
Digitizing Historical Balance Sheet Data: A Practitioner’s
Guide*

Sergio Correia† Stephan Luck‡

December 4, 2021

Abstract

This paper discusses how to successfully digitize large-scale historical micro-data by aug-
menting optical character recognition (OCR) engines with pre- and post-processing methods.
Although OCR software has improved dramatically in recent years due to improvements in
machine learning, off-the-shelf OCR applications still present high error rates which limits
their applications for accurate extraction of structured information. Complementing OCR with
additional methods can however dramatically increase its success rate, making it a powerful and
cost-efficient tool for economic historians. This paper showcases these methods and explains
why they are useful. We apply them against two large balance sheet datasets and introduce
quipucamayoc, a Python package containing these methods in a unified framework.

JEL Classification: C81, C88, N80

Keywords: OCR, Data Extraction, Balance Sheets

*This paper expresses the views of the authors and not necessarily those of the Board of Governors of the Federal
Reserve. We benefited from discussions with Eugene White and Tom Zimmermann, as well as conference participants
at the 2021 Methodological Advances in the Extraction and Analysis of Historical Data conference.

†Federal Reserve Board, sergio.a.correia@frb.gov
‡Federal Reserve Bank of New York, stephan.luck@ny.frb.org

mailto:sergio.a.correia@frb.gov
mailto:stephan.luck@ny.frb.org


1 Introduction

OCR software has improved dramatically in recent years due to improvements in machine learning

techniques. It is a powerful tool to allow researchers to unlock extract data, including previously

unavailable historical micro-data. However, off-the-shelf OCR applications still present high error

rates which limit their applications for accurate extraction of structured information.1

In this paper, we discuss how to successfully digitize large-scale historical micro-data by augment-

ing optical character recognition (OCR) engines with pre- and post-processing methods. We argue

that when applying OCR, the researcher is the practitioner. The success of digitizing in most cases

does not depend on developing OCR engines themselves. Rather, successful data digitization

results from complementing commercial OCR with additional methods which can dramatically

increase its success rate, making it a powerful and cost-efficient tool for economic historians. We

show how these methods are useful by applying them to two large balance sheet datasets. Further,

we introduce quipucamayoc, a Python package containing our methods in a unified framework. The

methods we developed are collected in our quipucamayoc Python package, which we are constantly

improving and planning to open source together with the publication with the draft of this paper.

We start out in Section 2 by discussing the general trade-offs a researcher faces when considering

using OCR to digitize data. A key takeaway is that OCR is not always the solution for every data

digitization project. OCR only becomes useful when the underlying data source is sufficiently

large and the structure of the data sufficiently standardized. Thus, a researcher should carefully

weigh the cost and benefits of using OCR before embarking on setting up a data digitization

workflow.

If the researcher concludes that OCR is the most promising route to obtain her data, we provide

a classification and description of the general methods we recommend using. We start with the

premise that commercial solutions are not too expensive compared to manual data entry. Rather,

commercial products should be integrated and combined in a way that serves the researcher’s

purpose. We suggest following a “data extraction pipeline” that has the following steps: In the

first step, the original image files are pre-processed (de-warped, contrast adjustments, etc.). In the

second step, the commercially available OCR and layout recognition techniques are applied. Third,

the data are extracted and validated by leveraging relationships that must hold in the data such as

1For instance, applying an OCR engine with a 95% character accuracy rate to a table of ten six-digit numbers will
produce an error-free output in only 4% of cases.

1

https://github.com/sergiocorreia/quipucamayoc


accounting identities. A crucial step is a human review in which the researcher herself validates

some of the data creating a “ground truth”. Such validated data allows researchers to then test and

improve the accuracy of the digitization pipeline, by serving as a benchmark against which the

digitization output can be compared to construct accuracy metrics. In turn, these metrics allows

for more advanced optimization of the parameters used through the digitization process.

We showcase how to apply the data extraction pipeline on two large-scale balance sheet digitization

projects:

1. The Office of the Comptroller of the Currency’s (OCC) Annual Reports between 1867 and

1904, containing more than 100,000 national bank balance sheets in tabular format (Figure 1a).

These data are used, e.g., in Carlson et al. (2022).

2. 30,000 balance sheets of German financial and non-financial firms from 1915 through 1933,

published by Saling’s Börsen-Papiere as text paragraphs (Figure 1b). These data are used in

ongoing research, Brunnermeier et al. (2021).

(a) OCC Annual Report (b) Saling’s Börsen-Papiere

Figure 1: Case Studies. These figures show examples of the two datasets showcased in this paper. Panel (a) shows
page 297 of the 1882 OCC Annual Report to Congress. Panel (b) shows page 1212 of Teil 2 of the 1915 edition of
Saling’s Börsen-Papiere, with the items to be extracted highlighted in red.

Although both sets of documents represent firm-level balance-sheet data, they do so in diametrically

2



opposed layouts, with the OCC dataset in a more standard tabular form, and the Saling’s dataset

in free-form paragraphs. Further, these sets of documents differ in their language, in the quality of

the scanned documents, the fonts used, and even the century when they were published. This

increases the likelihood that the methods discussed here are general enough and not specific to a

certain document or type of document.

We discuss each step of the data extraction pipeline in depth in Section 3, showcasing both their

Python implementation as well as how they were used to improve the digitization process of the

two examples that differ in various dimensions such as layout and language.

Finally, in Section 4, we discuss advanced methods that are especially beneficial for larger-scale

digitization projects. First, we discuss ensemble methods that allow to combine multiple OCR

engines to create a synthetic engine designed to be able to correctly detect text even when all the

OCR engines failed to do so. Second, we discuss parameter tunings, that show in detail how one

can leverage ground truth generated by human reviewers to optimize our choice of the parameters

used in the digitization pipeline.

2 Extracting balance sheet data at scale

We start by discussing the general choices and trade-offs a researcher faces when considering

using OCR to digitize data. Depending on the size of the historical records that will be digitized,

practitioners can generally opt for three different approaches. As shown in figure 2, these

approaches differ in the initial setup cost, as well as in the variable cost-per-page.

A naive, manual approach would be to manually input every value onto a spreadsheet. This

approach involves no programming but inputting each page is a slow process with roughly no

returns to scale involved: as each page takes the same amount of work as the last, and we cannot

take advantage of patterns or structures common to all the pages to speed up the work. For

instance, digitizing a single page of the OCC bank balance sheet dataset took the authors roughly

twenty minutes per page. At this rate, digitizing the 37,000 pages comprising the 1867-1904 OCC

annual reports would have required 12,300 hours of work.

A second approach, suitable for small, well-formatted datasets—properly scanned, with standard

fonts and simple tables—consists of directly applying off-the-shelf commercial OCR software,

and then manually correcting and reshaping the resulting data. For the OCC bank balance sheet

3



1

5

25

100

300

D
ig

iti
za

tio
n 

Ti
m

e 
(H

ou
rs

)

1 10 100 1000
Number of Pages

Manual Off-the-shelf Augmented Possibility frontier

Figure 2: Digitization time by type of approach. Note: axes in log-scale.

dataset, this reduced the manual review time by roughly 60%, to 8 minutes per page. This is still

unfeasible for a large-scale digitization, as digitizing all the pages would have required roughly

4,900 hours of manual work.

The third approach, which we recommend for large-scale datasets, involves augmenting the OCR

step with pre- and post-processing steps that improve the quality of the resulting data and thus

reduce the time required for human review. In particular, this approach reduced the review time

of the OCC bank balance sheet to about a minute per page—with some pages requiring extensive

corrections but most requiring minimal review. Thus, the total time required to digitize the OCC

bank balance sheet dataset was a much more manageable 600 hours or roughly fifteen weeks of

full-time work.

Together, these three approaches form the digitization possibility frontier, shown as the gray

dashed line of figure 2. Note that because the graph is scaled in logarithms, the vast majority

of documents—with 25 pages of data or more—are best suited for the large-scale “augmented”

digitization approach seen in the green line.

To explain how this augmented digitization approach works, we have classified its different

elements into six broad components, illustrated in figure 3. Depending on the complexity and

scale of the input documents, researchers might want to apply only some of these components

and omit others.

The starting point of this pipeline is a scanned document, either as a PDF or as a set of images.

Its endpoint is a dataset, either in tabular form—CSV files or Excel tables—or in hierarchical

4



Image 
processing

• Deskew
• Binarize
• Clean

shadows
• Improve

contrast
• ….

OCR engine
 Engine 1
 Engine 2
 Engine 3
 ….

Layout engine
 Engine 1
 Engine 2
 Engine 3
 ….

Data 
extraction 
and 
validation

Human 
review

Output data

Input File
 PDF
 PNG
 ….

“Ground truth”

Parameter tuning 

Figure 3: Data extraction pipeline. This figure shows the six steps of the augmented digitization approach which is
the focus of this paper.

form—such as a JSON file. Note that the resulting datasets might not just be mere digitization of

the documents, but instead require further transformations to make the data useful for researchers.

For instance, items in the Saling’s dataset are listed as free-form labels, so a given balance sheet

might contain items such as “Inventory of Portland cement at the Berlin warehouse”, which then

needs to be aggregated into a broader “Inventory” category in order to be comparable across firms

and industries. Similarly, even the more standardized OCC dataset lists items as specific as “Gold

dust on hand”, which we aggregate into the “Specie” category.

The first step of the pipeline consists of transforming the scanned images to improve the accuracy

of the subsequent OCR steps. It consists of a sequence of transformations known as image filters

or image kernels, where each filter has a specific purpose, such as fixing the image alignment or

increasing its contrast.

The second step consists on applying one or more OCR engines to the transformed images. As

discussed in section 4, there are two reasons for using more than one engine. First, there might not

be an OCR engine uniformly better than another, even within a single document. Rather, an engine

might perform better on some pages due to page and scanning idiosyncrasies. Thus, assuming we

can compute a page-level measure of data quality—such as the count of numbers recognized—

running multiple engines might allow us to choose the engine best suited for a given page. Second,

at an even deeper level, we could combine multiple OCR outputs through “ensemble methods”

5



that allow us to recover correct datums—words or numbers—even in cases where all OCR engines

outputted incorrect values. This is feasible because most modern engines—such as Amazon’s

Textract and Google’s Vision AI—output not only text but its coordinates, hierarchy—i.e. the line,

paragraph, and block where they belong—and even confidence values of each word.

The third step of the pipeline is the layout engine, where we identify the different layout elements

of each page, such as tables, columns, paragraphs, and headers. This step—not often required—

provides us with two advantages. First, by knowing the section of a page where a datum is located,

we can assign it correctly in a given dataset. For instance, in the OCC example the names, locations,

and charter numbers of each bank are located in the header of their respective balance sheet table.

Similarly, in the Saling’s example, the different balance sheets and profit and loss statements are

separated by paragraph breaks. The second advantage, particularly useful for poorly scanned

datasets with one or more tables, is that by knowing where a table is located, we can select the

image corresponding to that table and use this selection as an input to the OCR engine, which will

likely perform much better than when inputted the entire page.

The fourth, and arguably most important step for the researcher, is the data extraction and

validation step. This step transforms the mostly unstructured data generated by the OCR and

layout recognition engines into structured data suitable to be loaded and processed by statistical

software. Further, once the document is transformed into a structured dataset we can evaluate the

quality of its data and validate it against a set of invariants, i.e. conditions that must always hold.

For instance, a balance sheet might have a finite and predefined list of labels, and its values must

follow predefined patterns, so for instance “123,456.00” might be a valid number but “023,456.00”

and “123,4.56” might not.

Step five, performed after the data has already been transcribed and converted into key-value pairs,

is the human validation step. This step serves two purposes: first, most obviously, it can be used

to fix data incorrectly transcribed. Depending on the situation, researchers might want to either

review all data or data that fails sanity checks or invariants and is thus flagged as problematic.

The second, more ancillary, purpose of this step is to construct ground truth—data that we have

reviewed and know is correct.

The sixth and last step, parameter tuning, consists of adjusting the parameters used in all the

previous steps to reduce the error rate against the ground truth available. For instance, in many

instances it is not clear what thresholds should we select when processing the images, or whether

6



we should apply a spell-checker or not. Ground truth data provides allows us to construct metrics

of accuracy which we can in turn use to improve the performance of the parameters.

As we will show in the next section, only two steps—OCR and data extraction and validation—are

required, while the others are more context-dependent and might be omitted depending on the

quality and scale of the documents at hand.

3 Data extraction methods

This section discusses in detail the different components of the data extraction pipeline outlined in

section 2, except for two advanced topics—ensemble methods and parameter tuning—which are

treated on section 4. For each component, we first discuss the underlying algorithm or method

and then show the role it played in improving our two reference digitization projects, section 1.

We accompany this exposition with code samples based on our quipucamayoc Python package.

To start, we first load the scanned documents into Python and select a page:

Listing 1: Starting up

1 import quipucamayoc

2 doc = quipucamayoc.Document(cache_path='./temp', clear_cache=False)

3 doc.read_pdf('occ -1920. pdf') # Read PDF

4 doc.describe ()

5

6 page = doc.pages [0] # Select a page to process

7 page.view_image ()

8 page.save_image () # By default , image saved as './temp/raw /00000. jpg'

Note that the Python package is designed from the ground up to allow for saving intermediate

results. This facilitates fast iterations when prototyping the pipeline, reduces total computing time,

and reduces costs by avoiding running duplicate OCR steps.

3.1 Image processing

The main goal of this step is to undo any distortions in the digitized image created by the scanning

process. These distortions can alter the size, shape, color, and brightness of the documents, and

thus adversely affecting the performance of the subsequent OCR recognition. They are particularly

problematic for historical documents, whose pages are often discolored, and might suffer from

7

https://github.com/sergiocorreia/quipucamayoc


artifacts such as foxing and bleed-through (Gupta et al., 2015). Further, sheet-feed scanners—which

minimize the curvature and skew of the scanned images—are often unfeasible as they require

removing the book spines, permanently damaging them.

(a) Distorted image size (b) Distorted image shape (c) Distorted image color

Figure 4: Image distortions. This figure shows examples of the three main types of image distortions in scanned
documents. Panel (a) shows size distortions in a Saling’s page due to the fore-edge of the book and the scanner
background. Panel (b) shows geometry or shape distortions in a national bank organization report. Panel (c) shows a
Saling’s page with yellowed background and bleed-through of the text on the reverse page.

Size distortions

Due to the inability to use sheet-feed scanners, most document scanning efforts involve either

flatbed scanners or overhead cameras. These often fail to restrict the image to the document

itself, and instead produce a scanned image that is too large and that contains part of the scanner

background bed or of the book edge, as shown in figure 5a. In the Saling’s dataset, both of these

extraneous image elements significantly reduced the accuracy of all the OCR engines we tested.

To trim the image into what corresponds to the page itself, we follow a three-part approach,

illustrated in figure 5, which proved quite robust while only requiring minimal tuning. In essence,

this approach exploits the fact that the page itself is in a lighter color than the often-black scanner

background and the often-gray book edge. Then, it identifies the largest white rectangle in the

image and assumes that the rectangle corresponds to the page itself.

In more detail, the three steps are as follow:

1. We binarize the image, converting it into a black-white version. This is implemented by

converting all the pixels lighter than a certain threshold to white color and all others into

8

https://en.wikipedia.org/wiki/Foxing


black. Then we remove the noise in the image. This is implemented by sequentially applying

the erosion and dilation OpenCV image filters available in Python (Kaehler and Bradski, 2016).

The output of this step can be seen in figure 5b.

2. We expand the white area to further remove noise and ensure that all margins of the page

are white. This is implemented by using the OpenCV dilate filter. Its results are seen in

figure 5c.

3. We identify the largest white rectangle in the image. For this, we first detect all rectangles

with the findContours filter, which implements Suzuki et al. (1985). Then, we combine all large

rectangles into a single one that in most cases exactly encompasses the page itself.2. The

selected area is shown as a green rectangle in figure 5d, and it is this area that we use to crop

the original document into figure 5e.

(a) Input (b) Binarize and remove noise

(c) Dilate white area (d) Identify white rectangle (e) Trimmed output

Figure 5: Removing fore-edges on Saling’s balance sheets. Panel (a) contains the input image. Note the black
background and the fore-edge with the words “Gebr. Arnhold”. Panel (b) shows the output of the binarization and
denoise step. Panel (c) (c) further reduces noise by expanding the white space. Lastly, in panel (d) we select the largest
white rectangle in the text, corresponding to the page itself, and crop the image to this rectangle in panel (e).

2Note that if the resulting rectangle has a proportion too different than that of the initial document, we abort and
avoid trimming the image at all. This is done because it is better not to crop an image than to crop too much of it

9



Geometric distortions

Geometric distortions are a particularly pernicious scanning artifact that in many cases OCR

engines fail to solve. They can be classified into two types. The first, simplest case are 2D

distortions, which occur when the scanner or camera is at an angle relative to the flat document.

This is solved by a process known as 2D page dewarping and deskewing, implemented via

OpenCV’s getPerspectiveTransform filter, which corrects the perspective of the camera as if the

document was scanned with the camera directly on top.3. The second distortions occur when

the pages are also curved while being scanned. They are more prominently at the curved edges

between two pages, creating what is known as gutter shadows. In this case, a transforming

the camera perspective would be insufficient to rectify the distortion, and we would instead

require a more complex transformation that can map the 3D curved surface of the paper into a 2D

rectangular scanned image and then reverse this mapping to recover the original 2D document.

Note, however, that most modern OCR engines automatically implement some degree of page

dewarping, so this step is less important than even a few years ago. Moreover, most scanned

documents available in public repositories—such as Google Books—have undergone sophisticated

dewarping, so this step is often not required. See Lefevere and Saric (2009) for such an example.

The dewarping step is partly implemented in quipucamayoc via the page.dewarp() method. Relevant

work includes Li et al. (2019) and Das et al. (2019)—based on deep-learning approaches—as well

as Fu, Wu, Li, Li, Xu, and Yang (Fu et al.), You et al. (2016), and Tian and Narasimhan (2011),

based on more traditional approaches based on the properties of curved surfaces such as papers.

Color distortions

As discussed above, scanned historical documents often have color distortions caused by the

scanning process as well as due to the age of the document. Backgrounds might be yellow and

some areas might be stained in an oxidation process known as foxing. The ink of the text on the

reverse page might be bleeding through to the current page. There might be shadows caused by

poor lighting or by the curvature of the pages, particularly at the gutter shadows, the page edges

connected to the book spine, which have a more pronounced curvature and might thus have a

darker background.

3An even simpler case involves image rotation, which can be treated as a special case of the 2D perspective transform

10



To address this issue, the user must first decide the type of the output image, which in most cases

is either a grayscale image or a black-and-white monochrome image. On principle, monochrome

images are better because the underlying document is also monochrome—black for text and white

for the background. Further, monochrome images occupy a much smaller size and are much faster

to both upload and process. However, binarization, the process of converting images to black-and-

white, often produces poor results with low-quality scans. This is because forcing each pixel to

take binary values eliminates information that both OCR engines and human reviewers might be

able to use otherwise to better recognize the images. Thus, the choice of grayscale or monochrome

outputs is a practical matter that depends on the characteristics of the documents at hand. Such

a phenomenon is illustrated in figure 6, which shows how converting a snippet of the Saling’s

dataset to grayscale maintains the readability of the text, but converting it to black-and-white

makes some characters close to unreadable—although most have become much easier to discern.

(a) Input image (b) Grayscale (c) Binarized (τ = 160) (d) Binarized (τ = 140)

Figure 6: Grayscale and monochrome conversion of color images. Panel (a) shows a zoomed-in snippet of
figure 1b. Panel (b) shows its grayscale version, where all text is still easily readable. Panel (c) shows a binarized
version where all pixels with values above 160 are converted to white and all below to black (note: 0=black and
255=white). In this panel, most letters are clearer, but some, such as the number “9”, or the letter “z” at the end
of Bilanz have become harder to distinguish as their font is too thick. Lastly, Panel (c) shows how reducing the
binarization parameter from 160 to 140 is able to produce thinner fonts, but at the cost of other values becoming harder
to distinguish.

Color corrections with grayscale output The main methods used to create color-corrected

grayscale images revolve around histogram equalization. The starting point of these methods is a

“intensity histogram” characterizing all the pixels in an image according to their intensity, from

black (0) to white (255). If an image has poor contrast, then its intensity will have a narrow

distribution which will be reflected in an also narrow histogram. This can be seen in panels (a) and

(d) of figure 7, which show an image from the Saling’s dataset exhibiting poor contrast between

the page background and the text.

A simple solution to the lack of contrast in this image involves “stretching” the intensity histogram,

so it resembles more that of a uniform distribution. This is achieved through a process known as

11



image equalization, showcased in figure 7b and figure 7e. Note that there are two problems with

this process. First, because the histogram only takes values from 0 to 255, equalizing the image

will create gaps in the support, evidenced by looking at the large gaps between intensity values in

the 100-200 range of figure 7e. Second, the equalization is done uniformly across the document,

but if the document was not perfectly flat and uniformly lit when scanned, then some parts of

the document, such as the page margins, will be darker than others, leading to distortions in the

output—starkly evident in the page margins of figure 7b.

To overcome these issues, we recommend instead implementing an adaptive histogram equalization,

which instead creates multiple histograms in different regions of the page. These histograms

are there stretched locally, so these methods deal better with differences in page lighting across

the page. In particular, we recommend using the Contrast Limited Adaptive Image Equalization

method, or CLAHE (Pizer et al., 1990), which adds further optimizations. For a review of using

CLAHE with historical documents, see Koistinen et al. (2017), which evaluates its performance on

Finish historical newspapers.

Color corrections with monochrome output Depending on the quality and characteristics of the

scanned documents, binarization—converting the document into a black-and-white representation—

might achieve better OCR engine performance than grayscale conversion. Further, other methods

discussed in this paper, such as line detection, rely on a monochrome image as its input, so

achieving high-quality binarization is an essential part of the digitization pipeline.

Nonetheless, binarizing historical documents involves several challenges, caused due to the

degradation of the paper itself—leading to yellowed backgrounds and page foxing—as well as to

the ink—leading to ink bleed-through. These and other challenges are discussed in quite extensive

detail in Sulaiman et al. (2019), to which we will defer.

We explore five types of binarization methods, as seen in figure 8. The first method, shown in

figure 8b, simply converts all pixels above a predetermined threshold to white and those below to

black. However, the choice of this threshold parameter is problematic because it depends on the

characteristics of each page, and choosing a wrong threshold will result in an illegible image. For

instance, in this example, we chose as the threshold the value 127, the midpoint between 0 and 255.

This value appears to be too low, as many font elements have been converted into white regions.

The second method, known as Otsu’s binarization, avoids this problem by automatically choosing

12



(a) Input (b) Equalized (c) CLAHE

0 50 100 150 200 250
0

20000

40000

60000

80000

100000

120000

140000

160000

(d) Histogram of input

0 50 100 150 200 250
0

20000

40000

60000

80000

100000

120000

140000

160000

(e) Histogram of equalized

0 50 100 150 200 250
0

20000

40000

60000

80000

(f) Histogram of CLAHE

Figure 7: Improving contrast of grayscale Saling’s image. Panel (a) contains the input image. Note the black
background and the fore-edge with the words “Gebr. Arnhold”. Panel (b) shows the output of the binarization and
denoise step. Panel (c) (c) further reduces noise by expanding the white space. Lastly, in panel (d) we select the largest
white rectangle in the text, corresponding to the page itself, and crop the image to this rectangle in panel (e).

the threshold that minimizes the intra-class variance of the pixel intensity. However, it performs

poorly if the document brightness is not uniform. For instance, curved documents might be darker

in the margins. That is in fact what we observe in figure 8c, where we see that although most of

the text was binarized correctly, there are nonetheless black regions in the margins of the page.

To address brightness differences, the next set of methods are known as local or adaptive methods,

and similarly to the adaptive histogram equalization discussed above, compute thresholds at

multiple areas of the page. In particular, figure 8d implements a mean-based adaptive binarization,

figure 8e implements the method by Sauvola and Pietikäinen (2000), and figure 8f implements

Wolf and Jolion (2004). From all these methods, we have found the last two to be the most robust

ones across different types of documents. This finding is similar to that of Michalak and Okarma

(2019), who compare the performance of these and other binarization methods across documents

with different font faces, font sizes, and illumination artifacts.

13



(a) Input (b) Threshold binarization (c) Otsu’s binarization

(d) Adaptive mean binarization (e) Sauvola binarization (f) Wolf binarization

Figure 8: Comparison of binarization algorithms. Panel (a) contains the input image. Panels (b) and (c) show
global binarization methods, which fail to account for brightness differences across different page regions. Panels
(d)-(f) show the performance of three adaptive binarization methods, with methods (e) and (f) leading to the clearest
documents.

Additional improvements Beyond equalization methods, there are other approaches aimed

at solving particular the existence of shadows in a document. In particular, Bako et al. (2016)

implemented a novel method based on explicitly identifying shadowed regions and increasing

their brightness. Further, other approaches bridge multiple methods, such as Feng et al. (2021),

who implements a transformer machine learning model that simultaneously deskews scanned

documents (“geometric unwarping”) and removes their shadows (“illumination correction”).4.

Lastly, note each set of documents is unique and might face different issues. For instance, we have

seen that images stored at a resolution different from 300 dots per inch (DPI) perform poorly with

most OCR engines. Further, extracting images from PDF maintained in online repositories, such

4See this Github repository for a Python implementation

14

https://github.com/fh2019ustc/DocTr


as Google Books and HathiTrust, is often problematic, as these libraries tend to embed multiple

images in each page—often watermarks, but sometimes a given page has been split into multiple

images internally, which need to be stitched back to be fed to an OCR engine.

quipucamayoc implementation In terms of the quipucamayoc package, the image processing step

is implemented as a set of methods that can be iteratively applied to the images, as shown in

listing 2. These methods are, for the most part, based on the OpenCV and scikit-image libraries,

and are thus computationally efficient.

Listing 2: Image processing

1 page.remove_black_background () # Crop black background

2 page.remove_fore_edges(threshold =160) # Remove book fore -edges

3 page.dewarp () # Dewarp and deskew image

4 page.convert('grayscale ') # Convert image to grayscale

5 page.apply_clahe () # Improve contrast with CLAHE

6 page.binarize(method='sauvola ') # Apply Sauvola 's binarization

3.2 Optical Character Recognition

Due to its nature, this step is at the core of the entire digitization process. However, most OCR

engines act as a black box and are poorly customizable, so for practical purposes, this step is the

simplest one for the user, with the only key decision being the choice of the OCR engine to use.

Although there is a large number of OCR solutions, in this section we are going to focus on four

widely used OCR engines. The first three are cloud-based commercial products from Google,

Amazon, and Microsoft. The last one, Tesseract, is an open-source engine.

As documented by Hegghammer (2021), the commercial engines vastly outperform the open-

source one, particularly in noisy documents such as the ones one might find when conducting

historical research. Thus, our suggestion for most users is to select a cloud-based solution, which

is likely to be both faster5 and cheaper, once we factor in the reduced time spent in the human

review process.

Table 1 compares four of the most widely used OCR engines. Strikingly, they have mostly

converged in terms of their features and of the characteristics of the data they return. For instance,

5Cloud providers can parallelize OCR tasks across many servers, while users running their own servers would need
to either wait very large amounts of time for large-scale documents, or manage digitization tasks across many of their
own servers, a costly and cumbersome task.

15



for each individual all offerings will return its coordinates, its confidence (likelihood of a correct

transcription of the word), and even a hierarchy of blocks to which the word belongs. Moreover,

because they are very similar in terms of their output, quipucamayoc has built a wrapper around

them so they are relatively interchangeable. This should allow users to compare the performance

of alternative engines and thus choose the ones performing better for their given documents.

Table 1: Comparison of OCR engines

Provider Product CoordinatesConfidenceHierarchy

Lang.

hints

Google Vision AI (Google Cloud

Vision)

Yes Yes Symbol, word,

paragraph, block

Yes

Amazon Textract Yes Yes Word, line, table, cell No

Microsoft Azure Computer Vision Yes Yes Word, line No

N/A Tesseract Yes Yes Word, line, paragraph,

block

Yes

Lastly, note that beyond plain text recognition, some of the commercial engines have begun to offer

more advanced products, such as table and form detection, as well as handwritten recognition.

Note, however, that these products are usually trained with modern documents, so they often fail

to perform well on historical records.

quipucamayoc implementation As shown in listing 3, quipucamayoc is designed so different OCR

engines are as interchangeable as possible.

However, working with any of these engines involves a certain initial cost, which includes

registering an account, and creating and downloading credentials for the cloud services. In

particular, within the commercial engines, Amazon’s textract stands out for the large setup

complexity. To illustrate this, below we list some of the initial steps that must be carefully followed

in order to start using Amazon’s OCR engine:

1. Set up an AWS account.

2. Create an Identity and Access Management (IAM) user.

3. Install and configure an AWS Software Development Kit (SDK).

16

https://docs.aws.amazon.com/textract/latest/dg/api-async-roles.html


4. Create an Amazon Simple Notification Service (SNS) topic and write down its Amazon

Resource Name (ARN).

5. Create an Amazon Simple Queue Service (SQS) standard queue and write down its ARN.

6. Subscribe the Amazon SQS to the Amazon SNS by using its ARN.

7. Grant permission to the Amazon SNS topic to message the Amazon SQS queue.

8. Create an IAM service role to grant Textract access to the Amazon SNS topics.

9. Add a JSON inline policy to the IAM user created in step 2.

We believe that for most practitioners, these steps are prohibitively difficult, time-consuming, and

error-prone.6 Thus, for users to avoid knowing the nuances of how to “register the ARN of the

SQS in the SNS in order for AWS’s IAM to grant Textract access to the SNS”, we have implemented

this setup process as part of quipucamayoc.

Listing 3: Access multiple OCR engines

1 # Amazon 's OCR engine involves a difficult initial setup

2 quipucamayoc.setup_textract(bucket='MyBucket ')

3

4 page.run_ocr(engine='google ') # Synonyms: gcv , visionai

5 page.run_ocr(engine='amazon ') # Synonyms: aws , textract

6 page.run_ocr(engine='microsoft ') # Synonyms: azure (not currently implemented)

7 page.run_ocr(engine='tesseract ') # (not currently implemented)

3.3 Layout recognition

The main purpose of the layout recognition step is help the researchers in assigning a given word

or number to specific categories or groups. For instance, in a two-column table, identifying the

location of the line delimiting the columns would allow users to identify to which column each

word belongs.

In the case of our examples, we relied mostly on two types of layout recognition outputs.

First, to digitize the OCC dataset we needed to know the boundaries of the three tables present on

each page, so we could then assign key-value pairs to the correct table. We did so by applying the

6Note that these instructions are perfectly reasonable for Amazon’s target market, which for the most part is not
composed of economic historians but by large corporations with dedicated IT divisions.

17



algorithm described in figure 9. There, we first apply a Canny Edge Detector (Canny, 1986) to

identify boundaries between regions or objects. Then, we apply a probabilistic Hough transform

(Kiryati et al., 1991, Hough (1959)) to the pixels highlighted as boundary regions, and identify

possible lines in the text. Lastly, we apply a custom algorithm to reduce the number of lines and

avoid false positives, and end up with the lines identified in figure 9a. With this information, and

with the coordinates of each word produced by the OCR engines, we are thus able to assign each

word into a given column of a table. In terms of the quipucamayoc library, this algorithm is available

as follows:

Listing 4: Layout recognition

1 page.detect_lines(columns=5, save_annotated_image=True)

The second application of layout recognition was implemented for the Saling’s dataset. Here, the

goal was to detect individua paragraphs, which in turn might correspond to separate balance

sheets and income tables. Further, centered text was used to indicate the start of a new firm, so it

had to be identified correctly. Luckily, the different block elements outputted by Google’s OCR

engine were sufficient for us, as they allowed us to identify whether lines were centered or not, as

well as the font size of each word, and the spacing above and below it. Altogether, these three

pieces of information allowed us to quite accurately identify the headers with firm information.

3.4 Data extraction and validation

One often overlooked aspect of data digitization is that even if we are perfectly able to represent

the scanned data digitally, this representation often does not correspond to the one needed to

create a dataset useful for statistical purposes, such as an R Data Frame or a Stata .dta file. In

particular, we need to be able to assign the words and numbers recognized by the OCR step into

key-value pairs, which will then be concatenated and form variables in the final datasets.

Thus, except for very simple cases, it is inevitable that practitioners may need to rely on some

programming to assign or reshape the data to their needs. For this, we believe that Python is an

ideal language, as its accessible, widely known, and comes with top-of-the-line libraries.

Beyond the relatively simple data reshaping, one might also use this step to reduce error rates,

and more generally, correct mistakes caused by the scanning and OCR processes, as otherwise

they would have to be corrected manually in the next step, which is particularly costly and slow.

18



(a) Preprocessed image (b) Image edges and detected lines

Figure 9: Detecting table delimiters on OCC balance sheets. We combine two computer vision techniques to
identify the lines that separate the different sections of a table. First, we apply a Canny edge detector to identify
discontinuities in the brightness of the page. Then, we apply a probabilistic Hough transform to identify likely lines
within the text. From this set, we extract horizontal lines (green) which detect table sections and vertical lines (blue)
which detect column delimiters.

In this sense, we show two types of improvements that we have used in the OCC and Saling’s

digitization efforts, and which we believe might be generally useful.

3.4.0.1 Correction of words and numbers Often, there are restrictions on the possible values

that each key or value can have. For instance, numbers representing dollar values cannot contain

letters. Thus, if the letter “O” was found in between two digits (“109”), it would be prudent to

replace it with the letter zero. Similar patterns apply for other letters, so “1GB” could be replaced

into “168”. Note, however, that there is a cost to these replacements in that they might introduce

false positives, so users must avoid being too aggressive with these replacements, and always try

to benchmark how each replacement affects the quality of the overall dataset.

In terms of labels, they can often take only a finite set of possible values. For instance, in most

years the OCC balance sheets contained only a few dozen possible labels. Similarly, the city where

each bank was located—written at the top of each table—could be validated against the list of all

existing and ghost US towns maintained by the U.S. Geological Survey. As a last resort, one could

validate a free-form word against the set of valid words in a given language—its dictionary—to

assert whether the word is valid or not.

Once a word has been diagnosed as invalid, it can be fixed by applying a spellchecker to it. For

19

https://en.wikipedia.org/wiki/Canny_edge_detector
https://en.wikipedia.org/wiki/Hough_transform


instance, Peter Norvig’s famous spellchecker (see Kemighan et al., 1990; Jurafsky and Martin, 2009)

can be easily implemented in a few lines of code as long as there is a dictionary with the list of all

valid values.

3.4.0.2 Correction of document hierarchy As discussed in the previous subsection, most OCR

engines provide incredibly useful information on the hierarchy to which each word belongs—its

line and paragraph. However, in the same way as words might be misrecognized, this hierarchy

can also be detected incorrectly. This is illustrated in figure 10. There, figure 10a shows all the

words and paragraphs identified by Google’s Vision AI. Because the page represents a table, the

paragraphs are not recognized correctly although the words are.

To solve this, the first step, shown in figure 10b, involves grouping words together into lines, which

will represent the balance sheet labels. For this, we simply pair up words in the same column

as long as they have enough overlap in the y-axis. However, several labels are long enough to

overflow the column width and thus occupy multiple labels. To solve this, we exploit the fact that

the second line in each label is always indented, which allows us to arrive at the corrected output

in figure 10c.

(a) OCR-recognized “words” (b) Lines identified by quipucamayoc (c) Combined lines (correct)

Figure 10: Identifying balance sheet labels. To correctly identify rows—and thus balance sheet items—of each
table, we apply a three-part process. First, we identify the words recognized by an OCR engine such as Google Vision
AI. Second, we concatenate words based on their relative horizontal distance. Lastly, we concatenate lines based on
their indenting and vertical distance and are thus able to correctly identify row labels.}

20



3.4.0.3 Data invariants and sanity checks The OCR process is inherently error-prone, so it is

crucial from the beginning to plan for ways to flag potential errors, which can be then reviewed

and corrected by hand. Otherwise, even a human reviewer that goes through every output page

might overlook potentially problematic mistakes in the data.

This is potentially important for panel balance sheet dataset, which has two particular properties.

First, errors are very costly in these datasets. For instance, suppose a bank has stable total assets of

$100, but in one year there is a typo that adds one zero at the end, so the reported value of total

assets becomes $1000 for that year. This mistake would lead to an incorrect 1000% increase in

total assets in the year where it occurs, plus another incorrect value of the subsequent year, where

total assets would be reported to fall by 90%. Second, balance sheets have several constraints or

invariants that we could exploit to validate the quality of the data. For instance, the balance sheet

identity must hold, so the sum of total assets must equal the “total assets” label, which in turn

must equal the “total liabilities and equity” label.

To increase the confidence in the quality of the digitized data, and to help guide human reviewers,

the practitioner must identify as many constraints as possible, and incorporate them into the code.

For instance, the following were some of the constraints implemented in the OCC digitization

project:

1. Accounting identity: the sum of all assets must equal the label “total assets”; the sum of all

liability and equity labels must equal the label “total liabilities and equity”; the two total

fields must be equal to each other.

2. Reserve requirements, bond-holding requirements, and minimum-capital requirements.

Whenever such a constraint was broken, the page was automatically flagged for human

review.

3. Constraints across time: it was difficult to change the amount of certified bank capital, so if

we noted a change across time then the two pages involved were flagged.

4. Label and numeric constraints: balance sheet labels that were not part of the valid label list,

as well as invalid numeric fields were automatically flagged. For instance, the number “0123”

was always flagged because dollar values do not have a leading zero digit.

5. Bank charter numbers that were either duplicated or not present in a given year led to a

manual review of the scanned documents.

21



Altogether, these constraints allowed us to flag the most prominent errors in the dataset, which

freed time for a more careful inspection of the documents afterward.

3.5 Human review

In large-scale digitization projects, the human review step needs special consideration, as this

is often the most expensive and time-consuming part. Crucially, we have found that the most

important thing is to ensure human reviewers are on task for as much time as possible. Any

micro interruptions, such as having to save corrected files, load and scroll through PDFs, or

manually alt-tab to review the list of pages pending review, is enough to distract and slow down

the reviewers.

Instead, we have found that automating the human review process as much as possible increases

the attention available to reviewers, leading to faster reviews with fewer errors. In terms of

software, for both the OCC and Saling’s project, we have relied on an Excel workbook containing

VBA functions automating steps previously done manually by users. More recently, in an ongoing

project digitizing data from St. Louis Fed’s FRASER archives, we have used a browser-based

solution, which we now recommend.7 Figure 11 shows screenshots of both of these tools.

Based on our experiences, below we list some of the steps where we found automating was

invaluable:

1. Show data and scanned images side-by-side. Whenever the reviewer loads a new page or

table, the corresponding image should be automatically loaded as well.

2. Add shortcuts as much as possible, for loading and saving CSV files, navigating the list of

pages that need to be reviewed, etc.

3. Flagging likely errors in red or yellow colors, so the reviewer can monitor those items more

closely.

4. Automatically keeping track of the balance sheet identity, so the reviewer can know when

there are errors still remaining.

Once we automated these steps, we found a substantial increase in review speed, leading to a larger

7Although the Excel approach worked quite well for the authors, we found that, when sharing the review tasks with
others, the browser solution worked better, as it reduced setup issues and helped to allocate pending pages more easily
across reviewers.

22



(a) OCC Dataset

(b) FRASER Dataset

Figure 11: Interfaces for human review of transcription output. Panel (a) shows a screenshot of the program
used to validate the OCC and Saling’s dataset. It consists of an Excel workbook powered by a set of VBA functions
that load and save the data, and display the corresponding images. Panel (b) shows a screenshot of an ongoing program
used to validate St. Louis Fed’s FRASER archives. It is a self-contained website powered by Python Dash.

amount of ground-truth data, which in turn can be utilized to improve the overall digitization

pipeline, as we will see in section 4.

4 Advanced methods

This section discusses two advanced methods that are usually not required for moderately-sized

projects, but which might be beneficial for larger-scale ones. First, we will discuss ensemble

methods, where we combine the output of multiple OCR engines in order to create a synthetic

engine designed to be able to correctly detect text even when all the OCR engines failed to do

so. Then, we will discuss parameter tunings, where we show we can utilize the ground truth

23



generated by human reviewers in order to optimize our choice of the parameters used in the

previous stages.

Ensemble methods When discussing the OCR step, we argued that the main decision of the

researcher was in choosing which OCR engine to select. Here, we argue that there is no need to

select only a single OCR engine and that we can instead combine their output into an ensemble

that performs better than any engine by itself.

Ensemble methods go beyond looking at each page and choosing which OCR engine performed

better for the page. Instead, they go deeper into the word level, and compare the words and

numbers produced by the different OCR engines. For instance, suppose we use three engines,

which identify a given number as “123”, “120”, and “123” respectively. Here, the OCR engines can

“vote” amongst the two candidates and thus select “123” as the chosen value. Moreover, it could

also happen that while the true value is “123”, the engines identify instead “23”, “120”, and “153”.

Here, no single value wins the vote, so we can instead right-align the values and have the engines

vote at the character level, voting between “(blank)”, “1”, and “1” for the first digit, between “2”,

“2” and “5” for the second digit, and between “3”, “0”, and “3” for the third digit. In this case,

even though no single OCR engine correctly identified the number 123, the ensemble of the three

engines did vote for the correct number.

There are two practical assumptions behind the use of ensemble methods, without which the

method would likely provide no advantage to the user:

1. The OCR engines are good enough to correctly identify the words, even though they fail to

identify all their characters. If some engines completely fail to identify a piece of text, then

the accuracy of the method becomes limited as fewer engines would be voting on the results.

2. The errors made by the OCR engines are idiosyncratic. Otherwise, there would be no

advantage to using multiple engines if their errors are systematic and common across all of

them.

A more in-depth discussion of ensemble methods is contained in Lund (2014). Further, an

experimental Stata implementation is available online.

Parameter tuning Parameter tuning—or more appropriately, hyper-parameter tuning, as it’s

known in the machine learning community—consists in using a set of ground truth data to select

24

https://github.com/sergiocorreia/stata-ensemble-ocr


to create a measure of the overall digitization process, and then tune the parameters used in the

different OCR steps to improve this measure.

At its simplest, this tuning could be done manually. That is what we do in figure 12, where we

implemented a grid search in order to select the optimal binarization threshold of the fore-edge

removal step (figure 5).

Figure 12: Fine-tuning pre-processing parameters. This figures how the binarization parameter used in figure 5b
affects the performance of the trimming step shown in figure 5. The histogram in blue shows the distribution of all
points in a scanned page, from 0 (black) to 255 (white). The three modes of the histogram correspond to the black
background and fonts, the dark gray book edge, and the light gray page background. The red line shows how changing
the binarization parameter affects how much of the page is trimmed. Choosing a number between 128 and 160 will
correctly separate the page background from the book edges, so the edges can be removed, without trimming down the
actual page contents.

In more advanced uses, grid search or manual tuning could be avoided via a descent method.

Moreover, if we expect to perform large amounts of automatic parameter tuning, then we would

advise users to leave aside part of the ground truth data so it can serve for cross-validation

purposes, to avoid overfitting the algorithms to work on the ground truth data.

5 Summary

Altogether, we suggest that when using OCR to digitize data, the researcher becomes the prac-

titioner. Although there is no one-size-fits-all solution, we argue for leveraging well-established

and battle-tested tools, such as OpenCV and cloud-based OCR software, in order to construct

digitization pipelines that can be tailored to the data sources at hand while requiring the least

amount of customized, ad-hoc, code.

25



In particular, for large-scale datasets, we encourage researchers to apply a large share of their

coding efforts in developing metrics for identifying errors in the data, either by constructing

ground truths via human reviews or by exploiting characteristics of the data at hand. For instance,

balance sheet records are ideally suited for large-scale digitization, as we can exploit balance sheets

identities to allow for straightforward error detection. In contrast, security price data may be less

well suited, as they contain fewer constraints that we can validate against. Moreover, accuracy

metrics allow researchers to easily test and tune the different components of the digitization

pipeline, so instead of being relegated to the latter stages of the digitization, they can be used from

the beginning to build a more accurate pipeline.

Lastly, although the pipeline discussed in this paper can be quite complex depending on the scale

and difficulty of the digitization task, we believe that for most use cases simple pipelines would

still perform quite accurately while maintaining only light programming requirements. Instead,

we recommend starting with simpler pipelines and only adding steps as needed, which maximize

the likelihood of successful digitization efforts and avoid premature optimization problems.

References

Bako, S., S. Darabi, E. Shechtman, J. Wang, K. Sunkavalli, and P. Sen (2016). Removing shadows

from images of documents. Asian Conference on Computer Vision (ACCV 2016).

Brunnermeier, M., S. Correia, S. Luck, and T. Zimmermann (2021). The Real Effects of Price

Instability: Evidence from Hyperinflation and Deflation. mimeo.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence PAMI-8(6), 679–698.

Carlson, M., S. Correia, and S. Luck (forthcoming). The Effects of Banking Competition on Growth

and Financial Stability: Evidence from the National Banking Era. Journal of Political Economy.

Das, S., K. Ma, Z. Shu, D. Samaras, and R. Shilkrot (2019). Dewarpnet: Single-image document un-

warping with stacked 3d and 2d regression networks. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 131–140.

Feng, H., Y. Wang, W. Zhou, J. Deng, and H. Li (2021). Doctr: Document image transformer for

geometric unwarping and illumination correction.

26



Fu, B., M. Wu, R. Li, W. Li, Z. Xu, and C. Yang. A model-based book dewarping method using

text line detection. In Proc. CBDAR 2007, pp. 63–70.

Gupta, A., R. Gutierrez-Osuna, M. Christy, B. Capitanu, L. Auvil, L. Grumbach, R. Furuta, and

L. Mandell (2015). Automatic assessment of OCR quality in historical documents. In B. Bonet

and S. Koenig (Eds.), Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,

January 25-30, 2015, Austin, Texas, USA, pp. 1735–1741. AAAI Press.

Hegghammer, T. (2021, Nov). OCR with Tesseract, Amazon Textract, and Google Document AI: a

benchmarking experiment. Journal of Computational Social Science.

Hough, P. V. (1959). Machine analysis of bubble chamber pictures. In Proc. of the International

Conference on High Energy Accelerators and Instrumentation, Sept. 1959, pp. 554–556.

Jurafsky, D. and J. H. Martin (2009). Speech and language processing : an introduction to natural

language processing, computational linguistics, and speech recognition. Upper Saddle River, N.J.:

Pearson Prentice Hall.

Kaehler, A. and G. Bradski (2016). Learning OpenCV 3: Computer Vision in C++ with the OpenCV

Library (1st ed.). O’Reilly Media, Inc.

Kemighan, M. D., K. Church, and W. A. Gale (1990). A spelling correction program based on

a noisy channel model. In COLING 1990 Volume 2: Papers presented to the 13th International

Conference on Computational Linguistics.

Kiryati, N., Y. Eldar, and A. M. Bruckstein (1991). A probabilistic hough transform. Pattern

recognition 24(4), 303–316.

Koistinen, M., K. Kettunen, and T. Pääkkönen (2017, May). Improving optical character recognition

of Finnish historical newspapers with a combination of fraktur & antiqua models and image

preprocessing. In Proceedings of the 21st Nordic Conference on Computational Linguistics, Gothenburg,

Sweden, pp. 277–283. Association for Computational Linguistics.

Lefevere, F.-M. and M. Saric (2009). Detection of grooves in scanned images. US Patent 7,508,978.

Li, X., B. Zhang, J. Liao, and P. V. Sander (2019). Document rectification and illumination correction

using a patch-based CNN. CoRR abs/1909.09470.

27



Lund, W. B. (2014). Ensemble Methods for Historical Machine-Printed Document Recognition. Brigham

Young University.

Michalak, H. and K. Okarma (2019). Improvement of image binarization methods using image

preprocessing with local entropy filtering for alphanumerical character recognition purposes.

Entropy 21(6).

Pizer, S. M., J. R. Eugene, J. P. Ericksen, B. C. Yankaskas, and K. E. Muller (1990). Contrast-limited

adaptive histogram equalization: Speed and effectiveness. In Proceedings of the First Conference on

Visualization in Biomedical Computing, Atlanta, Georgia, Volume 337.

Sauvola, J. and M. Pietikäinen (2000). Adaptive document image binarization. Pattern Recogni-

tion 33(2), 225–236.

Sulaiman, A., K. Omar, and M. F. Nasrudin (2019). Degraded historical document binarization: A

review on issues, challenges, techniques, and future directions. Journal of Imaging 5(4), 48.

Suzuki, S. et al. (1985). Topological structural analysis of digitized binary images by border

following. Computer vision, graphics, and image processing 30(1), 32–46.

Tian, Y. and S. G. Narasimhan (2011). Rectification and 3d reconstruction of curved document

images. In CVPR 2011, pp. 377–384. IEEE.

Wolf, C. and J.-M. Jolion (2004). Extraction and recognition of artificial text in multimedia

documents. Pattern Analysis & Applications 6(4), 309–326.

You, S., Y. Matsushita, S. N. Sinha, Y. Bou, and K. Ikeuchi (2016). Multiview rectification of folded

documents. CoRR abs/1606.00166.

28


	1 Introduction
	2 Extracting balance sheet data at scale
	3 Data extraction methods
	3.1 Image processing
	Size distortions
	Geometric distortions
	Color distortions

	3.2 Optical Character Recognition
	3.3 Layout recognition
	3.4 Data extraction and validation
	3.5 Human review

	4 Advanced methods
	5 Summary

