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Exercises for Optimization

1. Assignment Due 29.04.2005

Exercise 1 (9 x 1+ 2 Points)

Let A = (al,...
n x n matrix with adj(A4); = (-

,ap) be a non-singular n x n real matrix with columns a; and let adj(A) denote the
1)i+3 det(m;;(A)) where m;;(A) is the (n — 1) x (n — 1) submatrix

obtained by deleting row i and column j from A. The matrix adj(A) is called adjugate (“Adjungierte”)

of A.

Give the definition of linear independence.
State “the” two formulae for computing the determinant of a matrix.
Which of the following statements are true for all A, B € R"*"? (without proof)

(a) det A=0<« columns (rows) of A are linearly dependent
(b) det(A+ B) =det A+ det B
(c) det(A-B)=det A-detB

Show | det A] < n!|[|A||7.

(]| - [|oo denotes the maximum absolute value in a matrix or vector.)

det(mq(A, b))
Let b € R™. Show that adj(A) - b = : where m;(A,b) is obtained from A by
det(m, (A, b))
replacing column ¢ by vector b.

Show adj(A) - A=1TI-det A where I € R"*" is the identity matrix.

State and prove Cramer’s Rule. (Hint. Deduce ﬁA -adj(A) =1 from f).)

Suppose A is an integer matrix. Show A~! is an integer matrix if and only if |det A| = 1.

(Remark. A is called unimodular if A, A=t € Z"*™.)

Suppose A and b have integer entries. Let x be such that Az = b. Show that each x; is rational.
Let x; = p;/q; for integers p;, ¢; with ged(p;, ¢;) = 1. Give upper bounds for |p;| and |g;| in terms
of n,|[ Al and [|b]

(Remark. This shows that the representation size of x is polynomial in the representation size
of A and b.)

Show that for any matrix A € R™ ™ there is a matrix Y such that
{Az |z € R} ={beR" | YTbh=0}.

Can you find a geometric interpretation? (Hint. This is not related to Cramer’s Rule.)



Exercise 2 (4 x 1 Points)
For the following exercises only use that the dual of a linear program of the form

(P) : maximize ¢’z subject to Az < b,z >0

is the linear program
(D) : minimze y”'b subject to yT A > ¢TI,y > 0.

a) Let x and y be feasible solutions to (P) and (D), respectively. Prove algebraically that ¢’z is at
most yTb. (Remark. This fact is called weak duality.)

b) Transform the problem (D) to an equivalent problem (D) of the same form than (P).
c¢) Determine the dual of (D’). Call this problem (P).

d) What is the relation between (P) and (P’)?

Exercise 3 (1+ 1+ 2+ 1 Points)
Consider the linear problem

(P) : maximize cx1 + dxg subject to z1 < 1,20 < 1,21+ 29 <1
a) Graph the feasible region.

b) Determine the dual problem (D) of (P). (Hint. — min  y”b is dual to max c'z.)
yT A=cT' ,y>0 Az<b

c) For each ¢, d show whether (P)
(a)
(b)
()

)

(d) has more than one optimum solution.

is infeasible,
is unbounded,

has exactly one optimum solution or

In case of ¢) or d), compute an optimum solution and prove optimality using the dual.

d) Consider optimum solutions x and y for (P) and (D), respectively. Can you observe a connection
between the positive entries of y and the constraints in (P) that are fulfilled with equality by x?

What happens to (D) if (P) is unbounded?



