mm	462,3	85,046	0,415	99,99%	0,6025	57
40,486	0,701	2,137	278941	720	1200	4,03	2,250	0,37		22,07 mm	365,4	75,620	0,369	100,02%	0,5354	54
32,794	0,568	1,731	251047	720	1200	3,62	2,500	0,33		21,69 mm	295,9	68,057	0,332	100,02%	0,4819	55
27,102	0,469	1,430	228224	720	1200	3,29	2,750	0,30		21,20 mm	244,5	61,855	0,302	99,99%	0,4382	57
22,773	0,394	1,202	209206	720	1200	3,02	3,000	0,28		20,85 mm	205,5	56,707	0,277	100,00%	0,4016	58

Die Diagramme mit dem Seitenverhältnis α = 0,60

Anhang 14 Schubbelastung Seitenverhältnis $\alpha = 0,75$

							Querränder	r mit externe P	unkte in b-Ri	chtung (y-Ri)	gekoppelt		-> Belastung	g mit externer l	Kraft	
							Längstrände	er mit externe	Punkte verfo	rmbar			-> Belastung	g mit externer l	Kraft	
V/1																
VI	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst du	urch Regressi	on						
				τ	57,74											Vorhältnicf
				k _τ	13,286	α =	0,75	nach EC3-1-6			ext.Kra	ft+ext.Pkt gek	oppelt			aktor zu
τ_{cr}	$\alpha_{cr,\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	້ χ mit η=1,0		benotigte	F [kN] ANSY	5	γ_{w} nach			original
							0	1,00		veriormung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{\text{cr}}\!\!=\!\!\sigma_{\text{cr}}\!/\sigma$	Ersatzimp.
320,249	5,547	24,104	936916	900	1200	13,52	0,800	1,00		1,00 mm	3157,1	194,548	0,949	94,92%	1,6461	1200
204,959	3,550	15,427	749532	900	1200	10,82	1,000	0,83		1,55 mm	2215,4	170,648	0,833	100,31%	1,2011	774
131,174	2,272	9,873	599626	900	1200	8,65	1,250	0,66		3,65 mm	1417,2	136,455	0,666	100,27%	0,9613	329
91,093	1,578	6,856	499688	900	1200	7,21	1,500	0,55		7,00 mm	984,2	113,711	0,555	100,26%	0,8011	171
66,925	1,159	5,037	428304	900	1200	6,18	1,750	0,47		9,49 mm	721,5	97,262	0,475	100,05%	0,6881	126
51,240	0,887	3,857	374766	900	1200	5,41	2,000	0,41		12,20 mm	552,2	85,073	0,415	100,02%	0,6023	98
40,486	0,701	3,047	333125	900	1200	4,81	2,250	0,37		15,03 mm	436,2	75,599	0,369	99,99%	0,5355	80
32,793	0,568	2,468	299813	900	1200	4,33	2,500	0,33		17,50 mm	353,3	68,037	0,332	99,99%	0,4820	69
27,102	0,469	2,040	272557	900	1200	3,93	2,750	0,30		19,26 mm	292,2	61,896	0,302	100,06%	0,4379	62
22,773	0,394	1,714	249844	900	1200	3,61	3,000	0,28		21,13 mm	245,6	56,747	0,277	100,07%	0,4013	57

							Querrände	r mit externe Pu	unkte in b-Ri	ichtung (y-Ri) ន្	gekoppelt		-> Belastung	g mit Kraft		
							Längstränd	er mit externe I	Punkte verfo	ormbar			-> Belastung	g mit Kraft		
\/2																
VZ	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	inter-Kurve											
				S	355		e ₀ =	Angepasst du	rch Regressi	ion						
				τ	57,74											Vorböltnisf
				k _τ	13,286	α =	0,75	nach EC3-1-6			ext.Kra	ft+ext.Pkt gek	coppelt			vernaitnisi
τ _{cr}	$\alpha_{cr,\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ω mit η=1,0		benötigte	F [kN] ANSY	5	$\chi_{\rm w}$ nach			original
							0	1,00		venomung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	24,104	936916	900	1200	13,52	0,800	1,00		1,00 mm	3279,5	202,091	0,986	98,60%	1,5847	1200
204,959	3,550	15,427	749532	900	1200	10,82	1,000	0,83		2,91 mm	2207,0	170,001	0,829	99,93%	1,2056	412
131,174	2,272	9,873	599626	900	1200	8,65	1,250	0,66		6,80 mm	1413,3	136,080	0,664	99,99%	0,9639	176
91,093	1,578	6,856	499688	900	1200	7,21	1,500	0,55		10,00 mm	982,7	113,546	0,554	100,12%	0,8023	120
66,925	1,159	5,037	428304	900	1200	6,18	1,750	0,47		13,73 mm	720,9	97,182	0,474	99,97%	0,6887	87
51,240	0,887	3,857	374766	900	1200	5,41	2,000	0,41		17,03 mm	551,8	85,013	0,415	99,95%	0,6027	70
40,486	0,701	3,047	333125	900	1200	4,81	2,250	0,37		19,60 mm	436,5	75,648	0,369	100,05%	0,5352	61
32,793	0,568	2,468	299813	900	1200	4,33	2,500	0,33		22,00 mm	353,3	68,033	0,332	99,98%	0,4820	55
27,102	0,469	2,040	272557	900	1200	3,93	2,750	0,30		23,85 mm	292,3	61,909	0,302	100,08%	0,4378	50
22,773	0,394	1,714	249844	900	1200	3,61	3,000	0,28		25,55 mm	245,4	56,703	0,277	100,00%	0,4016	47

							Querränder	r mit externe P	unkte in b-Ri	ichtung (z-Ri)	gekoppelt		-> Belastung	g mit externer	Kraft	
							Längstrände	er mit externe	Punkte verfo	ormbar			-> Belastung	g mit externer	Kraft	
\/2																
VJ	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst du	urch Regressi	on						
				τ	57,74											Vorhältnicf
				k _τ	13,286	α =	0,75	nach EC3-1-6	i		ext.Kra	aft+ext.Pkt gel	koppelt			vernaitiisi
τ _{cr}	α _{cr}	σ	N [N]	a [mm]	b [mm]	t [mm]	λw	ັγ_ mit η=1,0		benötigte	F [kN] ANSY	S	γnach			aktor zu
Ci Ci	ci, t						0	1,00		Verformung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	24,104	936916	900	1200	13,52	0,800	1,00		1,00 mm	135,5	8,350	0,041	4,07%	38,3511	1200
204,959	3,550	15,427	749532	900	1200	10,82	1,000	0,83		1,00 mm	101,2	7,795	0,038	4,58%	26,2929	1200
131,174	2,272	9,873	599626	900	1200	8,65	1,250	0,66		1,00 mm	69,8	6,721	0,033	4,94%	19,5179	1200
91,093	1,578	6,856	499688	900	1200	7,21	1,500	0,55		1,00 mm	48,7	5,627	0,027	4,96%	16,1888	1200
66,925	1,159	5,037	428304	900	1200	6,18	1,750	0,47		1,00 mm	34,9	4,704	0,023	4,84%	14,2259	1200
51,240	0,887	3,857	374766	900	1200	5,41	2,000	0,41		1,00 mm	24,6	3,790	0,018	4,46%	13,5205	1200
40,486	0,701	3,047	333125	900	1200	4,81	2,250	0,37		1,00 mm	16,3	2,833	0,014	3,75%	14,2918	1200
32,793	0,568	2,468	299813	900	1200	4,33	2,500	0,33		1,00 mm	11,8	2,273	0,011	3,34%	14,4268	1200
27,102	0,469	2,040	272557	900	1200	3,93	2,750	0,30		1,00 mm	8,5	1,796	0,009	2,90%	15,0877	1200
22,773	0,394	1,714	249844	900	1200	3,61	3,000	0,28		1,00 mm	6,1	1,407	0,007	2,48%	16,1875	1200

							Querränder	r mit externe Punk	kte in b-Ric	chtung (z-Ri) ខ្ល	gekoppelt		-> Belastung	; mit Kraft		
							Längstrände	er mit externe Pur	nkte verfor	rmbar			-> Belastung	; mit Kraft		
1//																
V4	Angepasste	Ersatzimpf. E	C 3 -1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst durch	h Regressic	on						
				τ	57,74											Vorbältnisf
				k _τ	13,286	α =	0,75	nach EC3-1-6			ext.Kra	lft+ext.Pkt gek	oppelt			verhaltnisi
τ _{cr}	α _{cr.τ}	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _@ mit η=1,0		benötigte	[kN] ANSY	S	γ… nach			original
	.,.						0	1,00		vertormung		σ[N/mm²]	ANSYS	Abweichung	$\alpha_{\text{cr}}\!\!=\!\!\sigma_{\text{cr}}\!/\sigma$	Ersatzimp.
320,249	5,547	24,104	936916	900	1200	13,52	0,800	1,00		1,00 mm	3240,0	199,657	0,974	97,41%	1,6040	1200
204,959	3,550	15,427	749532	900	1200	10,82	1,000	0,83		3,80 mm	2209,0	170,155	0,830	100,02%	1,2045	316
131,174	2,272	9,873	599626	900	1200	8,65	1,250	0,66		9,80 mm	1413,8	136,128	0,664	100,03%	0,9636	122
91,093	1,578	6,856	499688	900	1200	7,21	1,500	0,55		14,40 mm	981,4	113,390	0,553	99,98%	0,8034	83
66,925	1,159	5,037	428304	900	1200	6,18	1,750	0,47		18,20 mm	720,9	97,171	0,474	99,96%	0,6887	66
51,240	0,887	3,857	374766	900	1200	5,41	2,000	0,41		21,32 mm	552,2	85,068	0,415	100,01%	0,6023	56
40,486	0,701	3,047	333125	900	1200	4,81	2,250	0,37		23,90 mm	436,3	75,613	0,369	100,01%	0,5354	50
32,793	0,568	2,468	299813	900	1200	4,33	2,500	0,33		25,93 mm	353,3	68,037	0,332	99,99%	0,4820	46
27,102	0,469	2,040	272557	900	1200	3,93	2,750	0,30		25,69 mm	292,0	61,858	0,302	100,00%	0,4381	47
22,773	0,394	1,714	249844	900	1200	3,61	3,000	0,28		27,40 mm	245,4	56,703	0,277	100,00%	0,4016	44

Die Diagramme mit dem Seitenverhältnis α = 0,75

V 1

						Querränder mit externe Punkte in b-Richtun				chtung (y-Ri) g	gekoppelt		-> Belastung	mit externer l	Kraft	
							Längstrände	er mit externe Pu	unkte verfo	rmbar			-> Belastung	mit externer l	Kraft	
\/1																
VI	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst duro	ch Regressio	on						
				τ	57,74											Vorbältnisf
				k _τ	7,263	α =	1,41	nach EC3-1-6			ext.Kra	ft+ext.Pkt gek	oppelt			aktor zu
τ _{cr}	$\alpha_{cr.\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _∞ mit η=1,0		benotigte	[kN] ANSY	5	γ." nach			original
							0	1,00		veriormung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{\text{cr}}\!\!=\!\!\sigma_{\text{cr}}\!/\sigma$	Ersatzimp.
320,249	5,547	44,093	1267184	1692	1200	18,29	0,800	1,00		1,00 mm	4256,6	193,938	0,946	94,62%	1,6513	1200
204,960	3,550	28,220	1013747	1692	1200	14,63	1,000	0,83		1,43 mm	2983,9	169,939	0,829	99,90%	1,2061	839
131,174	2,272	18,061	810998	1692	1200	11,71	1,250	0,66		1,36 mm	1914,0	136,258	0,665	100,12%	0,9627	882
91,093	1,578	12,542	675832	1692	1200	9,75	1,500	0,55		1,23 mm	1327,1	113,372	0,553	99,97%	0,8035	976
66,926	1,159	9,215	579284	1692	1200	8,36	1,750	0,47		2,78 mm	975,2	97,195	0,474	99,99%	0,6886	432
51,240	0,888	7,055	506874	1692	1200	7,32	2,000	0,42		5,73 mm	746,6	85,045	0,415	99,98%	0,6025	209
40,486	0,701	5,574	450554	1692	1200	6,50	2,250	0,37		8,80 mm	589,9	75,591	0,369	99,98%	0,5356	136
32,794	0,568	4,515	405499	1692	1200	5,85	2,500	0,33		11,50 mm	478,1	68,076	0,332	100,04%	0,4817	104
27,102	0,469	3,732	368635	1692	1200	5,32	2,750	0,30		14,40 mm	394,9	61,850	0,302	99,98%	0,4382	83
22,773	0,394	3,136	337916	1692	1200	4,88	3,000	0,28		17,50 mm	331,9	56,709	0,277	100,01%	0,4016	69

Anhang 15 Schubbelastung Seitenverhältnis $\alpha = \sqrt{2}$

							Querrände	r mit externe Punkte i	n b-Richtung (y-Ri	gekoppelt		-> Belastung	g mit Kraft		
							Längstränd	er mit externe Punkte	verformbar			-> Belastung	g mit Kraft		
1/2															
VZ	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die W	inter-Kurve										
				5	355		e ₀ =	Angepasst durch Re	gression						
				τ	57,74										Vorbältnisf
				k _τ	7,263	α =	1,41	nach EC3-1-6		ext.Kra	aft+ext.Pkt gel	koppelt			vernaltnisi
τ _{cr}	α _{cr} τ	σe	N [N]	a [mm]	b [mm]	t [mm]	λw	γ_{0} mit $\eta=1,0$	benötigte	F [kN] ANSY	'S	γ…nach			aktor zu
	0,7						0	1.00	Verformung		σ [N/mm ²]	ANSYS	Abweichung	$\alpha = \sigma_{\alpha} / \sigma$	Frsatzimn
320,249	5.547	44,093	1267184	1692	1200	18.29	0.800	1.00	1.00 mm	4486.2	204.399	0.997	99.73%	1.5668	1200
204,960	3,550	28,220	1013747	1692	1200	14.63	1.000	0.83	2,91 mm	2983.7	169,928	0.829	99,89%	1,2062	412
131.174	2.272	18.061	810998	1692	1200	11.71	1.250	0.66	5.01 mm	1911.6	136.087	0.664	100.00%	0.9639	240
91,093	1,578	12,542	675832	1692	1200	9,75	1,500	0,55	8,00 mm	1328,5	113,491	0,554	100,07%	0,8026	150
66,926	1,159	9,215	579284	1692	1200	8,36	1,750	0,47	12,44 mm	975,2	97,193	0,474	99,98%	0,6886	96
51,240	0,888	7,055	506874	1692	1200	7,32	2,000	0,42	17,50 mm	746,0	84,970	0,415	99,90%	0,6030	69
40,486	0,701	5,574	450554	1692	1200	6,50	2,250	0,37	20,60 mm	590,0	75,597	0,369	99,99%	0,5355	58
32,794	0,568	4,515	405499	1692	1200	5,85	2,500	0,33	23,50 mm	477,9	68,038	0,332	99,99%	0,4820	51
27,102	0,469	3,732	368635	1692	1200	5,32	2,750	0,30	26,60 mm	394,8	61,836	0,302	99,96%	0,4383	45
22,773	0,394	3,136	337916	1692	1200	4,88	3,000	0,28	29,40 mm	331,8	56,683	0,277	99,96%	0,4018	41

							Querrände	r mit externe Punkte	in b-Richtung (z-Ri) ge	ekoppelt		-> Belastung	g mit externer	Kraft	
							Längstränd	er mit externe Punkt	e verformbar			-> Belastun	g mit externer	Kraft	
V3			C2 4 5 Auber												
	Angepasste	Ersatzimpf. E	C3-1-5 Annan	g c an die w	Inter-Kurve										
				5	355		e ₀ =	Angepasst durch R	egression						
				τ	57,74										Vorhältnicf
				k _τ	7,263	α =	= 1,41	nach EC3-1-6		ext.Kra	aft+ext.Pkt gel	koppelt			vernaltnisi
τ_{cr}	$\alpha_{\rm cr,\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ω mit η=1,0	benotigte	[kN] ANSY	Ś	χ_w nach			original
							0	1,00	venonnung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{\text{cr}}\!\!=\!\!\sigma_{\text{cr}}\!/\sigma$	Ersatzimp.
320,249	5,547	44,093	1267184	1692	1200	18,29	0,800	1,00	1,00 mm	185,2	8,439	0,041	4,12%	37,9469	1200
204,960	3,550	28,220	1013747	1692	1200	14,63	1,000	0,83	1,00 mm	67,3	3,832	0,019	2,25%	53,4836	1200
131,174	2,272	18,061	810998	1692	1200	11,71	1,250	0,66	1,00 mm	51,9	3,697	0,018	2,72%	35,4856	1200
91,093	1,578	12,542	675832	1692	1200	9,75	1,500	0,55	1,00 mm	43,3	3,695	0,018	3,26%	24,6512	1200
66,926	1,159	9,215	579284	1692	1200	8,36	1,750	0,47	1,00 mm	37,2	3,707	0,018	3,81%	18,0544	1200
51,240	0,888	7,055	506874	1692	1200	7,32	2,000	0,42	1,00 mm	32,5	3,704	0,018	4,35%	13,8352	1200
40,486	0,701	5,574	450554	1692	1200	6,50	2,250	0,37	1,00 mm	28,9	3,700	0,018	4,89%	10,9414	1200
32,794	0,568	4,515	405499	1692	1200	5,85	2,500	0,33	1,00 mm	26,0	3,700	0,018	5,44%	8,8634	1200
27,102	0,469	3,732	368635	1692	1200	5,32	2,750	0,30	1,00 mm	23,6	3,704	0,018	5,99%	7,3172	1200
22.773	0.394	3.136	337916	1692	1200	4.88	3.000	0.28	1.00 mm	21.7	3.707	0.018	6.54%	6.1432	1200

							Querrände	r mit externe Pun	kte in b-Richtung (z-F	i) gekoppelt		-> Belastung	g mit Kraft		
							Längstränd	er mit externe Pu	nkte verformbar			-> Belastung	g mit Kraft		
V4	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die W	inter-Kurve										
					\$ 355		e ₀ =	Angepasst durc	h Regression						
				τ	57,74										Vente Eltre i ef
				k _τ	7,263	α =	= 1,41	nach EC3-1-6		ext.Kr	aft+ext.Pkt gel	koppelt			verhaltnist
τ _{cr}	acra	σe	N [N]	a [mm]	b [mm]	t [mm]	λw	γ _∞ mit η=1,0	benötigte	F [kN] ANS	YS	γnach			- aktor zu
<u> </u>							0	1,00	Verformur	g	σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	44,093	1267184	1692	1200	18,29	0,800	1,00	1,00 m	n 4423,3	201,533	0,983	98,33%	1,5891	1200
204,960	3,550	28,220	1013747	1692	1200	14,63	1,000	0,83	2,25 m	n 2987,1	170,122	0,830	100,00%	1,2048	533
131,174	2,272	18,061	810998	1692	1200	11,71	1,250	0,66	2,56 m	n 1911,6	136,087	0,664	100,00%	0,9639	469
91,093	1,578	12,542	675832	1692	1200	9,75	1,500	0,55	2,61 m	n 1327,6	113,414	0,553	100,00%	0,8032	460
66,926	1,159	9,215	579284	1692	1200	8,36	1,750	0,47	3,55 m	n 975,3	97,205	0,474	100,00%	0,6885	338
51,240	0,888	7,055	506874	1692	1200	7,32	2,000	0,42	4,79 m	n 746,8	85,062	0,415	100,01%	0,6024	251
40,486	0,701	5,574	450554	1692	1200	6,50	2,250	0,37	5,55 m	n 589,8	75,577	0,369	99,96%	0,5357	216
32,794	0,568	4,515	405499	1692	1200	5,85	2,500	0,33	6,00 m	n 477,9	68,041	0,332	99,99%	0,4820	200
27,102	0,469	3,732	368635	1692	1200	5,32	2,750	0,30	6,30 m	n 394,9	61,853	0,302	99,99%	0,4382	190
22,773	0,394	3,136	337916	1692	1200	4,88	3,000	0,28	6,69 m	n 331,9	56,707	0,277	100,00%	0,4016	179

Anhang

Die Diagramme mit dem Seitenverhältnis $\alpha = \sqrt{2}$ V 1

Anhang 16 Schubbelastung Seitenverhältnis $\alpha = 2,00$

							Querrände	r mit externe Punkte	in b-Richtung (y-Ri)	gekoppelt		-> Belastung	mit externer	Kraft	
							Längstränd	er mit externe Punkt	e verformbar			-> Belastung	mit externer	Kraft	
\/1															
VI	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve										
				S	355		e ₀ =	Angepasst durch R	egression						
				τ	57,74										م : مراجع العربية العربية . مرجع العربية ال
				k _τ	6,546	α=	2	nach EC3-1-6		ext.Kra	ft+ext.Pkt gel	koppelt			vernaltnist
τ _{cr}	aar	σ	N [N]	a [mm]	b [mm]	t [mm]	λw	$\gamma_{\rm o}$ mit n=1.0	benötigte	F [kN] ANSY	ç	v nach			aktor zu
Ci	ci,t						0	1.00	Verformung		σ [N/mm ²]		Abweichung	α.=σ./σ	Ersatzimn
320 2/0	5 547	18 023	122/1781	2400	1200	19.27	0.800	1,00	1.00 mm	1558 7	107 183	0.962	96.21%	1 62/11	1200
320,243	3,347	40,525	1007004	2400	1200	15,27	0,800	1,00	1,00 mm	4558,7	137,103	0,302	50,2170	1,0241	1200
204,960	3,550	31,311	1067824	2400	1200	15,41	1,000	0,83	1,99 mm	3153,4	170,498	0,832	100,22%	1,2021	603
131,174	2,272	20,039	854259	2400	1200	12,33	1,250	0,66	1,27 mm	2013,9	136,109	0,664	100,01%	0,9637	945
91,093	1,578	13,916	711883	2400	1200	10,28	1,500	0,55	1,00 mm	1370,5	111,150	0,542	98,01%	0,8196	1200
66,926	1,159	10,224	610185	2400	1200	8,81	1,750	0,47	1,00 mm	993,1	93,966	0,458	96,66%	0,7122	1200
51,240	0,888	7,828	533912	2400	1200	7,71	2,000	0,42	1,00 mm	758,2	81,987	0,400	96,39%	0,6250	1200
40,486	0,701	6,185	474588	2400	1200	6,85	2,250	0,37	1,00 mm	599,6	72,943	0,356	96,48%	0,5550	1200
32,794	0,568	5,010	427130	2400	1200	6,17	2,500	0,33	1,00 mm	488,2	65,987	0,322	96,97%	0,4970	1200
27,102	0,469	4,140	388300	2400	1200	5,60	2,750	0,30	1,00 mm	403,2	59,955	0,293	96,92%	0,4520	1200
22,773	0,394	3,479	355941	2400	1200	5,14	3,000	0,28	1,00 mm	340,7	55,260	0,270	97,45%	0,4121	1200

							Querrände	r mit externe Punkt	e in b-Ric	htung (y-Ri)	gekoppelt		-> Belastung	g mit Kraft		
							Längstränd	er mit externe Punk	te verfor	mbar			-> Belastung	g mit Kraft		
1/2																
VZ	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die W	inter-Kurve											
				5	355		e ₀ =	Angepasst durch	Regressio	n						
				τ	57,74											Vorböltnisf
				k _τ	6,546	α =	2	nach EC3-1-6			ext.Kra	ft+ext.Pkt gel	koppelt			vernaitnisi
τ _{cr}	α _{cr} τ	σe	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ω mit η=1,0		benötigte	F [kN] ANSY	5	γ…nach			ariginal
							0	1,00	ľ	vertormung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	48,923	1334781	2400	1200	19,27	0,800	1,00		1,00 mm	4735,7	204,839	0,999	99,94%	1,5634	1200
204,960	3,550	31,311	1067824	2400	1200	15,41	1,000	0,83		3,50 mm	3152,0	170,422	0,831	100,18%	1,2027	343
131,174	2,272	20,039	854259	2400	1200	12,33	1,250	0,66		3,10 mm	2016,2	136,265	0,665	100,13%	0,9626	387
91,093	1,578	13,916	711883	2400	1200	10,28	1,500	0,55		2,47 mm	1398,1	113,389	0,553	99,98%	0,8034	486
66,926	1,159	10,224	610185	2400	1200	8,81	1,750	0,47		1,89 mm	1027,4	97,211	0,474	100,00%	0,6885	635
51,240	0,888	7,828	533912	2400	1200	7,71	2,000	0,42		2,22 mm	786,7	85,065	0,415	100,01%	0,6024	541
40,486	0,701	6,185	474588	2400	1200	6,85	2,250	0,37		3,18 mm	621,5	75,604	0,369	100,00%	0,5355	377
32,794	0,568	5,010	427130	2400	1200	6,17	2,500	0,33		5,50 mm	503,4	68,047	0,332	100,00%	0,4819	218
27,102	0,469	4,140	388300	2400	1200	5,60	2,750	0,30		6,30 mm	416,1	61,867	0,302	100,01%	0,4381	190
22,773	0,394	3,479	355941	2400	1200	5,14	3,000	0,28		10,13 mm	349,6	56,708	0,277	100,00%	0,4016	118

							Querrände	r mit externe Punkte	in b-Richtung (z-Ri)	gekoppelt		-> Belastung	g mit externer	Kraft	
							Längstränd	er mit externe Punk	te verformbar			-> Belastung	g mit externer	Kraft	
\/2															
V J	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die W	inter-Kurve										
				S	355		e ₀ =	Angepasst durch R	egression						
				τ	57,74										Vorbältnisf
				kτ	6,546	α =	2	nach EC3-1-6		ext.Kra	aft+ext.Pkt gel	koppelt			vernaltnisi
τ _{cr}	$\alpha_{cr.\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _o mit η=1,0	benötigte	F [kN] ANSY	'S	γ… nach			original
		-					0	1,00	Verformung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	48,923	1334781	2400	1200	19,27	0,800	1,00	1,00 mm	101,4	4,386	0,021	2,14%	73,0237	1200
204,960	3,550	31,311	1067824	2400	1200	15,41	1,000	0,83	1,00 mm	81,1	4,387	0,021	2,58%	46,7248	1200
131,174	2,272	20,039	854259	2400	1200	12,33	1,250	0,66	1,00 mm	64,9	4,386	0,021	3,22%	29,9057	1200
91,093	1,578	13,916	711883	2400	1200	10,28	1,500	0,55	1,00 mm	54,8	4,445	0,022	3,92%	20,4918	1200
66,926	1,159	10,224	610185	2400	1200	8,81	1,750	0,47	1,00 mm	54,6	5,166	0,025	5,31%	12,9545	1200
51,240	0,888	7,828	533912	2400	1200	7,71	2,000	0,42	1,00 mm	65,1	7,040	0,034	8,28%	7,2788	1200
40,486	0,701	6,185	474588	2400	1200	6,85	2,250	0,37	1,00 mm	44,6	5,426	0,026	7,18%	7,4618	1200
32,794	0,568	5,010	427130	2400	1200	6,17	2,500	0,33	1,00 mm	40,7	5,498	0,027	8,08%	5,9644	1200
27,102	0,469	4,140	388300	2400	1200	5,60	2,750	0,30	1,00 mm	35,0	5,204	0,025	8,41%	5,2080	1200
22,773	0,394	3,479	355941	2400	1200	5,14	3,000	0,28	1,00 mm	27,1	4,395	0,021	7,75%	5,1821	1200

							Querrände	r mit externe Punk	kte in b-Richtung	g (z-Ri) g	gekoppelt		-> Belastung	mit Kraft		
							Längstränd	er mit externe Pur	nkte verformbar	r			-> Belastung	mit Kraft		
V/A																
V4	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die W	inter-Kurve											
				S	355		e ₀ =	Angepasst durch	n Regression							
				τ	57,74											Vorbältnisf
				kτ	6,546	α =	= 2	nach EC3-1-6			ext.Kra	nft+ext.Pkt gek	oppelt			vernaltnisi
τ _{cr}	α _{cr.τ}	σe	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ω mit η=1,0	bend	ötigte I	[kN] ANSY	S	γ… nach			original
							0	1,00	Verto	ormung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	48,923	1334781	2400	1200	19,27	0,800	1,00	1,	.00 mm	4597,1	198,844	0,970	97,02%	1,6106	1200
204,960	3,550	31,311	1067824	2400	1200	15,41	1,000	0,83	3,	00 mm	3146,2	170,108	0,830	100,00%	1,2049	400
131,174	2,272	20,039	854259	2400	1200	12,33	1,250	0,66	2,	92 mm	2013,8	136,102	0,664	100,01%	0,9638	411
91,093	1,578	13,916	711883	2400	1200	10,28	1,500	0,55	1,	90 mm	1399,3	113,486	0,554	100,07%	0,8027	632
66,926	1,159	10,224	610185	2400	1200	8,81	1,750	0,47	1,	00 mm	1024,7	96,956	0,473	99,74%	0,6903	1200
51,240	0,888	7,828	533912	2400	1200	7,71	2,000	0,42	1,	00 mm	778,6	84,190	0,411	98,98%	0,6086	1200
40,486	0,701	6,185	474588	2400	1200	6,85	2,250	0,37	1,	00 mm	604,9	73,583	0,359	97,32%	0,5502	1200
32,794	0,568	5,010	427130	2400	1200	6,17	2,500	0,33	1,	00 mm	486,8	65,802	0,321	96,70%	0,4984	1200
27,102	0,469	4,140	388300	2400	1200	5,60	2,750	0,30	1,	00 mm	398,6	59,262	0,289	95,80%	0,4573	1200
22,773	0,394	3,479	355941	2400	1200	5,14	3,000	0,28	1,	00 mm	334,4	54,233	0,265	95,64%	0,4199	1200

Die Diagramme mit dem Seitenverhältnis α = 2,00

V 1

Anhang 17 Schubbelastung Seitenverhältnis $\alpha = \sqrt{6}$

							Querrände	r mit externe Pu	unkte in b-Richtur	ng (y-Ri) g	gekoppelt		-> Belastung	mit externer	Kraft	
							Längstränd	er mit externe F	Punkte verformba	ir			-> Belastung	mit externer	Kraft	
1/1																
VI	Angepasste	Ersatzimpf. E	C3-1-5 Anh	ang C an die	Winter-Kurve	2										
				S	355		e ₀ =	Angepasst du	rch Regression							
				τ	57,74											Vorhältnicf
				k _τ	6,07	α =	2,445	nach EC3-1-6			ext.Kra	ft+ext.Pkt gel	koppelt			vernartnist
τ _{cr}	$\alpha_{cr,\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _∞ mit η=1,0	ben	lötigte	F [kN] ANSYS	5	χ, nach			original
							0	1,00	ven	ormung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	52,759	1386128	2934	1200	20,01	0,800	1,00	1	.,00 mm	4706,1	196,019	0,956	95,64%	1,6338	1200
204,959	3,550	33,766	1108902	2934	1200	16,01	1,000	0,83	1	.,28 mm	3266,6	170,076	0,830	99,98%	1,2051	938
131,174	2,272	21,610	887122	2934	1200	12,80	1,250	0,66	1	.,00 mm	2046,5	133,189	0,650	97,87%	0,9849	1200
91,093	1,578	15,007	739268	2934	1200	10,67	1,500	0,55	1	.,00 mm	1388,6	108,446	0,529	95,62%	0,8400	1200
66,926	1,159	11,026	633659	2934	1200	9,15	1,750	0,47	1	.,00 mm	1014,4	92,426	0,451	95,08%	0,7241	1200
51,240	0,888	8,441	554451	2934	1200	8,00	2,000	0,42	1	.,00 mm	775,3	80,731	0,394	94,91%	0,6347	1200
40,486	0,701	6,670	492846	2934	1200	7,11	2,250	0,37	1	.,00 mm	613,1	71,817	0,350	94,99%	0,5637	1200
32,793	0,568	5,403	443561	2934	1200	6,40	2,500	0,33	1	.,00 mm	495,2	64,454	0,314	94,72%	0,5088	1200
27,102	0,469	4,465	403237	2934	1200	5,82	2,750	0,30	1	.,00 mm	408,9	58,540	0,286	94,63%	0,4630	1200
22,773	0,394	3,752	369634	2934	1200	5,34	3,000	0,28	1	.,00 mm	343,7	53,683	0,262	94,67%	0,4242	1200

							Querrände	r mit externe Punkt	e in b-Richtung (y-Ri	gekoppelt		-> Belastung	g mit Kraft		
							Längstränd	er mit externe Punk	te verformbar			-> Belastung	g mit Kraft		
1/2															
VZ	Angepasste	Ersatzimpf. E	C3-1-5 Anh	ang C an die	Winter-Kurve	2									
				S	355		e ₀ =	Angepasst durch I	Regression						
				τ	57,74										
				k _τ	6,07	α =	2,445	nach EC3-1-6		ext.Kra	aft+ext.Pkt gel	oppelt			vernaltnist
τ _{cr}	α _{cr.τ}	σe	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ω mit η=1,0	benötigte	F [kN] ANSY	S	γnach			- aktor zu
							0	1,00	Verformung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	52,759	1386128	2934	1200	20,01	0,800	1,00	1,00 mm	4885,7	203,499	0,993	99,29%	1,5737	1200
204,959	3,550	33,766	1108902	2934	1200	16,01	1,000	0,83	1,80 mm	3268,7	170,185	0,830	100,04%	1,2043	667
131,174	2,272	21,610	887122	2934	1200	12,80	1,250	0,66	1,20 mm	2090,8	136,072	0,664	99,98%	0,9640	1000
91,093	1,578	15,007	739268	2934	1200	10,67	1,500	0,55	1,00 mm	1435,0	112,070	0,547	98,82%	0,8128	1200
66,926	1,159	11,026	633659	2934	1200	9,15	1,750	0,47	1,00 mm	1050,5	95,715	0,467	98,46%	0,6992	1200
51,240	0,888	8,441	554451	2934	1200	8,00	2,000	0,42	1,00 mm	802,6	83,571	0,408	98,25%	0,6131	1200
40,486	0,701	6,670	492846	2934	1200	7,11	2,250	0,37	1,00 mm	634,4	74,321	0,363	98,30%	0,5447	1200
32,793	0,568	5,403	443561	2934	1200	6,40	2,500	0,33	1,00 mm	513,2	66,801	0,326	98,17%	0,4909	1200
27,102	0,469	4,465	403237	2934	1200	5,82	2,750	0,30	1,00 mm	425,0	60,845	0,297	98,36%	0,4454	1200
22,773	0,394	3,752	369634	2934	1200	5,34	3,000	0,28	1,00 mm	356,5	55,685	0,272	98,20%	0,4090	1200

							Querrände	r mit externe Pu	nkte in b-Richtung (z-Ri) ge	ekoppelt		-> Belastung	, mit externer l	Kraft	
							Längstränd	er mit externe F	unkte verformbar				-> Belastung	, mit externer l	Kraft	
\/2																
V J	Angepasste	Ersatzimpf. E	C3-1-5 Anh	ang C an die	Winter-Kurve											
				S	355		e ₀ =	Angepasst du	rch Regression							
				τ	57,74											Vorhältnicf
				kτ	6,07	α =	2,445	nach EC3-1-6			ext.Kra	ft+ext.Pkt gek	oppelt			aktor zu
τ_{cr}	$\alpha_{cr,\tau}$	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ա mit η=1,0	benöti	igte F	[kN] ANSYS	5	χ_w nach			original
							0	1,00	venom	nung		σ [N/mm ²]	ANSYS	Abweichung	$\alpha_{\text{cr}}\!\!=\!\!\sigma_{\text{cr}}\!/\sigma$	Ersatzimp.
320,249	5,547	52,759	1386128	2934	1200	20,01	0,800	1,00	1,00) mm	115,3	4,803	0,023	2,34%	66,6726	1200
204,959	3,550	33,766	1108902	2934	1200	16,01	1,000	0,83	1,00) mm	92,3	4,806	0,023	2,83%	42,6441	1200
131,174	2,272	21,610	887122	2934	1200	12,80	1,250	0,66	1,00) mm	73,7	4,799	0,023	3,53%	27,3323	1200
91,093	1,578	15,007	739268	2934	1200	10,67	1,500	0,55	1,00) mm	61,5	4,802	0,023	4,23%	18,9683	1200
66,926	1,159	11,026	633659	2934	1200	9,15	1,750	0,47	1,00) mm	52,7	4,806	0,023	4,94%	13,9249	1200
51,240	0,888	8,441	554451	2934	1200	8,00	2,000	0,42	1,00) mm	46,1	4,801	0,023	5,64%	10,6725	1200
40,486	0,701	6,670	492846	2934	1200	7,11	2,250	0,37	1,00) mm	41,0	4,801	0,023	6,35%	8,4334	1200
32,793	0,568	5,403	443561	2934	1200	6,40	2,500	0,33	1,00) mm	36,9	4,803	0,023	7,06%	6,8281	1200
27,102	0,469	4,465	403237	2934	1200	5,82	2,750	0,30	1,00) mm	33,6	4,804	0,023	7,77%	5,6411	1200
22,773	0,394	3,752	369634	2934	1200	5,34	3,000	0,28	1,00) mm	30,8	4,809	0,023	8,48%	4,7356	1200

							Querrände	r mit externe Pur	nkte in b-Richtung (z-Ri)	gekoppelt		-> Belastung	, mit Kraft		
							Längstränd	er mit externe Pu	unkte verformbar			-> Belastung	; mit Kraft		
V/A															
V4	Angepasste	Ersatzimpf. E	C3-1-5 Anh	ang C an die	Winter-Kurve	2									
				5	355		e ₀ =	Angepasst dure	ch Regression						
				τ	57,74										Vorböltnicf
				k _τ	6,07	α =	2,445	nach EC3-1-6		ext.Kra	ft+ext.Pkt ge	koppelt			vernaltinsi
τ_{cr}	α _{cr.τ}	σ_{e}	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _o mit η=1,0	benotigte	F [kN] ANSY	5	γ nach			original
			ĺ				0	1,00	vertormung		σ[N/mm²]	ANSYS	Abweichung	$\alpha_{\text{cr}}\!\!=\!\!\sigma_{\text{cr}}\!/\sigma$	Ersatzimp.
320,249	5,547	52,759	1386128	2934	1200	20,01	0,800	1,00	1,00 mm	4801,9	200,009	0,976	97,58%	1,6012	1200
204,959	3,550	33,766	1108902	2934	1200	16,01	1,000	0,83	1,78 mm	3268,1	170,154	0,830	100,02%	1,2046	674
131,174	2,272	21,610	887122	2934	1200	12,80	1,250	0,66	1,16 mm	2091,2	136,098	0,664	100,00%	0,9638	1034
91,093	1,578	15,007	739268	2934	1200	10,67	1,500	0,55	1,00 mm	1425,6	111,336	0,543	98,17%	0,8182	1200
66,926	1,159	11,026	633659	2934	1200	9,15	1,750	0,47	1,00 mm	1047,4	95,433	0,466	98,17%	0,7013	1200
51,240	0,888	8,441	554451	2934	1200	8,00	2,000	0,42	1,00 mm	786,2	81,863	0,399	96,24%	0,6259	1200
40,486	0,701	6,670	492846	2934	1200	7,11	2,250	0,37	1,00 mm	617,0	72,276	0,353	95,59%	0,5602	1200
32,793	0,568	5,403	443561	2934	1200	6,40	2,500	0,33	1,00 mm	496,4	64,617	0,315	94,96%	0,5075	1200
27,102	0,469	4,465	403237	2934	1200	5,82	2,750	0,30	1,00 mm	407,4	58,324	0,285	94,28%	0,4647	1200
22,773	0,394	3,752	369634	2934	1200	5,34	3,000	0,28	1,00 mm	340,2	53,138	0,259	93,71%	0,4286	1200

Die Diagramme mit dem Seitenverhältnis $\alpha = \sqrt{6}$ V 1

Anhang	18 Schubbelastung	Seitenverhältnis $\alpha = 3.00$
	J	,

							Querränder	r mit externe Pu	nkte in b-Ri	ichtung (y-Ri) g	gekoppelt		-> Belastung	g mit externer	Kraft	
							Längstrände	er mit externe P	unkte verfo	ormbar			-> Belastung	g mit externer	Kraft	
\/1																
VT	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	nter-Kurve											
				S	355		e ₀ =	Angepasst dur	rch Regressi	ion						
				τ	57,74											Vorbältnisf
				k _τ	5,84	α =	3	nach EC3-1-6			ext.Kra	lft+ext.Pkt gel	koppelt			vernaltnist
τ _{cr}	$\alpha_{cr.\tau}$	σe	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ω mit η=1,0		benötigte	[kN] ANSY	s	γ nach			original
							0	1,00		vertormung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	54,837	1413160	3600	1200	20,40	0,800	1,00		1,00 mm	4757,0	194,349	0,948	94,82%	1,6478	1200
204,960	3,550	35,096	1130528	3600	1200	16,32	1,000	0,83		1,22 mm	3333,4	170,234	0,831	100,07%	1,2040	984
131,174	2,272	22,461	904423	3600	1200	13,05	1,250	0,66		1,00 mm	2042,7	130,399	0,636	95,82%	1,0059	1200
91,093	1,578	15,598	753685	3600	1200	10,88	1,500	0,55		1,00 mm	1363,8	104,472	0,510	92,12%	0,8719	1200
66,926	1,159	11,460	646016	3600	1200	9,32	1,750	0,47		1,00 mm	984,8	88,014	0,429	90,54%	0,7604	1200
51,240	0,888	8,774	565264	3600	1200	8,16	2,000	0,42		1,00 mm	771,6	78,810	0,385	92,65%	0,6502	1200
40,486	0,701	6,933	502457	3600	1200	7,25	2,250	0,37		1,00 mm	646,4	74,270	0,362	98,23%	0,5451	1200
32,794	0,568	5,615	452211	3600	1200	6,53	2,500	0,33		1,00 mm	527,1	67,294	0,328	98,89%	0,4873	1200
27,102	0,469	4,641	411101	3600	1200	5,93	2,750	0,30		1,00 mm	391,7	55,009	0,268	88,92%	0,4927	1200
22.773	0,394	3,900	376843	3600	1200	5,44	3.000	0,28		1,00 mm	329.4	50,462	0,246	88,99%	0,4513	1200

							Querrände	r mit externe Punk	kte in b-Rich	tung (y-Ri)	gekoppelt		-> Belastung	g mit Kraft		
							Längstränd	er mit externe Pur	nkte verform	nbar			-> Belastung	g mit Kraft		
\/2																
V Z	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	inter-Kurve											
				S	355		e ₀ =	Angepasst durch	h Regression	n 🔤						
				τ	57,74) (a she ii basi af
				k _τ	5,84	α =	= 3	nach EC3-1-6			ext.Kra	ft+ext.Pkt gel	oppelt			vernaltnisi
τ _{cr}	α _{cr τ}	σ	N [N]	a [mm]	þ (mm)	t [mm]	λw	γ_{∞} mit n=1.0	k	penötigte	F [kN] ANSY	-	γ nach			aktor zu
	Ci, t						0	1.00	Ve	erformung		σ [N/mm ²]	ANSYS	Abweichung	$\alpha = \sigma_{o}/\sigma$	Frsatzimn
320.249	5.547	54.837	1413160	3600	1200	20.40	0.800	1.00		1.00 mm	4996.6	204.137	0.996	99.60%	1.5688	1200
204,960	3,550	35,096	1130528	3600	1200	16,32	1,000	0,83		2,04 mm	3333,0	170,213	0,830	100,06%	1,2041	588
131,174	2,272	22,461	904423	3600	1200	13,05	1,250	0,66		, 1,17 mm	2131,7	136,080	0,664	99,99%	0,9639	1026
91,093	1,578	15,598	753685	3600	1200	10,88	1,500	0,55		1,00 mm	1444,9	110,685	0,540	97,60%	0,8230	1200
66,926	1,159	11,460	646016	3600	1200	9,32	1,750	0,47		1,00 mm	1041,7	93,098	0,454	95,77%	0,7189	1200
51,240	0,888	8,774	565264	3600	1200	8,16	2,000	0,42		1,00 mm	797,3	81,439	0,397	95,74%	0,6292	1200
40,486	0,701	6,933	502457	3600	1200	7,25	2,250	0,37		1,00 mm	620,8	71,330	0,348	94,34%	0,5676	1200
32,794	0,568	5,615	452211	3600	1200	6,53	2,500	0,33		1,00 mm	503,5	64,278	0,314	94,46%	0,5102	1200
27,102	0,469	4,641	411101	3600	1200	5,93	2,750	0,30		1,00 mm	415,2	58,304	0,284	94,25%	0,4648	1200
22,773	0,394	3,900	376843	3600	1200	5,44	3,000	0,28		1,00 mm	349,1	53,483	0,261	94,32%	0,4258	1200

							Querrände	r mit externe Punkte	in b-Richtung (z-Ri) g	gekoppelt		-> Belastung	g mit externer	Kraft	
							Längstränd	er mit externe Punkt	e verformbar			-> Belastung	g mit externer	Kraft	
\/2															
V J	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die W	inter-Kurve										
				S	355		e ₀ =	Angepasst durch Re	egression						
				τ	57,74) /
				k _τ	5,84	α =	= 3	nach EC3-1-6		ext.Kra	aft+ext.Pkt gel	koppelt			vernaltnist
τ _{cr}	αα	σe	N [N]	a [mm]	b [mm]	t [mm]	λw	γ_{∞} mit n=1,0	benötigte	F [kN] ANSY	S	γ…nach			- aktor zu
							0	1,00	Verformung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	54,837	1413160	3600	1200	20,40	0,800	1,00	1,00 mm	227,4	9,292	0,045	4,53%	34,4661	1200
204,960	3,550	35,096	1130528	3600	1200	16,32	1,000	0,83	1,00 mm	153,3	7,828	0,038	4,60%	26,1816	1200
131,174	2,272	22,461	904423	3600	1200	13,05	1,250	0,66	1,00 mm	178,5	11,394	0,056	8,37%	11,5131	1200
91,093	1,578	15,598	753685	3600	1200	10,88	1,500	0,55	1,00 mm	169,8	13,008	0,063	11,47%	7,0028	1200
66,926	1,159	11,460	646016	3600	1200	9,32	1,750	0,47	1,00 mm	87,4	7,810	0,038	8,03%	8,5692	1200
51,240	0,888	8,774	565264	3600	1200	8,16	2,000	0,42	1,00 mm	116,9	11,939	0,058	14,04%	4,2918	1200
40,486	0,701	6,933	502457	3600	1200	7,25	2,250	0,37	1,00 mm	83,0	9,538	0,047	12,62%	4,2447	1200
32,794	0,568	5,615	452211	3600	1200	6,53	2,500	0,33	1,00 mm	65,0	8,294	0,040	12,19%	3,9537	1200
27,102	0,469	4,641	411101	3600	1200	5,93	2,750	0,30	1,00 mm	55,6	7,813	0,038	12,63%	3,4689	1200
22.773	0.394	3.900	376843	3600	1200	5.44	3.000	0.28	1.00 mm	51.0	7.819	0.038	13.79%	2.9125	1200

							Querrände	r mit externe Punkte	in b-Richtung (z-Ri)	gekoppelt		-> Belastung	g mit Kraft		
							Längstränd	er mit externe Punkte	e verformbar			-> Belastung	g mit Kraft		
VA															
V4	Angepasste	Ersatzimpf. E	C3-1-5 Anhan	g C an die Wi	inter-Kurve										
				S	355		e ₀ =	Angepasst durch Re	egression						
				τ	57,74										Vorböltnich
				k _τ	5,84	α =	3	nach EC3-1-6		ext.Kr	aft+ext.Pkt gek	oppelt			vernaitnisi
τ _{cr}	αα	σe	N [N]	a [mm]	b [mm]	t [mm]	λw	χ _ω mit η=1,0	benötigte	F [kN] ANSY	/5	γ… nach			original
							0	1,00	Verformung		σ [N/mm²]	ANSYS	Abweichung	$\alpha_{cr} = \sigma_{cr} / \sigma$	Ersatzimp.
320,249	5,547	54,837	1413160	3600	1200	20,40	0,800	1,00	1,00 mm	4906,2	200,444	0,978	97,80%	1,5977	1200
204,960	3,550	35,096	1130528	3600	1200	16,32	1,000	0,83	2,05 mm	3329,3	170,024	0,830	99,95%	1,2055	585
131,174	2,272	22,461	904423	3600	1200	13,05	1,250	0,66	1,24 mm	2131,7	136,080	0,664	99,99%	0,9639	968
91,093	1,578	15,598	753685	3600	1200	10,88	1,500	0,55	1,00 mm	1428,8	109,451	0,534	96,51%	0,8323	1200
66,926	1,159	11,460	646016	3600	1200	9,32	1,750	0,47	1,00 mm	1006,7	89,970	0,439	92,55%	0,7439	1200
51,240	0,888	8,774	565264	3600	1200	8,16	2,000	0,42	1,00 mm	757,8	77,400	0,378	91,00%	0,6620	1200
40,486	0,701	6,933	502457	3600	1200	7,25	2,250	0,37	1,00 mm	591,5	67,965	0,332	89,89%	0,5957	1200
32,794	0,568	5,615	452211	3600	1200	6,53	2,500	0,33	1,00 mm	474,2	60,546	0,295	88,98%	0,5416	1200
27,102	0,469	4,641	411101	3600	1200	5,93	2,750	0,30	1,00 mm	388,7	54,585	0,266	88,24%	0,4965	1200
22,773	0,394	3,900	376843	3600	1200	5,44	3,000	0,28	1,00 mm	329,5	50,474	0,246	89,01%	0,4512	1200

Die Diagramme mit dem Seitenverhältnis α = 3,00

V 1

Eidesstattliche Erklärung

"Ich versichere an Eides statt durch meine Unterschrift, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe angefertigt und an allen Stellen, die ich wörtlich oder annähernd wörtlich aus Veröffentlichungen entnommen habe, als solche kenntlich gemacht habe, mich auch keiner anderen als der angegebenen Literatur oder sonstiger Hilfsmittel bedient habe. Des Weiteren hat die Arbeit in dieser oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen."

Dinslaken, den 29.08.2022

Unterschrift