

Karenz MTTM PE1

Overview

To increase the speed of UV-curing resins, the amount of polymerization initiators is increased. In the case of epoxy resins, the temperature is increased. However, when multifunctional-Thiol*-based Karenz MTTM PE1 is used, curing speeds are substantially improved. Karenz improves adhesiveness and elongation, as well as reduces the amount of energy used for production and processing.

The use of Karenz MTTM PE1 in UV-curing resins helps reduce the amount of UV irradiation and polymerization initiators, which restrict the coloring of the product. In the case of epoxy resins, it is possible to cure at low temperatures and increase the curing rate compared with the use of conventional amine-based curing agents*. Furthermore, compared with conventional Thiol-based curing agents, Karenz MTTM PE1 has lower levels of odor.

UV-curing resins: A photo-curing resin that changes its properties following irradiation of ultraviolet rays. It is used as a coating material and as photoresist in the production of electronic circuits. Multifunctional-thiol: Compounds whose molecule contains two or more groups of hydrogenated sulfur (-SH).

Amine-based curing agents: Curing agents whose molecule contains amino groups (-NH2), reacting with epoxy resins at room temperature for curing.

Properties

Product name	Karenz MT™ PE1	
Structure	HS—O O SH SH O O SH SH SH O	
Chemical Name	Pentaerythritol tetrakis (3-mercaptobutylate)	
CAS No.	31775-89-0	
M.W.	544.8	
Appearance	colorless or yellow liquid	
Density	1.19 (30°C)	
Refractive Index	1.523	
Viscosity	1200mPa·s (24°C)	
Flash Point	with no flammability	

Showa Denko America Inc 420 Lexington Avenue Suite 2335A, New York NY 10170 Tel: 212-370-0033 E-mail: sales@showadenko

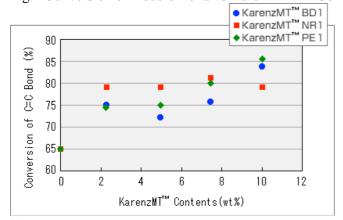
A HANDLING AND STORAGE

Please read our MSDS before using Karenz MTTM

Take measures against static electricity and wear conductive clothes and shoes. Handle the product where adequate local exhaust ventilation is provided. Wear protective glasses, gloves and mask. Wash hands with water after handling.

Storage

Store the product in a dry, cool, and dark place. Do not allow high temperature objects, sparks or flame in the vicinity of the product. Use a closed container.


Karenz UV Agent

Curing

Curing (1)

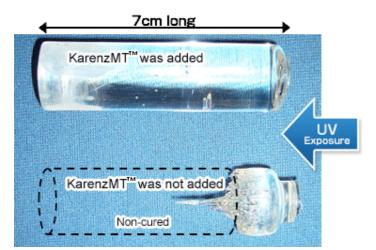
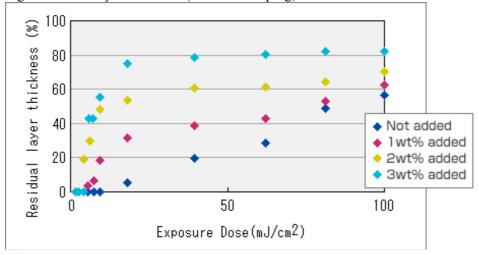

We observed an increase in C=C double bonds correlating to the increase in Karenz added.

Fig.1 Conversion of Double Bond vs Karenz MT™ Contents

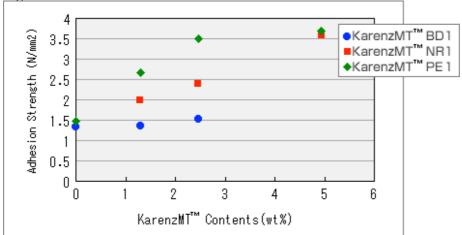
Monomer BPDA (bisphenol A type diacrylate)		BPDA (bisphenol A type diacrylate)
	Karenz MT™	BD1、NR1、PE1
	Initiator	IRGACURE™ 184 2wt%
	Exposure Dose	800mJ/cm2

Curing (2)


Monomer	BPDA
Karenz MT™	PE1 2wt%
Initiator	IRGACURE™ 184 2wt%

Curing (3)

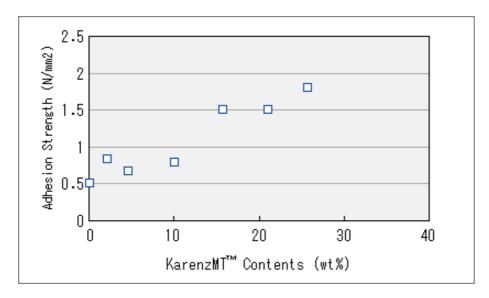
Using Karenz MTTM improved layer development.



Monomer	(Green pigment and acrylic polymer) dispersion • epoxyacrylate
Karenz MT™	PE1

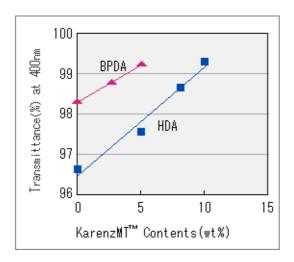
Adhesion

Adding Karenz MTTM improved adhesion strength.


Fig.3 Glass Substrate

Monomer	BPDA
Karenz MT™	BD1, NR1, PE1
Initiator	IRGACURE™ 184 2wt%
Exposure Dose	500mJ/cm2

Fig.4 Plastic Substrate (polyethylene terephthalate)

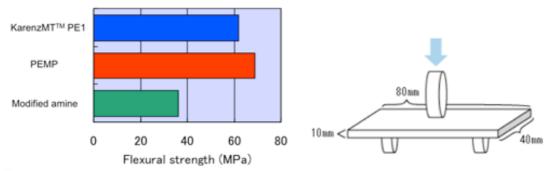


Monomer	BPDA
Karenz MT™	PE1
Initiator	IRGACURE™ 184 2wt%
Exposure Dose	500mJ/cm2

Transparency

As Karenz MTTM quantity increased, transparency increased.

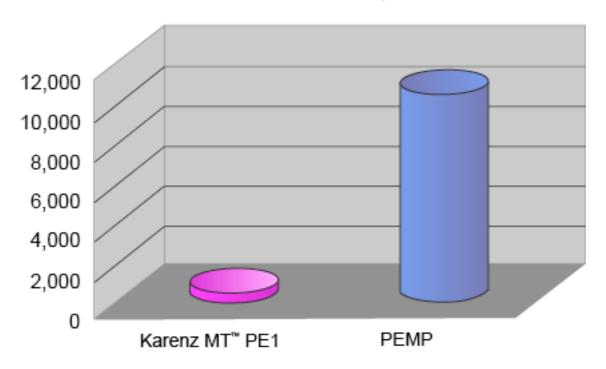
Fig.5 Influence of Karenz MTR Contents on Transparency



Monomer	BPDA, HDA(hexanediacrylate)
Karenz MT™	BD1
Initiator	IRGACURE™ 184 2wt%
Exposure Dose	500mJ/cm2
Film Thickness	100μm

Shelf-life

Karenz MTTM was stable for over 2 weeks at 40°(.

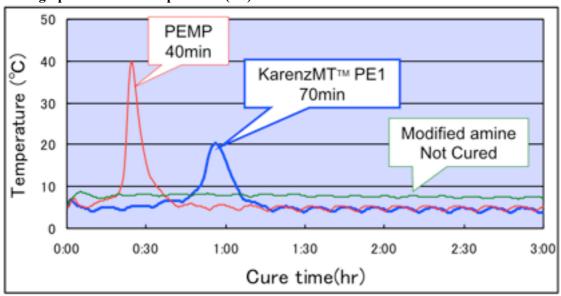


Monomer	DPHA (dipentaerythritolhexaacrylate)
Karenz MT™	BD1、NR1、PE1 2wt%
Comparative Thiol	PEMP
Temperature	40°C

Odor

Odor Concentration Comparison

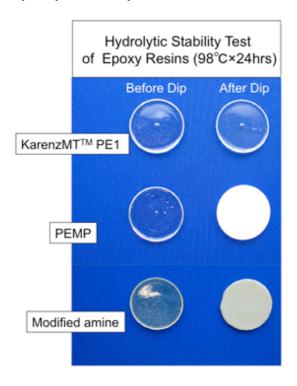
Measurement: Examined by FF-2A (SHIMADZU CORPORATION) Odor Concentration: The lowest dilution multiple, odor cannot be sensed.


Karenz MTTM PE1, Tetra-functional Primary Thiol (PEMP), and degenerated amine were compared as epoxy curing agents.

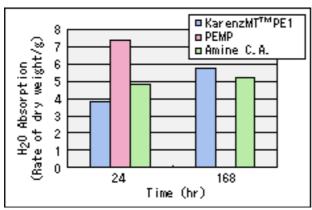
Advantages for Epoxy Curing Agent

Curing

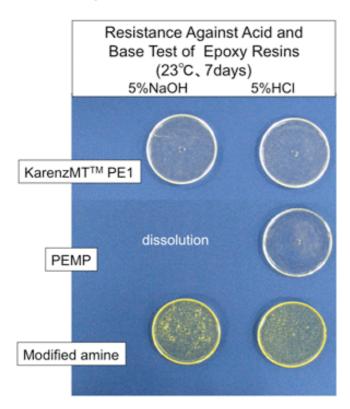
Curing Speed at Low Temperature (5°C)


Epoxy blended with Karenz MTTM PE1 cured at 5°C, and its hardness was same at 25°C.

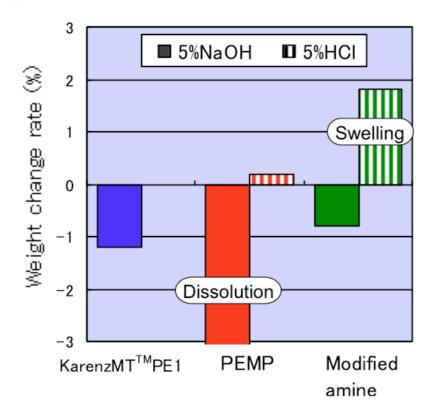
Curing Temperature (°C)	Curing Time(hour)	Hardness(Shore D)
Room Temperature	24	75
5°C	24	78


Room Temperature	Bisphenol A based type
C.A.	Karenz MT™ PE1
	Primary Thiol (PEMP)
	Degenerated amine
Accelerator	TAP (2,4,6-tris (dimethylamino) -phenol)
Composition -	Epoxy / Thiol / TAP = 100 / 70 / 10
	Epoxy / D-amine = 100 / 80

Hydrolytic Stability

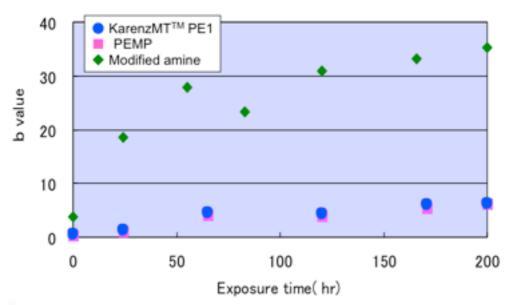

According to our test results, Karenz MTTM PE1 had good Hydrolytic stability. Karenz MTTM PE1 resin was stable after dipping it in hot water, while the primary Thiol resin and degenerated amine resin lost transparency.

Test Method	JIS K7114
Epoxy Resin	Phenol nobolac type
C.A.	Karenz MT™ PE1
	Primary Thiol (PEMP)
	Degenerated amine
Accelerator	
Composition	Epoxy / Thiol / DMBA = 100 / 70 /3.5
	Epoxy / D-amine = 100 / 80


Resistance Against Acids and Bases

Karenz MTTM PE1 resin showed good resistance against acids and bases.

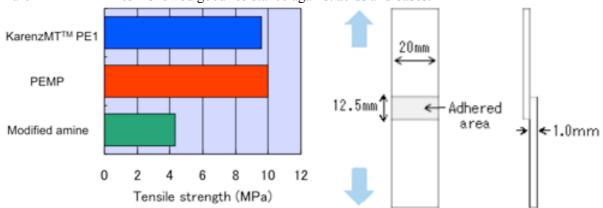
Test Method	JIS K7114
Epoxy Resin	Bisphenol A based type
C.A.	Karenz MT™ PE1
	Primary Thiol (PEMP)
	Degenerated amine
Accelerator	TAP
Composition	Epoxy / Thiol / TAP = 100 / 70 /10
	Epoxy / D-amine = 100 / 80



Weather Resistance

Sunshine Weather Meter Test

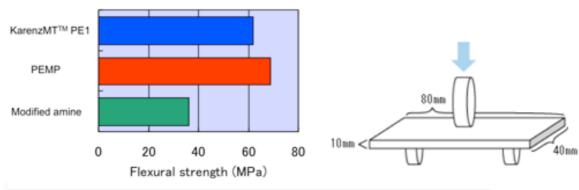
Karenz MTTM PE1 resin didn't become yellow after our weather meter test.



Epoxy Resin	Bisphenol A based type
C.A.	Karenz MT™ PE1
	Primary Thiol (PEMP)
	Degenerated amine
Composition	Epoxy / Thiol / TAP = 100 / 70
	Epoxy / D-amine = 100 / 80
Curing Method	Thermal cure without accelerator
Exposure Condition	Illumination : 255W/m2
	Temperature 63°C
	Rainfall : 18min./200min.

Adhesion

Karenz MTTM PE1 resin showed good resistance against acids and bases.



Test Method	JIS K6850
Epoxy Resin	Bisphenol A based type
C.A.	Karenz MT™ PE1
	Primary Thiol (PEMP)
	Degenerated amine
Accelerator	TAP
Composition	Epoxy / Thiol / TAP = 100 / 70 /10
	Epoxy / D-amine = 100 / 80

Flexibility

Flexure Test

Karenz MTTM resin showed good flexibility and toughness compared to degenerated amine resin.

Test Method	JIS K6481
Epoxy Resin	Bisphenol A based type
C.A.	Karenz MT™ PE1
	Primary Thiol (PEMP)
	Degenerated amine
Accelerator	TAP
Composition	Epoxy / Thiol / TAP = 100 / 70 /10
	Epoxy / D-amine = 100 / 80

^{*} The information contained herein is based upon data considered, and is true and accurate. However, SHOWA DENKO K.K. accepts no responsibility or risk which may result from the handling and use of products or for infringement of any patent.

###

© 2013 Showa Denko America Inc. All rights reserved. All referenced product names are the trademarks of their respective companies.