

#### Gefördert durch:



aufgrund eines Beschlusses des Deutschen Bundestages

# Reduktion der Mindestlast

**Dr. Michalis Agraniotis, Dr. Brian Stöver**Mitsubishi Hitachi Power Systems Europe GmbH, Duisburg

Flexible Kraftwerke für die Energiewende 25. Mai 2016, Düsseldorf



# Arbeitspaket 5 - Minimallastabsenkung





|            | Maßnahmen                                  | Steinkohle/<br>Braunkohle |
|------------|--------------------------------------------|---------------------------|
| 1.         | Erweiterung des Regelbereichs der Brenner  | SK/BK                     |
| 2.         | Absenkung des Teillastbetriebes der Mühlen | SK/BK                     |
| 3.         | Optimierung der Anzahl der Mahlanlagen     | SK                        |
| 4.         | Indirekte Feuerung                         | SK/BK                     |
| <b>5</b> . | Optimierung dickwandiger Bauteile          | SK/BK                     |
| 6.         | Elektrische Zündung                        | SK                        |

# Referenzanlagen





#### Kriterien

- Bestandsanlagen in Deutschland
- Ausreichend Daten verfügbar
- Stein- und Braunkohle

# **Kraftwerk Schwarze Pumpe**

- Braunkohle
- Zwei Blöcke à je 800 MW
- Inbetriebnahmejahr: 1997
- Betreiber: Vattenfall

### **Kraftwerk Voerde**

- Steinkohle
- Zwei Blöcke à je 761 MW
- Inbetriebnahmejahr: 1982 / 1985
- Betreiber: STEAG



Kraftwerk Schwarze Pumpe. Quelle: Vattenfall



Kraftwerk Voerde. Quelle: STEAG

# KW Voerde Technische Daten



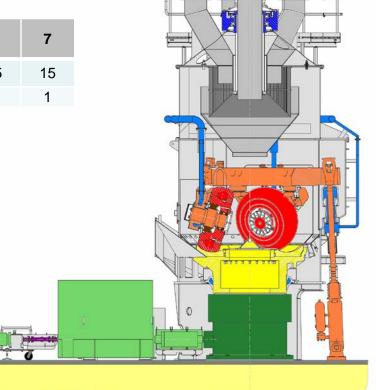


- Dampfleistung pro Block 2160 t/h
- Dampfparameter 206/49 bar, 530 °C
- vier Kohlemühlen (3 leistungsgesteigerte MPS 235 mit dynamischen Sichter und hydraulische Mahlkraftverstellung, eine TB 245 (TYAZHMASH))
- 32 DS® Brenner (horizontal versetzte Boxerfeuerung)

## **KW Voerde**

## **Untersuchungen Kohlemühlen (1/2)**






- Auslegungswerte und Betriebswerte von Mühlenmessungen wurden als Eingangswerte für Mahltrocknungsrechungen benützt
- Mahltrocknungsrechungen für Volllast und Minimallastfälle wurden durchgeführt

| Lastfälle         | 1 | 2   | 3  | 4  | 5  | 6  | 7  |    |
|-------------------|---|-----|----|----|----|----|----|----|
| Kessellast        | % | 100 | 70 | 70 | 20 | 20 | 15 | 15 |
| Mühlen in Betrieb |   | 4   | 4  | 3  | 2  | 1  | 2  | 1  |

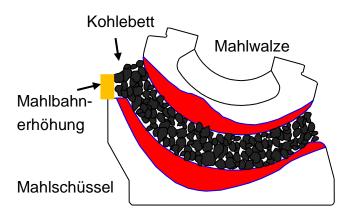
### Ergebnisse

- 20% Kessellast mit einem 2 Mühlenbetrieb möglich, jedoch mit einer geringen Staubbeladung (Versuche benötigt).
- 15 % Kessellast mit einem 2 Mühlenbetrieb nicht möglich, wegen geringer Staubbeladung und Mühlenlast außerhalb des Regelbereichs.
- 15% Kessellast mit einem 1 Mühlenbetrieb möglich von verfahrenstechnischer Sicht.



MPS® - Mühle

# **KW Voerde**


### Untersuchungen Kohlemühlen (2/2)





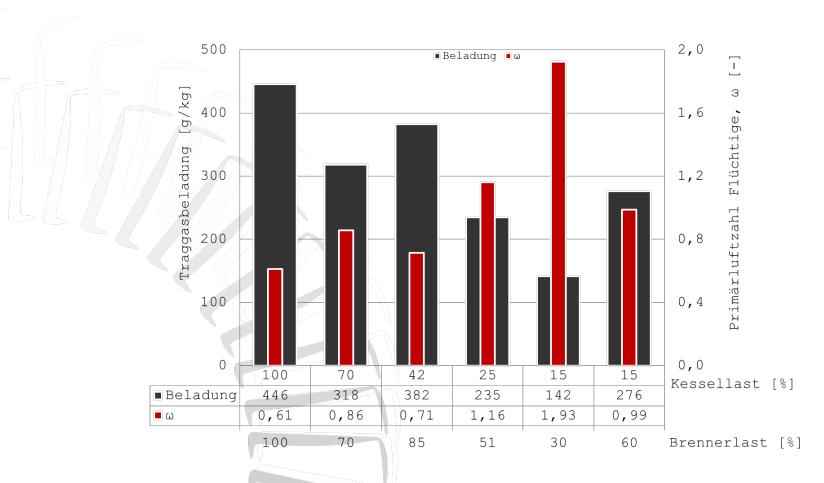
Erweiterung des Teillastbetriebs einer MPS Mühle ist im Prinzip möglich über:

- Reduzierung des Primärluftmassenstroms für eine höhere Staubbeladung unter Berücksichtigung der Traggasgeschwindigkeiten.
- Reduzierung der Mahlkraft (unter Berücksichtigung des Eigengewichtes der Mahlteile)
- Anbringen einer Mahlbahnerhöhung an der Mahlschüssel
- Drehzahlabsenkung der Mahlschüssel



Beeinflussung der Laständerungsgeschwindigkeit durch Anpassung der Mühleneinstellung möglich.

Durch einen Einsatz von 2 zusätzlichen MPS 180 Mühlen ist es möglich eine Kessellast von 20% und 15% zu erreichen (hohe Primärlufttemperatur erforderlich).


Bei einem Einsatz von 6 MPS 180 Mühlen, kann der gesamte Lastbereich des Kessels abgedeckt werden.

# **KW Voerde**Untersuchungen Feuerung

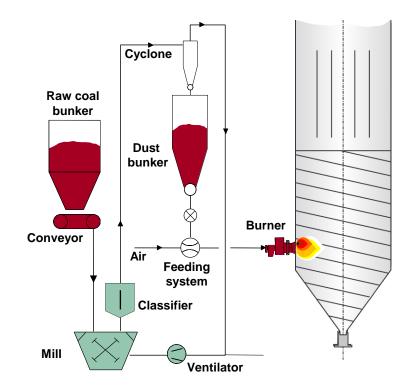


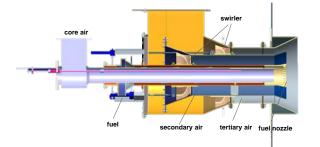


- Verfahrenstechnische Berechnungen vom Feuerungssystem von KW Voerde wurden durchgeführt anhand von Auslegungs- und Betriebsdaten
- Eine Kessellast 15% ist aus verfahrenstechnischer Sicht im 1-Mühlen-Betrieb möglich



# KW Voerde


### **Untersuchungen Feuerung – Indirekte Feuerung**


Die Umrüstung geeigneter Brenner auf indirekte Feuerung mit Brennermodifikation (DST-Brenner®) kann einen Beitrag zur Flexibilisierung leisten:

- erhöhte Laständerungsgeschwindigkeit
- höherer Brennerregelbereich (höhere Brennstoffbeladung)
- Niedrigere Brennermindestlast
- Reduzierung von Anfahrtskosten (Ansatz der Zündfeuerung (Öl/Gas) kann in deutlich kürzerer Zeit abgestellt werden)











# KW Voerde Untersuchungen Feuerung – Elektrische Zündung





Stand der Technik: Zündung von festem Brennstoff nur mit Zündfeuerung in Betrieb (EN 12952-9) → Verbrauch von

teuren, gasförmigen oder flüssigen Hilfsbrennstoffen

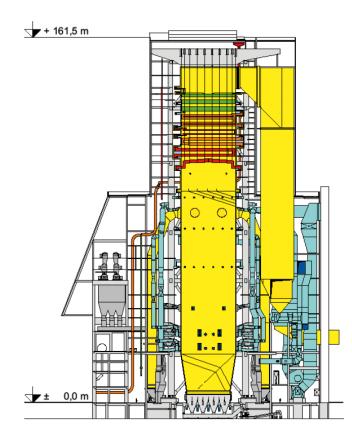
 Experimentelle Untersuchung zur Zündung fester Brennstoff an der Brennstoffdüse eines DS® Brenners (VGB Power Tech 11/2014)

Ziel: Starten von Brenner(ebene)n ohne Einsatz von Hilfsbrennstoff bzw. Zündfeuerung. Elektrische Aufheizung der Brennstoffdüse durch integrierte Heizelemente.

- 2013 Erste Zündung von Holzstaub und Kohlenstaub an einer aufgeheizten Brennstoffdüse in der CCA Versuchsanlage
- 2015 Einbauen von elektrisch beheizten Düsen in zwei. Brennern im Gemeinschaftskraftwerk Hannover (Block 2) und weltweit erste Zündung mit elektrisch aufgeheizten Brennstoffdüsen, (direkte Staubeindüsung von der Start-Mühle aus).



0:35


Leisse, Stöll, "Zündung staubförmiger Brennstoffe an elektrisch beheizten Brennstoffdüsen", VGB Dampferzeuger, Industrie- und Heizkraftwerke, 6.-7. April 2016, Potsdam

# KW Schwarze Pumpe Technische Daten

MITSUBISHI HITACHI POWER SYSTEMS EUROPE



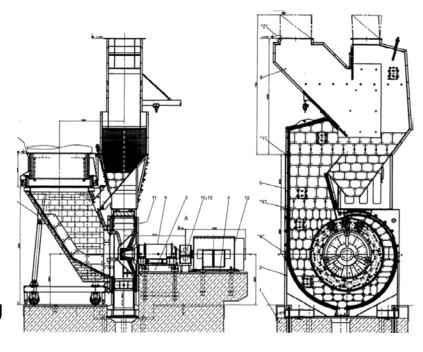
- Dampfleistung pro Block beträgt 2240 t/h.
- Dampfparameter 268/55 bar / 547 °C
- Nettowirkungsgrad ist 41,2 %
- Bruttomindestlast nach der Auslegung 455 MWe (ca. 57 %)
- 8 Schlagradmühlen vom Typ N 340.43 (EVT) mit Brüdentrennsichter (N-1 Betrieb)



Quelle: GE Steam Power Systems

# KW Schwarze Pumpe Untersuchungen Braunkohlemühlen





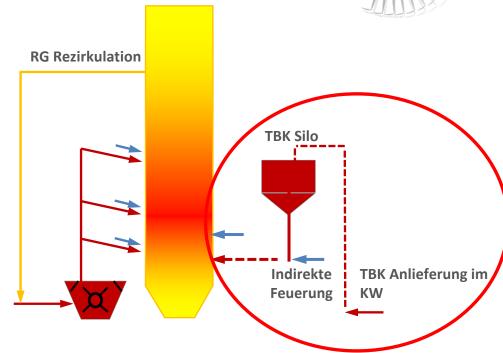

- Mahltrocknungsberechnungen wurden durchgeführt
- Basis für die Rechnungen: Berechnungsergebnisse der wärmetechnischen Berechnungen und der Luft- und Rauchgasbilanzen anhand von verfügbaren Betriebsdaten

| Lastfälle         |   | 1    | 2    | 3  | 4  |
|-------------------|---|------|------|----|----|
| Kessellast        | % | 95.3 | 45.6 | 37 | 35 |
| Mühlen in Betrieb |   | 7    | 5    | 3  | 3  |

# Ergebnisse

- Ein Teillastbetrieb von 37% und 35% ist mit einem 3 Mühlenbetrieb aus verfahrenstechnischer Sicht möglich (Lastbereich der Mühlen, O2 im Traggas, Restfeuchte)
- Es gibt prinzipielle Möglichkeiten zur Erweiterung der minimalen Mühlelast sind (Begrenzung der Temperatur nach Mühle)




Darstellung der EVT- Mühle N340.43 (Zeichnung VEAG)

# KW Schwarze Pumpe Untersuchungen Feuerung – Indirekte Feuerung

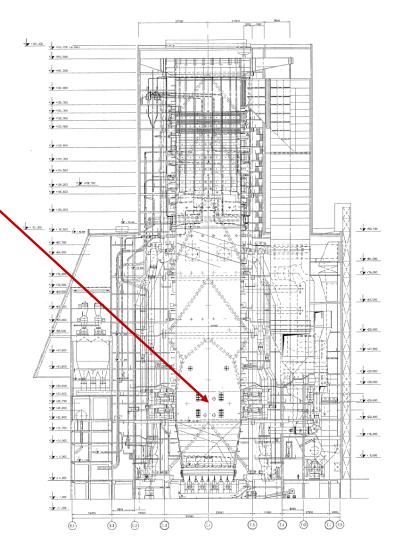




- Vorteil einer indirekten Feuerung mit Brennermodifikation (DST-Brenner®) sind erhöhte Laständerungsgeschwindigkeit und höherer Brennerregelbereich (höhere Brennstoffbeladung)
- Die höhere Laständerungsgeschwindigkeit ergibt sich aus der Entkopplung von Brennstoffaufbereitung (Vermahlung) und Verbrennungsprozess








# KW Schwarze Pumpe Indirekte Feuerung mit TBK – Wirtschaftlichkeitsbetrachtung





- Fall zu Untersuchung: Austausch der Ölbrenner über DST-Brenner® (mit eingebauter Öl Lanze)
- 4 Brenner pro Seite, 16 Brenner insgesamt
- Auslegung Ölbrenner für 35% Kessellast
   FWL~ 715 MW<sub>th</sub>
- Thermische Leistung pro Brenner: ~ 45 MW<sub>th</sub>



# **KW Schwarze Pumpe**Untersuchungen Feuerung – Indirekte Feuerung







#### Annahmen:

Konventioneller Betrieb - Anzahl von Heiss- / Warm- / Kaltstarts pro Jahr: 5 / 10 / 2

Flexibler Betrieb - Anzahl von Heiss- / Warm- / Kaltstarts pro Jahr: 10 / 20 / 10

Öl price: 0.5 - 0.8 €/I ⇔ 45 – 72 €/MWh<sub>th</sub>

TBK Preis: 20 €/MWh<sub>th</sub>

# Zusammenfassung





- Im Rahmen vom Partnerdampfkraftwerk wurden von MHPSE Maßnahmen zur Minimallastabsenkung in den zwei Referenzanlagen untersucht.
- In beiden Fällen wurden wärmetechnische Berechnungen der Dampferzeuger anhand von Betriebsdaten durchgeführt.
- Die Ergebnissen der WT Berechnungen wurden in der verfahrenstechnischen Untersuchung der Feuerungskonzepte und der Mahlkreisläufe benutzt.
- Aus verfahrenstechnischer Sicht ist im Fall von KW Voerde eine Minimallastabsenkung bis 15% und im Fall von KW Schwarze Pumpe eine Minimallastabsenkung bis 35% Kesselast möglich.
- Neue technische Entwicklungen im Bereich der Feuerung, wie die indirekte Feuerung und die innovativen Zündkonzepte ("elektrische Zündung"), können einen signifikanten Beitrag zur Flexibilisierung existierender und neuer Kraftwerke leisten.

#### Gefördert durch:







aufgrund eines Beschlusses des Deutschen Bundestages

# Herzlichen Dank für Ihre Aufmerksamkeit

Kontakt:

## **Dr. Michalis Agraniotis**

Mitsubishi Hitachi Power Systems Europe GmbH Schifferstraße 80 | 47059 Duisburg, Germany Tel. +49 203/803 825-02| E-Mail: m\_agraniotis@eu.mhps.com