Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Stablasten: Einwirkungen (EW) --> 1 = ständig g 2 = Schnee s 3 = Wind w 4 = Nutzlast q 5 = Erdbeben E

Dipl.-Ing. Christian Tölle

65/153

Seite:

Lastart	Richtung	EW	F,unten [kN,kNm,kN/m]	F,oben [kN,kNm,kN/m]	x von unten [m]	Länge [m]	Bemerkung
Gleichl.	in z-Richtung	3	2,290	2,290	0,000	7,690	
Gleichl.	in y-Richtung	3	-1,950	-1,950	0,000	7,690	

Auflagerreaktionen (ohne Sicherheitsbeiwerte):

Stützenfuß: (Eigengewicht Stütze = 30,760 kN)

Lastfall	V [kN]	Hy [kN]	Hz [kN]	My [kNm]	Mz [kNm]
ständige L. G	45,02	0,00	0,00	0,00	1,28
Schnee S	0,00	0,00	0,00	0,00	0,00
Wind w	0,00	-15,00	17,61	68,39	-58,24
Nutzlast Q	0,00	0,00	0,00	0,00	0,00
Erdbeben E	0,00	0,00	0,00	0,00	0,00

Stützenfuß: (d,Myd,II und d,Mzd,II Momentenzuwachs aus Th.II.Ordnung)

LFK	Vd [kN]	Hyd [kN]	Hzd [kN]	Myd [kNm]	d,Myd,II [kNm]	Mzd [kNm]	d,Mzd,II [kNm]
1	45,02	0,00	0,00	0,00	18,43	1,28	18,43
2	60,78	0,00	0,00	0,00	24,87	1,73	24,87
3	45,02	-22,49	26,42	102,59	18,43	-86,07	18,43
4	60,78	-22,49	26,42	102,59	24,87	-85,62	24,87
5	45,02	0,00	0,00	0,00	0,00	1,28	0,00
6	60,78	0,00	0,00	0,00	0,00	1,73	0,00
7	45,02	0,00	0,00	0,00	0,00	1,28	0,00
8	60,78	0,00	0,00	0,00	0,00	1,73	0,00
9	45,02	-22,49	26,42	102,59	0,00	-86,07	0,00
10	60,78	-22,49	26,42	102,59	0,00	-85,62	0,00
11	45,02	-13,50	15,85	61,55	0,00	-51,13	0,00
12	60,78	-13,50	15,85	61,55	0,00	-50,68	0,00
13	45,02	-22,49	26,42	102,59	0,00	-86,07	0,00
14	60,78	-22,49	26,42	102,59	0,00	-85,62	0,00
15	45,02	-13,50	15,85	61,55	0,00	-51,13	0,00
16	60,78	-13,50	15,85	61,55	0,00	-50,68	0,00
17	45,02	0,00	0,00	0,00	0,00	1,28	0,00
18	60,78	0,00	0,00	0,00	0,00	1,73	0,00
19	45,02	0,00	0,00	0,00	0,00	1,28	0,00
20	60,78	0,00	0,00	0,00	0,00	1,73	0,00
21	45,02	-22,49	26,42	102,59	0,00	-86,07	0,00
22	60,78	-22,49	26,42	102,59	0,00	-85,62	0,00
23	45,02	-13,50	15,85	61,55	0,00	-51,13	0,00
24	60,78	-13,50	15,85	61,55	0,00	-50,68	0,00
25	45,02	-13,50	15,85	61,55	0,00	-51,13	0,00
26	60,78	-13,50	15,85	61,55	0,00	-50,68	0,00
27	45,02	0,00	0,00	0,00	0,00	1,28	0,00
28	45,02	0,00	0,00	0,00	0,00	1,28	0,00
29	45,02	0,00	0,00	0,00	0,00	1,28	0,00
30	45,02	0,00	0,00	0,00	0,00	1,28	0,00

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Seite: 66/153

Dipl.-Ing. Christian Tölle

Verformungen im Zustand I für Einzellastfälle::

Bemessung - Knicken in: y - Richtung z - Richtung Knicklänge: 16,579 m 16,579 m Trägheitsradius iz / iy: 11,55 cm 11,55 cm Schlankheit Lambda: 143,58 143,58 Normalkraft NEd: 60,777 kN 60,777 kN bezogene Normalkraft Nue: 0,019 0,019 Schnittmoment MEd: 85,624 kNm -102,586 kNm Ausmitte e0 = MEd/NEd: 140,882 cm 168,791 cm ungewollte Ausmitte ea: 2,989 cm 2,989 cm Kriechausmitte ek: 0,000 cm 0,000 cm Beiwert K1: 1,000 1,000 max.zul.Lambda: 115,61 115,61 Beiwert Kr (iteriert): 1,000 1,000 Ausmitte Th.II.O. e2: 37,937 cm 37,937 cm Gesamtausmitte e.tot: 181.809 cm 209.718 cm Bemessungsmoment MEd,bem: 110.498 kNm 127.460 kNm

Bemessung für LFK = 1,35*G + 1,50*W

erf.As,tot: 19,34 cm²

Bewehrungsgehalt Mue: 1,209 % Mindestbewehrung min.As,tot: 4,80 cm²

Ausmitte nach EC2-1-1, 6.1(4) wird bei Th.I.O. als ea angesetzt

Querkraftnachweis:

cv,l = 3,50 cm

Bei zweiachsiger Querkraft erfolgt Bemessung gem. Verfahren Prof. Mark

max.Vy = 0.00 kN / zugeh.Vz = 0.00 kN

max.Vz = 0.00 kN / zugeh.Vy = 0.00 kN

Theta = °

VRd,c = 0.00 kN

VRd,max = kN

min.as,q = 0,00 cm²/m (Mindestbewehrung)

 $erf.as,q = 0,00 cm^{2}/m$

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 67/153

Position 4.6 – mittige Giebelstützen – Ausbauzustand

- Ausführung als FT-Stützen
- Querschnitt: [] 0,40 x 0,40 [m]
- Stützenhöhe: h = 7,69 m
- rückwärtige Aufkantung: h = 0,77 m
- Stützenabstand: $e_1 = 7,05 \text{ m}$ im Giebel
- Einwirkungen
 - aus Pos. 3.3 Vorbemessung Giebelbinder maximale Auflagerkräfte des Giebelbinders äußere Stützen
 G. = 64 98 kN

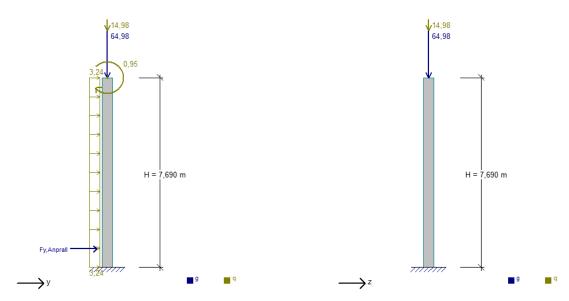
$$G_k = 64,98 \text{ kN}$$

 $S_k = 14,98 \text{ kN}$

- Moment aus außermittigem Lasteintrag entfällt
- aus Winddruck auf mittige Giebelstütze Lastfläche D (= auf Giebel) $W_D = 0,70~\star~0,65~kN/m^2 = 0,46~kN/m^2$ Einflussbreite e = 7,05 m $W_D = 3,24~kN/m$
- Windlast auf Giebelattika $W_D = 0,70 * 0,65 \text{ kN/m}^2 * 7,05 \text{ m} * 0,77 \text{ m} = 2,47 \text{ kN}$

$$M_{w,y} = 2,47 \text{ kN} * 0,50 * 0,77 \text{ m} = 0,95 \text{ kNm}$$

• Anpralllast


Anprall durch Einzellast simuliert $F_v = 100 \text{ kN}$ in 0,75 m über dem Hallenfußboden

erf.
$$a_{s,tot} = 26,72 \text{ cm}^2$$

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 68/153

Position: 4.6 mittige Giebelstütze - Ausbauzustand Stahlbetonstütze nach EC2 + NA Deutschland

Rechteckstütze als Kragstütze

beta,y = 2,16

beta,z = 2,16

Ermittlung der beta-Werte aus einer Fundamenteinspannung (nach GÜNTHER):

Ly = 2,700 m (Fundamentlänge in y-Richtung)

Lz = 2,700 m (Fundamentlänge in z-Richtung)

Es = 20000,0 kN/m² (Steifemodul Boden)

Stütze in y - und z - Richtung frei

Berechnung als Stütze (Mindest- und Höchstbewehrung)

Stützenhöhe H = 7,690 m

by = 40,0 cm

bz = 40,0 cm

d1 = 5,00 cm (Randabstand Bewehrung oben/unten)

d2 = 5,00 cm (Randabstand Bewehrung seitlich)

Bewehrung in Ecken konzentriert

Beton: C35/45 (Kriechzahl Phi = 2,17)

Betonstahl: B500 (A)

Belastungen

Eigengewicht Stütze wird mit 25,0 kN/m³ berücksichtigt

Kategorie für Nutzlasten = A, B: Wohn-, Arbeits- und Büroräume

Kategorie für Schneelasten = Schnee für Orte bis NN + 1000

Knotenlasten: Einwirkungen (EW) --> 1 = ständig g 2 = Schnee s 3 = Wind w 4 = Nutzlast q 5 = Erdbeben E

Lastart	Richtung	EW	F / M [kN / kNm]	ey [cm]	ez [cm]	Bemerkung
Einzellast	vertikal	1	64,980	0,0	0,0	
Einzellast	vertikal	2	14,980	0,0	0,0	
Moment	in y-Richtung bzw. um z-Achse	3	0,950	0,0	0,0	

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Stablasten: Einwirkungen (EW) --> 1 = ständig g 2 = Schnee s 3 = Wind w 4 = Nutzlast q 5 = Erdbeben E

Dipl.-Ing. Christian Tölle

69/153

Seite:

Lastart	Richtung	EW	F,unten [kN,kNm,kN/m]	F,oben [kN,kNm,kN/m]	x von unten [m]	Länge [m]	Bemerkung
Gleichl.	in y-Richtung	3	3,240	3,240	0,000	7,690	

Anpralllasten:

Fy,Anprall = 100,000 kN in einer Höhe von = 0,750 m

Auflagerreaktionen (ohne Sicherheitsbeiwerte):

Stützenfuß: (Eigengewicht Stütze = 30,760 kN)

Lastfall	V [kN]	Hy [kN]	Hz [kN]	My [kNm]	Mz [kNm]
ständige L. G	95,74	0,00	0,00	0,00	0,00
Schnee S	14,98	0,00	0,00	0,00	0,00
Wind w	0,00	24,92	0,00	0,00	96,75
Nutzlast Q	0,00	0,00	0,00	0,00	0,00
Erdbeben E	0,00	0,00	0,00	0,00	0,00
Fy,Anprall	0,00	100,00	0,00	0,00	75,00

Stützenfuß: (d,Myd,II und d,Mzd,II Momentenzuwachs aus Th.II.Ordnung)

LFK	Vd [kN]	Hyd [kN]	Hzd [kN]	Myd [kNm]	d,Myd,II [kNm]	Mzd [kNm]	d,Mzd,II [kNm]
1	95,74	0,00	0,00	0,00	39,18	0,00	39,18
2	129,25	0,00	0,00	0,00	52,90	0,00	52,90
3	95,74	37,37	0,00	0,00	39,18	145,13	39,18
4	129,25	37,37	0,00	0,00	52,90	145,13	52,90
5	118,21	0,00	0,00	0,00	48,38	0,00	48,38
6	151,72	0,00	0,00	0,00	62,09	0,00	62,09
7	95,74	0,00	0,00	0,00	0,00	0,00	0,00
8	129,25	0,00	0,00	0,00	0,00	0,00	0,00
9	106,98	37,37	0,00	0,00	43,78	145,13	43,78
10	140,48	37,37	0,00	0,00	57,50	145,13	57,50
11	118,21	22,42	0,00	0,00	48,38	87,08	48,38
12	151,72	22,42	0,00	0,00	62,09	87,08	62,09
13	95,74	37,37	0,00	0,00	0,00	145,13	0,00
14	129,25	37,37	0,00	0,00	0,00	145,13	0,00
15	95,74	22,42	0,00	0,00	0,00	87,08	0,00
16	129,25	22,42	0,00	0,00	0,00	87,08	0,00
17	118,21	0,00	0,00	0,00	0,00	0,00	0,00
18	151,72	0,00	0,00	0,00	0,00	0,00	0,00
19	106,98	0,00	0,00	0,00	0,00	0,00	0,00
20	140,48	0,00	0,00	0,00	0,00	0,00	0,00
21	106,98	37,37	0,00	0,00	0,00	145,13	0,00
22	140,48	37,37	0,00	0,00	0,00	145,13	0,00
23	118,21	22,42	0,00	0,00	0,00	87,08	0,00
24	151,72	22,42	0,00	0,00	0,00	87,08	0,00
25	106,98	22,42	0,00	0,00	0,00	87,08	0,00
26	140,48	22,42	0,00	0,00	0,00	87,08	0,00
27	95,74	0,00	0,00	0,00	0,00	0,00	0,00
28	95,74	0,00	0,00	0,00	0,00	0,00	0,00

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Fortsetzung Auflagerreaktionen:

29	95,74	0,00	0,00	0,00	0,00	0,00	0,00
30	95,74	0,00	0,00	0,00	0,00	0,00	0,00
31	95,74	100,00	0,00	0,00	39,18	75,00	39,18
32	98,74	100,00	0,00	0,00	40,41	75,00	40,41
33	95,74	104,98	0,00	0,00	39,18	94,35	39,18
34	95,74	100,00	0,00	0,00	0,00	75,00	0,00

Dipl.-Ing. Christian Tölle

70/153

Seite:

Verformungen im Zustand I für Einzellastfälle::

Bemessung - Knicken in: y - Richtung z - Richtung Knicklänge: 16,579 m 16.579 m Trägheitsradius iz / iy: 11,55 cm 11,55 cm Schlankheit Lambda: 143,58 143,58 Normalkraft NEd: 140,484 kN 140,484 kN bezogene Normalkraft Nue: 0.044 0.044 Schnittmoment MEd: -145,126 kNm 0,000 kNm Ausmitte e0 = MEd/NEd: 103,304 cm 0.000 cm ungewollte Ausmitte ea: 2.989 cm 2.989 cm Kriechausmitte ek: 0.000 cm 0.000 cm Beiwert K1: 1,000 1,000 max.zul.Lambda: 76,04 76,04 1,000 Beiwert Kr (iteriert): 1,000 Ausmitte Th.II.O. e2: 37,937 cm 37,937 cm Gesamtausmitte e,tot: 144,231 cm 40,927 cm Bemessungsmoment MEd,bem: 202,621 kNm 57,495 kNm

Bemessung für LFK = 1,35*G + 1,50*W + 1,50*Psi,0*S

erf.As,tot: 26,72 cm²

Bewehrungsgehalt Mue: 1,670 % Mindestbewehrung min.As,tot: 4,80 cm²

bei außergewöhnlichen LFK gamma,c = 1,30 und gamma,s = 1,00!

Ausmitte nach EC2-1-1, 6.1(4) wird bei Th.I.O. als ea angesetzt

Querkraftnachweis:

cv,I = 3,50 cm

Bei zweiachsiger Querkraft erfolgt Bemessung gem. Verfahren Prof. Mark

max.Vy = 104,98 kN / zugeh.Vz = 0,00 kNmax.Vz = 0,00 kN / zugeh.Vy = 0,00 kN

Theta = 18,40 °

VRd.c = 99.75 kN

VRd,max = 498,99 kN

min.as,q = 4,10 cm²/m (Mindestbewehrung)

 $erf.as,q = 2,87 cm^2/m$

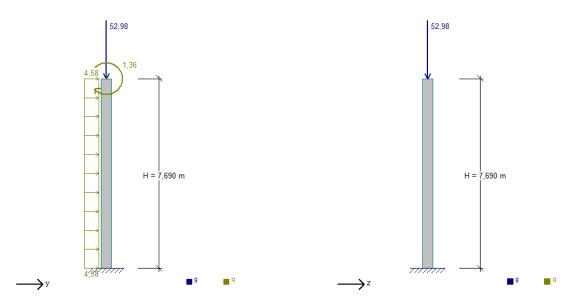
Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Seite:

Dipl.-Ing. Christian Tölle

71/153

Position 4.7 – mittige Giebelstützen – Montagezustand


- Ausführung als FT-Stützen
- Querschnitt: [] 0,40 x 0,40 [m]
- Stützenhöhe: h = 7,69 m
- rückwärtige Aufkantung: h = 0,77 m
- Stützenabstand: $e_1 = 7,05 \text{ m}$ im Giebel
- Einwirkungen
 - aus Pos. 3.3 Vorbemessung Giebelbinder maximale Auflagerkräfte des Giebelbinders äußere Stützen $G_k = 52,98 \ kN$
 - Moment aus außermittigem Lasteintrag entfällt
 - aus Winddruck auf mittige Giebelstütze Lastfläche D (= auf Giebel) $W_D = (0,70\,+\,0,30)\,\,*\,\,0,65\,\,kN/m^2 \,=\,0,65\,\,kN/m^2$ Einflussbreite e = 7,05 m $W_D = 4,58\,\,kN/m$
 - Windlast auf Giebelattika $W_D = (0,70\,+\,0,30)\,\,*\,\,0,65\,\,kN/m^2\,\,*\,\,7,05\,\,m\,\,*\,\,0,77\,\,m = 3,53\,\,kN$ $M_{w,y} = 3,53\,\,kN\,\,*\,\,0,50\,\,*\,\,0,77\,\,m = 1,36\,\,kNm$
 - Anpralllast kein Ansatz im Montagezutand

erf. $a_{s,tot} = 34,43 \text{ cm}^2$

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 72/153

Position: 4.7 mittige Giebelstütze - Montagelastfall Stahlbetonstütze nach EC2 + NA Deutschland

Rechteckstütze als Kragstütze

beta,y = 2,16

beta,z = 2,16

Ermittlung der beta-Werte aus einer Fundamenteinspannung (nach GÜNTHER):

Ly = 2,700 m (Fundamentlänge in y-Richtung)

Lz = 2,700 m (Fundamentlänge in z-Richtung)

Es = 20000,0 kN/m² (Steifemodul Boden)

Stütze in y - und z - Richtung frei

Berechnung als Stütze (Mindest- und Höchstbewehrung)

Stützenhöhe H = 7,690 m

by = 40,0 cm

bz = 40,0 cm

d1 = 5,00 cm (Randabstand Bewehrung oben/unten)

d2 = 5,00 cm (Randabstand Bewehrung seitlich)

Bewehrung in Ecken konzentriert

Beton: C35/45 (Kriechzahl Phi = 2,17)

Betonstahl: B500 (A)

Belastungen

Eigengewicht Stütze wird mit 25,0 kN/m³ berücksichtigt

Kategorie für Nutzlasten = A, B: Wohn-, Arbeits- und Büroräume

Kategorie für Schneelasten = Schnee für Orte bis NN + 1000

Knotenlasten: Einwirkungen (EW) --> 1 = ständig g 2 = Schnee s 3 = Wind w 4 = Nutzlast q 5 = Erdbeben E

Lastart	Richtung	EW	F / M [kN / kNm]	ey [cm]	ez [cm]	Bemerkung
Einzellast	vertikal	1	52,980	0,0	0,0	
Moment	in y-Richtung bzw. um z-Achse	3	1,360	0,0	0,0	

Stablasten: Einwirkungen (EW) --> 1 = ständig g 2 = Schnee s 3 = Wind w 4 = Nutzlast g 5 = Erdbeben E

Lastart	Richtung	EW	F,unten [kN,kNm,kN/m]	F,oben [kN,kNm,kN/m]	x von unten [m]	Länge [m]	Bemerkung
Gleichl.	in y-Richtung	3	4,580	4,580	0,000	7,690	

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 73/153

Auflagerreaktionen (ohne Sicherheitsbeiwerte):

Stützenfuß: (Eigengewicht Stütze = 30,760 kN)

Lastfall	V [kN]	Hy [kN]	Hz [kN]	My [kNm]	Mz [kNm]
ständige L. G	83,74	0,00	0,00	0,00	0,00
Schnee S	0,00	0,00	0,00	0,00	0,00
Wind w	0,00	35,22	0,00	0,00	136,78
Nutzlast Q	0,00	0,00	0,00	0,00	0,00
Erdbeben E	0,00	0,00	0,00	0,00	0,00

Stützenfuß: (d,Myd,II und d,Mzd,II Momentenzuwachs aus Th.II.Ordnung)

LFK	Vd [kN]	Hyd [kN]	Hzd [kN]	Myd [kNm]	d,Myd,II [kNm]	Mzd [kNm]	d,Mzd,II [kNm]
1	83,74	0,00	0,00	0,00	34,27	0,00	34,27
2	113,05	0,00	0,00	0,00	46,27	0,00	46,27
3	83,74	52,83	0,00	0,00	34,27	205,17	34,27
4	113,05	52,83	0,00	0,00	46,27	205,17	46,27
5	83,74	0,00	0,00	0,00	0,00	0,00	0,00
6	113,05	0,00	0,00	0,00	0,00	0,00	0,00
7	83,74	0,00	0,00	0,00	0,00	0,00	0,00
8	113,05	0,00	0,00	0,00	0,00	0,00	0,00
9	83,74	52,83	0,00	0,00	0,00	205,17	0,00
10	113,05	52,83	0,00	0,00	0,00	205,17	0,00
11	83,74	31,70	0,00	0,00	0,00	123,10	0,00
12	113,05	31,70	0,00	0,00	0,00	123,10	0,00
13	83,74	52,83	0,00	0,00	0,00	205,17	0,00
14	113,05	52,83	0,00	0,00	0,00	205,17	0,00
15	83,74	31,70	0,00	0,00	0,00	123,10	0,00
16	113,05	31,70	0,00	0,00	0,00	123,10	0,00
17	83,74	0,00	0,00	0,00	0,00	0,00	0,00
18	113,05	0,00	0,00	0,00	0,00	0,00	0,00
19	83,74	0,00	0,00	0,00	0,00	0,00	0,00
20	113,05	0,00	0,00	0,00	0,00	0,00	0,00
21	83,74	52,83	0,00	0,00	0,00	205,17	0,00
22	113,05	52,83	0,00	0,00	0,00	205,17	0,00
23	83,74	31,70	0,00	0,00	0,00	123,10	0,00
24	113,05	31,70	0,00	0,00	0,00	123,10	0,00
25	83,74	31,70	0,00	0,00	0,00	123,10	0,00
26	113,05	31,70	0,00	0,00	0,00	123,10	0,00
27	83,74	0,00	0,00	0,00	0,00	0,00	0,00
28	83,74	0,00	0,00	0,00	0,00	0,00	0,00
29	83,74	0,00	0,00	0,00	0,00	0,00	0,00
30	83,74	0,00	0,00	0,00	0,00	0,00	0,00

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 74/153

Verformungen im Zustand I für Einzellastfälle::

Bemessung - Knicken in: y - Richtung z - Richtung Knicklänge: 16,579 m 16,579 m Trägheitsradius iz / iy: 11,55 cm 11,55 cm Schlankheit Lambda: 143,58 143,58 Normalkraft NEd: 113,049 kN 113,049 kN bezogene Normalkraft Nue: 0,036 0,036 Schnittmoment MEd: -205,173 kNm 0,000 kNm Ausmitte e0 = MEd/NEd: 181,490 cm 0,000 cm ungewollte Ausmitte ea: 2,989 cm 2,989 cm Kriechausmitte ek: 0,000 cm 0,000 cm Beiwert K1: 1,000 1,000 max.zul.Lambda: 84,77 84,77 Beiwert Kr (iteriert): 1,000 1,000 Ausmitte Th.II.O. e2: 37,937 cm 37,937 cm Gesamtausmitte e.tot: 222.416 cm 40.927 cm Bemessungsmoment MEd,bem: 251.440 kNm 46,267 kNm

Bemessung für LFK = 1,35*G + 1,50*W

erf.As,tot: 34,43 cm²

Bewehrungsgehalt Mue: 2,152 % Mindestbewehrung min.As,tot: 4,80 cm²

Ausmitte nach EC2-1-1, 6.1(4) wird bei Th.I.O. als ea angesetzt

Querkraftnachweis:

cv,l = 3,50 cm

Bei zweiachsiger Querkraft erfolgt Bemessung gem. Verfahren Prof. Mark

max.Vy = 0.00 kN / zugeh.Vz = 0.00 kN

max.Vz = 0.00 kN / zugeh.Vy = 0.00 kN

Theta = °

VRd,c = 0.00 kN

VRd,max = kN

min.as,q = 0,00 cm²/m (Mindestbewehrung)

 $erf.as,q = 0,00 cm^2/m$

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 4.8 – Giebeleckstütze C/8 – Ausbauzustand

- Fundament unter Stütze kann nicht zentrisch beansprucht werden, da ein Trafogebäude unmittelbar angrenzt

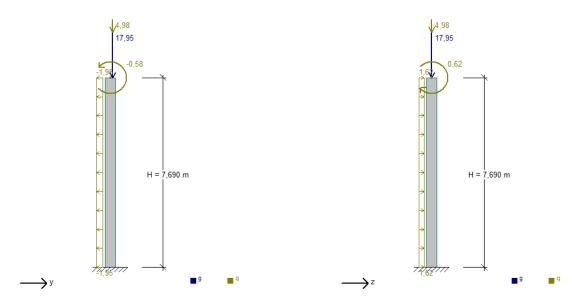
Dipl.-Ing. Christian Tölle

75/153

Seite:

- durch den außermittigen Lasteintrag ergeben sich unwirtschaftliche Fundamentabmessungen
- Ausführung als FT-Stützen mit Fuß
- Querschnitt: [] 0,40 x 0,40 [m]
- Stützenhöhe: h = 7,69 m
- rückwärtige Aufkantung: h = 0,77 m
- Stützenabstand: $e_1 = 7,05 \text{ m im Giebel}$
- Stützenabstand: $e_2 = 5,01$ m in der Traufe
- Einwirkungen
 - aus Pos. 3.3 Vorbemessung Giebelbinder maximale Auflagerkräfte des Giebelbinders äußere Stützen $G_k = 17,92 \text{ kN}$ $S_k = 4,98 \text{ kN}$
 - Moment aus außermittigem Lasteintrag
 Außermittigkeit: e = 0,09 m,
 maximale Auflagerkräfte des Binders erzeugen Biegemomente
 Momente werden automatisch ermittelt.
 - aus Winddruck und Windsog auf Eckstütze Lastfläche D (= auf Giebel) $W_{D+S} = 0,70~*~0,65~kN/m^2 = 0,46~kN/m^2$ Einflussbreite e = $\frac{1}{2}$ * 7,05 m = 3,53 m $W_{D+S,y} = 1,62~kN/m$
 - Windlast auf Giebelattika $W_{D+S,y} = 0.70 * 0.65 kN/m^2 * \frac{1}{2} * 7.05 m * 0.77 m = 1.60 kN$ $M_{w,y} = 1.60 kN * 0.50 * 0.77 m = 0.62 kNm$

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 76/153


- Windsog auf Traufe in der Lastfläche A $W_S = -\ 1,20\ ^*\ 0,65\ kN/m^2 = -0,78\ kN/m^2,$ Lastbreite $L_A = 2,94\ m > \frac{1}{2}$ Einflussbreite, da Einflussbreite e = $\frac{1}{2}$ * 5,01 m = 2,50 m $W_{S,A} = 1,95\ kN/m$
- Windsog auf Attika in der Lastfläche A (Traufe) $W_{D+S,z} = -\ 1,20\ *\ 0,65\ kN/m^2\ *\ \frac{1}{2}\ *\ 5,01\ m\ *\ 0,77\ m = 1,50\ kN$ $M_{w,z} = 1,50\ kN\ *\ 0,5\ *\ 0,77\ m = 0,58\ kNm$
- Anpralllast
 Eckstütze ohne Anprall

erf. $a_{s,tot} = 15,97 \text{ cm}^2$

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 77/153

Position: 4.8 Eckstütze C8 - Ausbauzustand Stahlbetonstütze nach EC2 + NA Deutschland

Rechteckstütze als Kragstütze

beta,y = 2,00

beta, z = 2,00

Stütze in y - und z - Richtung frei

Berechnung als Stütze (Mindest- und Höchstbewehrung)

Stützenhöhe H = 7,690 m

by = 40,0 cm

bz = 40.0 cm

d1 = 5,00 cm (Randabstand Bewehrung oben/unten)

d2 = 5,00 cm (Randabstand Bewehrung seitlich)

Bewehrung in Ecken konzentriert

Beton: C35/45 (Kriechzahl Phi = 2,17)

Betonstahl: B500 (A)

Belastungen

Eigengewicht Stütze wird mit 25,0 kN/m³ berücksichtigt

Kategorie für Nutzlasten = A, B: Wohn-, Arbeits- und Büroräume

Kategorie für Schneelasten = Schnee für Orte bis NN + 1000

Knotenlasten: Einwirkungen (EW) --> 1 = ständig g 2 = Schnee s 3 = Wind w 4 = Nutzlast q 5 = Erdbeben E

Lastart	Richtung	EW	F / M [kN / kNm]	ey [cm]	ez [cm]	Bemerkung
Einzellast	vertikal	1	17,950	9,0	0,0	
Einzellast	vertikal	2	4,980	9,0	0,0	
Moment	in y-Richtung bzw. um z-Achse	3	-0,580	0,0	0,0	
Moment	in z-Richtung bzw. um y-Achse	3	0,620	0,0	0,0	

Stablasten: Einwirkungen (EW) --> 1 = ständig g 2 = Schnee s 3 = Wind w 4 = Nutzlast q 5 = Erdbeben E

Lastart	Richtung	EW	F,unten [kN,kNm,kN/m]	F,oben [kN,kNm,kN/m]	x von unten [m]	Länge [m]	Bemerkung
Gleichl.	in z-Richtung	3	1,620	1,620	0,000	7,690	
Gleichl.	in y-Richtung	3	-1,950	-1,950	0,000	7,690	

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 78/153

Auflagerreaktionen (ohne Sicherheitsbeiwerte):

Stützenfuß: (Eigengewicht Stütze = 30,760 kN)

Lastfall	V [kN]	Hy [kN]	Hz [kN]	My [kNm]	Mz [kNm]
ständige L. G	48,71	0,00	0,00	0,00	1,62
Schnee S	4,98	0,00	0,00	0,00	0,45
Wind w	0,00	-15,00	12,46	48,52	-58,24
Nutzlast Q	0,00	0,00	0,00	0,00	0,00
Erdbeben E	0,00	0,00	0,00	0,00	0,00

Stützenfuß: (d,Myd,II und d,Mzd,II Momentenzuwachs aus Th.II.Ordnung)

LFK	Vd [kN]	Hyd [kN]	Hzd [kN]	Myd [kNm]	d,Myd,II [kNm]	Mzd [kNm]	d,Mzd,II [kNm]
1	48,71	0,00	0,00	0,00	17,25	1,62	17,25
2	65,76	0,00	0,00	0,00	23,29	2,18	23,29
3	48,71	-22,49	18,69	72,78	17,25	-85,74	17,25
4	65,76	-22,49	18,69	72,78	23,29	-85,18	23,29
5	56,18	0,00	0,00	0,00	19,90	2,29	19,90
6	73,23	0,00	0,00	0,00	25,94	2,85	25,94
7	48,71	0,00	0,00	0,00	0,00	1,62	0,00
8	65,76	0,00	0,00	0,00	0,00	2,18	0,00
9	52,45	-22,49	18,69	72,78	18,58	-85,40	18,58
10	69,49	-22,49	18,69	72,78	24,62	-84,84	24,62
11	56,18	-13,50	11,21	43,67	19,90	-50,13	19,90
12	73,23	-13,50	11,21	43,67	25,94	-49,56	25,94
13	48,71	-22,49	18,69	72,78	0,00	-85,74	0,00
14	65,76	-22,49	18,69	72,78	0,00	-85,18	0,00
15	48,71	-13,50	11,21	43,67	0,00	-50,80	0,00
16	65,76	-13,50	11,21	43,67	0,00	-50,23	0,00
17	56,18	0,00	0,00	0,00	0,00	2,29	0,00
18	73,23	0,00	0,00	0,00	0,00	2,85	0,00
19	52,45	0,00	0,00	0,00	0,00	1,95	0,00
20	69,49	0,00	0,00	0,00	0,00	2,52	0,00
21	52,45	-22,49	18,69	72,78	0,00	-85,40	0,00
22	69,49	-22,49	18,69	72,78	0,00	-84,84	0,00
23	56,18	-13,50	11,21	43,67	0,00	-50,13	0,00
24	73,23	-13,50	11,21	43,67	0,00	-49,56	0,00
25	52,45	-13,50	11,21	43,67	0,00	-50,46	0,00
26	69,49	-13,50	11,21	43,67	0,00	-49,90	0,00
27	48,71	0,00	0,00	0,00	0,00	1,62	0,00
28	48,71	0,00	0,00	0,00	0,00	1,62	0,00
29	48,71	0,00	0,00	0,00	0,00	1,62	0,00
30	48,71	0,00	0,00	0,00	0,00	1,62	0,00

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle

79/153

Seite:

Verformungen im Zustand I für Einzellastfälle::

Bemessung - Knicken in: y - Richtung z - Richtung Knicklänge: 15,380 m 15,380 m Trägheitsradius iz / iy: 11,55 cm 11,55 cm Schlankheit Lambda: 133,19 133,19 Normalkraft NEd: 69,494 kN 69,494 kN bezogene Normalkraft Nue: 0,022 0,022 Schnittmoment MEd: 84,839 kNm -72,780 kNm Ausmitte e0 = MEd/NEd: 122,083 cm 104,730 cm ungewollte Ausmitte ea: 2,773 cm 2,773 cm Kriechausmitte ek: 0,000 cm 0,000 cm Beiwert K1: 1,000 1,000 max.zul.Lambda: 108,12 108,12 Beiwert Kr (iteriert): 1,000 1,000 Ausmitte Th.II.O. e2: 32,649 cm 32,649 cm Gesamtausmitte e.tot: 157.505 cm 140.152 cm Bemessungsmoment MEd,bem: 109.456 kNm 97,397 kNm

Bemessung für LFK = 1,35*G + 1,50*W + 1,50*Psi,0*S

erf.As,tot: 15,97 cm²

Bewehrungsgehalt Mue: 0,998 % Mindestbewehrung min.As,tot: 4,80 cm²

Ausmitte nach EC2-1-1, 6.1(4) wird bei Th.I.O. als ea angesetzt

Querkraftnachweis:

cv,l = 3,50 cm

Bei zweiachsiger Querkraft erfolgt Bemessung gem. Verfahren Prof. Mark

max.Vy = 22,49 kN / zugeh.Vz = 18,69 kN

max.Vz = 18,69 kN / zugeh.Vy = 22,49 kN

Theta = 18,40 °

VRd,c = 84,02 kN

VRd,max = 831,64 kN

min.as,q = 4,10 cm²/m (Mindestbewehrung)

 $erf.as,q = 1,13 cm^2/m$

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 4.9 - Giebeleckstütze C/8 - Montagezustand

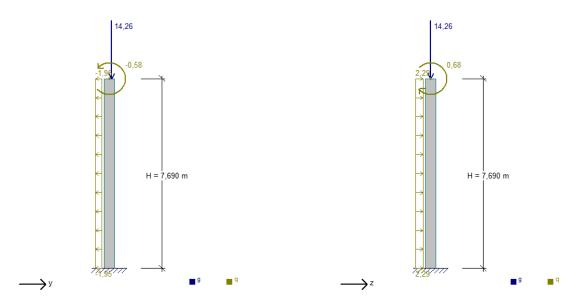
- Fundament unter Stütze kann nicht zentrisch beansprucht werden, da ein Trafogebäude unmittelbar angrenzt

Dipl.-Ing. Christian Tölle

80/153

Seite:

- durch den außermittigen Lasteintrag ergeben sich unwirtschaftliche Fundamentabmessungen
- Ausführung als FT-Stützen mit Fuß
- Querschnitt: [] 0,40 x 0,40 [m]
- Stützenhöhe: h = 7,69 m
- rückwärtige Aufkantung: h = 0,77 m
- Stützenabstand: $e_1 = 7,05 \text{ m}$ im Giebel
- Stützenabstand: $e_2 = 5,01$ m in der Traufe
- Einwirkungen
 - aus Pos. 3.3 Vorbemessung Giebelbinder minimale Auflagerkräfte des Giebelbinders äußere Stützen $G_k = 14,26 \ kN$
 - Moment aus außermittigem Lasteintrag
 Außermittigkeit: e = 0,09 m,
 maximale Auflagerkräfte des Binders erzeugen Biegemomente
 Momente werden automatisch ermittelt.
 - aus Winddruck und Windsog auf Eckstütze Lastfläche D (= auf Giebel) $W_{D+S} = (0,70\,+\,0,30)\,\,*\,\,0,65\,\,kN/m^2\,=\,0,65\,\,kN/m^2$ Einflussbreite e = ½ * 7,05 m = 3,53 m $W_{D+S,v} = 2,29\,\,kN/m$
 - Windlast auf Giebelattika $W_{D+S,y} = (0,70\,+\,0,30)\,\,*\,\,0,65\,\,kN/m^2\,\,*\,\,\frac{1}{2}\,\,*\,\,7,05\,\,m\,\,*\,\,0,77\,\,m$ $W_{D+S,y} = 1,76\,\,kN$ $M_{w,y} = 1,76\,\,kN\,\,*\,\,0,50\,\,*\,\,0,77\,\,m = 0,68\,\,kNm$


Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 81/153

- Windsog auf Traufe in der Lastfläche A $W_S = -\ 1,20\ ^*\ 0,65\ kN/m^2 = -\ 0,78\ kN/m^2,$ Lastbreite $L_A = 2,94\ m > \frac{1}{2}$ Einflussbreite, da Einflussbreite e = $\frac{1}{2}$ * 5,01 m = 2,50 m $W_{S,A} = 1,95\ kN/m$
- Windsog auf Attika in der Lastfläche A (Traufe) $W_{D+S,z} = -\ 1,20\ *\ 0,65\ kN/m^2\ *\ \frac{1}{2}\ *\ 5,01\ m\ *\ 0,77\ m = 1,50\ kN$ $M_{w,z} = 1,50\ kN\ *\ 0,5\ *\ 0,77\ m = 0,58\ kNm$
- Anpralllast
 Eckstütze ohne Anprall

erf. $a_{s,tot} = \overline{22,50 \text{ cm}^2}$

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 82/153

Position: 4.9 Eckstütze C8 - Montagelastfall Stahlbetonstütze nach EC2 + NA Deutschland

Rechteckstütze als Kragstütze

beta,y = 2,68

beta, z = 2,68

Stütze in y - und z - Richtung frei

Berechnung als Stütze (Mindest- und Höchstbewehrung)

Stützenhöhe H = 7,690 m

by = 40,0 cm

bz = 40.0 cm

d1 = 5,00 cm (Randabstand Bewehrung oben/unten)

d2 = 5,00 cm (Randabstand Bewehrung seitlich)

Bewehrung in Ecken konzentriert

Beton: C35/45 (Kriechzahl Phi = 2,17)

Betonstahl: B500 (A)

Belastungen

Eigengewicht Stütze wird mit 25,0 kN/m³ berücksichtigt

Kategorie für Nutzlasten = A, B: Wohn-, Arbeits- und Büroräume

Kategorie für Schneelasten = Schnee für Orte bis NN + 1000

Knotenlasten: Einwirkungen (EW) --> 1 = ständig g 2 = Schnee s 3 = Wind w 4 = Nutzlast q 5 = Erdbeben E

Lastart	Richtung	EW	F / M [kN / kNm]	ey [cm]	ez [cm]	Bemerkung
Einzellast	vertikal	1	14,260	9,0	0,0	
Moment	in y-Richtung bzw. um z-Achse	3	-0,580	0,0	0,0	
Moment	in z-Richtung bzw. um y-Achse	3	0,680	0,0	0,0	

Stablasten: Einwirkungen (EW) --> 1 = ständig g 2 = Schnee s 3 = Wind w 4 = Nutzlast q 5 = Erdbeben E

Lastart	Richtung	EW	F,unten [kN,kNm,kN/m]	F,oben [kN,kNm,kN/m]	x von unten [m]	Länge [m]	Bemerkung
Gleichl.	in z-Richtung	3	2,290	2,290	0,000	7,690	
Gleichl.	in y-Richtung	3	-1,950	-1,950	0,000	7,690	

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 83/153

Auflagerreaktionen (ohne Sicherheitsbeiwerte):

Stützenfuß: (Eigengewicht Stütze = 30,760 kN)

Lastfall	V [kN]	Hy [kN]	Hz [kN]	My [kNm]	Mz [kNm]
ständige L. G	45,02	0,00	0,00	0,00	1,28
Schnee S	0,00	0,00	0,00	0,00	0,00
Wind w	0,00	-15,00	17,61	68,39	-58,24
Nutzlast Q	0,00	0,00	0,00	0,00	0,00
Erdbeben E	0,00	0,00	0,00	0,00	0,00

Stützenfuß: (d,Myd,II und d,Mzd,II Momentenzuwachs aus Th.II.Ordnung)

LFK	Vd [kN]	Hyd [kN]	Hzd [kN]	Myd [kNm]	d,Myd,II [kNm]	Mzd [kNm]	d,Mzd,II [kNm]
1	45,02	0,00	0,00	0,00	28,07	1,28	28,09
2	60,78	0,00	0,00	0,00	37,89	1,73	37,92
3	45,02	-22,49	26,42	102,59	28,07	-86,07	28,09
4	60,78	-22,49	26,42	102,59	37,89	-85,62	37,92
5	45,02	0,00	0,00	0,00	0,00	1,28	0,00
6	60,78	0,00	0,00	0,00	0,00	1,73	0,00
7	45,02	0,00	0,00	0,00	0,00	1,28	0,00
8	60,78	0,00	0,00	0,00	0,00	1,73	0,00
9	45,02	-22,49	26,42	102,59	0,00	-86,07	0,00
10	60,78	-22,49	26,42	102,59	0,00	-85,62	0,00
11	45,02	-13,50	15,85	61,55	0,00	-51,13	0,00
12	60,78	-13,50	15,85	61,55	0,00	-50,68	0,00
13	45,02	-22,49	26,42	102,59	0,00	-86,07	0,00
14	60,78	-22,49	26,42	102,59	0,00	-85,62	0,00
15	45,02	-13,50	15,85	61,55	0,00	-51,13	0,00
16	60,78	-13,50	15,85	61,55	0,00	-50,68	0,00
17	45,02	0,00	0,00	0,00	0,00	1,28	0,00
18	60,78	0,00	0,00	0,00	0,00	1,73	0,00
19	45,02	0,00	0,00	0,00	0,00	1,28	0,00
20	60,78	0,00	0,00	0,00	0,00	1,73	0,00
21	45,02	-22,49	26,42	102,59	0,00	-86,07	0,00
22	60,78	-22,49	26,42	102,59	0,00	-85,62	0,00
23	45,02	-13,50	15,85	61,55	0,00	-51,13	0,00
24	60,78	-13,50	15,85	61,55	0,00	-50,68	0,00
25	45,02	-13,50	15,85	61,55	0,00	-51,13	0,00
26	60,78	-13,50	15,85	61,55	0,00	-50,68	0,00
27	45,02	0,00	0,00	0,00	0,00	1,28	0,00
28	45,02	0,00	0,00	0,00	0,00	1,28	0,00
29	45,02	0,00	0,00	0,00	0,00	1,28	0,00
30	45,02	0,00	0,00	0,00	0,00	1,28	0,00

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 84/153

Verformungen im Zustand I für Einzellastfälle::

Bemessung - Knicken in: y - Richtung z - Richtung Knicklänge: 20,609 m 20,617 m Trägheitsradius iz / iy: 11,55 cm 11,55 cm Schlankheit Lambda: 178,48 178,55 Normalkraft NEd: 60,777 kN 60,777 kN bezogene Normalkraft Nue: 0,019 0,019 Schnittmoment MEd: 85,624 kNm -102,586 kNm Ausmitte e0 = MEd/NEd: 140,882 cm 168,791 cm ungewollte Ausmitte ea: 3,717 cm 3,716 cm Kriechausmitte ek: 0,000 cm 0,000 cm Beiwert K1: 1,000 1,000 max.zul.Lambda: 115,61 115,61 Beiwert Kr (iteriert): 1,000 1,000 Ausmitte Th.II.O. e2: 58,670 cm 58,625 cm Gesamtausmitte e.tot: 203.270 cm 231.132 cm Bemessungsmoment MEd,bem: 123.541 kNm 140.475 kNm

Bemessung für LFK = 1,35*G + 1,50*W

erf.As,tot: 22,50 cm²

Bewehrungsgehalt Mue: 1,406 % Mindestbewehrung min.As,tot: 4,80 cm²

Ausmitte nach EC2-1-1, 6.1(4) wird bei Th.I.O. als ea angesetzt

Querkraftnachweis:

cv,l = 3,50 cm

Bei zweiachsiger Querkraft erfolgt Bemessung gem. Verfahren Prof. Mark

max.Vy = 0.00 kN / zugeh.Vz = 0.00 kN

max.Vz = 0.00 kN / zugeh.Vy = 0.00 kN

Theta = °

VRd,c = 0.00 kN

VRd,max = kN

min.as,q = 0,00 cm²/m (Mindestbewehrung)

 $erf.as,q = 0,00 cm^{2}/m$

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 5 – Einzelfundamente als Blockfundamente

Position 5.1 – Allgemeines und Lasten

- Die Halle soll als Stützen-Binder-System hergestellt werden

Dipl.-Ing. Christian Tölle

85/153

Seite:

- die Stützen werden als Kragstützen bemessen. Die Einspannung der Stützen erfolgt in FT-Blockfundamente.
- die Lasten für die Fundamente werden automatisch durch die entsprechenden Stützenpositionen vorgegeben. Fundament- und Stützenpositionen sind miteinander verknüpft
- Einwirkungen:
 - aus FT Stützen
 Lasten werden automatisch ermittelt
 - Stahlbetonsockelplatten

```
Fertigteile, die vor Ort montiert werden.
```

```
Abmessungen: [] 6,60 x 1,60 x 0,20 [m] 
 Gesamtgewicht G_k = 6,60 m * 1,60 m * 0,20 m * 25 kN/m³
```

```
G_k = 52,8 \text{ kN}
```

Frostschürzen werden auf Einzelfundamente "gehangen" je Frostschürze: G_k = 26,4 kN, angenommener Lasteintrag als Einzellast

• aus Hochregallagern

```
Schwerlastregale: Gesamtlast max. 12 t, auf 3 Regalebenen, je Ebene: 4 t
```

je Fuß 3 t, da 2 Regale nebeneinander stehen ergeben sich Einzellasten in Höhe von 6 t: G_k = 60 kN, (mittlerer Fuß)

Bemessungseinzellast: $G_d = 1,2 * 60 kN = 72 kN$

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 86/153

- Das zum Zeitpunkt der Erstellung der Statik vorliegende Bodengutachten wurde gesichtet.
- Die zulässigen Bodenpressungen werden $\sigma_{R,d} = 430 \text{ kN/m}^2$ angegeben. (Streifenfundament, b = 1,50 m, Einbindetiefe t = 1,00 m). Die im Gutachten beschriebenen Pressungswerte für elastisch gebettete Bodenplatten sind nicht zielführend. Aus der Fachliteratur heraus können auch Abschätzungen getroffen werden.

nicht bindige Böden

- \square 5.08 Bemessungswerte des Sohlwiderstands $\sigma_{R,d}$ für Streifenfundamente nach Handbuch Eurocode 7, Band 1 (2011): DIN 1054 (2010), Tabellen A.6.1 bis A.6.2
 - Nicht bindiger Boden
 - Voraussetzungen: Abschnitt 5.3.2 (DIN 1054 (2010), Abschnitt A 6.10.1)

G (,,	irundla irundb setzui	age ei ruchs ngsun	ner au sicherh empfi	usreic neit ndlich	hende			Grund Grund Grund grenzu ("setzu	lage e bruchs ing de	iner a sicherl r Setz	usreic neit ur unger	hende nd eine	
Kleinste Einbinde- tiefe des Funda- ments [m]	0,5	emes:	sungs b bz 1,5	wert c w. b' 2,0	7 _{R,d} kN/	/m²	Kleinste Einbinde- tiefe des Funda- ments [m]	unda- b bzw. b'					
	m	m	m	m	m	m		0,5 m	1,0 m	1,5 m	2,0 m		3,0 r
0,5	280	420	560	700	700	700	0,5	280	420	460	390	350	310
1,0	380	520	660	800	800	800	1.0	380	520	500	430	380	340
1.5	480	620	760	900	900	900	1,5	480	620	550	480	410	360
2,0	560	700	840	980	980	980	2,0	560	700	590	500	430	390
bei Bauwerken mit Einbindetiefen 0,30 m ≤ d ≤ 0,50 m und mit Fun- damentbreiten b bzw. b' ≥ 0,30 m			21	10			bei Bauwerken mit Einbindetiefen 0,30 m ≤ d ≤ 0,50 m und mit Fun- damentbreiten b bzw. b' ≥ 0,30 m			21	10		

bindige Böden

- 5.08b Bemessungswerte des Sohlwiderstands σ_{R,d} für Streifenfundamente nach Handbuch Eurocode 7, Band 1 (2011): DIN 1054 (2010), Tabellen A.6.5 bis A.6.8
 - Bindiger Boden
 - Voraussetzungen: Abschnitt 5.3.2 (DIN 1054 (2010), Abschnitt A 6.10.1)

Tab. A.6.5: Bemessungswert des Sohlwider- Tab. A.6.6: Bemessungswert des Sohlwiderstands $\sigma_{R,d}$ auf reinem Schluff bei steifer bis halbfester Konsistenz oder einer mittleren einaxialen Druckfestigkeit q_{u,k} > 120 kN/m² (UL nach DIN 18196)

Kleinste Einbindetiefe des Funda- ments [m]	Bemessungswert des Sohlwi- derstands $\sigma_{R,d}$ kN/m²
0,5	180
1,0	250
1,5	310
2.0	350

Tab. A.6.7: Bemessungswert des Sohlwider- Tab. A.6.8: Bemessungswert des Sohlwiderstands $\sigma_{R,\sigma}$ auf tonig schluffigem Boden (UM, TL, TM nach DIN 18196)

Kleinste Einbindetiefe des Funde- ments [m]	Bemessungswert des Sohlwi- derstands $\sigma_{R,d}$ kN/m ² Mittlere Konsistenz							
meme (m)	steif	halbfest	fest					
0,5	170	240	390					
1,0	200	290	450					
1,5	220	350	500					
2,0	250	390	560					
Mittlere einaxiale Druckfestigkeit q _{ak} in kN/m²	120 bis 300	300 bis 700	> 700					

stands or,d auf gemischtkörnigem Boden (SU*, ST, ST*, GU*, GT* nach DIN

18196, z.B. Geschiebemergel)

KleInste Einbindetiefe des Funda- ments [m]	Bernessungswert des Sohlwi- derstands $\sigma_{R,d}$ kN/m² Mittlere Konsistenz							
tooms (11)	steif	halbfest	fest					
0,5	210	310	460					
1,0	250	390	530					
1,5	310	480	620					
2,0	350	520	700					
Mittiere einaxiale Druckfestigkeit q ₂₃ in kN/m²	120 bis 300	300 bis 700	> 700					

stands $\sigma_{R,d}$ für Streifenfundamente auf Ton-Boden (TA nach DIN

10	1150)					
Kleinste Einbindebefe des Funda- ments [m]	ders	Bemessungswert des Sohlwi- derstands $\sigma_{R,d}$ kN/m ² Millere Konsistenz stef halbfest fest				
0.5	130	200	280			
1,0	150	250	340			
1,5	180 290	290	380			
2,0	210	320	420			
Mittlere einaxiale Drucktestigkeit	120 bis 300	300 bis 700	> 700			

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: **87/153**

- generell gilt: Baugrube in Abhängigkeit des Baugrundes vor Niederschlag schützen. Der anstehende Baugrund ist augenscheinlich kiesig / nicht bindig, so dass kurzfristige und kleinere Regenmengen versickern sollten.

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Bauliche Durchbildung:

- Einzelfundamente bzw. Fundamentstreifen in ihren Abmessungen nach der Vorgabe der einzelnen Positionen.

Dipl.-Ing. Christian Tölle

88/153

Seite:

- Einzelfundamente auf Tragschicht: Schichtdicke: 30 cm
- Material: je nach Baugrund: Schotter oder verdichtungswilliger Kiessand bzw., sandiger Kies (U > 6)
- erf. Verformungsmoduln:
 - Ev2, $U = 45 \text{ MN/m}^2$ (vor Einbau der Tragschicht)
 - Ev2, $T = 120 \text{ MN/m}^2$ (vor Einbau der Bodenplatte)
- zwangsfreie Lagerung der Einzelfundamente: 2 lagige PE-Folie auf Schottertragschicht (unter Fundamente) einbauen
- Randdämmstreifen zur Zwangsverringerung und Vermeidung von Wärmebrücken einbauen
- im frostberührten Bereich sollte eine unbewehrte Bankette als Frostschürze betoniert werden. Frostfreiheit in Abhängigkeit des Bodens. UK Frostschürze auf - 1,00 m von OK Gelände
- Betonfestigkeitsklasse: C25/30
- Betonstahl: BSt 500 M (A)
- Betondeckung unten: (XC 2) nom c, u = 4,00 cm
- Betondeckung unten: (XC 3/ XC 4) nom c,o = 4,00 cm
- Rissbreitenbegrenzung: Anforderungsklasse F: $w_k = 0,40$ mm
- gewählte Grundbewehrung der Einzelfundamente:

oben und unten: Q524 A + Zulagen

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 5.2 – Einzelfundamente unter Hallenstützen – Ausbauzustand

Dipl.-Ing. Christian Tölle

89/153

Seite:

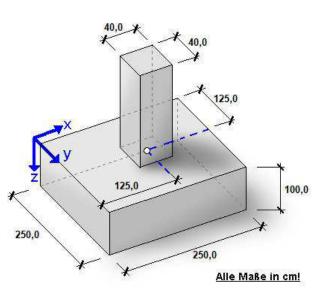
- FT-Blockfundament zur Erzeugung der Einspannung
- Lasten aus Pos. 4.2

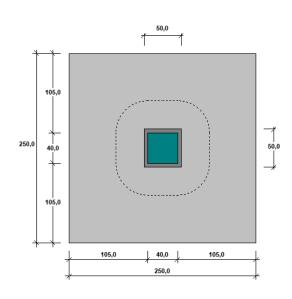
gewählt:

Einzelfundament [] 250 x 250 x 100 [cm]

Beton: C25/30

Betonstahl: BSt 500 S (A)


 $nom_c = 4,00 cm$


Bewehrung nach Ausdruck

Projekt :	Position :
-----------	------------

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position: 5.2 Fundament unter Hallenstütze - Ausbaulasten Einzelfundament nach EC2 / EC7 + NA Deutschland

Dipl.-Ing. Christian Tölle

90/153

Seite:

Systemwerte:

bx = 250,0 cm (Fundamentbreite x - Richtung)

by = 250,0 cm (Fundamentbreite y - Richtung)

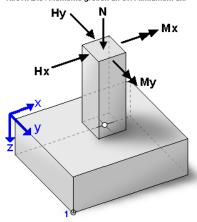
ax = 125,0 cm (Achsabstand Stütze in x - Richtung)

ay = 125,0 cm (Achsabstand Stütze in y - Richtung)

bsx = 40.0 cm (Stützenbreite in x - Richtung)

bsy = 40,0 cm (Stützenbreite in y - Richtung)

tf = 100,0 cm (Fundamentdicke)


Köcherabmessungen s. bei Köcherbemessung!

Sigma,Rd = 250,00 kN/m² (zul. Bodenpressung, Designwert)

Phi = 30,0° (Sohlreibungswinkel)

Belastungen: Lasten übernommen aus Position

Alle Kräfte / Momente greifen an OK Fundament an!

Bewehrungsabstände:

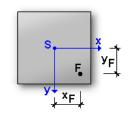
Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

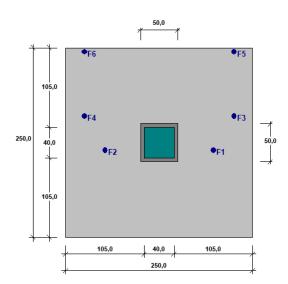
Dipl.-Ing. Christian Tölle Seite: 91/153

N, Hx, Hy, Mx und My sind charakt. Lasten (ohne Sicherheitsbeiwerte)!

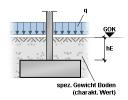
Das Eigengewicht vom Fundament wird mit 25,0 kN/m³ berücksichtigt!

Positive Momente Mx und My erzeugen in Punkt 1 Druckspannungen (s. nebenstehendes Bild)!


Momente aus Theorie II.Ordnung werden für Nachweise der inneren und äußeren Standsicherheit angesetzt!


Lasten aus Anprall für äußere und innere Standsicherheit (einschließl. Lagesicherheit nach EC0)!

		1	1			1	
Lastfall	N [kN]	Hx [kN]	Hy [kN]	Mx,I [kNm]	Mx,II [kNm]	My,I [kNm]	My,II [kNm]
ständig g	95,05	0,00	0,00	5,87	43,99	0,00	-38,11
Schnee	33,56	0,00	0,00	3,02	16,48	0,00	-13,46
Wind +x	0,00	0,00	0,00	0,00	91,72	0,00	0,00
Wind -x	0,00	0,00	0,00	0,00	-91,72	0,00	0,00
Wind +y	0,00	0,00	23,77	91,72	91,72	0,00	0,00
Wind -y	0,00	0,00	-23,77	-91,72	-91,72	0,00	0,00
veränderlich q	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Erdbeben	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Anprall x-Rich.		0,00				0,00	
Anprall y-Rich.			100,00	75,00			


Einzellasten als Zusatzlasten (charakt. Werte):

Nr.	Lastfall	Last [kN]	xF [cm]	yF [cm]	Bemerkung	
1	ständig	22,280	72,5	10,0	Frostschürze	
2	ständig	22,280	-72,5	10,0	Frostschürze	
3	ständig	60,000	100,0	-35,0	Hochregal	
4	ständig	60,000	-100,0	-35,0	Hochregal	
5	ständig	20,000	100,0	-120,0	Hochregal	
6	ständig	20,000	-100,0	-120,0	Hochregal	

veränderl. Last q auf GOK [kN/m²]	Höhe Boden [cm]	Gamma Boden [kN/m³]	
5.00 (charakt, Wert)	30	25.00	

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Seite: 92/153

Dipl.-Ing. Christian Tölle

Lastfallkollektive:

Die Lastfallkollektive werden vom Programm automatisch gemäß EC0 ermittelt und berechnet! Die Lasten aus Wind werden dabei alternativ (unabhängig) je Richtung angesetzt!

Nachweis Ausmitten (Kippnachweis) für charakt. Lasten SLS:

Nachweis klaffende Fuge Gesamtlast: $(ex/bx)^2 + (ey/by)^2 \le 0,111$ Nachweis klaffende Fuge ständige Lasten: $|ex|/bx + |ey|/by \le 0,166$

klaffende Fuge ständige Lasten: max. $|ex|/bx + |ey|/by = 0.070 \le 0.166$ --> keine bzw. zul. klaffende Fuge klaffende Fuge Gesamtlast: max. $(ex/bx)^2 + (ey/by)^2 = 0.017 \le 0.111$ --> keine bzw. zul. klaffende Fuge

Gleitnachweis GEO-2:

eta = (Rt,d + Ept,d) / Td >= 1.00 (eta=0 --> unzul. klaff. Fuge, eta=100000 --> Hx/Hy=0, eta = -1 --> Rt,d = 0) $\gamma R,h = 1,100$ [-] (Sicherheitsbeiwert Gleitwiderstand) [= 1,00 bei außergew.LFK]

min. Sicherheit eta = 2,90 >= 1,00 --> zulässig

Grundbruchnachweis GEO-2:

eta = V,d / Rv,d <= 1,00 (eta = 0,000 --> unzul. klaffende Fuge)

Kohäsion c,k = $5,00 \text{ kN/m}^2$

Scherwinkel Phi,k = 30,00 °

Einbindetiefe / Bodenüberdeckung s. bei Lasteingaben!

γR,v = 1,400 [-] (Sicherheitsbeiwert Grundbruchwiderstand) [= 1,20 bei außergew.LFK]

max.V,d = 998,90 [kN]

Rv,d = 4195,49 [kN]

Nc0 / Nd0 / Nb0 = 30,13 / 18,40 / 10,04

vc / vd / vb = 1,43 / 1,41 / 0,76

ic / id / ib = 0.93 / 0.93 / 0.89

max. Ausnutzung eta = 0,24 <= 1,00 --> zulässig

Nachweis der Lagesicherheit nach EC0:

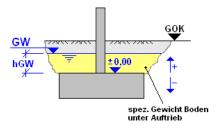
Sicherheit gegen Abheben:

eta = $(Gk^*\gamma G, \sup + Gk^*\gamma G, \inf) / (Qk^*\gamma Q + F, Auftrieb^*1, 10) >= 1,00$

 γ G,sub = 1,10 [-] (bzw. 1,00 bei außergew. LFK)

 γ G,inf = 0,90 [-] (bzw. 0,95 bei außergew. LFK)

 $\Upsilon Q = 1.50$ [-] (bzw. 1.00 bei außergew. LFK)


Es sind keine resultierenden, abhebenden Lasten vorhanden --> Nachweis kann entfallen!

Ausmitten (Kippen):

max.ex = $0.08 \text{ m} \le \text{zul.ex} = 1.25 \text{ m}$ max.ey = $0.33 \text{ m} \le \text{zul.ey} = 1.25 \text{ m}$

Nachweis der Sicherheit gegen Auftrieb/Aufschwimmen:

Kote Wasser hGW = -1000,000 m Wasserkote liegt unter UK Fundament --> kein Auftrieb!

Position: 5.2

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle

93/153

Seite:

Nachweis Bodenpressungen:

Werte für Bodenpressung in [kN/m²]; Sigma,m,d = Nd / (a'x b') zum Vergleich mit Sigma,Rd Bodenpressungen sind gamma - fach (mit Sicherheitsfaktoren)

max.Sigma,m,d = $230,302 \text{ kN/m}^2 \le 250,000 \text{ kN/m}^2 \longrightarrow \text{zulässig}$

Bemessung für Biegung:

Beton: C25/30

Betonstahl: B500 (A,B)

- ✓ Grenze x/d <= 0.45 eingehalten (Biegung)
 </p>
- Mindestbewehrung (Mindestmomente nach EC2) wird berücksichtigt
- ✓ Verteilung der Bewehrung konstant über bx bzw. by

Bemessungsmomente: (max. Werte aus allen LFK)

max.Mx,Ed = 204,964 kNm max.My,Ed = 86,285 kNm

Mindestmoment min.Mx,Ed = 1083,333 kNm (EC2)

Mindestmoment min.My,Ed = 1083,333 kNm (EC2)

Bemessung für Biegung / erf. Längsbewehrung:

erf.Asx,unten = 25.5 cm^2 erf.Asx,oben = 0.0 cm^2 erf.Asy,unten = 25.8 cm^2 erf.Asy,oben = 0.0 cm^2

Mindestbewehrung nach EC2 wurde bei Bemessung berücksichtigt!

Anschlussbewehrung in Stütze:

erf.As = 0,00 cm² (mue = 0,00%, min.As = 1,57 cm²)

Die Anschlussbewehrung wird für die reine Druck- bzw. Zugkraft ermittelt, ohne Momentenanteile!

Durchstanznachweis:

- □ Längsbewehrung wird automatisch erhöht, um Stanzbewehrung zu vermeiden
- Iotrechte Stanzbewehrung
- Abstand der Bewehrungsreihen untereinander, sr' = 0,50 x dm (gilt ab 2. Reihe)
- Abstand der Stanzbewehrung tangential, st = 20,0 cm (für Mindestbewehrung)
- □ Lasterhöhungsfaktor für Durchstanzen (nicht beta!) f,Erh = 1,00 [-]

dm = 0,945 m (mittlere stat. Höhe)

Kritischer Rundschnitt sr,crit im Abstand von 0,425 m vom Stützenrand.

Ansetzbare Stützenabmessungen a1 / b1 nach EC2 = 0,400 / 0,400 m

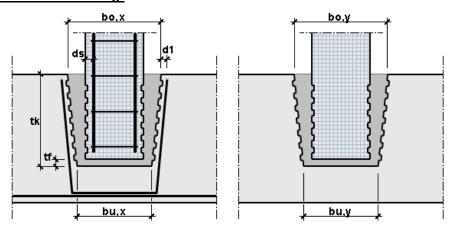
Bemessung als Innenstütze, d.h. beta = 1,10 (unverschiebliches System)

VEd,Stanz = 504,170 kN (ohne Faktor f,Erh und ohne beta)

SigmaBm,d = 91,987 kN/m² (mittlere Bodenpressung als Bemessungswert)

u,crit = 4,272 m

A,crit = $1,409 \text{ m}^2$


VEd,cal = 429,605 kN --> VEd,cal = beta x (f,Erh x VEd,Stanz - A,crit x SigmaBm,d)

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 94/153

vEd = 106,420 kN/m² --> vEd = VEd,cal/(u,crit x d) rho,l,x = 0,108 % (Bewehrungsgehalt x - Richtung) rho,l,y = 0,110 % (Bewehrungsgehalt y - Richtung) rho,l,m = 0,109 % (mittl. Bewehrungsgehalt) rho,l,max = 1,635 % (max. zul. Bewehrungsgehalt) vRd,c = 1130,900 kN/m² (Durchstanzwiderstand) --> v,min = 0,254 kN/m² vRd,max = 1583,260 kN/m² (max. Tragfähigkeit gegen Durchstanzen)

==> vRd,c >= vEd ==> keine Durchstanzbewehrung erforderlich!

Köcherbemessung:

Köcher mit profilierter Köcherwandung nach EC2

bo,x = 50,0 cm / bo,y = 50,0 cm

bu,x = 45,0 cm / bu,y = 45,0 cm

tk = 70.0 cm

tf = 5.0 cm

d1 = 6.0 cm

ds = 6.0 cm

Die Bemessung des Köchers erfolgt nach dem Verfahren des DBV.

Winkel der Druckstrebe Phi = 45,0 °

Die Bewehrung in der Stütze zur Ermittlung der Zugkräfte Zs wird automatisch ermittelt!

Beton der Stütze: C35/45

Die Verankerungs- und Übergreifungslängen im Köcher werden überprüft!

 $vorh.As,1 = vorh.As,2 = 20,00 cm^2$

 $vorh.As,3 = vorh.As,4 = 20,00 cm^{2}$

max.Durchmesser der Stützenbewehrung: 20 mm

Mäßiger Verbund der Bewehrung im Stützenfuss.

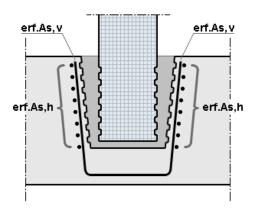
Verankerung der Stützenlängsbewehrung mit Haken.

Bewehrung Stütze / Zugkräfte Zs: (D=Druck, Z=Zug)

 $max.erf.As, 1/2, D = 0,00 [cm^2]$

max.erf.As, 1/2, Z = 0.00 [cm²]

max.erf.As,3/4,D = 8,82 [cm²]


max.erf.As,3/4,Z = 8,82 [cm²]

max.Zs,x = 0.00 [kN] (aus Moment um y-Achse)

max.Zs,y = 383,69 [kN] (aus Moment um x-Achse)

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 95/153

erf.Köcherbewehrung:

Bemessung x-Richtung: (v=vertikal, h=horizontal)

max.erf.As,v,x = 0.00 cm^2 max.erf.As,h,x = 0.00 cm^2

Bemessung y-Richtung: (v=vertikal, h=horizontal)

max.erf.As,v,y = 5,67 cm² max.erf.As,h,y = 5,67 cm²

Prüfung Verankerungs- und Übergreifungslängen im Köcher:

Verankerung Zugbewehrung Stütze: erf.lb,net = 20,0 cm <= vorh.lb,net = 62,0 cm Verankerung Druckbewehrung Stütze: erf.lb,net = 36,6 cm <= vorh.lb,net = 62,0 cm Übergreifung Stützenbewehrung/vertik. Köcherbewehrung: erf.ls = 50,4 cm <= vorh.ls = 59,0 cm

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

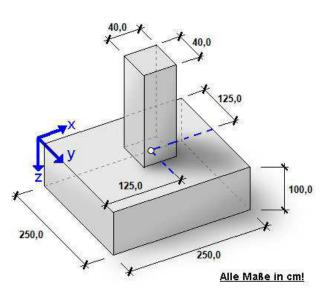
Position 5.3 – Einzelfundamente unter Hallenstützen – Montagezustand

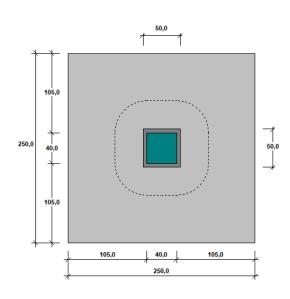
Dipl.-Ing. Christian Tölle

96/153

Seite:

- FT-Blockfundament zur Erzeugung der Einspannung
- Lasten aus Pos. 4.3
- Pos. 5.2 ist nachgewiesen


Projekt:	Position :
----------	------------


Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

89 58 82 Seite: 97/153

Dipl.-Ing. Christian Tölle

Position: 5.3 Fundament unter Hallenstütze - Montagezustand Einzelfundament nach EC2 / EC7 + NA Deutschland

Systemwerte:

bx = 250,0 cm (Fundamentbreite x - Richtung)

by = 250,0 cm (Fundamentbreite y - Richtung)

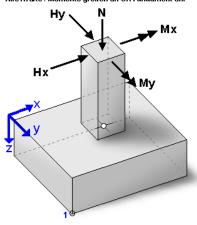
ax = 125,0 cm (Achsabstand Stütze in x - Richtung)

ay = 125,0 cm (Achsabstand Stütze in y - Richtung)

bsx = 40.0 cm (Stützenbreite in x - Richtung)

bsy = 40,0 cm (Stützenbreite in y - Richtung)

tf = 100,0 cm (Fundamentdicke)


Köcherabmessungen s. bei Köcherbemessung!

Sigma,Rd = 250,00 kN/m² (zul. Bodenpressung, Designwert)

Phi = 30,0° (Sohlreibungswinkel)

Belastungen: Lasten übernommen aus Position

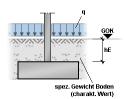
Alle Kräfte / Momente greifen an OK Fundament an!

Bewehrungsabstände:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 98/153

N, Hx, Hy, Mx und My sind charakt. Lasten (ohne Sicherheitsbeiwerte)!

Das Eigengewicht vom Fundament wird mit 25,0 kN/m³ berücksichtigt!


Positive Momente Mx und My erzeugen in Punkt 1 Druckspannungen (s. nebenstehendes Bild)!

Momente aus Theorie II.Ordnung werden für Nachweise der inneren und äußeren Standsicherheit angesetzt!

Lasten aus Anprall für Köcherbemessung und Lagesicherheit nach EC0!

Lastfall	N [kN]	Hx [kN]	Hy [kN]	Mx,I [kNm]	Mx,II [kNm]	My,I [kNm]	My,II [kNm]
ständig g	66,50	0,00	0,00	3,30	29,97	0,00	-26,67
Schnee	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Wind +x	0,00	0,00	0,00	0,00	128,64	0,00	0,00
Wind -x	0,00	0,00	0,00	0,00	-128,64	0,00	0,00
Wind +y	0,00	0,00	33,90	128,64	128,64	0,00	0,00
Wind -y	0,00	0,00	-33,90	-128,64	-128,64	0,00	0,00
veränderlich q	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Erdbeben	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Anprall x-Rich.		0,00				0,00	
Anprall y-Rich.			0,00	0,00			

veränderl. Last q auf GOK [kN/m²]	Höhe Boden [cm]	Gamma Boden [kN/m³]
5,00 (charakt. Wert)	30	19,00

Lastfallkollektive:

Die Lastfallkollektive werden vom Programm automatisch gemäß EC0 ermittelt und berechnet! Die Lasten aus Wind werden dabei alternativ (unabhängig) je Richtung angesetzt!

Nachweis Ausmitten (Kippnachweis) für charakt. Lasten SLS:

Nachweis klaffende Fuge Gesamtlast: $(ex/bx)^2 + (ey/by)^2 \le 0.111$ Nachweis klaffende Fuge ständige Lasten: $|ex|/bx + |ey|/by \le 0.166$

klaffende Fuge ständige Lasten: max. $|ex|/bx + |ey|/by = 0.101 \le 0.166$ --> keine bzw. zul. klaffende Fuge klaffende Fuge Gesamtlast: max. $(ex/bx)^2 + (ey/by)^2 = 0.091 \le 0.111$ --> keine bzw. zul. klaffende Fuge

Gleitnachweis GEO-2:

eta = (Rt,d + Ept,d) / Td >= 1.00 (eta=0 --> unzul. klaff. Fuge, eta=100000 --> Hx/Hy=0, eta = -1 --> Rt,d = 0) $\Upsilon R,h = 1,100$ [-] (Sicherheitsbeiwert Gleitwiderstand) [= 1,00 bei außergew.LFK]

min. Sicherheit eta = 2,66 >= 1,00 --> zulässig

Grundbruchnachweis GEO-2:

eta = V,d / Rv,d <= 1,00 (eta = 0,000 --> unzul. klaffende Fuge)

Kohäsion c,k = $5,00 \text{ kN/m}^2$

Scherwinkel Phi,k = 30,00 °

Einbindetiefe / Bodenüberdeckung s. bei Lasteingaben!

γR,v = 1,400 [-] (Sicherheitsbeiwert Grundbruchwiderstand) [= 1,20 bei außergew.LFK]

max.V,d = 347,58 [kN]

Rv,d = 1141,22 [kN]

Nc0 / Nd0 / Nb0 = 30,13 / 18,40 / 10,04

vc / vd / vb = 1,23 / 1,22 / 0,87

ic / id / ib = 0.77 / 0.79 / 0.68

max. Ausnutzung eta = 0,30 <= 1,00 --> zulässig

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Nachweis der Lagesicherheit nach EC0:

Sicherheit gegen Abheben:

eta = $(Gk^*\gamma G, \sup + Gk^*\gamma G, \inf) / (Qk^*\gamma Q + F, Auftrieb^*1, 10) >= 1,00$

 γ G,sub = 1,10 [-] (bzw. 1,00 bei außergew. LFK)

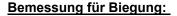
 γ G,inf = 0,90 [-] (bzw. 0,95 bei außergew. LFK)

 $\gamma Q = 1,50$ [-] (bzw. 1,00 bei außergew. LFK)

Es sind keine resultierenden, abhebenden Lasten vorhanden --> Nachweis kann entfallen!

Ausmitten (Kippen):

max.ex = 0,10 m <= zul.ex = 1,25 m max.ey = 1,17 m <= zul.ey = 1,25 m


Nachweis der Sicherheit gegen Auftrieb/Aufschwimmen:

Kote Wasser hGW = -1000,000 m Wasserkote liegt unter UK Fundament --> kein Auftrieb!

Nachweis Bodenpressungen:

Werte für Bodenpressung in $[kN/m^2]$; Sigma,m,d = Nd / (a'x b') zum Vergleich mit Sigma,Rd Bodenpressungen sind gamma - fach (mit Sicherheitsfaktoren)

max.Sigma,m,d = $170,726 \text{ kN/m}^2 \le 250,000 \text{ kN/m}^2 \longrightarrow \text{zulässig}$

Beton: C25/30

Betonstahl: B500 (A,B)

- ✓ Grenze x/d <= 0.45 eingehalten (Biegung)
 </p>
- Mindestbewehrung (Mindestmomente nach EC2) wird berücksichtigt
- ✓ Verteilung der Bewehrung konstant über bx bzw. by
- ☑ Bemessungsmomente werden am Stützenanschnitt ermittelt

Bemessungsmomente: (max. Werte aus allen LFK)

max.Mx,Ed = 128,106 kNm

max.My,Ed = 33,512 kNm

Mindestmoment min.Mx,Ed = 1083,333 kNm (EC2)

Mindestmoment min.My,Ed = 1083,333 kNm (EC2)

Bemessung für Biegung / erf. Längsbewehrung:

erf.Asx,unten = 25,5 cm² erf.Asx,oben = 0,0 cm² erf.Asy,unten = 25,8 cm² erf.Asy,oben = 0,0 cm²

Mindestbewehrung nach EC2 wurde bei Bemessung berücksichtigt!

Anschlussbewehrung in Stütze:

 $erf.As = 0.00 cm^{2}$ (mue = 0.00%, min.As = 0.31 cm²)

Die Anschlussbewehrung wird für die reine Druck- bzw. Zugkraft ermittelt, ohne Momentenanteile!

GOK

±0.00

spez. Gewicht Boden unter Auftrieb

Position: 5.3

Dipl.-Ing. Christian Tölle

99/153

Seite:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 100/153

Durchstanznachweis:

- ☑ Längsbewehrung wird automatisch erhöht, um Stanzbewehrung zu vermeiden
- ☑ Abstand der Bewehrungsreihen untereinander, sr' = 0,50 x dm (gilt ab 2. Reihe)
- Abstand der Stanzbewehrung tangential, st = 20,0 cm (für Mindestbewehrung)
- □ Lasterhöhungsfaktor für Durchstanzen (nicht beta!) f,Erh = 1,00 [-]

dm = 0,945 m (mittlere stat. Höhe)

Kritischer Rundschnitt sr,crit im Abstand von 0,425 m vom Stützenrand.

Ansetzbare Stützenabmessungen a1 / b1 nach EC2 = 0,400 / 0,400 m

Bemessung als Innenstütze, d.h. beta = 1,10 (unverschiebliches System)

VEd,Stanz = 89,775 kN (ohne Faktor f,Erh und ohne beta)

SigmaBm,d = 17,270 kN/m² (mittlere Bodenpressung als Bemessungswert)

u,crit = 4,272 m

A,crit = $1,409 \text{ m}^2$

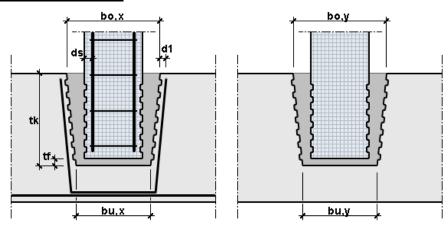
VEd,cal = 76,498 kN --> VEd,cal = beta x (f,Erh x VEd,Stanz - A,crit x SigmaBm,d)

 $vEd = 18,950 \text{ kN/m}^2 \longrightarrow vEd = VEd,cal/(u,crit x d)$

rho, I, x = 0,108 % (Bewehrungsgehalt x - Richtung)

rho,I,y = 0,110 % (Bewehrungsgehalt y - Richtung)

rho,I,m = 0,109 % (mittl. Bewehrungsgehalt)


rho,I,max = 1,628 % (max. zul. Bewehrungsgehalt)

vRd,c = 980,113 kN/m² (Durchstanzwiderstand) --> v,min = 0,221 kN/m²

vRd,max = 1372,159 kN/m² (max. Tragfähigkeit gegen Durchstanzen)

==> vRd,c >= vEd ==> keine Durchstanzbewehrung erforderlich!

Köcherbemessung:

Köcher mit profilierter Köcherwandung nach EC2

bo,x = 50,0 cm / bo,y = 50,0 cm

bu,x = 45,0 cm / bu,y = 45,0 cm

tk = 65,0 cm

tf = 5,0 cm

d1 = 6.0 cm

ds = 6,0 cm

Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen

Position: 5.3

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 101/153

Die Bemessung des Köchers erfolgt nach dem Verfahren des DBV.

Winkel der Druckstrebe Phi = 45,0 °

Die Bewehrung in der Stütze zur Ermittlung der Zugkräfte Zs wird automatisch ermittelt!

Beton der Stütze: C35/45

Die Verankerungs- und Übergreifungslängen im Köcher werden überprüft!

 $vorh.As,1 = vorh.As,2 = 20,00 cm^2$

 $vorh.As,3 = vorh.As,4 = 20,00 cm^{2}$

max.Durchmesser der Stützenbewehrung: 20 mm

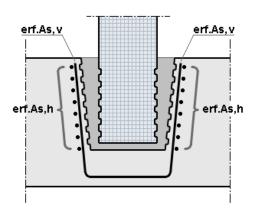
Mäßiger Verbund der Bewehrung im Stützenfuss.

Verankerung der Stützenlängsbewehrung mit Haken.

Bewehrung Stütze / Zugkräfte Zs: (D=Druck, Z=Zug)

 $max.erf.As, 1/2, D = 1,44 [cm^2]$

max.erf.As,1/2,Z = 1,44 [cm²]


max.erf.As,3/4,D = 16,69 [cm²]

max.erf.As,3/4,Z = 16,69 [cm²]

max.Zs,x = 62,71 [kN] (aus Moment um y-Achse)

max.Zs,y = 726,20 [kN] (aus Moment um x-Achse)

erf.Köcherbewehrung:

Bemessung x-Richtung: (v=vertikal, h=horizontal)

max.erf.As,v,x = 0.93 cm² max.erf.As,h,x = 0.93 cm²

Bemessung y-Richtung: (v=vertikal, h=horizontal)

max.erf.As,v,y = 10,73 cm²

 $max.erf.As,h,y = 10,73 cm^2$

Prüfung Verankerungs- und Übergreifungslängen im Köcher:

Verankerung Zugbewehrung Stütze: erf.lb,net = 35,6 cm <= vorh.lb,net = 57,0 cm

Verankerung Druckbewehrung Stütze: erf.lb,net = 50,9 cm <= vorh.lb,net = 57,0 cm

Übergreifung Stützenbewehrung/vertik. Köcherbewehrung: erf.ls = 75,8 cm > vorh.ls = 54,0 cm !!! --> nicht ausreichend!

Standsicherheitsnachweis

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 5.4 – Fundament unter Eckstütze – Ausbaulasten

- FT-Blockfundament zur Erzeugung der Einspannung
- Lasten aus Pos. 4.4

gewählt:

Einzelfundament [] 270 x 270 $\overline{\text{x}}$ 100 [cm]

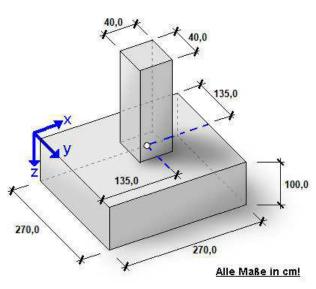
Dipl.-Ing. Christian Tölle

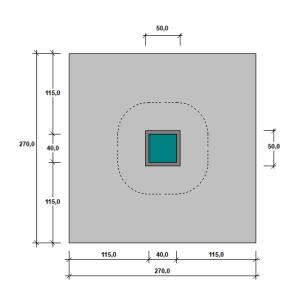
102/153

Seite:

Beton: C25/30

Betonstahl: BSt 500 S (A)


 $nom_c = 4,00 cm$


Bewehrung nach Ausdruck

Projekt: Position:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position: 5.4 Fundament unter Eckstütze - Ausbaulasten Einzelfundament nach EC2 / EC7 + NA Deutschland

Dipl.-Ing. Christian Tölle

103/153

Seite:

Systemwerte:

bx = 270,0 cm (Fundamentbreite x - Richtung)

by = 270,0 cm (Fundamentbreite y - Richtung)

ax = 135,0 cm (Achsabstand Stütze in x - Richtung)

ay = 135,0 cm (Achsabstand Stütze in y - Richtung)

bsx = 40.0 cm (Stützenbreite in x - Richtung)

bsy = 40,0 cm (Stützenbreite in y - Richtung)

tf = 100,0 cm (Fundamentdicke)


Köcherabmessungen s. bei Köcherbemessung!

Sigma,Rd = 250,00 kN/m² (zul. Bodenpressung, Designwert)

Phi = 30,0° (Sohlreibungswinkel)

Belastungen: Lasten übernommen aus Position

Alle Kräfte / Momente greifen an OK Fundament an!

Bewehrungsabstände:

Position: 5.4

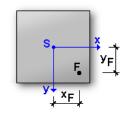
Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

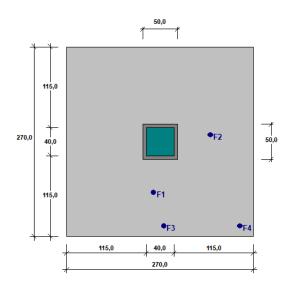
Dipl.-Ing. Christian Tölle Seite: 104/153

N, Hx, Hy, Mx und My sind charakt. Lasten (ohne Sicherheitsbeiwerte)!

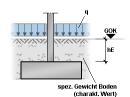
Das Eigengewicht vom Fundament wird mit 25,0 kN/m³ berücksichtigt!

Positive Momente Mx und My erzeugen in Punkt 1 Druckspannungen (s. nebenstehendes Bild)!


Momente aus Theorie II.Ordnung werden für Nachweise der inneren und äußeren Standsicherheit angesetzt!


Lasten aus Anprall für äußere und innere Standsicherheit (einschließl. Lagesicherheit nach EC0)!

Lastfall	N [kN]	Hx [kN]	Hy [kN]	Mx,I [kNm]	Mx,II [kNm]	My,I [kNm]	My,II [kNm]
ständig g	48,68	0,00	0,00	1,61	21,54	0,00	-19,92
Schnee	4,98	0,00	0,00	0,45	2,49	0,00	-2,04
Wind +x	0,00	12,46	0,00	0,00	-58,24	-48,52	-48,52
Wind -x	0,00	-12,46	0,00	0,00	58,24	48,52	48,52
Wind +y	0,00	0,00	-15,00	-58,24	-58,24	0,00	-48,52
Wind -y	0,00	0,00	15,00	58,24	58,24	0,00	48,52
veränderlich q	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Erdbeben	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Anprall x-Rich.		0,00				0,00	
Anprall y-Rich.			0,00	0,00			


Einzellasten als Zusatzlasten (charakt. Werte):

Nr.	Lastfall	Last [kN]	xF [cm]	yF [cm]	Bemerkung
1	ständig	23,000	-10,0	72,5	Frostschürze
2	ständig	23,000	72,5	-10,0	Frostschürze
3	ständig	15,000	5,0	120,0	Regallast
4	ständig	15,000	115,0	120,0	Regallast

veränderl. Last q auf GOK [kN/m²]	Höhe Boden [cm]	Gamma Boden [kN/m³]
5,00 (charakt. Wert)	30	25,00

Lastfallkollektive:

Die Lastfallkollektive werden vom Programm automatisch gemäß EC0 ermittelt und berechnet! Die Lasten aus Wind werden dabei alternativ (unabhängig) je Richtung angesetzt!

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Nachweis Ausmitten (Kippnachweis) für charakt. Lasten SLS:

Nachweis klaffende Fuge Gesamtlast: $(ex/bx)^2 + (ey/by)^2 \le 0,111$ Nachweis klaffende Fuge ständige Lasten: $|ex|/bx + |ey|/by \le 0,166$

klaffende Fuge ständige Lasten: max. $|ex|/bx + |ey|/by = 0.150 \le 0.166 --> keine bzw. zul. klaffende Fuge klaffende Fuge Gesamtlast: max.<math>(ex/bx)^2 + (ey/by)^2 = 0.022 \le 0.111 --> keine bzw. zul. klaffende Fuge$

Gleitnachweis GEO-2:

eta = (Rt,d + Ept,d) / Td >= 1.00 (eta=0 --> unzul. klaff. Fuge, eta=100000 --> Hx/Hy=0, eta = -1 --> Rt,d = 0) $\Upsilon R,h = 1,100$ [-] (Sicherheitsbeiwert Gleitwiderstand) [= 1,00 bei außergew.LFK]

min. Sicherheit eta = 8,41 >= 1,00 --> zulässig

Grundbruchnachweis GEO-2:

eta = V,d / Rv,d <= 1,00 (eta = 0,000 --> unzul. klaffende Fuge)

Kohäsion c,k = $5,00 \text{ kN/m}^2$

Scherwinkel Phi,k = 30,00 °

Einbindetiefe / Bodenüberdeckung s. bei Lasteingaben!

γR,v = 1,400 [-] (Sicherheitsbeiwert Grundbruchwiderstand) [= 1,20 bei außergew.LFK]

max.V,d = 650,09 [kN]

Rv,d = 4925,57 [kN]

Nc0 / Nd0 / Nb0 = 30,13 / 18,40 / 10.04

vc / vd / vb = 1,39 / 1,37 / 0,78

ic / id / ib = 0.94 / 0.94 / 0.91

max. Ausnutzung eta = 0,13 <= 1,00 --> zulässig

Nachweis der Lagesicherheit nach EC0:

Sicherheit gegen Abheben:

eta = $(Gk^*\gamma G, \sup + Gk^*\gamma G, \inf) / (Qk^*\gamma Q + F, Auftrieb^*1, 10) >= 1,00$

 γ G,sub = 1,10 [-] (bzw. 1,00 bei außergew. LFK)

 γ G,inf = 0,90 [-] (bzw. 0,95 bei außergew. LFK)

 γ Q = 1,50 [-] (bzw. 1,00 bei außergew. LFK)

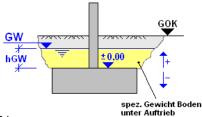
Es sind keine resultierenden, abhebenden Lasten vorhanden --> Nachweis kann entfallen!

Ausmitten (Kippen):

 $max.ex = 0.35 m \le zul.ex = 1.35 m$

max.ey = $0.44 \text{ m} \le \text{zul.ey} = 1.35 \text{ m}$

Nachweis der Sicherheit gegen Auftrieb/Aufschwimmen:


Kote Wasser hGW = -1000.000 m

Wasserkote liegt unter UK Fundament --> kein Auftrieb!

Nachweis Bodenpressungen:

Werte für Bodenpressung in [kN/m²]; Sigma,m,d = Nd / (a'x b') zum Vergleich mit Sigma,Rd Bodenpressungen sind gamma - fach (mit Sicherheitsfaktoren)

max.Sigma,m,d = 128,783 kN/m² <= 250,000 kN/m² --> zulässig

Dipl.-Ing. Christian Tölle

105/153

Seite:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle

106/153

Seite:

Bemessung für Biegung:

Beton: C25/30

Betonstahl: B500 (A,B)

- ✓ Grenze x/d <= 0.45 eingehalten (Biegung)
 </p>
- Mindestbewehrung (Mindestmomente nach EC2) wird berücksichtigt
- ✓ Verteilung der Bewehrung konstant über bx bzw. by

Bemessungsmomente: (max. Werte aus allen LFK)

max.Mx,Ed = 91,831 kNm max.My,Ed = 95,480 kNm

Mindestmoment min.Mx,Ed = 1170,000 kNm (EC2) Mindestmoment min.My,Ed = 1170,000 kNm (EC2)

Bemessung für Biegung / erf. Längsbewehrung:

erf.Asx,unten = 27.6 cm^2 erf.Asx,oben = 0.0 cm^2 erf.Asy,unten = 27.9 cm^2 erf.Asy,oben = 0.0 cm^2

Mindestbewehrung nach EC2 wurde bei Bemessung berücksichtigt!

Anschlussbewehrung in Stütze:

 $erf.As = 0.00 cm^{2} (mue = 0.00\%, min.As = 0.61 cm^{2})$

Die Anschlussbewehrung wird für die reine Druck- bzw. Zugkraft ermittelt, ohne Momentenanteile!

Durchstanznachweis:

- Iotrechte Stanzbewehrung
- Abstand der Bewehrungsreihen untereinander, sr' = 0,50 x dm (gilt ab 2. Reihe)
- Abstand der Stanzbewehrung tangential, st = 20,0 cm (für Mindestbewehrung)
- □ Lasterhöhungsfaktor für Durchstanzen (nicht beta!) f,Erh = 1,00 [-]

dm = 0,945 m (mittlere stat. Höhe)

Kritischer Rundschnitt sr,crit im Abstand von 0,454 m vom Stützenrand.

Ansetzbare Stützenabmessungen a1 / b1 nach EC2 = 0,400 / 0,400 m

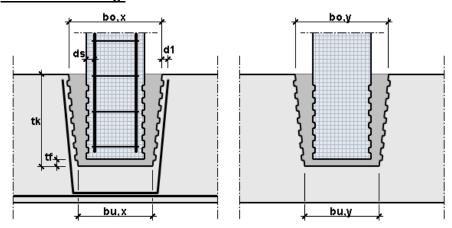
Bemessung als Innenstütze, d.h. beta = 1,10 (unverschiebliches System)

VEd,Stanz = 175,788 kN (ohne Faktor f,Erh und ohne beta)

SigmaBm,d = 50,537 kN/m² (mittlere Bodenpressung als Bemessungswert)

u,crit = 4,450 m

A,crit = $1,532 \text{ m}^2$


VEd,cal = 152,727 kN --> VEd,cal = beta x (f,Erh x VEd,Stanz - A,crit x SigmaBm,d)

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 107/153

 $vEd = 36,318 \text{ kN/m}^2 --> vEd = VEd, cal/(u, crit x d) \\ rho, l, x = 0,108 \% \text{ (Bewehrungsgehalt x - Richtung)} \\ rho, l, y = 0,110 \% \text{ (Bewehrungsgehalt y - Richtung)} \\ rho, l, m = 0,109 \% \text{ (mittl. Bewehrungsgehalt)} \\ rho, l, max = 1,628 \% \text{ (max. zul. Bewehrungsgehalt)} \\ vRd, c = 918,856 \text{ kN/m}^2 \text{ (Durchstanzwiderstand)} ---> v, min = 0,221 \text{ kN/m}^2 \\ vRd, max = 1286,399 \text{ kN/m}^2 \text{ (max. Tragfähigkeit gegen Durchstanzen)} \\$

==> vRd,c >= vEd ==> keine Durchstanzbewehrung erforderlich!

Köcherbemessung:

Köcher mit profilierter Köcherwandung nach EC2

bo,x = 50,0 cm / bo,y = 50,0 cm

bu,x = 45,0 cm / bu,y = 45,0 cm

tk = 70.0 cm

tf = 5.0 cm

d1 = 6,0 cm

ds = 6.0 cm

Die Bemessung des Köchers erfolgt nach dem Verfahren des DBV.

Winkel der Druckstrebe Phi = 45,0 °

Die Bewehrung in der Stütze zur Ermittlung der Zugkräfte Zs wird automatisch ermittelt!

Beton der Stütze: C35/45

Die Verankerungs- und Übergreifungslängen im Köcher werden überprüft!

 $vorh.As,1 = vorh.As,2 = 20,00 cm^2$

 $vorh.As,3 = vorh.As,4 = 20,00 cm^2$

max.Durchmesser der Stützenbewehrung: 20 mm

Mäßiger Verbund der Bewehrung im Stützenfuss.

Verankerung der Stützenlängsbewehrung mit Haken.

Bewehrung Stütze / Zugkräfte Zs: (D=Druck, Z=Zug)

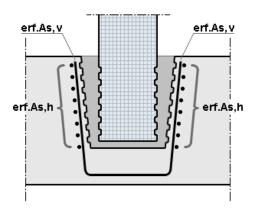
max.erf.As, 1/2, D = 4,17 [cm²]

max.erf.As, 1/2, Z = 4, 17 [cm²]

max.erf.As,3/4,D = 5,50 [cm²]

max.erf.As, 3/4, Z = 5,50 [cm²]

max.Zs,x = 181,41 [kN] (aus Moment um y-Achse)


max.Zs,y = 239,13 [kN] (aus Moment um x-Achse)

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

 August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82
 Seite: 108/153

Dipl.-Ing. Christian Tölle

erf.Köcherbewehrung:

Bemessung x-Richtung: (v=vertikal, h=horizontal)

max.erf.As,v,x = $2,68 \text{ cm}^2$ max.erf.As,h,x = $2,68 \text{ cm}^2$

Bemessung y-Richtung: (v=vertikal, h=horizontal)

max.erf.As,v,y = 3,53 cm² max.erf.As,h,y = 3,53 cm²

Prüfung Verankerungs- und Übergreifungslängen im Köcher:

Verankerung Zugbewehrung Stütze: erf.lb,net = 20,0 cm <= vorh.lb,net = 62,0 cm Verankerung Druckbewehrung Stütze: erf.lb,net = 36,6 cm <= vorh.lb,net = 62,0 cm Übergreifung Stützenbewehrung/vertik. Köcherbewehrung: erf.ls = 50,4 cm <= vorh.ls = 59,0 cm

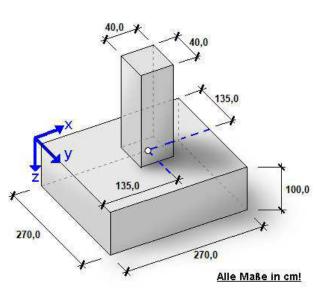
Standsicherheitsnachweis

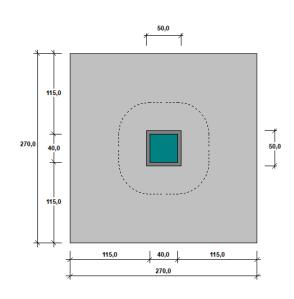
Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 5.5 – Fundament unter Eckstütze – Montagelasten

Dipl.-Ing. Christian Tölle

109/153


Seite:


- FT-Blockfundament zur Erzeugung der Einspannung
- Lasten aus Pos. 4.5
- Pos. 5.4 ist nachgewiesen

Projekt:	Position :
----------	------------

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position: 5.5 Fundament unter Eckstütze - Montagelasten Einzelfundament nach EC2 / EC7 + NA Deutschland

Dipl.-Ing. Christian Tölle

110/153

Seite:

Systemwerte:

bx = 270,0 cm (Fundamentbreite x - Richtung)

by = 270,0 cm (Fundamentbreite y - Richtung)

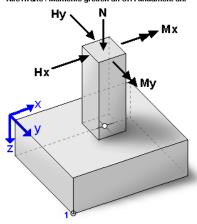
ax = 135.0 cm (Achsabstand Stütze in x - Richtung)

ay = 135,0 cm (Achsabstand Stütze in y - Richtung)

bsx = 40.0 cm (Stützenbreite in x - Richtung)

bsy = 40,0 cm (Stützenbreite in y - Richtung)

tf = 100,0 cm (Fundamentdicke)


Köcherabmessungen s. bei Köcherbemessung!

Sigma,Rd = 250,00 kN/m² (zul. Bodenpressung, Designwert)

Phi = 30,0° (Sohlreibungswinkel)

Belastungen: Lasten übernommen aus Position

Alle Kräfte / Momente greifen an OK Fundament an!

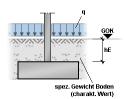
Bewehrungsabstände:

Position: 5.5

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 111/153

N, Hx, Hy, Mx und My sind charakt. Lasten (ohne Sicherheitsbeiwerte)!

Das Eigengewicht vom Fundament wird mit 25,0 kN/m³ berücksichtigt!


Positive Momente Mx und My erzeugen in Punkt 1 Druckspannungen (s. nebenstehendes Bild)!

Momente aus Theorie II.Ordnung werden für Nachweise der inneren und äußeren Standsicherheit angesetzt!

Lasten aus Anprall für äußere und innere Standsicherheit (einschließl. Lagesicherheit nach EC0)!

Lastfall	N [kN]	Hx [kN]	Hy [kN]	Mx,I [kNm]	Mx,II [kNm]	My,I [kNm]	My,II [kNm]
ständig g	45,02	0,00	0,00	1,28	19,71	0,00	-18,43
Schnee	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Wind +x	0,00	17,61	0,00	0,00	-58,24	-68,39	-68,39
Wind -x	0,00	-17,61	0,00	0,00	58,24	68,39	68,39
Wind +y	0,00	0,00	-15,00	-58,24	-58,24	0,00	-68,39
Wind -y	0,00	0,00	15,00	58,24	58,24	0,00	68,39
veränderlich q	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Erdbeben	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Anprall x-Rich.		0,00				0,00	
Anprall y-Rich.			0,00	0,00			

veränderl. Last q auf GOK [kN/m²]	Höhe Boden [cm]	Gamma Boden [kN/m³]
5,00 (charakt. Wert)	30	19,00

Position: 5.5

Lastfallkollektive:

Die Lastfallkollektive werden vom Programm automatisch gemäß EC0 ermittelt und berechnet! Die Lasten aus Wind werden dabei alternativ (unabhängig) je Richtung angesetzt!

Nachweis Ausmitten (Kippnachweis) für charakt. Lasten SLS:

Nachweis klaffende Fuge Gesamtlast: $(ex/bx)^2 + (ey/by)^2 \le 0.111$ Nachweis klaffende Fuge ständige Lasten: $|ex|/bx + |ey|/by \le 0.166$

klaffende Fuge ständige Lasten: max. $|ex|/bx + |ey|/by = 0.062 \le 0.166 --> keine bzw. zul. klaffende Fuge klaffende Fuge Gesamtlast: max.<math>(ex/bx)^2 + (ey/by)^2 = 0.024 \le 0.111 --> keine bzw. zul. klaffende Fuge$

Gleitnachweis GEO-2:

eta = (Rt,d + Ept,d) / Td >= 1.00 (eta=0 --> unzul. klaff. Fuge, eta=100000 --> Hx/Hy=0, eta = -1 --> Rt,d = 0) $\Upsilon R,h = 1,100$ [-] (Sicherheitsbeiwert Gleitwiderstand) [= 1,00 bei außergew.LFK]

min. Sicherheit eta = 5,32 >= 1,00 --> zulässig

Grundbruchnachweis GEO-2:

eta = V,d / Rv,d <= 1,00 (eta = 0,000 --> unzul. klaffende Fuge)

Kohäsion c,k = $5,00 \text{ kN/m}^2$

Scherwinkel Phi,k = 30,00 °

Einbindetiefe / Bodenüberdeckung s. bei Lasteingaben!

γR,v = 1,400 [-] (Sicherheitsbeiwert Grundbruchwiderstand) [= 1,20 bei außergew.LFK]

max.V,d = 415,15 [kN]

Rv,d = 3616,99 [kN]

Nc0 / Nd0 / Nb0 = 30,13 / 18,40 / 10,04

vc / vd / vb = 1.43 / 1.41 / 0.75

ic / id / ib = 0.91 / 0.91 / 0.86

max. Ausnutzung eta = 0,11 <= 1,00 --> zulässig

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Nachweis der Lagesicherheit nach EC0:

Sicherheit gegen Abheben:

eta = $(Gk^*\gamma G, \sup + Gk^*\gamma G, \inf) / (Qk^*\gamma Q + F, Auftrieb^*1, 10) >= 1,00$

 γ G,sub = 1,10 [-] (bzw. 1,00 bei außergew. LFK)

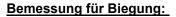
 γ G,inf = 0,90 [-] (bzw. 0,95 bei außergew. LFK)

 $\gamma Q = 1,50$ [-] (bzw. 1,00 bei außergew. LFK)

Es sind keine resultierenden, abhebenden Lasten vorhanden --> Nachweis kann entfallen!

Ausmitten (Kippen):

max.ex = $0,60 \text{ m} \le \text{zul.ex} = 1,35 \text{ m}$ max.ey = $0,53 \text{ m} \le \text{zul.ey} = 1,35 \text{ m}$


Nachweis der Sicherheit gegen Auftrieb/Aufschwimmen:

Kote Wasser hGW = -1000,000 m Wasserkote liegt unter UK Fundament --> kein Auftrieb!

Nachweis Bodenpressungen:

Werte für Bodenpressung in [kN/m²]; Sigma,m,d = Nd / (a'x b') zum Vergleich mit Sigma,Rd Bodenpressungen sind gamma - fach (mit Sicherheitsfaktoren)

max.Sigma,m,d = $89,612 \text{ kN/m}^2 \le 250,000 \text{ kN/m}^2 \longrightarrow \text{zulässig}$

Beton: C25/30

Betonstahl: B500 (A,B)

- ✓ Grenze x/d <= 0.45 eingehalten (Biegung)
 </p>
- Mindestbewehrung (Mindestmomente nach EC2) wird berücksichtigt
- ✓ Verteilung der Bewehrung konstant über bx bzw. by
- ☑ Bemessungsmomente werden am Stützenanschnitt ermittelt

Bemessungsmomente: (max. Werte aus allen LFK)

max.Mx,Ed = 68,062 kNm

max.My,Ed = 74,850 kNm

Mindestmoment min.Mx,Ed = 1170,000 kNm (EC2)

Mindestmoment min.My,Ed = 1170,000 kNm (EC2)

Bemessung für Biegung / erf. Längsbewehrung:

erf.Asx,unten = 27.6 cm^2 erf.Asx,oben = 0.0 cm^2 erf.Asy,unten = 27.9 cm^2 erf.Asy,oben = 0.0 cm^2

Mindestbewehrung nach EC2 wurde bei Bemessung berücksichtigt!

Anschlussbewehrung in Stütze:

 $erf.As = 0.00 cm^{2}$ (mue = 0.00%, min.As = 0.21 cm²)

Die Anschlussbewehrung wird für die reine Druck- bzw. Zugkraft ermittelt, ohne Momentenanteile!

GOK

±0.00

spez. Gewicht Boden unter Auftrieb

Position: 5.5

Dipl.-Ing. Christian Tölle

112/153

Seite:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 113/153

Durchstanznachweis:

- ☑ Längsbewehrung wird automatisch erhöht, um Stanzbewehrung zu vermeiden
- ☑ Abstand der Bewehrungsreihen untereinander, sr' = 0,50 x dm (gilt ab 2. Reihe)
- Abstand der Stanzbewehrung tangential, st = 20,0 cm (f
 ir Mindestbewehrung)
- □ Lasterhöhungsfaktor für Durchstanzen (nicht beta!) f,Erh = 1,00 [-]

dm = 0,945 m (mittlere stat. Höhe)

Kritischer Rundschnitt sr,crit im Abstand von 0,454 m vom Stützenrand.

Ansetzbare Stützenabmessungen a1 / b1 nach EC2 = 0,400 / 0,400 m

Bemessung als Innenstütze, d.h. beta = 1,10 (unverschiebliches System)

VEd,Stanz = 60,777 kN (ohne Faktor f,Erh und ohne beta)

SigmaBm,d = 9,291 kN/m² (mittlere Bodenpressung als Bemessungswert)

u,crit = 4,450 m

A,crit = $1,532 \text{ m}^2$

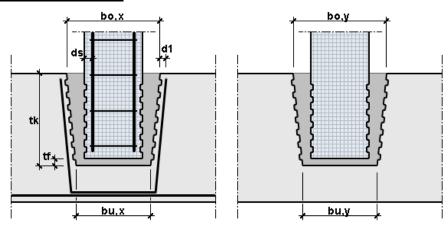
VEd,cal = 52,804 kN --> VEd,cal = beta x (f,Erh x VEd,Stanz - A,crit x SigmaBm,d)

 $vEd = 12,557 \text{ kN/m}^2 \longrightarrow vEd = VEd,cal/(u,crit x d)$

rho, I, x = 0,108 % (Bewehrungsgehalt x - Richtung)

rho,I,y = 0,110 % (Bewehrungsgehalt y - Richtung)

rho,I,m = 0,109 % (mittl. Bewehrungsgehalt)


rho,I,max = 1,628 % (max. zul. Bewehrungsgehalt)

vRd,c = 918,856 kN/m² (Durchstanzwiderstand) --> v,min = 0,221 kN/m²

vRd,max = 1286,399 kN/m² (max. Tragfähigkeit gegen Durchstanzen)

==> vRd,c >= vEd ==> keine Durchstanzbewehrung erforderlich!

Köcherbemessung:

Köcher mit profilierter Köcherwandung nach EC2

bo,x = 50,0 cm / bo,y = 50,0 cm

bu,x = 45,0 cm / bu,y = 45,0 cm

tk = 70,0 cm

tf = 5,0 cm

d1 = 6,0 cm

ds = 6,0 cm

Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen

Position: 5.5

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Die Bemessung des Köchers erfolgt nach dem Verfahren des DBV.

Winkel der Druckstrebe Phi = 45.0 °

Die Bewehrung in der Stütze zur Ermittlung der Zugkräfte Zs wird automatisch ermittelt!

Dipl.-Ing. Christian Tölle

114/153

Seite:

Beton der Stütze: C35/45

Die Verankerungs- und Übergreifungslängen im Köcher werden überprüft!

 $vorh.As,1 = vorh.As,2 = 20,00 cm^2$

 $vorh.As,3 = vorh.As,4 = 20,00 cm^{2}$

max.Durchmesser der Stützenbewehrung: 20 mm

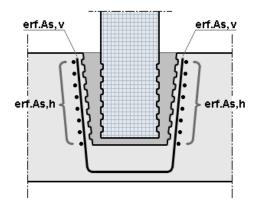
Mäßiger Verbund der Bewehrung im Stützenfuss.

Verankerung der Stützenlängsbewehrung mit Haken.

Bewehrung Stütze / Zugkräfte Zs: (D=Druck, Z=Zug)

 $max.erf.As, 1/2, D = 8,41 [cm^2]$

max.erf.As, 1/2, Z = 8,41 [cm²]


max.erf.As, 3/4, D = 7,33 [cm²]

max.erf.As,3/4,Z = 7,33 [cm²]

max.Zs,x = 365,97 [kN] (aus Moment um y-Achse)

max.Zs,y = 318,71 [kN] (aus Moment um x-Achse)

erf.Köcherbewehrung:

Bemessung x-Richtung: (v=vertikal, h=horizontal)

max.erf.As,v,x = $5,41 \text{ cm}^2$ max.erf.As,h,x = $5,41 \text{ cm}^2$

Bemessung y-Richtung: (v=vertikal, h=horizontal)

 $max.erf.As,v,y = 4,71 cm^2$

 $max.erf.As,h,y = 4,71 cm^2$

Prüfung Verankerungs- und Übergreifungslängen im Köcher:

Verankerung Zugbewehrung Stütze: erf.lb,net = 20,0 cm <= vorh.lb,net = 62,0 cm

Verankerung Druckbewehrung Stütze: erf.lb,net = 36,6 cm <= vorh.lb,net = 62,0 cm

Übergreifung Stützenbewehrung/vertik. Köcherbewehrung: erf.ls = 50,4 cm <= vorh.ls = 59,0 cm

Standsicherheitsnachweis

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 5.6 – Fundament unter mittiger Giebelsütze – Ausbaulasten

- FT-Blockfundament zur Erzeugung der Einspannung
- Lasten aus Pos. 4.6

gewählt:

Einzelfundament [] 270 x 270 $\overline{\text{x}}$ 100 [cm]

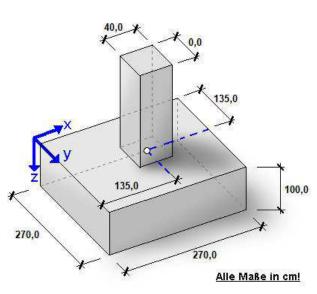
Dipl.-Ing. Christian Tölle

115/153

Seite:

Beton: C25/30

Betonstahl: BSt 500 S (A)


 $nom_c = 4,00 cm$

Bewehrung nach Ausdruck

Projekt :	Position :
-----------	------------

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position: 5.6 Fundament unter mittiger Giebelsütze - Ausbaulasten Einzelfundament nach EC2 / EC7 + NA Deutschland

Dipl.-Ing. Christian Tölle

116/153

Seite:

Systemwerte:

bx = 270,0 cm (Fundamentbreite x - Richtung)

by = 270,0 cm (Fundamentbreite y - Richtung)

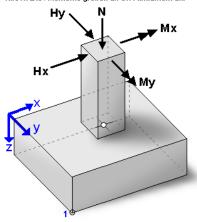
ax = 135.0 cm (Achsabstand Stütze in x - Richtung)

ay = 135,0 cm (Achsabstand Stütze in y - Richtung)

bsx = 40.0 cm (Stützenbreite in x - Richtung)

bsy = 0,0 cm (Stützenbreite in y - Richtung)

tf = 100,0 cm (Fundamentdicke)


Köcherabmessungen s. bei Köcherbemessung!

Sigma,Rd = 250,00 kN/m² (zul. Bodenpressung, Designwert)

Phi = 30,0° (Sohlreibungswinkel)

Belastungen: Lasten übernommen aus Position 4.6

Alle Kräfte / Momente greifen an OK Fundament an!

Bewehrungsabstände:

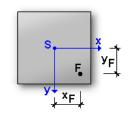
Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

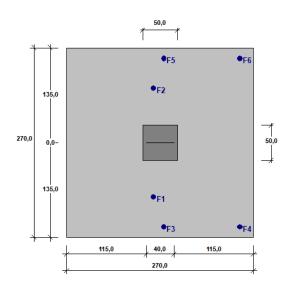
Dipl.-Ing. Christian Tölle Seite: 117/153

N, Hx, Hy, Mx und My sind charakt. Lasten (ohne Sicherheitsbeiwerte)!

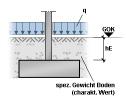
Das Eigengewicht vom Fundament wird mit 25,0 kN/m³ berücksichtigt!

Positive Momente Mx und My erzeugen in Punkt 1 Druckspannungen (s. nebenstehendes Bild)!


Momente aus Theorie II.Ordnung werden für Nachweise der inneren und äußeren Standsicherheit angesetzt!


Lasten aus Anprall für äußere und innere Standsicherheit (einschließl. Lagesicherheit nach EC0)!

Lastfall	N [kN]	Hx [kN]	Hy [kN]	Mx,I [kNm]	Mx,II [kNm]	My,I [kNm]	My,II [kNm]
ständig g	95,74	0,00	0,00	0,00	39,18	0,00	-39,18
Schnee	14,98	0,00	0,00	0,00	6,13	0,00	-6,13
Wind +x	0,00	0,00	0,00	0,00	96,75	0,00	0,00
Wind -x	0,00	0,00	0,00	0,00	-96,75	0,00	0,00
Wind +y	0,00	0,00	24,92	96,75	96,75	0,00	0,00
Wind -y	0,00	0,00	-24,92	-96,75	-96,75	0,00	0,00
veränderlich q	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Erdbeben	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Anprall x-Rich.		0,00				0,00	
Anprall y-Rich.			100,00	75,00			


Einzellasten als Zusatzlasten (charakt. Werte):

Nr.	Lastfall	Last [kN]	xF [cm]	yF [cm]	Bemerkung	
1	ständig	10,000	-10,0	77,5	Frostschürze	
2	ständig	10,000	-10,0	-77,5	Frostschürze	
3	ständig	30,000	5,0	120,0	Hochregal	
4	ständig	30,000	115,0	120,0	Hochregal	
5	ständig	30,000	5,0	-120,0	Hochregal	
6	ständig	30,000	115,0	-120,0	Hochregal	

veränderl. Last q auf GOK [kN/m²]	Höhe Boden [cm]	Gamma Boden [kN/m³]
5.00 (charakt Wert)	30	25 00

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 118/153

Lastfallkollektive:

Die Lastfallkollektive werden vom Programm automatisch gemäß EC0 ermittelt und berechnet! Die Lasten aus Wind werden dabei alternativ (unabhängig) je Richtung angesetzt!

Nachweis Ausmitten (Kippnachweis) für charakt. Lasten SLS:

Nachweis klaffende Fuge Gesamtlast: $(ex/bx)^2 + (ey/by)^2 \le 0,111$ Nachweis klaffende Fuge ständige Lasten: $|ex|/bx + |ey|/by \le 0,166$

klaffende Fuge ständige Lasten: max. $|ex|/bx + |ey|/by = 0.131 \le 0.166$ --> keine bzw. zul. klaffende Fuge klaffende Fuge Gesamtlast: max. $(ex/bx)^2 + (ey/by)^2 = 0.035 \le 0.111$ --> keine bzw. zul. klaffende Fuge

Gleitnachweis GEO-2:

eta = (Rt,d + Ept,d) / Td >= 1.00 (eta=0 --> unzul. klaff. Fuge, eta=100000 --> Hx/Hy=0, eta = -1 --> Rt,d = 0) Υ R,h = 1,100 [-] (Sicherheitsbeiwert Gleitwiderstand) [= 1,00 bei außergew.LFK]

min. Sicherheit eta = 2,73 >= 1,00 --> zulässig

Grundbruchnachweis GEO-2:

eta = V,d / Rv,d <= 1,00 (eta = 0,000 --> unzul. klaffende Fuge)

Kohäsion $c,k = 5,00 \text{ kN/m}^2$

Scherwinkel Phi,k = 30,00 °

Einbindetiefe / Bodenüberdeckung s. bei Lasteingaben!

γR,v = 1,400 [-] (Sicherheitsbeiwert Grundbruchwiderstand) [= 1,20 bei außergew.LFK]

max.V,d = 695,59 [kN]

Rv.d = 3042.35 [kN]

Nc0 / Nd0 / Nb0 = 30.13 / 18.40 / 10.04

vc / vd / vb = 1,42 / 1,40 / 0,76

ic / id / ib = 0.67 / 0.69 / 0.54

max. Ausnutzung eta = 0,23 <= 1,00 --> zulässig

Nachweis der Lagesicherheit nach EC0:

Sicherheit gegen Abheben:

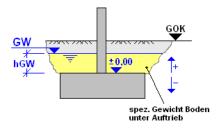
eta = $(Gk^*\gamma G, \sup + Gk^*\gamma G, \inf) / (Qk^*\gamma Q + F, Auftrieb^*1, 10) >= 1,00$

 γ G,sub = 1,10 [-] (bzw. 1,00 bei außergew. LFK)

 γ G,inf = 0,90 [-] (bzw. 0,95 bei außergew. LFK)

 $\Upsilon Q = 1.50$ [-] (bzw. 1.00 bei außergew. LFK)

Es sind keine resultierenden, abhebenden Lasten vorhanden --> Nachweis kann entfallen!


Ausmitten (Kippen):

max.ex = 0.19 m <= zul.ex = 1.35 m

max.ey = $0.40 \text{ m} \le \text{zul.ey} = 1.35 \text{ m}$

Nachweis der Sicherheit gegen Auftrieb/Aufschwimmen:

Kote Wasser hGW = -1000,000 m Wasserkote liegt unter UK Fundament --> kein Auftrieb!

Position: 5.6

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle

119/153

Seite:

Nachweis Bodenpressungen:

Werte für Bodenpressung in [kN/m²]; Sigma,m,d = Nd / (a'x b') zum Vergleich mit Sigma,Rd Bodenpressungen sind gamma - fach (mit Sicherheitsfaktoren)

max.Sigma,m,d = $201,486 \text{ kN/m}^2 \le 250,000 \text{ kN/m}^2 \longrightarrow \text{zulässig}$

Bemessung für Biegung:

Beton: C25/30

Betonstahl: B500 (A,B)

- Mindestbewehrung (Mindestmomente nach EC2) wird berücksichtigt
- ✓ Verteilung der Bewehrung konstant über bx bzw. by

Bemessungsmomente: (max. Werte aus allen LFK)

max.Mx,Ed = 187,323 kNm max.My,Ed = 113,807 kNm

Mindestmoment min.Mx,Ed = 1170,000 kNm (EC2)

Mindestmoment min.My,Ed = 1170,000 kNm (EC2)

Bemessung für Biegung / erf. Längsbewehrung:

erf.Asx,unten = 27.6 cm^2 erf.Asx,oben = 0.0 cm^2 erf.Asy,unten = 27.9 cm^2 erf.Asy,oben = 0.0 cm^2

Mindestbewehrung nach EC2 wurde bei Bemessung berücksichtigt!

Anschlussbewehrung in Stütze:

erf.As = 7,83 cm² (mue = 0,00%, min.As = 1,17 cm²)

Die Anschlussbewehrung wird für die reine Druck- bzw. Zugkraft ermittelt, ohne Momentenanteile!

Durchstanznachweis:

- ☑ Längsbewehrung wird automatisch erhöht, um Stanzbewehrung zu vermeiden
- Iotrechte Stanzbewehrung
- Abstand der Bewehrungsreihen untereinander, sr' = 0,50 x dm (gilt ab 2. Reihe)
- Abstand der Stanzbewehrung tangential, st = 20,0 cm (für Mindestbewehrung)
- □ Lasterhöhungsfaktor für Durchstanzen (nicht beta!) f,Erh = 1,00 [-]

dm = 0,945 m (mittlere stat. Höhe)

Kritischer Rundschnitt sr,crit im Abstand von 0,000 m vom Stützenrand.

Ansetzbare Stützenabmessungen a1 / b1 nach EC2 = 0,000 / 0,000 m

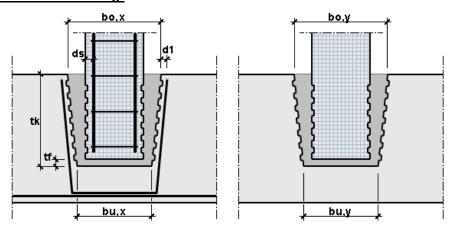
Bemessung als Innenstütze, d.h. beta = 1,10 (unverschiebliches System)

VEd,Stanz = 375,740 kN (ohne Faktor f,Erh und ohne beta)

SigmaBm,d = 66,250 kN/m² (mittlere Bodenpressung als Bemessungswert)

u,crit = 0,059 m

A,crit = $0,000 \text{ m}^2$


VEd,cal = 413,314 kN --> VEd,cal = beta x (f,Erh x VEd,Stanz - A,crit x SigmaBm,d)

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 120/153

vEd = 3347,803 kN/m² --> vEd = VEd,cal/(u,crit x d) rho,l,x = 0,108 % (Bewehrungsgehalt x - Richtung) rho,l,y = 0,110 % (Bewehrungsgehalt y - Richtung) rho,l,m = 0,109 % (mittl. Bewehrungsgehalt) rho,l,max = 1,635 % (max. zul. Bewehrungsgehalt) vRd,c = 25445,250 kN/m² (Durchstanzwiderstand) --> v,min = 0,254 kN/m² vRd,max = 35623,350 kN/m² (max. Tragfähigkeit gegen Durchstanzen)

==> vRd,c >= vEd ==> keine Durchstanzbewehrung erforderlich!

Köcherbemessung:

Köcher mit profilierter Köcherwandung nach EC2

bo,x = 50,0 cm / bo,y = 50,0 cm

bu,x = 45,0 cm / bu,y = 45,0 cm

tk = 70.0 cm

tf = 5.0 cm

d1 = 6,0 cm

ds = 6.0 cm

Die Bemessung des Köchers erfolgt nach dem Verfahren des DBV.

Winkel der Druckstrebe Phi = 45,0 °

Die Bewehrung in der Stütze zur Ermittlung der Zugkräfte Zs wird automatisch ermittelt!

Beton der Stütze: C35/45

Die Verankerungs- und Übergreifungslängen im Köcher werden überprüft!

 $vorh.As,1 = vorh.As,2 = 20,00 cm^2$

 $vorh.As,3 = vorh.As,4 = 20,00 cm^{2}$

max.Durchmesser der Stützenbewehrung: 20 mm

Mäßiger Verbund der Bewehrung im Stützenfuss.

Verankerung der Stützenlängsbewehrung mit Haken.

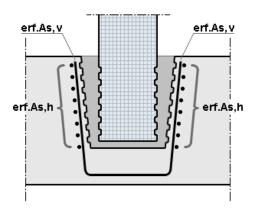
Bewehrung Stütze / Zugkräfte Zs: (D=Druck, Z=Zug)

 $max.erf.As, 1/2, D = 0,00 [cm^2]$

max.erf.As, 1/2, Z = 0.00 [cm²]

max.erf.As,3/4,D = 0,00 [cm²]

max.erf.As, 3/4, Z = 0,00 [cm²]


max.Zs,x = 0.00 [kN] (aus Moment um y-Achse)

max.Zs,y = 0,00 [kN] (aus Moment um x-Achse)

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 121/153

erf.Köcherbewehrung:

Bemessung x-Richtung: (v=vertikal, h=horizontal)

max.erf.As, $v,x = 0.00 \text{ cm}^2$ max.erf.As, $h,x = 0.00 \text{ cm}^2$

Bemessung y-Richtung: (v=vertikal, h=horizontal)

max.erf.As,v,y = 0.00 cm^2 max.erf.As,h,y = 0.00 cm^2

Prüfung Verankerungs- und Übergreifungslängen im Köcher:

Verankerung Zugbewehrung Stütze: erf.lb,net = 20,0 cm <= vorh.lb,net = 62,0 cm

Verankerung Druckbewehrung Stütze: erf.lb,net = 36,6 cm <= vorh.lb,net = 62,0 cm

Übergreifung Stützenbewehrung/vertik. Köcherbewehrung: erf.ls = 70,4 cm > vorh.ls = 59,0 cm !!! --> nicht ausreichend!

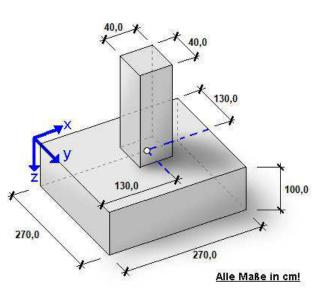
Standsicherheitsnachweis

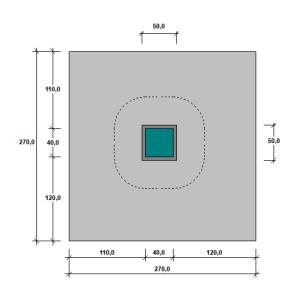
Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 5.7 – Fundament unter mittiger Giebelsütze – Montagelasten

Dipl.-Ing. Christian Tölle

122/153


Seite:


- FT-Blockfundament zur Erzeugung der Einspannung
- Lasten aus Pos. 4.7
- Pos. 5.6 ist nachgewiesen

Projekt:	Position :
----------	------------

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position: 5.7 Fundament unter mittiger Giebelsütze - Montagelasten Einzelfundament nach EC2 / EC7 + NA Deutschland

Dipl.-Ing. Christian Tölle

123/153

Seite:

Systemwerte:

bx = 270,0 cm (Fundamentbreite x - Richtung)

by = 270,0 cm (Fundamentbreite y - Richtung)

ax = 130.0 cm (Achsabstand Stütze in x - Richtung)

ay = 130,0 cm (Achsabstand Stütze in y - Richtung)

bsx = 40,0 cm (Stützenbreite in x - Richtung)

bsy = 40,0 cm (Stützenbreite in y - Richtung)

tf = 100,0 cm (Fundamentdicke)


Köcherabmessungen s. bei Köcherbemessung!

Sigma,Rd = 250,00 kN/m² (zul. Bodenpressung, Designwert)

Phi = 30,0° (Sohlreibungswinkel)

Belastungen: Lasten übernommen aus Position 4.7

Alle Kräfte / Momente greifen an OK Fundament an!

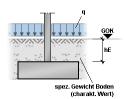
Bewehrungsabstände:

Position: 5.7

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 124/153

N, Hx, Hy, Mx und My sind charakt. Lasten (ohne Sicherheitsbeiwerte)!

Das Eigengewicht vom Fundament wird mit 25,0 kN/m³ berücksichtigt!


Positive Momente Mx und My erzeugen in Punkt 1 Druckspannungen (s. nebenstehendes Bild)!

Momente aus Theorie II.Ordnung werden für Nachweise der inneren und äußeren Standsicherheit angesetzt!

Lasten aus Anprall für Köcherbemessung und Lagesicherheit nach EC0!

Lastfall	N [kN]	Hx [kN]	Hy [kN]	Mx,I [kNm]	Mx,II [kNm]	My,I [kNm]	My,II [kNm]
ständig g	83,74	0,00	0,00	0,00	34,27	0,00	-34,27
Schnee	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Wind +x	0,00	0,00	0,00	0,00	136,78	0,00	0,00
Wind -x	0,00	0,00	0,00	0,00	-136,78	0,00	0,00
Wind +y	0,00	0,00	35,22	136,78	136,78	0,00	0,00
Wind -y	0,00	0,00	-35,22	-136,78	-136,78	0,00	0,00
veränderlich q	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Erdbeben	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Anprall x-Rich.		0,00				0,00	
Anprall y-Rich.			0,00	0,00			

veränderl. Last q auf GOK [kN/m²]	Höhe Boden [cm]	Gamma Boden [kN/m³]	
5,00 (charakt. Wert)	30	19,00	

Lastfallkollektive:

Die Lastfallkollektive werden vom Programm automatisch gemäß EC0 ermittelt und berechnet! Die Lasten aus Wind werden dabei alternativ (unabhängig) je Richtung angesetzt!

Nachweis Ausmitten (Kippnachweis) für charakt. Lasten SLS:

Nachweis klaffende Fuge Gesamtlast: $(ex/bx)^2 + (ey/by)^2 \le 0.111$ Nachweis klaffende Fuge ständige Lasten: $|ex|/bx + |ey|/by \le 0.166$

klaffende Fuge ständige Lasten: max. $|ex|/bx + |ey|/by = 0.084 \le 0.166$ --> keine bzw. zul. klaffende Fuge klaffende Fuge Gesamtlast: max. $(ex/bx)^2 + (ey/by)^2 = 0.061 \le 0.111$ --> keine bzw. zul. klaffende Fuge

Gleitnachweis GEO-2:

eta = (Rt,d + Ept,d) / Td >= 1.00 (eta=0 --> unzul. klaff. Fuge, eta=100000 --> Hx/Hy=0, eta = -1 --> Rt,d = 0) $\Upsilon R,h = 1,100$ [-] (Sicherheitsbeiwert Gleitwiderstand) [= 1,00 bei außergew.LFK]

min. Sicherheit eta = 3,05 >= 1,00 --> zulässig

Grundbruchnachweis GEO-2:

eta = V,d / Rv,d <= 1,00 (eta = 0,000 --> unzul. klaffende Fuge)

Kohäsion c,k = $5,00 \text{ kN/m}^2$

Scherwinkel Phi,k = 30,00 °

Einbindetiefe / Bodenüberdeckung s. bei Lasteingaben!

YR,v = 1,400 [-] (Sicherheitsbeiwert Grundbruchwiderstand) [= 1,20 bei außergew.LFK]

max.V,d = 413,95 [kN]

Rv,d = 1954,75 [kN]

Nc0 / Nd0 / Nb0 = 30,13 / 18,40 / 10,04

vc / vd / vb = 1,29 / 1,28 / 0,83

ic / id / ib = 0.81 / 0.82 / 0.72

max. Ausnutzung eta = 0,21 <= 1,00 --> zulässig

Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen

Position: 5.7

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Nachweis der Lagesicherheit nach EC0:

Sicherheit gegen Abheben:

eta = $(Gk^*\gamma G, \sup + Gk^*\gamma G, \inf) / (Qk^*\gamma Q + F, Auftrieb^*1, 10) >= 1,00$

 γ G,sub = 1,10 [-] (bzw. 1,00 bei außergew. LFK)

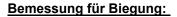
 γ G,inf = 0,90 [-] (bzw. 0,95 bei außergew. LFK)

 $\gamma Q = 1,50$ [-] (bzw. 1,00 bei außergew. LFK)

Es sind keine resultierenden, abhebenden Lasten vorhanden --> Nachweis kann entfallen!

Ausmitten (Kippen):

max.ex = 0,07 m <= zul.ex = 1,35 m max.ey = 1,00 m <= zul.ey = 1,35 m


Nachweis der Sicherheit gegen Auftrieb/Aufschwimmen:

Kote Wasser hGW = -1000,000 m Wasserkote liegt unter UK Fundament --> kein Auftrieb!

Nachweis Bodenpressungen:

Werte für Bodenpressung in [kN/m²]; Sigma,m,d = Nd / (a'x b') zum Vergleich mit Sigma,Rd Bodenpressungen sind gamma - fach (mit Sicherheitsfaktoren)

max.Sigma,m,d = $135,097 \text{ kN/m}^2 \le 250,000 \text{ kN/m}^2 \longrightarrow \text{zulässig}$

Beton: C25/30

Betonstahl: B500 (A,B)

- ✓ Grenze x/d <= 0.45 eingehalten (Biegung)
 </p>
- Mindestbewehrung (Mindestmomente nach EC2) wird berücksichtigt
- ✓ Verteilung der Bewehrung konstant über bx bzw. by
- ☑ Bemessungsmomente werden am Stützenanschnitt ermittelt

Bemessungsmomente: (max. Werte aus allen LFK)

max.Mx,Ed = 154,673 kNm

max.My,Ed = 47,083 kNm

Mindestmoment min.Mx,Ed = 1170,000 kNm (EC2)

Mindestmoment min.My,Ed = 1170,000 kNm (EC2)

Bemessung für Biegung / erf. Längsbewehrung:

erf.Asx,unten = 27.6 cm^2 erf.Asx,oben = 0.0 cm^2 erf.Asy,unten = 27.9 cm^2 erf.Asy,oben = 0.0 cm^2

Mindestbewehrung nach EC2 wurde bei Bemessung berücksichtigt!

Anschlussbewehrung in Stütze:

 $erf.As = 0.00 cm^{2} (mue = 0.00\%, min.As = 0.39 cm^{2})$

Die Anschlussbewehrung wird für die reine Druck- bzw. Zugkraft ermittelt, ohne Momentenanteile!

GOK

\$\frac{\text{GOK}}{\pmu} \frac{\text{\$\delta}}{\pmu} \frac{\text{\$\delta}}{\pmu}

Position: 5.7

Dipl.-Ing. Christian Tölle

125/153

Seite:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 126/153

Durchstanznachweis:

- ☑ Längsbewehrung wird automatisch erhöht, um Stanzbewehrung zu vermeiden
- ☑ Abstand der Bewehrungsreihen untereinander, sr' = 0,50 x dm (gilt ab 2. Reihe)
- Abstand der Stanzbewehrung tangential, st = 20,0 cm (f
 ir Mindestbewehrung)
- □ Lasterhöhungsfaktor für Durchstanzen (nicht beta!) f,Erh = 1,00 [-]
- ☑ Beiwert beta wird automatisch für unverschiebliche Systeme bestimmt

dm = 0,945 m (mittlere stat. Höhe)

Kritischer Rundschnitt sr,crit im Abstand von 0,454 m vom Stützenrand.

Ansetzbare Stützenabmessungen a1 / b1 nach EC2 = 0,400 / 0,400 m

Bemessung als Innenstütze, d.h. beta = 1,10 (unverschiebliches System)

VEd,Stanz = 113,049 kN (ohne Faktor f,Erh und ohne beta)

SigmaBm,d = 18,033 kN/m² (mittlere Bodenpressung als Bemessungswert)

u,crit = 4,450 m

A,crit = $1,532 \text{ m}^2$

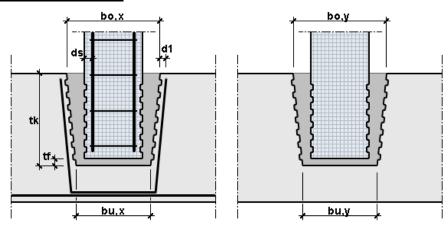
VEd,cal = 98,219 kN --> VEd,cal = beta x (f,Erh x VEd,Stanz - A,crit x SigmaBm,d)

 $vEd = 23,356 \text{ kN/m}^2 \longrightarrow vEd = VEd,cal/(u,crit x d)$

rho, I, x = 0,108 % (Bewehrungsgehalt x - Richtung)

rho,I,y = 0,110 % (Bewehrungsgehalt y - Richtung)

rho,l,m = 0,109 % (mittl. Bewehrungsgehalt)


rho,I,max = 1,628 % (max. zul. Bewehrungsgehalt)

vRd,c = 918,856 kN/m² (Durchstanzwiderstand) --> v,min = 0,221 kN/m²

vRd,max = 1286,399 kN/m² (max. Tragfähigkeit gegen Durchstanzen)

==> vRd,c >= vEd ==> keine Durchstanzbewehrung erforderlich!

Köcherbemessung:

Köcher mit profilierter Köcherwandung nach EC2

bo,x = 50,0 cm / bo,y = 50,0 cm

bu,x = 45,0 cm / bu,y = 45,0 cm

tk = 65,0 cm

tf = 5,0 cm

d1 = 6,0 cm

ds = 6,0 cm

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Die Bemessung des Köchers erfolgt nach dem Verfahren des DBV.

Winkel der Druckstrebe Phi = 45,0 °

Die Bewehrung in der Stütze zur Ermittlung der Zugkräfte Zs wird automatisch ermittelt!

Dipl.-Ing. Christian Tölle

127/153

Seite:

Beton der Stütze: C35/45

Die Verankerungs- und Übergreifungslängen im Köcher werden überprüft!

 $vorh.As,1 = vorh.As,2 = 20,00 cm^2$

 $vorh.As,3 = vorh.As,4 = 20,00 cm^{2}$

max.Durchmesser der Stützenbewehrung: 20 mm

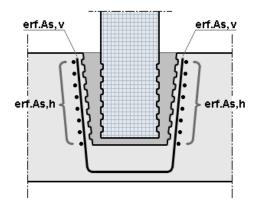
Mäßiger Verbund der Bewehrung im Stützenfuss.

Verankerung der Stützenlängsbewehrung mit Haken.

Bewehrung Stütze / Zugkräfte Zs: (D=Druck, Z=Zug)

max.erf.As, 1/2, D = 1,87 [cm²]

max.erf.As, 1/2, Z = 1.87 [cm²]


max.erf.As,3/4,D = 17,92 [cm²]

max.erf.As,3/4,Z = 17,92 [cm²]

max.Zs,x = 81,49 [kN] (aus Moment um y-Achse)

max.Zs,y = 779,43 [kN] (aus Moment um x-Achse)

erf.Köcherbewehrung:

Bemessung x-Richtung: (v=vertikal, h=horizontal)

max.erf.As,v,x = $1,20 \text{ cm}^2$

 $max.erf.As,h,x = 1,20 cm^2$

Bemessung y-Richtung: (v=vertikal, h=horizontal)

 $max.erf.As,v,y = 11,52 cm^2$

 $max.erf.As,h,y = 11,52 cm^2$

Prüfung Verankerungs- und Übergreifungslängen im Köcher:

Verankerung Zugbewehrung Stütze: erf.lb,net = 38,2 cm <= vorh.lb,net = 57,0 cm

Verankerung Druckbewehrung Stütze: erf.lb,net = 54,6 cm <= vorh.lb,net = 57,0 cm

Übergreifung Stützenbewehrung/vertik. Köcherbewehrung: erf.ls = 80,6 cm > vorh.ls = 54,0 cm !!! --> nicht ausreichend!

Standsicherheitsnachweis

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 5.8 – Fundament unter Eckstütze C/8 – Ausbaulasten

- im Bereich der Garage kann nur ein außermittiger Lasteintrag erfolgen. Die Dimensionen des Fundamentes ändern sich.

Dipl.-Ing. Christian Tölle

128/153

Seite:

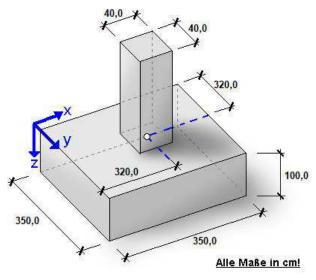
- geplant ist die Herstellung eines Ortbetonfundaments
- Die Stütze C/8 wird mit Fuß hergestellt, so dass ein bauzeitliches richten ermöglicht wird
- Lasten aus Pos. 4.8

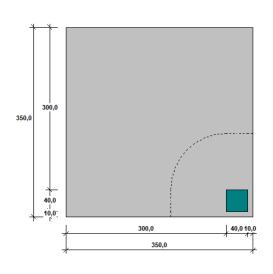
gewählt:

Einzelfundament [] $350 \times 350 \times 100$ [cm]

Beton: C25/30

Betonstahl: BSt 500 S (A)


 $nom_c = 4,00 cm$


Bewehrung nach Ausdruck

Projekt: Position:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position: 5.8 Fundament unter Eckstütze C8 - Ausbaulasten Einzelfundament nach EC2 / EC7 + NA Deutschland

Dipl.-Ing. Christian Tölle

129/153

Seite:

Systemwerte:

bx = 350,0 cm (Fundamentbreite x - Richtung)

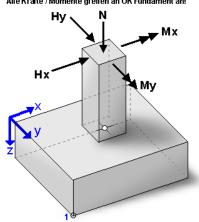
by = 350,0 cm (Fundamentbreite y - Richtung)

ax = 320.0 cm (Achsabstand Stütze in x - Richtung)

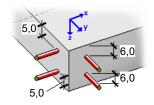
ay = 320,0 cm (Achsabstand Stütze in y - Richtung)

bsx = 40.0 cm (Stützenbreite in x - Richtung)

bsy = 40,0 cm (Stützenbreite in y - Richtung)


100,0 cm (Fundamentdicke)

Sigma,Rd = 250,00 kN/m² (zul. Bodenpressung, Designwert)


Phi = 30,0° (Sohlreibungswinkel)

Belastungen: Lasten übernommen aus Position 4.8

Alle Kräfte / Momente greifen an OK Fundament an!

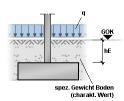
Bewehrungsabstände:

Position: 5.8

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

N, Hx, Hy, Mx und My sind charakt. Lasten (ohne Sicherheitsbeiwerte)!

Das Eigengewicht vom Fundament wird mit 25,0 kN/m³ berücksichtigt!


Positive Momente Mx und My erzeugen in Punkt 1 Druckspannungen (s. nebenstehendes Bild)!

Momente aus Theorie II.Ordnung werden für Nachweise der inneren und äußeren Standsicherheit angesetzt!

Lasten aus Anprall für äußere und innere Standsicherheit (einschließl. Lagesicherheit nach EC0)!

Lastfall	N [kN]	Hx [kN]	Hy [kN]	Mx,I [kNm]	Mx,II [kNm]	My,I [kNm]	My,II [kNm]
ständig g	48,71	0,00	0,00	1,62	18,87	0,00	-17,25
Schnee	4,98	0,00	0,00	0,45	2,21	0,00	-1,76
Wind +x	0,00	12,46	0,00	0,00	-58,24	-48,52	-48,52
Wind -x	0,00	-12,46	0,00	0,00	58,24	48,52	48,52
Wind +y	0,00	0,00	-15,00	-58,24	-58,24	0,00	-48,52
Wind -y	0,00	0,00	15,00	58,24	58,24	0,00	48,52
veränderlich q	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Erdbeben	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Anprall x-Rich.		0,00				0,00	
Anprall y-Rich.			0,00	0,00			

veränderl. Last q auf GOK [kN/m²]	Höhe Boden [cm]	Gamma Boden [kN/m³]	
5,00 (charakt. Wert)	30	25,00	

Position: 5.8

Dipl.-Ing. Christian Tölle

130/153

Seite:

Lastfallkollektive:

Die Lastfallkollektive werden vom Programm automatisch gemäß EC0 ermittelt und berechnet! Die Lasten aus Wind werden dabei alternativ (unabhängig) je Richtung angesetzt!

Nachweis Ausmitten (Kippnachweis) für charakt. Lasten SLS:

Nachweis klaffende Fuge Gesamtlast: $(ex/bx)^2 + (ey/by)^2 \le 0.111$ Nachweis klaffende Fuge ständige Lasten: $|ex|/bx + |ey|/by \le 0.166$

klaffende Fuge ständige Lasten: max. $|ex|/bx + |ey|/by = 0.143 \le 0.166 --> keine bzw. zul. klaffende Fuge klaffende Fuge Gesamtlast: max.<math>(ex/bx)^2 + (ey/by)^2 = 0.013 \le 0.111 --> keine bzw. zul. klaffende Fuge$

Gleitnachweis GEO-2:

eta = (Rt,d + Ept,d) / Td >= 1.00 (eta=0 --> unzul. klaff. Fuge, eta=100000 --> Hx/Hy=0, eta = -1 --> Rt,d = 0) Υ R,h = 1,100 [-] (Sicherheitsbeiwert Gleitwiderstand) [= 1,00 bei außergew.LFK] min. Sicherheit eta = 10,40 >= 1,00 --> zulässig

Grundbruchnachweis GEO-2:

eta = V,d / Rv,d <= 1,00 (eta = 0,000 --> unzul. klaffende Fuge)

Kohäsion c,k = $5,00 \text{ kN/m}^2$

Scherwinkel Phi,k = 30,00 °

Einbindetiefe / Bodenüberdeckung s. bei Lasteingaben!

γR,v = 1,400 [-] (Sicherheitsbeiwert Grundbruchwiderstand) [= 1,20 bei außergew.LFK]

max.V,d = 699,75 [kN]

Rv,d = 10109,59 [kN]

Nc0 / Nd0 / Nb0 = 30,13 / 18,40 / 10,04

vc / vd / vb = 1,45 / 1,43 / 0,74

ic / id / ib = 0.95 / 0.96 / 0.93

max. Ausnutzung eta = 0,07 <= 1,00 --> zulässig

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Nachweis der Lagesicherheit nach EC0:

Sicherheit gegen Abheben:

eta = $(Gk^*\gamma G, \sup + Gk^*\gamma G, \inf) / (Qk^*\gamma Q + F, Auftrieb^*1, 10) >= 1,00$

 γ G,sub = 1,10 [-] (bzw. 1,00 bei außergew. LFK)

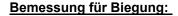
 γ G,inf = 0,90 [-] (bzw. 0,95 bei außergew. LFK)

 $\gamma Q = 1,50$ [-] (bzw. 1,00 bei außergew. LFK)

Es sind keine resultierenden, abhebenden Lasten vorhanden --> Nachweis kann entfallen!

Ausmitten (Kippen):

max.ex = 1,43 m <= zul.ex = 1,75 m max.ey = 1,48 m <= zul.ey = 1,75 m


Nachweis der Sicherheit gegen Auftrieb/Aufschwimmen:

Kote Wasser hGW = -1000,000 m Wasserkote liegt unter UK Fundament --> kein Auftrieb!

Nachweis Bodenpressungen:

Werte für Bodenpressung in [kN/m²]; Sigma,m,d = Nd / (a'x b') zum Vergleich mit Sigma,Rd Bodenpressungen sind gamma - fach (mit Sicherheitsfaktoren)

max.Sigma,m,d = $77,850 \text{ kN/m}^2 \le 250,000 \text{ kN/m}^2 \longrightarrow \text{zulässig}$

Beton: C25/30

Betonstahl: B500 (A,B)

- ✓ Grenze x/d <= 0.45 eingehalten (Biegung)
 </p>
- Mindestbewehrung (Mindestmomente nach EC2) wird berücksichtigt
- ✓ Verteilung der Bewehrung konstant über bx bzw. by
- ☑ Bemessungsmomente werden am Stützenanschnitt ermittelt

Bemessungsmomente: (max. Werte aus allen LFK)

max.Mx,Ed = 81,850 kNm

max.My,Ed = 66,012 kNm

Mindestmoment min.Mx,Ed = 1516,667 kNm (EC2)

Mindestmoment min.My,Ed = 1516,667 kNm (EC2)

Bemessung für Biegung / erf. Längsbewehrung:

erf.Asx,unten = 35,7 cm² erf.Asx,oben = 2,7 cm² erf.Asy,unten = 36,1 cm² erf.Asy,oben = 3,2 cm²

Mindestbewehrung nach EC2 wurde bei Bemessung berücksichtigt!

Anschlussbewehrung in Stütze:

 $erf.As = 0.00 cm^{2}$ (mue = 0.00%, min.As = 0.25 cm²)

Die Anschlussbewehrung wird für die reine Druck- bzw. Zugkraft ermittelt, ohne Momentenanteile!

GOK

\$\frac{\text{GOK}}{\pmu} \frac{\text{\$\delta}}{\pmu} \frac{\text{\$\delta}}{\pmu}

Position: 5.8

Dipl.-Ing. Christian Tölle

131/153

Seite:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 132/153

Durchstanznachweis:

- ☑ Längsbewehrung wird automatisch erhöht, um Stanzbewehrung zu vermeiden
- Abstand der Bewehrungsreihen untereinander, sr' = 0,50 x dm (gilt ab 2. Reihe)
- ✓ Abstand der Stanzbewehrung tangential, st = 20,0 cm (für Mindestbewehrung)
- ☑ Lasterhöhungsfaktor für Durchstanzen (nicht beta!) f,Erh = 1,00 [-]

dm = 0,945 m (mittlere stat. Höhe)

Kritischer Rundschnitt sr,crit im Abstand von 1,040 m vom Stützenrand.

Ansetzbare Stützenabmessungen a1 / b1 nach EC2 = 0,400 / 0,400 m

Bemessung als Eckstütze, d.h. beta = 1,50 (unverschiebliches System)

VEd,Stanz = 73,228 kN (ohne Faktor f,Erh und ohne beta)

SigmaBm,d = 7,793 kN/m² (mittlere Bodenpressung als Bemessungswert)

u,crit = 2,633 m

A,crit = $2,138 \text{ m}^2$

VEd,cal = 84,850 kN --> VEd,cal = beta x (f,Erh x VEd,Stanz - A,crit x SigmaBm,d)

 $vEd = 34,104 \text{ kN/m}^2 \longrightarrow vEd = VEd,cal/(u,crit x d)$

rho, I, x = 0,108 % (Bewehrungsgehalt x - Richtung)

rho,I,y = 0,110 % (Bewehrungsgehalt y - Richtung)

rho,I,m = 0,109 % (mittl. Bewehrungsgehalt)

rho,I,max = 1,628 % (max. zul. Bewehrungsgehalt)

vRd,c = 400,955 kN/m² (Durchstanzwiderstand) --> v,min = 0,221 kN/m²

vRd,max = 561,338 kN/m² (max. Tragfähigkeit gegen Durchstanzen)

==> vRd,c >= vEd ==> keine Durchstanzbewehrung erforderlich!

Standsicherheitsnachweis

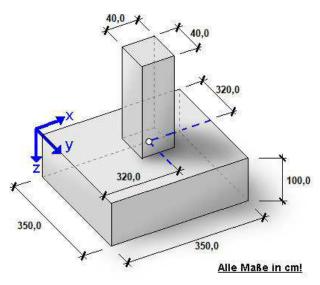
Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

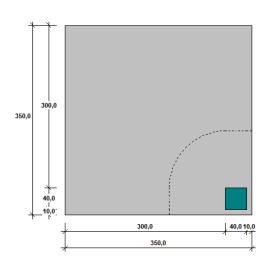
Position 5.9 – Fundament unter Eckstütze C8 – Montagelasten

Dipl.-Ing. Christian Tölle

133/153

Seite:


- Lasten aus Pos. 4.9


- Pos. 5.8 ist nachgewiesen

Projekt:	Position :
----------	------------

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position: 5.9 Fundament unter Eckstütze C8 - Montagelasten Einzelfundament nach EC2 / EC7 + NA Deutschland

Dipl.-Ing. Christian Tölle

134/153

Seite:

Systemwerte:

bx = 350,0 cm (Fundamentbreite x - Richtung)

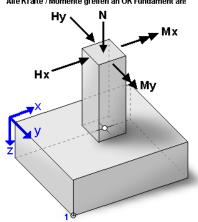
by = 350,0 cm (Fundamentbreite y - Richtung)

ax = 320.0 cm (Achsabstand Stütze in x - Richtung)

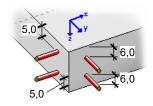
ay = 320,0 cm (Achsabstand Stütze in y - Richtung)

bsx = 40.0 cm (Stützenbreite in x - Richtung)

bsy = 40,0 cm (Stützenbreite in y - Richtung)


100,0 cm (Fundamentdicke)

Sigma,Rd = 250,00 kN/m² (zul. Bodenpressung, Designwert)


Phi = 30,0° (Sohlreibungswinkel)

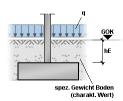
Belastungen: Lasten übernommen aus Position 4.9

Alle Kräfte / Momente greifen an OK Fundament an!

Bewehrungsabstände:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

N, Hx, Hy, Mx und My sind charakt. Lasten (ohne Sicherheitsbeiwerte)! Das Eigengewicht vom Fundament wird mit 25,0 kN/m³ berücksichtigt!


Positive Momente Mx und My erzeugen in Punkt 1 Druckspannungen (s. nebenstehendes Bild)!

Momente aus Theorie II.Ordnung werden für Nachweise der inneren und äußeren Standsicherheit angesetzt!

Lasten aus Anprall für äußere und innere Standsicherheit (einschließl. Lagesicherheit nach EC0)!

Lastfall	N [kN]	Hx [kN]	Hy [kN]	Mx,I [kNm]	Mx,II [kNm]	My,I [kNm]	My,II [kNm]
ständig g	45,02	0,00	0,00	1,28	17,23	0,00	-15,95
Schnee	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Wind +x	0,00	17,61	0,00	0,00	-58,24	-68,39	-68,39
Wind -x	0,00	-17,61	0,00	0,00	58,24	68,39	68,39
Wind +y	0,00	0,00	-15,00	-58,24	-58,24	0,00	-68,39
Wind -y	0,00	0,00	15,00	58,24	58,24	0,00	68,39
veränderlich q	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Erdbeben	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Anprall x-Rich.		0,00				0,00	
Anprall y-Rich.			0,00	0,00			

veränderl. Last q auf GOK [kN/m²]	Höhe Boden [cm]	Gamma Boden [kN/m³]	
5,00 (charakt. Wert)	15	19,00	

Dipl.-Ing. Christian Tölle

135/153

Seite:

Lastfallkollektive:

Die Lastfallkollektive werden vom Programm automatisch gemäß EC0 ermittelt und berechnet! Die Lasten aus Wind werden dabei alternativ (unabhängig) je Richtung angesetzt!

Nachweis Ausmitten (Kippnachweis) für charakt. Lasten SLS:

Nachweis klaffende Fuge Gesamtlast: $(ex/bx)^2 + (ey/by)^2 \le 0,111$ Nachweis klaffende Fuge ständige Lasten: $|ex|/bx + |ey|/by \le 0,166$

klaffende Fuge ständige Lasten: max. $|ex|/bx + |ey|/by = 0.133 \le 0.166 --> keine bzw. zul. klaffende Fuge klaffende Fuge Gesamtlast: max.<math>(ex/bx)^2 + (ey/by)^2 = 0.016 \le 0.111 --> keine bzw. zul. klaffende Fuge$

Gleitnachweis GEO-2:

eta = (Rt,d + Ept,d) / Td >= 1.00 (eta=0 --> unzul. klaff. Fuge, eta=100000 --> Hx/Hy=0, eta = -1 --> Rt,d = 0) Υ R,h = 1,100 [-] (Sicherheitsbeiwert Gleitwiderstand) [= 1,00 bei außergew.LFK]

min. Sicherheit eta = 7,66 >= 1,00 --> zulässig

Grundbruchnachweis GEO-2:

eta = V,d / Rv,d <= 1,00 (eta = 0,000 --> unzul. klaffende Fuge)

Kohäsion c,k = $5,00 \text{ kN/m}^2$

Scherwinkel Phi,k = 30,00 °

Einbindetiefe / Bodenüberdeckung s. bei Lasteingaben!

YR,v = 1,400 [-] (Sicherheitsbeiwert Grundbruchwiderstand) [= 1,20 bei außergew.LFK]

max.V,d = 611,41 [kN]

Rv,d = 7265,57 [kN]

Nc0 / Nd0 / Nb0 = 30,13 / 18,40 / 10,04

vc / vd / vb = 1,43 / 1,41 / 0,76

ic / id / ib = 0.94 / 0.94 / 0.90

max. Ausnutzung eta = 0,08 <= 1,00 --> zulässig

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Nachweis der Lagesicherheit nach EC0:

Sicherheit gegen Abheben:

eta = $(Gk^*\gamma G, \sup + Gk^*\gamma G, \inf) / (Qk^*\gamma Q + F, Auftrieb^*1, 10) >= 1,00$

 γ G,sub = 1,10 [-] (bzw. 1,00 bei außergew. LFK)

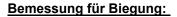
 γ G,inf = 0,90 [-] (bzw. 0,95 bei außergew. LFK)

 $\gamma Q = 1,50$ [-] (bzw. 1,00 bei außergew. LFK)

Es sind keine resultierenden, abhebenden Lasten vorhanden --> Nachweis kann entfallen!

Ausmitten (Kippen):

max.ex = 1,73 m <= zul.ex = 1,75 m max.ey = 1,68 m <= zul.ey = 1,75 m


Nachweis der Sicherheit gegen Auftrieb/Aufschwimmen:

Kote Wasser hGW = -1000,000 m Wasserkote liegt unter UK Fundament --> kein Auftrieb!

Nachweis Bodenpressungen:

Werte für Bodenpressung in [kN/m²]; Sigma,m,d = Nd / (a'x b') zum Vergleich mit Sigma,Rd Bodenpressungen sind gamma - fach (mit Sicherheitsfaktoren)

max.Sigma,m,d = $68,822 \text{ kN/m}^2 \le 250,000 \text{ kN/m}^2 \longrightarrow \text{zulässig}$

Beton: C25/30

Betonstahl: B500 (A,B)

- ✓ Grenze x/d <= 0.45 eingehalten (Biegung)
 </p>
- Mindestbewehrung (Mindestmomente nach EC2) wird berücksichtigt
- ✓ Verteilung der Bewehrung konstant über bx bzw. by

Bemessungsmomente: (max. Werte aus allen LFK)

max.Mx,Ed = 83,709 kNmmax.My,Ed = 103,012 kNm

Mindestmoment min.Mx,Ed = 1516,667 kNm (EC2)

Mindestmoment min.My,Ed = 1516,667 kNm (EC2)

Bemessung für Biegung / erf. Längsbewehrung:

erf.Asx,unten = 35,7 cm² erf.Asx,oben = 3,4 cm² erf.Asy,unten = 36,1 cm² erf.Asy,oben = 3,1 cm²

Mindestbewehrung nach EC2 wurde bei Bemessung berücksichtigt!

Anschlussbewehrung in Stütze:

 $erf.As = 0.00 cm^{2}$ (mue = 0.00%, min.As = 0.21 cm²)

Die Anschlussbewehrung wird für die reine Druck- bzw. Zugkraft ermittelt, ohne Momentenanteile!

GOK

\$\frac{\text{GOK}}{\pmu} \frac{\text{\$\delta}}{\pmu} \frac{\text{\$\delta}}{\pmu}

Position: 5.9

Dipl.-Ing. Christian Tölle

136/153

Seite:

Einzelfundament 21.2 - EC2 + EC7

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 137/153

Durchstanznachweis:

- ☐ Längsbewehrung wird automatisch erhöht, um Stanzbewehrung zu vermeiden
- Abstand der Bewehrungsreihen untereinander, sr' = 0,50 x dm (gilt ab 2. Reihe)
- ✓ Abstand der Stanzbewehrung tangential, st = 20,0 cm (für Mindestbewehrung)
- ☑ Lasterhöhungsfaktor für Durchstanzen (nicht beta!) f,Erh = 1,00 [-]
- ☑ Beiwert beta wird automatisch für unverschiebliche Systeme bestimmt

dm = 0,945 m (mittlere stat. Höhe)

Kritischer Rundschnitt sr,crit im Abstand von 1,049 m vom Stützenrand.

Ansetzbare Stützenabmessungen a1 / b1 nach EC2 = 0,400 / 0,400 m

Bemessung als Eckstütze, d.h. beta = 1,50 (unverschiebliches System)

VEd,Stanz = 60,777 kN (ohne Faktor f,Erh und ohne beta)

SigmaBm,d = 6,425 kN/m² (mittlere Bodenpressung als Bemessungswert)

u,crit = 2,648 m

A,crit = $2,163 \text{ m}^2$

VEd,cal = 70,317 kN --> VEd,cal = beta x (f,Erh x VEd,Stanz - A,crit x SigmaBm,d)

 $vEd = 28,104 \text{ kN/m}^2 \longrightarrow vEd = VEd,cal/(u,crit x d)$

rho, I, x = 0,108 % (Bewehrungsgehalt x - Richtung)

rho,I,y = 0,110 % (Bewehrungsgehalt y - Richtung)

rho,I,m = 0,109 % (mittl. Bewehrungsgehalt)

rho,I,max = 1,628 % (max. zul. Bewehrungsgehalt)

vRd,c = 397,343 kN/m² (Durchstanzwiderstand) --> v,min = 0,221 kN/m²

vRd,max = 556,281 kN/m² (max. Tragfähigkeit gegen Durchstanzen)

==> vRd,c >= vEd ==> keine Durchstanzbewehrung erforderlich!

Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen Position: 5.9

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 6 – Sekundäre Hallenbestandteile

Position 6.1 – Frostschürzen / Stahlbetonsockel

- die Frostschürzen sollen als Fertigteilwandplatten hergestellt und vor Ort montiert werden

Dipl.-Ing. Christian Tölle

138/153

Seite:

- Es wird eine Wandstärke von 0,20 m angenommen.
- Die Frostschürzen dienen in der Halle auch als Wandsockel. Die Sockelhöhe wird mit $h=0.80\,\mathrm{m}$ über FFB angenommen, so dass sich für die Elemente Gesamthöhen von ca. 1,60 m ergeben werden.
- Die Sockelplatten werden im Bereich der Fundamente mit Aussparungen versehen und hängen sich auf diese drauf. Die Auflagerkräfte aus den Sockelplatten sind lastseitig bei der Fundamentbemessung erfasst. Der Lasteintrag sollte mittig im Auflager der Frostschürzen erfolgen.
- Die Frostschürzen haben keine aussteifende Funktion zu erfüllen, dennoch sollte der Anschluss an die Stützen zug- und druckfest ausgeführt werden. Denkbar sind Rückbiegeanschlusskästen, die aus den Stützen in Aussparungen der Frostschürzen geklappt und anschließend ausbetoniert werden
- gewählt:

Stahlbetonsockelplatte Frostschürze

[] 6,60 x 1,60 x 0,20 [m]

Gesamtgewicht $G_k = 6,60 \text{ m} * 1,60 \text{ m} * 0,20 \text{ m} * 25 \text{ kN/m}^3$ $G_k = 52,8 \text{ kN} \approx 5,3 \text{ t}$

Frostschürzen werden auf Einzelfundamente "gehangen" und mit den Stützen verbunden

Projekt: Position:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 6.2 – Wandriegel als Stahlträger

- Wandriegel tragen die Fassade
- Wandriegel werden als Einfeldträger bemessen
- ungünstigste Spannweite: Binderabstände e = 7,00 m, Riegel sollen bündig zwischen die Stützen gesetzt werden, d.h. außenkantenbündig. Fassadenelemente sollen direkt aufgeschraubt werden.

Dipl.-Ing. Christian Tölle

139/153

Seite:

```
Stützweite: l = 7,00 \text{ m} - 0,40 \text{ m} = 6,60 \text{ m}
```

- Wandriegel können nach Wahl des AN geplant werden, nachstehend wird ein Stahlträger als "Orientierung" nachgewiesen
- Einwirkungen
 - aus Winddruck auf Gebäude

```
q = 0,65 kN/m<sup>2</sup>, c_{pe} = 0,70 w = 0,65 kN/m<sup>2</sup> * 0,70 = 0,46 kN/m<sup>2</sup> Abstand der Riegel auf Stützenhöhe bezogen:
```

e = 2,80 m

```
w = 0,46 \text{ kN/m}^2 * 2,80 \text{ m} = 1,29 \text{ kN/m}
```

- aus Eigengewicht Sandwichelemente $g_k = 0,10 \text{ kN/m}^2 * 2,80 \text{ m} = 0,28 \text{ kN/m, mit Unterkonstruktion}$ und Zubehöhr aufgerundet auf: $g_k = 0,50 \text{ kN/m}$
- Auflagerkräfte

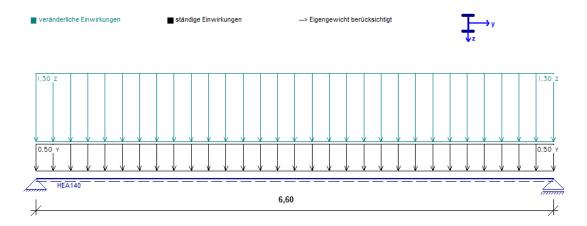
```
aus Wind: W_y = 4,29 \text{ kN} aus Eigengewicht: G_{k,z} = 1,65 \text{ kN}
```

Stahlträger als Wandriegel

Vorbemessung: HEA 140 aus S235, Einbau um 90° gedreht.

Obergurt = Verankerungsebene der Fassadenplatten (Sandwichprofile)

Anschluss der Wandriegel nach Wahl des AN


z. B.: Schraubanschlusssysteme oder

betonseitiger Stahlbauanschluss (HUC der Firma Halfen)

Projekt: Position:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position: 6.2 Wandriegel als Stahlträger Stahlträger nach EC3 (NA Deutschland)

Dipl.-Ing. Christian Tölle

140/153

Seite:

Systemwerte:

linkes Trägerende gelenkig gelagert rechtes Trägerende gelenkig gelagert

Feld	Feldlänge [m]
1	6,600

Belastung: (EWA = Einwirkungsart) y = horizontal, z = vertikal

Einwirkungsart 1 = Nutzlasten

Einwirkungsart 2 = Schneelasten

Einwirkungsart 3 = Windlasten

Einwirkungsart 4 = sonstige veränderliche Einwirkungen

Einwirkungsart 5 = Windlasten als Alternativlastfall zu EW 3

Einwirkungsart 6 = Erdbeben

qz über Gesamtlänge = 1,300 kN/m aus EW Wind

gy über Gesamtlänge = 0,500 kN/m aus ständ. Last

Eigengewicht der Konstruktion wird mit 78,5 kN/m³ berücksichtigt

Typ der EW-Art Nutzlast: A,B - Wohn-/Büroräume

Schnee- u. Windlasten werden nicht feldweise angesetzt, sondern als Vollast!

Feldschnittgrößen (mit Teilsicherheitsbeiwerten) - je Träger:

Feld	max.Myd [kNm]	min.Myd [kNm]	abs.max.Vzd [kN]	max.Mzd [kNm]	min.Mzd [kNm]	abs.max.Vyd [kN]
1	12,431	0,000	7,534	3,675	0,000	2,228

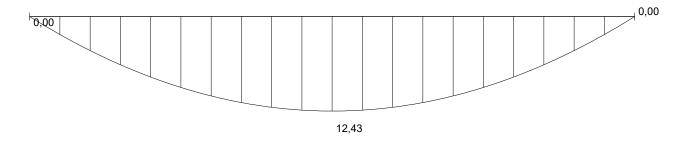
Lagerschnittgrößen (mit Teilsicherheitsbeiwerten) - je Träger:

	Lager	min.Myd [kNm]	max.Myd [kNm]	min.Vzd-li. [kN]	max.Vzd-li. [kN]	min.Vzd-re. [kN]	max.Vzd-re. [kN]
ĺ	1	0,000	0,000				7,534
ĺ	2	0,000	0,000	-7,534			

Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen Position: 6.2

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

DiplIng. C	hristian Tölle
Seite:	141/153


	Lager	min.Mzd [kNm]	max.Mzd [kNm]	min.Vyd-li. [kN]	max.Vyd-li. [kN]	min.Vyd-re. [kN]	max.Vyd-re. [kN]
	1	0,000	0,000				2,228
Ī	2	0,000	0,000	-2,228			

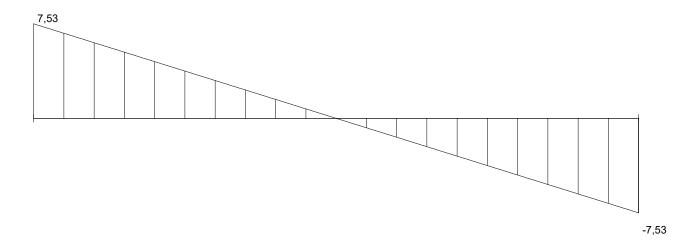
Auflagerkräfte (ohne Teilsicherheitsbeiwerte) - gesamt für alle Träger:

Lager	max.Fz [kN]	min.Fz [kN]	Fz aus g [kN]	Fz aus q [kN]	Fz Vollast [kN]
1	5,10	0,81	0,81	4,29/0,00	5,10
2	5,10	0,81	0,81	4,29/0,00	5,10

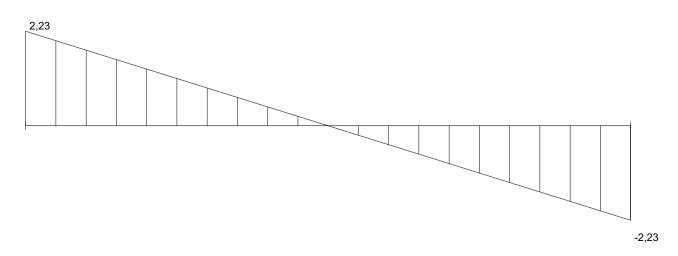
Lager	max.Fy [kN]	min.Fy [kN]	Fy aus g [kN]	Fy aus q* [kN]	Fy Vollast [kN]
1	1,65	1,65	1,65	0,00/0,00	1,65
2	1,65	1,65	1,65	0,00/0,00	1,65

max.MEd,y - Grenzlinie [kNm] - je Träger

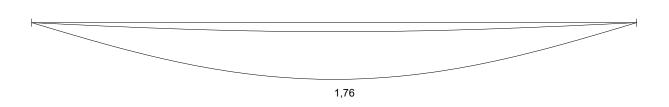
max.MEd,z - Grenzlinie [kNm] - je Träger



Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen Position: 6.2

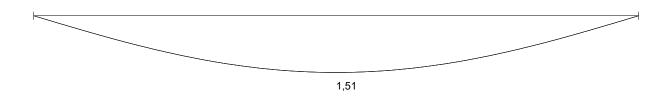

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 142/153


max.VEd,z - Grenzlinie [kN] - je Träger

max.VEd,y - Grenzlinie [kN] - je Träger

fz [cm] - seltene Kombination


Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen

Position: 6.2

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 143/153

fy [cm] - seltene Kombination

Bemessung:

Profil: HEA140

 $\begin{array}{llll} \hline \text{Profilart} = & \text{\mathbb{I} - Profil} \\ \text{Material} = & \text{\mathbb{S} 235} \\ \text{fy} = & \text{$235,00 \text{ N/mm}^2$} \\ \text{fu} = & \text{$360,00 \text{ N/mm}^2$} \\ \gamma \text{ M0} = & \text{$1,00 \text{ [-]}$} \\ \gamma \text{ M1} = & \text{$1,10 \text{ [-]}$} \\ \hline \end{array}$

 η = 1,20 [-] (EC3-1-5 für Querkraft)

A = 31,42 cm² ly = 1033,13 cm⁴ Iz = 389,32 cm⁴ Wyo = 155,36 cm³ Wyu = 155,36 cm³ Wzo = 55,62 cm³ Wzu = 55,62 cm³ A-Vz = 10.12 cm² A-Vy = 23.80 cm² 738,28 kN N,pl,Rd =M,pl,y,Rd =4077,13 kNcm M,pl,z,Rd =1993,94 kNcm V,pI,z,Rd =137,35 kN

QK = 1 (Querschnittsklasse)

322,91 kN

Walzprofil

V,pI,y,Rd =

✓ Nachweisverfahren: elastisch - plastisch

Spannungsnachweise: (elastisch - plastisch) --> Interaktion nach 6.2.4 bis 6.2.10

Felder: fyd = 23,500 kN/cm²

Feld Nr.	Stelle	Myd / Mzd [kNm]	Vzd / Vyd [kN]	η,pl-My/Mz [-]	η,pl-Vz/Vy [-]	η,pl-Int. [-]
1	links	0,00/0,00	7,53/2,23	0,00/0,00	0,05/0,01	0,05
	rechts	0,00/0,00	7,53/2,23	0,00/0,00	0,05/0,01	0,05
	max.M	12,43/3,68	0,00/0,00	0,30/0,18	0,00/0,00	0,30
	max.eta					0,30

Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen Position: 6.2

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 144/153

Nachweis Schubbeulen:

hw/tw = 21,091 <= 72*epsilon/eta --> kein Nachweis für Schubbeulen des Steges gem. EC3-1-5 notwendig! bw/tf = 16,471 <= 72*epsilon/eta --> kein Nachweis für Schubbeulen der Flansche gem. EC3-1-5 notwendig!

Nachweis Biegedrillknicken: (je Träger)

✓ Lastangriff an Trägeroberkante

☑ Druckgurt ist an den Lagern gehalten

✓ XLT wird gemäß (6.58) mit Faktor f erhöht

☑ Beiwerte C1, C2 und C3 zur Ermittlung von Mcr werden vom Programm ermittelt

h/b = 0.95 [-]

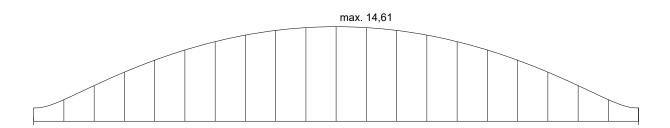
Knicklinie b

 α LT = 0,34 [-]

Einspanngrad kz = 1,00 [-]

Einspanngrad kw = 1,00 [-]

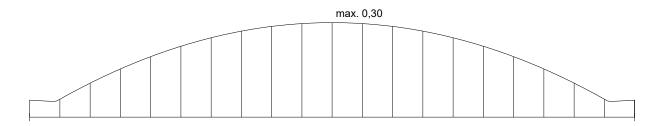
Felder: (c = Abstand Halterungen) --> bei zweiachsiger Biegung mit Beiwerten kyy, kyz, kzz, kzy


Feld Nr.	vorh.c [cm]	C1/C2/C3 [-]	Mcr [kNm]	λLT [-]	φ LT [-]	χ LT,mod [-]	Mb,Rd [kNm]	η [-]	
1	660,0	1,00/1,00/1,00	26,47	1,24	1,22	0,60	22,29	0,76	

Verformungen - seltene Kombination:

Felder:

Feld Nr.	max.f,res [cm]	entspricht	
1	2,32	L / 284,41	


$\nabla V [kN/cm^2]$ γ - fach

η [-] (Ausnutzung elastisch - plastisch)

max. Ausnutzung Biegedrillknicken = 0,76 <= 1,00

Position: 6.2

Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 145/153

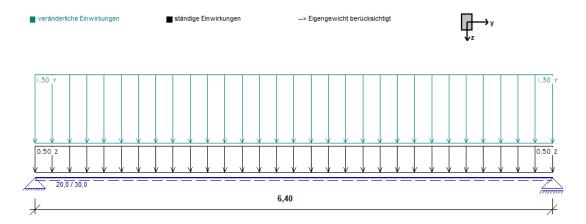
Position 6.3 – Wandriegel als Stahlbetonträger

- Wandriegel tragen die Fassade
- Wandriegel werden als Einfeldträger bemessen
- alternativ zu Position 6.2, könnten auch Stahlbetonriegel hergestellt werden. Diese können auf Konsolen aufgelagert werden
- Konsolbreite : b = 20 cm, (Stützenbreite = 40 cm, außermittige Anordnung muss noch geprüft werden)
- Konsollänge: l = 15 cm, Höhe der Konsole: h = 15 cm
- lichtes Maß zwischen den Stützen: $l_i = 6,60 \text{ m}$
- Wandriegel können nach Wahl des AN geplant werden, nachstehend wird ein Stahlbetonträger als "Orientierung" nachgewiesen
- Die Grenzschlankheit 1/35 sollte beim Trägernachweis mind. in z
 Richtung eingehalten werden
- Einwirkungen
 - aus Winddruck auf Gebäude $q=0,65~kN/m^2,~c_{pe}=0,70$ $w=0,65~kN/m^2~*~0,70=0,46~kN/m^2$ Abstand der Riegel auf Stützenhöhe bezogen: e=2,80~m

```
e = 2,80 \text{ m}

w = 0,46 \text{ kN/m}^2 * 2,80 \text{ m} = 1,29 \text{ kN/m}
```

- aus Eigengewicht Sandwichelemente $g_k = 0,10 \text{ kN/m}^2 * 2,80 \text{ m} = 0,28 \text{ kN/m, mit Unterkonstruktion}$ und Zubehöhr aufgerundet auf: $g_k = 0,50 \text{ kN/m}$
- Auflagerkräfte für Konsole aus Wind: $W_y = 4,14 \text{ kN}$ aus Eigengewicht: $G_{k,z} = 6,40 \text{ kN}$


```
Stahlbetonträger auf Konsole als Wandriegel Vorbemessung: [] 20/30, C25/30, erf. a_{s,unten}=3,69~cm^2, oben: konstruktiv, Bügel a_{s,w}=1,66~cm^2/m Konsole an Stütze: h=15~cm, b=20~cm, l=15~cm
```

Proiekt: Position:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position: 6.3 Wandriegel als Stahlbetonbalken

<u>Stahlbetonträger-zweiachsig nach EC2 - NA Deutschland</u>

Dipl.-Ing. Christian Tölle

146/153

Seite:

Systemwerte:

Balken mit by x bz = 20,0 x 30,0 cm linkes Trägerende gelenkig gelagert rechtes Trägerende gelenkig gelagert

Feld	Feldlänge [m]
1	6,400

Lager Lagerart		Lagerlänge [cm]	
1	direkt	15,0	
2	direkt	15,0	

Belastung: (EWA = Einwirkungsart) y = horizontal, z = vertikal

Einwirkungsart 1 = Nutzlasten

Einwirkungsart 2 = Schneelasten (Höhe über NN <= 1000m)

Einwirkungsart 3 = Windlasten

Einwirkungsart 4 = sonstige veränderliche Einwirkungen

Einwirkungsart 5 = Windlasten als Alternativlastfall zu EW 3

Einwirkungsart 6 = Erdbeben

gz über Gesamtlänge = 0,500 kN/m aus ständ. Last

qy über Gesamtlänge = 1,300 kN/m aus EW Wind

Eigengewicht der Konstruktion wird mit 25,0 kN/m³ berücksichtigt

Schnee- u. Windlasten werden nicht feldweise angesetzt, sondern als Vollast!

Nutzlasten aus Kategorie: A,B - Wohn-/Büroräume

Feldschnittgrößen (mit Teilsicherheitsbeiwerten):

Feld	max.Myd [kNm]	min.Myd [kNm]	abs.max.Vzd [kN]	max.Mzd [kNm]	min.Mzd [kNm]	abs.max.Vyd [kN]
1	13,824	0,000	8,640	9,984	0,000	6,240

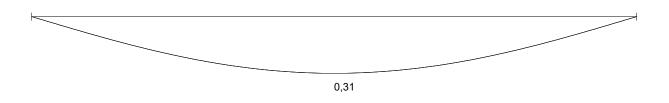
Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen Position: 6.3

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen - August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Dipl.-Ing. Christian Tölle Seite: 147/153

Lagerschnittgrößen (mit Teilsicherheitsbeiwerten):

La	ger	min.Myd [kNm]	max.Myd [kNm]	min.Vzd-li. [kN]	max.Vzd-li. [kN]	min.Vzd-re. [kN]	max.Vzd-re. [kN]
1		0,000	0,000				8,640
2		0,000	0,000	-8,640			

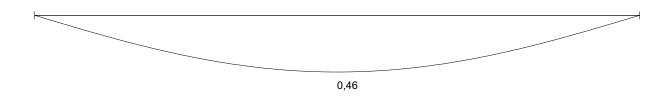

Lager	min.Mzd [kNm]	max.Mzd [kNm]	min.Vyd-li. [kN]	max.Vyd-li. [kN]	min.Vyd-re. [kN]	max.Vyd-re. [kN]
1	0,000	0,000				6,240
2	0,000	0,000	-6,240			

<u>Auflagerkräfte (ohne Teilsicherheitsbeiwerte):</u>

Lager	max.Fz [kN]	min.Fz [kN]	Fz aus g [kN]	Fz aus q [kN]	Fz Vollast [kN]
1	6,40	6,40	6,40	0,00/0,00	6,40
2	6,40	6,40	6,40	0,00/0,00	6,40

Lager	max.Fy [kN]	min.Fy [kN]	Fy aus g [kN]	Fy aus q* [kN]	Fy Vollast [kN]
1	4,16	0,00	0,00	4,16/0,00	4,16
2	4,16	0,00	0,00	4,16/0,00	4,16

fz [cm] - seltene Kombination, Zustand I



Position: 6.3

Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 148/153

fy [cm] - seltene Kombination, Zustand I

Bemessung nach EC2 + NA Deutschland:

Beton: C25/30

Betonstahl: B500 (A) - in den Ecken konzentriert d1 = 5,00 cm (Achsabstand Bewehrung unten/oben) d2 = 5,00 cm (Achsabstand Bewehrung seitlich)

Betondeckung c,vl (unten/oben) = 3,5 cm Betondeckung c,vl (seitlich) = 3,5 cm

- ☑ Stützmomente mit Ausrundung gerechnet
- ☑ Mindestbewehrung berücksichtigt
- Querkraftbemessung erfolgt immer am Auflagerrand
- zweiachsige Querkraftbemessung erfolgt nach Prof. Mark

Psi - Werte:

Einwirkung	Psi,0	Psi,1	Psi,2
Schnee s	0,50	0,20	0,00
Wind w	0,60	0,20	0,00
Nutzlasten q	0,70	0,50	0,30
Nutzlasten qs	0,80	0,70	0,50

Biegebewehrung Stützen:

Stütze	erf.As [cm²]	min.As [cm²]	Myd,bem [kNm]	Mzd,bem [kNm]
1	0,00	0,69	0,00	0,00
2	0,00	0,69	0,00	-0,12

Biegebewehrung Felder:

Feld	erf.As [cm²]	min.As [cm²]	Myd,bem [kNm]	Mzd,bem [kNm]
1	3,49	0,69	13,82	9,98

Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen Position: 6.3

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Querkraftbewehrung: (VRd,c,min wird angesetzt)

Stütze	asw-links [cm²/m]	asw-rechts [cm²/m]	min.asw-li. [cm²/m]	min.asw-re. [cm²/m]	Vzd,li [kN]	Vyd,li [kN]	Vzd,re [kN]	Vyd,re [kN]
1	0,00	0,73	0,00	1,66	0,00	0,00	8,38	6,05
2	0,73	0,00	1,66	0,00	8,38	6,05	0,00	0,00

Dipl.-Ing. Christian Tölle

149/153

Seite:

Nachweis Rissbreitenbegrenzung:

(wk = 0.40 mm)

Nachweis Stützen:

Stütze	My [kNm]	Mz [kNm]	Sigma,S [N/mm²]	ds* [mm]	zul.ds [mm]
1	0,00	0,00	0,00	50	50
2	0,00	0,00	0,00	50	50

Nachweis Felder:

Feld	My [kNm]	Mz [kNm]	SigmaS [N/mm²]	ds* [mm]	zul.ds [mm]
1	10,24	0,00	247,22	23	23

Nachweis Biegeschlankheit EC2-1-1, 7.4.2:

- keine verformungsempfindlichen angrenzenden Bauteile, d.h. f <= 1/250
- ab einem Momentenverhältnis |M,Stütze/M,Feld| von >= 0,00 wird eine volle Einspannung angesetzt

Nachweis für z-Richtung:

Feld	K [-]	Rho,0 [%]	erf.Rho [%]	vorh.l/d [-]	zul.l/d [-]
1	1,00	0,50	0,35	25,60	26,32

Nachweis für y-Richtung:

Feld	K [-]	Rho,0 [%]	erf.Rho [%]	vorh.l/d [-]	zul.l/d [-]
1	1,00	0,50	0,39	42,67	23,18 !!!

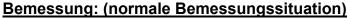
- --> erf.Rho = Bewehrungsgehalt aus erforderlicher Biegebewehrung (für Zugseite)
- --> zul.l/d auch unter Berücksichtigung der gewählten Bewehrung (Faktor = vorh.Rho/erf.Rho)

Projekt: 18030 - Neubau Katastrophenschutzlager Nordthüringen Position: 6.3

Stahlbeton-Konsole 18.0 - EC2

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 150/153

Position: 6.3 Konsole für Wandriegel


Stahlbetonkonsole nach EC2 + NA Deutschland:

Beton: C20/25

Betonstahl: B500 (A,B)
Konsolhöhe d = 15,0 cm
Konsollänge I = 15,0 cm
Konsolbreite b = 20,0 cm
Lagerlänge I1 = 10,0 cm
Lagerbreite b1 = 10,0 cm
Betondeckung cv,I = 2,50 cm

Achsabstand Bewehrung d' = 5,00 cm

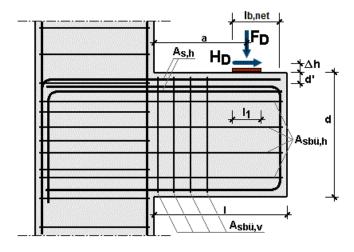
Fd = 10,000 kN Hd = 2,000 kN Abstand Vertikallast a = 8,0 cm Abstand Horizontallast dh = 1,0 cm

Nachweise nach Heft 525 DAfStb + EC2 a/d >= 0.5 --> lange Konsole fcd = 11.3 N/mm² zQ = 5.0 cm z0 = 9.000 cm VRd,c = 11.743 kN VRd,max = 40.000 kN Theta = 0.600 Z,Ed = 12.222 kN

Nachweis Druckstrebe / Querkraft:

 $Fd = 10,000 \le VRd,max = 40,000 kN$

Zuggurtbewehrung:


 $erf.As,h = 0,28 cm^{2}$

Spaltzugbewehrung:

Horizontalbügel Asbü,h konstruktiv Vertikalbügel Asbü,v konstruktiv

Lagerpressung:

Sigma,d = $1,00 \text{ N/mm}^2 \le 0,75 \text{ fcd} = 8,50 \text{ N/mm}^2$

Position: 6.3

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82 Dipl.-Ing. Christian Tölle Seite: 151/153

Position 6.4 – unbewehrte Bodenplatte

- Unbewehrte Bodenplatte in Form eines Industriefussbodens
- unbewehrte Bodenplatte: h = 25 cm,
- Oberfläche flügelgeglättet.
- Klassifizierung der zu bauenden (nichttragenden) Bodenplatte

Klasse der Nutzungsart: Lagerhalle: NA1

Oberflächenklasse: mittel, überwiegend funktional: OF2

Klasse der Nutzungsdauer: ND 50, S4, 50 Jahre

Nutzungsintensität: n ≤ 10/d

Zuverlässigkeitsklasse: RC 1, CC1

- Einwirkungen:
 - aus Schwerlastregalen: Gesamtlast max. 12 t, auf 3 Regalebenen, je Ebene: 4 t, je Fuß 3 t, da 2 Regale nebeneinander stehen ergeben sich Einzellasten in Höhe von 6 t $G_k = 60$ kN, (mittlerer Fuß)

Bemessungseinzellast: $G_d = 1,2 * 60 kN = 72 kN$ Grenzwert: $p_d = 2,00 N/m^2$

- aus Gabelstaplerverkehr: FL 4, Eigengewicht Stapler: 60 kN, Nenntragfähigkeit: 40 kN, Gesamtgewicht: 100 kN Radlast auf 0,20 x 0,20 [m]: Q_k = 45 kN Bemessungseinzellast: Q_d = 1,60 * 45 kN = 72 kN
- Vordimensionierung / Bemessung Bauteil:
 - Beton und Expositionsklassen: XM 2, XF 2, XD 1, XC 3, WO
 - Betonfestigkeitsklasse: C35/45 mit w/z-Wert ≤ 0,45,
 - unter Verwendung langsam erhärtende Zemente (r < 0,30)
- erforderliche Verformungsmodule

Untergrund: $E_{v2,U} = 50$ MN/m², (nach DIN 18134, Proctordichte DPr = 95 % nach DIN 18127), weitere Forderungen: $E_{v2,U}$ / $E_{v1,U} \le 2,5$

Tragschicht: $E_{v2,T} = 150 \text{ MN/m}^2$, Einbaudicke: > 25 cm, weitere

Forderungen: $E_{v2,T} / E_{v1,T} \le 2,2$

Projekt: Position:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

- Gleitschicht zwischen Tragschicht STS 150 und Bodenplatte aus mind. 2 - PE-Folie. 2×0.30 mm

Dipl.-Ing. Christian Tölle

152/153

Seite:

- Fugenausbildung:
 - Raumfugen an allen aufgehenden Bauteilen durch Abstellung der Bodenplatte
 - Rautenförmige Ausbildung im Bereich der Stützen.
 - Fugenbreite: t > = 12 mm
 - Raumfugenverschluss durch Fugeneinlage, Hinterfüllprofil sowie Fugenfüllstoff
 - Scheinfugen im Hallenraster, unmittelbar nach Beginn der Hydratation
 - Scheinfugen durch Kerbschnitt [] 4/60 [mm]
 - Scheinfugenverschluss durch Nachschnitt [] 8/25 sowie Einbau Hinterfüll- und Fugenfüllstoff
 - allgemeiner Hinweis zum Fugenverschluss: BoPla ≠ Fläche für den Umgang mit wassergefährdenden Stoffen
 - Fugensicherung durch Dübel: \emptyset 25, 1 = 0,50 m, e = 0,25 m 0,50 m

Proiekt: Position:

Ingenieurgemeinschaft Gebrüder Tölle GbR - Ingenieure Nordhausen -August-Bebel-Platz 12 in 99734 Nordhausen, Tel. 03631 - 89 58 82

Position 6.5 – Fugenausbildung im Stahlbetonskelettbau

- Überschlägliche Betrachtung zum Dehnfugenabstand
- Fugenabstände in Abhängigkeit der Konstruktionsweise und Schlankheit der Stützen
- Abschätzung nach TGL 2903, 04.83:
 - Montagebauweise, Stahlbetonskelettbau, eingeschossig
 - Stützenkennwert α = h^2 / s mit h = Stützenhöhe und s = Stützenbreite, je in [m]

Dipl.-Ing. Christian Tölle

153/153

Seite:

```
\alpha = (8,50 \text{ m})^2 / 0,40 \text{ m} = 180
```

für α > 140: in Längsrichtung: Fugenabstand: 72 m -> Für die geplante Hallenlänge ist keine Dehnfuge im Skelett erforderlich!

Projekt: Position:

Gelande Forjes waße, Nordhausen

Untersuchungsumfang		Z1	Z1.2	Z2	FWN01	FWN02	
TR Boden (Tab: II.1.2-4-5)			Kriterie	en			
Feststoffkriterien							
PCB (Summe)	mg/kg TS	0,15	0,15	0,5	<0,004	<0,004	
BTEX (Summe)	mg/kg TS	1	1	1	<0,02	<0.02	
LHKW (Summe)	mg/kg TS	1	1	1	<0,02	<0.02	
PAK (Summe)	mg/kg TS	3	3	30	1,23		
Benzo(a)pyren	mg/kg TS	0,9	0,9	3	0,18	<0,05	
Naphthalin	mg/kg TS				<0.05	<0.05	
Trockensubstanz	Gew%		Service Service		90,1	91.6	
Cyanide, ges	mg/kg TS	3	3	10	<0,5	<0,5	
EOX	mg/kg TS	3	3	10	<1	<1	
Kohlenwasserstoff C10-C22	mg/kg TS	300	300	1000	<50	<50	
Kohlenwasserstoff C10-C40	mg/kg TS	600	600	2000	<50	<50	
Arsen	mg/kg TS	45	45	150	10,8		
Blei	mg/kg TS	210	210	700		6,8	
Cadmium	mg/kg TS	3	3	10	81,5	9,6	
Chrom (ges)		180	180		0,4	<0,2	
Kupfer	mg/kg TS	-		600	33	57,4	
Nickel	mg/kg TS	120	120	400	67,4	23,5	
	mg/kg TS	150	150	500	35,2	43,2	
Quecksilber	mg/kg TS	1,5	1.5	5	0,4	<0,05	
Zink Thallium	mg/kg TS	450	450	1500	151	54,5	
TOC	mg/kg TS	2,1	2.1	7	<0,4	<0,4	
	M%	1,5	1,5	5	0,45	0,2	
Eluatkriterien							
pH-Wert	-	6,59,5	612	5,512	7,81	7,33	
Leitfähigkeit	µS/cm	250	1500	2000	2250	87	Wiffer Red: 22
Phenol-Index	µg/l	20	40	100	<10	<10	Luffer, Red: 22
Chlorid	mg/l	30	50	100	2	1,2	
Sulfat	mg/l	20	50	200	1490	27,2	Lillet 1790 in
Cyanid, gesamt	µg/l	5	10	20	<5	<5	0
Arsen	µg/l	14	20	60	<3	<3	
Blei	µg/l	40	80	200	5	<3	
Cadmium	μg/l	1,5	3	6	<0,5	<0,5	
Chrom (ges.)	µg/l	12,5	25	60	<2	<2	
Kupfer	µg/l	20	60	100	3	<2	
Nickel	µg/l	15	20	70	<2	<2	
Quecksilber	µg/l	<0,5	1	2	<0,1	<0,1	
Zink	µg/I	150	200	600	6	4	
Datum der Entnahme:					05.05.2017	05.05.2017	
Probennehmer:					IHU GmbH	IHU GmbH	
Material:					Boden	Boden	
abor:					ThUI	ThUI	
nalysedatum:					08.05.2017	08.05.2017	
abornummer:					017-F-1964-1-1 0		
Prüfstelle:							
emerkung:							

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen

Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:

2017-F-1964-1-1

Auftraggeber:

IHU Nordhausen GmbH

Am Sportplatz 1 99734 Nordhausen

Entnahmestelle:

MP 1

Probenehmer:

siehe Auftraggeber

Probenahmedatum: Probeneingangsdatum: 05.05.2017

Analysenhaginn:

08.05.2017

Analysenbeginn: Prüfgegenstand: 08.05.2017 Boden

Prüfziel:

Laga-Boden / Tabelle II 1.2.-2 bis 1.2.-5

Parameter	Dimension	Messergebnis	Analyseverfahren	
Feststoffkriterien				
Trockensubstanzgehalt	Masse %	90,1	DIN EN 14346ª	
TOC	Masse % d.TS	0,45	DIN EN 13 137ª	
Cyanid gesamt	mg/kg TS	< 0.50	DIN ISO 17380	
EOX	mg/kg TS	< 1,0	DIN 38 414 - S17°	
Kohlenwasserstoffe C10 - C22	mg/kg TS	< 50	DIN EN 14039 ^a	
Kohlenwasserstoffe C10 - C40	mg/kg TS	< 50	DIN EN 14039ª	
Arsen	mg/kg TS	10,8	DIN EN ISO 11885 ^a	
Blei	mg/kg TS	81,5	DIN EN ISO 11885ª	
Cadmium	mg/kg TS	0,40	DIN EN ISO 11885ª	
Chrom	mg/kg TS	33,0	DIN EN ISO 11885ª	
Kupfer	mg/kg TS	67,4	DIN EN ISO 11885 ^a	
Nickel	mg/kg TS	35,2	DIN EN ISO 11885 ^a	
Quecksilber	mg/kg TS	0,40		
Zink	mg/kg TS	151	DIN EN ISO 17852ª	
Thallium	mg/kg TS	< 0,40	DIN EN ISO 11885ª	
	mg ro	0,40	DIN EN ISO 11885ª	
PAK				
Naphthalin	mg/kg TS	< 0.05	DIN ISO 13877ª	
Acenaphtylen	mg/kg TS	< 0,05	DIN ISO 13877°	
Acenaphten	mg/kg TS	< 0,05	DIN ISO 13877ª	
Fluoren	mg/kg TS	< 0,05	DIN ISO 13877ª	
Phenanthren	mg/kg TS	0,18	DIN ISO 13877°	
Anthracen	mg/kg TS	< 0,05	DIN ISO 13877ª	
Fluoranthen	mg/kg TS	0,28	DIN ISO 13877ª	
Pyren	mg/kg TS	0,21	DIN ISO 13877*	
Benzo(a)anthracen	mg/kg TS	0,08	DIN ISO 13877*	
Chrysen	mg/kg TS	0,13	DIN ISO 13877°	
Benzo(b)fluoranthen	mg/kg TS	0,10	DIN ISO 13877°	
Benzo(k)fluoranthen	mg/kg TS	0,07	DIN ISO 13877°	
Benzo(a)pyren	mg/kg TS	0,18	DIN ISO 13877ª	
Dibenz(a,h)anthracen	mg/kg TS	< 0.05	DIN ISO 13877 ^a	
Benzo(g,h,i)perylen	mg/kg TS	< 0,05	DIN ISO 138772	
Indeno(1,2,3-cd)pyren	mg/kg TS	< 0,05	DIN ISO 138772	
Summe PAK	mg/kg TS	1,23	DIN ISO 13877ª	
Pferdedorf 12 05 2017	(A)			

Pferdsdorf, 12.05.2017

ter: Geschäftsführer: Dipl. Wirtsch. Ing. (FH) Daniel Tischer Seite 1 von 3

persönlich haftender Gesellschafter: Henterich GmbH HRB 405.890 / HRA 401.309

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen

Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Section 1			
1 -	ha	- B	dr.:
1 0	LJ ()		W

2017-F-1964-1-1

LHKW			
1,2 Dichlorethan	mg/kg TS	< 0.02	DIN EN ISO 10301 / HLUG®
Dichlormethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG ^a
trans-1,2-Dichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
cis-1,2-Dichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG ^a
Trichlormethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG ^a
1,1,1-Trichlorethan	mg/kg TS	< 0.02	DIN EN ISO 10301 / HLUG ^a
Tetrachlormethan	mg/kg TS	< 0.02	DIN EN ISO 10301 / HLUG*
Trichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG ^a
Tetrachlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG ^a
BTEX			
Benzol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
Toluol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
Ethylbenzol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
m-, p- Xylole	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
o- Xylol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
PCB			
PCB Nr.118	mg/kg TS	< 0.004	DIN EN 15308ª
PCB Nr.28	mg/kg TS	< 0,004	DIN EN 15308°
PCB Nr.52	mg/kg TS	< 0,004	DIN EN 15308°
PCB Nr.101	mg/kg TS	< 0,004	DIN EN 15308ª
PCB Nr.138	mg/kg TS	< 0.004	DIN EN 15308ª
PCB Nr.153	mg/kg TS	< 0.004	DIN EN 15308ª
PCB Nr.180	mg/kg TS	< 0,004	DIN EN 15308°
Eluatkriterien			
pH-Wert		7,81	DIN 38 404 - C5ª
Elektr. Leitfähigkeit	µS/cm	2250	DIN EN 27888ª
Phenolindex	µg/I	< 10	DIN EN ISO 14402
Chlorid	mg/l	2,0	DIN EN ISO 10 304-1ª
Sulfat	mg/l	1490	DIN EN ISO 10 304-1ª
Cyanid gesamt	mg/l	< 0.005	DIN EN ISO 14403-2
Arsen	µg/l	< 3	DIN EN ISO 11885ª
Blei	µg/l	5	DIN EN ISO 11885ª
Cadmium	µg/l	< 0,5	DIN EN ISO 11885ª
Chrom	µg/l	< 2	DIN EN ISO 11885ª
Kupfer	µg/l	3	DIN EN ISO 11885ª
Nickel	µg/I	< 2	DIN EN ISO 11885°
Quecksilber	µg/l	< 0,1	DIN EN ISO 17852ª
Zink	μg/I	6	DIN EN ISO 11885ª

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen

Tel. 036926 71009-0 Fax 036926 71009-9

E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:

2017-F-1964-1-1

Nur gültig für Feststoffanalysen: Der Königswasseraufschluss zur Schwermetallbestimmung erfolgt in Bodenproben nach DIN ISO 11466* sowie in nach DIN 38414-S4*. Die Eluatherstellung erfolgt nach DIN EN 12457-4*, bei Untersuchungen gemäß BBodSchV

Der Prüfzeitraum entspricht dem Zeitraum zwischen dem Probeneingangsdatum und dem Datum der Erstellung des Prüfberichtes. Die Untersuchungsergebnisse beziehen sich im Fall der Anlieferung auf das Probenmaterial im Lieferzustand, die Prüfergebnisse beziehen sich nur auf Bestimmungsgrenze des jeweiligen Analyseverfahrens.

Ohne schriftliche Genehmigung derf der Bericht nicht auszugsweise vervielfältigt werden. Es gelten die AGB's (Stand 17.09.2013; www.thuinst.de), Archivierung: Bericht

Ariffadhillah Laborleitung

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen

Tel. 036926 71009-0 Fax 036926 71009-9

E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:

2017-F-1964-2-1

Auftraggeber:

IHU Nordhausen GmbH

Am Sportplatz 1 99734 Nordhausen

Entnahmestelle:

MP 2

Probenehmer:

siehe Auftraggeber

Probenahmedatum: Probeneingangsdatum:

05.05.2017

Analysenbeginn:

08.05.2017 08.05.2017

Prüfgegenstand:

Boden

Prüfziel:

Danamata.

Laga-Boden / Tabelle II 1.2.-2 bis 1.2.-5

Parameter	Dimension	Messergebnis	is Analyseverfahren	
Feststoffkriterien				
Trockensubstanzgehalt	Masse %	91,6	DIN EN 142408	
TOC	Masse % d.TS	0,20	DIN EN 14346ª	
Cyanid gesamt	mg/kg TS	< 0.50	DIN EN 13 137°	
EOX	mg/kg TS	< 1,0	DIN ISO 17380	
Kohlenwasserstoffe C10 - C22	mg/kg TS	< 50	DIN 38 414 - S17ª	
Kohlenwasserstoffe C10 - C40	mg/kg TS	< 50	DIN EN 14039ª	
Arsen	mg/kg TS	6,8	DIN EN 14039°	
Blei	mg/kg TS	9,6	DIN EN ISO 11885ª	
Cadmium	mg/kg TS	< 0,20	DIN EN ISO 11885ª	
Chrom	mg/kg TS		DIN EN ISO 11885ª	
Kupfer	mg/kg TS	57,4	DIN EN ISO 11885ª	
Nickel	mg/kg TS	23,5	DIN EN ISO 11885ª	
Quecksilber		43,2	DIN EN ISO 11885ª	
Zink	mg/kg TS	< 0,05	DIN EN ISO 17852°	
Thallium	mg/kg TS	54,5	DIN EN ISO 11885 ^a	
	mg/kg TS	< 0,40	DIN EN ISO 11885ª	
PAK				
Naphthalin	ma/ka TC	.00=		
Acenaphtylen	mg/kg TS	< 0,05	DIN ISO 13877ª	
Acenaphten	mg/kg TS	< 0,05	DIN ISO 13877ª	
Fluoren	mg/kg TS	< 0,05	DIN ISO 13877ª	
Phenanthren	mg/kg TS	< 0,05	DIN ISO 13877 ^a	
Anthracen	mg/kg TS	< 0,05	DIN ISO 13877ª	
Fluoranthen	mg/kg TS	< 0,05	DIN ISO 13877ª	
Pyren	mg/kg TS	< 0,05	DIN ISO 13877ª	
	mg/kg TS	< 0,05	DIN ISO 13877ª	
Benzo(a)anthracen	mg/kg TS	< 0,05	DIN ISO 13877ª	
Chrysen	mg/kg TS	< 0,05	DIN ISO 13877ª	
Benzo(b)fluoranthen	mg/kg TS	< 0,05	DIN ISO 13877ª	
Benzo(k)fluoranthen	mg/kg TS	< 0,05	DIN ISO 13877°	
Senzo(a)pyren	mg/kg TS	< 0,05	DIN ISO 13877ª	
ibenz(a,h)anthracen	mg/kg TS	< 0,05	DIN ISO 13877ª	
lenzo(g,h,i)perylen	mg/kg TS	< 0,05	DIN ISO 13877ª	
ndeno(1,2,3-cd)pyren	mg/kg TS	< 0,05	DIN ISO 13877ª	
			00 100//	

Pferdsdorf, 12.05.2017

Seite 1 von 3

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen

Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:	2017-F-1964-2-1		
LHKW			
1,2 Dichlorethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
Dichlormethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
trans-1,2-Dichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG ^a
cis-1,2-Dichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
Trichlormethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG®
1,1,1-Trichlorethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
Tetrachlormethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
Trichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
Tetrachlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
BTEX			
Benzol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
Toluol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
Ethylbenzol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
m-, p- Xylole	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG*
o- Xylol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
PCB			
PCB Nr.118	mg/kg TS	< 0.004	DIN EN 15308ª
PCB Nr.28	mg/kg TS	< 0.004	DIN EN 15308ª
PCB Nr.52	mg/kg TS	< 0,004	DIN EN 15308ª
PCB Nr.101	mg/kg TS	< 0.004	DIN EN 15308ª
PCB Nr. 138	mg/kg TS	< 0,004	DIN EN 15308ª
PCB Nr. 153	mg/kg TS	< 0.004	DIN EN 15308ª
PCB Nr.180	mg/kg TS	< 0,004	DIN EN 15308 ^a
Eluatkriterien			
pH-Wert		7,33	DIN 38 404 - C5°
Elektr. Leitfähigkeit	µS/cm	87	DIN EN 27888°
Phenolindex	µg/l	< 10	DIN EN ISO 14402
Chlorid	mg/l	1,2	DIN EN ISO 10 304-1ª
Sulfat	mg/l	27,2	DIN EN ISO 10 304-12
Cyanid gesamt	mg/l	< 0,005	DIN EN ISO 14403-2
Arsen	ha\l	< 3	DIN EN ISO 11885ª
Blei	µg/l	< 3	DIN EN ISO 11885ª
Cadmium	µg/l	< 0,5	DIN EN ISO 11885ª
Chrom	µg/l	< 2	DIN EN ISO 11885°
Kupfer Nickel	µg/l	< 2	DIN EN ISO 11885 ^a
Quecksilber	µg/I	< 2	DIN EN ISO 11885°
Zink	µg/l	< 0,1	DIN EN ISO 17852ª
CITIES .	h8/I	4	DIN EN ISO 11885a

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen

Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:

2017-F-1964-2-1

Nur gültig für Feststoffanalysen: Der Königswasseraufschluss zur Schwermetalibestimmung erfolgt in Bodenproben nach DIN ISO 11466^a sowie in Bauschutt- und Abfaltproben nach DIN EN 13657^a. Die Eluatherstellung erfolgt nach DIN EN 12457-4^a, bei Untersuchungen gernäß BBodSchV nach DIN 38414-S4^a.

Der Prüfzeitraum entspricht dem Zeitraum zwischen dem Probeneingangsdatum und dem Datum der Erstellung des Prüfberichtes. Die Untersuchungsergebnisse beziehen sich im Fall der Anlieferung auf das Probenmaterial im Lieferzustand, die Prüfergebnisse beziehen sich nur auf den Prüfgegenstand. Bei Proben unbekannten Ursprungs ist eine Plausibilitätsprüfung nur bedingt möglich. Die Angabe "< Wert" entspricht der Bestimmungsgrenze des jeweiligen Analyseverfahrens.

akkreditiertes Prüfverfahren; TS/TR Trockensubstanz/Trockenrückstand; OS Originalsubstanz; Fremdvergabe; Unterauftragvergabe Ohne schriftliche Genehmigung darf der Bericht nicht auszugsweise vervielfältigt werden. Es gelten die AGB's (Stand 17.09.2013; www.thuinst.de), sofem nicht andere Regelungen vereinbart wurden. Das Thüringer Umweltinstitut übernimmt für zitierte Grenzwerte keine Gewähr.
Archivierung: Bericht

Ariffadhillah Laborleitung

Untersuchungsumfang		Z1	Z1.2	Z2	FW01	FW02	FW03	
TR Boden (Tab: II.1.2-4-5)			Kriterie	en				
Feststoffkriterien								
PCB (Summe)	mg/kg TS	0,15	0,15	0,5	<0,004	<0,004	<0,004	
BTEX (Summe)	mg/kg TS	1	1	1	<0,02	<0,02	<0,02	
LHKW (Summe)	mg/kg TS	1	1	1	<0,02	<0,02	<0,02	
PAK (Summe)	mg/kg TS	3	3	30	<0,05	3,04	1,87	
Benzo(a)pyren	mg/kg TS	0,9	0,9	3	<0,05	0,28	0,18	
Cyanide, ges	mg/kg TS	3	3	10	<0,5	<5	<0,5	
EOX	mg/kg TS	3	3	10	<1	<1	<1	
Kohlenwasserstoffe	mg/kg TS	300	300	1000				
Kohlenwasserstoff C10-C22	mg/kg TS	300	300	1000	<50	<50	<50	
Kohlenwasserstoff C10-C40	mg/kg TS	600	600	2000	<50	<50	<50	
Arsen	mg/kg TS	45	45	150	15,3	14,6	10,7	
Blei	mg/kg TS	210	210	700	19,3	81,7	22,5	
Cadmium	mg/kg TS	3	3	10	<0,2	0,47	<0,2	
Chrom (ges)	mg/kg TS	180	180	600	67,1	46.7	54,4	
Kupfer	mg/kg TS	120	120	400	27.9	258	32,8	
Nickel	mg/kg TS	150	150	500	47,5	31,2	41,2	
Quecksilber	mg/kg TS	1,5	1,5	5	0,06	0,14	0,08	
Zink	mg/kg TS	450	450	1500	62,5	252	64,7	
Thallium	mg/kg TS	2,1	2.1	7	<0.4	<0.4	<0.4	
TOC	M%	1,5	1.5	5	0,65	0.59	0,8	
Eluatkriterien			AND DESCRIPTION OF THE PERSON					
pH-Wert		6,59,5	E 12	5,512	7.64	9,4	7,94	
Leitfähigkeit	μS/cm	250	1500	2000	117	2270	348	1.10 7710
Phenol-Index	µg/l	20	40	100	<10	<10	<10	up. coto
Chlorid	mg/l	30	50	100	3,6	<2	1,2	Sulfat: 147
Sulfat	mg/l	20	50	200	22	1470	133	(11-1:16)
Cyanid, gesamt	µg/l	5	10	20	<5	<5	<5	Inter-111
Arsen	µg/l	14	20	60	<3	6	3	
Blei	µg/l	40	80	200	<3	<3	<3	
Cadmium	µg/l	1,5	3	6	<0,5	<0,5	<0,5	
Chrom (ges.)	µg/l	12.5	25	60	<2	6	<2	
Kupfer	µg/l	20	60	100	3	14	5	
Nickel	μg/l	15	20	70	<2	<2	<2	
Quecksilber	µg/l	<0,5	1	2	<0.1	<0.1	<0.1	
Zink	µg/l	150	200	600	3	3	5	
Datum der Entnahme:	F3.			000	05.05.17	05.05.17	05.05.17	
Probennehmer:					IHU GmbH	IHU GmbH	IHU GmbH	
Material:					Boden	Boden		
Labor:					ThUI	ThUI	Boden	
Analysedatum:					12.05.17	12.05.17	ThUI	
Labornummer:							12.05.17	
Prüfstelle:					017-F-2076-1-10 MP 1 aus RKS M			
					3&4	1&2	12&16	
Bemerkung:					era e tra			
Einstufung der Probe für alle Pa	arameter:				Z1.2	> 22	Z2	
3					the late	The second secon	Lista	

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie

Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüffaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen

Tel. 036926 71009-0 Fax 036926 71009-9

E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:

2017-F-2076-1-1

Auftraggeber:

IHU Nordhausen GmbH

Am Sportplatz 1 99734 Nordhausen

Entnahmestelle: Probenehmer:

MP 1 aus RKS 3 & 4

Probenahmedatum:

siehe Auftraggeber 05.05.2017

Probeneingangsdatum: Analysenbeginn:

12.05.2017

Prüfgegenstand:

12.05.2017 Boden

Prüfziel:

Laga-Boden / Tabelle II 1.2.-2 bis 1.2.-5

Parameter	Dimension	Messergebnis	Analyseverfahren
Feststoffkriterien			
Trockensubstanzgehalt	Masse %	94,5	DIN EN 14346ª
TOC	Masse % d.TS	0,65	DIN EN 13 137°
Cyanid gesamt	mg/kg TS	< 0,50	DIN ISO 17380
EOX	mg/kg TS	< 1,0	DIN 38 414 - S17°
Kohlenwasserstoffe C10 - C22	mg/kg TS	< 50	DIN EN 14039*
Kohlenwasserstoffe C10 - C40	mg/kg TS	< 50	DIN EN 14039°
Arsen	mg/kg TS	15,3	DIN EN ISO 11885°
Blei	mg/kg TS	19,3	DIN EN ISO 11885ª
Cadmium	mg/kg TS	< 0,20	DIN EN ISO 11885°
Chrom	mg/kg TS	67,1	DIN EN ISO 11885°
Kupfer	mg/kg TS	27,9	DIN EN ISO 11885°
Nickel	mg/kg TS	47,5	DIN EN ISO 11885ª
Quecksilber	mg/kg TS	0,06	DIN EN ISO 17852°
Zink	mg/kg TS	62,5	DIN EN ISO 11885ª
Thallium	mg/kg TS	< 0,40	DIN EN ISO 11885°
PAK			
Naphthalin	mg/kg TS	< 0,05	DIN ISO 13877°
Acenaphtylen	mg/kg TS	< 0,05	DIN ISO 13877*
Acenaphten	mg/kg TS	< 0.05	DIN ISO 13877*
Fluoren	mg/kg TS	< 0.05	DIN ISO 13877*
Phenanthren	mg/kg TS	< 0,05	DIN ISO 13877*
Anthracen	mg/kg TS	< 0,05	DIN ISO 13877ª
Fluoranthen	mg/kg TS	< 0,05	DIN ISO 13877ª
Pyren	mg/kg TS	< 0.05	DIN ISO 13877ª
Benzo(a)anthracen	mg/kg TS	< 0,05	DIN ISO 13877ª
Chrysen	mg/kg TS	< 0.05	DIN ISO 13877ª
Benzo(b)fluoranthen	mg/kg TS	< 0,05	DIN ISO 13877*
Benzo(k)fluoranthen	mg/kg TS	< 0,05	DIN ISO 13877°
Benzo(a)pyren	mg/kg TS	< 0,05	DIN ISO 13877ª
Dibenz(a,h)anthracen	mg/kg TS	< 0,05	DIN ISO 13877ª
Benzo(g,h,i)perylen	mg/kg TS	< 0.05	DIN ISO 13877*
Indeno(1,2,3-cd)pyren	mg/kg TS	< 0,05	DIN ISO 13877ª

Pferdsdorf, 19.05.2017

Seite 1 von 3

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüfiaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

1	2	h	^	r.	N	P	

2017-F-2076-1-1

LHKW			
1,2 Dichlorethan	mg/kg TS	< 0.02	DIN EN ISO 10301 / HLUGª
Dichlormethan	mg/kg TS	< 0.02	DIN EN ISO 10301 / HLUGª
trans-1,2-Dichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
cis-1,2-Dichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG®
Trichlormethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG ^a
1,1,1-Trichlorethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG®
Tetrachlormethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG®
Trichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG®
Tetrachlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG®
BTEX			
Benzol	mg/kg TS	< 0.02	DIN 38 407-F9/ HLUG*
Toluol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
Ethylbenzol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG®
m-, p- Xylole	mg/kg TS	< 0.02	DIN 38 407-F9/ HLUG ^a
o- Xylol	mg/kg TS	< 0.02	DIN 38 407-F9/ HLUG ^a
- 1,12			
PCB			
PCB Nr.118	mg/kg TS	< 0,004	DIN EN 15308ª
PCB Nr.28	mg/kg TS	< 0,004	DIN EN 15308 ^a
PCB Nr.52	mg/kg TS	< 0,004	DIN EN 15308ª
PCB Nr.101	mg/kg TS	< 0,004	DIN EN 15308°
PCB Nr.138	mg/kg TS	< 0,004	DIN EN 15308ª
PCB Nr.153	mg/kg TS	< 0.004	DIN EN 15308°
PCB Nr.180	mg/kg TS	< 0,004	DIN EN 15308 ^a
Eluatkriterien			
pH-Wert		7,64	DIN 38 404 - C5 ^a
Elektr. Leitfähigkeit	µS/cm	117	DIN EN 27888ª
Phenolindex	µg/l	< 10	DIN EN ISO 14402
Chlorid	mg/l	3,6	DIN EN ISO 10 304-1*
Sulfat	mg/l	22,0	DIN EN ISO 10 304-1ª
Cyanid gesamt	mg/l	< 0,005	DIN EN ISO 14403-2
Arsen	µg/l	< 3	DIN EN ISO 11885ª
Blei	µg/l	< 3	DIN EN ISO 11885ª
Cadmium	µg/l	< 0,5	DIN EN ISO 11885°
Chrom	µg/l	< 2	DIN EN ISO 11885ª
Kupfer	µg/l	3	DIN EN ISO 11885°
Nickel	µg/l	< 2	DIN EN ISO 11885°
Quecksilber	µg/l	< 0,1	DIN EN ISO 17852°
Zink	µg/I	3	DIN EN ISO 11885ª

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:

2017-F-2076-1-1

Nur gültig für Feststoffanalysen: Der Königswasseraufschluss zur Schwermetallbestimmung erfolgt in Bodenproben nach DIN ISO 11466" sowie in Bauschutt- und Abfallproben nach DIN EN 13657". Die Eluatherstellung erfolgt nach DIN EN 12457-4", bei Untersuchungen gemäß BBodSchV nach DIN 38414-S4".

Der Prüfzeitraum entspricht dem Zeitraum zwischen dem Probeneingangsdatum und dem Datum der Erstellung des Prüfberichtes. Die Untersuchungsergebnisse beziehen sich im Fall der Anlieferung auf das Probenmaterial im Lieferzustand, die Prüfergebnisse beziehen sich nur auf den Prüfgegenstand. Bei Proben unbekannten Ursprungs ist eine Plausibilitätsprüfung nur bedingt möglich. Die Angabe "< Wert" entspricht der Bestimmungsgrenze des jeweiligen Analyseverfahrens.

* akkreditiertes Prüfverfahren; TS/TR Trockensubstanz/Trockenrückstand; OS Originalsubstanz; Fremdvergabe; Unterauftragvergabe Ohne schriftliche Genehmigung darf der Bericht nicht auszugsweise vervielfältigt werden. Es gelten die AGB's (Stand 17.09.2013; www.thuinst.de), sofern nicht andere Regelungen vereinbart wurden. Das Thüringer Umweltinstitut übernimmt für zitierte Grenzwerte keine Gewähr. Archivierung: Bericht

D. Weggen Laborleitung

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prûflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:

2017-F-2076-2-1

Auftraggeber:

IHU Nordhausen GmbH

Am Sportplatz 1 99734 Nordhausen

Entnahmestelle: Probenehmer:

MP 2 aus RKS 1 & 2

Probenahmedatum:

siehe Auftraggeber 05.05.2017

Probeneingangsdatum:

12.05.2017

Analysenbeginn: Prüfgegenstand:

12.05.2017 Boden

Prüfziel:

Laga-Boden / Tabelle II 1.2.-2 bis 1.2.-5

Parameter	Dimension	Messergebnis	Analyseverfahren
Feststoffkriterien			
Trockensubstanzgehalt	Masse %	92,8	DIN EN 14346ª
TOC	Masse % d.TS	0,59	DIN EN 13 137 ^a
Cyanid gesamt	mg/kg TS	< 0.50	DIN ISO 17380
EOX	mg/kg TS	< 1.0	DIN 38 414 - S17ª
Kohlenwasserstoffe C10 - C22	mg/kg TS	< 50	DIN EN 14039ª
Kohlenwasserstoffe C10 - C40	mg/kg TS	< 50	DIN EN 14039°
Arsen	mg/kg TS	14,6	DIN EN ISO 11885°
Blei	mg/kg TS	81,7	DIN EN ISO 11885ª
Cadmium	mg/kg TS	0,47	DIN EN ISO 11885 ^a
Chrom	mg/kg TS	46,7	DIN EN ISO 11885 ^a
Kupfer	mg/kg TS	258	DIN EN ISO 11885ª
Nickel	mg/kg TS	31,2	DIN EN ISO 11885 ^a
Quecksilber	mg/kg TS	0,14	DIN EN ISO 178528
Zink	mg/kg TS	252	DIN EN ISO 11885°
Thallium	mg/kg TS	< 0,40	DIN EN ISO 11885*
PAK			
Naphthalin	mg/kg TS	< 0,05	DIN ISO 138778
Acenaphtylen	mg/kg TS	< 0,05	DIN ISO 13877ª
Acenaphten	mg/kg TS	< 0,05	DIN ISO 138778
Fluoren	mg/kg TS	< 0,05	DIN ISO 13877ª
Phenanthren	mg/kg TS	0,37	DIN ISO 138778
Anthracen	mg/kg TS	0,07	DIN ISO 138778
Fluoranthen	mg/kg TS	0,62	DIN ISO 138778
Pyren	mg/kg TS	0,57	DIN ISO 13877ª
Benzo(a)anthracen	mg/kg TS	0,19	DIN ISO 138778
Chrysen	mg/kg TS	0,24	DIN ISO 138778
Benzo(b)fluoranthen	mg/kg TS	0,24	DIN ISO 138778
Benzo(k)fluoranthen	mg/kg TS	0,11	DIN ISO 13877°
Benzo(a)pyren	mg/kg TS	0,28	DIN ISO 13877°
Dibenz(a,h)anthracen	mg/kg TS	< 0.05	DIN ISO 13877ª
Benzo(g,h,i)perylen	mg/kg TS	0,18	DIN ISO 13877a
Indeno(1,2,3-cd)pyren	mg/kg TS	0,17	DIN ISO 13877ª
Summe PAK	mg/kg TS	3,04	DIN ISO 13877 ^a
Pferdsdorf, 19.05.2017			Seite 1 von 3

persönlich haftender Gesellschafter: Henterich GmbH HRB 405.890 / HRA 401.309

Geschäftsführer: Dipl. Wirtsch. Ing. (FH) Daniel Tischer

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen

Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:	2017-F-2076-2-1

LHKW			
1,2 Dichlorethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
Dichlormethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
trans-1,2-Dichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
cis-1,2-Dichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG®
Trichlormethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
1,1,1-Trichlorethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
Tetrachlormethan	mg/kg TS	< 0.02	DIN EN ISO 10301 / HLUG®
Trichlorethen	mg/kg TS	< 0.02	DIN EN ISO 10301 / HLUG ^a
Tetrachlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG*
retrachiorethen	ilig/kg 15	- 0,02	DIN EN 180 103017 11200
BTEX			
Benzol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG*
Toluol	mg/kg TS	< 0.02	DIN 38 407-F9/ HLUG ^a
Ethylbenzol	mg/kg TS	< 0.02	DIN 38 407-F9/ HLUG ^a
m-, p- Xylole	mg/kg TS	< 0.02	DIN 38 407-F9/ HLUG ^a
o- Xylol	mg/kg TS	< 0.02	DIN 38 407-F9/ HLUG®
7,10	3.3	-,	
PCB			
PCB Nr.118	mg/kg TS	< 0,004	DIN EN 15308°
PCB Nr.28	mg/kg TS	< 0,004	DIN EN 15308 ^a
PCB Nr.52	mg/kg TS	< 0,004	DIN EN 15308ª
PCB Nr.101	mg/kg TS	< 0,004	DIN EN 15308 ^a
PCB Nr.138	mg/kg TS	< 0,004	DIN EN 15308*
PCB Nr.153	mg/kg TS	< 0,004	DIN EN 15308ª
PCB Nr.180	mg/kg TS	< 0,004	DIN EN 15308°
Eluatkriterien		0.40	DIN 29 404 C58
pH-Wert	Clans	9,40	DIN 38 404 - C5ª
Elektr. Leitfähigkeit	μS/cm	2270	DIN EN 27888ª
Phenolindex	µg/l	< 10	DIN EN ISO 14402
Chlorid	mg/l	< 2,0	DIN EN ISO 10 304-1ª
Sulfat	mg/l	1470	DIN EN ISO 10 304-1*
Cyanid gesamt	mg/I	< 0,005	DIN EN ISO 14403-2
Arsen	hg/l	6	DIN EN ISO 11885°
Blei	hg/l	< 3	DIN EN ISO 11885°
Cadmium	hall	< 0,5	DIN EN ISO 11885°
Chrom	µg/l	6	DIN EN ISO 11885°
Kupfer	μg/l	14	DIN EN ISO 11885°
Nickel	µg/l	< 2	DIN EN ISO 11885ª
Quecksilber	µg/l	< 0,1	DIN EN ISO 17852*
Zink	hg/l	3	DIN EN ISO 11885ª

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:

2017-F-2076-2-1

Nur gültig für Feststoffanalysen: Der Königswasseraufschluss zur Schwermetallbestimmung erfolgt in Bodenproben nach DIN ISO 11466^a sowie in Bauschutt- und Abfallproben nach DIN EN 13657^a. Die Eluatherstellung erfolgt nach DIN EN 12457-4^a, bei Untersuchungen gemäß BBodSchV nach DIN 38414-S4^a.

Der Prüfzeitraum entspricht dem Zeitraum zwischen dem Probeneingangsdatum und dem Datum der Erstellung des Prüfberichtes. Die Untersuchungsergebnisse beziehen sich im Fall der Anlieferung auf das Probenmaterial im Lieferzustand, die Prüfergebnisse beziehen sich nur auf den Prüfgegenstand. Bei Proben unbekannten Ursprungs ist eine Plausibilitätsprüfung nur bedingt möglich. Die Angabe "< Wert" entspricht der Bestimmungsgrenze des jeweiligen Analyseverfahrens.

^a akkreditiertes Prūfverfahren; TS/TR Trockensubstanz/Trockenrūckstand; OS Originalsubstanz; ^F Fremdvergabe; ^U Unterauftragvergabe Ohne schriftliche Genehmigung darf der Bericht nicht auszugsweise vervielfältigt werden. Es gelten die AGB's (Stand 17.09.2013; www.thuinst.de), sofern nicht andere Regelungen vereinbart wurden. Das Thüringer Umweltinstitut übernimmt für zitierte Grenzwerte keine Gewähr. Archivierung: Bericht

D. Weggen Laborleitung

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Messergebnis Analyseverfahren

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:

2017-F-2076-3-1

Auftraggeber:

IHU Nordhausen GmbH

Am Sportplatz 1 99734 Nordhausen

Entnahmestelle: Probenehmer: MP 3 aus RKS 12 & 16

Dimension

siehe Auftraggeber

Probenahmedatum: Probeneingangsdatum: Analysenbeginn: Prüfgegenstand: 05.05.2017

12.05.2017 Boden

Prüfziel:

Parameter

Laga-Boden / Tabelle II 1.2.-2 bis 1.2.-5

Parameter	Dimension	wessergennis	Analyseverranren
Feststoffkriterien			
Trockensubstanzgehalt	Masse %	92,9	DIN EN 14346ª
TOC	Masse % d.TS	0,80	DIN EN 13 137ª
Cyanid gesamt	mg/kg TS	< 0,50	DIN ISO 17380
EOX	mg/kg TS	< 1,0	DIN 38 414 - S17ª
Kohlenwasserstoffe C10 - C22	mg/kg TS	< 50	DIN EN 14039°
Kohlenwasserstoffe C10 - C40	mg/kg TS	< 50	DIN EN 14039°
Arsen	mg/kg TS	10,7	DIN EN ISO 11885°
Blei	mg/kg TS	22,5	DIN EN ISO 11885°
Cadmium	mg/kg TS	< 0,20	DIN EN ISO 11885*
Chrom	mg/kg TS	54,4	DIN EN ISO 11885°
Kupfer	mg/kg TS	32,8	DIN EN ISO 11885°
Nickel	mg/kg TS	41,2	DIN EN ISO 11885°
Quecksilber	mg/kg TS	0,08	DIN EN ISO 17852*
Zink	mg/kg TS	64,7	DIN EN ISO 11885°
Thallium	mg/kg TS	< 0,40	DIN EN ISO 11885°
PAK			
Naphthalin	mg/kg TS	< 0,05	DIN ISO 13877°
Acenaphtylen	mg/kg TS	< 0.05	DIN ISO 138778
Acenaphten	mg/kg TS	< 0.05	DIN ISO 13877ª
Fluoren	mg/kg TS	< 0.05	DIN ISO 13877*
Phenanthren	mg/kg TS	0,29	DIN ISO 138778
Anthracen	mg/kg TS	< 0.05	DIN ISO 13877°
Fluoranthen	mg/kg TS	0,37	DIN ISO 13877ª
Pyren	mg/kg TS	0,35	DIN ISO 13877ª
Benzo(a)anthracen	mg/kg TS	0,11	DIN ISO 13877ª
Chrysen	mg/kg TS	0,16	DIN ISO 13877*
Benzo(b)fluoranthen	mg/kg TS	0,15	DIN ISO 13877°
Benzo(k)fluoranthen	mg/kg TS	0,08	DIN ISO 13877ª
Benzo(a)pyren	mg/kg TS	0,18	DIN ISO 13877 ^a
Dibenz(a,h)anthracen	mg/kg TS	< 0.05	DIN ISO 138778
Benzo(g,h,i)perylen	mg/kg TS	0,08	DIN ISO 13877°
Indeno(1,2,3-cd)pyren	mg/kg TS	0,10	DIN ISO 13877°
Summe PAK	mg/kg TS	1,87	DIN ISO 13877°
Pferdsdorf, 19.05.2017			Seite 1 von 3

Seite 1 von 3

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüfiaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:	2017-F-2076-3-1

LHKW			
1,2 Dichlorethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG ^a
Dichlormethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
trans-1,2-Dichlorethen	mg/kg TS	< 0.02	DIN EN ISO 10301 / HLUGª
cis-1,2-Dichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
Trichlormethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGª
1,1,1-Trichlorethan	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGa
Tetrachlormethan	mg/kg TS	< 0.02	DIN EN ISO 10301 / HLUGa
Trichlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUGa
Tetrachlorethen	mg/kg TS	< 0,02	DIN EN ISO 10301 / HLUG ^a
BTEX			
Benzol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
Toluol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG*
Ethylbenzol	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG*
m-, p- Xylole	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG ^a
o- Xyloi	mg/kg TS	< 0,02	DIN 38 407-F9/ HLUG*
0 74,101	mgmg 10	0,02	DIN 00 407 1 07 1120 0
PCB			
PCB Nr.118	mg/kg TS	< 0,004	DIN EN 15308 ^a
PCB Nr.28	mg/kg TS	< 0,004	DIN EN 15308ª
PCB Nr.52	mg/kg TS	< 0,004	DIN EN 15308ª
PCB Nr.101	mg/kg TS	< 0,004	DIN EN 15308 ^a
PCB Nr.138	mg/kg TS	< 0,004	DIN EN 15308ª
PCB Nr.153	mg/kg TS	< 0,004	DIN EN 15308 ^a
PCB Nr.180	mg/kg TS	< 0,004	DIN EN 15308*
Eluatkriterien			
pH-Wert		7,94	DIN 38 404 - C5°
Elektr. Leitfähigkeit	µS/cm	348	DIN EN 27888ª
Phenolindex	hg/l	< 10	DIN EN ISO 14402
Chlorid	mg/l	1,2	DIN EN ISO 10 304-1°
Sulfat	mg/l	133	DIN EN ISO 10 304-1°
Cyanid gesamt	mg/l	< 0,005	DIN EN ISO 14403-2
Arsen	µg/l	3	DIN EN ISO 11885ª
Blei	μg/l	< 3	DIN EN ISO 11885ª
Cadmium	µg/l	< 0,5	DIN EN ISO 11885*
Chrom	µg/l	< 2	DIN EN ISO 11885ª
Kupfer	µg/l	5	DIN EN ISO 11885ª
Nickel	µg/l	< 2	DIN EN ISO 11885°
Quecksilber	µg/l	< 0,1	DIN EN ISO 17852ª
Zink	µg/l	5	DIN EN ISO 11885°

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüfiaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-19312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:

2017-F-2076-3-1

Nur gültig für Feststoffanalysen: Der Königswasseraufschluss zur Schwermetallbestimmung erfolgt in Bodenproben nach DIN ISO 11466^a sowie in Bauschutt- und Abfallproben nach DIN EN 13657^a. Die Eluatherstellung erfolgt nach DIN EN 12457-4^a, bei Untersuchungen gemäß BBodSchV nach DIN 38414-S4^a.

Der Prüfzeitraum entspricht dem Zeitraum zwischen dem Probeneingangsdatum und dem Datum der Erstellung des Prüfberichtes. Die Untersuchungsergebnisse beziehen sich im Fall der Anlieferung auf das Probenmaterial im Lieferzustand, die Prüfergebnisse beziehen sich nur auf den Prüfgegenstand. Bei Proben unbekannten Ursprungs ist eine Plausibilitätsprüfung nur bedingt möglich. Die Angabe "< Wert" entspricht der Bestimmungsgrenze des jeweiligen Analyseverfahrens.

* akkreditlertes Prüfverfahren; TS/TR Trockensubstanz/Trockenrückstand; OS Originalsubstanz; Fremdvergabe; Unterauftragvergabe Ohne schriftliche Genehmigung darf der Bericht nicht auszugsweise vervielfältigt werden. Es gelten die AGB's (Stand 17.09.2013; www.thuinst.de), sofern nicht andere Regelungen vereinbart wurden. Das Thüringer Umweltinstitut übernimmt für zitlerte Grenzwerte keine Gewähr. Archivierung: Bericht

D. Weggen Laborleitung

Pferdsdorf, 19.05.2017

Auszug aus dem Bericht der Baugrunderkundung / Gründungsberatung

Der vorliegende Auszug aus dem geotechnischen Bericht zum Projekt "Neubau Berufsfeuerwehr, Zorgestraße, Nordhausen" wird den Bietern zur Kenntnis gegeben. Der Bericht wurde 2012 erarbeitet und 2017 durch eine veränderte Aufgabenstellung ergänzt.

Die für den geplanten Standort der Lagerhalle relevanten Aufschlüsse sind in dem Auszug abgedruckt.

IHU Gesellschaft für Ingenieur-, Hydro- und Umweltgeologie mbH

Beratung

Planung

Projektsteuerung

Gutachten

Forschung

Büro Nordhausen

Am Sportplatz 1 D-99 734 Nordhausen Telefon: (03631) 8906- 0 Telefax: (03631) 890629 Niederlassung Halle-Merseburg

Passendorfer Weg 1 D-06 128 Halle/Saale Telefon: (03 45) 52088-0 Telefax: (0345) 5208821 Büro Bad Salzungen Andreasstraße 11

D-36 433 Bad Salzungen Telefon: (03695) 85720 Telefax: (03695) 857220 e-mail:

geotechnik@ihu-gmbh.com

internet:

http://www.ihu-gmbh.com

zertifiziert nach EN ISO 9001

Reg.-Nr.: CERT-08816-2000 AG ESN-TGA

Baugrunderkundung und Gründungsberatung nach DIN EN 1997 und DIN 4020 Ergänzende Baugrunduntersuchungen/Altlastenbewertung

> Neubau Berufsfeuerwehr Zorgestraße, Nordhausen

Projekt-Nr.: 176 117

IHU Gesellschaft für Ingenieur-, Hydro- und Umweltgeologie mbH Planuna Projektsteuerung Gutachten Forschung Beratung Büro Nordhausen Niederlassung Halle-Merseburg Büro Bad Salzungen e-mail: geotechnik@ihu-gmbh.com Am Sportplatz 1 Passendorfer Weg 1 Andreasstraße 11 D-99 734 Nordhausen D-06 128 Halle/Saale D-36 433 Bad Salzungen internet: Telefon: (03631) 8906- 0 Telefon: (03 45) 52088-0 Telefon: (03695) 85720 http://www.ihu-gmbh.com Telefax: (03695) 857220 Telefax: (03631) 8906-29 Telefax: (0345) 52088-21 zertifiziert nach EN ISO 9001 CERT-113601-2012 AQ GE-TGA

Baugrunderkundung und Gründungsberatung Ergänzende Baugrunduntersuchungen/Altlastenbewertungen

Neubau Berufsfeuerwehr, Zorgestraße, Nordhausen

Land:

Thüringen

Landkreis:

Nordhausen

Projekt/Vorhaben (Kurztitel):

BV Berufsfeuerwehr Nordhausen, Ergänzung 2017

Projektnummer:

176 117

Projektart:

Baugrunduntersuchungen und Baugrundbegutachtungen

Projektbearbeiter:

Dipl.-Geol. G. Witte

Techniker: J. Wagner, M. Lochner

Laborant: F. Werkmeister CAD-Zeichnerin: S. Ehrhardt

IHU-Projektleiter:

Dipl.-Ing. K. Rose

Auftraggeber:

SWG Städtische Wohnungsbaugesellschaft mbH

Geseniusstraße 3 99734 Nordhausen

Ansprechpartner:

Herr Spannhaus

Tel.: 03631 / 920463

e-Mail: peter.spannhaus@swg-nordhausen.de

IHU Gesellschaft für Ingenieur-, Hydro- und Umweltgeologie mbH

Prokurist

Nordhausen am Harz, den 29.05.2017

Verteiler: 2 x SWG GmbH Nordhausen, 1 x IHU GmbH Nordhausen

11	ha	Itsve	erzeichnis	Seite
1		Allg	gemeines	4
	1.1	1	Veranlassung	4
	1.2	2	Bearbeitungsgrundlagen	4
	1.3	3	Zusammenfassende Angaben	4
2		Star	ndortbeschreibung	5
3		Unte	ersuchungen	5
	3.1	1	Baugrundaufschlüsse	5
	3.2	2	Laboruntersuchungen	6
4		Erge	ebnisse der Untersuchungen	6
	4.1	1	Baugrundschichtung	6
	4.2	2	Klassifizierung und Eigenschaften der Bodenschichten	6
	4.3	3	Lösbarkeit der Bodenschichten	9
	4.4	4	Erdstatische Kennwerte	10
	4.5	5	Hydrologie und Grundwasserverhältnisse	10
6		Grü	ndungsempfehlungen für das Feuerwehrgebäude	11
	6.1	1	Allgemeine Baugrundbeurteilung	11
	6.2	2	Gründungsempfehlungen	12
	6.3	3	Bautechnische Hinweise	15
7	1	Emp	ofehlungen zum Bau der Verkehrsflächen	
8	;	Schl	lussbemerkungen	16

Anlagenverzeichnis

Anlage 1:	Lageplan der Baugrundaufschlüsse
Anlage 2:	Aufschlussdokumentation
Anlage 3:	Bodenmechanische Laboruntersuchungen
Anlage 4:	Ingenieurgeologische Profilschnitte
Anlage 5:	Fundamentdiagramme nach DIN 4017 / 4019
Anlage 6:	Beseitigung unbelasteter Niederschlagswässer
Anlage 7:	Informationen zu möglichen Altlasten
Anlage 8:	Informationen zu Hochwasserständen der Zorge

Projekt-Nr.: 176 117

1 **Allgemeines**

1.1 Veranlassung

Die SWG Städtische Wohnungsbaugesellschaft mbH Nordhausen beabsichtigt den Neubau der Berufsfeuerwehr an der Zorgestraße in Nordhausen. Für dieses Bauvorhaben wurde bereits im Jahre 2011 ein Baugrundgutachten [U 3] durch die IHU GmbH erstellt. Nach geänderter Planung ist eine veränderte Gebäudeanordnung und eine Verlegung des Standortes um einige Zehner-Meter nach Süden vorgesehen.

Die IHU Gesellschaft für Ingenieur-, Hydro- und Umweltgeologie mbH Nordhausen wurde am 28.04.2017 von der SWG Städtischen Wohnungsbaugesellschaft mbH Nordhausen beauftragt, in Anpassung an die geänderte Planung ergänzende Baugrunduntersuchungen und begutachtungen durchzuführen.

1.2 Bearbeitungsgrundlagen

- [U 1] Angebot der IHU GmbH Nordhausen vom 26.04.2017
- [U 2] Auftrag der SWG GmbH Nordhausen vom 28.04.2017
- [U 3] Baugrundgutachten zum Neubau der Berufsfeuerwehr Nordhausen der IHU GmbH vom 19.04.2012 (Projekt-Nr. 116311)
- [U 4] Präsentationspläne zum Bauvorhaben
- [U 5] statische Angaben (Bauwerkslasten) zum Bauvorhaben
- [U 6] Schichtenverzeichnisse der Rammkernsondierungen
- [U 7] Rammprotokolle der Schweren Rammsondierungen
- [U 8] Analysenprotokolle des Thüringer Umweltinstituts Henterich GmbH & Co. KG Krauthausen

1.3 Zusammenfassende Angaben

Bauvorhaben:

Neubau Berufsfeuerwehr Nordhausen

Aufschlussarbeiten: 2017:

17 Rammkernsondierungen mit Entnahme von Bodenproben und

5 Schwere Rammsondierungen, durchgeführt von der IHU GmbH

Nordhausen

Probenahmezeit:

04.05 - 08.05.2017

Probematerial:

Auffüllungen, feinkörnige und gemischtkörnige Böden

Entnahmestellen:

It. Anlage 1

geprüft durch:

Baugrundlabor der IHU GmbH Nordhausen (Bodenmechanik)

Thüringer Umweltinstituts Henterich GmbH & Co. KG Krauthausen

(chemische Bodenanalytik)

bewertet nach:

DIN EN ISO 14688, DIN 18123, DIN 18130, DIN 18196, DIN 18300,

DIN EN ISO 22476-2, ZTVE-StB, ZTVA-StB und EAU

2 Standortbeschreibung

Der geplante Baubereich war früher mehrfach bebaut unter anderem mit unterkellerten Wohnblöcken, gewerblich genutzten Gebäuden und einer Tankstelle. Diese ehemalige u. a. aus historischen Karten entnommene Bebauung ist im Lageplan der Anlage 1 eingetragen.

Die derzeitig vorhandene Grundstücksbebauung besteht aus mehrgeschossigen Gebäuden im östlichen Randbereich des Grundstücks. Die übrige Untersuchungsfläche ist überwiegend mit Wiese mit einzelner Gehölzvegetation bestanden. Die angrenzende Zorgestraße ist mit einer Betondeckschicht befestigt.

3 Untersuchungen

3.1 Baugrundaufschlüsse

Zur Untersuchung des Baugrundes wurden in den Jahren 2012 und 2017 folgende Baugrundaufschlüsse durchgeführt:

Im Jahre 2012 durchgeführte Untersuchungen [U 3]:

- 6 Rammkernsondierungen mit Entnahme von Bodenproben bis in eine Tiefen von 5,0 m
 (Bohrdurchmesser 35 bis 50 mm, RKS 1/12 6/12)
- 6 Schwere Rammsondierungen zur Feststellung der Lagerungsdichte bzw. Ableitung der Konsistenz bis in Tiefen von 5,0 m (DPH 1/12 – 6/12)

Ergänzende Untersuchungen des Jahres 2017:

- 17 Rammkernsondierungen mit Entnahme von Bodenproben bis in Tiefen von 1,8 6 m
 (Bohrdurchmesser 35 bis 50 mm, RKS 1/17 17/17)
- 5 Schwere Rammsondierungen zur Feststellung der Lagerungsdichte bzw. Ableitung der Konsistenz bis in Tiefen von 4,9 – 7,0 m (DPH 1/17 – 5/17)

Die Lage der Baugrundaufschlüsse ist im Aufschlussplan der Anlage 1 dargestellt.

3.2 Laboruntersuchungen

Im Jahr 2012 wurden folgende bodenmechanische Untersuchungen [U 3] durchgeführt:

3 Korngrößenanalysen mittels Sieb- und Schlämmanalysen nach DIN 18123

Folgende Altlastenanalysen erfolgten in den Jahren 2012 [U 3] und 2017 im Labor des Thüringer Umweltinstituts Henterich GmbH & Co. KG Krauthausen:

• 3 Analysen von Bodenmischproben nach LAGA M 20 Boden

Die Laborprüfberichte sind in den Anlagen 3 und 7 enthalten.

4 Ergebnisse der Untersuchungen

4.1 Baugrundschichtung

Die Erkundungsergebnisse werden in der Aufschlussdokumentation der Anlage 2 als Schichtenverzeichnisse, Bohrprofile, Rammdiagramme und in Anlage 4 als ingenieurgeologische Profilschnitte dargestellt.

Die in den Jahren 2012 [U 3] und 2017 erkundeten Böden lassen sich in folgendem Schichtenaufbau definieren:

Schicht 1:

Auffüllungen,

aufgefüllter Mutterboden (Schicht 1.1) über aufgefüllte bindige (Schicht

1.2) und nichtbindige Böden (Schicht 1.3) mit Bauschutt, in einer Gesamtmächtigkeit von 1,8 – 3,9 m angetroffen

· Schicht 2:

Auelehm,

oberste Schicht am Baustandort größtenteils abgetragen oder umgela-

gert, tiefere Schichten als Zwischenmittel im Flusskies

· Schicht 3:

Flusskies.

Hauptbestandteil des gewachsenen Untergrundes unterhalb der Auffül-

lungen

4.2 Klassifizierung und Eigenschaften der Bodenschichten

Die erkundeten Bodenschichten werden im Folgenden anhand der Untersuchungsergebnisse und der gültigen DIN-, ZTVE- und ZTVA-Normen klassifiziert und deren Eigenschaften ausgewiesen.

Projekt-Nr.: 176 117

Schicht 1:

Auffüllungen

Schicht 1.1:

aufgefüllter Mutterboden
 Schluff-Ton, sandig, humos bis schwach humos /

Sand, z.T. schluffig, z.T. schwach bis stark

kiesig, humos bis schwach humos

- Bodengruppe nach DIN 18196:

[OU], [OT], [OH]

- Bodenklasse n. DIN 18300 (2010, alt):

Klasse 1 - Oberboden

- Homogenbereich n. DIN 18300 (2015):

Homogenbereich A (Pkt. 4.3)

- Frostempfindlichkeit nach ZTVE-StB:

F 2 / F 3 - gering bis sehr frostempfindlich

Schicht 1.2:

aufgefüllte bindige Böden Ton, sand

Ton, sandig bis stark sandig, kiesig bis schwach kiesig / Sand-Kies, schluffig bis stark schluffig / Bauschutt aus Ziegel, Gips, Beton (nur lokal vor-

handen)

- Bodengruppen nach DIN 18196:

[TL], [SU*], [GU*], A

- Konsistenz:

weich, steif

- Bodenklasse n. DIN 18300 (2010, alt):

Klasse 4 - mittelschwer lösbare Bodenart,

bei Steinanteil > 30 Gew.%:

Klasse 5 - schwer lösbarer Boden

- Homogenbereich n. DIN 18300 (2015):

Homogenbereich B (Pkt. 4.3)

- Aufweichgefahr bei Wasserzutritt:

groß bis mittel

- Verdichtungsfähigkeit It. DIN 18196:

mäßig [TL], mittel [SU*], gut [GU*]

- Frostempfindlichkeit nach ZTVE-StB:

F 3 - sehr frostempfindlich

- Erosionsempfindlichkeit It. DIN 18196:

groß bis mittel

- Durchlässigkeit nach DIN 18130:

durchlässig bis sehr schwach durchlässig

Schicht 1.3:

aufgefüllte nichtbindige Böden

Sand-Kies, z. T. schwach schluffig / Bauschutt u. a. aus Ziegel, Gips, Beton

- Bodengruppen nach DIN 18196:

[SU], [SW], [GU]

- Lagerungsdichte:

locker bis sehr locker (unverdichtet eingebrachte

Auffüllungen),

z. T. mitteldicht (verdichtet eingebrachte Auffül-

lungen)

- Bodenklasse n. DIN 18300 (2010, alt):

Klasse 3 - leicht lösbare Bodenart,

Bei Steinanteil > 30 Gew.%:

Klasse 5 - schwer lösbare Bodenart

- Homogenbereich n. DIN 18300 (2015):

Homogenbereich B (Pkt. 4.3)

- Verdichtungsfähigkeit lt. DIN 18196:

gut

- Frostempfindlichkeit nach ZTVE-StB:

F 2 - gering bis mittel frostempfindlich [SU, GU]

F 1 - nichtfrostempfindlich [SW]

- Erosionsempfindlichkeit It. DIN 18196:

mittel bis gering

- Durchlässigkeit nach DIN 18130:

durchlässig bis stark durchlässig

- Durchlässigkeitsbeiwert k:

k = 1*E-05 bis 1*E-03 m/s

Schicht 2:

Auelehm

Ton, sandig bis stark sandig, z. T. schwach kiesig / Sand, stark schluffig, schwach kiesig

- Bodengruppe nach DIN 18196:

TL, SU*

- Konsistenz:

weich, steif

- Bodenklasse n. DIN 18300 (2010, alt):

Klasse 4 - mittelschwer lösbare Bodenart

- Homogenbereich n. DIN 18300 (2015):

Homogenbereich C (Pkt. 4.3)

- Aufweichgefahr bei Wasserzutritt:

groß

- Verdichtungsfähigkeit It. DIN 18196:

mäßig bis mittel

- Frostempfindlichkeit nach ZTVE-StB:

F 3 - sehr frostempfindlich

- Erosionsempfindlichkeit lt. DIN 18196:

groß

- Durchlässigkeit nach DIN 18130

schwach bis sehr schwach durchlässig

- Durchlässigkeitsbeiwert k:

k_f ~ 1*E-09 bis 1*E-07 m/s

Schicht 3:

Flusskies

Kies, sandig bis stark sandig, schwach schluffig

- Bodengruppe nach DIN 18196:

GU

- Lagerungsdichte:

locker, mitteldicht und dicht

- Bodenklasse n. DIN 18300 (2010, alt):

Klasse 3 – leicht lösbare Bodenart

- Homogenbereich n. DIN 18300 (2015):

Homogenbereich D (Pkt. 4.3)

- Verdichtungsfähigkeit It. DIN 18196:

gut

- Frostempfindlichkeit nach ZTVE-StB:

F 2 - gering bis mittel frostempfindlich

- Erosionsempfindlichkeit It. DIN 18196:

gering bis mittel

- Durchlässigkeit nach DIN 18130:

durchlässig bis stark durchlässig

- Durchlässigkeitsbeiwert k:

k ~ 1*E-05 bis 1*E-03 m/s

4.3 Lösbarkeit der Bodenschichten

Für das Gewerk Erdarbeiten sind die erkundeten Böden in folgende Homogenbereiche nach DIN 18300 (2015) einzuteilen:

Homogenbereich A:	aufgefüllter Mutterboden (Schicht 1.1)
Korngrößenverteilung:	Schluff-Ton, sandig, humos bis schwach humos / Sand, z. T. schluffig, z. T. schwach bis stark kiesig, humos bis schwach humos
Massenanteil Steine und Blöcke:	evtl. stein- oder blockgroßer Bauschutt
organischer Anteil:	~ 2 - 6 Mass. %
Bodengruppen nach DIN 18196:	[OU], [OT], [OH]

Homogenbereich B:	Aufgefüllte bindige und nichtbindige Böden und Bauschutt (Schichten 1.2-1.3)
Korngrößenverteilung:	Ton, sandig bis stark sandig, kiesig bis schwach kiesig / Sand-Kies, z. T. schwach bis stark schluffig
Massenanteil Steine und Blöcke:	evtl. stein- oder blockgroßer Bauschutt
unterirdische Bauwerksreste:	evtl. vorhanden
Konsistenzzahl *):	$I_C = 0,5 - 1,0$ (weich bis steif)
Lagerungsdichte:	locker bis sehr locker, z. T. mitteldicht
organischer Anteil:	~ 0 - 5 Mass. %
Bodengruppen nach DIN 18196:	[TL], [SU*], [SU], [SW], [GU*], [GU]

Homogenbereich C:	Auelehm (Schicht 2)		
Korngrößenverteilung:	Ton, sandig bis stark sandig, z. T. schwach kiesig / Sand, stark schluffig, schwach kiesig		
Konsistenzzahl *):	$I_C = 0.5 - 1.0$ (weich bis steif)		
organischer Anteil:	~ 0 Mass. %		
Bodengruppe nach DIN 18196:	TL, SU*		

^{*)} Die Konsistenz kann durch Zutritt von Schichten- und Niederschlagswässern vor allem im Zuge der Bauausführung Schwankungen unterliegen.

Homogenbereich E:	Flusskies (Schicht 3)					
Korngrößenverteilung:	Kies, sandig bis stark sandig, schwach schluffig					

Projekt-Nr.:	176 117
--------------	---------

Massenanteil Steine und Blöcke:	geringer Steinanteil möglich (Massenanteil wegen Bohrdurchmessers < Steingröße nicht ermittelbar)
Lagerungsdichte:	locker, mitteldicht und dicht
organischer Anteil:	0 Mass. %
Bodengruppen nach DIN 18196:	GU

4.4 Erdstatische Kennwerte

Auf der Grundlage der Erkundungs- und Laborergebnisse der Jahre 2012 und 2017, der DIN 1055-2 sowie den Empfehlungen des Arbeitsauschusses Ufereinfassungen EAU werden für die unterhalb des Mutterbodens erkundeten Bodenschichten folgende erdstatische Berechnungskennwerte ausgewiesen:

Tabelle 1: Erdstatische Kennwerte

	Schicht 1.2-1.3: Auffüllungen	Schic Auele			chicht 3: Iusskies	
Bodengruppe	[TL,SU*,SU, SW,GU*,GU]	TL, S	SU*		GU	
Konsistenz / Lagerungsdichte	weich-steif / sehr locker- mitteldicht	weich	steif	locker	mittel- dicht	dicht
Wichte über Wasser γ [kN/m³]	17 – 21	20	20,5	17	19	21
Wichte unter Wasser γ' [kN/m³]	9 – 11	10	10,5	9,5	11	12,5
Reibungswinkel φ' [°]	27,5 - 32,5	27,5	27,5	30	32,5	35
Kohäsion c' [kN/m²]	0 – 2	0	2	0	0	0
Kohäsion, undrainiert c _u [kN/m²]	0 – 15	0	15	0	0	0
Steifemodul E _S [MN/m ²]	3 – 50	3	6	30	60	80

4.5 Hydrologie und Grundwasserverhältnisse

Während der Erkundungen am 04.05. – 08.05.2017 wurde in den 8m-tiefen Bohrungen RKS 5/17, 14/17 und 16/17 der **Grundwasserspiegel** bei 6,3 – 7,0 m unter GOK eingemessen.

Der Grundwasserspiegel unterliegt jahreszeitlichen und langzeitigen Schwankungen um bis zu mehr als 1 m.

Die aufgefüllten Tone (Bodengruppe [TL], zu Schicht 1.2) und der bereichsweise anstehende Auelehm (Schicht 2) wirken auf Grund ihrer geringen Durchlässigkeiten als Schichtenwasserstauer. Sie sind nach DIN 18 196 als schwach bis sehr schwach durchlässig (k ~ 1*E-09 bis 1E-07 m/s) zu bezeichnen, lokale Schichtwässer sind temporär nicht auszuschließen.

Projekt-Nr.: 176 117

5 Altlastenbewertung Auffüllungen

Für die Deklaration des Erdaushubs wurde aus den Auffüllungen in den Jahren 2012 [U 3] und 2017 Bodenmischproben entnommen und dem Thüringer Umweltinstitut Henterich GmbH & Co. KG Krauthausen zu Analysen nach den technischen Regeln der LAGA M 20 Boden übergeben.

Die analysierten Bodenproben sind auf Grund erhöhten Sulfat-Gehaltes bedingt durch Gipshaltige Bauschuttreste in **Zuordnungsklassen > Z 2** und **Z 1.2** einzustufen. Die Altlastenbewertung der Auffüllungen bezüglich Verwertung bzw. Entsorgung, insbesondere aus der Altlastverdachtsfläche der ehemaligen Tankstelle, erfolgt in Anlage 7.

6 Gründungsempfehlungen für das Feuerwehrgebäude

6.1 Allgemeine Baugrundbeurteilung

Die am geplanten Neubaustandort bis in Tiefen von 1,8 – 3,9 m unter GOK erkundeten Auffüllungen (Schicht 1) sind auf Grund ihrer überwiegend weichen Konsistenz, der z. T. lockeren bis sehr lockeren Lagerung, des Gehalts an zersetzbarem Ziegelschutt und der uneinheitlichen Zusammensetzung ohne aufwändige Verbesserungsmaßnahmen als Gründungsschichten ungeeignet. Nach den Ergebnissen der Schweren Rammsondierungen wurden die locker bis sehr locker gelagerten Auffüllungen ohne oder mit nur unzureichenden Verdichtungsarbeiten eingebracht. Stellenweise sind vorwiegend in den obersten 1 – 2 m mächtigen Auffüllungsbereichen verdichtete Lagen zu erkennen (z. T. mitteldichte Lagerung).

Für eine Gründung des Gebäudes sind die Auffüllungen nur nach aufwändiger Bodenverbesserung (z. B. Rüttelstopfverdichtung) oder Bodenaustausch bedingt geeignet.

Der bereichsweise unmittelbar unterhalb der Auffüllungen sowie als Zwischenmittel im Flusskies anstehende Auelehm (Schicht 2) ist als Gründungsschicht nicht zu empfehlen. Der Auelehm weist eine starke Frost- und Wasserempfindlichkeit auf und kann bei Wasserzutritt (z. B. durch Niederschläge oder Schichtenwässer) in einen breiigen und unbebaubaren Zustand übergehen.

Der Flusskies (Schicht 3) weist eine ausreichende Tragfähigkeit für eine Flachgründung nach Bodenaustausch oder für eine Tiefgründung des Gebäudes auf.

6.2 Gründungsempfehlungen

Für das Feuerwehrgebäude kommen folgende Gründungsvarianten in Betracht:

- Gründungsvariante 1: Gründung in Auffüllungen nach Bodenverbesserung mittels
 Rüttelstopfverdichtung
- Gründungsvariante 2: Gründung nach partiellem Austausch der Auffüllungen
- Gründungsvariante 3: Gründung nach vollständigem Austausch der Auffüllungen

Gründungsvariante 1: Gründung in Auffüllungen nach Bodenverbesserung mittels Rüttelstopfverdichtung

Nach Mutterbodenabtrag sind Rüttelstopfsäulen nach statischer Bemessung rasterförmig anzuordnen und bis mindestens UK Auffüllungen niederzubringen. Über den Säulen sind im Bereich tragender Wände und Stützen Lastverteilbalken anzulegen. Die Gründung des Neubaus erfolgt mittels biegesteifer Fundamentplatte mit Verdickungen (Wuten) unter tragenden Wänden und Stützen.

Gründungsvariante 2: Gründung nach partiellem Austausch der Auffüllungen

Die Auffüllungen werden bis in eine Tiefe von 2,0 m unter GOK auszuheben. Auf Grund ihres LAGA-Zuordnungswertes Z>2 (Analysenergebnisse 2012, [U 3]) dürfen die Auffüllungen nicht wiedereingebaut werden und sind zu entsorgen (vgl. Pkt. 5). Als Austauschböden sind gut verdichtungsfähige Materialien (Kies, Felsbruch) unter lagenweiser Verdichtung (Lagendicke \leq 25 cm, $D_{Pr} \geq$ 100 %) bis zur Gründungssohle einzubringen. Die Austauschböden sind unter einem Lastabtragungswinkel von \leq 45° und mit einem allseitigen Überstand gegenüber der geplanten Gründungssohle von \geq 1,0 m einzubringen. Der erreichte Verdichtungsgrad ist auf Einbaulagen nachzuweisen.

Die Gründung des Neubaus erfolgt mittels biegesteifer Fundamentplatte mit Verdickungen (Wuten) unter tragenden Wänden und Stützen. Ausgehend von den Planungsangaben [U 4] und [U 5] kann für eine Bodenplattengründung nach DIN 4017/4019 und EC-7 von folgenden Bemessungswerten ausgegangen werden:

Tabelle 2: Bemessungswerte für W-O-gerichtetes Vordergebäude

Gründungsart	Gründung mittels Bodenpatte (L x B = 85,0 m x 7,0 m) auf ausreichend verdichtete geeignete und 2,0 m mächtige Austauschböden
durchschnittlicher charakteristischer Sohl- druck der Bodenplatte nach [U 5]	σ = 95 kN/m ²
Ausnutzungsgrad der Grundbruchsicherheit	μ = 0,2
Bauwerkssetzungen	s = 1 – 3 cm

Projekt-Nr.: 176 117

Tabelle 3: Bemessungswerte für N-S-gerichtetes Quergebäude

Gründungsart	Gründung mittels Bodenpatte (L x B = 52,0 m x 5,5 m) auf ausreichend verdichtete geeignete und 2,0 m mächtige Austauschböden
durchschnittlicher charakteristischer Sohl- druck der Bodenplatte nach [U 5]	σ = 52 kN/m ²
Ausnutzungsgrad der Grundbruchsicherheit	$\mu = 0.1$
Bauwerkssetzungen	s = 0,5 - 2 cm

Gründungsvariante 3: Gründung nach vollständigem Austausch der Auffüllungen

Die Auffüllungen werden vollständig bis auf den gewachsenen Boden gegen gut verdichtungsfähige Materialien ausgetauscht. Die Austauschböden sind lagenweise entsprechend der in Gründungsvariante 2 beschrieben Art und Weise einzubringen.

Die Gründung kann bei nachgewiesener ausreichender Verdichtung der eingebrachten Austauschböden mit biegesteifer Bodenplatte und/oder Streifenfundamenten erfolgen. Gegebenenfalls kann in Bereichen geringmächtiger Auffüllungen der Bodenaustausch unter Berücksichtigung des o. g. erforderlichen Lastausbreitungswinkels und Überstandes nur in den Fundamentbereichen erfolgen und die Bodenplatte abgekoppelt auf einem ≥ 1,0 m mächtigen Gründungspolster angelegt werden.

Für Streifenfundament-Gründungen kann nach DIN 4017/4019 und EC-7 zur Gewährleistung einer ausreichenden Grundbruchsicherheit und bei Begrenzung der Bauwerkssetzungen auf s ≤ 2 cm folgende Bemessungswerte des Sohlwiderstandes angesetzt werden:

Projekt-Nr.: 176 117

<u>Tabelle 4: Bemessungswert or, D des Sohlwiderstandes für Streifenfundamente</u>

<u>in ausrechend verdichteten und geeigneten Austauschböden über gewachsenem Untergrund</u>

Kleinste Einbindetiefe des Fundaments	Bemessungswert o _{R,D} des Sohlwiderstandes in [kN/m²] für Streifenfundamente mit Breiten b von			
	0,50 m	1,00 m	1,50 m	
0,50 m	180	240	310	
1,00 m	300	360	430	
1,50 m	420	480	450	

Die in der Tabelle 4 angegebenen Werte sind Bemessungswerte nach EC 7 und keine aufnehmbaren Sohldrücke nach DIN 1054:2005-01 oder zulässige Bodenpressungen nach DIN 1054:1976-11!

Der Entscheid für eine Gründungsvariante sollte zum einen anhand der für den Neubau erforderlichen Baugrundtragfähigkeit sowie zum anderen anhand der entstehenden Kosten geprüft werden. Die größte Baugrundtragfähigkeit wird im Falle einer nachweisbar ausreichenden Verdichtung der Einbaulagen der Austauschböden mit der Gründungsvariante 3 erlangt. Der Schlauchturm sollte auf Grund der Kippempfindlichkeit separat und nach vollständigem Bodenaustausch gegründet werden. Für die Kostenermittlung der Gründungsvarianten sollten von bauausführenden Unternehmen Angebote eingeholt werden.

Die Fahrzeughallen können bei geringen zu erwartenden Belastungen mittels von Gebäudegründungen abgekoppelten Bodenplatten auf einem \geq 1,0 m mächtigen Gründungspolster über den Auffüllungen errichtet werden. Das Planum des Gründungspolsters ist auf einen Verdichtungsgrad von $D_{Pr} \geq 97$ % (bindige Böden) bzw. von $D_{Pr} \geq 100$ % (nichtbindige Böden) nachzuverdichten. Das Gründungspolster wird aus gut verdichtbaren Materialien unter lagenweiser Verdichtung ($D_{Pr} \geq 100$ %), einem Lastabtragungswinkel von $\leq 45^\circ$ und mit einem allseitigen Überstand gegenüber der geplanten Bodenplatte von $\geq 1,0$ m eingebracht.

6.3 Bautechnische Hinweise

Aushubarbeiten bis in mehr als 1,25 m Tiefe sind nach DIN 4124 mittels Verbau oder unter einem Böschungswinkel von nicht steiler als 45° durchzuführen. Bei evtl. vollständigem Austausch der Auffüllungen ist die Erfordernis von Sicherungsmaßnahmen der östlich angrenzenden Bestandbebauung zu prüfen (geringster Abstand Neubau-Bestandsbau nach [U 4] ca. 5 m).

Bei Erdarbeiten im Bereich bindiger Auffüllungen oder des Auelehms (Schichten 1.2 oder 2) ist der aus bindigen Böden bestehende Untergrund gegen Aufweichungen durch Niederschlags- oder Schichtenwasser zu schützen (Belassung einer 0,5 m mächtigen Bodenpartie über der Aushubsohle bis kurz vor Gründungsarbeiten, Einrichtung einer offenen Wasserhaltung). Aufgeweichte Lehmpartien sind vollständig abzutragen.

7 Empfehlungen zum Bau der Verkehrsflächen

Das Planum der Verkehrsflächen (Zu- und Ausfahrten, Stellplätze) wird nach Mutterbodenabtrag bereichsweise im sehr frostempfindlichen Untergrund der Frostempfindlichkeitsklasse F 3 (aufgefüllte bindige Böden, Schicht 1.2) und bereichsweise im nicht bis mittel frostempfindlichen Untergrund der Frostempfindlichkeitsklassen F 1 bis F 2 (aufgefüllte nichtbindige Böden, Schicht 1.3) angelegt werden. Für eine einheitliche Bemessung des Verkehrsflächen-Oberbaus sollte auf dem gesamten Grundstück von einem Untergrund der Frostempfindlichkeitsklasse F 3 ausgegangen werden. Auf dem Planum im frostempfindlichen Untergrund wird nach ZTVE-StB 09 und RSTO 12 ein dauerhaftes Verformungsmodul von $E_{v2} \ge 45$ MN/m² bzw. nach Durchführung qualifizierter Bodenverbesserungsmaßnahmen von $E_{v2} \ge 70$ MN/m² gefordert.

Zur Erlangung der geforderten Planumstragfähigkeit wird empfohlen, im Planum anstehende Auffüllungen und bindige Böden vollständig oder bis 0,50 m unter geplantem Planum abzutragen, die Aushubsohle zu verdichten und darüber gut verdichtungsfähige Kiese bis zum Planumsniveau einzubringen. Die umweltrechtliche Möglichkeit des Wiedereinbaus der Auffüllungen ist anhand der Analysenergebnisse nach LAGA Boden, die derzeit noch nicht vollständig vorliegen, zu prüfen (vgl. Pkt. 5). Die geforderte Planumstragfähigkeit ist anschließend auf dem Austauschboden nachzuweisen.

Die Mindestdicke des frostsicheren Verkehrsflächenaufbaus sollte nach RStO 12, Pkt. 3.2, in Abhängigkeit von der Straßenbelastungsklasse festgelegt werden. Demnach sind folgende Mindestdicken des frostsicheren Verkehrsflächenaufbaus erforderlich:

Tabelle 5: Mindestdicke des frostsicheren Aufbaus der Verkehrsflächen nach RStO 12

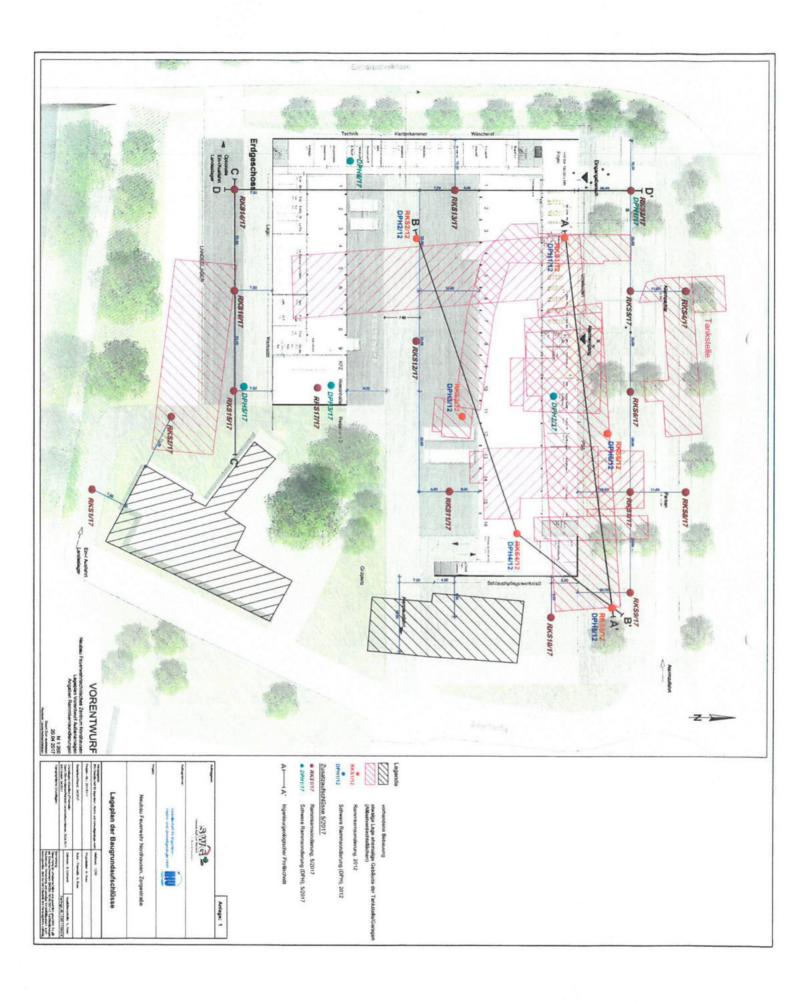
Kriterien für die Festlegung der Dicke des frostsicheren Aufbaus	Belastungsklasse Bk 3,2 – 1,0	Belastungsklasse Bk 0,3	
Frostempfindlichkeit des Untergrundes	F 3	F 3	
Ausgangswert nach RStO 12,Tab. 6	60	50	
Frosteinwirkungszone II	+ 5 cm	+ 5 cm	
Keine besonderen Klimaeinflüsse	<u>+</u> 0 cm	<u>+</u> 0 cm	
Wasserverhältnisse im Untergrund (Schichtenwasser zeitweilig höher als 1,5 m unter Planum)	+ 5 cm	+ 5 cm	
Lage der Gradiente in Geländehöhe bis Damm < 2,0 m	<u>+</u> 0 cm	<u>+</u> 0 cm	
Entwässerung			
- über Mulden und Gräben	<u>+</u> 0 cm	<u>+</u> 0 cm	
- über Rinnen bzw. Abläufe und Rohrleitungen	- 5 cm	- 5 cm	
Mindestdicke des frostsicheren Aufbaus			
bei Entwässerung	70 cm	60 cm	
- über Mulden und Gräben - über Rinnen bzw. Abläufe und Rohrleitungen	65 cm	55 cm	

Auf dem Niveau der ungebundenen Tragschicht unterhalb der Deckschicht sollte ein E_{v2} -Wert von \geq 120 MN/m² nachgewiesen werden.

8 Schlussbemerkungen

Das vorliegende Baugrundgutachten beschreibt die durch die Bodenaufschlüsse festgestellten Baugrundverhältnisse in ingenieurgeologischer, geotechnischer und hydrologischer Sicht. Die bautechnischen Aussagen beziehen sich auf den uns zum Zeitpunkt der Erarbeitung des Baugrundgutachtens bekannten Zustand und Planungsstand.

Es wird darauf hingewiesen, dass die Beurteilung auf punktförmige Aufschlüsse beruht. Für die vollkommene Klassifizierung des Bodens ist deshalb letztendlich der bei Aushubarbeiten aufgeschlossene Boden maßgebend.


Es empfiehlt sich eine sorgfältige Überwachung der Erdarbeiten unter Feststellung der angeschnittenen Bodenschichtung außerhalb der Bohrstandorte. Bei Unklarheiten hinsichtlich der Einstufung einzelner Bodenschichten stehen wir während der Erdarbeiten zur Verfügung, Entscheidungshilfen zu leisten. Eine Abnahme des Planums und geotechnische Verdichtungsnachweise werden empfohlen.

Projekt-Nr.: 176 117

Sollten sich im Zuge der weiteren Planung oder bei der Ausführung noch Fragen in geotechnischer oder gründungstechnischer Sicht ergeben, bitten wir, unser Baugrundbüro zur weiteren Beratung heranzuziehen.

Granitarita de Deemeur.

Am Sport; latz : 34 Nordhausen Tel. 449 3631 8561-9 r : 49 3631 890629 info@ihu-gmbi.com : ...ww.ihu-gmbh.com

Schichtenverzeichnis nach DIN 4022

Projekt: 176117

Neubau Feuerwehr Nordhausen, Zorgestraße

Anlage 2.1.1

Baustelle:

Firma:

Prüfungsnr:

Aufschluß: RKS 1/17

Rechtswert:

FN01

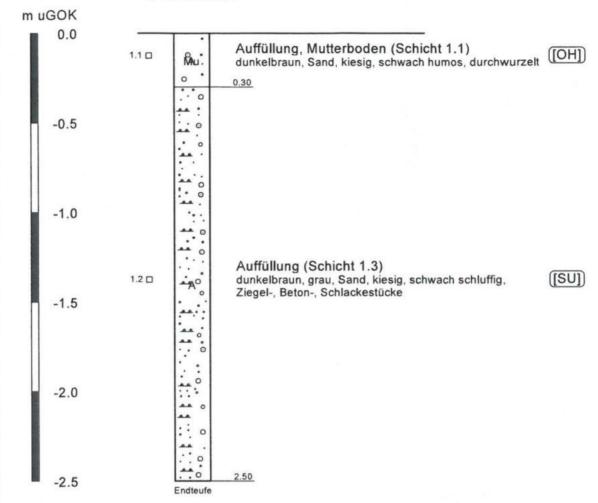
Hochwert:

Bemerkungen:

Ansatzpunkt:

0,00 m uGOK

durch:


G. Witte

aufgenommen am:

08.05.2017

	 a) Benennung der Boder und Beimengungen 	nart	Bemerkungen Wasserführung	Entnommene Proben Teufe Art: Bezeichnung (weitere)			
	b) Ergänzende Bemerku	ngen	Bohrwerkzeuge Kernverlust				
Bis m unter	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Sonstiges		
Ansatz- punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalkgehalt			
0,30	Auffüllung, Mutterboden	(Schicht 1.1);Sand, kiesig, sch	schwach feucht,	gestörte Probe:1.1			
		leicht zu bohren	dunkelbraun				
		leicht zu bohren	dunkelbraun [OH]				
2,50	Auffüllung (Schicht 1.3); Schlackestücke	leicht zu bohren Sand, kiesig, schwach schluffig	[OH]		schwach feucht,	gestörte Probe:1.2	
2,50			[OH]	ion-,	schwach feucht,	gestörte Probe:1.2	

RKS 1/17 0 m uGOK

	Nordhausen, Zorgestr. dokumentation
Projekt-Nr.: 176 117	Anlage 2.1.2
Zeichner:	Höhenmaßstab: 1: 20

G. Witte

Schichtenverzeichnis nach DIN 4022

Projekt: 176117

Neubau Feuerwehr Nordhausen, Zorgestraße

Anlage 2.2.1

Baustelle:

Firma:

Prüfungsnr:

Aufschluß: RKS 2/17

Rechtswert:

FN02

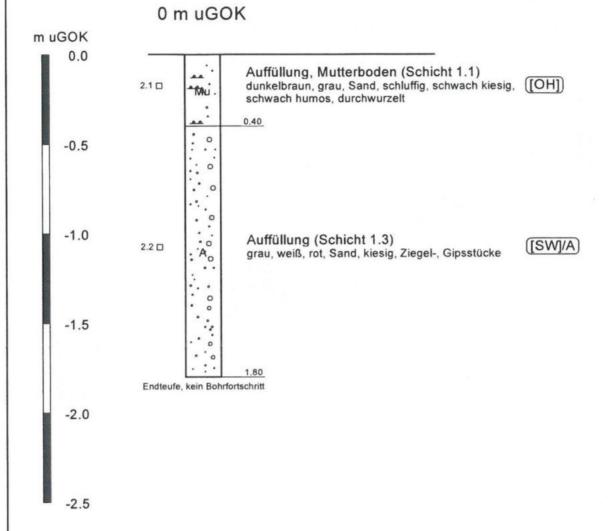
Hochwert:

Bemerkungen: kein Bohrfortschritt bei 1,80m

Ansatzpunkt:

0,00 m uGOK

durch:


G. Witte

aufgenommen am:

08.05.2017

	 a) Benennung der Bode und Beimengungen 	nart	Bemerkungen Wasserführung	Entnommene Proben Teufe Art: Bezeichnung (weitere)			
	b) Ergänzende Bemerku	ngen	Bohrwerkzeuge Kernverlust				
Bis m unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Sonstiges		
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalkgehalt			
0,40	Auffüllung, Mutterboden humos, durchwurzelt	(Schicht 1.1);Sand, schluffig, s	schwach feucht,	gestörte Probe:2.1			
		leicht zu bohren	dunkelbraun	, grau			
			[OH]				
		0 1111 7 1 0 1	schwach feucht,	gestörte Probe:2.2			
1,80	Auffüllung (Schicht 1.3);	Sand, kiesig, Ziegel-, Gipsstüc	ке		schwach leucht,	gestorie Frobe.2.2	
1,80	Auffüllung (Schicht 1.3);	mäßig schwer zu bohren-	grau, weiß, r	rot	schwach leucht,	gestorie Probe.2.2	

RKS 2/17

Neubau Feuerwehr No Aufschlussdok	
Projekt-Nr.: 176 117	Anlage 2.2.2

Zeichner: G. Witte

Höhenmaßstab: 1: 20

Schichtenverzeichnis nach DIN 4022

Projekt: 176117

Neubau Feuerwehr Nordhausen, Zorgestraße

Anlage 2.15.1

Baustelle:

Firma:

Prüfungsnr:

Aufschluß: RKS 15/17

Rechtswert:

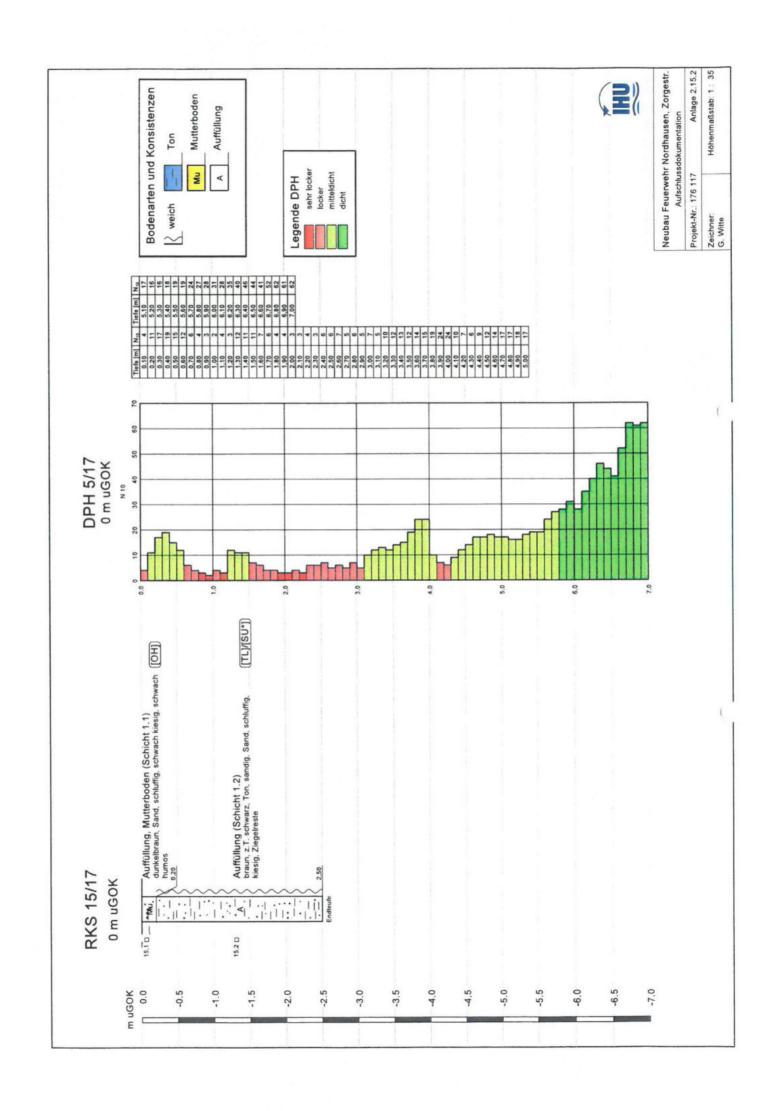
FN15

Hochwert:

Bemerkungen:

Ansatzpunkt:

0,00 m uGOK


durch:

G. Witte

aufgenommen am:

09.05.2017

	Benennung der Bode und Beimengungen	nart	Bemerkungen Wasserführung	Entnommene Proben Teufe Art: Bezeichnung (weitere)			
	b) Ergänzende Bemerku	ingen	Bohrwerkzeuge Kernverlust				
Bis m unter	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe	Farbe Sonstiges			
Ansatz- punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalkgehalt			
0,20	Auffüllung, Mutterboden humos	(Schicht 1.1);Sand, schluffig, s	schwach feucht,	gestörte Probe:15.1			
		leicht zu bohren	dunkelbraun				
			[OH]				
2,50	Auffüllung (Schicht 1.2):	Ton, sandig, Sand, schluffig, ki	schwach feucht,	gestörte Probe:15.2			
2,50	randing (content 1.2),						
2,50	weich,	mäßig schwer zu bohren- schwer zu bohren	braun, z.T. s	chwarz	_		

Schichtenverzeichnis nach DIN 4022

Projekt: 176117

Neubau Feuerwehr Nordhausen, Zorgestraße

Anlage 2.17.1

Baustelle:

Firma:

Prüfungsnr:

Aufschluß: RKS 17/17

Rechtswert:

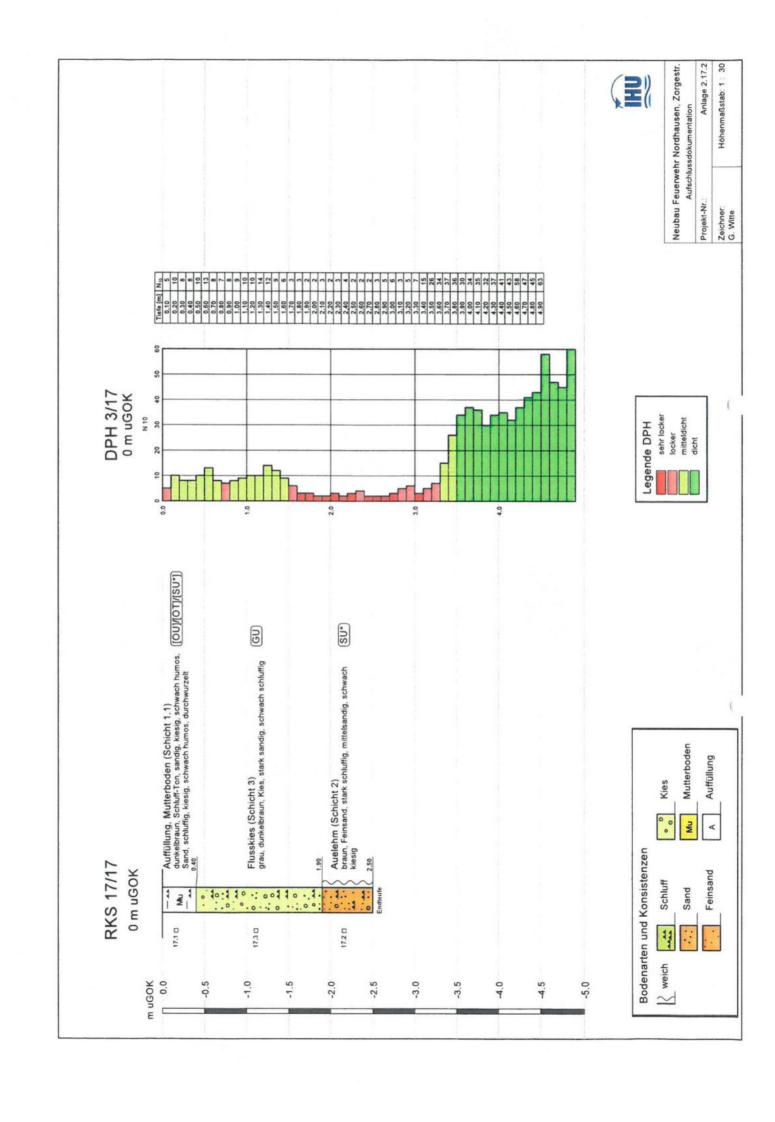
FN17

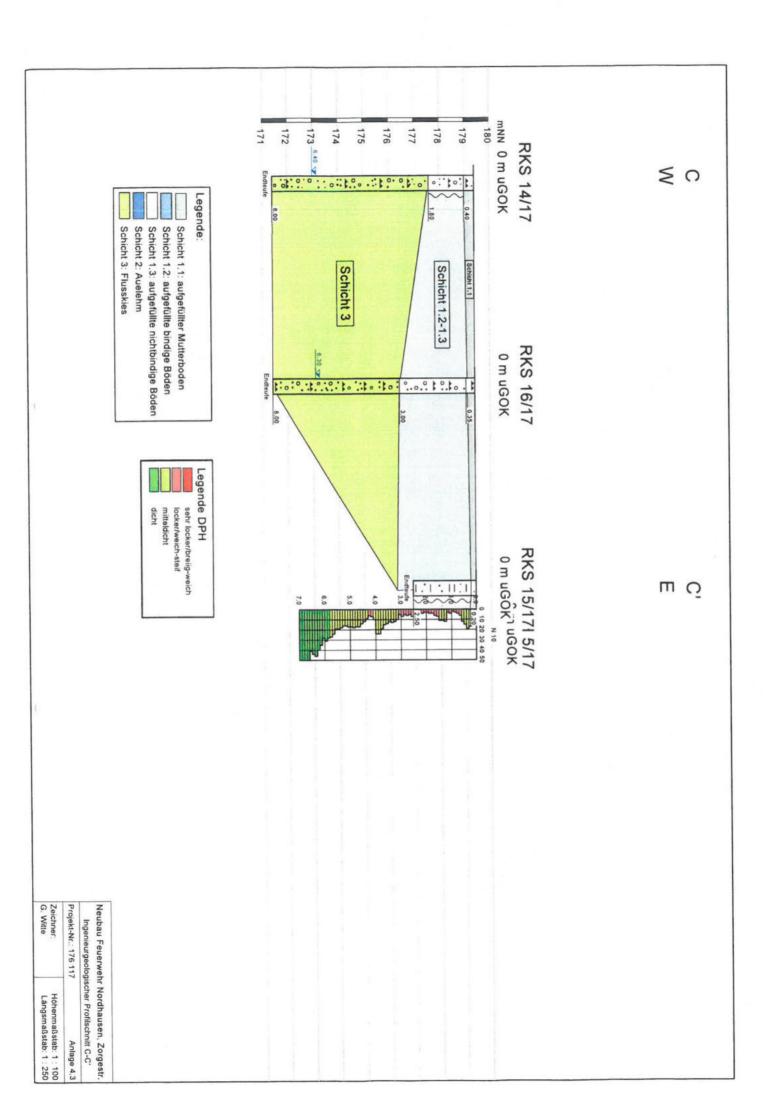
Hochwert:

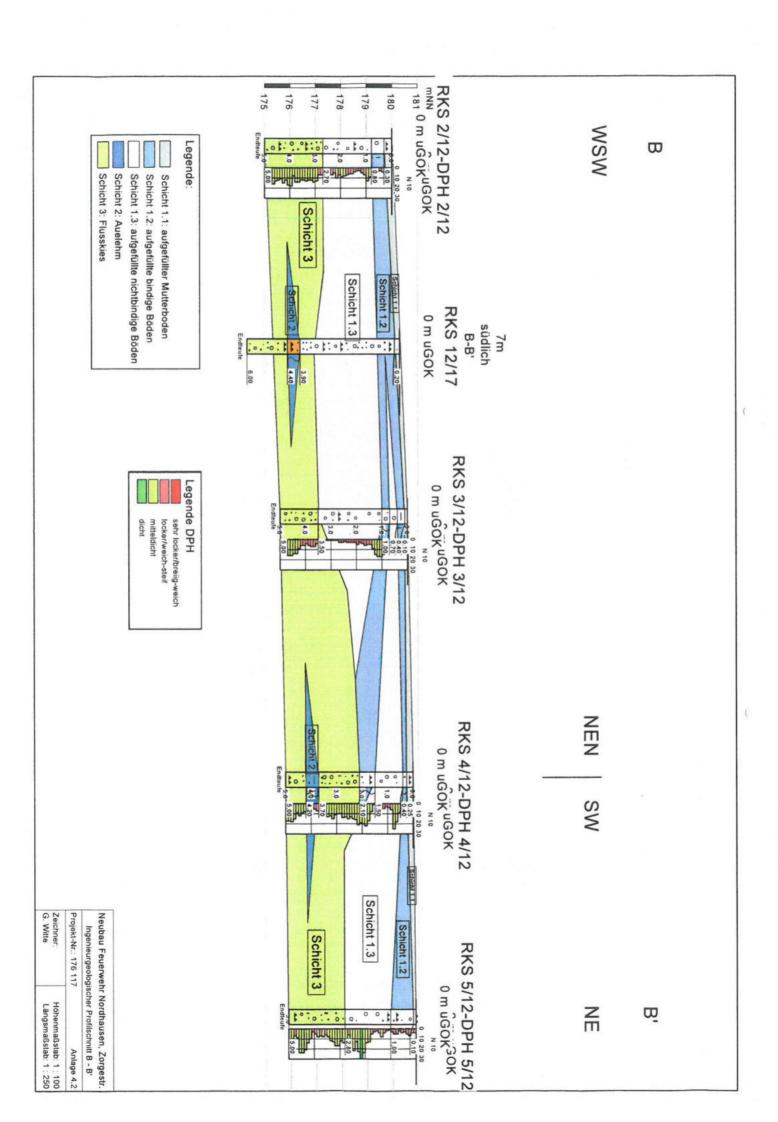
Bemerkungen:

Ansatzpunkt:

0,00 m uGOK


durch:


G. Witte


aufgenommen am:

09.05.2017

	a) Benennung der Bode und Beimengungen	nart	Bemerkungen Wasserführung	Entnommene Proben Teufe Art: Bezeichnung (weitere)			
Bis . m unter	b) Ergänzende Bemerku	ingen	Bohrwerkzeuge Kernverlust Sonstiges				
	c) Beschaffenheit d) Beschaffenheit nach Bohryorgang					e) Farbe	
Ansatz- punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalkgehalt			
0,40		Mutterboden (Schicht 1.1);Schluff-Ton, sandig, kiesig, schwach humos, schwach feucht, ffig, kiesig, schwach humos, durchwurzelt					
		leicht zu bohren	dunkelbraun				
			[OU]/[OT]/[S				
1,90	Flusskies (Schicht 3); Ki	ies, stark sandig, schwach schl	luffig		schwach feucht,	gestörte Probe:17.3	
		leicht zu bohren-mäßig	grau, dunkelbraun				
		Striwer zu fanten	GU				
2,50	Auelehm (Schicht 2); Fe	einsand, stark schluffig, mittelsa	schwach feucht- feucht,	gestörte Probe:17.2			
	weich,	leicht zu bohren	braun				
			SU*				

Für die weitere kostenseitige Planung sollte hierfür, abgeleitet aus vergleichbaren Untersuchungen, die mit der Unteren Bodenschutzbehörde durchgeführt wurden, ein Betrag von ca. 8.000 - 10.000 € berücksichtigt und eingestellt werden. Ohne diese Entlassung als Altlastverdachtsfläche ist eine Zustimmung zum Bauantrag nicht möglich.

In Abstimmung mit der Unteren Bodenschutzbehörde und der Unteren Immissionsschutzbehörde braucht für das Vorhaben kein Ausgangszustandsbericht erarbeitet werden. Gemäß gültiger Gesetzgebung handelt es sich bei dem Neubau der Feuerwache nicht um eine IID-Anlage.

2. Ergebnisse der vorliegenden Untersuchungen nach LAGA Boden und Bauschutt

Im Rahmen der bisher durchgeführten Baugrunduntersuchungen (Baugrundgutachten 2012 und ergänzende Aufschlüsse 2017) wurden sowohl für den Bauschutt aus den Rückbaumaßnahmen der vorhandenen Bebauung und den anstehenden Boden LAGA Untersuchungen durchgeführt. Entsprechend den Zuordnungswerten der LAGA ergibt sich aufgrund des Parameters Sulfat in den Prüfungen der Zuordnungswert Z 2 bzw. > Z 2. Im Bauschutt handelt es sich dabei überwiegend um baustofftypische Stoffe. Im Boden sind die erhöhten Sulfatwerte geogen bedingt.

Im Bereich des Südharzes ist eine Entsorgung, unabhängig von dem ermittelten Zuordnungswert bei diesen Zuordnungswerten basierend auf erhöhten Sulfatgehalten, auf verschiedenen Anlagen möglich. Hierbei kommen in Frage:

- Kali-Rückstandshalden Bleicherode oder Sondershausen
- Sandgrund Elsa-Sand GmbH Ellrich

Für diese Anlagen gelten, entsprechend den vorliegenden Genehmigungen, Gipsgehalte (Sulfat) bis in den Bereich des Löslichkeitsgleichgewichtes (> 1000 mg/l). Diesem Sachverhalt geschuldet, ist damit auch eine kostengünstige Entsorgung dieser Materialien (Boden und Bauschutt) möglich. Die normalen Annahmekosten für diese Aushubmaterialien liegen im Bereich von 10 - 12 €/t reiner Annahmegebühren. Zusätzlich wären dabei die Transportkosten zu berücksichtigen. Die Transportentfernungen liegen bei ca. 10 - 15 km für die o. g. Entsorgungsanlagen.

Entsprechend den vorliegenden Prüfergebnissen ist davon auszugehen, dass ca. 80 % der erforderlichen Aushubmengen über diesen Entsorgungsweg entsorgt werden können. Für die Ermittlung des Kostenrahmens bzw. auch später für eine Ausschreibung sollten unabhängig von den bisher vorliegenden Untersuchungsergebnissen ein Anteil von ca. 20 % berücksichtigt werden, in denen die Deponiekosten (z. B. Deponie Nentzelsrode, Transportentfernung ca. 8 km) berücksichtigt werden. Die Annahmegebühren für Boden und Bauschutt im genannten Umfang 68,00 €/t zu berücksichten.

Ausgehend von den Empfehlungen der LAGA ist es erforderlich, von jeweils 500 t zu entsorgendes Material eine LAGA Untersuchung durchzuführen. Die Analysenkosten für eine Analyse inklusive Probenahme unter Berücksichtigung der Festlegungen der Probenahmeordnung PN 98 ein Betrag von ca. 330,00 €.

Bei diesen Haufwerksbildungen ergeben sich in der Regel aufgrund der Zusammenlegung von Aushubmengen aus verschiedenen Entnahmebereichen bei Vermeidung eines Vermischungsverbotes veränderte meist geringere Belastungen als bei den im Rahmen von Erkundungsmaßnahmen bewerteten Einzelproben.

Entsorgungs- und Sanierungskosten, die sich zusätzlich aus der Altlastverdachtsfläche des ehemaligen Tankstellenbereichs ergeben, sind z. Z. nicht weiter abzuschätzen, da diese vorliegenden Untersuchungen bisher keine vertiefende Hinweise auf einen zusätzlichen Altlastverdacht ergeben haben. Es wird jedoch empfohlen, auch für diese Maßnahme einen zusätzlichen Betrag innerhalb der Kostenschätzung zu berücksichtigen.

Wir hoffen, Ihnen behilflich gewesen zu sein und stehen Ihnen für Rückfragen jederzeit gern zur Verfügung.

Mit freundlichen Grüßen

IHU Gesellschaft für Ingenieur-, Hydror und Umweltgeologie mbH

cc. Herr Reinboth

Anlagen

Anlage 1 Lageplan Anlage 2 LAGA Untersuchungen

Untersuchungsumfang		Z1	Z1.2	Z2	FWN01	FWN02	
TR Boden (Tab: II.1.2-4-5)			Kriteri	en			
Feststoffkriterien							open a residence on
PCB (Summe)	mg/kg TS	0,15	0,15	0,5	<0,004	<0,004	- A - A
BTEX (Summe)	mg/kg TS	1	1	1	<0,02	<0,02	
LHKW (Summe)	mg/kg TS	1	1	1	<0,02	<0,02	
PAK (Summe)	mg/kg TS	3	3	30	1,23		
Benzo(a)pyren	mg/kg TS	0,9	0.9	3	0,18	<0,05	
Naphthalin	mg/kg TS		TOTAL STATE		<0.05	<0.05	
Trockensubstanz	Gew%		1550		90,1	91,6	
Cyanide, ges	mg/kg TS	3	3	10	<0,5	<0,5	
EOX	mg/kg TS	3	3	10	<1	<1	
Kohlenwasserstoff C10-C22	mg/kg TS	300	300	1000	<50	<50	
Kohlenwasserstoff C10-C40	mg/kg TS	600	600	2000	<50	<50	
Arsen	mg/kg TS	45	45	150	10,8	6,8	
Blei	mg/kg TS	210	210	700	81,5	9,6	
Cadmium	mg/kg TS	3	3	10	0,4	<0,2	
Chrom (ges)	mg/kg TS	180	180	600	33	57,4	
(upfer .	mg/kg TS	120	120	400	67,4		
Vickel	mg/kg TS	150	150	500	the same of the sa	23,5	
Quecksilber	mg/kg TS	1,5	1,5	5	35,2	43,2	
Zink	mg/kg TS	450	450	1500	0,4	<0,05	
hallium	The state of the s	2,1			151	54,5	
OC	mg/kg TS M%	-	2,1	7	<0,4	<0,4	
	101 70	1,5	1.5	5	0,45	0,2	
luatkriterien				IN COMPANY TO A STATE OF			
H-Wert	-	6,59,5	612	5,512	7,81	7,33	
eitfähigkelt	µS/cm	250	1500	2000	2250	87	
henol-Index	µg/l	20	40	100	<10	<10	
Chlorid	mg/l	30	50	100	2	1,2	
Sulfat	mg/l	20	50	200	1490	27,2	
yanid, gesamt	µg/l	5	10	20	<5	<5	
rsen	µgЛ	14	20	60	<3	<3	
Blei	µg/l	40	80	200	5	<3	
Cadmium	µg/l	1,5	3	6	<0,5	<0,5	
Chrom (ges.)	µg/l	12,5	25	60	<2	<2	
Cupfer	µg/l	20	60	100	3	<2	
lickel	µg/l	15	20	70	<2	<2	
Quecksilber	µg/l	<0,5	1	2	<0,1	<0,1	
ink	µg/l	150	200	600	6	4	
atum der Entnahme:			The second second		05.05.2017	05.05.2017	
robennehmer:					IHU GmbH	IHU GmbH	
laterial:					Boden	Boden	
abor:					ThUI	ThUI	
nalysedatum:					08.05.2017	08.05.2017	
abornummer:					017-F-1964-1-10		
rüfstelle:					V 17-1 - 1804-1-10	17-7-1904-2-1	
emerkung:							

Thüringer Umweltinstitut

Henterich GmbH & Co. KG

Trinkwasser · Wasser Abwasser · Klärschlamm Boden · Abfall · Sedimente Lebensmittel · Mikrobiologie Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüfiaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-16312-02-00 aufgeführten Akkreditierungsumfang.

Thüringer Umweltinstitut Henterich GmbH & Co. KG OT Pferdsdorf, Kielforstweg 2 - 3, 99819 Krauthausen

Tel. 036926 71009-0 Fax 036926 71009-9 E-Mail: postmaster@thuinst.de homepage: http://www.thuinst.de

Prüfbericht

Labor-Nr.:

2017-F-1964-1-1

Auftraggeber:

IHU Nordhausen GmbH

Am Sportplatz 1 99734 Nordhausen

Projekt:

BV: Neubau Feuerwache Nordhausen

Entnahmestelle:

MP 1

Probenehmer:

siehe Auftraggeber

Probenahmedatum:

05.05.2017

Probeneingangsdatum:

08.05.2017

Analysenbeginn: Prüfgegenstand: 08.05.2017 Boden

Prüfgegensta Prüfzlel:

Laga-Boden / Tabelle II 1.2.-2 bis 1.2.-5

Parameter	Dimension	Messergebnis	Analyseverfahren
Feststoffkriterien			
Trockensubstanzgehalt	Masse %	90,1	DIN EN 14346ª
TOC	Masse % d.TS	0,45	DIN EN 13 137°
Cyanid gesamt	mg/kg TS	< 0,50	DIN ISO 17380
EOX	mg/kg TS	< 1,0	DIN 38 414 - S17ª
Kohlenwasserstoffe C10 - C22	mg/kg TS	< 50	
Kohlenwasserstoffe C10 - C40	mg/kg TS	< 50	DIN EN 14039ª DIN EN 14039ª
Arsen	mg/kg TS	10,8	
Blei	mg/kg TS	81,5	DIN EN ISO 11885ª
Cadmium	mg/kg TS	0,40	DIN EN ISO 11885ª
Chrom	mg/kg TS	33,0	DIN EN ISO 11885ª
Kupfer	mg/kg TS	67,4	DIN EN ISO 11885°
Nickel	mg/kg TS	35,2	DIN EN ISO 11885°
Quecksilber	mg/kg TS	0,40	DIN EN ISO 11885ª
Zink	mg/kg TS	151	DIN EN ISO 17852ª
Thallium	mg/kg TS		DIN EN ISO 11885ª
	mg/kg 10	< 0,40	DIN EN ISO 11885°
PAK			
Naphthalin	mg/kg TS	< 0.05	DIN 100 428778
Acenaphtylen	mg/kg TS	< 0,05	DIN ISO 138778
Acenaphten	mg/kg TS	< 0,05	DIN ISO 13877°
Fluoren	mg/kg TS	< 0,05	DIN ISO 13877ª
Phenanthren	mg/kg TS	0,18	DIN ISO 13877°
Anthracen	mg/kg TS	< 0,05	DIN ISO 13877°
Fluoranthen	mg/kg TS	0,28	DIN ISO 13877ª
Pyren	mg/kg TS	0,28	DIN ISO 138778
Benzo(a)anthracen	mg/kg TS	0,08	DIN ISO 13877ª
Chrysen	mg/kg TS	0,08	DIN ISO 13877ª
Benzo(b)fluoranthen	mg/kg TS		DIN ISO 13877°
Benzo(k)fluoranthen	mg/kg TS	0,10	DIN ISO 13877ª
Benzo(a)pyren	mg/kg TS	0,07	DIN ISO 13877°
Dibenz(a,h)anthracen		0,18	DIN ISO 13877ª
Benzo(g,h,i)perylen	mg/kg TS	< 0.05	DIN ISO 13877ª
ndeno(1,2,3-cd)pyren	mg/kg TS	< 0,05	DIN ISO 13877 ^a
Summe PAK	mg/kg TS	< 0,05	DIN ISO 13877ª
7113	mg/kg TS	1,23	DIN ISO 13877ª
Pferdsdorf, 12.05.2017			

Pferdsdorf, 12.05.2017

Geschäftsführer:

Dipl. Wirtsch. Ing. (FH) Daniel Tischer

Seite 1 von 3

persönlich haftender Gesellschafter: Henterich GmbH HRB 405.890 / HRA 401.309

Steuer-Nr.: 155/155/34803

vom Bieter austulien!
Kennzettel für Angebotsumschlag
(Aufkleber)
Umschlag bitte nicht öffnen!
Angebot der Ausschreibenden Stelle unverzüglich weiterleiten!
Ausschreibende Stelle: Landkreis Nordhausen, Landratsamt Vergabestelle
Absender (Bieter):
Vergabenummer: 84-1/19
Ablauf der Angebotsfrist/ Eröffnungstermin: 30.08.2019, 11:00
Vom Auftraggeber auszufüllen!
Eingang des Angebotes am:
Laufende Nummer des Angebotes: